
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025 1293

Subspace Representation Learning for Sparse Linear
Arrays to Localize More Sources Than Sensors:

A Deep Learning Methodology
Kuan-Lin Chen , Member, IEEE and Bhaskar D. Rao , Life Fellow, IEEE

Abstract—Localizing more sources than sensors with a sparse
linear array (SLA) has long relied on minimizing a distance
between two covariance matrices and recent algorithms often
utilize semidefinite programming (SDP). Although deep neural
network (DNN)-based methods offer new alternatives, they still
depend on covariance matrix fitting. In this paper, we develop a
novel methodology that estimates the co-array subspaces from a
sample covariance for SLAs. Our methodology trains a DNN to
learn signal and noise subspace representations that are invariant
to the selection of bases. To learn such representations, we
propose loss functions that gauge the separation between the
desired and the estimated subspace. In particular, we propose
losses that measure the length of the shortest path between
subspaces viewed on a union of Grassmannians, and prove that
it is possible for a DNN to approximate signal subspaces. The
computation of learning subspaces of different dimensions is
accelerated by a new batch sampling strategy called consistent
rank sampling. The methodology is robust to array imperfections
due to its geometry-agnostic and data-driven nature. In addition,
we propose a fully end-to-end gridless approach that directly
learns angles to study the possibility of bypassing subspace
methods. Numerical results show that learning such subspace
representations is more beneficial than learning covariances or
angles. It outperforms conventional SDP-based methods such as
the sparse and parametric approach (SPA) and existing DNN-
based covariance reconstruction methods for a wide range of
signal-to-noise ratios (SNRs), snapshots, and source numbers for
both perfect and imperfect arrays.

Index Terms—Neural networks, representation learning, sub-
spaces, sparse linear arrays, direction-of-arrival estimation.

I. INTRODUCTION

D
IRECTION-of-arrival (DoA) estimation is one of the fun-
damental problems in array processing, providing the di-

rection information of sources to many applications such as
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hearing aids [1], wireless communications [2], and sonar sys-
tems [3]. When a sufficiently large number of array measure-
ments or snapshots are available, most approaches estimate a
spatial covariance matrix (SCM) and apply subspace methods
like MUltiple SIgnal Classification (MUSIC) [4] to find the
DoAs. Because the noise subspace is required to be nontrivial,
an M -element uniform linear array (ULA) can only resolve
up to M − 1 sources. To remove such a limit and reduce the
cost of sensors, one can choose an N -element SLA with the
same aperture but no “holes” in its co-array [5]. In this case,
the M -by-M SCM of the original ULA can be reconstructed
from the N -by-N SCM of the SLA. Taking a 5-element mini-
mum redundancy array (MRA) for example, it can recover the
SCM of a 10-element ULA and thus resolve up to 9 sources
with only 5 sensors. Although such an exploitation on the co-
array structure can deliver more degrees of freedom, an extra
step of covariance matrix estimation is required [6].

The earliest approach to this problem dates back to the work
by Pillai et al. in 1985, which completes a Toeplitz matrix via
redundancy averaging and direct augmentation [7]. Since the
SCM of a ULA is positive semidefinite and possibly Toeplitz,
the matrix estimation problem can be formulated as constrained
optimization problems under the well-known maximum likeli-
hood (ML) principle. However, these problems are nontrivial
due to being highly nonconvex, and one often needs to re-
lax them into convex optimization problems. For example, the
problem of the coarray ML-MUSIC (Co-MLM) [8] is usually
relaxed into the SDP problem of SPA [9] according to the ex-
tended invariance principle [10], [11], with its global minimizer
approximating the ML estimator as the number of snapshots
approaches infinity. Besides convex relaxation, another strategy
to tackle nonconvex optimization is majorization-minimization.
For instance, the recently proposed StructCovMLE approach by
Pote and Rao [12] majorizes the concave component by a sup-
porting hyperplane and then solves a sequence of SDP problems
to arrive at a solution. There are also many other approaches
such as regularized algorithms based on nuclear norm or atomic
norm minimization [13], [14], Wasserstein distance minimiza-
tion [15], and proxy covariance estimation [16]. Literature on
DoA estimation that primarily relies on optimization techniques
is vast [17], [18], so we focus on gridless and regularizer-free
approaches in this paper. For grid-based DoA estimation, we
refer the reader to other references such as [19] and [20].
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In the past decade, the advent of deep learning has opened up
a new paradigm for DoA estimation [21], [22], [23], [24]. As
the most intuitive and earliest learning-based approach, one can
discretize the angle domain into a grid and then learn a classifier
[22]. However, the performance of this approach is limited by
the grid size and often the performance quickly saturates as the
SNR increases. On the gridless side, it was not until a recent
work by Wu et al. [25] that the potential of deep learning for the
matrix estimation problem was shown. Based on enforcing the
Toeplitz structure of the matrix, they showed that DNNs can
be trained to retrieve the noiseless SCM of a ULA from the
sample SCM of an MRA, and numerical results show that such
an approach outperforms the SPA in most cases. However, it
was reported that its performance is worse than MUSIC when
the source number is small at high SNRs. Another feature that
makes the approach slightly less appealing is that a separate
DNN is required for each individual source number. It is un-
known whether training one DNN for all source numbers can
still provide good performance. In contrast to using the Toeplitz
structure, the framework proposed by Barthelme and Utschick
[26] enforces the structure of positive definiteness of the matrix.
Although in [26] the task of interest is subarray sampling,
which is different from the present paper, the method can be
applied seamlessly to the matrix estimation problem here. These
two approaches are probably the most relevant related work to
this paper.

In this paper, we propose a new methodology that exploits
the fundamental property that a subspace is invariant of the
choice of the spanning basis, and answer the following question:
Is it possible for a neural network to learn the signal or

noise subspace? In particular, we formulate the DoA estimation
problem as a subspace representation learning problem, and
propose new empirical risk minimization problems and loss
functions to train a DNN to learn subspace representations. Our
approach first constructs a DNN to output a square matrix and
performs eigenvalue decomposition on the Gram matrix of the
square matrix to obtain unitary bases for the signal and noise
subspaces, which we refer to as subspace representations. The
DNN is then trained by minimizing loss functions of different
dimensions based on principal angles that calculate the average
degree of separation between the desired subspace and the
subspace representation. In fact, with this new methodology,
one can argue that learning subspaces is simpler than learning
covariance matrices. Because our loss functions are invariant
to the selection of bases, they create a larger solution space
and thus make it easier for a DNN to learn subspace structures.
Furthermore, we prove that it is possible for a neural network to
approximate signal subspaces. To parallelize the computation of
learning subspaces of different dimensions, we propose a new
batch sampling strategy called consistent rank sampling, which
greatly accelerates the training process. In addition, we propose
a new gridless end-to-end approach learning DoAs directly
to study the benefit of bypassing the root-MUSIC algorithm.
Our methodology does not require knowledge of the sensor
array positions, making it geometry-agnostic and robust to array
imperfections. Under the standard assumptions of DoA esti-
mation, numerical results show that our approach outperforms

existing SDP-based and DNN-based methods across a wide
range of SNRs, snapshots, and numbers of sources.

II. PRELIMINARIES

Notations, assumptions, definitions, and the problem of
interest are set up in this section. The set {1, 2, · · · , n} is
denoted by [n]. The zero-mean circularly symmetric com-
plex Gaussian distribution with covariance Σ is denoted by
CN (0,Σ). The Frobenius norm of a matrix A is denoted by
‖A‖F . The trace of a matrix A is denoted by tr(A). The set of
n-by-n Hermitian matrices is denoted by H

n. Given A ∈H
n,

A� 0 (resp., A� 0) means that A is positive semidefinite
(resp., positive definite). The set of n-by-n Toeplitz matrices
is denoted by T

n. For every A ∈H
n ∩ T

n whose first row
is represented by a vector u, A is denoted as Toep(u). The
minimum eigenvalue of a matrix A� 0 is denoted by λmin(A).
The matrix logarithm of A is denoted by log (A) [27]. The
set of all k-by-k permutation matrices is denoted by Pk. The
orthogonal projector onto a subspace U and the range of a
matrix A are denoted by PU and PA, respectively.

A. Assumptions

Let us consider an M -element ULA with spacing d= λ
2

centered at the origin. Assume that there are k narrowband
and far-field source signals {si}ki=1 with a carrier wavelength
λ impinging on the array from DoAs θ = {θ1, θ2, · · · , θk} ⊂
[0, π]. Under the plane wave assumption [5], the received array
measurement vector or snapshot y(t) ∈ C

M at time t ∈ [T ] can
be modeled as

y(t) =

k
∑

i=1

si(t)a(θi) + n(t) =A(θ)s(t) + n(t) (1)

where a(θ) : [0, π]→ C
M is the array manifold of the M -

element ULA whose i-th element is given by

[a(θ)]i = ej2π(i−1−
(M−1)

2 ) d
λ
cos θ, i ∈ [M ] (2)

and A(θ) =
[

a(θ1) a(θ2) · · · a(θk)
]

. The source signal

vectors are given by s(t) =
[

s1(t) s2(t) · · · sk(t)
]T

for all
t ∈ [T ] and are independent and identically distributed (i.i.d.)
with s(t)∼ CN (0,P) where P= diag(p1, p2, · · · , pk) and
pi > 0 is the power of the i-th source signal for all t ∈ [T ]. The
additive noises follow n(t)∼ CN (0, ηIM ) for all t ∈ [T ] which
are i.i.d. and uncorrelated with s(t) for all t ∈ [T ]. We further
assume that T ≥M .

Let N ≤M and S = {s1, s2, · · · , sN} ⊂ [M ] such that s1 <
s2 < · · ·< sN . Then a physical N -element linear array can be
created by removing the i-th sensor from a virtual M -element
ULA if i �∈ S for all i ∈ [M ]. As a result, the snapshot yS(t) ∈
C

N received on this physical N -element linear array at time
t ∈ [T ] is given by yS(t) = Γy(t) where y(t) is the snapshot
received on the virtual M -element ULA and Γ ∈ R

N×M is a
row selection matrix given by

[Γ]nm =

{

1, if sn =m,

0, otherwise,
, n ∈ [N ],m ∈ [M ]. (3)
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In this paper, we are interested in S that gives rise to an SLA
with the same aperture as the ULA and with no holes in its co-
array such as an MRA [5] or a nested array [28]. The number
of sources k is assumed to be given.

B. SCMs and the DoA Estimation Problem

With the above assumptions, it follows that the noiseless
SCM of the ULA at every t ∈ [T ] can be written as R0 =
A(θ)PAH(θ) and the noiseless SCM of the SLA is RS =
ΓR0Γ

T. The sample SCM of the ULA and the SLA are denoted
by R̂= 1

T

∑T
t=1 y(t)y

H(t) and R̂S = 1
T

∑T
t=1 yS(t)y

H

S(t).

Given M , k, S , and R̂S , the goal of the DoA estimation prob-
lem is to recover θ. Note that it is possible that k > N because
k ∈ [M − 1]. In this paper, we focus on gridless methods recov-
ering an M -by-M matrix and use the root-MUSIC algorithm
[29], [30] to find θ.

C. Neural Network Models

The rectified linear unit (ReLU) activation function is defined
as x 
→max(0, x). A ReLU network can be expressed as a
composition of affine functions and ReLU activation functions.
We adopt the definition of ReLU networks from Definition 4 in
[31]. Given a complex-valued input, we first separate it into its
real and imaginary components, which are then processed by
the network. The network produces corresponding real-valued
outputs, which are subsequently recombined to form a complex-
valued result.

III. PRIOR ART

According to the assumptions and settings in Section II, we
will briefly review several popular or insightful approaches in
the literature including the widely used SDP-based methods
and recently proposed DNN-based approaches. Despite their
differences, notice that most of them fall into the category of
minimizing some distance between two covariance matrices
in an appropriate space. The materials covered in this section
will serve as important background and contrast with our main
contributions detailed in Section IV.

A. The Maximum Likelihood Problem

Based on the assumptions in Section II-A, it follows that
R0 + ηIM is positive semidefinite and possibly Toeplitz. Be-
cause yS(t)∼ CN (0,RS + ηIN ), one can formulate the fol-
lowing constrained optimization problem according to the max-
imum likelihood principle:

min
R∈HM

log det
(

ΓRΓT
)

+ tr
(

(

ΓRΓT
)−1

R̂S

)

subject to R� 0, R ∈ T
M . (4)

By minimizing the Kullback–Leibler divergence of
CN

(

0, R̂S

)

from CN
(

0,ΓRΓT
)

, one can also derive
the above problem. Due to the nonconvex objective, solving
(4) is nontrivial; and thus relaxing or reformulating (4) into a
tractable problem is often necessary to arrive at an accepted
solution. Section III-B and III-C below describe tractable
optimization problems that are widely used in this context.

B. Redundancy Averaging and Direct Augmentation

Because an SLA can generate all of the autocorrelation lags
of the corresponding ULA, Pillai et al. proposed the earliest
approach of recovering R0 + ηIM from R̂S , i.e., the so-called
redundancy averaging and direct augmentation approach [7].
This approach is identical to solving the following matrix aug-
mentation problem [15]:

min
R∈CM×M

∥

∥

∥
ΓRΓT − R̂S

∥

∥

∥

F
subject to R ∈ T

M (5)

which has a closed-form solution that is Hermitian and Toeplitz
but not necessarily positive semidefinite. Spatial smoothing [28]
can be applied to fix this issue via 1

M
RRH if R is the solution

of (5).

C. Direct SDP-Based Methods

Based on the covariance fitting criterion [32], Yang et al.
formulated the SPA [9] involving the optimization problem:

min
X∈HN ,R∈HM

tr (X) + tr
(

R̂−1
S ΓRΓT

)

subject to

£

¤

¥

X R̂
1
2

S

R̂
1
2

S ΓRΓT

R

¦

§

¨
� 0, R ∈ T

M . (6)

The noiseless SCM is then estimated by R− λmin (R) IM
where R is the solution of (6). Another interesting approach
based on the Bures-Wasserstein distance [33] was developed
by Wang et al. [15]. The optimization problem is given by

min
X∈CN×N ,R∈HM

tr
(

R̂S + ΓRΓT −X−XH

)

subject to

[

ΓRΓT X

XH R̂S

]

� 0, R� 0, R ∈ T
M . (7)

Both optimization problems in (6) and (7) are SDPs that can be
solved by off-the-shelf solvers such as the SDPT3 [34].

D. Majorization-Minimization

Since the term log det(·) in (4) is concave on the positive
semidefinite cone and the trace term can be written as an SDP
via the Schur complement lemma, majorization-minimization
algorithms can be used to tackle (4). Using a supporting hyper-
plane to majorize the term log det, one can derive the so-called
“StructCovMLE” approach [12]. Let R(0) be initialized to IM .
For i= 0, 1, 2, · · · , StructCovMLE calculates the iterate R(i+1)

by solving the optimal R in the following SDP:

min
R∈HM ,X∈HN

tr

(

(

ΓR(i)ΓT

)−1

ΓRΓT

)

+ tr
(

XR̂S

)

subject to

£

¥

X IN

IN ΓRΓT

R

¦

¨� 0, R ∈ T
M . (8)

The final solution is then obtained through running a number
of iterations until a stopping criterion is satisfied. For example,
the relative change between R(i) and R(i+1) being sufficiently
small. As there is a sequence of SDPs to be solved, the com-
plexity of this approach is greater than the complexity of the
above direct SDP-based methods in Section III-C.
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E. Proxy Covariance Matrix Estimation

Instead of estimating the covariance matrix, Sarangi et al.
[16] proposed a “proxy covariance matrix” approach (Prox-
Cov) that jointly calculates a positive definite weighting matrix
W and a proxy covariance R such that the weighted covariance
matrix from the data best fits the proxy covariance. Based on
this rationale, they formulated the following SDP:

min
R∈HM ,W∈HT

∥

∥

∥
YWYH − ΓRΓT

∥

∥

∥

2

F

subject to R� 0, R ∈ T
M , W � εIT (9)

where Y =
[

y(1) y(2) · · · y(T )
]

is a matrix whose
columns are all of the received snapshots and ε is a hyperpa-
rameter which is strictly positive. An interesting property of (9)
is that it can exactly recover the signal subspace, overcoming
the shortcoming of (5), under appropriate assumptions [16].
Unlike the aforementioned methods that estimate a covariance
matrix from a sample SCM, Prox-Cov considers all snapshots
and attempts to estimate the signal and noise subspaces by
introducing a weighting matrix W, which allows for arbitrary
signal powers while maintaining the same range space from the
snapshots.

F. DNN-Based Covariance Matrix Reconstruction

Let D =
{

R̂
(l)
S ,R

(l)
0

}L

l=1
be a dataset containing L pairs

of matrices where every R̂
(l)
S ∈H

N is a sample SCM of the
N -element SLA and R

(l)
0 ∈H

M is the corresponding noise-
less SCM of the M -element ULA. According to the work by
Barthelme and Utschick [26], one can formulate the matrix
estimation problem as a learning problem whose goal is to
find optimal parameters W ∗ of a DNN model fW : CN×N →
C

M×M such that fW∗

(

R̂S

)

fH

W∗

(

R̂S

)

≈R0 for every possible
pair

(

R̂S ,R0

)

of interest. The Gram matrix here is to ensure
the positive semidefiniteness. The search of W ∗ is done through
the training of the DNN. After training, the function fW∗ is
evaluated at an N -by-N sample SCM to obtain an M -by-
M SCM estimate. The model fW is trained by solving the
empirical risk minimization problem

min
W

1

L

L
∑

l=1

d
(

fW

(

R̂
(l)
S

)

fH

W

(

R̂
(l)
S

)

,R
(l)
0

)

(10)

where d is a metric or distance. For example, the well-known
Frobenius norm

dFro (E,F) = ‖E− F‖F (11)

and the affine invariant distance [35]

dAff (E,F) =
∥

∥

∥
log

(

F− 1
2EF− 1

2

)∥

∥

∥

F
(12)

that gives the length of the shortest curve between the two points
in the convex cone of all positive definite matrices {E ∈H

M |
E� 0}. If (12) is used in (10), R(l)

0 is replaced by R
(l)
0 + δIM

for some δ > 0 as R
(l)
0 can be singular. Although this method

by Barthelme and Utschick [26] was originally developed for

the subarray sampling problem, we find that it is suitable for
the matrix estimation problem in this paper.

An early study in the literature addressing the matrix es-
timation problem using a DNN is the work of Wu et al.
[25]. Let u ∈ C

M be the vector representing the first row of
A(θ)AH(θ). Instead of using the Gram matrix to generate a
positive semidefinite matrix output, Wu et al. constructed a
DNN fWk

: CN×N → C
M to estimate u and then recovered the

matrix by Toep
(

fWk

(

R̂S

))

for a given R̂S and source number
k. The models {fWk

}M−1
k=1 were trained individually by the

squared loss function

dsqu (u,v) =
1

2M
‖u− v‖22 . (13)

Though M − 1 DNNs are used in [25], note that this method
is not limited by the number of DNNs used. The Toeplitz prior
and dsqu can be used to train a single network if desired.

IV. SUBSPACE REPRESENTATION LEARNING

A weakness of the above DNN-based methods is that their
loss functions are not invariant to a different matrix represen-
tation of the signal or noise subspace. To elaborate, let Σ ∈
H

K be any positive definite matrix such that Σ �=P. Then,
A(θ)ΣAH(θ) and R0 have exactly the same signal subspace
{

A(θ)x
∣

∣x ∈ C
K
}

that leads to the same DoAs via the root-
MUSIC algorithm. However, A(θ)ΣAH(θ) �=R0 which im-
plies d

(

A(θ)ΣAH(θ),R0

)

> 0 for any metric or distance d

on C
M×M . If Σ= ρIK , it can be easily seen that d→∞ as

ρ→∞ for most of the common distances such as dFro and dsqu

mentioned above even though the signal subspace induced by
A(θ)ΣAH(θ) is always the same as the one induced by R0.
This is not a desirable property for a loss function because it
significantly reduces the solution space and makes it much more
difficult to find and approximate the signal or noise subspace.
It is worth noting that many existing methods (e.g., most of the
methods in Section III) measure the goodness of fit via some
distance between two covariance matrices, effectively solving
a harder problem than needed. Because the root-MUSIC algo-
rithm only requires the knowledge of the signal or noise sub-
space, the problem of covariance estimation is actually harder
than DoA estimation.

To address the above-mentioned issue, we propose a new
methodology which we call subspace representation learning.
In the subsections below, we will first introduce a new output
representation for DNN models to establish the invariance to the
choice of Σ. Next, we construct a novel family of loss functions
to train these DNN models based on the goodness of subspace
fitting and show that it is possible for a DNN to approximate
signal subspaces. The root-MUSIC algorithm is then applied
on the learned signal subspace to obtain the DoAs. We then
discuss the use case for imperfect arrays. Finally, we propose
a new batch sampling approach to parallelize the computation
involved during training.

A. Subspace Representations of Different Dimensions

Because every k-dimensional subspace Uk of CM is a point
in the Grassmann manifold or Grassmannian Gr(k,M), we
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construct a DNN model fW such that

fW : CN×N × [M − 1]→
M−1
⋃

k=1

Gr(k,M). (14)

The codomain is a union of M − 1 Grassmannians. To repre-
sent points of this union numerically, we can pick any matrix
U ∈ C

M×k whose columns represent a unitary basis of Uk ∈
Gr(k,M) for all k ∈ [M − 1]. Based on this perspective, the
model fW is instructed to generate a matrix X ∈ C

M×M whose
Gram matrix is factorized by eigenvalue decomposition:

XXH =
[

Ũ Ṽ
]

[

Λk

ΛM−k

] [

ŨH

ṼH

]

(15)

where Λk and ΛM−k are diagonal matrices representing the
k largest eigenvalues and M − k smallest eigenvalues, respec-
tively; and the columns of Ũ and Ṽ are their corresponding
orthonormal eigenvectors, respectively. Since the columns of
Ũ ∈ C

M×k form a unitary basis, a subspace Ũk ∈ Gr(k,M) can
then be identified by the range space of Ũ and thus the function
fW can generate points in the union of the Grassmannians. As
long as X maintains the same signal subspace, the subspace Ũ
generated by fW is invariant to the change of X. One simple
invariance can be easily seen by changing the eigenvalues while
maintaining the order of Λk and ΛM−k. The subspace Ũ is also
invariant to the equivalence class of its unitary bases.

Given a dataset D =
{

R̂
(l)
S ,R

(l)
0

}L

l=1
, we extract the signal

subspace U (l) of R(l)
0 for every l ∈ [L] via eigenvalue decompo-

sition to create target subspace representations. Note that U (l)

can also be identified from A
(

θ(l)
)

AH
(

θ(l)
)

if only a dataset
of

{

R̂
(l)
S ,θ(l)

}

is available.

B. Distances Between Subspace Representations

To learn the target subspace representations in D, we find
the parameters W by solving the following empirical risk min-
imization problem

min
W

1

L

L
∑

l=1

dk=k(l)

(

fW

(

R̂
(l)
S , k(l)

)

,U (l)
)

(16)

where dk : Gr(k,M)× Gr(k,M)→ [0,∞) is some distance
on the Grassmannian Gr(k,M). We propose to construct dk as
a function of the vector of principal angles between two given
subspaces because it is a necessary condition if dk is invariant
to any rotation in the unitary group U(M) of M -by-M unitary
matrices [36], i.e.,

dk
(

Q · U ,Q · Ũ
)

= dk
(

U , Ũ
)

(17)

for every U , Ũ ∈ Gr(k,M) and every Q ∈ U(M). The left ac-

tion of U(M) on Gr(k,M) in (17) is defined by Q · U :=
span (QB) where the columns of B ∈ C

M×k form a basis
of U . According to Theorem 1 of [37], the principal angles
φk =

[

φ1 φ2 · · · φk

]T
between U ∈ Gr(k,M) and Ũ ∈

Gr(k,M) can be calculated by

φi

(

U , Ũ
)

= cos−1
(

σi

(

UHŨ
))

(18)

TABLE I
DISTANCES BETWEEN SUBSPACES

Distance Function of Principal Angles

Geodesic (arc length) ‖φk‖2
Fubini-Study cos

−1

(

∏k
i=1

cosφi

)

Chordal (projection Frobenius norm)
(

∑k
i=1

sin
2 φi

) 1
2

Projection 2-norm sinφk

Chordal Frobenius norm 2

(

∑k
i=1

sin
2 φi

2

) 1
2

Chordal 2-norm 2 sin
φk
2

for i ∈ [k] where U ∈ C
M×k and Ũ ∈ C

M×k are matrices
whose columns form unitary bases of U and Ũ , respectively,
and σ1 ≥ σ2 ≥ · · · ≥ σk are the singular values of the singular
value decomposition of UHŨ. As cos−1 is a monotonically
decreasing function over its domain, the principal angles satisfy
φ1 ≤ φ2 ≤ · · · ≤ φk.

Several examples of distances based on φk [38], [39], [40],
[41] are provided in Table I. Among them, the most natural
choice of dk is the geodesic distance [36]

dGeo
k

(

U , Ũ
)

=
∥

∥

∥
φk

(

U , Ũ
)∥

∥

∥

2
=

(

k
∑

i=1

φ2
i

(

U , Ũ
)

)

1
2

(19)

which defines the length of the shortest curve between the two
points U and Ũ on the Grassmannian Gr(k,M). The geodesic
distance of any two points on Gr(k,M) is bounded from above
by

√
k π

2 [36]; and one can easily construct different loss func-
tions which are bounded.

C. Approximation

In this subsection, we attempt to enhance the feasibility of
subspace representation learning from an approximation view-
point. In particular, we present a guarantee for a neural network
model to approximate the signal subspace.

Theorem 1: For every k ∈ [M − 1] and every ε > 0, there
exists a ReLU network f : CN×N → Gr(k,M) such that

∫

[0,π]k
dGeo
k

(

f (RS), PA(θ)

)

dθ < ε. (20)

The proof of Theorem 1 is contained in Appendix A. Here,
subspaces are represented by their orthogonal projectors to en-
sure every U ∈ Gr(k,M) has a unique representation. In other
words, Gr(k,M) is equivalent to

{

P ∈ C
M×M | PH = P, P 2 = P, rank(P ) = k

}

. (21)

If the ideal covariance matrices are used, Theorem 1 shows that
the average geodesic distance between the predicted subspaces
and the desirable signal subspaces can be made arbitrarily small
when a suitable ReLU network is picked. From an array pro-
cessing point of view, it is trivial that the signal subspace can
always be extracted from RS . However, Theorem 1 illustrates
that this process can be achieved up to a small error by eval-
uating a continuous piecewise linear function [31]. In order to
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sketch the proof, notice that a simple distance on Gr(k,M) can
be constructed by

(U1,U2) 
→ ‖PU1
− PU2

‖F . (22)

Lemma 1 below shows that the geodesic distance can be
bounded from above by the composition of a strictly increasing
function and the simple distance in (22), allowing us to leverage
the continuity of the orthogonal projection operator in an appro-
priate manner to prove Theorem 1. It may be possible to extend
Theorem 1 to a more realistic case using R̂S with a probabilistic
guarantee.

Lemma 1: For every U1,U2 ∈ Gr(k,M) where k ∈ [M − 1],

dGeo
k (U1,U2)≤

√
k sin−1

(‖PU1
− PU2

‖F√
2

)

. (23)

The proof of Lemma 1 is contained in Appendix B. Lemma 1
ensures that ‖PU1

− PU2
‖F → 0 implies dGeo

k (U1,U2)→ 0.

D. Learning With Imperfect Arrays

Sensor arrays are not perfect in reality. For example, the array
manifold may be corrupted by several imperfections including
the gain bias, phase bias, sensor position error, and the intersen-
sor mutual coupling [21]. Because model-based methods such
as SDP-based approaches in (6) and (7) often rely on prior
knowledge of the sensor positions S to create Γ in their opti-
mization problems, they are not robust to sensor position errors;
and fixing such a model mismatch is nontrivial. In contrast, our
methodology does not suffer from this model mismatch issue
due to its geometry-agnostic or imperfection-agnostic nature.
The empirical risk minimization problem we solve in the imper-
fect array case is still (16). As described in the last paragraph of
Section IV-A, U (l) can be identified from the ground truth θ(l);
and R̂S is the sample SCM from the imperfect array. Hence,
both the problem formulation in (16) and the model (14) do
not depend on the sensor positions. In addition, our method
does not need to know the array is imperfect and the degree
of imperfections. The information is already embedded in the
dataset and solving (16) will enforce the DNN model to learn
the subspace representations of a perfect virtual ULA from the
imperfect array.

E. Consistent Rank Sampling

To learn subspaces of different dimensions in one DNN
model, the empirical risk minimization problem (16) requires
M − 1 loss functions d1, d2, · · · , dM−1 that calculate unitary
bases of different dimensions from 1 to M − 1. Although (16)
can be solved by the well-known minibatch stochastic gradient
descent (SGD) algorithm, it is hard for the computation of
different dimensions to be parallelized on a graphics processing
unit (GPU). To fix this issue, we propose consistent rank sam-

pling, a new batch sampling strategy for learning subspaces of
different dimensions in one DNN model. Instead of randomly
sampling from D, we propose randomly sampling a batch of
data points whose source number k is consistent from D. This
way, only one dk needs to be evaluated in every gradient step,

Fig. 1. An illustration of the gridless end-to-end model, which consists of
an architecture and several output layers. The model simultaneously generates
DoAs for every possible number of sources so there are M − 1 heads (affine
functions) at the output. The k-th head is picked when there are k sources.

streamlining the computation of unitary bases in the same di-
mension k. It is important to note that consistent rank sampling
is a crucial strategy to make training efficient. Without this
strategy, training DNNs on large datasets becomes extremely
difficult due to the slow training speed. Although the strategy
is developed for subspace representation learning, it is generally
applicable to empirical risk minimization problems that involve
loss functions of different dimensions.

V. A GRIDLESS END-TO-END APPROACH

The subspace representation learning approach utilizes the
root-MUSIC algorithm on the obtained subspaces to estimate
the DoAs. A natural question to study here is the following: Is

it possible to bypass the root-MUSIC algorithm and directly

learn a model to output the DoAs in a gridless manner?

The best-known end-to-end approach is probably the work [22]
by Papageorgiou et al.; however, it relies on a grid. The ap-
proach of mean cyclic error (MCE) network or MCENet [23]
by Barthelme and Utschick is a gridless end-to-end approach
but it was designed for subarray sampling and not for more
sources than sensors. Below, we propose a new gridless end-to-
end approach that is tailored to the localization of more sources
than sensors using an SLA.

As illustrated in Fig. 1, we propose to construct a DNN model
gW such that

gW : CN×N × [M − 1]→ R
1 × R

2 × · · ·RM−1. (24)

The codomain is the (M − 1)-ary Cartesian product of Eu-
clidean spaces R1,R2, · · · ,RM−1. These Euclidean spaces are
viewed as different “heads” at the output of the model where the
k-dimensional Euclidean space represents the k-th head. The
k-th head will be picked when there are k sources such that an
element from R

k can represent k angles. Let r(i) = i(i−1)
2 for

i= 1, 2, · · · ,M and denote hk : Rr(M) → R
k the projection

(

x1, · · · , xr(M)

)


→
(

xr(k)+1, xr(k)+2, · · · , xr(k)+k

)

. (25)

The empirical risk minimization problem of the gridless end-
to-end model gW is then formulated as follows

min
W

1

L

L
∑

l=1

dk=k(l)

(

hk=k(l) ◦ gW
(

R̂
(l)
S , k(l)

)

,θ(l)
)

(26)
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where d1, d2, · · · , dM−1 are loss functions of different dimen-
sions that calculate some minimum distances among all permu-
tations. Taking the squared loss for example,

dk

(

θ̂,θ
)

=
1

k
min
Π∈Pk

∥

∥

∥
Πθ̂ − θ

∥

∥

∥

2

2
(27)

for k = 1, 2, · · · ,M − 1. The minimum in (27) is equivalent to
the squared loss applied to the corresponding sorted arguments
according to the rearrangement inequality [42]. Because a loss
function of different dimensions is adopted, the consistent rank
sampling strategy detailed in Section IV-E can be applied to
accelerate training on GPUs.

VI. NUMERICAL RESULTS

In this section, we will compare our new methodologies with
existing methods including the SPA [9], the Wasserstein dis-
tance based approach (WDA) [15], the DNN-based covariance
reconstruction (DCR) approach based on the Toeplitz prior [25]
(DCR-T), and the DCR approach based on the Gram matrix [26]
(DCR-G). In particular, we use both the Frobenius norm and
the affine invariant distance for DCR-G, leading to two methods
termed DCR-G-Fro and DCR-G-Aff. We do not include Struct-
CovMLE [12] and Prox-Cov [16] because the performance of
StructCovMLE was similar to SPA, and Prox-Cov [16] did
not yield better performance than the SPA in our preliminary
experiments. In subspace representation learning, the geodesic
distance in (19) is picked for dk, if not explicitly specified.

Below, we will first set up the scenarios for the DoA esti-
mation problem. Next, we will describe the DNN architectures
and the training procedures for the DNN-based approaches.
Finally, for a given SNR and number of snapshots T , we will
compare performance of different approaches in terms of the
mean squared error (MSE)

1

Ltest

Ltest
∑

l=1

1

k
min
Π∈Pk

∥

∥

∥
Πθ̂l − θl

∥

∥

∥

2

2
(28)

for different source numbers k ∈ [M − 1] where Ltest is the total
number of random trials, θl is the vector of DoAs of the ground
truth at the l-th trial, and θ̂l is the corresponding estimate given
by a method of interest.

A. Settings

The physical array is an N -element MRA with N = 5 and
S = {1, 2, 5, 8, 10}, leading to a 10-element virtual ULA or
M = 10. A study for different MRAs is deferred to Sec-
tion VI-B3. Below we describe the test or evaluation condi-
tions. The number of snapshots T is set to 50, if not explicitly

specified. The SNR is defined as 10 log10
(

1
k

∑k
i=1 pi

η

)

and we
assume equal source powers p1 = p2 = · · ·= pk, if not explic-
itly specified. The SNR is set to 20 dB if not explicitly stated.
The finite set of SNRs {−10,−8,−6, · · · , 16, 18, 20} is picked
when a range of SNRs is required for evaluation. The number
of sources k can be any number in the set [M − 1]. For any
k ∈ [M − 1], the DoAs θ1, θ2, · · · , θk are uniformly selected
at random in the range

[

1
6π,

5
6π

]

with a minimum separation

Fig. 2. An illustration of a 3-stage L-block ResNet model [45]. In the wide
ResNet 16-8 (WRN-16-8) [46], there are L= 2 blocks per stage, leading to
16 layers in total. The widening factor is 8, meaning that WRN-16-8 is 8

times wider than the original ResNet. See Section VI-A1 for more details.

constraint mini �=j |θi − θj | ≥ 1
45π. For every given SNR, T , and

k ∈ [M − 1], there are 100 trials of random source signals and
noises for a given θ, and there are in total 100 random θ,
leading to a total number of trials Ltest = 104 for each case. All
SDP problems are solved by the SDPT3 [34] solver in CVX
[43], [44].

1) DNN Models: As illustrated in Fig. 2, we use WRN-16-8
[46] without the batch normalization. The pair of numbers 16-8
implies that the total number of layers is 16 and the widening
factor is 8. The ReLU activation function is adopted by all of
the nonlinearities in the network. All of the residual blocks
are in the pre-activation form [47]. Note that wide ResNets
avoid the degradation problem and enjoy certain optimization
guarantees under mild assumptions [48]. The network takes
an input tensor in R

2×N×N and generates an output tensor
in R

2×M×M (R2×M for DCR-T). Given an N -by-N com-
plex matrix, it is represented by its real and imaginary parts
as inputs to the network. The first and second planes of the
output tensor represent the real and imaginary parts of an M -
by-M complex matrix, respectively. The number of parameters
is approximately 11 million. All DNN-based methods use the
same architecture. The output layer is an affine function whose
output dimension is tailored to each approach.

2) Training: The minibatch SGD algorithm with Nesterov
momentum is used to train all of the DNN models. The momen-
tum is set to 0.5 and the batch size is 4096. The weight decay is
set to 0. All of the models are trained for 50 epochs with the one-
cycle learning rate scheduler [49]. The best maximum learn-
ing rate of the scheduler for each approach is found through
a grid search whose description is deferred to Appendix C.
The learning rates for DCR-T, DCR-G-Fro, DCR-G-Aff, and
our approach are 0.05, 0.01, 0.005, and 0.1, respectively. The
weights in all models are initialized using normal distribu-
tions [50]. The value of δ is set to 10−4 in the DCR-G-
Aff approach. For each k ∈ [M − 1], there are 2× 106 and
6× 105 random data points for training and validation, respec-
tively, leading to a training dataset of size Ltrain = 9× 2× 106

and a validation dataset of size Lval = 9× 6× 105. For each
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Fig. 3. MSE vs. SNR. Our approach is in general superior to all of the baselines. In most cases, it is significantly better than SPA, WDA, DCR-T, and
DCR-G-Fro. DCR-G-Aff is the most competitive baseline. For k > 3, our approach outperforms DCR-G-Aff. In comparison to DCR-G-Aff at k = 2 or k = 3,
our approach is slightly better at low SNRs but worse at high SNRs.

data point, the source signals and noises are generated ran-
domly according to the assumptions in Section II-A. The SNR
in decibels is uniformly picked at random in the finite set
{−11,−9,−7, · · · , 17, 19, 21}. The DoAs in the vector θ are
uniformly selected at random in the range

[

1
6π,

5
6π

]

with a mini-
mum separation constraint mini �=j |θi − θj | ≥ 1

60π. The sources
are assumed to have equal power, if not explicitly specified. The
number of snapshots is set to 50. PyTorch is used to train all
the DNN models [51].

B. Results

1) Superior Performance Over a Wide Range of SNRs:

Fig. 3 compares the proposed method with the five baseline
approaches in terms of MSE over a wide range of SNRs and
number of sources. For k = 1, all of the methods have almost
the same performance. For k = 2, the proposed method is sig-
nificantly better than SPA and WDA from −10 to 6 dB SNR.
In fact, it is uniformly better than WDA from −10 to 20 dB
SNR. However, once the SNR goes beyond 14 dB, SPA starts to
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Fig. 4. MSE vs. number of snapshots. Although the DNN models are only trained on a single number of snapshots T = 50, they are capable of performing
well on a wide range of unseen scenarios from T = 10 to T = 100. Our approach is consistently better than SPA, WDA, and DCR-G-Aff.

Fig. 5. MSE vs. SNR. N = 4. M = 7. Our approach is significantly better than all of the baselines when k > 2. For k = 2, it is better than all of the
DNN-based baselines but slightly worse than the SPA at 20 dB SNR. The main results obtained for the 5-element MRA are similar to the 4-element MRA.

outperform the proposed method and the gap seems to become
larger as the SNR increases. DCR-T is slightly worse than
the proposed method in the high SNR region but the gap of
MSE gets larger as SNR increases. With regard to DCR-G-Fro
and DCR-G-Aff, their performance is similar to the proposed
method. For k = 3, the proposed method is better than SPA,

WDA, DCR-T, and DCR-G-Fro across almost the entire eval-
uation range and even superior by orders of magnitude from 0
to 15 dB SNR with respect to SPA, WDA, and DCR-T. DCR-
G-Aff is slightly better than the proposed method in the high
SNR region but is slightly worse in the low SNR region. Then,
for k ∈ {4, 5, 6, 7, 8, 9}, the proposed method consistently and
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Fig. 6. MSE vs. SNR. N = 6. M = 14. These results, along with Figs. 3 and 5, imply that the proposed method consistently outperforms all of the baselines
if k ≥N . The proposed method is slightly inferior than DCR-G-Aff at high SNRs when k < N .

significantly outperforms SPA and WDA. As for DCR-T and
DCR-G-Fro, they are noticeably better than SPA and WDA but
significantly inferior than the proposed method. In particular,
DCR-G-Aff is the most competitive approach to the proposed
method. However, it is still much inferior than our approach.
Overall, the proposed method is significantly better than all of
the baseline approaches.

2) Performance on Unseen Numbers of Snapshots:

Fig. 4 evaluates SPA, WDA, DCR-G-Aff, and the proposed

method in terms of MSE in a wide range of numbers of
snapshots and sources. We do not include the other base-
lines here because DCR-G-Aff is significantly better than
them according to Fig. 3. For k = 1, all of the methods
have similar performance. For k = 6 and k = 9, the pro-
posed method is consistently and significantly better than SPA,
WDA, and DCR-G-Aff. More importantly, Fig. 4 also im-
plies that a DNN model trained by the subspace represen-
tation learning approach on a specific number of snapshots
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Fig. 7. Performance evaluation using different distances in Table I for learning the signal subspace shows nearly identical performance, implying that the
choice of distance between subspaces is likely not sensitive to the DoA estimation performance in our methodology.

can perform well across a wide range of unseen numbers of
snapshots.

3) On Different SLAs: It is desirable to show that the main
conclusions drawn from the 5-element MRA experiments in
Section VI-B1 in general hold true for an arbitrary N -element
MRA. Here, we demonstrate that this is true for 4-element and
6-element MRAs. Most of the hyperparameters stay the same
as the setting in Section VI. We find that δ = 10−4 leads to
unstable training in the DCR-G-Aff approach for the case of the
6-element MRA so we increase δ to 10−3 in this particular case.
Results for the 4-element MRA S = {1, 2, 5, 7} are shown in
Fig. 5. Results for the 6-element MRA S = {1, 2, 5, 6, 12, 14}
are shown in Fig. 6. All of these results in Figs. 3, 5, and 6
demonstrate that the proposed method outperforms all of the
baseline approaches. Furthermore, they seem to suggest our
approach is consistently better than all baselines if k ≥N . Al-
though we do not include the results on the number of snapshots
for the 4-element and 6-element MRAs in this paper (they can
be found in [52]), our experiments show that they enjoy the
same conclusion drawn from Fig. 4.

4) Other Distances Between Subspaces: Although the
geodesic distance, dGeo

k , is the most natural choice for dk and is
used to demonstrate the proposed methodology, other choices
for dk are also possible. To study the effectiveness of subspace

representation learning using different distances, we conduct
an experiment under the setting of a 4-element MRA, with the
same setup as described in Section VI-B3. Fig. 7 shows that
models trained using the distances in Table I result in nearly
identical performance for DoA estimation. This result aligns
with theory, as dak → 0 implies dbk → 0 when dak and dbk are two
different distances listed in Table I. Therefore, we argue that
using different distances between subspaces is likely to yield
similar performance in our methodology.

5) Random Source Powers: To relax the equal power as-
sumption, new models are trained and evaluated with random
source powers satisfying the condition maxi pi

minj pj
≤ 10. Except for

the source power assumption, we follow the same setting as the
4-element MRA used in Section VI-B3. Fig. 8 shows that our
approach significantly outperforms SPA, DCR-T, and DCR-G-
Fro. Although the performance gap between DCR-G-Aff and
our approach is greatly reduced compared to Fig. 5, the relative
ranking of these methods remains unchanged.

C. Comparison to the Proposed Gridless End-to-End

Approach

To answer the question posed in Section V, we use the same
WRN-16-8 but replace the final affine layer by M − 1 affine
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Fig. 8. Performance evaluation under scenarios with random source powers shows that our approach achieves the best performance overall, but it is only
marginally better than DCR-G-Aff. The ranking aligns with the equal power case shown in Fig. 5, although the performance gap between DCR-G-Aff and
our approach is much smaller here.

heads whose number of output neurons are 1, 2, 3, · · · ,M − 1,
as illustrated in Fig. 1. The squared loss functions of different
dimensions are adopted as shown in (27). All of the settings here
are the same as the ones described in Section VI-A and VI-A2.
The best learning rate is 0.2 according to a simple grid search.
Fig. 9 shows that the gridless end-to-end approach tends to
saturate its performance earlier than the subspace representation
learning approach for k ∈ {1, 3, 6} as the SNR increases. As a
result, the subspace representation learning approach shows sig-
nificantly better performance at high SNRs. However, for k = 9,
it is consistently worse than the gridless end-to-end approach.
Although the gridless end-to-end approach does not have a grid
at the output layer, its behavior of hitting an early plateau seems
to be similar to grid-based methods that are limited by their
grid resolution. Overall, subspace representation learning gives
better performance than the gridless end-to-end approach and
we can deduce that learning subspace representations is more
beneficial than learning angles directly.

D. Robustness to Array Imperfections

With regard to array imperfections, we use the imper-
fect array manifold introduced by Liu et al. [21]. The exact
formulation is given below. Let the degree of imperfections
be controlled by a scalar ρ ∈ [0, 1]. A larger ρ makes the

Fig. 9. MSE vs. SNR. N = 5. M = 10. For k ∈ {1, 3, 6}, the performance
of the gridless end-to-end approach saturates at a higher MSE than the
subspace representation learning method as the SNR increases. For k = 9,
the gridless end-to-end approach shows consistently better performance.
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Fig. 10. MSE vs. the array imperfection parameter ρ. Note that only one DNN model is trained for our approach. Unlike model-based methods that give
significantly worse MSE as ρ increases, our approach is robust to array imperfections without being given ρ or the knowledge about the degree of imperfections.

imperfections more severe and ρ= 0 means the array is perfect.
Define the following real hyperparameters

e1, · · · , eM , g1, · · · , gM , h1, · · · , hM (29)

and a complex hyperparameter γ. The array manifold with
sensor position errors is given by aρ(θ) : [0, π]→ C

M such that

[aρ(θ)]i = ej2π(i−1−
(M−1)

2 +ρei) d
λ
cos θ (30)

for i ∈ [M ]. Then, an imperfect array manifold ãρ(θ) of an
M -element ULA can be defined by

ãρ(θ) =CρGρHρaρ(θ) (31)

where the gain bias is modeled by

Gρ = I+ ρdiag (g1, g2, · · · , gM ), (32)

the phase bias is modeled by

Hρ = diag
(

ejρh1 , ejρh2 , · · · , ejρhM
)

, (33)

and the intersensor mutual coupling is modeled by

Cρ = I+ ρToep
(

[

0 γ γ2 · · · γM−1
]T
)

. (34)

For the hyperparameters, we use e1 = 0, e2 = · · ·= e6 =
−0.2, e7 = · · ·= e10 = 0.2, g1 = 0, g2 = · · ·= g6 = 0.2, g7 =
· · ·= g10 =−0.2, and h1 = 0, h2 = · · ·= h6 =− 1

6π, h7 =
· · ·= h10 =

1
6π. To train a model for imperfect arrays, we

uniformly select ρ at random on the unit interval [0, 1]. To
train a model for a perfect array, we use ρ= 0.

Fig. 10 shows the MSE in terms of the array imperfection
parameter ρ for different numbers of sources. Indeed, a different
ρ represents a different array; thus, one can collect a new dataset
and then specifically train a new model. However, here, we train
a single model on a joint dataset collected from different arrays.
The MSE of SPA and WDA both get worse as ρ increases, ver-
ifying that both methods suffer from model mismatch and are
not robust to array imperfections. Even though no attempts have
been made to SPA and WDA to contend with array imperfec-
tions, such corrections are nontrivial and require the knowledge

of imperfections. On the other hand, the MSE of the proposed
method stays at the same level despite the increasing degree of
imperfections, implying that the subspace representation learn-
ing approach is robust to array imperfections. Although we do
not include the results for the 4-element and 6-element MRAs
here (they can be found in [52]), our experiments show that they
enjoy the same conclusion drawn from Fig. 10.

E. Consistent Rank Sampling

To study the speedup and potential performance regression of
consistent rank sampling, two subspace representation learning
models are trained with and without consistent rank sampling.
This study is conducted on a 4-element MRA with the same
setup used in Section VI-B3. The model trained without con-
sistent rank sampling achieves an empirical risk of 0.21312 on
the validation set and a training speed of 356.67 seconds per
epoch. On the other hand, the model trained with consistent rank
sampling achieves an empirical risk of 0.21322 and a training
speed of 172.30 seconds per epoch. As a result, consistent rank
sampling provides about a 2× training speedup with negligible
performance regression. The study is run on an NVIDIA RTX
4090 GPU.

VII. CONCLUSION

A new methodology learning subspace representations is
proposed for robust estimation of more sources than sensors.
To learn subspace representations, the codomain of a DNN
model, is defined as a union of Grassmannians reflecting signal
subspaces of different dimensions. Then, a family of loss func-
tions is proposed as functions of the principal angles between
subspaces to ensure rational invariance. In particular, we use
geodesic distances on Grassmannians to train a DNN model
and prove that it is possible for a ReLU network to approxi-
mate signal subspaces. Because a subspace is invariant to the
selection of the basis, our methodology expands the solution
space of a DNN model compared to existing approaches that
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learn covariance matrices. In addition, due to its geometry-
agnostic nature, our methodology is robust to array imperfec-
tions. To study the possibility of bypassing the root-MUSIC
algorithm, we propose a gridless end-to-end approach that di-
rectly learns a mapping from sample SCMs to DoAs. Numerical
results show that subspace representation learning outperforms
existing SDP-based approaches including the SPA and WDA,
DNN-based covariance matrix reconstruction methods, and the
gridless end-to-end approach under the standard assumptions.
These results imply that learning subspace representations is
more beneficial than learning covariance matrices or angles
directly.

APPENDIX A
PROOF OF THEOREM 1

Proof: Let I = {(i, j) ∈ [k]× [k] | i �= j}. For every
(i, j) ∈ I, define

Fi,j =
{

θ ∈ [0, π]k | θi = θj
}

. (35)

Pick δ > 0 and let μ denote the Lebesgue measure. Because
Fi,j is closed and μ(Fi,j) = 0 for every (i, j) ∈ I, there exists
an open set Fδ ⊃

⋃

(i,j)∈I Fi,j such that μ(Fδ)< δ. Therefore,
Eδ = [0, π]k \ Fδ is compact. Now, note that A(θ) is a rank-k
matrix for every θ ∈ Eδ due to the Vandermonde structure. It
follows that the function X 
→ PX is continuous on A(Eδ). On
the other hand, the mapping RS 
→R0 is affine on A(Eδ) since
the SLA has no holes in its co-array. As R0 =A(θ)PAH(θ),
we have PR0

= PA(θ), implying that RS 
→ PA(θ) is continu-
ous on A(Eδ). By Theorem 1 of [31], any continuous piecewise
linear function can be represented by a ReLU network. Because
the set of continuous piecewise linear functions is dense in the
set of continuous functions on any compact subset of CN×N ,
it follows that, for every ε, there is a ReLU network f such that

sup
θ∈Eδ

∥

∥f (RS)− PA(θ)

∥

∥

F
< ε. (36)

Note that RS(Eδ) is still compact since θ 
→RS is continuous.
By Lemma 1,

∫

Eδ

dGeo
k

(

f (RS), PA(θ)

)

dθ < πk
√
k sin−1

(

ε√
2

)

. (37)

As f is continuous and every nonzero orthogonal projection is
bounded, there exists L > 0 such that

∥

∥f (RS)− PA(θ)

∥

∥

F
< L

for every θ ∈ Fδ, which implies
∫

Fδ

dGeo
k

(

f (RS), PA(θ)

)

dθ < δ
√
k sin−1

(

L√
2

)

. (38)

The claim is proved because both δ > 0 and ε > 0 can be arbi-
trarily small, and sin−1(x)→ 0 as x→ 0+.

APPENDIX B
PROOF OF LEMMA 1

Proof: Because there is a one-to-one correspondance be-
tween the set of linear subspaces and the set of orthogonal pro-
jectors, a distance d : Gr(k,M)× Gr(k,M)→ [0,∞) between
U1 ∈ Gr(k,M) and U2 ∈ Gr(k,M) can be defined as

d(U1,U2) = ‖PU1
− PU2

‖F (39)

Fig. 11. Search of the best learning rates. Empirical risk on the validation
set vs. the maximum learning rate in the one-cycle learning rate scheduler.

where PU1
and PU2

are the orthogonal projectors onto U1

and U2, respectively. Then, it follows that d2(U1,U2) = 2k −
2tr (PU1

PU2
) which is equivalent to

2k − 2
k

∑

i=1

σ2
i (PU1

PU2
) = 2k − 2

k
∑

i=1

σ2
i

(

UH

1U2

)

= 2k − 2

k
∑

i=1

cos2 φi (40)

where U1 and U2 are matrices whose columns form unitary
bases of U1 and U2. Therefore, we have

‖PU1
− PU2

‖F =
√
2

(

k
∑

i=1

sin2 φi

)

1
2

(41)

which was shown in [53]. Finally, (41) implies that

φi ≤ sin−1

(‖PU1
− PU2

‖F√
2

)

(42)

for every i ∈ [k].

APPENDIX C
LEARNING RATES

To determine the best learning rates to use in Section VI, a
grid search of the best maximum learning rate in the one-cycle
learning rate scheduler [49] is performed for each approach.
For each k ∈ [M − 1], there are 2× 106 and 6× 105 random
data points for training and validation, respectively, leading to
a training dataset of size Ltrain = 9× 2× 106 and a validation
dataset of size Lval = 9× 6× 105. Fig. 11 shows that the best
learning rates for DCR-T, DCR-G-Fro, DCR-G-Aff, and the
proposed approach are 0.05, 0.01, 0.005, and 0.1, respectively.
These learning rates are also used to train all the corresponding
models in Section VI-B3, VI-B4, VI-B5, VI-C, and VI-E.
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APPENDIX D
INVARIANCE-AWARE LOSS FUNCTIONS

There are other loss functions that deviate from covariance
reconstruction for gridless DoA estimation [54]. These loss
functions are developed based on the scale-invariant signal-to-
distortion ratio (SI-SDR) to partially address the primary issue
identified in Section IV. Although the new loss functions pro-
posed in [54] underperform subspace representation learning,
they provide evidence that loss functions with greater degrees
of invariance can achieve better DoA estimation performance.
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