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Abstract—This letter addresses the problem of estimating block
sparse signal with unknown group partitions in a multiple mea-
surement vector (MMV) setup. We propose a Bayesian frame-
work by applying an adaptive total variation (TV) penalty on the
hyper-parameter space of the sparse signal. The main contributions
are two-fold. 1) We extend the TV penalty beyond the immediate
neighbor, thus enabling better capture of the signal structure. 2) A
dynamic framework is provided to learn the regularization weights
for the TV penalty based on the statistical dependencies between the
entries of tentative blocks, thus eliminating the need for fine-tuning.
The superior performance of the proposed method is empirically
demonstrated by extensive computer simulations with the state-
of-art benchmarks. The proposed solution exhibits both excellent
performance and robustness against sparsity model mismatch.

Index Terms—Compressive sensing, block-sparsity, total
variation, SBL, ADMM.

I. INTRODUCTION

B
LOCK sparsity, where nonzero elements occur in clusters
rather than uniformly in the data, provides a powerful

framework for signal recovery. Such a grouping pattern arises
in many practical scenarios, such as near-field and millimeter-
wave channel estimation [1], [2], and user activity detection in
machine-type communications [3]. While block sparsity pro-
vides valuable prior knowledge about the signal structure, lever-
aging this information presents a key challenge. The recovery
process must simultaneously determine the block locations, their
extent, and their values, making it substantially more complex
than conventional sparse signal recovery where only individual
nonzero elements need to be identified [4].

Sparse recovery algorithms developed under Compressive
sensing (CS) [5], [6] framework excel at promoting sparsity
but ignore the inherent block structures present in many sig-
nals. For scenarios where block boundaries are known a priori,
the CS algorithms have been adapted to exploit this structure.
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Those include block compressive sampling matching pursuit
(block-CoSaMP) [7], block orthogonal matching pursuit (block-
OMP) [8], and block-sparse Bayesian learning (BSBL) [9]. By
incorporating signal-specific block structures, these recovery
algorithms achieve significantly better performance than their
conventional counterparts.

The practical scenarios present an additional challenge of the
unknown block boundaries and their sizes. This has spurred
development of adaptive techniques that simultaneously pro-
mote block sparsity and detect boundaries, primarily through
modeling inter-element dependencies within the signal.

Sparse signal recovery with unknown boundaries has been
approached through two main frameworks: Bayesian and
regularization-based methods. For instance, pattern-coupled
(PC) sparse Bayesian learning (SBL) and its variants [10], [11],
[12], [13] promote block sparsity by hard-coupling neighbor-
ing elements in the signal’s variance vector. Meanwhile, reg-
ularization approaches such as fused least absolute shrinkage
and selection operator (LASSO) [14] employs total variation
(TV) penalty to discourage rapid signal fluctuations. A recent
work [15] combined these two approaches by applying the TV
regularization to the signal hyper-parameters within an SBL
framework, effectively reducing transitions between zero and
non-zero regions. However, all of these frameworks have two key
limitations: they restrict smoothing to the immediate neighbor
only, overlooking broader structural patterns, and require careful
tuning of the block-sparsity promoting term – a challenge when
block sparsity varies [15].

This letter introduces a novel solution to block-sparse sig-
nal recovery by formulating the problem using an SBL cost
function augmented by a log-based TV penalty with learnable
weights. Specifically, the proposed approach aims to (i) extend
the hyper-parameter coupling from a single neighbor to multiple
consecutive neighbors, thereby enhancing the model’s ability to
capture local structures; and (ii) to provide a framework to dy-
namically and automatically learn the regularization parameter
based on the signal statistics on each iteration. Finally, to ensure
computational efficiency, we employ an alternating direction
method of multipliers (ADMM) framework [16], which allows
for closed-form updates at each step of the optimization process.
We validate the effectiveness of the proposed approach via ex-
tensive experiments, showing significant improvements in signal
recovery performance over existing state-of-the-art methods in
terms of quality and robustness to model mismatch.

II. BLOCK-SPARSE RECOVERY PROBLEM OVERVIEW

A. System Model

We consider the estimation of the unknown block-sparse sig-
nal ensemble X = [x1, . . . ,xM ] ∈ C

N×M from a set of noisy
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linear measurements Y = [y1, . . . ,yM ] ∈ C
L×M as

ym = Axm +wm, m = 1, . . . ,M, (1)

where A ∈ C
L×N is a fixed and known measurement matrix,

and each wm ∼ CN (0, σ2IL) is the additive noise vector.
We focus on a signal ensemble that exhibits two key prop-

erties: (i) a row-sparse structure, meaning all signals xm, ∀m,
share the same support, and (ii) a block-sparse structure, where
each signal xm, ∀m, comprises an unknown number of blocks
with varying sizes. The unknown signalxm is modeled to follow
a multivariate complex Gaussian distribution as

xm ∼ CN (0, diag(γ)), m = 1, . . . ,M (2)

where γ = [γ1, . . . , γN ]T ∈ R
N
+ represents the unknown hyper-

parameter vector controlling the sparsity of each xm.

B. SBL Framework

Given the system model in (1), the likelihood function is
Gaussian or p(ym|xm;σ) = CN (Axm, σ2). Thus by using the
conjugate Gaussian prior in (2) along the likelihood of Gaussian
density, the posterior density p(xm|ym;γ) is also Gaussian,
given as

p(xm|ym;γ) ∼ CN (µm,Σx), (3)

where

µm =
1

σ2
ΣxA

Hym, Σx =

(

1

σ2
AHA+ diag(γ)−1

)−1

,

(4)
For known γ, the estimated signal is given as X =
[µ1, . . . ,µM ]. The SBL framework aims to estimate the hyper-
parameter vector γ via Type-II maximum a posteriori (MAP)
estimation as

γ̂ = argmax
γ�0

log p(γ|Y)

= argmin
γ�0

log det (Σy) + Tr[YΣ−1
y ]− log p(γ),

(5)

where Σy = σ2I+Adiag(γ)AH is the measurement model
covariance matrix and log p(γ) is the hyper-prior on γ. The
problem (5) is non-convex due to the logdet term. Therefore, sev-
eral approaches have been proposed to approximate the solution
such via block coordinate descent [17], fixed point iteration [18],
and expectation maximization (EM) [19], [20]. We will employ
the latter to solve the problem.

The EM-SBL iterates between two steps as follows
E-step: The joint distribution is given as

p(Y,X,γ) = p(Y|X)p(X|γ)p(γ). (6)

At any particular iteration (k), the E-step with respect to γ is
evaluated by averaging out the hidden variable X as

Q(γk|γk−1) = Ep(X|Y,γ(k−1))

[

log p(Y|X)p(X|γ)p(γ)

]

(a)
∝ Ep(X|Y,γ(k−1))

[

log p(X|γ) + log p(γ)

]

= −
N
∑

i=1

M

[

log(γi) +
s
(k−1)
i

γi

]

+ log p(γ),

(7)
where (a) is obtained by dropping terms that don’t depend on γ

and s
(k−1)
i = Σ

(k−1)
i,i + 1

M
‖µ

(k−1)
i ‖2.

M-step: The hyper-parameter is updated as follows

γ̂ = argmin
γ

−Q(γk|γk−1) = argmin
γ

f(γ)−
1

M
log p(γ),

(8)
where

f(γ) =

N
∑

i=1

f(γi) =

N
∑

i=1

log(γi) +
si
γi
. (9)

To promote block-sparse solutions in the EM-SBL framework,
it is essential to employ prior functions that simultaneously
encourage sparsity and capture the inherent block structures
in the signal. In the existing literature, block sparsity is typi-
cally enforced through two main approaches: 1) a hard prior
coupling scheme where each hyper-parameter is defined as

γi � f(γi, γi+1, γi−1, β), as seen in PC-SBL inspired solu-
tions, and 2) a soft prior formulation given by − log p(γ) =

β
∑N

i=2 | log(γi)− log(γi−1)|, where β > 0 is a regularization
parameter controlling the coupling strength in both approaches.
However, these approaches suffer from two major limitations:
they only consider immediate neighboring elements in their
coupling mechanisms, and they require careful tuning of the
parameter β, making them susceptible to sparsity model mis-
matches, particularly when isolated non-zero elements appear
in the signal.

We aim to improve the existing solutions and to bridge some
gaps to overcome the limitations of the proposed approaches in
terms of accuracy and robustness of the estimation. We will first
discuss the design of the prior function, followed by the detailed
derivation of the solution for the M-step.

III. PROPOSED SOLUTION

Before proceeding to solve problem (8), we first discuss the
appropriate choice of p(γ) to promote a robust structured sparse
solution. Our approach builds upon the framework introduced
in [15] and enhances the SBL inference framework through the
following key ideas. 1) Neighborhood smoothing extends the
hyper-parameter coupling from a single neighbor to multiple
consecutive neighbors, hence, improving the model’s ability to
adapt to the signal structure and capture local dependencies be-
tween the elements of the signal. 2) Automatic regularization
tuning by learning the set of regularization parameters{βi,j},
where each βi,j is unique for each pair of γi and γj . This is
achieved by adaptively updating {βi,j} at each EM iteration
based on the signal statistics as we will show later.

A. Design of Hyper-Prior p(γ)

To this end, we propose the following hyper-prior function:

− log p(γ) =
N
∑

i=2

i−1
∑

j=1

βi,j |g(γi)− g(γj)|, (10)

where βi,j ∈ [0, 1] is a weight parameter, and g(·) is a func-
tion that measures the number of transitions between zero and
non-zero regions. Ideally, we would choose g(·) = I(·) (the
indicator function), but this would result in a binary optimization
problem that is computationally intractable. Instead, we use
the approximation g(·) = log(·), as the log function provides
a suitable approximation to the counting function I(·) [21]. This
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letter defines {βi,j} for each pair of {γi, γj} as

βi,j =
1

Zi

ψ[d (log(γi), log(γj))], (11)

where Zi is a normalization factor that ensures that the weights
sum to 1, ψ[·] is a kernel decay function and d(·) is a distance
function to measure the similarity between the sparsity profiles
of the ith and jth elements. Both ψ(·) and d(·) are designed
to enforce a zero penalty on the smoothing between ith and
jth elements if their sparsity profile is different, while setting a
positive weight when the ith and the jth elements have a similar
sparsity profile. To this end, we set ψ as a negative exponential
and set d(·) as an Euclidean norm. Subsequently, we define βi,j

at each EM iteration (k) as follows

β
(k)
i,j =

{

exp (−‖ log(γ
(k−1)
i )− log(γ

(k−1)
j )‖2), if j ∈ Ωi

0 otherwise,

(12)
where Ωi is a set of the closest neighbors of the ith element to
be selected empirically.

B. ADMM Solution for the M-Step

We use the proposed p(γ) and express the optimization prob-
lem for the M-step at the kth EM iteration as1

γ̂ = argmin
γ

f(γ) +
1

M

N
∑

i=1

i−1
∑

j=1

βi,j | log(γi)− log(γj)|.

(13)
Given the non-convexity of (13) and the parameter coupling
introduced by the TV term, efficient computation presents a
significant challenge. To address this, we employ an ADMM
framework [16] for solving the M-step (13), which enables se-
quential closed-form updates and yields a more computationally
efficient solution as detailed below.

First, we introduce the auxiliary variableC ∈ R
N×N to trans-

form (13) into a bi-convex problem as follows

argmin
γ,C

f(γ) +
1

M

N
∑

i=2

i−1
∑

j=1

βi,j |Ci,j |

s.t. Ci,j = (log(γi)− log(γj)) , ∀i, j ∈ N .

(14)

The objective function in (14) provides an excellent framework
to apply an alternating optimization technique such as ADMM.
Subsequently, we write the augmented Lagrangian function as

L(γ,c)=f(γ)+

N
∑

i=2

i−1
∑

j=1

[

βi,j

M
|Ci,j |+

ρ

2

∥

∥

∥

∥

Ci,j−γ̄i,j+
λi,j

ρ

∥

∥

∥

∥

2
]

,

(15)
where γ̄i,j = log(γi)− log(γj), λ ∈ R

N×N denotes the dual
variable matrix, and ρ is a real small positive variable.

The ADMM framework solves (13) by iteratively minimizing
L(·) over the primal variables (γ,C), followed by updates to the
dual variables λ [16]. We detail the derivation of each ADMM
iteration step (t) below.

1We omit the EM iteration index in this subsection for sake of simplicity.

Algorithm 1: The Proposed Algorithm.

1) γ-Update: First, we update each element of the hyper-
parameter vector sequentially as

γ
(t+1)
i = argmin

γi

log(γi) +
ρ

2

∑

j∈Ωi

j<i

‖ã
(t)
j − log(γi)‖

2

+
ρ

2

∑

j∈Ωi

j>i

‖ā
(t)
j + log(γi)‖

2 +
si
γi
,

(16)

where ã
(t)
j = C

(t)
i,j + log(γ

(t)
j ) +

λ
(t)
i,j

ρ
and ā

(t)
j = C

(t)
j,i −

log(γ
(t)
j ) +

λ
(t)
j,i

ρ
. The solution can be obtained by setting the

gradient of the objective function in (16) to zero

γ
(t+1)
i =

si

1 + ρ|Ωi| − ρ

(

∑

j∈Ωi,j<i

ã
(t)
j −

∑

j∈Ωi,j>i

ā
(t)
j

) ,

(17)
where |Ωi| denotes the cardinality of the set Ωi.

2) C-Update: The optimization problem with respect to C
can be decomposed into N(N − 1)/2 convex subproblems as
follows

C
(t+1)
i,j = argmin

Ci,j

βi,j

M
|Ci,j |+

ρ

2

∥

∥

∥

∥

∥

Ci,j − γ̄
(t+1)
i,j +

λ
(t)
i,j

ρ

∥

∥

∥

∥

∥

,

(18)

where γ̄
(t+1)
i,j = (log(γ

(t+1)
i )− log(γ

(t+1)
j )). The expression in

(18) admits a closed-form solution via a proximal gradient
method [22] as

C
(t+1)
i,j = η βi,j

Mρ

(

γ̄
(t+1)
i,j −

λ
(t)
i,j

ρ

)

, (19)

where ηκ(a) = sign(a)max(|a| − κ) is a soft-thresholding op-
erator for any a, κ ∈ R+.

3) λ-Update: Finally, the dual variable is updated as

λ
(t+1)
i,j = λ

(t)
i,j + ρ

(

C
(t+1)
i,j − γ̄

(t+1)
i,j

)

, ∀i, j (20)

The proposed solution is Algorithm 1. Despite having two loops
(EM and ADMM), its overall complexity is minimally impacted
since it requires empirically fewer EM iterations to converge
compared to M-SBL.
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Fig. 1. Comparison of F1-score under varying signal-to-noise-ratio (SNR) levels and sparsity patterns: (a) block sparsity, (b) hybrid sparsity, and (c) isolated
non-zero elements.

Fig. 2. Comparison of the signal reconstruction quality in terms of NMSE under varying SNR levels and sparsity patterns: (a) block sparsity, (b) hybrid sparsity,
and (c) isolated non-zero elements.

IV. SIMULATION RESULTS

We consider a system setup with N = 300, M = 5, L = 30
and A drawn from an i.i.d. complex Bernoulli distribution
with normalized columns. The performance is evaluated in
terms of the normalized mean square error (NMSE) given as
E[‖X−X̂‖2F]

E[‖X‖2F]
, and the support recovery rate using the F1-Score

F1 = precision×recall

precision+recall
as defined in [15]. We examine three sparsity

use cases: 1) block sparsity : 5 non-zero blocks, each containing
5 elements, 2) hybrid sparsity: 3 active blocks, each containing
5 elements in addition to 5 randomly selected elements, and
3) isolated sparsity: 25 non-zero elements randomly selected
non-zero elements. We compare the proposed algorithm with
three baseline sparse recovery algorithms: 1) M-SBL [23], 2)
MSBL-DoL [15], 3) PC-SBL [10]. In addition, we include
the oracle minimum mean square error (MMSE) estimator to
provide a baseline for NMSE performance.2

Figs. 1(a) and 2(a) depict the performances under the block
sparsity pattern. The results show that algorithms explicitly de-
signed to exploit block-sparse structure significantly outperform
the standard M-SBL. These gains are attributed to the ability of
these specialized algorithms to effectively exploit the inherent
the signal’s sparse block structure. Note that PC-MSBL would
outperform the proposed solution in some scenarios, which can
be attribute to its hard-coupling mechanism that works well for
block sparse scenarios.

The results for the hybrid sparsity, where multiple sparsity
patterns coexist, can be found in Figs. 1(b) and 2(b). The pro-
posed algorithm seen to significantly outperform the M-SBL,
demonstrating its adaptability to complex signal structures. In

2The simulation code and practical implementation details for our proposed
algorithm are available on the following GitHub repository https://github.com/
Hamzadh/Adaptive-TV-M-SBL

contrast, MSBL-DoL and PC-MSBL perform similarly to M-
SBL, suggesting that their rigid coupling mechanisms limit their
effectiveness in handling diverse sparsity patterns.

Finally, to demonstrate the flexibility and robustness of the
proposed algorithm, its performance is also evaluated under iso-
lated sparsity patterns. Figs. 1(c) and Fig. 2(c) show that the pro-
posed algorithm achieves performance comparable to M-SBL,
even in the presence of severe sparsity model mismatches. On the
other hand, both PC-MSBL and MSBL-DoL exhibit significant
degradation. The robustness of the proposed algorithm emerges
from two key aspects of our adaptive prior p(γ). Firstly, it
learns the correlation structure directly from the data rather than
imposing fixed coupling constraints. Secondly, it automatically
adjusts the strength of the sparsity-promoting weights based on
the observed signal statistics. This adaptive mechanism allows
the algorithm to seamlessly handle both block-structured and
isolated non-zero elements without requiring parameter tuning
or prior knowledge of the sparsity pattern.

V. CONCLUSION

We proposed a novel SBL variant for block-sparse recovery in
the MMV setup. The key innovations include an extended spatial
coupling penalty that exploits block structure and a tuning-free
learnable regularization weights to enhance robustness. We de-
rived an efficient sequential closed-form ADMM-based solution
for the evolved M-step. Numerical experiments demonstrate
that our algorithm performs on par with state-of-the-art meth-
ods under standard sparsity assumptions and outperforms them
when signals exhibit a block-sparse structure. This validates the
algorithm’s ability to effectively generalize to diverse signal
structures. Our novel SBL variant represents an advancement
in block-sparse signal recovery, with promising applications in
areas such as mm-wave and near-field channel estimation.
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