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Abstract. We show that in doubling, geodesic metric measure spaces,
(including, for example, Euclidean space) sets of positive measure have a
certain large-scale metric density property. As an application, we prove
that a set of positive measure in the unit cube of Rd can be decomposed
into a controlled number of subsets that are “well-connected” within the
original set, along with a “garbage set” of arbitrarily small measure. Our
results are quantitative, i.e., they provide bounds independent of the
particular set under consideration.

1. Introduction

1.1. Background: qualitative vs. quantitative results in analysis.

Many important theorems in analysis are “qualitative” or “infinitesimal”.

They assert that a certain desirable small-scale limiting behavior occurs,

but do not provide any guarantee of a fixed scale at which such a behavior

occurs up to a given error.

A basic example is Rademacher’s theorem: a Lipschitz function on R
d is

differentiable almost everywhere. While this is a wonderful result, neither

the theorem nor its typical proofs guarantee how far one might have to zoom

in at a generic point to find a scale where this Lipschitz function is close to

affine with a given error.

By a completely different argument of Dorronsoro [4], however, such a

guarantee can be made with bounds independent of the given Lipschitz func-

tion. (See also [3] and [5, Appendix B].) There is by now a whole literature

in this style of quantitative analysis, with many connections to harmonic

analysis, singular integrals, and geometry, that is too large to survey here.

In addition to the paper of Dorronsoro referenced above, some of the foun-

dational texts are by Jones [9] and David–Semmes [3].
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1.2. The Lebesgue density theorem. Another “qualitative” result in

analysis, in the sense described above, is the Lebesgue density theorem.

Using ¼ to denote Lebesgue measure in R
d, we have:

Theorem 1.1 (Lebesgue Density Theorem). Let E ¦ R
d be measurable.

Then at almost every point x ∈ E,

lim
r→0

¼(B(x, r) ∩ E)

¼(B(x, r))
= 1.

Thus, E “fills up” nearly all the measure of small balls. The same state-

ment holds in arbitrary complete, doubling metric measure spaces; see below

for the definitions of these terms and [6] for the result in this generality.

As a naïve quantitative analog of the Lebesgue density theorem, paral-

leling the quantitative Rademacher theorem mentioned above, one might

hope for the following:

For each d ∈ N and ³, ϵ > 0, there is an r0 > 0 such that

if E ¦ [0, 1]d has ¼(E) g ³, then there is a ball B of radius r g r0

such that
¼(B ∩ E)

¼(B)
g 1− ϵ.

(1.1)

This statement turns out to be false, however, as we demonstrate with

a straightforward counterexample in Section 3.

1.3. Quantitative metric density. To give a correct quantitative state-

ment inspired by the Lebesgue density theorem, we view density in a metric

rather than measure-theoretic sense.

Definition 1.2. We define the sparsity of a set E in a closed ball B of

radius r by

sparse(E,B) =
sup{dist(x,E ∩ B) : x ∈ B}

r
.

If E ∩ B = ∅, we regard the sparsity sparse(E,B) as undefined.

Thus, if sparse(E,B) = 0, then E ∩ B = B, although of course it may

be that the measure of E ∩ B is 0. If sparse(E,B) is small, we consider E

to be “very dense” in B.

The notion of sparsity is closely connected to that of porosity. A set E

in a metric space X is called porous if there is a constant c > 0 such that,

for each 0 < r < diam(X) and x ∈ X, the ball B(x, r) contains a ball of

radius cr that is disjoint from E. [6, p. 116] In particular, E is porous if and

only if sparse(E,B) is bounded below away from zero, over all balls B with

radius less than diam(X). Porous sets and their variants appear in many
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areas of mathematics, including dimension theory and Banach space theory

[12]. Our notion of sparsity can simply be considered as porosity at a single

location and scale.

To formulate the idea that a set has small sparsity at “most” locations

and scales, we use the notion of a “multi-resolution family” of balls.

Definition 1.3. Let (X, d) be a metric space. Let {Nk : k = 0, 1, 2, . . . } be

a family of 2−k-nets in X satisfying N0 ¦ N1 ¦ N2 ¦ . . . . (See Definition

2.4.) Given a constant A g 1, a multiresolution family is the collection

B = {B(x,A · 2−k) : x ∈ Nk, 0 f k < ∞}.

Note that if A g 1, then the collection of all balls in B of fixed radius

A · 2−k forms a cover of X. We note that in many cases A > 1 is required

in the notion of a multiresolution family, but we prefer to be flexible and

allow A = 1 as well.

We can now state a “Quantitative Metric Density Theorem”. The termi-

nology (e.g., “doubling”, “geodesic”) will be defined in Section 2.

Theorem 1.4. Let (X, d, µ) be a complete, geodesic, metric measure space

equipped with a multiresolution family B. Assume that µ is a C-doubling

measure, diamX = 1, and µ(X) = 1.

Given ϵ > 0, there is a K (depending only on ϵ, C, and A) such that,

for any set E ¦ X, if we set

B(E, ϵ) = {B ∈ B : B ∩ E ̸= ∅, sparse(E,B) g ϵ},
then

(1.2)
∑

B∈B(E,ϵ)

µ(B) f K.

Theorem 1.4 says that a set of positive measure must look very dense

in “most” balls that intersect it, in a way independent of the particular set

under consideration. Observe that if we simply summed over all balls B ∈ B
intersecting E in (1.2), then the sum would diverge whenever µ(E) > 0.

To relate this back to the discussion above, we note that Theorem 1.4

will easily imply the following:

Corollary 1.5. Let (X, d, µ) be a complete, geodesic metric measure space

with µ a C-doubling measure. Suppose that diamX = 1 and µ(X) = 1.

Given ³,ϵ > 0, there is an r0 > 0 (depending only on ³, ϵ, C) such that if

a Borel set E ¢ X has µ(E) g ³, then there is a ball B of radius r ∈ [r0, 1]

such that

(1.3) E ∩ B ̸= ∅ and sparse(E,B) < ϵ.
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In other words, we guarantee a large scale (with size independent of E)

in which E is very dense.

Remark 1.6. The main ideas behind Theorem 1.4 and Corollary 1.5 are

not really new, although we believe our presentation of the result has new

features. The key intermediate step in the proof (Proposition 4.3) can essen-

tially be found in [3, Section IV.1.2] and [11, Lemma 1.4], although stated

with more restrictive assumptions.

Thus, our main purpose in stating and proving Theorem 1.4 is the ap-

plication to the original Theorem 1.9 below. As a secondary concern, we

take the opportunity to provide a general proof of the result in the setting

of abstract metric measure spaces.

Remark 1.7. The assumptions that diamX = 1 and µ(X) = 1 in The-

orem 1.4 and Corollary 1.5 are not really restrictive, since one can always

normalize to these parameters. See Remark 4.6 for an example.

1.4. Quantitative connectivity. Our main new result is about sets of

positive measure in the unit cube of Rd. We show that such a set can be

decomposed, up to a “garbage set” of small measure, into pieces that are

“well-connected” within the larger set, in a way we now make precise.

Given ¸ > 0, an ¸-chain in a metric space is a finite list of points

(x0, . . . , xm) such that d(xi, xi+1) < ¸ for each i ∈ {0, . . . ,m − 1}. We

say that the chain is “from x to y” if x = x0 and y = xm. The length of the

¸-chain is the sum
∑m−1

i=0 d(xi, xi+1).

Definition 1.8. Let E ¢ [0, 1]d, and let F ¢ E. We say that F is ¶-well-

connected in E if for every x, y ∈ F , there is a ¶|x− y|-chain from x to y in

E with length at most (1 + ¶)|x− y|.

Thus, if F is well-connected in E, then any pair of points in F can be

joined by a discrete path in E whose steps are small (compared to the

distance between the endpoints) and whose length is almost as small as

possible. The notion of well-connectedness is thus related to convexity. In

particular, if E is convex, then every subset of E is ¶-well-connected in E

for all ¶ > 0.

We show that all sets of positive measure have “large” pieces that are

well-connected within the original set, in a quantitative way.

Theorem 1.9. Given d ∈ N, ³ > 0, and ¶ > 0, there is an M ∈ N

(depending only on d, ³, ¶) with the following property: If E ¢ [0, 1]d, then

there are sets F1, F2, ..., FM , Z ¢ E such that:
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(1) E = F1 ∪ F2 ∪ ... ∪ FM ∪ Z.

(2) ¼(Z) < ³.

(3) For each i ∈ {1, 2, ...,M}, Fi is ¶-well-connected in E.

The “quantitative” aspect here is the fact that the number M of well-

connected subsets depends only on the given parameters, and not on the

original set E.

Remark 1.10. The set E is not assumed to be measurable in Theorem 1.9.

However, the set Z can always be taken to be the intersection of E with a

measurable subset of Rd of measure < ³. Thus, if E is not measurable, then

conclusion (2) of the theorem can be interpreted in the sense of Lebesgue

outer measure.

The main steps in the proof of Theorem 1.9 are as follows: We apply

Theorem 1.4 (suitably reinterpreted for dyadic cubes rather than balls) to

show that in “most” dyadic cubes that touch E, the sparsity of E is small.

(In fact, it is important to use expansions of dyadic cubes, but we elide this

for now.) This will imply that most points of E, outside of a small set Z, lie

in a controlled number of “bad” dyadic cubes in which E is not very dense.

The next step is a “coding” argument, originally due to Jones [8], to sep-

arate E \Z into a controlled number of sets Fi with the following property:

If two points x, y ∈ E are in the same Fi, then there is a cube containing

them of size ≈ |x − y| in which E is very dense. This coding argument is

Lemma 5.5; we take this opportunity to give a different proof than the ones

presented in [8] and [2].

Finally, we complete the proof by showing that each set Fi is well-

connected in E.

Remark 1.11. Theorem 1.9 resembles the “Checkerboard Theorem” [10,

Theorem 1.3] of Jones–Katz–Vargas, but it seems that neither result implies

the other. The result of [10] shows that a set B of positive measure in the

unit cube admits a (quantitatively) large subset A that is “checkerboard

connected” within the original set. This means that any pair of points in A

can be joined by a finite sequence of jumps parallel to the coordinate axes

whose endpoints lie in B, and whose total length is controlled.

In Theorem 1.9, the jumps are not necessarily parallel to the coordinate

axes (otherwise the length bound in Definition 1.8 would be impossible).

However, the jumps in Theorem 1.9 are always small compared to the di-

ameter of the path, whereas in [10, Theorem 1.3] this is not required.
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The proofs are also different; for instance, [10] makes essential use of

maximal function bounds, and we do not.

Remark 1.12. It seems likely that a version of Theorem 1.9 is true in

the generality of doubling, geodesic metric spaces. One main ingredient,

Theorem 1.4, is already stated and proven in this setting.

The main change needed to push Theorem 1.9 to this setting would be a

version of dyadic cubes in abstract metric spaces. Such a construction exists

[1, 7], but in the interest of keeping the present paper relatively streamlined

we do not attempt to give the most general possible result here.

1.5. Outline of the paper. Basic definitions and notations are explained

in Section 2. Section 3 contains a counterexample to the quantitative measure-

theoretic density statement (1.1). Section 4 contains the proofs of Theorem

1.4 and Corollary 1.5, and Section 5 contains the proof of Theorem 1.9.

2. Preliminaries

The section contains some additional definitions, notation, and basic

facts used in the paper.

Definition 2.1. A metric measure space is a triple consisting of a space

X, metric d, and (outer) measure µ, denoted (X, d, µ), with an associated

Ã-algebra of measurable sets.

We use B(x, r) to denote the closed ball of radius r centered at x, i.e.,

{y ∈ X : d(x, y) f r}.

Definition 2.2. Let (X, d) be a metric measure space and C > 0. A non-

zero Borel regular measure µ on X is called doubling (or C-doubling to

emphasize the constant) if it assigns finite measure to every ball and for

each ball B(x, r) ¢ X we have

µ(B(x, 2r)) f C · µ(B(x, r)).

Lebesgue measure ¼ on R
n is an example of a doubling measure.

Definition 2.3. Let (X, d) be a metric space. A metric space is said to

be a doubling metric space if there is an N ∈ N such that for every ball

B(x, 2r) ¢ X, there are N balls B(xk, r) such that

B(x, 2r) ¦
N
⋃

k=1

B(xk, r).

If (X, d, µ) is a metric measure space with µ a doubling measure, then

(X, d) is a doubling metric space; see [6, p. 82].
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Definition 2.4. Let (X, d) be a metric space. Given s > 0, an s-net is a

set N ¢ X that satisfies the following:

(1) If x, y ∈ N and x ̸= y, then d(x, y) g s.

(2) If z ∈ X, then there is an x ∈ N such that d(x, z) < s.

We say that a set is s-separated if only the first condition above is sat-

isfied. It is a standard fact that every metric space contains a net of any

given parameter, and in particular a sequence of nested 2−k-nets.

Definition 2.5. Let (X, dX), (Y, dY ) be two metric spaces, and let f : X →
Y be a function. We call f an isometric embedding if for every x1, x2 ∈ X

dY (f(x1), f(x2)) = dX(x1, x2).

Definition 2.6. Let (X, d) be a metric space. We say X is geodesic if for

every x, y ∈ X, there is an isometric embedding f : [0, d(x, y)] → X such

that f(0) = x and f(d(x, y)) = y. We call this f a geodesic.

Our basic examples of doubling, geodesic spaces are R
d and [0, 1]d with

the Euclidean metric. In these settings, we will also need the standard dyadic

cube decomposition:

Definition 2.7. Let a1, a2, ...ad be integers between 0 and 2−k − 1, k ∈
N ∪ {0}. We define a dyadic cube in [0, 1]d by

Q = [a1 ·2−k, (a1+1)·2−k)×[a2 ·2−k, (a2+1)·2−k)×...×[ad ·2−k, (ad+1)·2−k).

One can triple the dyadic cube by

3Q = [(a1−1)·2−k, (a1+2)·2−k)×[(a2−1)·2−k, (a2+2)·2−k)×...×[(ad−1)·2−k, (ad+2)·2−k).

By analogy, we can define 5Q, 7Q, etc.

If d = 1, we refer to “dyadic intervals” rather than dyadic cubes.

The side length of a cube Q is written side(Q). We denote the set of

dyadic cubes in [0, 1]d of side length 2−k by ∆k, with d understood from

context, and we set ∆ =
⋃∞

k=0 ∆k. A child of a dyadic cube Q is a dyadic

cube R ¢ Q with side(R) = 1
2
side(Q). If Q is a dyadic cube in R

d, then 3Q

is the union of 3d disjoint dyadic cubes of the same side length as Q. We

refer to these as the cells of 3Q. A basic fact about dyadic cubes is that, if

Q,R ∈ ∆, then either Q ∩R = ∅, Q ¢ R, or R ¢ Q.

3. Counterexample to naïve quantitative Lebesgue density

Here, we show by a simple 1-dimensional construction that the quan-

titative measure-theoretic density statement (1.1) cannot hold. This is an

immediate consequence (for d = 1, ³ = 1
2
, ϵ = 1

10
) of the following lemma.
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Lemma 3.1. For each k ∈ N, there exists an open set Ek ¦ [0, 1] such that

¼(Ek) = 1/2 and

¼(Ek ∩ [x− r, x+ r]) f 7

8
¼([x− r, x+ r])

for all x ∈ [0, 1] and r g 2−k.

Proof. Let Ek ¦ [0, 1] be defined as:

Ek =

(

0,
1

2k+2

)

∪
(

2

2k+2
,

3

2k+2

)

∪ ... ∪
(

2k+2 − 2

2k+2
,
2k+2 − 1

2k+2

)

.

In other words, Ek is the union of 2k+1 intervals each of measure 2−(k+2),

each interval separated by a length of 2−(k+2), and the union is contained in

[0, 1]. Of course, ¼(Ek) =
1
2

for all k.

We first observe that if I is a dyadic interval in [0, 1] with ¼(I) g 2−(k+1),

then

(3.1) ¼(Ek ∩ I) =
1

2
¼(I).

Fix any x ∈ [0, 1] and r g 2−k. If r > 1, the desired conclusion for E is

immediate, so we assume r f 1. It is easy to show that there is a dyadic

interval I ¦ [x− r, x+ r] ∩ [0, 1] such that r
2
f ¼(I) f 2r. This I therefore

has ¼(I) g 2−(k+1), and so by (3.1) above, ¼(Ek ∩ I) = 1
2
¼(I). Thus,

¼(Ek ∩ [x− r, x+ r]) f 2r − 1

2
¼(I) f 2r − r

4
=

7

4
r.

Hence,

¼(Ek ∩ [x− r, x+ r])

¼([x− r, x+ r])
f 7

4
r · 1

2r
=

7

8
.

□

4. Quantitative metric density

Our goal in this section is to prove Theorem 1.4 and Corollary 1.5. We

first record the following basic consequence of the doubling condition, omit-

ting the simple proof.

Lemma 4.1. Let (X, d) be a doubling metric space, and let N be its doubling

constant. Let B be a multiresolution family with constant A > 0. Then there

is a constant M > 0, depending only on N and A, such that for every x ∈ X

and k ∈ {0, 1, 2...}, at most M balls from B of radius A2−k can contain x.

We next introduce an intermediate definition.
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Definition 4.2. Let (X, d, µ) be a metric measure space with µ Borel reg-

ular. Let E ¢ X be a nonempty set. Given a ball B of radius r, we define

(4.1) dE(B) =
1

µ(B)

∫

B

dist(x,E)

r
dµ(x).

This is simply the average distance of a point in B to the set E, normal-

ized by the radius of B. A simple calculation shows that if B ∩E ̸= ∅, then

0 f dE(B) f 2.

We are now ready to state and prove the following proposition, the main

step towards Theorem 1.4. As noted in the introduction, the main idea of

this proof can already be found in [3, Section IV.1.2] and [11, Lemma 1.4].

Proposition 4.3. Let (X, d, µ) be a doubling metric measure space equipped

with a multiresolution family B of constant A > 0. Assume µ(X) = 1 and

diamX = 1. Let E ¢ X. Then

(4.2)
∑

B∈B
B∩E ̸=∅

dE(B) · µ(B) f CX ,

where CX is a constant depending only on A and the doubling constant of

X (and not on E).

Proof. Note that we have

∑

B∈B
B∩E ̸=∅

dE(B)·µ(B) =
∑

B∈B
B∩E ̸=∅

∫

B

dist(x,E)

r
dµ(x) =

∫

X

(

∑

B∈B
B∩E ̸=∅
x∈B

dist(x,E)

r

)

dµ(x),

where the r in the summand denotes the radius of the ball B ∈ B being

summed over.

We will now bound the integrand. Note that if x ∈ Ē, then dist(x,E) =

0. So fix x ∈ X with x /∈ Ē, and consider

(4.3)
∑

B∈B
B∩E ̸=∅
x∈B

dist(x,E)

r
.

Let N be the biggest integer such that A · 2−N g 1
2
· dist(x,E). For balls of

radius r = A · 2−N , we have

dist(x,E)

r
f 2 · A · 2−N

r
=

2 · A · 2−N

A · 2−N
= 2.

Note that there are no balls in the summation in (4.3) with radius A ·
2−(N+1), A · 2−(N+2), ... because such a ball would have radius r f A ·
2−(N+1) < 1

2
dist(x,E), and such a ball could not touch both E and x.
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Recall that, since N is the biggest integer such that A · 2−N g 1
2
· dist(x.E),

we have

dist(x,E) f A · 2−(N−1).

If j ∈ {0, 1, 2, ..., N} and B is a ball in the sum (4.3) of radius A · 2−(N−j),

then the summand

dist(x,E)

r
f A · 2−(N−1)

r
=

A · 2−(N−1)

A · 2−(N−j)
=

1

2j−1
.

For each fixed radius A · 2−k (k ∈ {0, 1, , . . . , N}), Lemma 4.1 tells us that

there are at most M balls contaning x with radius equal to A · 2−k, where

M depends on N and A. Therefore,

∑

B∈B
B∩E ̸=∅
x∈B

dist(x,E)

r
f M ·(2+1+

1

2
+
1

4
+...) f M ·(

∞
∑

i=−1

1

2i
) = M ·(2+2) = 4M.

Let CX = 4M . We now have
∫

X

(

∑

B∈B
B∩E ̸=∅
x∈B

dist(x,E)

r

)

dµ(x) f
∫

X

CXdµ(x) = CX · µ(X) = CX .

Therefore
∑

B∈B
B∩E ̸=∅

dE(B) · µ(B) f CX .

□

The following lemma connects sparse(E,B) to dE(B). There is a minor

technical issue, which is that sparse(E,B) considers only points in E ∩ B,

while dE(B) considers points of E that may lie outside of B. The geodesic

assumption allows us to link the two quantities despite this.

Lemma 4.4. Let (X, d, µ) be a complete, geodesic metric measure space,

and µ a C-doubling measure. Let E ¢ X and B be a ball in X.

Given ϵ > 0, there is a ¶ > 0, depending only on ϵ and C, such that if

dE(B) < ¶, then sparse(E,B) < ϵ.

Proof. Let ϵ be given; without loss of generality, ϵ ∈ (0, 1). Suppose that

(X, d, µ) satisfies the assumptions on the lemma, E ¢ X, and B = B(p, r)

has sparse(E,B) g ϵ. We will bound dE(B) from below by a constant

depending only on ϵ and C.

The assumption on sparsity translates to

sup{dist(x,E ∩B) : x ∈ B} g ϵr.
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Thus, there is a point x ∈ B such that dist(x,E ∩ B) > ϵ3r
4
. The ball

B
(

x, 3ϵ
4
r
)

therefore contains no points of E ∩ B.

Claim 4.5. There is a point y ∈ B
(

x, ϵ
4
r
)

such that

B
(

y,
ϵ

4
r
)

¦ B ∩ B

(

x,
3ϵ

4

)

.

Proof. If d(p, x) < ϵ
4
, set y = x. The conclusion then follows immediately

from the triangle inequality, recalling our assumption that ϵ < 1.

If d(p, x) g ϵ
4
, we do the following. Let µ : [0, d(p, x)] → X be a geodesic

from x to p such that µ(0) = x, µ(d(p, x)) = p. Set y = µ( ϵ
4
r). Then

d(y, x) =
ϵ

4
r and d(y, p) = d(p, x)− ϵ

4
r.

It then follows easily from the triangle inequality that

B
(

y,
ϵ

4
r
)

¦ B ∩ B

(

x,
3ϵ

4

)

.

□

It follows directly from the previous claim that dist(z, E) g ϵ
8
r for every

z ∈ B(y, ϵ
8
r). We now have

dE(B) =
1

µ(B)

∫

B

dist(z, E)

r
dµ(z) g 1

µ(B)

∫

B(y, ϵ
8
r)

dist(z, E)

r
dµ(z)

g 1

µ(B)

∫

B(y, ϵ
8
r)

ϵr

8r
dµ(z) g ϵ

8
· µ(B(y, ϵ

8
r))

µ(B)
.

If N is the smallest integer such that 2N · ϵ
8
g 2, then B ¢ B(y, 2N · ϵ

8
r).

Because µ is C-doubling,

CN · µ(B(y,
ϵ

8
r)) g µ(B(y, 2N · ϵ

8
r)) g µ(B).

So we have
µ(B(y, ϵ

8
r))

µ(B)
g 1

CN
.

Let ¶ = ϵ
8
· 1
CN , which depends only on ϵ and C. Then

dE(B) g ϵ

8
· µ(B(y, ϵ

8
r))

µ(B)
g ϵ

8
· 1

CN
= ¶.

□

We can now prove Theorem 1.4.

Proof of Theorem 1.4. Given ϵ > 0, choose ¶ > 0 as in Lemma 4.4. This

yields that
∑

B∈B(E,ϵ)

µ(B) f
∑

B∈B
dE(B)g¶
B∩E ̸=∅

µ(B).
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By Proposition 4.3, we have
∑

B∈B
dE(B)g¶
B∩E ̸=∅

µ(B) f
∑

B∈B

B∩E ̸=∅

1

¶
dE(B) · µ(B) f 1

¶
· CX .

□

Remark 4.6. Suppose that (Y, dY , µ) is a metric measure space with µ a C-

doubling measure, µ(Y ) = 1, but diamY = D > 1. Let B be a multiresolu-

tion family in Y consisting of balls of radii D·A·2−k for k g 0, and let E ¢ Y

be measurable. Consider the metric measure space (X, dX , µ) = (Y, 1
D
d, µ).

In the space X, the balls of B have radii A · 2−k for k g 0. Note in addi-

tion that the sparsity of a set in a ball is unaffected by this rescaling, and

therefore the notation B(E, ϵ) is unambiguous.

Thus given ϵ > 0, there is a K(ϵ, C,A) > 0 such that if E ¢ Y then
∑

B∈B(E,ϵ)

µ(B) f K(ϵ, C,A).

Thus, a version of Theorem 1.4 with Ã = DA holds for metric measure

spaces with diameter D greater than 1.

We now prove Corollary 1.5.

Proof of Corollary 1.5: Fix A = 1 in the definition of our multiresolution

family. By Theorem 1.4, if E ¢ X then
∑

B∈B(E,ϵ)

µ(B) f K

where K depends only on ϵ and on the doubling measure constant C. Let

N be the first integer such that some ball B in B of radius A · 2−N touches

E and is not in B(E, ϵ), that is, sparse(E,B) < ϵ. This implies that all balls

with radii A ·20, A ·2−1,...,A ·2−(N−1) that touch E are contained in B(E, ϵ).

Therefore, the above sum is bounded below by the sum of all the measures

of these balls. For each n ∈ {0, 1, ..., N − 1}, the measure of the union of

all such balls at a given scale is greater than or equal to the measure of E.

Therefore

µ(E) ·N f
∑

B∈B(E,ϵ)

µ(B) f K.

Note µ(E) g ³, so we have

N · ³ f N · µ(E) f K

and so

N f K

³
.
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Thus, there is a ball B with radius A · 2−N g A · 2−K

³ that intersects E and

has sparse(E,B) < ϵ. So we can take r = A · 2−N and r0 = A · 2−K

³ . □

At this point, it may be instructive to return to the example set(s) Ek

in Section 3, which showed that statement (1.1) failed, i.e., that one cannot

expect a large ball where a measurable set is measure-theoretically dense.

Corollary 1.5, however, applies perfectly well to these sets. For small values

of k, Ek contains large full dyadic intervals, and thus of course has large

scales in which it is metrically dense (i.e., has small sparsity). For large

values of k, Ek is metrically very dense in the whole interval [0, 1], and so

again has a large scale where it has small sparsity.

5. Quantitative connectivity

In this section, we prove Theorem 1.9. This concerns subsets of [0, 1]d,

rather than general metric spaces.

If E ¦ [0, 1]d and Q is a dyadic cube such that 7Q ∩ E ̸= ∅, we set

sparse(E, 7Q) =
1

side(7Q)
sup{dist(x, 7Q ∩ E) : x ∈ 7Q}.

We first slightly adjust Theorem 1.4 to apply to dyadic cubes.

Corollary 5.1. Given ϵ > 0, there is a K̃ > 0, depending only on ϵ and d,

such that if E ¢ [0, 1]d, then
∑

Q∈∆
sparse(E,7Q)gϵ

3Q∩E ̸=∅

¼(Q) f K̃.

Proof. Fix a multi-resolution family of balls B in [0, 1]d with scaling factor

A = 7
√
d.

For each Q ∈ ∆k, we may choose a ball BQ ∈ B of radius A2−k =

7
√
d2−k = diam(7Q) such that 7Q ¦ BQ.

Now fix a set E ¢ [0, 1]d.

Claim 5.2. If E ∩ 7Q ̸= ∅, then sparse(E, 7Q) f A(d+1)
7

sparse(E,BQ).

Proof. Let x ∈ 7Q and s = sparse(E,BQ). Let k be such that Q ∈ ∆k,

which forces the radius r of BQ to be A2−k.

To prove the claim, it will suffice to find a point y ∈ E ∩ 7Q with

|x− y| f (d+ 1)sr, which we now do.

If dist(x, ∂(7Q)) > sr, then this is easy: there is a y ∈ E ∩ B such that

d(x, y) f sr, and the assumption on the distance to the boundary forces

y ∈ E ∩ 7Q.
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Otherwise, dist(x, ∂(7Q)) f sr. In that case, we first perturb x along

d separate line segments parallel to the coordinate axes, each of length at

most sr, until we reach a point x′ ∈ 7Q with dist(x′, 7Q) > sr. By the

previous case, there is a y ∈ 7Q ∩E such that |x′ − y| f sr. It follows that

|x− y| f sr + dsr = (d+ 1)sr.

Thus,

sparse(E, 7Q) f (d+ 1)sr

side(7Q)
=

(d+ 1)rsparse(E,B)

7 · 2−k
=

(d+ 1)A · 2−ksparse(E,B)

7 · 2−k

=
A(d+ 1)

7
sparse(E,B).

□

Now, each BQ contains the corresponding cube 7Q. In addition, each

ball B ∈ B can act as BQ for at most D different cubes Q, for some D

depending on d, by a simple volume argument.

Therefore, using the previous claim,
∑

Q∈∆
sparse(E,7Q)gϵ

3Q∩E ̸=∅

¼(Q) f
∑

Q∈∆
sparse(E,7Q)gϵ

3Q∩E ̸=∅

¼(BQ)

f D

(

∑

B∈B
sparse(E,B)g 7ϵ

A(d+1)

B∩E ̸=∅

¼(B)

)

By Theorem 1.4 (and Remark 4.6), this sum is controlled by a constant

depending only on ϵ and d, which completes the proof. □

The next result uses Corollary 5.1 to show, roughly speaking, that most

points of E are not contained in too many cubes of large sparsity.

Proposition 5.3. Let ϵ > 0 be given, and suppose E ¢ [0, 1]d.

For N ∈ N, let ZN be the collection of points that are contained in at least

N distinct cubes 7Q such that Q ∈ ∆, 3Q ∩ E ̸= ∅, and sparse(E, 7Q) g ϵ.

Then ¼(ZN) f 7d K̃
N

, where K̃ is the constant from Corollary 5.1.

Proof. The set ZN is a union of countably many cubes, and therefore Lebesgue

measurable. By Corollary 5.1,

K̃ g
∑

Q∈∆ with
3Q∩E ̸=∅,

sparse(E,7Q)gϵ

¼(Q)



QUANTITATIVE METRIC DENSITY 15

= 7−d
∑

Q∈∆ with
3Q∩E ̸=∅,

sparse(E,7Q)gϵ

¼(7Q)

= 7−d

∫

[0,1]d

(

∑

Q∈∆ with
7Q∋x,

3Q∩E ̸=∅,
sparse(E,7Q)gϵ

1

)

dx

g 7−d

∫

ZN

(

∑

Q∈∆ with
7Q∋x,

3Q∩E ̸=∅,
sparse(E,7Q)gϵ

1

)

dx

g 7−d

∫

ZN

Nd¼

= 7−dN¼(ZN).

The conclusion then follows. □

As preparation for the “coding” argument below, we need the following

simple fact about dyadic cubes.

Lemma 5.4. Let Q,R ∈ ∆ such that side(R) g side(Q) and 3Q ∩ 3R ̸= ∅.
Then 3Q ¢ 7R.

Proof. Let x ∈ 3Q ∩ 3R ̸= ∅. There is a cell R′ ¢ 3R containing x. Then

3Q ¢ 5R′ ¢ 7R. □

The following lemma provides useful decompositions of sets for which

each point is contained in only a controlled number of cubes from a given

family. To our knowledge, the idea appears first (in a different context) in

[8, Lemma 2.2]; see also [2, Lemma 8.4]. We take the opportunity here to

present the lemma in a fairly general form and to give a somewhat different

proof than those cited above, which we find a bit more transparent.

Lemma 5.5. Let G ¢ [0, 1]d, and B ¢ ∆. Assume that 3Q ∩ G ̸= ∅ for

every Q ∈ B, and that each x ∈ G is contained in at most N different cubes

7Q for Q ∈ B.

There is a constant M > 0, depending only on d and N , and sets

F1, F2, ..., FM with the following properties:

(i) G = F1 ∪ F2 ∪ ... ∪ FM

(ii) If x, y ∈ Fi are distinct and Q is a dyadic cube of minimal side length

such that x, y ∈ 3Q, then Q /∈ B.

Proof. We first separate B into N useful families:
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Claim 5.6. There are disjoint collections A1, ...,AN ¢ B such that the

following are true:

(i) B = A1 ∪ A2 ∪ ... ∪ AN .

(ii) If Q,R ∈ Ai are distinct for some i ∈ {1, 2, ..., N}, then 3Q ∩ 3R = ∅.

Proof. Order B = {Q1, Q2, ..., } by decreasing size, i.e., so that side(Qi) g
side(Qj) if i f j. We will construct the collections A1, ...,AN inductively.

Put Q1 ∈ A1.

Assume now that Q1, ..., Qk have been put in various collections among

the A1, ...,AN , that the collections are (so far) disjoint from each other, and

that if Q,R ∈ Ai then 3Q ∩ 3R = ∅. We wish to place Qk+1 in some Ai

with the property that 3Qk+1 ∩ 3R = ∅ for all R currently in Ai.

Suppose there is no i ∈ {1, 2, ..., N} such that 3Qk+1 ∩ 3R = ∅ for every

R ∈ Ai∩{Q1, . . . , Qk}. Then 3Qk+1 intersects distinct cubes 3R1, 3R2, ..., 3RN ,

where Ri ∈ Ai and side(Ri) g side(Qk+1). By Lemma 5.4, 3Qk+1 ¢ 7Ri

for every i ∈ {1, 2, ..., N}. Then there is an x ∈ 3Qk+1 ∩ G such that

x ∈ 7Qk+1, 7R1, ..., 7RN . This contradicts the assumption that x can be

contained in at most N different cubes 7Q for Q ∈ B.

Therefore, we may place cube Qk+1 in one of the collections Ai and

maintain the desired properties. It follows by induction that the sets may

be constructed as desired. □

Now let ³ = {0, 1, ..., 3d}. We introduce a correspondence between ³\{0}
and the set of 3d different cells of a (hence any) tripled dyadic cube 3Q. The

precise choice of correspondence does not matter; to be concrete, we order

the cells by the “dictionary” order of their centers, so that cell 1 is the cell

closest to the origin, cell 2 is its neighbor in the x1 direction, etc.

We will consider “words w of length N from the alphabet ³,” i.e., w ∈ ³N .

For such a w, wi ∈ ³ denotes its ith letter.

For each x ∈ G we define É(x) ∈ ³N in the following way. Consider

i ∈ {0, . . . , 3d}. The point x can be in at most one cube 3Q for Q ∈ Ai. Let

us call this cube Qx,i, if it exists. We set the ith letter of w(x) to be

É(x)i =

{

0 if x /∈ ⋃

Q∈Ai
3Q

k ∈ ³ \ {0} if x is in the kth cell of 3Qx,i.

Thus, for each x, there are at most M = (3d+1)N possibilities for the word

É(x). Enumerate these possibilities in any order by ³N = {É1, ..., ÉM}. Let

Fj = {x ∈ G : É(x) = Éj} for j ∈ {1, 2, ...,M}. It is immediate that

G = ∪M
j=1Fj, so it remains to verify the second conclusion of the lemma.
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Suppose x, y ∈ Fj and x ̸= y. Let Q be a dyadic cube of minimal side

length such that x, y ∈ 3Q. We claim that Q /∈ B, so suppose Q ∈ B. Then

Q ∈ Ai for some i ∈ {1, 2, ..., N}. Since x, y ∈ Fj, É(x) = É(y) = Éj. So

É(x)i = É(y)i. It follows from the definition of É(x)i and É(y)i that x and

y both lie in the same cell Q′ of 3Q.

Let R be a child of Q′ that contains x. Then x, y ∈ Q′ ¢ 3R. Since R is

half the size of Q, this contradicts the fact that Q is a minimal dyadic cube

such that x, y ∈ 3Q. Therefore Q /∈ B. □

We will also need the following basic fact.

Lemma 5.7. Let Q ∈ ∆ be a minimal dyadic cube such that x, y ∈ 3Q.

Then side(Q) f 2|x− y|.

Proof. Let Q′ be a cell of 3Q such that x ∈ Q′. Let R ¢ Q′ be a child of Q′

such that x ∈ R. Because Q is a minimal cube such that x, y ∈ 3Q, it must

be that y /∈ 3R. So

1

2
side(Q) = side(R) f |x− y|.

This implies that side(Q) f 2|x− y|. □

We are now ready to prove Theorem 1.9.

Proof of Theorem 1.9. Let ³, ¶ > 0. Without loss of generality we may as-

sume ¶ < 1
2
. Let P ∈ N be chosen large enough so that 1

P
f 3

4
¶ and P > 1+1

¶
.

Let ϵ = ¶
28P

and set B0 = {Q ∈ ∆ : 3Q ∩ E ̸= ∅, sparse(E, 7Q) g ϵ}. For

N ∈ N to be chosen momentarily, define Z by

Z = {x ∈ E : x is in at least N > 0 different cubes 7Q for Q ∈ B0}.
Then Z = ZN ∩ E, where ZN is the (measurable) set defined in Propo-

sition 5.3. Using that proposition, we have that

¼(Z) f 7d
K̃

N

(understanding this as Lebesgue outer measure if E is not measurable).

For N large enough, depending only on ϵ and d, we have ¼(Z) < ³. Let

G = E \ Z, and B = {Q ∈ B0 : 3Q ∩ G ̸= ∅}. Let x ∈ G. Then x /∈ Z, so

x is in at most N different cubes of B0 and hence in at most N different

cubes of B. By Lemma 5.5, we can write G = F1 ∪ F2 ∪ · · · ∪ FM with the

property that if x, y ∈ Fi then a minimal dyadic cube Q with x, y ∈ 3Q

satisfies Q /∈ B. Here M = (3d + 1)N .

At this point, we have written

E = G ∪ Z = F1 ∪ · · · ∪ FM ∪ Z,
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where ¼(Z) < ³. To complete the proof, it remains to check that each set

Fj is ¶-well-connected in E.

Suppose x, y ∈ Fj are distinct for some j ∈ {1, 2, ...,M}. Let Q be a

minimal dyadic cube such that x, y ∈ 3Q. Then Q /∈ B. Since x, y ∈ G∩3Q,

we have G ∩ 3Q ̸= ∅, from whch it follows that Q /∈ B0. This implies that

sparse(E, 7Q) < ϵ. Note also that side(Q) f 2|x−y| by the previous lemma.

Let µ : [0, |x − y|] → 3Q parametrize the line segment from x to y. Let

xi = µ( i
P
|x − y|) for i ∈ {0, 1, 2, ...P}. Note that x0 = x and xP = y. For

each i ∈ {1, 2, ..., P −1}, the fact that sparse(E, 7Q) < ϵ allows us to choose

zi ∈ E such that |zi − xi| < ϵ · side(7Q). We also set z0 = x and zP = y,

which are in Fj ¦ G ¦ E by assumption. Thus, we have a discrete path

{z0 = x, z1, z2, ..., zP−1, zP = y} ¢ E.

We now verify that this path has the desired properties to make Fj ¶-

well-connected. First, we check, using our choices of ϵ and P , that each “step

size” is small.

|zi+1 − zi| f |zi+1 − xi+1|+ |xi+1 − xi|+ |xi − zi|

< 2ϵside(7Q) +
1

P
|x− y|

f 28ϵ|x− y|+ 1

P
|x− y|(5.1)

f
(

¶ + 1

P

)

|x− y|

f ¶|x− y|.
Next, we check that the total length of this path is small. Reusing in-

equality (5.1) from the previous calculation and our definitions of ϵ and P ,

we obtain that
P−1
∑

i=0

|zi+1 − zi| f
P−1
∑

i=0

(

28ϵ+
1

P

)

|x− y|

= P

(

28ϵ+
1

P

)

|x− y|

f (¶ + 1)|x− y|
Thus, each Fj is ¶-well-connected in E, and this completes the argument.

□
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