QUANTITATIVE METRIC DENSITY AND
CONNECTIVITY FOR SETS OF POSITIVE MEASURE

GUY C. DAVID AND BRANDON OLIVA

ABSTRACT. We show that in doubling, geodesic metric measure spaces,
(including, for example, Euclidean space) sets of positive measure have a
certain large-scale metric density property. As an application, we prove
that a set of positive measure in the unit cube of R? can be decomposed
into a controlled number of subsets that are “well-connected” within the
original set, along with a “garbage set” of arbitrarily small measure. Our
results are quantitative, i.e., they provide bounds independent of the
particular set under consideration.

1. INTRODUCTION

1.1. Background: qualitative vs. quantitative results in analysis.
Many important theorems in analysis are “qualitative” or “infinitesimal”.
They assert that a certain desirable small-scale limiting behavior occurs,
but do not provide any guarantee of a fixed scale at which such a behavior
occurs up to a given error.

A basic example is Rademacher’s theorem: a Lipschitz function on R is
differentiable almost everywhere. While this is a wonderful result, neither
the theorem nor its typical proofs guarantee how far one might have to zoom
in at a generic point to find a scale where this Lipschitz function is close to
affine with a given error.

By a completely different argument of Dorronsoro [4], however, such a
guarantee can be made with bounds independent of the given Lipschitz func-
tion. (See also [3] and [5, Appendix BJ.) There is by now a whole literature
in this style of quantitative analysis, with many connections to harmonic
analysis, singular integrals, and geometry, that is too large to survey here.
In addition to the paper of Dorronsoro referenced above, some of the foun-

dational texts are by Jones [9] and David-Semmes [3].
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1.2. The Lebesgue density theorem. Another “qualitative” result in
analysis, in the sense described above, is the Lebesgue density theorem.

Using \ to denote Lebesgue measure in R?, we have:

Theorem 1.1 (Lebesgue Density Theorem). Let E C R? be measurable.
Then at almost every point x € F,

B F

iy M B, ) N E)

=0 N(B(z,r)) =L

Thus, E “fills up” nearly all the measure of small balls. The same state-
ment holds in arbitrary complete, doubling metric measure spaces; see below
for the definitions of these terms and [6] for the result in this generality.

As a naive quantitative analog of the Lebesgue density theorem, paral-
leling the quantitative Rademacher theorem mentioned above, one might

hope for the following:

For each d € N and «, € > 0, there is an ry > 0 such that

if £ C[0,1]% has A\(F) > «, then there is a ball B of radius r > rg

AMBNE)
A(B)

This statement turns out to be false, however, as we demonstrate with

(1.1)

such that >1—e

a straightforward counterexample in Section 3.

1.3. Quantitative metric density. To give a correct quantitative state-
ment inspired by the Lebesgue density theorem, we view density in a metric
rather than measure-theoretic sense.

Definition 1.2. We define the sparsity of a set E in a closed ball B of
radius r by
sup{dist(z, FN B) : x € B}
. .
If EN B =0, we regard the sparsity sparse(E, B) as undefined.

sparse(F, B) =

Thus, if sparse(E, B) = 0, then EN B = B, although of course it may
be that the measure of £ N B is 0. If sparse(E, B) is small, we consider £
to be “very dense” in B.

The notion of sparsity is closely connected to that of porosity. A set E
in a metric space X is called porous if there is a constant ¢ > 0 such that,
for each 0 < r < diam(X) and = € X, the ball B(z,r) contains a ball of
radius cr that is disjoint from F. |6, p. 116] In particular, E is porous if and
only if sparse(F, B) is bounded below away from zero, over all balls B with

radius less than diam(X). Porous sets and their variants appear in many
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areas of mathematics, including dimension theory and Banach space theory
[12]. Our notion of sparsity can simply be considered as porosity at a single
location and scale.

To formulate the idea that a set has small sparsity at “most” locations
and scales, we use the notion of a “multi-resolution family” of balls.

Definition 1.3. Let (X, d) be a metric space. Let {V, : £ =0,1,2,...} be
a family of 2 %-nets in X satisfying Ny C N; C N, C .... (See Definition
2.4.) Given a constant A > 1, a multiresolution family is the collection

B={B(x,A-27%) .2 € N.,0 <k < 00}

Note that if A > 1, then the collection of all balls in B of fixed radius
A - 27% forms a cover of X. We note that in many cases A > 1 is required
in the notion of a multiresolution family, but we prefer to be flexible and
allow A =1 as well.

We can now state a “Quantitative Metric Density Theorem”. The termi-

YRR

nology (e.g., “doubling”, “geodesic”) will be defined in Section 2.

Theorem 1.4. Let (X,d, u) be a complete, geodesic, metric measure space
equipped with a multiresolution family B. Assume that p s a C-doubling
measure, diam X = 1, and u(X) = 1.

Given € > 0, there is a K (depending only on e, C, and A) such that,
for any set E C X, if we set

B(E,e) ={B € B:BNE #(,sparse(E, B) > €},
then
(1.2) > wB)<K.
BeB(E,e)

Theorem 1.4 says that a set of positive measure must look very dense
in “most” balls that intersect it, in a way independent of the particular set
under consideration. Observe that if we simply summed over all balls B € B
intersecting E in (1.2), then the sum would diverge whenever p(E) > 0.

To relate this back to the discussion above, we note that Theorem 1.4
will easily imply the following:

Corollary 1.5. Let (X,d,u) be a complete, geodesic metric measure space
with 1 a C-doubling measure. Suppose that diam X =1 and u(X) = 1.

Given a,e > 0, there is anrg > 0 (depending only on «, €, C') such that if
a Borel set E C X has u(E) > «, then there is a ball B of radius r € [rg, 1]
such that

(1.3) EN B # 0 and sparse(E, B) < e.
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In other words, we guarantee a large scale (with size independent of E')

in which FE is very dense.

Remark 1.6. The main ideas behind Theorem 1.4 and Corollary 1.5 are
not really new, although we believe our presentation of the result has new
features. The key intermediate step in the proof (Proposition 4.3) can essen-
tially be found in [3, Section IV.1.2] and [11, Lemma 1.4], although stated
with more restrictive assumptions.

Thus, our main purpose in stating and proving Theorem 1.4 is the ap-
plication to the original Theorem 1.9 below. As a secondary concern, we
take the opportunity to provide a general proof of the result in the setting

of abstract metric measure spaces.

Remark 1.7. The assumptions that diam X = 1 and p(X) = 1 in The-
orem 1.4 and Corollary 1.5 are not really restrictive, since one can always

normalize to these parameters. See Remark 4.6 for an example.

1.4. Quantitative connectivity. Our main new result is about sets of
positive measure in the unit cube of R%. We show that such a set can be
decomposed, up to a “garbage set” of small measure, into pieces that are
“well-connected” within the larger set, in a way we now make precise.

Given 7 > 0, an n-chain in a metric space is a finite list of points
(20, ..., Tm) such that d(x;,x;41) < n for each i € {0,...,m — 1}. We
say that the chain is “from x to y” if x = 2y and y = x,,,. The length of the
n-chain is the sum 70" d(2i, 2i11).

Definition 1.8. Let F C [0,1]%, and let F' C E. We say that F is §-well-
connected in E if for every x,y € F, there is a §|x — y|-chain from z to y in
E with length at most (14 0)|z —y|.

Thus, if F' is well-connected in F, then any pair of points in F' can be
joined by a discrete path in E whose steps are small (compared to the
distance between the endpoints) and whose length is almost as small as
possible. The notion of well-connectedness is thus related to convexity. In
particular, if F is convex, then every subset of E is d-well-connected in F
for all 6 > 0.

We show that all sets of positive measure have “large” pieces that are

well-connected within the original set, in a quantitative way.

Theorem 1.9. Given d € N, a > 0, and 6 > 0, there is an M € N
(depending only on d,a, §) with the following property: If E C [0,1]¢, then
there are sets Fy, Fy, ..., Fir, Z C E such that:
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(1) E=FUFRU..UFyUZ.
(2) \(Z) < a.
(8) For eachi € {1,2,..., M}, F; is §-well-connected in E.

The “quantitative” aspect here is the fact that the number M of well-
connected subsets depends only on the given parameters, and not on the

original set F.

Remark 1.10. The set F is not assumed to be measurable in Theorem 1.9.
However, the set Z can always be taken to be the intersection of E with a
measurable subset of R? of measure < . Thus, if F is not measurable, then
conclusion (2) of the theorem can be interpreted in the sense of Lebesgue

outer measure.

The main steps in the proof of Theorem 1.9 are as follows: We apply
Theorem 1.4 (suitably reinterpreted for dyadic cubes rather than balls) to
show that in “most” dyadic cubes that touch E| the sparsity of F is small.
(In fact, it is important to use expansions of dyadic cubes, but we elide this
for now.) This will imply that most points of E, outside of a small set Z, lie
in a controlled number of “bad” dyadic cubes in which E is not very dense.

The next step is a “coding” argument, originally due to Jones [8], to sep-
arate '\ Z into a controlled number of sets F; with the following property:
If two points x,y € E are in the same F;, then there is a cube containing
them of size ~ |r — y| in which E is very dense. This coding argument is
Lemma 5.5; we take this opportunity to give a different proof than the ones
presented in [8] and [2].

Finally, we complete the proof by showing that each set F; is well-
connected in F.

Remark 1.11. Theorem 1.9 resembles the “Checkerboard Theorem” [10,
Theorem 1.3] of Jones—Katz—Vargas, but it seems that neither result implies
the other. The result of [10] shows that a set B of positive measure in the
unit cube admits a (quantitatively) large subset A that is “checkerboard
connected” within the original set. This means that any pair of points in A
can be joined by a finite sequence of jumps parallel to the coordinate axes
whose endpoints lie in B, and whose total length is controlled.

In Theorem 1.9, the jumps are not necessarily parallel to the coordinate
axes (otherwise the length bound in Definition 1.8 would be impossible).
However, the jumps in Theorem 1.9 are always small compared to the di-

ameter of the path, whereas in [10, Theorem 1.3| this is not required.
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The proofs are also different; for instance, [10] makes essential use of

maximal function bounds, and we do not.

Remark 1.12. It seems likely that a version of Theorem 1.9 is true in
the generality of doubling, geodesic metric spaces. One main ingredient,
Theorem 1.4, is already stated and proven in this setting.

The main change needed to push Theorem 1.9 to this setting would be a
version of dyadic cubes in abstract metric spaces. Such a construction exists
[1, 7], but in the interest of keeping the present paper relatively streamlined

we do not attempt to give the most general possible result here.

1.5. Outline of the paper. Basic definitions and notations are explained
in Section 2. Section 3 contains a counterexample to the quantitative measure-
theoretic density statement (1.1). Section 4 contains the proofs of Theorem

1.4 and Corollary 1.5, and Section 5 contains the proof of Theorem 1.9.

2. PRELIMINARIES

The section contains some additional definitions, notation, and basic

facts used in the paper.

Definition 2.1. A metric measure space is a triple consisting of a space
X, metric d, and (outer) measure pu, denoted (X, d, i), with an associated

o-algebra of measurable sets.

We use B(z,7) to denote the closed ball of radius r centered at z, i.e.,
{y e X :d(z,y) <r}.

Definition 2.2. Let (X, d) be a metric measure space and C' > 0. A non-
zero Borel regular measure p on X is called doubling (or C-doubling to

emphasize the constant) if it assigns finite measure to every ball and for

each ball B(z,r) C X we have
Lebesgue measure A on R” is an example of a doubling measure.

Definition 2.3. Let (X,d) be a metric space. A metric space is said to
be a doubling metric space if there is an N € N such that for every ball
B(z,2r) C X, there are N balls B(xy,r) such that

B(z,2r) C U B(zg, ).

If (X,d,p) is a metric measure space with u a doubling measure, then
(X, d) is a doubling metric space; see [6, p. 82].
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Definition 2.4. Let (X, d) be a metric space. Given s > 0, an s-net is a
set N C X that satisfies the following:

(1) If x,y € N and x # y, then d(z,y) > s.

(2) If z € X, then there is an x € N such that d(z, z) < s.

We say that a set is s-separated if only the first condition above is sat-
isfied. It is a standard fact that every metric space contains a net of any
given parameter, and in particular a sequence of nested 2 *-nets.

Definition 2.5. Let (X, dx), (Y, dy) be two metric spaces, and let f : X —
Y be a function. We call f an isometric embedding if for every zy, x5 € X

dy (f(x1), f(z2)) = dx (1, 22).

Definition 2.6. Let (X, d) be a metric space. We say X is geodesic if for
every x,y € X, there is an isometric embedding f : [0,d(z,y)] — X such
that f(0) =z and f(d(z,y)) = y. We call this f a geodesic.

Our basic examples of doubling, geodesic spaces are R? and [0, 1]¢ with
the Euclidean metric. In these settings, we will also need the standard dyadic

cube decomposition:

Definition 2.7. Let a1, a9, ...aq be integers between 0 and 27% — 1,k €
N U {0}. We define a dyadic cube in [0,1]? by

Q= [a1-27", (a1 +1)-27F) x[az-27%, (ag+1)-27%) x ... x [ag-27", (ag+1)-27").
One can triple the dyadic cube by
3Q = [(a1—1)27% (a1+2)-27") x[(az—1)27%, (ag+2)-27%) x... x[(ag—1)-27", (ag+2)-27F).

By analogy, we can define 5Q), 70, etc.

If d =1, we refer to “dyadic intervals” rather than dyadic cubes.

The side length of a cube @ is written side(Q)). We denote the set of
dyadic cubes in [0,1]? of side length 27% by A, with d understood from
context, and we set A = [J;~, Ag. A child of a dyadic cube @ is a dyadic
cube R C ) with side(R) = %side(@). If Q is a dyadic cube in R?, then 3Q
is the union of 3% disjoint dyadic cubes of the same side length as Q. We
refer to these as the cells of 3Q). A basic fact about dyadic cubes is that, if
Q,R € A, then either QN R=0,Q C R, or R C Q.

3. COUNTEREXAMPLE TO NAIVE QUANTITATIVE LEBESGUE DENSITY

Here, we show by a simple 1-dimensional construction that the quan-
titative measure-theoretic density statement (1.1) cannot hold. This is an
immediate consequence (for d =1, a = 5,e = lio) of the following lemma.
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Lemma 3.1. For each k € N, there exists an open set Ey, C [0, 1] such that
AN Ex) =1/2 and

ME, N[z —r,z+7]) <

ol 3

Mz —r,z+ 7))
for all z € [0,1] and r > 27F.
Proof. Let Ey C [0,1] be defined as:
1 2 3 2F2 9 2k+2 ]
Ep = (0, Ok+2 U ok+27 Qkt2 u..u okt+2 7 gk+2 :

In other words, Fj is the union of 2°*! intervals each of measure 2~ *+2)

each interval separated by a length of 2=(*2)and the union is contained in
[0,1]. Of course, A(Ey) = 5 for all k.

We first observe that if I is a dyadic interval in [0, 1] with A(I) > 2= *+1
then

(3.1) ANE,NI) = %)\(I).

Fix any z € [0,1] and 7 > 27%. If r > 1, the desired conclusion for F is
immediate, so we assume r < 1. It is easy to show that there is a dyadic
interval I C [z — 7,2 +r] N[0, 1] such that § < A(f) < 2r. This I therefore
has A(1) > 2=*+1 and so by (3.1) above, A(Ex N I) = $A(I). Thus,

MEy N[z —r,z+7]) SZT—E)\([) S?T—Z:Zr,
2 4 4
Hence,
MEx N[z —r,z+7]) < zr.i:z
Mz —=r,z+7]) —4 2r 8

4. QUANTITATIVE METRIC DENSITY

Our goal in this section is to prove Theorem 1.4 and Corollary 1.5. We
first record the following basic consequence of the doubling condition, omit-
ting the simple proof.

Lemma 4.1. Let (X, d) be a doubling metric space, and let N be its doubling
constant. Let B be a multiresolution family with constant A > 0. Then there
is a constant M > 0, depending only on N and A, such that for every x € X
and k € {0,1,2...}, at most M balls from B of radius A2~ can contain x.

We next introduce an intermediate definition.
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Definition 4.2. Let (X, d, 1) be a metric measure space with p Borel reg-
ular. Let £ C X be a nonempty set. Given a ball B of radius r, we define

1 dist(z, )
(4.1) dg(B) = (B) /B " du(x).
This is simply the average distance of a point in B to the set £, normal-
ized by the radius of B. A simple calculation shows that if BN E # (), then
0<dg(B)<2.

We are now ready to state and prove the following proposition, the main

step towards Theorem 1.4. As noted in the introduction, the main idea of
this proof can already be found in [3, Section IV.1.2| and [11, Lemma 1.4].

Proposition 4.3. Let (X, d, p) be a doubling metric measure space equipped
with a multiresolution family B of constant A > 0. Assume u(X) =1 and
diam X = 1. Let E C X. Then

(4.2) Y dp(B)-u(B) < Cx,

BeB
BNE#(

where Cx is a constant depending only on A and the doubling constant of
X (and not on E).

Proof. Note that we have

S asrum) - 3 [ g - [ (3 BB g

BeB BeB BeB
BNE#( BNE#D BNE#)
z€EB
where the 7 in the summand denotes the radius of the ball B € B being
summed over.
We will now bound the integrand. Note that if z € E, then dist(z, E) =

0. So fix z € X with x ¢ E, and consider

(4.3) D M
BeB

BNE#()
z€B

Let N be the biggest integer such that A-27V > % -dist(z, F). For balls of
radius r = A - 27V, we have
dist(z, ) < 2-A-27N  2.4.27N
r - r A-2-N
Note that there are no balls in the summation in (4.3) with radius A -
2N+ 4 . 2=(N+2) " because such a ball would have radius r < A -
2~ (VD) < %dist(x,E), and such a ball could not touch both E and .

= 2.



10 GUY C. DAVID AND BRANDON OLIVA

Recall that, since N is the biggest integer such that A-27V > % -dist(z.F),
we have
dist(z, E) < A .21,

If j €{0,1,2,..., N} and B is a ball in the sum (4.3) of radius A - 2=N=7)
then the summand

dist(z, F) - A-2-(N=1) _ A-2*<N*{> _

r - r A-2-(N=j)  9j-1

For each fixed radius A-27% (k € {0,1,,...,N}), Lemma 4.1 tells us that

there are at most M balls contaning = with radius equal to A - 27%, where
M depends on N and A. Therefore,

dist(z, F) 11 |
E — _M(2+1+2+4+ )< M(E 2Z) M-(242) =4M
BeB i=—1
BNE#()
zeB

Let C'x = 4M. We now have

[ (X S i) < [ xduto) = ) =,

BeB
BNE#)
reB
Therefore
Z dp(B) - p(B) < Cx.

BeB
BNE#)

0

The following lemma connects sparse(E, B) to dg(B). There is a minor
technical issue, which is that sparse(E, B) considers only points in £ N B,
while dg(B) considers points of E that may lie outside of B. The geodesic
assumption allows us to link the two quantities despite this.

Lemma 4.4. Let (X,d,p) be a complete, geodesic metric measure space,
and p a C-doubling measure. Let E C X and B be a ball in X.

Given € > 0, there is a 6 > 0, depending only on € and C, such that if
dg(B) < ¢, then sparse(FE, B) < .

Proof. Let € be given; without loss of generality, ¢ € (0,1). Suppose that
(X, d, ) satisfies the assumptions on the lemma, £ C X, and B = B(p,r)
has sparse(F, B) > ¢e. We will bound dg(B) from below by a constant
depending only on € and C.

The assumption on sparsity translates to

sup{dist(z, EN B) : x € B} > er.
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Thus, there is a point z € B such that dist(z, E N B) > e%. The ball

B (x, %T) therefore contains no points of £ N B.

Claim 4.5. There is a point y € B (m, ir) such that

3
B(y,ir) gBmB(:v,f).

Proof. If d(p,r) < §, set y = x. The conclusion then follows immediately
from the triangle inequality, recalling our assumption that ¢ < 1.
If d(p,x) > §, we do the following. Let 7 : [0, d(p, z)] — X be a geodesic

from x to p such that v(0) = x, y(d(p,z)) = p. Set y = y(§r). Then

€ €
d(y,z) = 47 and d(y,p) = d(p,x) — e

It then follows easily from the triangle inequality that
3
B(y,ir) cCBnNnB <x,ze) .

It follows directly from the previous claim that dist(z, F) > ¢r for every
z € B(y, gr). We now have

1 dist(z, F) B 1 dist(z, F) B
() =y J, ) = g S
n(B(y, 57))

n(B)
> 2, then B C B(y,2" - £r).

g

| ™

1 / €r
> —— —dp(z) =
1(B) Jpy.cr 8r
If N is the smallest integer such that 2 -

Because p is C'-doubling,

O™ - p(By. 5r)) = u(B(y,2" - 5r)) > u(B).

So we have .
p(Bly. ) 1
WB) S ov
Let 6 = < - CLN, which depends only on € and C. Then

w(B(y, §7)) 1

€ €
du(B) > = - > =4
#(B)z g w(B) T8 CN

We can now prove Theorem 1.4.

Proof of Theorem 1.4. Given € > 0, choose § > 0 as in Lemma 4.4. This

yields that
S B < Y ulB).
BEB(E,e) BeB

dg(B)>d
BNE#(
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By Proposition 4.3, we have

1 1

S uB) < Y 2du(B)-u(B) < < - Cx.
) )

BeB BeB

dg(B)>6

BNE#£( BNE#D

g

Remark 4.6. Suppose that (Y, dy, i) is a metric measure space with p a C-
doubling measure, u(Y') = 1, but diamY = D > 1. Let B be a multiresolu-
tion family in Y consisting of balls of radii D-A-27% for k > 0,and let E C Y
be measurable. Consider the metric measure space (X,dx, u) = (Y, %d, 1)
In the space X, the balls of B have radii A - 27 for k£ > 0. Note in addi-
tion that the sparsity of a set in a ball is unaffected by this rescaling, and
therefore the notation B(E, €) is unambiguous.
Thus given € > 0, there is a K(¢,C, A) > 0 such that if £ C Y then
S u(B) < K(e,C, A)
BeB(Ee)

Thus, a version of Theorem 1.4 with A = DA holds for metric measure
spaces with diameter D greater than 1.

We now prove Corollary 1.5.

Proof of Corollary 1.5: Fix A = 1 in the definition of our multiresolution
family. By Theorem 1.4, if £ C X then
> wB) <K
BEB(E,e)
where K depends only on € and on the doubling measure constant C'. Let
N be the first integer such that some ball B in B of radius A - 2~ touches
E and is not in B(E, ¢), that is, sparse(E, B) < €. This implies that all balls
with radii A-2°, A-271 ... A-2=(N=1 that touch E are contained in B(E, ¢).
Therefore, the above sum is bounded below by the sum of all the measures
of these balls. For each n € {0,1,..., N — 1}, the measure of the union of
all such balls at a given scale is greater than or equal to the measure of F.
Therefore
WE)-N< Y uB) <K
BeB(E,e)
Note u(E) > a, so we have

N-a<N-uF)<K

and so
K

N < —.
o)
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Thus, there is a ball B with radius A-27Y > A. 9~ that intersects E and
has sparse(E, B) < €. So we can take 7 = A- 27N and rg = A - 27 % d

At this point, it may be instructive to return to the example set(s) Ej
in Section 3, which showed that statement (1.1) failed, i.e., that one cannot
expect a large ball where a measurable set is measure-theoretically dense.
Corollary 1.5, however, applies perfectly well to these sets. For small values
of k, E} contains large full dyadic intervals, and thus of course has large
scales in which it is metrically dense (i.e., has small sparsity). For large
values of k, Ej is metrically very dense in the whole interval [0, 1], and so
again has a large scale where it has small sparsity.

5. QUANTITATIVE CONNECTIVITY

In this section, we prove Theorem 1.9. This concerns subsets of [0, 1]%,

rather than general metric spaces.
If £ C0,1]¢ and Q is a dyadic cube such that 7Q N E # (), we set
1
sparse(E,7Q) = Sde(70) sup{dist(z, 7TQ N E) : x € 7Q}.
We first slightly adjust Theorem 1.4 to apply to dyadic cubes.

Corollary 5.1. Given ¢ > 0, there is a K > 0, depending only on € and d,
such that if E C [0,1]¢, then

Y M@ <K

QeA

sparse(E,7Q)>e
3QNE#D

Proof. Fix a multi-resolution family of balls B in [0, 1]¢ with scaling factor
A=TVd.

For each Q € Ay, we may choose a ball By € B of radius A27% =
7v/d27% = diam(7Q) such that 7Q C By,.

Now fix a set £ C [0,1]%.

Claim 5.2. If EN7Q # (), then sparse(E,7Q) < wsparse(E, Bg).

Proof. Let © € 7Q) and s = sparse(E, Bg). Let k be such that Q € Ay,
which forces the radius r of Bg to be A27*.

To prove the claim, it will suffice to find a point y € E N 7Q with
|z —y| < (d+ 1)sr, which we now do.

If dist(z, 0(7Q)) > sr, then this is easy: there is a y € E N B such that
d(xz,y) < sr, and the assumption on the distance to the boundary forces
ye ENTQ.
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Otherwise, dist(z,0(7Q)) < sr. In that case, we first perturb z along
d separate line segments parallel to the coordinate axes, each of length at
most sr, until we reach a point z’ € 7Q with dist(z’,7Q)) > sr. By the
previous case, there is a y € 7Q N E such that |2’ — y| < sr. It follows that

|z —y| < sr+dsr=(d+1)sr.

Thus,

(d+1)sr  (d+1)rsparse(E,B) (d+1)A-2 *sparse(E, B)
E < g —
sparse(E,76) < 3370y 7.2k 7.2k

= wsparse(E, B).

g

Now, each Bg contains the corresponding cube 7Q). In addition, each
ball B € B can act as By for at most D different cubes @), for some D
depending on d, by a simple volume argument.

Therefore, using the previous claim,

YoM < D> AB)

QEA QEA
sparse(E,7Q)>e sparse(E,7Q)>e
3QNE#D 3QNE#D
<o X aw)
BeB
sparse(E,B)zﬁ
BNE#)

By Theorem 1.4 (and Remark 4.6), this sum is controlled by a constant
depending only on e and d, which completes the proof. U

The next result uses Corollary 5.1 to show, roughly speaking, that most

points of E are not contained in too many cubes of large sparsity.

Proposition 5.3. Let € > 0 be given, and suppose E C [0, 1]%.
For N € N, let Zx be the collection of points that are contained in at least
N distinct cubes 7Q such that Q € A, 3Q N E # (), and sparse(E,7Q) > .

Then \(Zy) < 7d%, where K is the constant from Corollary 5.1.

Proof. The set Zy is a union of countably many cubes, and therefore Lebesgue
measurable. By Corollary 5.1,
K> Y Q)
QEA with

3QNE#D,
sparse(E,7Q)>e
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=7 > MIQ)

QEA with
3QNE#D,
sparse(E,7Q)>¢

_ 7d /[o,1]d ( Z 1) dx

QEA with
7Q>z,
3QNE#D,
sparse(E,7Q)>¢

27—d/ZN( > 1)dw

QEA with
7Q>x,
3QNE#D,
sparse(E,7Q)>¢

>7% [ Ndx
ZN

= TN Zy).
The conclusion then follows. O

As preparation for the “coding” argument below, we need the following
simple fact about dyadic cubes.

Lemma 5.4. Let Q, R € A such that side(R) > side(Q) and 3Q N 3R # (.
Then 3Q) C TR.

Proof. Let x € 3Q N 3R # ). There is a cell R C 3R containing x. Then
3Q CHR CTR. U

The following lemma provides useful decompositions of sets for which
each point is contained in only a controlled number of cubes from a given
family. To our knowledge, the idea appears first (in a different context) in
[8, Lemma 2.2|; see also |2, Lemma 8.4]. We take the opportunity here to
present the lemma in a fairly general form and to give a somewhat different

proof than those cited above, which we find a bit more transparent.

Lemma 5.5. Let G C [0,1]¢, and B C A. Assume that 3Q NG # 0 for
every QQ € B, and that each x € G is contained in at most N different cubes
7Q for Q € B.

There is a constant M > 0, depending only on d and N, and sets
FyFs, ..., Fyp with the following properties:
(i) G=FRUFRU...UFy
(ii) If x,y € F; are distinct and Q is a dyadic cube of minimal side length

such that x,y € 3Q, then Q ¢ B.

Proof. We first separate B into N useful families:
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Claim 5.6. There are disjoint collections A, ..., Ay C B such that the

following are true:

(i) B=A UAU...UAy.
(i) If Q, R € A; are distinct for some i € {1,2,..., N}, then 3Q N 3R = ().

Proof. Order B = {Q1,Q>, ..., } by decreasing size, i.e., so that side(Q;) >
side(Q;) if ¢ < j. We will construct the collections Ay, ..., Ax inductively.
Put Q; € A;.

Assume now that @)y, ..., @, have been put in various collections among
the Ay, ..., Ay, that the collections are (so far) disjoint from each other, and
that if @, R € A; then 3Q N 3R = (. We wish to place Qry1 in some A;
with the property that 3Q,1 N 3R = () for all R currently in A,.

Suppose there is no i € {1,2,..., N} such that 3Q;,1 N 3R = () for every
R e An{Q1,...,Qr}. Then 3Qy 1 intersects distinct cubes 3Ry, 3Ry, ..., 3Ry,
where R; € A; and side(R;) > side(Qg41). By Lemma 5.4, 3Qr+1 C TR;
for every ¢« € {1,2,...,N}. Then there is an € 3Qx;1 N G such that
xr € TQpy1, 7Ry, ...,7TRy. This contradicts the assumption that x can be
contained in at most IV different cubes 7(Q) for ) € B.

Therefore, we may place cube Q.1 in one of the collections A; and
maintain the desired properties. It follows by induction that the sets may

be constructed as desired. O

Now let a = {0, 1, ..., 3¢}. We introduce a correspondence between o'\ {0}
and the set of 3¢ different cells of a (hence any) tripled dyadic cube 3Q). The
precise choice of correspondence does not matter; to be concrete, we order
the cells by the “dictionary” order of their centers, so that cell 1 is the cell
closest to the origin, cell 2 is its neighbor in the z; direction, etc.

We will consider “words w of length N from the alphabet «,” i.e., w € a™V.
For such a w, w; € a denotes its ith letter.

For each * € G we define w(z) € o in the following way. Consider
i € {0,...,3%}. The point  can be in at most one cube 3Q for Q € A;. Let

us call this cube @), if it exists. We set the ith letter of w(x) to be

w(x); = {0 Z:fx ¢ UQEA" 3Q
ke a\{0} ifx isin the kth cell of 3Q,;.
Thus, for each z, there are at most M = (3¢ +1)" possibilities for the word
w(r). Enumerate these possibilities in any order by a” = {w;, ...,wy}. Let
F; ={r € G: w(r) = w;} for j € {1,2,...,M}. It is immediate that
G = UJL, F}, so it remains to verify the second conclusion of the lemma.
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Suppose z,y € F; and x # y. Let () be a dyadic cube of minimal side
length such that =,y € 3Q). We claim that Q) ¢ B, so suppose @) € B. Then
Q € A, for some ¢ € {1,2,..., N}. Since z,y € F}, w(z) = w(y) = w,. So
w(z); = w(y);. It follows from the definition of w(x); and w(y); that = and
y both lie in the same cell Q' of 3Q).

Let R be a child of @' that contains x. Then z,y € Q" C 3R. Since R is
half the size of @), this contradicts the fact that @) is a minimal dyadic cube
such that z,y € 3Q. Therefore Q) ¢ B. O

We will also need the following basic fact.

Lemma 5.7. Let Q € A be a minimal dyadic cube such that x,y € 3Q).
Then side(Q) < 2|x — y|.

Proof. Let Q' be a cell of 3Q) such that x € Q). Let R C @’ be a child of )’
such that z € R. Because () is a minimal cube such that z,y € 3@, it must
be that y ¢ 3R. So

%side(@) = side(R) < |z — y.

This implies that side(Q) < 2|z — y|. O
We are now ready to prove Theorem 1.9.

Proof of Theorem 1.9. Let o, 6 > 0. Without loss of generality we may as-
sume 0 < % Let P € N be chosen large enough so that 1% < %5 and P > 1+%.
Let € = % and set By = {Q € A : 3Q N E # 0, sparse(E,7Q) > €}. For
N € N to be chosen momentarily, define Z by

Z ={x € E:xisin at least N > 0 different cubes 7Q) for Q € By}.

Then Z = Zy N E, where Zy is the (measurable) set defined in Propo-
sition 5.3. Using that proposition, we have that

K
MN2Z) < 7dﬁ
(understanding this as Lebesgue outer measure if E is not measurable).
For N large enough, depending only on € and d, we have A\(Z) < a. Let
G=E\Z,and B={Q € By :3Q NG #0}. Let x € G. Then z ¢ Z, so
2 is in at most NV different cubes of By and hence in at most N different
cubes of B. By Lemma 5.5, we can write G = F} U Fy U --- U F); with the
property that if z,y € F; then a minimal dyadic cube @ with z,y € 3Q
satisfies Q ¢ B. Here M = (3¢ + 1)V,
At this point, we have written

E=GUZ=FRU---UFyULZ,
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where A\(Z) < «. To complete the proof, it remains to check that each set
F; is -well-connected in E.

Suppose z,y € Fj are distinct for some j € {1,2,...,M}. Let @ be a
minimal dyadic cube such that z,y € 3Q. Then @ ¢ B. Since x,y € GN3Q,
we have G N 3Q # (), from whch it follows that @ ¢ By. This implies that
sparse(E, 7Q)) < e. Note also that side(Q) < 2|z —y| by the previous lemma.

Let v : [0, |z — y|] — 3Q parametrize the line segment from z to y. Let
z; = y(5lz —y|) for i € {0,1,2,...P}. Note that g = = and zp = y. For
each i € {1,2,..., P—1}, the fact that sparse(F,7@Q) < € allows us to choose
z; € E such that |z; — x;] < €-side(7Q). We also set zp = = and zp = y,
which are in F; € G C E by assumption. Thus, we have a discrete path
{z0=2,21,20, ..., 2p_1,2p =y} C E.

We now verify that this path has the desired properties to make F} o-
well-connected. First, we check, using our choices of € and P, that each “step

size” is small.

|zit1 — 2| < zigr — Toga| + [T — 2] + |25 — 2

1
< 2eside(7Q) + F\x —y

1
(5.1) < 28elr —y| + 5la —yl
§+1
< (%) |z =yl
< dlz —yl.

Next, we check that the total length of this path is small. Reusing in-
equality (5.1) from the previous calculation and our definitions of € and P,
we obtain that

P-1 P-1 1
i1 — 2| < 28¢ + - -
Sl =<3 (25 p) b

1
=P (28¢+ — —
( €+ P) |z =y
< 0+ D]z -y
Thus, each Fj is d-well-connected in E, and this completes the argument.
O
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