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INFINITESIMAL SPLITTING FOR SPACES WITH

THICK CURVE FAMILIES AND EUCLIDEAN

EMBEDDINGS

by Guy C. DAVID & Sylvester ERIKSSON-BIQUE (*)

Abstract. — We study metric measure spaces that admit “thick” families of
rectifiable curves or curve fragments, in the form of Alberti representations or curve
families of positive modulus. We show that such spaces cannot be bi-Lipschitz em-
bedded into any Euclidean space unless they admit some “infinitesimal splitting”:
their tangent spaces are bi-Lipschitz equivalent to product spaces of the form Z×Rk

for some k ⩾ 1. We also provide applications to conformal dimension and give new
proofs of some previously known non-embedding results.

1. Introduction

Many natural problems in analysis on metric spaces involve studying

spaces that support “thick” families of rectifiable curves (or curve frag-

ments), in one sense or another. In this paper, we show that such spaces

cannot be bi-Lipschitz embedded into any Euclidean space unless they

admit some “infinitesimal splitting”: their tangent spaces are bi-Lipschitz

equivalent to product spaces of the form Z × Rk for some k ⩾ 1. Our

methods are relatively direct and admit a number of consequences.
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1.1. Background

In 1999, Cheeger [17] proved a deep extension of Rademacher’s theorem

(Lipschitz functions are differentiable almost everywhere) to certain ab-

stract metric measure spaces. These are the so-called PI spaces, those that

are doubling and support a Poincaré inequality in the sense of [33]. As one

of many consequences, he showed that if a PI space admits a bi-Lipschitz

embedding into some Euclidean space, then its tangent spaces must be

bi-Lipschitz equivalent to Euclidean spaces almost everywhere:

Theorem 1.1 (Cheeger [17], Theorem 14.1). — Let (X,µ) be a PI

space. Suppose that X admits a bi-Lipschitz embedding into some Rn.

Then for µ-almost-every x ∈ X, there is an integer k ⩾ 1 such that every

tangent space (Y, y) ∈ Tan(X,x) is bi-Lipschitz equivalent to Rk.

(Here, the notion of “tangent” is in the pointed Gromov-Hausdorff sense;

see section 2.2.)

In other words, to admit a bi-Lipschitz embedding into a Euclidean space,

a PI space must itself be infinitesimally Euclidean. (Extensions of this are

known, see [17, Theorem 14.2] and more recent results in [18, 19, 58, 24,

22, 26].)

Since we know of many abstract PI spaces that are not infinitesimally

Euclidean, this consequence of Cheeger’s result can be viewed as a gener-

alized non-bi-Lipschitz embedding theorem, i.e., a checkable criterion for a

space to admit no bi-Lipschitz embedding into any Euclidean space.

A Poincaré inequality is sufficient but not necessary to prove a Rademacher-

type theorem in metric spaces, and hence a non-embeddability criterion

like Theorem 1.1. Indeed, a number of weaker sufficient conditions imply-

ing Cheeger’s Rademacher theorem have been found since its discovery

[38, 8, 58]. Most importantly for our purposes, Bate [8], building on work

of Alberti [1] and Alberti-Csörnyei-Preiss [2], showed that Cheeger’s dif-

ferentiable structure is equivalent to the presence of a universal family of

Alberti representations. An Alberti representation of a measure is a decom-

position into 1-rectifiable measures supported on fragments of rectifiable

curves (see Definition 2.6). For example, Fubini’s theorem gives simple Al-

berti representations of Lebesgue measure on [0, 1]2.

Essentially, Bate shows that if a space supports a “large enough” fam-

ily of independent Alberti representations, then it supports a Rademacher

theorem for Lipschitz functions, from which one can deduce an analog of

the non-embeddability criterion Theorem 1.1.
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Given the above, it is natural to ask whether there are conditions, weaker

than any of those studied above, that are not strong enough to yield a

Rademacher-type theorem but that still prevent bi-Lipschitz embeddings.

In this paper, we answer this question by studying spaces that support

a single Alberti representation (or more generally k independent Alberti

representations), but not necessarily enough to form a “universal” family

in Bate’s sense, and thus not necessarily enough to yield a differentiable

structure for Lipschitz functions.

Nonetheless, we show that such smaller families of Alberti representa-

tions still strongly constrain the ability of the space to bi-Lipschitz embed

into any Euclidean space. The following is our main theorem.

Theorem 1.2. — Let X ¦ Rn be a closed set supporting a doubling

Radon measure µ0. Suppose that a non-trivial Radon measure µ j µ0

supports k independent Alberti representations, for some k ⩾ 1.

Then for µ-almost-every x ∈ X, there is a k-dimensional vector subspace

V ¦ Rn with the following property:

Every intrinsic tangent Y ∈ TanRn(X,x) of X at x is a product Z × V ,

for some closed set Z ¦ V § ¦ Rn.

For a vector subspace V ¢ Rn, its orthogonal complement is denoted

by V §. An “intrinsic tangent” of a subset X ¦ Rn is simply a limit of

rescalings of X centered at a fixed basepoint. For a precise definition, see

section 2.2 below.

It is easy to recast Theorem 1.2 as a result that constrains bi-Lipschitz

embeddings of metric spaces:

Corollary 1.3. — Let X be a complete metric space supporting a

doubling Radon measure µ0. Suppose that a non-trivial Radon measure

µj µ0 supports k independent Alberti representations, for some k ⩾ 1.

If X admits a bi-Lipschitz embedding into some Euclidean space, then

for µ-almost-every x ∈ X and every tangent (Y, y) ∈ Tan(X,x), Y is bi-

Lipschitz equivalent to a product Z × Rk, for some complete metric space

Z.

Corollary 1.3 gives a simple non-bi-Lipschitz embedding criterion that

applies to a wider class of examples than Theorem 1.1.

Theorem 1.2 and Corollary 1.3 are proven without recourse to any more

general metric measure Rademacher theorem. Rather, their proofs rely only

on one of the preliminary results of Bate’s paper [8] (that Alberti represen-

tations induce “partial derivatives” almost everywhere) – see Proposition
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2.13 – and an adaptation of a principle of Preiss [56] about the structure

of the space of tangent objects, Proposition 2.5.

Remark 1.4. — We note that there are many other conditions, inde-

pendent from any of those discussed above, that prevent or constrain bi-

Lipschitz embeddability. In particular, the results of [43] and [53] rest also,

remarkably, on studying a single family of curves that is “thick” in some

quantitative sense (although different than the senses used here). This is

part of a larger program to characterize metric spaces embedding into the

so-called RNP Banach spaces, and conversely to characterize RNP-Banach

spaces by the spaces embedding into them; see [52].

1.2. Corollaries of the main results

We view Corollary 1.3 as a generalized non-embedding result. Since

“thick" families of curves arise in many settings, it has a number of specific

consequences.

1.2.1. Modulus

From our perspective, the most important consequences of Corollary 1.3

involve its relationship with a well-known way of measuring the “thickness”

of a family of curves Γ in a metric measure space (X,µ). This is the p-

modulus of the family (p ⩾ 1), which we denote Modp(Γ, µ). This notion

plays a central role in the modern theory of analysis on metric spaces

[31, 34]. (We give a precise definition in Section 4.)

In Proposition 4.5 and Corollary 4.9 below, we show that path families

of positive modulus induce non-trivial Alberti representations. This idea is

essentially already contained in work of the second-named author and his

collaborators [27] and the proof below reworks that argument in a slightly

different context. This is also closely related to the results of [4] and [28].

The formulation in Proposition 4.5 is slightly different and applies more

directly to our setting. (To link modulus and Alberti representations, we

also use ideas of Keith [37] and Bate [8, Corollary 5.8].)

As a consequence of Proposition 4.5 and Corollary 1.3, we obtain the

following result for spaces that contain curve families of positive modulus.

Corollary 1.5. — Let X be a complete metric space admitting a

Radon measure µ that is absolutely continuous with respect to a dou-

bling measure µ0. Suppose that X contains a family Γ ¦ Curv(X) of

non-constant curves with Modp(Γ, µ) > 0 for some p ∈ [1,∞).
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If X admits a bi-Lipschitz embedding into some Euclidean space, then

there exists a non-trivial Radon measure µ′ j µ, such that, for µ′-almost

every x ∈ X, every tangent Y of X at x is bi-Lipschitz to a product Z×R,

for some complete metric space Z.

For many metric measure spaces, it is known, or not difficult to check,

that they contain a path family of positive modulus and do not have tan-

gents that split as Z×R. Therefore such metric spaces cannot bi-Lipschitz

embed into any Euclidean space. We give some applications of this argu-

ment below.

1.2.2. Conformal dimension

An important problem in metric geometry is to understand the conformal

dimension of a metric space, a quasisymmetric invariant first introduced

by Pansu [54], and much used since [47]. There are a number of variations

of this quantity, but we focus on the Ahlfors regular conformal dimension.

This is a variant first named by Bonk-Kleiner in [12], where they attribute

the idea to Bourdon-Pajot [14].

We recall that a metric space X is Ahlfors Q-regular if there is a constant

C ⩾ 1 such that

C−1rQ ⩽ HQ(B(x, r)) ⩽ CrQ for all x ∈ X and r ⩽ diam(X),

where HQ denotes the Q-dimensional Hausdorff measure.

The Ahlfors regular conformal dimension of X measures the infimal di-

mension Q of all Ahlfors regular quasisymmetric deformations of X:

Definition 1.6. — The Ahlfors regular conformal dimension of a met-

ric space X is

(1.1)

cdimAR(X) = inf{Q : Y is Ahlfors Q-regular and quasisymmetric to X}.

We refer the reader to [31, Ch. 10] for a precise definition of quasisymmet-

ric mappings, and to [12, 47] for more background on the Ahlfors regular

conformal dimension, which we now discuss briefly.

By definition, the Ahlfors regular conformal dimension and its variations

are quasisymmetric invariants. They have thus played an important role in

geometric group theory and quasiconformal geometry, and their properties

are connected to many deep questions. We refer to [47] for a book-length

account of many of these connections.

In particular, it is a difficult problem to understand for which metric

spaces the conformal dimension is actually achieved as a minimum. This
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problem is closely related to an approach to Cannon’s conjecture initiated

by Bonk and Kleiner [11, 12].

As an example, it is known that cdimAR(S) is strictly less than the Haus-

dorff dimension of the standard Sierpiński carpet S [39], but not whether

the infimum in (1.1) is achieved by some Ahlfors regular space Y when

X = S. See [47, 12] for additional details. (Finding the exact value of

cdimAR(S) is also a well-known open problem; see, e.g., [42] for recent

progress.)

Complicating the problem further, even if the conformal dimension of a

subset X ¦ RN is achieved by a space Y quasisymmetric to X, there is no

reason that Y should be a subset of Euclidean space. Below, we show that

this non-embedding phenomenon should be expected quite generally.

We need the following important result of Keith and Laakso.

Theorem 1.7 (Keith-Laakso [39], Corollary 1.0.2). — Let Q ⩾ 1 and

let X be a complete, Ahlfors Q-regular metric space.

Then cdimAR(X) = Q if and only if there is a weak tangent of X that

contains a family of non-constant curves with positive p-modulus, for some

p ⩾ 1.

(As remarked on [39, p. 1279], this version follows from the version stated

there. The notion of a “weak tangent” is defined in section 2.2.)

As a consequence of Corollary 1.5 and Theorem 1.7, we obtain:

Corollary 1.8. — Let Q ⩾ 1 and let X be a complete, Ahlfors Q-

regular metric space, where Q = cdimAR(X). If X admits a bi-Lipschitz

embedding into some Euclidean space RN , then there is a complete metric

space Z and a weak tangent of X that is bi-Lipschitz equivalent to Z ×R.

Corollary 1.8 shows that we should not expect minimizers for conformal

dimension to appear within Euclidean space except under quite special

circumstances, i.e., in the presence of some form of splitting. We illustrate

a more concrete special case here.

For this we introduce the terminology of linear connectedness: A metric

space X is linearly connected (with constant C ⩾ 1) if every pair of points

x, y ∈ X can be joined by a compact, connected subset E ¦ X with

diam(E) ⩽ Cd(x, y). In particular, quasiconvex spaces (in which every pair

of points can be joined by a curve with length comparable to the distance

between the points) are linearly connected.

Corollary 1.9. — Let X be a linearly connected metric space. Sup-

pose that 1 < cdimAR(X) < 2 and that cdimAR(X) is achieved by a space
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Y . (In other words, Y is quasisymmetric to X and Ahlfors Q-regular with

Q = cdimAR(X) = cdimAR(Y ).)

Then Y admits no bi-Lipschitz embedding into any Euclidean space.

As an example, consider the classical Sierpiński carpets Sp for odd in-

tegers p > 1 (the most famous example being S = S3). These are plane

fractals formed by dividing the unit square into p−1 × p−1 squares and re-

moving the middle square, then iterating this construction on the remaining

squares. See [13] for details on this notation.

The spaces Sp are all linearly connected and have cdimAR(Sp) ∈ (1, 2)

(see [13, p. 595]). It is an open question whether the Ahlfors regular confor-

mal dimensions of these spaces are actually achieved. Corollary 1.9 shows

that they cannot be achieved by subsets of any Euclidean space.

We note that the linear connectedness condition cannot be removed from

Corollary 1.9: The product C × [0, 1] ¦ R2 of the standard Cantor set with

the unit interval is Ahlfors Q-regular (for Q = 1 + log(2)
log(3) ∈ (1, 2)) and

known to be minimal for conformal dimension (by a theorem of Tyson

[61]). However, it sits isometrically in R2.

One may even make this example connected by taking its union with

[0, 1]×{0}, showing that “linearly connected” cannot be replaced by “con-

nected” in Corollary 1.9. This example is also easily seen to have a weak

tangent that is bi-Lipschitz equivalent to a product Z × R.

1.2.3. The slit carpet

The slit carpet M is a metric space homeomorphic to the standard Sier-

piński carpet with a number of interesting properties. It was first proposed

by Bonk and Kleiner and first studied in print by Merenkov [50]. Following

[50], we define the space as follows, mostly using notation from [25]. We

will be rather brief here, referring the reader to [50] or [25] for more details.

Let Q0 = [0, 1]2 denote the unit square in R2. For each dyadic subsquare

Q ¦ Q0, let sQ denote a central vertical “slit” in Q of half the side length.

More specifically, if

Q = [a2−k, (a+ 1)2−k]× [b2−k, (b+ 1)2−k],

then

sQ =
[
((2a+ 1)2−k−1, (4b+ 1)2−k−2), ((2a+ 1)2−n−1, (4b+ 3)2−k−2)

]
¦ Q.

Define now M0 = Q0 = [0, 1]2, and inductively set

Mk+1 = Mk \
⋃

Q dyadic, side(Q)=2−(k+1)

sQ.
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(a) M1 (b) M2 (c) M3

Figure 1.1. The first three Mi.

(See Figure 1.1, borrowed from [25].)

We then define Mk as the completion of Mk with respect to the shortest

path metric dk on Mk, continuing to call this new complete metric on Mk

by dk. In other words, we “cut along” each slit in a square of scale k or

lower. Note that the dk-diameter of each Mk is bounded by 3.

Merenkov observes in [50] that for each k ⩽ j, there is a 1-Lipschitz

mapping Ãj,k : Mj → Mk obtained by identifying opposing points on slits

of levels greater than j corresponding to the same point in Mk. These maps

compose in the obvious way. We then define the Merenkov slit carpet M as

the inverse limit of the system

M0
Ã1,0
←−−M1

Ã2,1
←−−M2

Ã3,2
←−− . . . ,

equipped with the metric

d(x, y) = lim
k→∞

dk(xk, yk)

for x = (xk) and y = (yk) such that Ãk(xk) = xk−1, and similarly for yk.

Note that this is the limit of a bounded, increasing sequence.

In [25], the present authors answered a 1997 question of Heinonen and

Semmes [35, Question 8] by proving the following.

Corollary 1.10 (Originally proven in Theorem 1.2 of [25]). — The

slit carpet M does not admit a bi-Lipschitz embedding into any Euclidean

space.

(Actually, the result in [25] is more general, but the above corollary

already answers [35, Question 8].)

We give an alternative proof of this fact below, based on Corollary 1.5.

This proof is based on the idea that the vertical lines in Figure 1.1 form a

positive modulus family of curves, while at the same time the slit carpet

admits no infitesimal splitting. As in Corollaries 1.9 above and 1.11 below,

the main work is to verify the latter claim.
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1.2.4. The Heisenberg group

The most well-known example of a doubling metric space that does not

bi-Lipschitz embed into any Euclidean space is the first Heisenberg group

H. This was first observed by Semmes [59] as a consequence of Pansu’s

version of Rademacher’s theorem in Carnot groups [55]. There are also a

number of other proofs that H admits no bi-Lipschitz embedding into any

Euclidean space [30].

We give a new short proof of this non-embedding. Our proof is indepen-

dent of Pansu’s theorem (or the general metric measure space Rademacher

theorem of Cheeger [17]), and relies only on Theorem 1.2 and some basic

properties of the Heisenberg group. (Our proof does involve a “blowup” ar-

gument via Theorem 1.2, so it has that in common with the Pansu-Semmes

approach.)

Corollary 1.11 (Originally due to Semmes and Pansu). — The Heisen-

berg group H (with its Korányi or Carnot-Carathéodory metric) admits no

bi-Lipschitz embedding into any Euclidean space.

1.3. Final introductory remarks and outline

A few more remarks are in order concerning our main results.

First of all, Theorem 1.2, Corollary 1.3, Corollary 1.5, and Corollary 1.8

are all completely false if one does not assume that the space X lies inside,

or admits a bi-Lipschitz embedding into, some Euclidean space. To be con-

crete, the Heisenberg group H supports a doubling (even Ahlfors 4-regular)

measure supporting two independent Alberti representations, it supports

curve families of positive modulus, and it is minimal for conformal dimen-

sion. (See [31, Theorems 9.6, 9.27, 15.10] and subsection 5.3.) However,

no weak tangent of H is bi-Lipschitz to some Z × R; this is not difficult

to prove given [5, Theorem 7.2]. (One could actually prove Corollary 1.11

along these lines, but we give a different argument that avoids the tools of

[5, 55].)

We note that Theorem 1.2 is related to the main result of [3], which

gives a “partial differentiable structure” for measures on Euclidean space

that support independent Alberti representations. Here our focus is on

the geometric tangent structure of subsets, rather than on differentiability

properties of mappings, and our methods are different.

There are certainly further questions one could ask in our setting about

the tangents of the measure µ in Theorem 1.2, rather than the tangents of
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the support X. Related results for abstract metric measure spaces appear in

[22]. One could also ask about embeddings into infinite-dimensional Banach

spaces. In the interest of keeping the present paper reasonably direct, we

defer these questions to future work.

Using results of Schioppa [58, Theorem 3.24 and Corollary 3.93], Theo-

rem 1.2 and Corollary 1.3 can be directly recast in terms of so-called Weaver

derivations. In other words, if X, µ0, and µ are as in Theorem 1.2, but we

assume that µ supports k independent Weaver derivations rather than k

independent Alberti representations, the conclusion still holds. We refer

the reader to [63] or [32, Section 13] for more on Weaver derivations, and

[58] for more on the connection between Weaver derivations and Alberti

representations.

1.3.1. Outline of the paper

In Section 2, we give basic definitions and preliminary results. Within

that section, subsection 2.2 defines the different notions of tangents and

our version of Preiss’s principle, Proposition 2.5, is stated, though its proof

is deferred to the appendix (Section 6). Subsection 2.5 defines Alberti rep-

resentations and states the result of Bate, Proposition 2.13, that we will

need, in addition to some other preliminary facts.

Theorem 1.2 is then proven in Section 3. Section 4 contains Proposition

4.5 and Corollary 4.9, which relate the notions of modulus and Alberti

representations. All the corollaries listed in subsection 1.2 are then proven

in Section 5.

2. Notation and preliminaries

2.1. Metric spaces and measures

We write (X, d) for a metric space, or just X if the metric is understood.

We use standard notation; in particular B(x, r) and B(x, r) denote the

open and closed balls, respectively, of radius r centered at x ∈ X. If c > 0

and X = (X, d) is a metric space, then cX denotes the metric space (X, cd).

We write (X,µ) for a metric measure space with a given Radon measure µ

that is finite and positive on all balls, and where the metric d is implied.

As usual, a map f : X → Y between two metric spaces is Lipschitz if

there is a constant L ⩾ 0 such that

d(f(x), f(y)) ⩽ Ld(x, y) for all x, y ∈ X.
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In this case, we may also call f L-Lipschitz to emphasize the constant. The

infimum of all L such that f is L-Lipschitz is denoted LIP(f).

A map f : X → Y between two metric spaces is bi-Lipschitz (or L-bi-

Lipschitz) if there is a constant L ⩾ 1 such that

L−1d(x, y) ⩽ d(f(x), f(y)) ⩽ Ld(x, y) for all x, y ∈ X.

Two metric spaces are bi-Lipschitz equivalent if there is a bi-Lipschitz sur-

jection from one onto the other.

A pointed metric space is a pair (X,x), where X is a metric space and

x ∈ X is a point (the “basepoint”). Two pointed metric spaces are pointedly

isometric if there is an isometry between them that preserves basepoints.

Corollary 1.3 uses the notion of a product X × Y of two metric spaces

(X, dX) and (Y, dY ). There are many equivalent ways to metrize this prod-

uct. For concreteness, we take

dX×Y ((x, y), (x′, y′)) = (dX(x, x′)2 + dY (y, y′)2)1/2.

Any other natural choice would yield a bi-Lipschitz equivalent metric on

X × Y .

For a metric space X, we let M(X) be the space of finite Borel measures

on X. A non-trivial measure µ ∈ M(X) is doubling if there is a constant

C ⩾ 0 such that

µ(B(x, 2r)) ⩽ Cµ(B(x, r)) for all x ∈ X, r > 0.

A metric space that supports a doubling measure must be a doubling metric

space: every ball of radius r can be covered by N balls of radius r/2, where

N is a fixed constant. (See [31] for more on doubling metrics and measures.)

A complete doubling metric space is proper : every closed ball is compact.

Lastly, we writeHQ for the Q-dimensional Hausdorff measure on a metric

space X (withX understood from context), and dimH(X) for the Hausdorff

dimension of X. See [31, Section 8.3] for definitions.

2.2. Tangents of metric spaces and sets

The next few definitions will use the notion of pointed Gromov-Hausdorff

convergence of a sequence of pointed metric spaces. See [15, Section 8].

Versions are also given in [23, 37, 39, 24], among other places.

Definition 2.1. — Let X be a metric space, and let ¼i (i ∈ N) be a

sequence of positive real numbers.

TOME 1 (-1), FASCICULE 0
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• If x ∈ X, ¼i → 0, and the sequence of pointed metric spaces

(¼−1
i X,x),

converges in the pointed Gromov-Hausdorff sense to a complete

pointed metric space (Y, y), then (Y, y) is called a tangent of X at

x. The collection of all tangents of X at x is written Tan(X,x).

• If {xi} ¦ X, 0 < ¼i < diam(X) for each i, and the sequence of

pointed metric spaces

(¼−1
i X,xi),

converges in the pointed Gromov-Hausdorff sense to a complete

pointed metric space (W,w), then (W,w) is called a weak tangent

of X. The collection of all weak tangents of X is written WTan(X).

Technically speaking, elements of Tan(X,x) are not pointed metric spaces

but rather pointed isometry classes, since the pointed Gromov-Hausdorff

topology does not distinguish between isometric metric spaces; similarly,

elements of WTan(X) are isometry classes. We tend to elide this dis-

tinction for notational convenience. Of course, if (Y, y) ∈ Tan(X,x) then

Y ∈WTan(X).

If a space already sits inside an ambient Euclidean space, then one can

more naturally take tangents by rescaling inside the Euclidean space and

taking a limit in the pointed Hausdorff sense: If {Aj} are subsets of Rn,

then we say that {Aj} converges to a closed set A ¦ Rn in the pointed

Hausdorff sense if

lim
j→∞

dR(Aj , A) = 0 for all R > 0,

where

dR(A,B) = max {sup{dist(a,B) : a ∈ A ∩B(0, R)}, sup{dist(b, A) : b ∈ B ∩B(0, R)}} .

Of course, one could take a sum rather than a max above (as done in [23,

Chapter 8]) and this would only change the definition by at most a factor

of 2.

Definition 2.2. — Let A be a subset of Rn and a ∈ A. An intrinsic

tangent of A at a is any closed set which is a pointed Hausdorff limit of

sets of the form

¼−1
j (A− a),

where {¼j} is a sequence of positive real numbers tending to 0 as j →∞.

The collection of all intrinsic tangents of A at a is written TanRn(A, a).
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An important difference between tangents and intrinsic tangents is that

TanRn(A, a) may contain distinct elements that are isometric.

If one has a Lipschitz function defined on a subset of Rn, there is also

a way to pass to a tangent (or “blowup”) of the function simultaneously

with the set. This is given in [23, Chapter 8].

Definition 2.3. — Let A be a subset of Rn and a ∈ A. Let f : A→ Rm

be a Lipschitz function.

Suppose that {¼j} is a sequence of positive real numbers tending to 0 as

j →∞ and that

¼−1
j (A− a) converge to the closed set Â in the pointed Hausdorff sense.

Moreover, suppose that f̂ : Â→ Rm is such that, whenever xj ∈ A and

¼−1
j (xj − a)→ x ∈ Â,

we then have

¼−1
j (f(xj)− f(a))→ f̂(x).

We then call the pair (Â, f̂) an intrinsic tangent of (A, f) at a and write

(Â, f̂) ∈ TanRn(A, f, a).

The following facts are all standard, well-known consequences of the com-

pactness theorems for pointed Hausdorff and pointed Gromov-Hausdorff

convergence. See, e.g., [23, Lemmas 8.6 and 8.13]. We include this lemma

simply as a summary of the basic facts that we will use.

Lemma 2.4. — Let X be a complete doubling metric space and x ∈ X.

Let A be a closed subset of Rn and a ∈ A. Let f : A → B ¦ Rm be

Lipschitz. Let {¼j} be any sequence of positive real numbers tending to 0.

(1) There is a subsequence ¼jk
such that (¼−1

jk
X,x) converges in the

pointed Gromov-Hausdorff sense to a doubling pointed metric space

in Tan(X,x). In particular, Tan(X,x) ̸= ∅.

(2) There is a subsequence ¼jk
such that ¼−1

jk
(A − a) converges in the

pointed Hausdorff sense to an element Â of TanRn(A, a). In partic-

ular, TanRn(A, a) ̸= ∅.

(3) In the subsequence from (ii), we may also obtain that

• the functions ¼−1
jk

(f(·)−f(a)) converge to a Lipschitz function

f̂ : Â→ Rm in the sense above, to yield (Â, f̂) ∈ TanRn(A, f, a),

• the sequence ¼−1
jk

(B−f(a)) converges in the pointed Hausdorff

sense to an element B̂ of TanRm(B, f(a)), and

• f̂(Â) ¦ B̂.
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(4) If f is L-bi-Lipschitz, then so is f̂ .

(5) If X and A are Ahlfors Q-regular, then so are every element of

WTan(X) and TanRn(A, a).

(6) If µ is a doubling measure on A and a is a point of density of a

subset A′ ¦ A, then TanRn(A′, f, a) = Tan(A, f, a).

(7) If Y ∈WTan(X), then WTan(Y ) ¦WTan(X).

Proof. — For (i), (ii), and (iii), see [23, Lemmas 8.6 and 8.13]. For (iv),

see [23, Lemma 8.20]. For (v), see [23, Lemma 8.28]. For (vi) concerning the

tangent spaces, see [23, Lemma 9.6] or [45, Proposition 3.1]; the extension

to the tangent mappings is simple, as remarked in [24]. For (vii), see [23,

Lemma 9.5]. □

We will need one more fact about tangents, a principle that appears in

many different forms and goes back to Preiss [56]. Versions appear in, e.g.,

[49, 6, 45, 24]. Informally, this is the principle that “tangents with moved

basepoints are still tangents”.

Proposition 2.5. — Let A ¦ Rn be a closed set supporting a doubling

measure µ. Let f : A→ Rm be a Lipschitz mapping. Then for µ-a.e. a ∈ A,

the following holds:

For all (Â, f̂) ∈ TanRn(A, f, a) and all b ∈ Â, we have

(Â− b, f̂(·+ b)− f̂(b)) ∈ TanRn(A, f, a).

The proof of Proposition 2.5 is a minor modification of facts in the lit-

erature, and so postponed until the Appendix (Section 6).

2.3. Curves and fragments

The key objects in this paper are families of curves (or curve fragments)

in metric spaces. We introduce some notation to discuss these objects. Our

definitions and notation follow those in [58] for the most part, with some

minor changes.

Fix a separable, locally compact metric space X. A fragment in X is

a bi-Lipschitz map µ : C → X, where C ¦ R is compact and the one-

dimensional Lebesgue measure L1(C) is positive. We write Frag(X) for the

collection of fragments in X. If µ ∈ Frag(X), then the domain C of µ is

denoted dom(µ) and the image in X is denoted im(µ).

If f : X → Rm is any function, then we define (f◦µ)′(t) = limt′→t,t′∈C
f(µ(t′))−f(µ(t))

t′−t ,

when the limit exists and t ∈ C = dom(µ) is a density point. If X ¢

Rn, then we simply write µ′(t), when f = id is the identity map. (As
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a reminder, a density point of a compact set C ¢ R is a t ∈ C where

limh→0
L

1(C∩(t−h,t+h))
2h = 1.)

In Section 4, we will also consider Curv(X), the collection of all non-

constant, Lipschitz maps µ : I → X, where I is a compact interval in

R of positive length. Thus, elements of Curv(X) represent honest curves

in X. We will also use the notation dom(µ) to denote the domain of an

element µ ∈ Curv(X).

Note that neither Curv(X) nor Frag(X) is a subspace of the other. We

now discuss the appropriate topologies on Frag(X) and Curv(X), borrow-

ing from [58, Section 2].

The spaces Frag(X) and Curv(X) both admit embeddings into the space

Haus(R×X) of non-empty compact subsets of R×X, by

µ 7→ {(t, µ(t)) : t ∈ dom(µ)}.

The space Haus(R × X) is given the Hausdorff metric and the induced

topology. If X is complete, then so is Haus(R×X).

Therefore, we topologize Frag(X) and Curv(X) as subspaces of Haus(R×

X). We note that these spaces are Ã-compact if X is proper.

2.4. Line integrals and metric derivatives

Let X be a metric space and µ ∈ Curv(X). We denote by len(µ) the

length of µ, as in [31, Chapter 7]. If g : X → R is a Borel function, then∫
µ
g ds is defined as

∫ len(µ)

0

g(µ̃(t)) dt,

where µ̃ is the arc length parametrization of µ; see [31, Ch.7].

Following [7, Definition 4.1.2], the metric derivative of µ at a point t ∈

dom(µ) is

dµ(t) := lim
h→0

d(µ(t+ h), µ(t))

|h|
,

whenever the limit exists. By [7, Theorem 4.1.6], dµ(t) does exist for a.e.

t ∈ dom(µ), and

len(µ) =

∫

dom(µ)

dµ(t) dt.

It follows that the arc length parametrization µ̃ satisfies dµ̃(t) = 1 for a.e.

t ∈ dom(µ̃).
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2.5. Alberti representations

Fix a complete, locally compact, separable metric space X. Recall that

M(X) denotes the space of Radon measures on X. We equip M(X) with

the weak∗ topology arising from viewing M(X) as the dual space of Cc(X),

the space of compactly supported continuous functions on X. See [58, As-

sumption 2.3] for details. Inside M(X), we consider the subspace P (X)

consisting of probability measures. Note that elements of P (X) are Borel.

Fix a metric space X and a measure µ ∈M(X). The following definition

is due to Bate [8], based on earlier work of Alberti [1]. In [58], the definition

was clarified and modified slightly, and this is the definition we present

below.

Definition 2.6. — An Alberti representation A of µ is a pair (P, ¿)

where

(1) P is a Radon probability measure on Frag(X),

(2) ¿ : Frag(X)→ M(X) is a Borel map with ¿µ j H 1|im(µ) for each

µ ∈ Frag(X),

(3) the measure µ can be represented as

µ(A) =

∫

Frag(X)

¿µ(A)dP (µ),

for each A ¦ X Borel,

(4) and, for each Borel A ¦ X and compact interval I ¦ R, the map

µ 7→ ¿µ(A ∩ µ(dom(µ) ∩ I)) is Borel.

Note that, given the topologies defined above, the statement that the

map ¿ : Frag(X)→M(X) is Borel means that

µ 7→

∫

X

g(x)d¿µ(x)

is a Borel map from Frag(X) to R for each g ∈ Cc(X).

A cone in Rn is a set of the form

Cone(w, t) := {v ∈ Rn : v ̸= 0 and v · w ⩾ t|v|},

for some w ∈ Sn−1 and t ∈ R. Note that, for any w ∈ Sn−1 and t ⩽ −1,

Cone(w, t) = Rn \ {0}.

Remark 2.7. — Our definition of a cone departs slightly from those in

[8] and [58]. In particular, our cones may have opening angle larger than

Ã. It is clear that any cone of the types in [8] and [58] is a subset of a cone

like one above.
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Definition 2.8. — Fix a metric space X, a Lipschitz map ϕ : X → Rn,

and a cone C ¦ Rn.

A fragment µ ∈ Frag(X) is said to be in the ϕ-direction of C if (ϕ◦µ)′(t) ∈

C for a.e. t ∈ dom(µ).

An Alberti representation A = (P, ¿) of a measure µ ∈M(X) is said to

be in the ϕ-direction of C if P -a.e. µ ∈ Frag(X) is in the ϕ-direction of C.

For an example, consider X = Rn and the identity map ϕ = id, as well as

the Lebesgue measure ¼. Probably the simplest example of an Alberti rep-

resentation is given by the Fubini-representation of the Lebesgue measure

¼ on Rn by integration on lines parallel to any direction. If these lines are

parallel to a given non-zero vector w ∈ Rn, then this Alberti-representation

is in the id-direction of Cone(w, t) for any t < 1. Slightly more complicated

examples are obtained by taking superpositions with different directions,

and by splitting the lines to segments.

Definition 2.9. — Cones C1, . . . , Ck in Rn are called independent if

each collection

{v1, . . . , vk : vi ∈ Ci}

is linearly independent.

A collection A1, . . . ,Ak of Alberti representations of a measure µ ∈

M(X) is called ϕ-independent, for a Lipschitz ϕ : X → Rm, if there are

independent cones C1, . . . , Ck in Rm such that each Ai is in the ϕ-direction

of Ci.

We call a collection A1, . . . ,Ak of Alberti representations independent if

they are ϕ-independent for some Lipschitz map ϕ as above.

A few remarks concerning this definition are in order.

Remark 2.10. — If X ¦ Rn and µ ∈ M(X) supports k ϕ-independent

Alberti representations, for some ϕ : X → Rm, then the map ϕ may be

extended to a Lipschitz map ϕ : Rn → Rm without altering the notion of

ϕ-independence.

Remark 2.11. — Traditionally (i.e., in [8]), it is assumed that m = k in

Definition 2.9, but we see no need to assume this, and in fact it will be

occasionally convenient not to.

Remark 2.12. — In the case k = 1 of Definition 2.9, one may take all of

Rm\{0} as a single independent cone. Thus, a single Alberti representation

(P, ¿) is independent if and only if there is a Lipschitz map ϕ : X → Rm

such that (ϕ ◦ µ)′(t) ̸= 0 for P -a.e. µ ∈ Frag(X) and a.e. t ∈ dom(µ).
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In particular, if X ¦ Rn, then a single non-trivial Alberti representation

is automatically independent. Indeed, take ϕ to be the identity map. Since

every µ ∈ Frag(X) is bi-Lipschitz, we have that

(ϕ ◦ µ)′(t) = µ′(t) ̸= 0

for all µ ∈ Frag(X) and a.e. t ∈ dom(µ).

A last key fact for us will be the following result from [8]. Essentially,

one would like to know that a phenomenon which happens at almost every

point along each curve in an Alberti representation actually happens almost

everywhere in X. This is what the following result provides. (See also the

more general [8, Proposition 2.9 ].)

Proposition 2.13 (Corollary 2.13 of [8]). — Let X be a complete met-

ric space with a Radon measure µ. Let ϕ : X → Rm be Lipschitz such that µ

has k ϕ-independent Alberti representations. Let f : X → Rn be Lipschitz.

Then for µ-a.e. x ∈ X, the following hold:

(1) There are µ1, . . . , µk ∈ Frag(X) such that µi(0) = x and µ−1(x) is

a density point of dom(µ).

(2) The derivatives (ϕ ◦ µi)
′(0) exist and form a linearly independent

set in Rm.

(3) The derivatives (f ◦ µi)
′(0) exist.

We briefly note that Bate assumes that k = m and n = 1 in the cited

result, but the proof using [8, Lemma 2.8 and Proposition 2.9] works in

this generality.

2.6. Connecting to other measures defined on curve families

In Section 4, we will need to connect Alberti representations to a related

type of measure defined on Curv(X).

Proposition 2.14. — Let X be a proper metric space, ϕ : X → Rn

bi-Lipschitz, and C ¢ Rn a cone. Suppose that P is a Radon measure(1)

on Curv(X), so that for P -almost every µ, (ϕ ◦ µ)′(t) ∈ C or dµ(t) = 0 for

almost every t ∈ dom(µ).

If the Borel measure defined by

µ(A) =

∫

Curv(X)

∫

µ

1A ds dP

(1) While the notation may suggest so, this measure need not be a probability measure.
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is locally finite (hence Radon), then it admits an Alberti representation in

the ϕ-direction of C.

Remark 2.15. — The literature is rife with different versions of Alberti

representations, see [3, 8, 58, 22] for some of them. Modifications of this

argument can be used to show that, roughly speaking, if one has a repre-

sentation in one of these senses, then one has also a representation in any

other sense.

We briefly remark that the cones considered in [8] are slightly different

from ours, but the proof applies for both notions of cone.

Proof. —

By [8, Corollary 5.8] (see the “in particular...” statement), we can de-

compose X = A ∪ N , where µ|A admits an Alberti representation in the

ϕ-direction of C, and

H1(im(µ) ∩N) = 0

for every µ ∈ Frag(X) in the ϕ-direction of C.

If we can show that µ(N) = 0, then µ restricted to the full-measure

set A supports an Alberti representation in the ϕ-direction of C, and this

completes the proof. To establish this, we will show that for P -almost every

curve µ we have ∫

µ

1N ds = 0.

First, for P -almost every curve µ : I → X, and almost every t ∈ I we

have (ϕ ◦ µ)′(t) ∈ C or dµ(t) = 0. Let µ be any curve with such properties,

and let µ̃ : Ĩ → X be its arc length reparametrization. Then (ϕ◦ µ̃)′(t) ∈ C

for almost every t ∈ I.

By [41, Lemma 4], we can find compact sets Kj such that Ĩ =
⋃

j Kj∪S,

|S| = 0, and

µ̃j := µ̃|Kj
is bi-Lipschitz.

It follows that µ̃j ∈ Frag(X) and in the ϕ-direction of C, and hence

H1(im(µ̃j) ∩N) = 0 for each j.

Thus,
∫

µ

1N ds =

∫

Ĩ

1N (µ̃(t)) dt =
∑

j

∫

Kj

1N (µ̃(t)) dt = 0,

which completes the proof.

□
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3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. The proof requires a few lemmas.

Lemma 3.1. — Let a closed set X ¦ Rn support a doubling measure

µ0. Let µj µ0 support k È-independent Alberti representations, for some

Lipschitz È : Rn → Rm.

Then for µ-a.e. x ∈ X, there are linearly independent vectors v1, . . . , vk

such that the following holds: For every Y ∈ TanRn(X,x), every y ∈ Y ,

and every i ∈ {1, . . . , k}, there is a line through y in direction vi that is

contained in Y .

Proof. — We apply Proposition 2.13, in the case ϕ = È and f is the

inclusion X → Rn.

This tells us that, at µ-a.e. x ∈ X, there are µ1, . . . , µk ∈ Frag(X) such

that the following hold:

(1) For each 1 ⩽ i ⩽ k, we have µi(0) = x with 0 a density point of

dom(µ).

(2) The vectors (È ◦µ1)′(0), . . . , (È ◦µk)′(0) are linearly independent in

Rm.

(3) For each 1 ⩽ i ⩽ k, µ′
i(0) exists.

Fix an x ∈ X where the above hold and where the conclusion of Propo-

sition 2.5 holds. Let

wi = (È ◦ µi)
′(0) ∈ Rk.

Let vi = µ′
i(0) ∈ Rn. Note that vi ̸= 0 as µi is bi-Lipschitz, and wi ̸= 0

by (ii).

Consider an arbitrary tangent

(Y, È̂) ∈ TanRn(X,È, x),

subject to the sequence of scales ¼k → 0.

By Lemma 2.4 (items (ii), (iii), and (vi)), we may pass to a subsequence

of {¼j} subject to which tangent mappings Li of each µi at 0 exist. More

precisely, we have the following for each 1 ⩽ i ⩽ k:

(R, Li) ∈ TanR(dom(µi), µi, 0) with Li(R) ¦ Y, and

(R, È̂ ◦ Li) ∈ TanR(dom(µi), È ◦ µi, 0).

Moreover, since µi and È ◦ µi are differentiable at 0, their tangent maps Li

and È̂◦Li are linear. In particular, recalling µ′
i(0) = vi and (È◦µi)

′(0) = wi,

we have the following properties of Li:

(3.1) Li(t) = tvi ∈ Y and È(Li(t)) = twi for all t ∈ R.

ANNALES DE L’INSTITUT FOURIER



INFINITESIMAL SPLITTING 21

By definition, we also have 0 ∈ Y and È̂(0) = 0.

To summarize, the above argument shows that for every element (Y, È̂) ∈

Tan(X,È, x), there is a line Li through 0 with the properties in (3.1).

Consider again an arbitrary (Y, È̂) ∈ Tan(X,È, x). Proposition 2.5 there-

fore says that for every y ∈ Y , the pair (Y − y, È̂(·+ y)− È̂(y)) is also an

element of TanRn(X,È, x).

This implies that for every y ∈ Y and i ∈ {1, . . . , k}, there is a function

Ly
i : R→ Y

such that

Ly
i (t) = y + tvi and È(Li(t)) = È̂(y) + twi for all t ∈ R.

In other words, Ly
i is the parametrization of a line through y in direction

vi (contained in Y ), whose composition with È̂ parametrizes a line through

È̂(y) in direction wi.

It remains to show that the vectors vi are linearly independent. Suppose

to the contrary that there was a non-trivial linear combination

k∑

i=1

aivi = 0.

Let y0 = 0 ∈ Y and p0 = 0. For i = 1, . . . , k + 1, inductively set

yi = L
yi−1

i (ai) = yi−1 + aivi

and

pi = È̂(yi).

Note that pi = pi−1 + aiwi for each i = 1, . . . , k by the properties of Ly
i

above.

Then yk = 0. This implies that pk = È̂(yk) = 0. On the other hand

pk =

k∑

i=1

aiwi.

This contradicts the linear independence of the vectors wi.

□

Lemma 3.2. — Let Y ¦ Rn be a closed set. Let v1, . . . , vk be linearly

independent in Rn. Suppose that, for each y ∈ Y , there are k lines

Li = {y + tvi : t ∈ R}

that pass through y and are contained in Y .

Then Y = Z ×V , where V = span({v1, . . . , vk}) and Z ¦ V § is a closed

set.
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Proof. — Let V = span({v1, . . . , vk}), and let

Z = projV §(Y ),

the projection of Y to the orthogonal complement of V .

We now claim that Y = Z × V . Certainly Y ¦ Z × V , by definition of

orthogonal projection. For the other direction, suppose p ∈ Z × V . Then

projV §(p) ∈ Z, so projV §(p) = projV §(y) for some y ∈ Y . It follows that

p = y + a1v1 + · · ·+ akvk,

where ai ∈ R.

Set y0 = y ∈ Y . For i = 1, . . . , k, we inductively set yi = yi−1 + aivi. By

assumption, each point yi is in Y . Note that the last point yk is equal to

p. Hence p ∈ Y , which proves that Z × V ¦ Y .

Lastly, we argue that Z is closed. Indeed, if zn is a sequence in Z con-

verging to z ∈ Rn, then the points

(zn, 0) ∈ Y ¦ V § × V = Rn

converge to (z, 0) ∈ Y , since Y is closed. It follows that z ∈ Z. □

Proof of Theorem 1.2. —

Let X ¦ Rn be a closed set admitting a doubling Radon measure µ0. Let

µ be a measure absolutely continuous to µ0 that admits k ϕ-independent

Alberti representations.

Let x be a point at which the conclusion of Lemma 3.1 holds (a set of

points that has full µ-measure). Let v1, . . . , vk be the associated linearly

independent vectors in Rn.

Let Y ∈ TanRn(X,x). Then each point y ∈ Y admits k lines L1, . . . , Lk

through y, in directions vi, that are contained in Y .

By Lemma 3.2, this implies that Y = Z×V for a k-dimensional subspace

V = span({v1, . . . , vk}) and some closed set Z ¦ V § ¦ Rn. This completes

the proof. □

4. Modulus and Alberti representations

In this section, we relate Alberti representations to the more classical

notion of the modulus of a family of curves. The main result in this section

is Proposition 4.5, which may be of independent interest. (See Remark 4.6

for more on the provenance of this result.)

We first recall the definition of the modulus of a family of curves. It is

worth noting, that for us Curv(X) consists only of curves with Lipschitz
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parametrizations, while traditionally Modulus is defined for an a priori

larger class of collections of µ : I → X, which are merely continuous. How-

ever generality is not lost, as the modulus of non-rectifiable curves vanishes

by convention, and rectifiable curves can be reparametrized as Lipschitz

curves without affecting the modulus.

Definition 4.1. — Let X be a metric space with a Radon measure µ,

let Γ ¦ Curv(X), and let p ⩾ 1.

A Borel measurable function Ä : X → [0,∞] is called admissible for Γ

if
∫

µ
Ä ds ⩾ 1 for each µ ∈ Γ. We set A (Γ) to be the collection of all

admissible functions for Γ.

The p-modulus of Γ, with respect to the measure µ, is denoted

(4.1) Modp(Γ, µ) = inf
Ä∈A (Γ)

∫

X

Äp dµ.

For our duality argument, we will need to work with continuous func-

tions Ä. Thus, we define Modc
p(Γ, µ) by replacing the infimum in (4.1) with

the infimum over all admissible Ä : X → [0,∞) that are in addition con-

tinuous with compact support. In general, Modc
p(Γ, µ) may be larger that

Modp(Γ, µ), and our first goal is to identify an assumption under which

they are equal.

We will need the following basic continuity fact both for the equality of

Modp and Modc
p and for the duality argument below. It is a version of [37,

Proposition 4] in our topology.

Lemma 4.2. — Let Än : X → R be an increasing sequence of lower semi-

continuous functions converging pointwise to Ä : X → R. If µn : [a, b]→ X

converge uniformly to µ : [a, b] → X, or if µn ∈ Curv(X) converge to

µ ∈ Curv(X), then

lim inf
n→∞

∫

µn

Än ds ⩾

∫

µ

Ä ds.

Further, the map µ 7→
∫

µ
Ä ds is lower semi-continuous on Curv(X).

Proof. — First, we reduce the case of µn ∈ Curv(X) to the case of uni-

form convergence with a common domain. Suppose that µn converge to µ in

Curv(X). Then their graphs Γ(µn) converge to Γ(µ) in the Hausdorff metric

on subsets X ×R. This claim still holds if we reparametrize each curve by

an increasing affine map to have domain [0, 1]. After such reparametriza-

tion, by [62, Theorem 1], we see that these reparametrizations converge

uniformly.

Without loss of generality, we thus assume that a = 0 and b = 1, and that

the parametrized curves converge uniformly. Note that for each fixed lower
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semicontinuous g : X → R, the map µ 7→
∫

µ
g ds is lower semicontinuous on

the space of curves µ : [0, 1]→ X with the topology of uniform convergence.

See, for example, [36, Lemma 2.2].

Now, fix N ∈ N. Then, for n ⩾ N we get that∫

µn

Än ds ⩾

∫

µn

ÄN ds.

Taking a limit inferior on both sides and using the lower semi-continuity

noted above, we get

lim inf
n→∞

∫

µn

Än ds ⩾

∫

µ

ÄN ds.

Finally, sending N → ∞ and using dominated convergence completes the

claim.

The latter claim on lower semi-continuity is a restatement of the first

claim, by setting Än = Ä and assuming that µn ∈ Curv(X) converge to

µ ∈ Curv(X). □

We will need the following Lemma. The proof is almost identical to the

ones in [33, 37, 28], however, for completeness and since there is significant

variation in the literature on terminology, we recall the main steps of the

argument. We will follow the scheme of the proof of [37, Proposition 6],

highlighting the main differences along the way, and the reader may consult

it for additional details.

Lemma 4.3. — If Γ ¢ Curv(X) is compact, then Modp(Γ, µ) = Modc
p(Γ, µ)

Proof. — Since continuous admissible functions are also Borel admis-

sible, then Modp(Γ, µ) ⩽ Modc
p(Γ, µ). We proceed to show the reverse

inequality by an approximation argument. If Modp(Γ, µ) = ∞, there is

nothing to prove. Otherwise, take any Ä admissible for Modp(Γ, µ) with

finite Lp-norm. Fix ϵ > 0. By the Vitali-Caratheodory theorem, we can

approximate any Borel Ä from above by a lower semi-continuous function

Ä̃ with ∥Ä̃∥p
p ⩽ ∥Ä∥p

p + ϵ.

Since Γ is compact, we must have some bounded ball B(x,R) ¢ X which

contains all of the curves. In contrast to [37, Proposition 6], we do not need

to adjust Ä̃ further.

Next, we approximate from below. Let Ä̃n · Ä̃ be a sequence of continu-

ous functions with compact support forming an increasing sequence which

converges pointwise to Ä̃.

As in [37, Proposition 6], it suffices to prove that

(4.2) 1 ⩽ lim sup
n→∞

inf
µ∈Γ

∫

µ

Ä̃n ds.
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Indeed, in this case the function (1− ϵ)−1Ä̃n would be admissible for Γ for

sufficiently large n, forcing

Modc
p(Γ, µ) ⩽ (1− ϵ)−p(∥Ä∥p

p + ϵ).

Since this holds for all Borel admissible Ä and ϵ > 0, the desired inequality

immediately follows.

Choose curves µn ∈ Γ so that

lim inf
n→∞

∫

µn

Ä̃n ds ⩽ lim sup
n→∞

inf
µ∈Γ

∫

µ

Ä̃n ds.

Since Γ is compact, there exists a subsequence of µn, which we continue

to label µn, that converges in Curv(X) to some µ. (Unlike [37, Proposition

6], we do not need to reparametrize, or estimate lengths, as we are assuming

compactness.) By using Lemma 4.2, the fact that Ä ⩽ Ä̃, and admissibility,

we obtain (4.2):

1 ⩽

∫

µ

Ä ds ⩽

∫

µ

Ä̃ ds ⩽ lim inf
n→∞

∫

µn

Ä̃n ds ⩽ lim sup
n→∞

inf
µ∈Γ

∫

µ

Ä̃n ds.

□

A few standard, well-known facts about modulus will be used repeatedly:

(See [31, Ch. 7].)

(4.3) If Γ′ ¦ Γ then Modp(Γ′, µ) ⩽ Modp(Γ, µ).

(4.4) Modp (∪∞
i=1Γi, µ) ⩽

∞∑

i=1

Modp(Γi, µ).

We will also need the following notion, that translates a measure on a

curve family into a measure on a space.

Definition 4.4. — Let P be a Radon probability measure on Curv(X).

It then defines an induced Radon measure ¸P on X by

¸P (E) =

∫

Curv(X)

∫

µ

1E ds dP (µ).

Our main result in this section is the following.

Proposition 4.5. — Let X be a proper metric space with a Radon

measure µ. Let p ∈ [1,∞), and let q ∈ (1,∞] be the dual exponent, so that
1
p + 1

q = 1. Let Γ ¦ Curv(X) be compact.

If Modp(Γ, µ) ∈ (0,∞), then there is a Radon probability measure P on

Curv(X), so that

¸P = fµ,
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with f ∈ Lq(µ) and

(4.5) ||f ||Lq = Modp(Γ, µ)
−1
p .

Remark 4.6. — The proof of Proposition 4.5 that we give below is es-

sentially already contained in work of the second-named author and his

collaborators in [27, Section 3], though in a less general context.

This result can also be deduced from [4] if p > 1, where it was shown that

modulus is dual to probability measures in a much more general context

(for p > 1).

For completeness, and since the proof is short, we include an argument

for all p ⩾ 1 in the case where Γ is a compact family of curves.

Recall that Cc(X) denotes the space of continuous functions with com-

pact support, with the uniform topology.

The main technical method in the proof of Proposition 4.5 is to express

the Lagrangian in a given form and apply the following minimax principle

on it. See also [57, Section 9] for another version.

Theorem 4.7 (Sion’s minimax theorem, Corollary 3.3 in [60](2) ). —

Suppose that

(1) G is a convex subset of some topological vector space,

(2) K is a compact convex subset of some topological vector space, and

(3) F : G×K → R satisfies

(a) F (·, y) is convex and lower semi-continuous on G for every

y ∈ K,

(b) F (x, ·) is concave and upper semi-continuous on K for every

x ∈ G.

Then we have the equality

sup
y∈K

inf
x∈G

F (x, y) = inf
x∈G

sup
y∈K

F (x, y).

Proof of Proposition 4.5. — Note that, since Γ is compact, all curves of

Γ must lie in a bounded subset of X, which must be compact and of finite

µ-measure. Thus, it suffices to assume that X is compact and µ(X) < ∞

in the proof.

Let K be the set of Radon probability measures on Γ. Then K is a com-

pact, convex subset of the space of Radon measures on Curv(X), equipped

with the topology of weak* convergence. Let G = {g : X → [0, 1]}∩Cc(X).

(2) The formulation here is slightly simplified.
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Consider the functional Φ: G×K → R

Φ(g, P ) = ∥g∥Lp(µ) −Modp(Γ, µ)
1
p

∫

X

g d¸P .

Lemma 4.2 gives the upper semi-continuity of Φ(g, ·). The other conditions

for Φ = F in Theorem 4.7 are verified as in [27, Theorem 3.7] .

Let g ∈ G be any fixed function not identically zero. Since g has compact

support, it has finite Lp(µ)-norm. Fix ϵ > 0. The function

gϵ =
Modp(Γ, µ)

1
p g

(1 + ϵ)||g||Lp

cannot be admissible, and thus there is a curve µϵ ∈ Γ with
∫

µϵ

gϵ ds ⩽ 1.

Then, ∫

µϵ

g ds ⩽ (1 + ϵ)||g||LpModp(Γ, µ)
−1
p .

Let Pµϵ
= ¶µϵ

, the Dirac measure supported on µϵ ∈ Curv(X). Then

Φ(g, Pµϵ
) ⩾ −ϵ||g||Lp(µ).

Therefore, sending ϵ→ 0, we obtain

inf
g∈G

sup
P ∈K

Φ(g, P ) ⩾ 0.

By Theorem 4.7, we get

sup
P ∈K

inf
g∈G

Φ(g, P ) ⩾ 0.

Thus, there is a sequence of measures Pϵ ∈ K so that

Φ(g, Pϵ) ⩾ −ϵ,

for each g ∈ G. By upper semi-continuity in Pϵ, and weak compactness, we

can extract a weak limit P for which it holds that

Φ(g, P ) ⩾ 0,

for each g ∈ G. In particular

(4.6)

∫

X

g d¸P ⩽ Modp(Γ, µ)
−1
p ||g||Lp(µ).

Thus, the functional

g →

∫

X

g d¸P
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extends to a Lp bounded linear functional. Then, by the Riesz representa-

tion theorem we have

¸P = fµ,

with the bound

||f ||Lq ⩽ Modp(Γ, µ)
−1
p

following from Estimate (4.6).

On the other hand, by Lemma 4.3 we can find a sequence of continuous

admissible Äi so that

lim
i→∞

∫
Äp

i dµ = Modp(Γ, µ).

By a standard approximation argument of continuous functions by simple

functions, and the fact that Äi is admissible, we obtain that
∫

X

Äi d¸P =

∫

Curv(X)

∫

µ

Äi ds dP ⩾ 1.

Therefore, we get

1 ⩽

∫

X

Äi d¸P ⩽ Modp(Γ, µ)
−1
p ||Äi||Lp .

Sending i→∞, we get

(4.7) 1 ⩽ lim
i→∞

∫

X

Äi d¸P ⩽ Modp(Γ, µ)
−1
p Modp(Γ, µ)

1
p = 1.

Thus, since we get equality in the limit, Modp(Γ, µ)
−1
p equals the norm of

the functional g →
∫
g d¸P , and thus ||f ||Lq = Modp(Γ, µ)

−1
p . □

Remark 4.8. — Further details could be obtained. If p > 1, then the

sequence in the last paragraph Lp-converges Äi → Ä∗, where Ä∗ is an ad-

missible function for Γ \ Γ′ where Γ′ has modulus zero, see e.g. [64]. Then,

Ä∗ plugged into Estimate 4.7 (without the limit), yields

(4.8) (Ä∗)p = Modp(Γ, µ)
p+q

p fq

almost everywhere. Further,
∫

µ
Ä∗ ds = 1 for P -almost every µ, where P is

the probability measure coming from the statement.

As an immediate corollary of Propositions 4.5 and 2.14, we explicitly

point out the connection between modulus and Alberti representations:

Corollary 4.9. — Let X be a proper metric space with a Radon mea-

sure µ. Suppose that x ∈ X admits a family Γ ¦ Curv(X) with positive

modulus, that is

Modp(Γ, µ) > 0 for some p ⩾ 1.
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Then there is a non-zero measure on X, absolutely continuous to µ, which

admits an Alberti representation. Furthermore, if ϕ : X → Rn is bi-

Lipschitz, then the Alberti representation can be chosen ϕ-independent

(i.e., in the ϕ-direction of some cone C).

As a reminder, Curv(X) by definition does not contain any constant

curves. Indeed, the purpose of this restriction is to prevent the following: A

family of curves containing a constant curve would allow for no admissible

functions and thus have modulus ∞. Such a family could not be used to

construct a non-trivial Alberti representation, e.g., if it contained no non-

constant curves.

Proof. —

Fix x0 ∈ X. For each n ∈ N, define

Γn = {µ ∈ Γ : im(µ) ¦ B(x0, n),diam(im(µ)) ⩾
1

n
,LIP(µ) ⩽ n,dom(µ) ¦ [−n, n]}.

Since Γ ¦ ∪∞
n=1Γn, (4.4) tells us that Modp(Γn, µ) > 0 for some n, which

we now fix.

Consider the closure Γn ¢ Curv(X), which is compact by Arzelà-Ascoli.

By (4.3),

Modp(Γn, µ) ⩾ Modp(Γn, µ) > 0.

Moreover, since each curve µ ∈ Γn has diam(im(µ)) ⩾ 1
n and is contained

in B(x0, n), we have

Modp(Γn, µ) ⩽ npµ(B(x0, n)) <∞.

By Proposition 4.5 we obtain a measure P on Curv(X), so that the

corresponding measure ¸P is absolutely continuous with respect to µ. Then,

applying Proposition 2.14 with cone C = Rn \ {0}, we obtain a non-trivial

Alberti representation for µ that is ϕ-independent, i.e., in the ϕ-direction

of C. □

5. Proofs of the corollaries

In this section, we prove all the corollaries of our main result stated in

the introduction.

Before beginning the proofs, the following basic lemma allows us to re-

duce problems of bi-Lipschitz embedding to Theorem 1.2.

Lemma 5.1. — Let X be a metric space with a doubling measure µ0.

Suppose that µ j µ0 supports k ϕ-independent Alberti representations,

for some ϕ : X → Rm.
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Let f : X → Y be a bi-Lipschitz homeomorphism.

Then

(1) µ̂0 := f∗(µ0) is a doubling measure supported on Y .

(2) µ̂ := f∗(µ)j µ̂0.

(3) µ̂ supports k ϕ ◦ f−1-independent Alberti representations.

Proof. — The first two statements are immediate from the definitions.

For the third statement, let Ai = (P i, ¿i) be independent Alberti repre-

sentations for µ, for i = 1, . . . , k.

Note that f : X → Y and f−1 : Y → X induce continuous maps

F : Frag(X)→ Frag(Y ) and F−1 : Frag(Y )→ Frag(X),

by post-composition.

For each Alberti representation Ai = (P i, ¿i), we may define ¿̂i : Frag(Y )→

M(Y ) by

¿̂i
µ = f∗(¿i

F −1(µ)) for each µ ∈ Frag(Y ).

It is immediate that

¿̂i
µ j H

1|im(µ) for each µ ∈ Frag(Y ),

since bi-Lipschitz maps preserve sets of zero H1-measure.

We therefore define the Alberti representations

Âi = (F∗(P i), ¿̂i)

for i = 1, . . . , k.

It is easy to check that these satisfy conditions (i), (ii), and (iv) of

Definition 2.6. For condition (iii), observe that if A ¦ Y is Borel and

i ∈ {1, . . . , k}, then

µ̂(A) = µ(f−1(A))

=

∫

Frag(X)

¿i
µ(f−1(A))dP i(µ)

=

∫

Frag(X)

¿i
F (µ)(A)dP i(µ)

=

∫

Frag(Y )

¿̂i
³(A)dF∗(P i)(³),

as desired.

Lastly, we check the independence of the new Alberti representations on

Y . Let A = (P, ¿) denote any one of the k original Alberti representations

Ai above. Then there is a cone C ¦ Rk such that (ϕ ◦ µ)′(t) ∈ C for P -a.e.
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µ ∈ Frag(X) and a.e. t ∈ dom(µ). Let G ¦ Frag(X) be the full P -measure

set on which this holds.

Let Ĝ = F (G) ¦ Frag(Y ), a set of full P̂ -measure in Frag(Y ). Consider

any ³ ∈ Ĝ ¦ Frag(Y ). Then the fragment µ defined by

t 7→ f−1(³(t))

is in G. Therefore, for a.e. t ∈ dom(³) = dom(µ),

(ϕ ◦ f−1 ◦ ³)′(t) = (ϕ ◦ µ)′(t)

is in C.

Thus, each new Albert representation Âi is in the (ϕ ◦ f−1)-direction of

the same cone of which Ai was in the ϕ-direction. Thus, the representations

Âi are (ϕ ◦ f−1)-independent. □

As a consequence, we can now prove Corollary 1.3.

Proof of Corollary 1.3. — Let X be a complete metric space admitting

a doubling Radon measure µ0. Suppose that a measure µj µ0 supports k

independent Alberti representations, for some k ⩾ 1.

Suppose that f : X → Rn is a bi-Lipschitz embedding. Let X ′ = f(X),

µ′
0 = f∗(µ0), and µ′ = f∗(µ).

It follows from Lemma 5.1 that µ′ admits k independent Alberti rep-

resentations. Therefore, by Theorem 1.2, at µ′-a.e. point x′ ∈ X ′ every

tangent Y ′ ∈ TanRn(X ′, x′) is isometric to Z × Rk, for some closed set

Z ¦ Rn−k.

The set of all preimages under f of such points x′ ∈ X ′ forms a set

of full µ-measure in X. At such a point x = f−1(x′) ∈ X, each tangent

(Y, y) ∈ Tan(X,x) is bi-Lipschitz equivalent to an element of TanRn(X ′, x′),

with a bi-Lipschitz map given by a tangent map of f . Thus, any such

tangent Y is bi-Lipschitz equivalent to a product Z×Rk, for some complete

metric space Z. This proves the corollary. □

5.1. Modulus and conformal dimension

Here we prove Corollaries 1.5, 1.8, and 1.9.

Proof of Corollary 1.5 . —

Let X be a complete metric space admitting a Radon measure µ that is

absolutely continuous with respect to a doubling measure µ0. Suppose that

X contains a family of (non-constant) curves Γ so that Modp(Γ, µ) > 0 for

some p ∈ [1,∞), and that X admits a bi-Lipschitz embedding ϕ into some

Rn.
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By Corollary 4.9, there is a non-trivial measure on X that is absolutely

continuous to µ, hence to µ0, and supports a ϕ-independent Alberti repre-

sentation. The corollary then follows from Corollary 1.3.

□

Proof of Corollary 1.8. — Let X satisfy the assumptions of the corollary.

Thus, X is Ahlfors Q-regular with Q = cdimAR(X) and X admits a bi-

Lipschitz embedding into some Rn.

By the Keith-Laakso Theorem 1.7, there is a weak tangent W of X

that contains a family of non-constant curves with positive modulus. By

Lemma 2.4, the space W also admits a bi-Lipschitz embedding into Rn. By

Corollary 1.5, there is a tangent Y of W that is bi-Lipschitz equivalent to

Z × R for some complete metric space Z.

As Y is also a weak tangent of the original space X (see Lemma 2.4(vii)),

this completes the proof. □

Proof of Corollary 1.9. — Let X be linearly connected and let Y be

quasisymmetric to X and Ahlfors Q-regular, where

Q = cdimAR(X) = cdimAR(Y ) ∈ (1, 2).

Suppose that Y did admit a bi-Lipschitz embedding into some Euclidean

space, RN .

By Corollary 1.8, Y would then admit a weak tangent W that is bi-

Lipschitz equivalent to a product Z × R, for some complete metric space

Z. Let ϕ : Z×R→W be bi-Lipschitz. Let Ã : Z×R→ Z be the projection

to the Z factor.

The linear connectedness condition is preserved under both quasisymme-

try and passage to weak tangents. (The former assertion is immediate from

the definitions, and the latter is contained in the proof of [40, Proposition

5.4].) Thus, W is linearly connected. By Lemma 2.4(v), W is also Ahlfors

Q-regular.

Next, we observe that Z must contain at least two points: if not, then

W would be bi-Lipschitz equivalent to Z ×R ∼= R, which would contradict

the fact that W is Ahlfors Q-regular for Q > 1.

We now observe that Z must contain a compact, connected set K with

at least two points. To see this, fix distinct points z, z′ ∈ Z. Since W is

linearly connected, there is a compact, connected set J in W that contains

ϕ(z, 0) and ϕ(z′, 0). The set K = Ã(ϕ−1(J)) is then a continuum containing

z and z′.
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Thus, Z contains a non-trivial continuum K and so W contains a bi-

Lipschitz image of the space K × [0, 1]. We now argue that

(5.1) dimH(K × [0, 1]) ⩾ 2.

That the Hausdorff dimension of a product is at least the sum of the di-

mensions of the factors is standard for compact subsets of Euclidean space

(see, e.g., [10, Theorem 3.2.1]); we give a brief argument in our setting here:

Since K is compact and connected, H1(K) > 0. By Frostman’s Lemma

[48, Theorem 8.17], K supports a Radon measure µ satisfying

µ(B(x, r)) ⩽ r for all x ∈ K and 0 < r ⩽ diam(K).

If L1 denotes Lebesgue measure on [0, 1], then the measure µ × L1 on

K × [0, 1] satisfies

(µ× L1)(B(p, r)) ⩽ r2 for all p ∈ K × [0, 1] and 0 < r ⩽ diam(K × [0, 1]).

By the “mass distribution principle” (see [31, p. 61]), we obtain (5.1).

We therefore arrive at

2 > Q = dimH(W ) ⩾ dimH(K × [0, 1]) ⩾ 2,

a contradiction.

□

5.2. Slit carpet

Here, we prove Corollary 1.10. This will follow from Corollary 1.5 and

some facts about the slit carpet.

We first summarize some results of Merenkov [50].

Proposition 5.2 (Lemma 2.1, Proposition 2.4, and Lemma 4.2 of [50]).

The slit carpet M has the following properties:

(1) It is homeomorphic to the standard Sierpiński carpet. In particular,

it is compact and has topological dimension 1.(3)

(2) It is geodesic and Ahlfors 2-regular.

(3) It admits a family of non-constant curves with positive 2-modulus

(with respect to the measure H2).

(3) Here, “topological dimension” can refer to Lebesgue covering dimension or (small)
inductive dimension, which are equivalent for compact metric spaces [51]. All we will
need to know is that M does not contain a topologically embedded copy of any open
subset of R2.
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Proof of Corollary 1.10. — By Proposition 5.2, we may fix a point p ∈M

where the conclusion of Corollary 1.5 holds.

The self-similarity of M easily implies the following: There is a constant

c > 0 such that, for each r > 0, there is a point qr and a compact set

Kr ¦ B(p, r) such that

B(qr, cr) ¦ Kr ¦ B(p, r),

and

Kr is isometric to tM for some t ∈ (2cr, 2r).

Let (Y, y) ∈ Tan(M, p) be obtained by rescaling along a sequence ¼i → 0.

Let qi = q¼i
and Ki = K¼i

. Passing to a (subsequential) limit, the above

properties imply (see, e.g., [23, Lemma 8.31]) that there is a point q ∈ Y

and a compact set K ¦ Y such that

B(q, c) ¦ K ¦ B(y, 1)

and

K is bi-Lipschitz equivalent to M.

By Corollary 1.5, Y is bi-Lipschitz equivalent to Z × R for some com-

plete (and necessarily doubling) metric space Z. As a tangent of M, Y is

quasiconvex and therefore so is Z.

It follows that Z contains a non-trivial topological arc through each

point. Hence, there is a homeomorphic image of [0, 1]2 contained in B(q, c).

This implies that B(q, c) ¦ K must have topological dimension 2. However,

this contradicts the fact that K is bi-Lipschitz equivalent to M, which has

topological dimension 1.

□

5.3. Heisenberg group

Here we give a brief introduction to the Heisenberg group and prove

Corollary 1.11.

5.3.1. Preliminaries on the Heisenberg group

We now fix some notation and definitions. We will be very brief, referring

the reader to [46, 16] for details.

The group H is R3 endowed with the non-abelian group law

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 +
1

2
(x1y2 − y1x2)).
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There are many standard, bi-Lipschitz equivalent ways to equip H with a

metric. For simplicity, we fix the so-called Korányi distance, though it will

make little difference below.

Definition 5.3. — The Korányi norm of (x, y, z) ∈ H is

∥(x, y, z)∥ = ((x2 + y2)2 + 16z2)1/4.

The Korányi distance between p, q ∈ H is

d(p, q) = ∥p−1q∥.

The Korányi distance on H induces the usual topology from R3 and has

the following features (see, e.g. [46, Example 1.3]):

(1) Left-invariance: d(p, q) = d(p′ · p, p′ · q) for all p, q, p′ ∈ H.

(2) Dilations: For each t > 0, the map

¶t(x, y, z) = (tx, tx, t2z)

is a group homomorphism with the property that

d(¶t(p), ¶t(q)) = td(p, q) for all p, q ∈ H

(3) Doubling: The Lebesgue measure L on R3 is doubling on (H, d).

In fact, it satisfies the Ahlfors 4-regularity property

L (B(p, r)) ≈ r4

for all p ∈ H, r > 0 and a fixed positive implied constant.

In particular, item (iii) implies that every open set in H has Hausdorff

dimension 4.

The Korańyi distance is also bi-Lipschitz equivalent to the Carnot-Carathéodory

distance, which we do not define here, as both satisfy properties (i)-(iii)

above [46].

From these properties, we first derive the following:

Lemma 5.4. — There is an open set U in the Heisenberg group such

that L |U supports two independent Alberti representations.

This fact is well-known, and of course much more is true. We include a

brief proof only to show that no sophisticated tools are needed.

Proof. — Let ϕ : H → R2 be the canonical Lipschitz chart, given by

(x, y, z) 7→ (x, y). Fix any disjoint, independent cones, Cx, Cy in R2 con-

taining the x and y-axis respectively.

For each p = (a, b) ∈ R2, the curves

³p(t) =

(
t, a, b−

1

2
at

)
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and

´p(t) =

(
a, t, b+

1

2
at

)

are bi-infinite geodesics in H. Indeed,

³(a,b)(t) = (0, a, b) · (t, 0, 0) and ´(a,b)(t) = (a, 0, b) · (0, t, 0),

and the curves (t, 0, 0) and (0, t, 0) are clearly geodesics.

Define the maps Φ³ and Φ´ from
[
− 1

2 ,
1
2

]3
to R3 by (p, t) 7→ ³p(t)

and (p, t) 7→ ´p(t), respectively. One directly verifies that these maps are

injective and are open mappings on the interiors of their domains. Since

Φ³(0) = Φ´(0) = (0, 0, 0), there is a non-empty open set U contained in

Φ³

([
−

1

2
,

1

2

]3
)
∩ Φ´

([
−

1

2
,

1

2

]3
)
.

We will obtain two independent Alberti representations of the measure

µ = L |U on H.

Computing the Jacobians gives immediately that Φ³ and Φ´ are vol-

ume preserving. Writing ¼ for Lebesgue measure on
[
− 1

2 ,
1
2

]2
, we therefore

obtain by change of variables that

(5.2) µ(A) =

∫

R2

∫

R

1A(³p(t)) dt d¼(p)

and

(5.3) µ(A) =

∫

R2

∫

R

1A(´p(t)) dt d¼(p)

for any Borel set A ¦ U .

Thus, define a probabilty measure P on Frag(H) by the pushforward of

¼|[− 1
2 , 1

2 ]
2 under the map from

[
− 1

2 ,
1
2

]2
given by

p 7→ ³p|[− 1
2 , 1

2 ] ∈ Frag(H).

Note that this map is continuous on
[
− 1

2 ,
1
2

]2
.

For µ ∈ Frag(X), define ¿µ = 0 if µ is not in the support of P . Otherwise,

µ = ³p|[− 1
2 , 1

2 ] for some p, and we set

¿µ = 1U · H
1|im(µ).

The pair (P, ¿) defines an Alberti representation of µ by (5.2), supported

on curves of the form ³p|[− 1
2 , 1

2 ]. The exact same procedure applied to the

curves ´p yields an Alberti representation of µ supported on curves of the

form ´p|[− 1
2 , 1

2 ].
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Since (ϕ ◦ ³p)′(t) = (1, 0) ∈ Cx and (ϕ ◦ ´p)′(t) = (0, 1) ∈ Cy for each

p ∈ R2 and t ∈ R, the two Alberti representations are independent.

□

5.3.2. Proof of Corollary 1.11

There are a number of proofs of Corollary 1.11 in the literature. We give

a proof below that avoids Pansu’s differentiation theorem from [55]. It relies

only on Theorem 1.2, invariance of domain, and the basic properties of the

Heisenberg group stated in the previous subsection. Of course, we still use

a blowup argument, so the ideas are similar in spirit.

Proof of Corollary 1.11. — Suppose that the Heisenberg group (with the

Korányi metric) admitted a bi-Lipschitz embedding into some Euclidean

space. By Lemma 5.4 and Corollary 1.3, some tangent of the Heisenberg

group would be bi-Lipschitz equivalent to Z×R2, for some complete metric

space Z.

By the homogeneity and dilation structure of the metric, every tangent

of the Heisenberg group is isometric to the Heisenberg group itself. Thus,

in this case, H is bi-Lipschitz equivalent to Z × R2. Since H is proper and

quasiconvex, so is Z.

It follows that Z is bi-Lipschitz equivalent to a geodesic metric space,

simply by replacing the metric on Z by the associated length metric. There-

fore, in particular, Z contains a Lipschitz embedding µ : [0, 1]→ Z.

Let ϕ : Z ×R2 → H be bi-Lipschitz. The map from (0, 1)× (0, 1)2 into H

given by

(t, p) 7→ ϕ(µ(t), p)

is therefore a Lipschitz homeomorphism from an open set of R3 into H. By

invariance of domain, the image of this map must be open in H. On the

other hand, this set has Hausdorff dimension at most 3, as the Lipschitz

image of a subset of R3. This violates the Ahlfors 4-regularity of H. □

6. Appendix: Proof of Proposition 2.5

Here we give a proof of Proposition 2.5. The idea is extremely similar

to that of [24, Proposition 3.1] (which in turn is based on [56, 45]), which

is the same statement in the setting of Gromov-Hausdorff tangents rather

than intrinsic tangents. We will therefore omit many steps if they are easy

to adapt from there.
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Recall the notion of the outer measure

µ∗(A) = inf{µ(B) : B Borel , B § A},

and the associated notion of a point of outer density x of a set A, where

lim
r→0

µ∗(B(x, r) ∩A)

µ(B(x, r))
→ 1.

As explained briefly in [24], every set of positive outer measure has a point

of outer density.

The following lemma is a simple extension of (vi) of Lemma 2.4. See

also [23, Lemma 9.6] or [45, Proposition 3.1] for closely related statements

whose proofs can easily be modified to yield this one.

Lemma 6.1. — Let A ¦ Rn support a doubling measure µ and a Lip-

schitz f : A → Rm. Let E ¦ A have a point of outer µ-density at a ∈ A.

Then

TanRn(E, f, a) = TanRn(A, f, a).

We now define a notion of distance that yields the correct topology. As

in [24], the distance we define will not precisely be a metric, but it will

suffice for our purposes.

Definition 6.2. — Let A,B ¦ RN be sets and f, g : RN → RM , Lips-

chitz functions. Define

D̃((A, f), (B, g)) = inf{ϵ > 0 : d1/ϵ(A,B) < ϵ and |f−g| < ϵ on (A∪B)∩B(0, 1/ϵ)}.

Then define

D = min(D̃, 1/2).

To simplify notation, given A ¦ RN , f : RN → RM Lipschitz, ¼ > 0, and

p ∈ RN , we set

Ap,¼ = ¼−1(A− p)

and

fp,¼(x) = ¼−1(f(¼x+ p)− f(p)).

Note that fp,¼ is Lipschitz with the same constant as f .

The following is analogous to [24, Lemma 2.3].

Lemma 6.3. — The function D has the following properties:

(1) It is non-negative and symmetric.

(2) If D((A, f), (B, g)) = 0 then A = B and f = g on A = B.

(3) For all pairs (A, f), (B, g), (C, h), we have the quasi-triangle inequal-

ity

D((A, f), (C, h)) ⩽ 2(D((A, f), (B, g)) +D((B, g), (C, h)))

ANNALES DE L’INSTITUT FOURIER



INFINITESIMAL SPLITTING 39

(4) (Â, f̂) ∈ TanRN (A, f, a) if and only if some Lipschitz extensions of

f and f̂ to all of RN and some sequence ¼i → 0 satisfy

(6.1) D((Aa,¼i
, fa,¼i

), (Â, f̂))→ 0

Proof. — The first two items are simple, the third follows exactly as in

[24, Lemma 2.3], and the fourth follows from [23, Lemma 8.7]. □

The next lemma is an analog of [24, Lemma 2.6].

Lemma 6.4. — For each N,M ∈ N and L, ¸ > 0, the collection

S = {(B, g) : B ¦ RN , g : RN → RML-Lipschitz}

is contained in a countable collection of sets Bℓ with D-diameter at most

¸.

The “D-diameter” of a collection of pairs {(B, g)} is the supremum of

the D-distance between pairs of elements in the collection.

Proof. — Consider all pairs (K,h) such that K ¦ QN ¦ RN is finite,

and h : K → QM .

By Lemma 6.3(iii), it suffices to show, given ¸ ∈ (0, 1) and (B, g) ∈ S,

that (B, g) is within D-distance 10¸ of some (K, ĥ), where (K,h) is as

above and ĥ is a Lipschitz extension of h to all RN . We may also assume

L > 1.

Fix K ¦ B(0, 2¸−1) ∩QN to be ¸/L-separated and finite such that

d2¸−1(K,B) ⩽ ¸/L.

Then, for x ∈ K, set h(x) to be an element of QM within distance ¸/L of

g(x). Note that h is 3L-Lipschitz. Extend h to a 3L-Lipschitz map ĥ on

RN by Kirszbraun’s theorem. For x ∈ K ∩B(0, ¸−1),

|g(x)− ĥ(x)| ⩽ ¸/L < ¸

and if x ∈ B ∩B(0, ¸−1), then

|g(x)− ĥ(x)| ⩽ 6¸ + |g(y)− h(y)| ⩽ 10¸,

where y is a closest element in K to x. This completes the proof. □

Proof of Proposition 2.5. — We closely follow the argument in [24]. Let

A ¦ Rn support a doubling measure µ. Let f : A → Rm be a Lipschitz

mapping. Extend f to be an L-Lipschitz function defined on all of RN by

the standard McShane-Whitney extension theorem.

Our goal is to show that the set

{a ∈ A : there exists (B, g) ∈ TanRN (A, f, a) and b ∈ B such that (B − b, g(·+ b)− g(b))

has outer measure zero.
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Consider the collection

S = {(B, g) : B ¦ RN , g : RN → RM L-Lipschitz}.

Note that every rescaling or tangent of (A, f) lies in S.

Fix k ⩾ 1. Apply Lemma 6.4 to obtain countably many collections Bl

such that, for all l,

diamD(Bl) < 1/4k

and S ¦ ∪Bl.

It therefore suffices to show that, for all k, l,m ∈ N, the set of “bad”

points with parameters k, l,m, namely

{
a ∈ A : there exists (B, g) ∈ TanRn(A, f, a) and b ∈ B such that

(6.2)

(B − b, g(·+ b)− g(b)) ∈ Bl and

D ((B − b, g(·+ b)− g(b)) , (Aa,t, fa,t)) >
1

k
for all t ∈ (0, 1/m)

}

has outer measure zero.

Suppose that, for some k, l,m ∈ N, the set above has positive outer

measure, and call it A′ ¦ A. Let a be a point of outer density of A′. Then

there exist (B, g) ∈ TanRN (A, f, a) and b ∈ B such that

(B − b, g(·+ b)− g(b)) ∈ Bl

and

D

(
(B − b, g(·+ b)− g(b)) ,

(
1

t
(A− a),

1

t
(f − f(a))

))
>

1

k
,

for all t ∈ (0, 1/m) .

Because (B, g) ∈ TanRN (A, f, a) = TanRN (A′, f, a) by Lemma 6.1, there

is a sequence ¼i → 0 such that

(6.3) ϵi := D
(
(B, g), (A′

a,¼i
, fa,¼i

)
)
→ 0.

In particular, we may choose ai ∈ A
′ such that

(6.4) |b− ¼−1
i (ai − a)| < ϵi,

when i is sufficiently large.

Claim — We have

D ((B − b, g(·+ b)− g(b)), (Aai,¼i
, fai,¼i

))→ 0.
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Proof of Claim. — Observe that if q − b ∈ (B − b) ∩B(0, (2ϵi)
−1), then

q ∈ B ∩B(0, ϵ−1
i ) and therefore there is p ∈ A such that

|q − ¼−1
i (p− a)| < ϵi.

It follows that

|(q − b)− ¼−1
i (p− ai)| ⩽ |q − ¼

−1
i (p− a)|+ |b− ¼−1

i (ai − a)| < 2ϵi.

A similar argument also shows, conversely, that if ¼−1
i (p−ai) is an arbitrary

point in ¼−1
i (A − ai) ∩ B(0, (2ϵi)

−1), then there is a point q − b ∈ B − b

such that

|(q − b)− ¼−1
i (p− ai)| < 2ϵi.

Together, these show that

d(2ϵi)−1(B − b, Aai,¼i
) < 2ϵi.

By (6.3), the functions g and fa,¼i
agree up to error ϵi on (B ∪ Aa,¼i

) ∩

B(0, ϵ−1
i ).

Note that if q − b ∈ (B − b) ∩ B(0, (2ϵi)
−1), then q ∈ B ∩ B(0, ϵ−1

i ).

Similarly, if ¼−1
i (p− ai) ∈ Aai,¼i

∩B(0, (2ϵi)
−1), then ¼−1

i (p− a) ∈ Aa,¼i
∩

B(0, ϵ−1).

Thus, a basic calculation using (6.4) and the triangle inequality, ex-

tremely similar to that on [24, p. 565], yields that the functions

g(·)− g(b) and f¼i,ai

agree up to error ≲ ϵi on

((B − b) ∪Aai,¼i
) ∩B(0, (2ϵi)

−1),

where the implied constant depends only on the Lipschitz constants of f

and g. This proves the claim. □

With the claim proven, one reaches a contradiction exactly as on [24, p.

566]. Therefore, the set of “bad points” defined in (6.2) has outer measure

zero, which completes the proof. □
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