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We develop a systematic framework to compute the primordial power spectrum up to next-to-next-to-next
to leading order (N3LO) in the Hubble-flow parameters for a large class of effective theories of inflation.We
assume that the quadratic action for perturbations is characterized by two time-dependent functions—the
kinetic amplitude and the speed of sound—that are independent of the Fourier mode k. Using the Green’s
function method introduced by Stewart and Gong and extended by Auclair and Ringeval, we determine the
primordial power spectrum fully expanded around a pivot scale up to N3LO, starting from a given generic
action for perturbations. As a check, we reproduce the state-of-the-art results for scalar and tensor power
spectra of the simplest “vanilla” models of single-field inflation. The framework applies to Weinberg’s
effective field theory of inflation (with the condition of no parity violation) and to the effective theory of
spontaneous de Sitter symmetry breaking. As a concrete application, we provide the expression for theN3LO
power spectrum of Rþ R2 Starobinsky inflation in metric variables, without a field redefinition. All
expressions are provided in terms of an expansion in one single parameter, the number of inflationary
e-foldings N�. Surprisingly, we find that, compared to previous leading-order calculations, for N� ¼ 55 the
N3LO correction results in a 7% decrease of the predicted tensor-to-scalar ratio, in addition to a deviation
from the consistency relation and a prediction of a negative running αs ¼ − 1

2
ðns − 1Þ2 þ � � � of the scalar tilt.

These results provide precise theoretical predictions for the next generation of CMB observations.

DOI: 10.1103/PhysRevD.110.104032

I. INTRODUCTION

Cosmic inflation [1–10] provides a mechanism for the
production of primordial perturbations that is successful in
explaining a wide range of cosmological observations,
including the nature of anisotropies in the temperature
fluctuations of the cosmic microwave background (CMB),
and the quantum origin of the large scale structure of the
Universe [11,12]. Within this theoretical framework, there
is a plethora of inflationary models which range from
quantum-gravity motivated models to phenomenological
parametrizations of potentials [13,14], and additional
observations are required to distinguish between different
models. Thus, as upcoming cosmological observations are
expected to improve the constraints on many of the
primordial observables [15–17], precise theoretical predic-
tions for these future observations are also required. We
address this issue directly for the large class of inflationary
models summarized in Table I.
The primordial power spectrum is one of themost relevant

cosmological observables. The Green’s function method

introduced by Stewart and Gong in [32] was recently
extended by Auclair and Ringeval [33] to provide a detailed
computation of the power spectrum at next-to-next-to-next to
leading order (N3LO) in the framework of single-field slow-
roll inflation—a phase driven by a minimally coupled scalar
field slowly rolling down its potential—together with an
extension to nonminimal kinetic terms obtained via a
mapping method [34]. These models belong to a broader
class of effective theories of inflation: a prototypical example
is the action for the free propagation of scalar curvature
perturbations R,

S2½R� ¼ 1

2

Z
d4xaðtÞ3ZsðtÞ

�
Ṙ2 −

csðtÞ2
aðtÞ2 ð∂iRÞ2

�
; ð1Þ

where the nontrivial time-dependence of the background
fields and geometry, assumed to be homogeneous and
isotropic, is encoded in three functions of time—the scale
factor aðtÞ, the kinetic amplitude ZsðtÞ, and the speed of
sound csðtÞ [28].While in a givenmodel these functions take
a specific form, it is useful to treat them as independent to
obtain general formulas which apply to all perturbations in a
scalar-vector-tensor decomposition. We work in a spatially
flat quasi-de Sitter background and assume that there is no
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gravitational parity violation, which implies that the func-
tions ZsðtÞ and csðtÞ admit a Hubble-flow expansion and are
independent of the mode k in Fourier space. The goal of this
paper is to provide a N3LO computation of the primordial
power spectrum and its associated power-law quantities for
the broad family of effective theories of inflation (Table I)
which have a quadratic action of this form.
In an exactly de Sitter background, theMukhanov-Sasaki

equation admits an exact solution for the mode functions,
which corresponds to the choice of the Bunch-Davies
vacuum for the quantum perturbations. The constant
Hubble rate HðtÞ ¼ H� results in a scale-invariant power
spectrum P ∼H2�. This leading order (LO) prediction is
corrected by a next-to-leading order contribution (NLO) that
takes into account the fact that the Hubble rate HðtÞ
decreases slowly, imprinting more power in red than in
bluemodes—a red tilt ns ≲ 1. At this order, the approximate
equation admits again an exact solution which defines a
quasi-Bunch-Davies vacuum with mode functions given by
a combination of Bessel functions [35]. However, the
solution in terms of Bessel functions is not easily extended
to higher orders, and various approximation schemes have
been developed, including the uniform approximation
[36–42]. The next-to-next-to-leading order (N2LO) correc-
tions for scalar perturbations were derived in [43] using the
constant-horizon approximation, and in [32] as a systematic
expansion using the Green’s function method, while the
N2LO corrections to tensor modes were obtained in [44].
The fully expandedN3LO corrections for slow-roll inflation
were derived in [33], which is the method we adopt and
extend here. Motivated by these recent results, we address
the problem of finding the contributions to the power
spectrum up to N3LO for the broad class of models with
perturbations described by the quadratic action (4). In
particular we work out the N3LO predictions of the model

of inflation introduced by Starobinsky, motivated by quan-
tum gravity considerations [2,3]. Remarkably, this model
provides the best account of current observations in terms of
a single free parameter, the number of inflationary e-foldings
N�. While its analysis is generally done via a field redefi-
nition that maps it into an inflaton potential, herewework in
the geometric framework where inflation is driven by higher
curvature terms. Our explicit N3LO computations show a
tensor-to-scalar ratio that is 7% smaller compared to its
standard expression.
The manuscript is structured as follows: In Sec. II, we

describe the assumptions, the general framework, and the
Hubble-flow expansion of the background variables. In
Sec. III, we discuss the quantization of perturbations, a
choice of variables analogous to Mukhanov-Sasaki varia-
bles, and a logarithmic expansion of the Hubble-flow
parameters. In Sec. IV, we find the mode equation satisfied
by our dynamical variables and describe the Green’s
function method introduced in [32,33]. In Sec. V, we report
the final expressions for the power spectrum, which takes
the schematic form,

PðψÞ
0 ðkÞ ¼ ℏH2�

4π2c3�Z�
½1þ p1ðkÞ þ p2ðkÞ þ p3ðkÞ�; ð2Þ

with H, Z, and c evaluated at a pivot scale k�, as described
in (67). The functions pnðkÞ have a logarithmic depend-
ence, i.e., include powers of lnðk=k�Þ, and represent the
NnLO correction to the power spectrum. The explicit form
of these functions is reported in Tables III–VI. From the full
power, we can also extract the predictions for the ampli-
tude, tilt, running of the tilt, and running-of-the-running of
the tilt, which are reported in Tables VII and XI. In Sec. VI,
we discuss our results in the context of single-field
inflation. In Sec. VII, we analyze Starobinsky inflation
and compute the N3LO corrections as an expansion in the
single parameter N�, reported in Table IX. Finally, in
Sec. VIII, we discuss the results obtained in this work
and outline possible extensions.
Throughout the paper, we adopt units with the speed of

light c ¼ 1, while we keep track of Planck’s constant ℏ and
Newton’s gravitational constant G. The metric signature is
ð−þþþÞ, a derivative with respect to cosmic time is
denoted by ð̇ Þ, and a derivative with respect to other
variables by ð Þ0. Complex conjugation is denoted by ð Þ�,
and evaluation at a pivot scale by ð Þ�.

II. ACTION AND PERTURBATIONS

A. Quadratic action

We consider an inflationary background geometry given
by the spatially-flat Friedman-Lemaître-Robertson-Walker
(FLRW) metric

ḡμνdxμdxν ¼ −dt2 þ aðtÞ2δijdxidxj; ð3Þ

TABLE I. Effective models of inflation. The functions ZðtÞ and
cðtÞ are defined by the quadratic action for scalar (s) and tensor (t)
perturbations of the form (4). The symbols indicate that the
functions reported are of the form considered here (✓) or not (✗).

Theory ZsðtÞ csðtÞ ZtðtÞ ctðtÞ
Single-field [18] Eq. (69) 1 Eq. (70) 1
Rþ αR2 [19–21] Eq. (91) 1 Eq. (94) 1
K-inflation [22] ✓ ✓ ✓ 1
LQCþ inflaton [23,24] ✓ ✓ ✓ ✓
fðφÞ-Gauss Bonnet [25] ✓ ✓ ✓ ✓
fðφÞ-Chern Simons [26,27] ✓ ✓ ✗ ✗
General scalar-tensor [19] ✓ ✓ ✓ ✓
Goldston mode EFT [28] ✓ ✓ ✓ ✓
Multifield EFT [29] ✓ ✓ ✓ ✓
Minimally broken CFT [30] ✓ ✓ ✓a ✓a
Weinberg’s EFT [31] ✓ ✓ ✓a ✓a

aThe effective theory requires an additional assumption of no
parity violation to exclude a dependence on k in the functions
ZðtÞ and cðtÞ.
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which, together with other homogeneous and isotropic
fields, satisfies the background equations of motion of an
inflationary theory of gravity and matter. Because of the
symmetry of the background, perturbations of the geometry
and of matter fields decompose in scalar, vector, and tensor
(SVT) modes. Once one fixes a gauge and solves the
Hamiltonian and diffeomorphism constraints perturba-
tively, the action of perturbations decouples at quadratic
order and takes the general form

S2½ψ � ¼
Z

dt
Z

d3k
ð2πÞ3 aðtÞ

3ZψðtÞ
�
1

2
jψ̇ðk; tÞj2

−
1

2
cψ ðtÞ2

k2

aðtÞ2 jψðk; tÞj
2

�
; ð4Þ

where k ¼ jkj, and we used the generic name ψðk; tÞ for
the Fourier transform of each of the SVT modes Ψðx; tÞ,

Ψðx; tÞ ¼
Z

d3k
ð2πÞ3 ψðk; tÞe

ik·x: ð5Þ

Together with the scale factor aðtÞ, the quadratic action
encodes the coupling of the SVT modes to the background
via two functions of time t: the kinetic amplitude, ZψðtÞ,
and the speed of sound, cψðtÞ. In a given model, their time
dependence can be expressed in terms of time-derivatives
of the Hubble rateHðtÞ ¼ ȧðtÞ=aðtÞ, but here we treat them
as independent as it allows us to derive general results. We
make the assumption that they do not depend on the mode k
(which excludes some models of inflation) and require both
a no-ghost condition, ZψðtÞ > 0, and a no-Laplacian-
instability condition, cψðtÞ2 > 0.
The well-studied case of single-field inflation corre-

sponds to the two functions being constant for tensor
modes, while scalar curvature perturbations have a constant
speed of sound and a time-dependent kinetic amplitude
ZsðtÞ proportional to the slow-roll parameter −ḢðtÞ=HðtÞ2.
In the case of Starobinsky inflation treated in the geometric
framework, ZsðtÞ and ZtðtÞ depend nontrivially on higher
time-derivatives of the Hubble rate both for scalar and for
tensor modes, but the speed of sound is still constant
for both.
The effective field theory of single-field [28] and

multifield [29] inflation has a quadratic action of this form,
with a nontrivial speed of sound cψðtÞ that needs to be
determined via observations and a nontrivial kinetic ampli-
tude ZψðtÞ that depends on the slow-roll parameter and on
the speed of sound.
In loop quantum cosmology, quantum geometry

effects modify the Mukhanov-Sasaki equation which, in
a self-consistent approximation, can also be cast in the
form (4) [23,24].
In models of K-inflation [22], the action of the inflaton

field includes higher derivative terms of the form

SKinfl ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fKðφÞðgμν∂μφ∂νφÞ2; ð6Þ

which result again in an action for scalar perturbations of
the form (4) with a nontrivial speed of sound. Similarly,
models that include a coupling fGBðφÞLGB to the Gauss-
Bonnet density [25],

LGB ¼ RμνρσRμνρσ − 4RμνRμν þ R2; ð7Þ

can be cast in the form (4) for scalar pertubations. On the
other hand, in models with a coupling fCSðφÞLCS to the
Chern-Simons density,

LCS ¼ −ð ffiffiffiffiffiffi
−g

p Þ−1ϵμνρσRα
βμνRβ

αρσ; ð8Þ

tensor perturbations with circular polarization (�) have a
kinetic term Z�ðt; kÞ and speed of sound c�ðt; kÞ which
depend linearly on �k, resulting in gravitational parity
violation [26,27]. Therefore, they cannot be cast in the
form (4) assumed here because of the dependence on k.
Weinberg’s formulation of an effective field theory of

single-field inflation starts from the most general action
S½gμν;φ� which includes all diffeomorphism invariant
terms, organized in an order-by-order expansion in the
number of spacetime derivatives, up to fourth order [31]. In
particular, it includes a coupling of the inflaton field φ to
quadratic terms in the Weyl tensor, CμνρσCμνρσ and
ð ffiffiffiffiffiffi−gp Þ−1ϵμνρσCα

βμνCβ
αρσ , and a term of the K-inflation

type (6). Up to field redefinitions, and using reduction
of order of the four-derivative terms with respect to the
(two-derivative) Einstein equations of motion

Rμν ¼ 8πG

�
Tμν −

1

2
gμνT

�
; ð9Þ

one can reabsorb quadratic terms in the Ricci tensor into a
K-inflation term. Therefore, the effective action takes the
form of single-field inflation with an inflaton potential
VðφÞ, a K-inflation term (6), a GB-coupling (7), and a
CS-coupling (8). If we further assume that the theory is
invariant under all diffeomorphisms, including diffeomor-
phisms not connected with the identity such as orientation
reversals, then the parity-violating coupling to LCS has to
vanish, and the quadratic action for scalar and tensor
perturbation takes once more the form (4), with the kinetic
amplitude and the speed of sound expressed in terms of
time-derivatives of the Hubble rateHðtÞ, of the background
inflaton field φ̄ðtÞ, and of the couplings Vðφ̄ðtÞÞ, fKðφ̄ðtÞÞ,
and fGBðφ̄ðtÞÞ.
In summary, the formalism that we develop in this work

applies to the broad class of effective theories of inflation in
which quadratic action can be cast in the form of (4) and,
among others, include most of the models discussed above,
as shown in Table I.
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B. Hubble-flow expansion

The variational principle for the quadratic action (4)
results in equations of motion for the SVT perturbations
that depend on the background functions aðtÞ, HðtÞ, ZψðtÞ,
cψ ðtÞ and their time derivatives. In the simplest models, the
mechanism that produces a frozen power spectrum for
tensor modes is a transition in the mode equation  uðtÞ þ
3HðtÞu̇ðtÞ þ ðk=aðtÞÞ2uðtÞ ¼ 0 from an oscillatory phase
with small friction HðtÞ ≪ k=aðtÞ to an overdamped phase
with large friction HðtÞ ≫ k=aðtÞ. For a given mode k, the
transition requires an increasing comoving scale aðtÞHðtÞ,
i.e., an accelerating phase

0 <  a ¼ d
dt
ðaðtÞHðtÞÞ ¼ ð1 − ϵ1HðtÞÞaðtÞHðtÞ2; ð10Þ

or equivalently a Hubble-flow parameter ϵ1HðtÞ < 1 with

ϵ1HðtÞ≡ −
ḢðtÞ
HðtÞ2 : ð11Þ

During a de Sitter phase, a0ðtÞ ¼ eH0t, the Hubble rate is
constant and therefore the Hubble-flow parameter vanishes
exactly. In a quasi-de Sitter phase, the Hubble rate is
assumed to change slowly and it is useful to introduce a
systematic expansion, called Hubble-flow expansion,
defined recursively in terms of the dimensionless param-
eters ϵnH, with

ϵðnþ1ÞHðtÞ≡ −
ϵ̇nHðtÞ

HðtÞϵnHðtÞ
: ð12Þ

A phase of quasi-de Sitter inflation is characterized by
jϵnHj ≪ 1. Different conventions have been used in the
literature for the Hubble-flow expansion, and to avoid
confusion a dictionary is provided in Table II. Generally
speaking, our definition has a relative sign of ϵnH, for
n ≥ 2, with respect to the definition used in [33]. Similarly,
we introduce new Hubble-flow parameters for the kinetic
amplitude ZψðtÞ,

ϵ1ZðtÞ≡ −
ŻψðtÞ

HðtÞZψðtÞ
; ð13Þ

ϵðnþ1ÞZðtÞ≡ −
ϵ̇nZðtÞ

HðtÞϵnZðtÞ
; ð14Þ

and for the speed of sound cψðtÞ,

ϵ1cðtÞ≡ −
ċψ ðtÞ

HðtÞcψ ðtÞ
; ð15Þ

ϵðnþ1ÞcðtÞ≡ −
ϵ̇ncðtÞ

HðtÞϵncðtÞ
: ð16Þ

All the flow parameter are assumed to be of the same order,
e.g., OðϵnHÞ ¼ Oðϵn0ZÞ ¼ Oðϵn00cÞ. To simplify the nota-
tion, we use a placeholder ϵ to track the corresponding
order of the expansion, i.e., Oðϵ1HÞ ¼ OðϵÞ, Oðϵ21ZÞ ¼
Oðϵ2Þ, and so on. In a specific model of inflation, this
assumption is to be checked a posteriori. In this work, we
consider corrections up to order ϵ3.

III. QUANTIZATION OF PERTURBATIONS

A. Field representation and mode expansion

Inflation explains the anisotropies in the CMB temper-
ature and the seeds of large-scale structures in terms of
vacuum fluctuations that are assumed to be homogeoneous
and isotropic. Specifically, the SVT fields Ψ̂ðx; tÞ are
assumed to be initially in a vacuum state j0i with a two-
point correlation function that, at an equal time t, is
invariant under rotations and translations,

h0jΨ̂ðx; tÞΨ̂ðx0; tÞj0i ¼ Gðjx − x0j; tÞ: ð17Þ
Neglecting interactions andnon-Gaussianities, this condition
can be encoded in a Gaussian vacuum state in Fock space,
defined by the condition âðkÞj0i ¼ 0; ∀k, with bosonic
creation and annihilation operators, ½âðkÞ; â†ðk0Þ� ¼
ð2πÞ3δð3Þðk − k0Þ, together with a mode expansion of the
quantum field

Ψ̂ðx; tÞ ¼
Z

d3k
ð2πÞ3 ðuðk; tÞâðkÞ þ u�ðk; tÞâ†ð−kÞÞeik·x:

ð18Þ
The assumption of homogeneity and isotropy (17) implies
that the modes uðk; tÞ depend only on k ¼ jkj. Moreover, at
the classical level, the conjugatemomentumderived from the
action (4) is defined by

πðk; tÞ≡ δS2½ψ �
δψ̇ðk; tÞ ¼

aðtÞ3Zψ ðtÞ
ð2πÞ3 ψ̇ð−k; tÞ ð19Þ

and denoted Πðx; tÞ in position space. Canonical quantiza-
tion of the Poisson brackets results in the canonical commu-
tation relation (CCR), ½Ψ̂ðx; tÞ; Π̂ðx0; tÞ� ¼ iℏδð3Þðx − x0Þ,
which, together with (18), implies the canonical Wronskian
condition for the mode functions

uðk; tÞu̇�ðk; tÞ − u̇ðk; tÞu�ðk; tÞ ¼ iℏ
aðtÞ3Zψ ðtÞ

; ð20Þ

TABLE II. Dictionary of definitions for the first Hubble-flow
parameters. Compare also with the conversion table in [43].

This work Stewart and Gong [32] Auclair and Ringeval [33]

ϵ1H ϵ1 ϵ1
ϵ2H −2ϵ1 − 2δ1 −ϵ2
ϵ2Hϵ3H ϵ21 þ 6ϵ1δ1 − 2δ21 þ 2δ2 ϵ2ϵ3
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whereu� is the complex conjugate ofu. Finally, the equations
of motion (EoM) derived from the action (4) for each of the
SVT modes results in the mode equation

 uðk; tÞ þ ð3− ϵZ1ðtÞÞHðtÞu̇ðk; tÞ þ cψðtÞ2
k2

aðtÞ2 uðk; tÞ ¼ 0:

ð21Þ
A choice of initial conditions uðk; t0Þ; u̇ðk; t0Þ for the EoM
(21), satisfying the CCR constraint (20), or equivalently a
choice of solution of the two equations, defines a Gaussian
state j0i that is homogeneous and isotropic, (17). In the next
section, we discuss how to select an adiabatic solution
of (20) and (21) that generalizes the Bunch-Davies vacuum
to quasi-de Sitter space, order-by-order in the Hubble-flow
expansion.

B. Mukhanov-Sasaki variables

In de Sitter space, the Hubble rate is constant,
a0ðtÞ ¼ eH0t, and in the simplest models of a test quantum
field, the EoM reduces to  uþ 3H0u̇þ ðk=a0ðtÞÞ2u ¼ 0

and the CCR equation to uu̇� − u̇u� ¼ iℏ=a0ðtÞ3. Using a
reparametrization of time t → η and a change of variables
u → w,

η ¼ −
1

a0ðtÞH0

; wðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ðtÞ2=ℏ

q
uðtÞ; ð22Þ

the EOM and CCR take the simpler form

w00ðηÞ þ
�
k2 −

2

η2

�
wðηÞ ¼ 0; ð23Þ

wðηÞw0�ðηÞ − w0ðηÞw�ðηÞ ¼ i: ð24Þ

These two equations admit a basis of linearly independent
solutions ðwðηÞ; w�ðηÞÞ, with

wðηÞ ¼ 1ffiffiffiffiffi
2k

p
�
1 −

i
kη

�
e−ikη; ð25Þ

which defines the Bunch-Davies vacuum, i.e., the de Sitter
invariant state j0i for the test quantum field [45]. In quasi-
de Sitter space, one can follow a similar strategy as
first done by Mukhanov and Sasaki [46,47], with the
conformal time η and a choice of pivot scale k� defined
by the horizon-crossing condition k� ≡ aðt�ÞHðt�Þ or,
equivalently, k�η� ¼ −1, which characterizes the transition
from the oscillatory to the frozen overdamped phase
discussed earlier. Mathematically, the first step of this
strategy relies on recasting a second-order linear differ-
ential equation with time-dependent coefficients,
v00ðxÞ þ f1ðxÞv0ðxÞ þ f2ðxÞvðxÞ ¼ 0, in the standard form
w00ðηÞ þQðηÞwðηÞ ¼ 0, where QðηÞ is made as nearly
free from poles and branch points as is conveniently

possible, by changing both independent and dependent
variables [48,49].
In this section, we address this problem for Eqs. (20) and

(21), extending the analysis of [32,33]. We start by noticing
that the EoM for u includes a term proportional to u̇ that we
can remove via a change to a new variable vðxÞ, which also
includes a time reparametrization t → xðtÞ to be deter-
mined. Starting from the ansatz

uðtÞ ¼ vðxðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðxðtÞÞp ; ð26Þ

the EoM takes the form

v00ðxÞ þ f1ðxÞv0ðxÞ þ f2ðxÞvðxÞ ¼ 0: ð27Þ

The function f1ðxÞ is given by

f1ðxÞ ¼
 x
ẋ2

þ
�
3H þ Żψ

Zψ
−
μ̇

μ

�
ẋ
ẋ2

; ð28Þ

and f2ðxÞ reads

f2ðxÞ ¼
k2c2ψ
a2ẋ2

þ 3μ̇2 − 2 μ  μþ 2Hμμ̇ðϵZ1 − 3Þ
4μ2ẋ2

: ð29Þ

By imposing the condition f1ðxÞ ¼ 0, we find μðxðtÞÞ ¼
μ0aðtÞ3ZψðtÞẋ=ℏ, where μ0 is an integration constant that
can be determined to be μ0 ¼ 1 by imposing the canonical
normalization of the CCR,

vðxÞv0�ðxÞ − v0ðxÞv�ðxÞ ¼ i: ð30Þ
The next step is to impose that a term of the form
ððk=k�Þ2 −…ÞvðxÞ, where k� is a pivot scale later defined
in terms of a horizon-crossing time. Imposing this con-
dition on f2ðxÞ, we find the equation

ẋ ¼ −k�
cψðtÞ
aðtÞ ; ð31Þ

which defines the change of time variables t → x. Note that
the time variable x is not the conformal time η, i.e., (22), but
a generalized version that we denote by τ, as a consequence
of the time-dependent speed of sound cψðtÞ. With this
identification, the map between uðtÞ and vðxÞ is fully
characterized,

uðtÞ → vðxÞffiffiffiffiffiffiffiffiffi
μðxÞp ¼ vðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k�a2cψZψ=ℏ
q : ð32Þ

Now, notice that the EoM (21) becomes

v00ðxÞ þ
�
k2

k2�
þ aðtÞ2HðtÞ2

k2�c2ψ ðtÞ
qðtÞ

�
vðxÞ ¼ 0; ð33Þ
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where

qðtÞ ¼ −2þ ϵH1ðtÞ þ
3

2
ϵZ1ðtÞ þ

ϵ1cðtÞ
2

−
ϵ1HðtÞϵ1ZðtÞ

2
−
ϵ1ZðtÞ2

4
−
ϵ1ZðtÞϵ2ZðtÞ

2

−
ϵ1cðtÞϵ1HðtÞ

2
−
ϵ1cðtÞϵ2cðtÞ

2
þ ϵ21cðtÞ

4
: ð34Þ

This equation is exact in the flow parameters ϵ1HðtÞ, ϵ1ZðtÞ,
ϵ1cðtÞ, etc. The last step is to write t in terms of the time x
by solving (31). This can be done self-consistently in a
Hubble-flow expansion as discussed in Appendix A, where
we find

xðtÞ ¼ −k�τðtÞ ¼
k�c̃ψðtÞ
aðtÞHðtÞ ; ð35Þ

with c̃ψ ðtÞ defined as

c̃ψ ðtÞ≡ cψðtÞ½1þ ϵ1HðtÞ − ϵ1cðtÞ þ ϵ1HðtÞ2 − ϵ1HðtÞϵ2HðtÞ − 2ϵ1cðtÞϵ1HðtÞ þ ϵ1cðtÞϵ2cðtÞ þ ϵ1cðtÞ2
þ ϵ1HðtÞ3 þ ϵ1HðtÞϵ2HðtÞϵ3HðtÞ − 3ϵ1HðtÞ2ϵ2HðtÞ þ ϵ1HðtÞϵ2HðtÞ2 − ϵ1cðtÞϵ2cðtÞ2 þ 3ϵ1cðtÞϵ1HðtÞϵ2HðtÞ
− 3ϵ1cðtÞ2ϵ2cðtÞ þ 3ϵ1cðtÞϵ1HðtÞϵ2cðtÞ − ϵ1cðtÞϵ2cðtÞϵ3cðtÞ − ϵ1cðtÞ3 þ 3ϵ1cðtÞ2ϵ1HðtÞ − 3ϵ1cðtÞϵ1HðtÞ2 þOðϵ4Þ�:

ð36Þ

One can use (35) whenever we need towrite aðtÞ exclusively
in terms of x, order-by-order. The next step is to write each
flow parameter in terms of the new timevariable x, which can
be donevia a logarithmic expansion around thevalue x� ≡ 1.
The time t� with x� ¼ xðt�Þ ¼ 1 encodes a “generalized
horizon-crossing” condition in the expansion (35), i.e.,
c̃�k� ¼ a�H�. Note that the standard “horizon-crossing”
condition is only recovered when c̃� ¼ 1, i.e., in exact de
Sitter space and with cψ ¼ 1. In quasi-de Sitter space, where
the Hubble-flow parameters are generically nonzero, even if
cψ ¼ 1 there will be contributions to c̃ψ . However, in that
scenario, the contributions comeonly from ϵ1H; ϵ2H, and ϵ3H,
i.e., the background geometry. Then, the expansion around a
particular pivot scale k�will be the same for scalar and tensor
modes. A different situation occurs if cψ ≠ 1, where the
additional contributions make the comparison of two differ-
ent SVT modes at the same pivot scale, as in the case of the
tensor-to-scalar ratio r, not immediate. In Appendix B, we
describe a procedure to expand the power spectra of two
different SVT modes, with speeds of sound cðAÞ ≠ cðBÞ,
around the same pivot scale in such a way that both spectra
can be consistently compared with each other.

C. Logarithmic expansion

To illustrate the procedure, let us consider an arbitrary
function ρðtÞ, such as HðtÞ, Zψ ðtÞ, or cψðtÞ. For

definiteness, suppose that this function is smooth and only
depends on time. The goal is to write it explicitly in terms of
the new time variable x, i.e., ρðxÞ, as a perturbative
expansion around a pivot value x� ¼ xðt�Þ ¼ 1, i.e.,
k�τ� ¼ −1. In a quasi-de Sitter phase of cosmic inflation,
these geometric functions are assumed to be slowly varying
with respect to time x. Thus, a logarithmic expansion is
appropriate in this context. In other words, we look for an
expression of the form

ρðxÞ ¼ ρ� þ ρ1� lnðxÞ þ ρ2� lnðxÞ2
þ ρ3� lnðxÞ3 þOðϵ4Þ; ð37Þ

where the expansion is always understood to be around
x� ¼ 1, the first term ρ� ¼ ρðx�Þ, and the rest of coef-
ficients are given by ρn� ¼ ðn!Þ−1dnρðxÞ=d lnðxÞnjx→x�,
n ¼ 1, 2, 3. These coefficients are given by expressions
that can be recursively expanded by using (31) and its
derivatives and then replacing (35) in combination with the
flow expansion. In this way, the logarithmic expansion is
extended to all the relevant variables, including the flow
parameters. The generic expressions for ρ ¼ H;Zψ ; cψ and
the associated flow parameters are given by (38),

ρðxÞ ¼ ρ�½1þ ðϵ1ρ� þ ϵ1ρ�ðϵ1H� − ϵ1c�Þ þ ϵ1ρ�½ϵ1H�ðϵ1H� − ϵ2H�Þ þ ϵ1c�ð−2ϵ1H� þ ϵ2c�Þ þ ϵ21c��Þ lnðxÞ

þ 1

2
ðϵ1ρ�ðϵ1ρ� þ ϵ2ρ�Þ þ ϵ1ρ�½−ϵ1c�ð2ϵ1ρ� þ ϵ2c� þ 2ϵ2ρ�Þ þ ϵ1H�ð2ϵ1ρ� þ ϵ2H� þ 2ϵ2ρ�Þ�Þ ln ðxÞ2

þ 1

6
ϵ1ρ�ðϵ21ρ� þ 3ϵ1ρ�ϵ2ρ� þ ϵ2ρ�ðϵ2ρ� þ ϵ3ρ�ÞÞ ln ðxÞ3� þOðϵ4Þ;
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ϵ1ρðxÞ ¼ ϵ1ρ� þ ðϵ1ρ�ϵ2ρ� þ ð−ϵ1c� þ ϵ1H�Þϵ1ρ�ϵ2ρ�Þ lnðxÞ þ
�
1

2
ϵ1ρ�ϵ2ρ�ðϵ2ρ� þ ϵ3ρ�Þ

�
ln ðxÞ2 þOðϵ4Þ;

ϵ2ρðxÞ ¼ ϵ2ρ� þ ϵ2ρ�ϵ3ρ� lnðxÞ þOðϵ3Þ;
ϵ3ρðxÞ ¼ ϵ3ρ� þOðϵ2Þ: ð38Þ

In this way, for instance, the Hubble rate HðxÞ in a
neighborhood of x� can be completely written in terms
of lnðxÞn and other coefficients evaluated at the pivot time,
e.g., ϵ1H� ¼ ϵ1Hðt�Þ, ϵ1c� ¼ ϵ1cðt�Þ, etc.

IV. GREEN’S FUNCTION METHOD

The logarithmic expansion is a crucial tool to write the
final expression of the equation of motion that describes the
dynamics of the mode functions vðxÞ and, therefore uðk; tÞ,

during the inflationary epoch. Using the expansion (35) in
Eq. (33), the EoM for the modes becomes

v00ðxÞ þ
��

k
k�

�
2

−
2

x2

�
vðxÞ ¼ gðxÞ

x2
vðxÞ; ð39Þ

where gðxÞ≡ g1� þ g2� lnðxÞ þ g3� lnðxÞ2, and the coeffi-
cients g1�, g2�, and g3� are given by

g1� ¼ 3ϵH1� −
3ϵZ1�
2

−
9ϵc1�
2

þ 4ϵ21H� −
5ϵ1H�ϵ1Z�

2
þ ϵ21Z�

4
− 4ϵ1H�ϵ2H� þ

ϵ1Z�ϵ2Z�
2

−
21ϵ1H�ϵ1c�

2
þ 3ϵ1Z�ϵ1c� þ

27ϵ21c�
4

þ 9

2
ϵ1c�ϵ2c�

þ 5ϵ31H� þ 4ϵ1H�ϵ2H�ϵ3H� − 14ϵ21H�ϵ2H� þ 4ϵ1H�ϵ22H� −
7

2
ϵ21H�ϵ1Z� þ

1

2
ϵ1H�ϵ21Z� þ 3ϵ1H�ϵ1Z�ϵ2H�

þ ϵ1H�ϵ1Z�ϵ2Z� −
1

2
ϵ1c�ϵ21Z� − 18ϵ21c�ϵ2c� þ 15ϵ1c�ϵ1H�ϵ2c� − 3ϵ1c�ϵ1Z�ϵ2c� − 4ϵ1c�ϵ22c� þ 17ϵ1c�ϵ1H�ϵ2H�

− ϵ1c�ϵ1Z�ϵ2Z� − 4ϵ1c�ϵ2c�ϵ3c� − 9ϵ31c� þ
45

2
ϵ21c�ϵ1H� −

37

2
ϵ1c�ϵ21H� −

9

2
ϵ21c�ϵ1Z� þ 8ϵ1c�ϵ1H�ϵ1Z�;

g2� ¼ 3ϵ1H�ϵ2H� −
3

2
ϵ1Z�ϵ2Z� −

9

2
ϵ1c�ϵ2c�

− 4ϵ1H�ϵ2H�ϵ3H� þ 11ϵ21H�ϵ2H� − 4ϵ1H�ϵ22H� þ
1

2
ϵ1Z�ϵ2Z�ϵ3Z� −

5

2
ϵ1H�ϵ1Z�ϵ2H� þ

9

2
ϵ1Z�ϵ2Z�ϵ1c�

− 4ϵ1Z�ϵ1H�ϵ2Z� þ
1

2
ϵ21Z�ϵ2Z� þ

1

2
ϵ1Z�ϵ22Z� þ 3ϵ1c�ϵ1Z�ϵ2c� þ

9

2
ϵ1c�ϵ22c� −

27

2
ϵ1H�ϵ2H�ϵ1c�

þ 9

2
ϵ1c�ϵ2c�ϵ3c� þ 18ϵ21c�ϵ2c� − 15ϵ1c�ϵ1H�ϵ2c�;

g3� ¼
3ϵ1H�ϵ2H�ϵ3H�

2
þ 3ϵ1H�ϵ22H�

2
−
3ϵ1Z�ϵ2Z�ϵ3Z�

4
−
3ϵ1Z�ϵ22Z�

4
−
9ϵ1c�ϵ2c�ϵ3c�

4
−
9ϵ1c�ϵ22c�

4
; ð40Þ

with all quantities truncated at order Oðϵ3Þ, i.e., N3LO.
Notice that the lowest order flow parameter contained in gn�
is of order Oðϵn�Þ. Given the functional form of gðxÞ, it
is clear that Eq. (39) does not admit a closed-form
analytical solution, but in this form it can now be solved
in an order-by-order expansion as we discuss as we discuss
below.
Following and extending [32,33], we use the Green’s

function method to correct the Bunch-Davies vacuum
order by order in a systematic expansion. To simplify
the intermediate formulas, we rescale our variables x → y
and v → w to remove the dependence on the pivot scale k�:

vðxÞ ¼
ffiffiffiffiffi
k�
2k

r
wðyÞ and y ¼ k

k�
x: ð41Þ

Notice that under this rescaling we have y ¼ −kτ and
x ¼ −k�τ, where the generalization of conformal time is
given by τðtÞ, which solves

τ̇ðtÞ ¼ cψ ðtÞ
aðtÞ ; ð42Þ
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as it can be seen from (31). Then, the EoM (39) reads as

w00ðyÞ þ
�
1 −

2

y2

�
wðyÞ ¼ gðyÞ

y2
wðyÞ; ð43Þ

where gðyÞ ¼ g1⊛ þ g2⊛ lnðyÞ þ g3⊛ lnðyÞ2, i.e., the coef-
ficients gn⊛ are of the same form as (40) but are implicitly
assumed to be evaluated at y⊛ ¼ 1, and the CCR relation of
(30) becomes

wðyÞw0�ðyÞ − w0ðyÞw�ðyÞ ¼ −2i: ð44Þ

Note the factor of 2 in the mode (41) and in the CCR
normalization (44), fixed to match the normalization used
in [33]. Now, the goal is to solve (43) in a systematic
expansion around the Bunch-Davies solution (25),

w0ðyÞ ¼
�
1þ i

y

�
eiy: ð45Þ

The lhs of (43) takes the same form as (23), and we can
capture the correction from the rhs introducing the
advanced Green’s function in the variable y (which is
the causal Green’s function for cosmic time t):

Gðy; sÞ ¼ i
2
ðw0ðyÞw�

0ðsÞ − w0ðsÞw�
0ðyÞÞΘðs − yÞ; ð46Þ

whereΘðs − xÞ is the Heaviside step function. The solution
of the EoM (43) can be found recursively as

wðyÞ ¼ w0ðyÞ þ
Z

∞

y

gðyÞ
s2

wðsÞGðy; sÞds: ð47Þ

We note that the structure of the function qðyÞ allows us to
write an expansion of the form wðyÞ ¼ w0ðyÞ þ w1ðyÞ þ
w2ðyÞ þ w3ðyÞ þOðϵ4Þ, where

w1ðyÞ ¼ g1⊛
Z

∞

y

Gðy; sÞ
s2

w0ðsÞds; ð48Þ

w2ðyÞ ¼ g2⊛
Z

∞

y

Gðy; sÞ
s2

lnðsÞw0ðsÞds

þ g1⊛
Z

∞

y

Gðy; sÞ
s2

w1ðsÞds; ð49Þ

w3ðyÞ ¼ g3⊛
Z

∞

y

Gðy; sÞ
s2

lnðsÞ2w0ðsÞds

þ g2⊛
Z

∞

y

Gðy; sÞ
s2

lnðsÞw1ðsÞds

þ g1⊛
Z

∞

y

Gðy; sÞ
s2

w2ðsÞds: ð50Þ

It can be checked that wnðyÞ ¼ OðϵnÞ in the flow expan-
sion. These integrals are difficult to work with, especially at
the third order. However, as we discuss in the next section
on the late-time power spectrum, to extract the physically
relevant information from the vacuum state described by
the mode functions, we only need to know the asymptotic
behavior of jwðyÞj2 in the limit y → 0þ. The freezing in the
power spectrum corresponds to a finite value of the ratio
jwðyÞj2=μðyÞ as y → 0þ, despite the divergent behavior of
wðyÞ and μðyÞ by themselves. Fortunately, it was shown
in [33] that this asymptotic behavior is fully captured by a
family of one-dimensional integrals, starting with

F0ðyÞ ¼
Z

∞

y

e2is

s
ds ¼ − lnðyÞ − BþOðyÞ;

F1ðyÞ ¼
Z

∞

y

e2is

s
lnðsÞds

¼ −
1

2
lnðyÞ2 þ B2

2
þ π2

12
þOðyÞ; ð51Þ

F2ðyÞ ¼
Z

∞

y

e2is

s
lnðsÞ2ds

¼ −
1

3
lnðyÞ3 − B3

3
−
π2

6
B −

2

3
ζð3Þ þOðyÞ; ð52Þ

where B ¼ γE þ lnð2Þ − iπ=2, with γE ≃ 0.577 being the
Euler-Mascheroni constant and ζð3Þ ≃ 1.202 being the
Riemann zeta function evaluated at 3. Next, one considers
the two-dimensional integral,

F00ðyÞ ¼
Z

∞

y

e−2is

s
F0ðsÞds;

¼ π2

4
þ B2

2
þ B lnðyÞ þ 1

2
lnðyÞ2 þOðyÞ; ð53Þ

and the three-dimensional integral,

F000ðyÞ ¼
Z

∞

y

eþ2is

s
F00ðsÞds

¼ −
7

3
ζð3Þ − π2

4
B −

1

6
B3 −

�
π2

4
þ B2

2

�
lnðyÞ

−
B
2
ln2ðyÞ − 1

6
ln3ðyÞ þOðyÞ: ð54Þ

The details of the asymptotic expansions and the explicit
expressions of the solution wðyÞ in terms of these integrals
can be found in [33]. As in the limit y → 0þ we have
μ ∼ a2 ∼ x−2 ∼ y−2, we have that the relevant quantity to
compute in detail in the limit is jywðyÞj2. In terms of the
integrals given above, it is given by
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jywðyÞj2 ¼ 1þ 2

3
g1⊛½2þ ReðF0Þ�

þ 2

27
g21⊛½4þ 3jF0j2 þ 11ReðF0Þ� þ

2

9
g2⊛½8þ 7ReðF0Þ þ 3ReðF1Þ þ 6 lnðyÞ�

þ 2

243
g31⊛½−8þ 14ReðF0Þ þ 30jF0j2 þ 9ReðF00F0Þ þ 9ReðF000Þ�

þ 4

81
g1⊛g2⊛½−4þ 21jF0j2 þ 9ReðF1F0Þ þ 40ReðF0Þ þ 15ReðF1Þ þ 12 lnðyÞ þ 18ReðF0Þ lnðyÞ�

þ 2

27
g3⊛½52þ 50ReðF0Þ þ 42ReðF1Þ þ 9ReðF2Þ þ 48 ln xþ 18 lnðyÞ2� þOðϵ4; xÞ; ð55Þ

and the asymptotic evaluation of the multidimensional integrals gives

jywðyÞj2 ¼ 1 −
2Cg1⊛

3
−
4g21⊛
9

þ 2Cg21⊛
27

þ 2C2g21⊛
9

þ 8g31⊛
27

þ 68Cg31⊛
243

−
4C2g31⊛

81

−
4C3g31⊛

81
−
2Cg2⊛

9
þ C2g2⊛

3
−
8g1g2
27

þ 80Cg1⊛g2⊛
81

þ 2

27
C2g1⊛g2⊛ −

2

9
C3g1⊛g2⊛

þ g21⊛π2

18
−
g31⊛π2

81
−

1

27
Cg31⊛π2 −

g2⊛π2
36

þ 7

162
g1⊛g2⊛π2 −

5

54
Cg1⊛g2⊛π2 −

g3⊛π2
54

þ 1

18
Cg3⊛π2

þ 8g3⊛
9

−
4Cg3⊛
27

þ 2C2g3⊛
9

−
2C3g3⊛

9

þ lnðyÞ
�
−
2g1⊛
3

þ 2g21⊛
27

þ 4Cg21⊛
9

þ 68g31⊛
243

−
8Cg31⊛
81

−
4C2g31⊛

27
−
2g2⊛
9

þ 8g1⊛g2⊛
81

þ 8Cg1⊛g2⊛
27

−
2

9
C2g1⊛g2⊛ −

4g3⊛
27

−
g31⊛π2

27
þ 1

54
g1⊛g2⊛π2

�
−
14

81
g31⊛ζð3Þ −

4

9
g3⊛ζð3Þ

þ
�
2g21⊛
9

−
4g31⊛
81

−
4Cg31⊛
27

−
g2⊛
3

þ 2g1⊛g2⊛
9

þ 2Cg1⊛g2⊛
9

−
2g3⊛
9

�
lnðyÞ2

−
�
4g31⊛
81

−
2g1⊛g2⊛

9
þ 2g3⊛

9

�
lnðyÞ3; ð56Þ

where C ¼ γE þ lnð2Þ − 2 ≃ −0.730. We report the
numerical value of mathematical constants with only few
figures, but, as the N3LO power spectrum is at orderOðϵ3Þ,
with ϵ ∼ 10−2, the appropriate number of significant figures
of each exact mathematical constant should be used.

V. PRIMORDIAL OBSERVABLES

A. Power spectrum

We proceed to briefly review the definition of power
spectrum. The quantum field Ψ̂ðx; tÞ is an operator-valued
distribution. What we measure with a finite-resolution
detector at x0 is the smearing of the quantum field against
a test functionfðjx − x0jÞ that characterizes its response, i.e.,

Ψ̂fðtÞ≡
Z

d3xfðjx − x0jÞΨ̂ðx; tÞ

¼
Z

d3k
ð2πÞ3 f̃ðkÞψ̂ðk; tÞ; ð57Þ

where ψ̂ðk;tÞ¼uðk;tÞâðkÞþu�ðk;tÞâ†ð−kÞ. The Fourier
transform f̃ðkÞ of the test function is assumed to be smooth
andwith a compact support in ½kmin; kmax�which captures the
band or range of wavelengths that our observations probe.
The quasi-Bunch-Davies vacuum j0i, discussed earlier in
terms of themode functionsuðk; tÞ, is defined as the state that
approaches the Bunch-Davies vacuum in the far past where
quasi-de Sitter space approaches de Sitter space. As
âðkÞj0i ¼ 0, the expectation value of measurements of
the smeared field is zero, hΨfi≡ h0jΨ̂fðtÞj0i ¼ 0, and
the variance ðΔΨfÞ2 ≡ hΨf

2i − hΨfi2 is given by the
equal-time two-point correlation function

h0jΨ̂fðtÞΨ̂fðtÞj0i ¼
Z

d3k
ð2πÞ3 juðk; tÞj

2jf̃ðkÞj2

¼
Z

∞

0

dk
k

k3

2π2
juðk; tÞj2jf̃ðkÞj2

¼
Z

∞

0

dðlog kÞPðψÞðk; tÞjf̃ðkÞj2; ð58Þ
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where we integrated away the angular variables (using the
assumed invariance of the test function under rotations and
the homogeneity and isotropy of the state) and defined the
power spectrum in a band dðlog kÞ at time t as usual:

PðψÞðk; tÞ≡ k3

2π2
juðk; tÞj2: ð59Þ

Therefore, by specifying the vacuum state j0i in terms of the
mode function uðk; tÞ, one has an immediate way to predict
the size of quantum fluctuations in terms of juðk; tÞj2.
Moreover, the mode k� that transitions from an oscillatory
phase to anoverdampedphase around a time t� before the end
of inflation has a power PðψÞðk�; tÞ that freezes to a finite
value for t ≫ t�. The late-time power spectrum, defined
formally as the limitP0ðkÞ ¼ limt→∞Pðt; kÞ, is thengivenby

PðψÞ
0 ðkÞ ¼ lim

t→∞

k3

2π2
juðk; tÞj2 ¼ lim

x→0þ

k3

2π2
jvðxÞj2
μðxÞ

¼ lim
y→0þ

ℏHðyÞ2
4π2cψðyÞc̃2ψðyÞZψ ðyÞ

jywðyÞj2

¼ lim
y→0þ

ℏHðyÞ2
4π2c3ψðyÞZψ ðyÞ

jywðyÞj2ð1þ…Þ; ð60Þ

where the ellipses indicate the Hubble-flow expansion of
cψ ðyÞ2=c̃ψðyÞ2 ¼ ð1þ…Þ as defined in (36). Furthermore,
all the y dependent functions will admit a logarithmic
expansion as done in (38). The caveat resides in the new
pivot scale associated to this new logarithmic expansion in
terms of lnðyÞ. Notice that, using (42),

lnðyÞ ¼ lnð−kτÞ ¼ ln

�
τ

τ⊛

�
; ð61Þ

where the new reference time is τ⊛ ¼ −1=k, such that
y⊛¼−kτ⊛¼1. Hence, a function ρðyÞ could be expanded as

ρðyÞ ¼ ρ⊛ þ ρ1⊛ ln

�
τ

τ⊛

�
þ ρ2⊛ ln

�
τ

τ⊛

�
2

þ ρ3⊛ ln

�
τ

τ⊛

�
3

þ � � � ð62Þ

In this way, the leading order term of the late-time power
spectrum becomes

PðψÞ
0 ðkÞ ¼ lim

y→0þ

ℏH2⊛
4π2c3⊛Z⊛

jywðyÞj2ð1þ � � �Þ

¼ ℏH2⊛
4π2c3⊛Z⊛

p⊛: ð63Þ

Note that, both the terms jywðyÞj2 and ð1þ…Þ contain
logarithmically divergent terms in the limit y → 0þ.

Remarkably, these logarithms exactly cancel out, and in
(63) there are no divergences in the limit. The coefficients in
p⊛ can be found inAppendixC, and are a combination of ϵ’s
evaluated at the reference time τ⊛ without any direct scale
dependence. To compare with the pivot scale1 associated to
the generalized horizon-crossing k� ¼ a�H�=c̃�, equivalent
to x� ¼ 1, we need the y–dependent functions to be
expanded around τ� and not τ⊛, which can be obtained by
noticing that

ln

�
τ⊛
τ�

�
¼ − ln

�
k
k�

�
: ð64Þ

On the other hand, the usual expansion in terms of the
variable x satisfies lnðxÞ ¼ lnð−k�τÞ ¼ lnðτ=τ�Þ. As a con-
sequence, we can write

ρ⊛ ≡ ρ

�
τ⊛
τ�

�
¼ ρ� − ρ1� ln

�
k
k�

�

þ ρ2� ln
�
k
k�

�
2

− ρ3� ln
�
k
k�

�
3

: ð65Þ

Thus, one can check that all the quantities ρ⊛, ϵ1ρ⊛ that we
would obtain in the logarithmic expansion can be expressed
in terms of ρ�, ϵ1ρ�, and so on, by only applying the map

ρ⊛ → ρðxÞjlnðxÞ↔− lnðk=k�Þ;

ϵnρ⊛ → ϵnρðxÞjlnðxÞ↔− lnðk=k�Þ; ð66Þ

where ρðxÞ and ϵnρðxÞ are the functional expressions of (38).
Now we have all the pieces to compute the third-order
corrections to the late-time power spectrum, which can be
parametrized as follows:

PðψÞ
0 ðkÞ ¼ ℏH2�

4π2c3�Z�

�
1þ p0� þ p1� ln

�
k
k�

�

þ p2� ln
�
k
k�

�
2

þ p3� ln
�
k
k�

�
3
�
; ð67Þ

where the coefficients p0�, p1�, p2�, and p3� are reported
Tables III–VI, respectively. The above expression together
with the reported coefficients are directly useful in analyzing
data from cosmological observables and represent the main
result of this work. A Mathematica notebook with the
explicit expressions can be found in [50]. Additionally, we
report in Table VII the power-law quantities, and in
Appendix D the corresponding expression for the amplitude

of the primordial power spectrum, i.e., AðψÞ
� ¼ PðψÞ

0 ðk�Þ.

1To consider a comparison between the spectra of two SVT
modes with different speeds of sound, see Appendix B.
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TABLE III. Full expression of p0� for a theory with generic Zψ and cψ , up to N3LO corrections.

Order Expression

NLO: p0� ¼ −2ð1þ CÞϵ1H� þ Cϵ1Z� þ ð2þ 3CÞϵ1c�
N2LO: þ 1

24

n
12ð−6þ 4Cþ 4C2 þ π2Þϵ21H� þ ϵ1Z�

h
3ð−8þ 4C2 þ π2Þϵ1Z� þ ð−12C2 þ π2Þϵ2Z�

i
− 2ϵ1H�

h
6ð−8þ 2Cþ 4C2 þ π2Þϵ1Z� þ ð−24 − 24C − 12C2 þ π2Þϵ2H�

i
þ 3ð−64þ 24Cþ 36C2 þ 9π2Þϵ21c�

− 3ϵ1c�
h
4ð−20þ 10Cþ 12C2 þ 3π2Þϵ1H� − 2ð−24þ 4Cþ 12C2 þ 3π2Þϵ1Z� − ð−16 − 16C − 12C2 þ π2Þϵ2c�

io

N3LO: þ 1
24

n
−8ϵ31H�

�
−16 − 24Cþ 4C3 þ 3Cπ2 þ 14ζð3Þ�þ 2ϵ21H�

�ð96 − 36C2 − 24C3 − 13π2 − 2Cð−36þ 5π2Þ�ϵ2H�
þ 6ϵ1Z�½−16 − 24Cþ 4C3 þ 3Cπ2 þ 14ζð3Þ�Þ þ ϵ1H�

	
ϵ1Z�

�ð−96 − 72Cþ 36C2 þ 24C3 þ 13π2 þ 10Cπ2Þϵ2H�
þ 2Cð−48þ 12C2 þ 5π2Þϵ2Z�

�þ 2ϵ2H�ðϵ2H� þ ϵ3H�Þ
�
−8 − 12C2 − 4C3 þ π2 þ Cð−24þ π2Þ − 8ζð3Þ�

− 6ϵ21Z�
�
−16 − 24Cþ 4C3 þ 3Cπ2 þ 14ζð3Þ�
þ ϵ1Z�

	
−ϵ2Z�ðϵ2Z� þ ϵ3Z�Þ

�
16 − 4C3 þ Cπ2 − 8ζð3Þ�

þCð48 − 12C2 − 5π2Þϵ1Z�ϵ2Z� þ ϵ21Z�
�
−16 − 24Cþ 4C3 þ 3Cπ2 þ 14ζð3Þ�
 − 3ϵ21c�

	ð−96þ 36C2 þ 36C3

þ 13π2 þ 15Cð−8þ π2ÞÞϵ2c� þ 18ϵ1H�ð−16 − 24Cþ 4C3 þ 3Cπ2 þ 14ζð3ÞÞ
− 9ϵ1Z�ð−16 − 24Cþ 4C3 þ 3Cπ2 þ 14ζð3ÞÞ
þ ϵ1c�

	
ϵ1Z�ð−ð−96þ 36C2 þ 36C3 þ 13π2 þ 15Cð−8þ π2ÞÞϵ2c�

− 3Cð−48þ 12C2 þ 5π2Þϵ2Z�Þ þ ϵ2c�ðϵ2c� þ ϵ3c�Þð−48C − 24C2 − 12C3 þ 2π2 þ 3Cπ2 − 24ζð3ÞÞ
þ 36ϵ21H�ð−16 − 24Cþ 4C3 þ 3Cπ2 þ 14ζð3ÞÞ þ 9ϵ21Z�ð−16 − 24Cþ 4C3 þ 3Cπ2 þ 14ζð3ÞÞ
þ ϵ1H�ð2ð−96þ 36C2 þ 36C3 þ 13π2 þ 15Cð−8þ π2ÞÞϵ2c� þ 3ð−96 − 72Cþ 36C2 þ 24C3 þ 13π2 þ 10Cπ2Þϵ2H�
− 36ϵ1Z�ð−16 − 24Cþ 4C3 þ 3Cπ2 þ 14ζð3ÞÞÞ
þ 27ϵ31c�ð−16 − 24Cþ 4C3 þ 3Cπ2 þ 14ζð3ÞÞ

o

TABLE IV. Full expression of p1� for a theory with generic Zψ and cψ , up to N3LO corrections.

Order Expression

NLO: p1� ¼ −2ϵ1H� þ ϵ1Z� þ 3ϵ1c�
N2LO: þ ð2þ 4CÞϵ21H� þ ϵ1H�½−ϵ1Z� − 4Cϵ1Z� þ 2ð1þ CÞϵ2H�� þ Cϵ1Z�ðϵ1Z� − ϵ2Z�Þ

þ ϵ1c�
	ð3þ 9CÞϵ1c� þ ð−5 − 12CÞϵ1H� þ ϵ1Z� þ 6Cϵ1Z� − 2ϵ2c� − 3Cϵ2c�



N3LO: þ 1

24

n
−24ð−8þ 4C2 þ π2Þϵ31H� þ 4ϵ21H�ð9ð−8þ 4C2 þ π2Þϵ1Z� þ ð36 − 36C − 36C2 − 5π2Þϵ2H�Þ

− 2ϵ1H�
h
9ð−8þ 4C2 þ π2Þϵ21Z� þ ϵ1Z�ð−ð−36þ 36Cþ 36C2 þ 5π2Þϵ2H� − ð−48þ 36C2 þ 5π2Þϵ2Z�Þ

− ð−24 − 24C − 12C2 þ π2Þϵ2H�ðϵ2H� þ ϵ3H�Þ
i
þ ϵ1Z�

h
3ð−8þ 4C2 þ π2Þϵ21Z� þ ð48 − 36C2 − 5π2Þϵ1Z�ϵ2Z�

− ð−12C2 þ π2Þϵ2Z�ðϵ2Z� þ ϵ3Z�Þ
i
− 9ϵ21c�ð18ð−8þ 4C2 þ π2Þϵ1H� − 9ð−8þ 4C2 þ π2Þϵ1Z�

þ ð−40þ 24Cþ 36C2 þ 5π2Þϵ2c�Þ þ 3ϵ1c�
h
36ð−8þ 4C2 þ π2Þϵ21H� þ 9ð−8þ 4C2 þ π2Þϵ21Z�

þ 2ϵ1H�
�
−18ð−8þ 4C2 þ π2Þϵ1Z� þ ð−40þ 24Cþ 36C2 þ 5π2Þϵ2c� þ ð−36þ 36Cþ 36C2 þ 5π2Þϵ2H�

�
þ ϵ1Z�

�
−ð−40þ 24Cþ 36C2 þ 5π2Þϵ2c� − ð−48þ 36C2 þ 5π2Þϵ2Z�

�
− ð−16 − 16C − 12C2 þ π2Þϵ2c�ðϵ2c� þ ϵ3c�Þ

i
þ 81ð−8þ 4C2 þ π2Þϵ31c�

o

TABLE V. Full expression of p2� for a theory with generic Zψ and cψ , up to N3LO corrections.

Order Expression

N2LO: p2� ¼ 1
2

n
4ϵ21H� − 4ϵ1H�ϵ1Z� þ ϵ21Z� þ 2ϵ1H�ϵ2H� − ϵ1Z�ϵ2Z� þ ϵ1c�

h
9ϵ1c� − 3ð4ϵ1H� − 2ϵ1Z� þ ϵ2c�Þ

io

N3LO: þ 1
2

n
ϵ1H�ϵ2H�ð−6ϵ1H� þ 3ϵ1Z� − 2ðϵ2H� þ ϵ3H�ÞÞ þ Cð−8ϵ31H� þ 12ϵ21H�ðϵ1Z� − ϵ2H�Þ

− 2ϵ1H�
h
3ϵ21Z� − 3ϵ1Z�ðϵ2H� þ ϵ2Z�Þ þ ϵ2H�ðϵ2H� þ ϵ3H�Þ

i
þ ϵ1Z�

h
ϵ21Z� − 3ϵ1Z�ϵ2Z� þ ϵ2Z�ðϵ2Z� þ ϵ3Z�Þ�Þ

− 9ϵ21c�ϵ2c� þ ϵ1c�
h
−3ϵ1Z�ϵ2c� þ ϵ1H�ð6ϵ2c� þ 9ϵ2H�Þ þ 2ϵ2c�ðϵ2c� þ ϵ3c�Þ

i

þC
�
27ϵ31c� − 27ϵ21c�ð2ϵ1H� − ϵ1Z� þ ϵ2c�Þ þ 3ϵ1c�

h
12ϵ21H� þ 3ϵ21Z� þ 6ϵ1H�ð−2ϵ1Z� þ ϵ2c� þ ϵ2H�Þ

− 3ϵ1Z�ðϵ2c� þ ϵ2Z�Þ þ ϵ2c�ðϵ2c� þ ϵ3c�Þ
i�o
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VI. SINGLE-FIELD INFLATION

As a consistency check of our general formulas, let us
consider the well-studied case of single-field inflation: a
scalar field φ with potential VðφÞ, minimally coupled to
Einstein gravity, that is, a system with action

S½gμν;φ� ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R

þ
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂
μφ∂μφ − VðφÞ

�
: ð68Þ

Once we choose a homogeneous and isotropic solution
ḡμνðtÞ, φ̄ðtÞ, the action for the perturbations δgμνðx; tÞ,
δφðx; tÞ can be expanded to quadratic order and decom-
posed in SVT modes, and once gauge conditions are
imposed and the constraints solved, it takes the form (4).
The kinetic amplitude and the speed of sound for scalar and
tensor2 modes takes the form [18]:

ZsðtÞ ¼
ϵ1HðtÞ
4πG

; csðtÞ ¼ 1; ð69Þ

ZtðtÞ ¼
1

64πG
; ctðtÞ ¼ 1: ð70Þ

Using these expressions, one can determine the full power
spectrum for both scalar and tensor modes. From the results
of Table VII, we can compute the quantities characterizing

power-law quantities, i.e., the tilt θðψÞ� , the running αðψÞ� , and

the running-of-the-running βðψÞ� , discussed in Appendix E.
The quantities for scalar modes are reported in Table XII

(with the scalar spectral index defined as ns ≡ 1þ θðsÞ� as
usual). The power-law quantities for tensor modes are
reported in Table XIII (with the tensor spectral index

defined as nt ¼ θðtÞ� as usual). These expressions fully
reproduce3 the state–of–the–art results of Auclair and
Ringeval [33] where they first derive the N3LO formula

TABLE VI. Full expression of p3� for a theory with generic Zψ and cψ , only containing N3LO corrections.

Order Expression

N3LO∶ p3� ¼ 1
6

n
−8ϵ31H� þ 12ϵ21H�ðϵ1Z� − ϵ2H�Þ − 2ϵ1H�

h
3ϵ21Z� − 3ϵ1Z�ðϵ2H� þ ϵ2Z�Þ þ ϵ2H�ðϵ2H� þ ϵ3H�Þ�

þ ϵ1Z�½ϵ21Z� − 3ϵ1Z�ϵ2Z� þ ϵ2Z�ðϵ2Z� þ ϵ3Z�Þ
i
− 27ϵ21c�ð2ϵ1H� − ϵ1Z� þ ϵ2c�Þ

þ 3ϵ1c�
h
12ϵ21H� þ 3ϵ21Z� þ 6ϵ1H�ð−2ϵ1Z� þ ϵ2c� þ ϵ2H�Þ − 3ϵ1Z�ðϵ2c� þ ϵ2Z�Þ þ ϵ2c�ðϵ2c� þ ϵ3c�Þ

i
þ 27ϵ31c�

o

TABLE VII. Quantities characterizing deviations from an exact power law, as defined in (E1)–(E4), for a theory with generic Zψ and
cψ , up to N3LO.

Quantity Order Expression

θðψÞ� NLO: − 2ϵ1H� þ ϵ1Z� þ 3ϵ1c�
N2LO: − 2ϵ21H� þ 2ð1þ CÞϵ1H�ϵ2H� þ ϵ1Z�ðϵ1H� − Cϵ2Z�Þ þ ϵ1c�ð5ϵ1H� − 3ϵ1c� − ϵ1Z�Þ − ð2þ 3CÞϵ1c�ϵ2c�
N3LO: − 2ϵ31H� þ ð14þ 6C − π2Þϵ21H�ϵ2H� þ 1

12
ð−24 − 24C − 12C2 þ π2Þϵ1H�ϵ22H�

þ 1
12
ð−24 − 24C − 12C2 þ π2Þϵ1H�ϵ2H�ϵ3H� þ ϵ21H�ϵ1Z� þ 1

2
ð−10 − 2Cþ π2Þϵ1H�ϵ1Z�ϵ2H�

þ 1
2
ð−8 − 4Cþ π2Þϵ1H�ϵ1Z�ϵ2Z� þ 1

4
ð8 − π2Þϵ21Z�ϵ2Z� þ 1

24
ð12C2 − π2Þϵ1Z�ϵ22Z�

þ 1
24
ð12C2 − π2Þϵ1Z�ϵ2Z�ϵ3Z� þ 3ϵ31c� − 8ϵ21c�ϵ1H� þ 7ϵ1c�ϵ21H� þ ϵ21c�ϵ1Z� − 2ϵ1c�ϵ1H�ϵ1Z�

þ 1
4
ð100þ 36C − 9π2Þϵ21c�ϵ2c� þ 1

2
ð−36 − 16Cþ 3π2Þϵ1c�ϵ1H�ϵ2c� þ 1

4
ð28þ 4C − 3π2Þϵ1c�ϵ1Z�ϵ2c�

þ 1
8
ð16þ 16Cþ 12C2 − π2Þϵ1c�ϵ22c� þ 1

2
ð−38 − 14Cþ 3π2Þϵ1c�ϵ1H�ϵ2H�

þ 1
4
ð24þ 8C − 3π2Þϵ1c�ϵ1Z�ϵ2Z� þ 1

8
ð16þ 16Cþ 12C2 − π2Þϵ1c�ϵ2c�ϵ3c�

αðψÞ� N2LO: 2ϵ1H�ϵ2H� − ϵ1Z�ϵ2Z� − 3ϵ1c�ϵ2c�
N3LO: þ 6ϵ21H�ϵ2H� − 2ð1þ CÞϵ1H�ϵ22H� − 2ð1þ CÞϵ1H�ϵ2H�ϵ3H� − ϵ1H�ϵ2H�ϵ1Z� − 2ϵ1H�ϵ1Z�ϵ2Z�

þCϵ1Z�ϵ22Z� þ Cϵ1Z�ϵ2Z�ϵ3Z� þ 9ϵ21c�ϵ2c� − 8ϵ1c�ϵ1H�ϵ2c� þ ϵ1c�ϵ1Z�ϵ2c� þ ð2þ 3CÞϵ1c�ϵ22c�
− 7ϵ1c�ϵ1H�ϵ2H� þ 2ϵ1c�ϵ1Z�ϵ2Z� þ ð2þ 3CÞϵ1c�ϵ2c�ϵ3c�

βðψÞ� N3LO: − 2ϵ1H�ϵ2H�ðϵ2H� þ ϵ3H�Þ þ ϵ1Z�ϵ2Z�ðϵ2Z� þ ϵ3Z�Þ þ 3ϵ1c�ϵ2c�ðϵ2c� þ ϵ3c�Þ

2This form of ZtðtÞ already considers the trace over the two
polarizations, i.e., an extra factor of 4 to the total power.

3Note that the extra minus signs in ϵ2H , ϵ3H, and ϵ4H are simply
due to the different sign in the definition of Hubble-flow
parameters, as shown in Table II.
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for tensor modes (Z ¼ const, c ¼ const), and then derive
the formula for scalar modes [ZðtÞ, c ¼ const] via a
mapping method [34] from the one for tensor modes.
Hence, as a consistency check, our formalism completely
reproduces previous calculations for single-field inflation.
In general, one could also consider an extension of the

mapping method of [34] that applies to the effective
action (4) and, via a suitable redefinition of time and of
the scale factor, brings it into a reference action with
Zψ ¼ 1, cψ ¼ 1 for which N3LO results are already
available [33]. Developing this method would provide an
additional consistency check of the general formulas in
Tables III–VII. The new framework introduced here does
not require a mapping and provides directly the N3LO
expressions for the effective action (4). Moreover, by
keeping the form of ZψðtÞ and cψ ðtÞ general, we obtain
a single set of expressions that apply to the broad class of
inflationary models of Table I. Note that, since in any given
model these functions are assumed to be determined by the
Hubble rate HðtÞ and its time-derivatives, the remaining
nontrivial step is to express the Hubble-flow parameters
ϵ1Z, ϵ1c, and so on, in terms of the background Hubble-
parameters ϵ1H, ϵ2H, etc. A concrete example of this
procedure is described in the next section for the particular
case of Starobinsky inflation in the geometric framework,
which requires a more sophisticated machinery in com-
parison with single-field inflation.

VII. STAROBINSKY INFLATION IN THE
GEOMETRIC FRAMEWORK

The Starobinsky model [2,3] is described by the action
for gravity with a higher-curvature term,

S½gμν� ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ αR2Þ: ð71Þ

It is the oldest proposed model of inflation, originally
motivated by quantum-gravity considerations on the renorm-
alization of the energy-momentum tensor. To date, it pro-
vides an accurate account of primordial-power-spectrum
observations in terms of one single parameter [11], the
coupling constant α of dimensions ½α� ¼ length2. The
theory is purely gravitational, with the inflationary phase
driven by the higher-order curvature term, without the need
of any additional inflaton field. The technique generally
used for computing the predictions of the power spectrum
for this model does not directly use the geometric frame-
work (or Jordan frame) described by (71), but instead
involves a mapping to an action of the form (68) via a
field redefinition gμν → ðg̃μν;φÞ. The auxiliary metric g̃μν
(Einstein frame) is conformally related to the metric gμν,
and the potential VðφÞ depends only on the single param-
eter α [51,52]. While a field redefinition can simplify
calculationswithout affecting physical predictions (once the
same observable is identified in the new variables) [53–57],

it is important to remark that observations of the reheating
phase can in principle distinguish between the minimal
coupling of the metric gμν to the standard model of particle
physics, as opposed to the minimal coupling to the
auxiliary metric g̃μν [12,58]. The goal of this section is
to use the formalism introduced in the previous sections to
compute the power spectrum of Starobinsky inflation at
N3LO, working purely in the geometric framework [19]
and expressing all observables in terms of the number of
inflationary e-foldings N� measured with respect to the
metric gμν.
The variational principle for the action (71) results in the

Einstein equation with a higher curvature term,

Gμν þ αHμν ¼ 0; ð72Þ

in vacuum (Tμν ¼ 0) and with the covariantly conserved
tensors (∇μGμν ¼ 0 and ∇μHμν ¼ 0) defined by

Gμν ¼
1ffiffiffiffiffiffi−gp δ

δgμν

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð73Þ

Hμν ¼
1ffiffiffiffiffiffi−gp δ

δgμν

Z
d4x

ffiffiffiffiffiffi
−g

p
R2 ð74Þ

and given by

Gμν ¼ Rμν −
1

2
Rgμν; ð75Þ

Hμν ¼ 2

�
RGμν −∇ðμ∇νÞRþ

�
□Rþ 1

4
R2

�
gμν

�
; ð76Þ

where □ ¼ gμν∇μ∇ν.

A. Background dynamics

Evaluating the vacuum Einstein equation (72) on the
FLRW metric (3), we obtain the Friedmann equation with
the Starobinsky higher-curvature term,

HðtÞ2þ6αHðtÞ4ϵ1HðtÞð3ϵ1HðtÞþ2ϵ2HðtÞ−6Þ¼ 0: ð77Þ

This theory admits an inflationary phase with approxi-
mately constant Ḣ ≈ −1=36α [59], as shown in the ðH; ḢÞ
plot in Fig. 1. From the Friedmann equation (77), we can
find a systematic and self-consistent expansion of HðtÞ in
terms of ϵ1HðtÞ,

HðtÞ ¼ 1

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αϵ1HðtÞ

p
�
1 −

1

12
ϵ1HðtÞ þ

19

288
ϵ1HðtÞ2

−
373

3456
ϵ1HðtÞ3 þ

44035

165888
ϵ1HðtÞ4 þOðϵ5Þ

�
: ð78Þ
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The derivation of the above expression is discussed in
Appendix F. Similarly, for ϵ2HðtÞ and ϵ3HðtÞ, we find

ϵ2HðtÞ ¼ −2ϵ1HðtÞ þ
1

3
ϵ1HðtÞ2 −

5

9
ϵ1HðtÞ3

þ 38

27
ϵ1HðtÞ4 þOðϵ5Þ;

ϵ3HðtÞ ¼ −2ϵ1HðtÞ þ
2

3
ϵ1HðtÞ2 −

5

3
ϵ1HðtÞ3 þOðϵ4Þ;

ϵ4HðtÞ ¼ −2ϵ1HðtÞ þ ϵ1HðtÞ2 þOðϵ3Þ: ð79Þ

It can be directly checked that the expression (78) in
combination with (79) solves the Friedmann equation (77),
up to ϵ3 corrections. Inflation ends at a time tend defined by
 aðtendÞ ¼ 0 or, in terms of Hubble flow parameters (10),
when ϵ1HðtendÞ ¼ 1. The expansion from a reference time
t� during inflation until the end of inflation or, equivalently,
the e-folding number N� in

aðtendÞ ¼ eN�aðt�Þ ð80Þ

can be computed by noticing that N� can be written as

N� ≡
Z

tend

t�
HðtÞdt ¼ −

Z
1

ϵ1H�

dϵ1H
ϵ1Hϵ2Hðϵ1HÞ

; ð81Þ

where the second Hubble-flow parameter is expressed
as a function of the first, ϵ2H ¼ ϵ2Hðϵ1HÞ, using (79).
Integrating order-by-order, we find

N�ðϵ1H�Þ ¼
1

2ϵ1H�
þ 1

8
ϵ1H� þ

19

864
ϵ21H� −

71

7776
ϵ31H�

−
lnðϵ1H�Þ

12
þD0 þOðϵ41H�Þ; ð82Þ

with

D0 ¼ −
1

2
þ lnð2Þ

24
þ lnð3Þ

12
−
lnð20Þ
24

−
19tan−1

�
1ffiffiffiffi
39

p
�

12
ffiffiffiffiffi
39

p −
19cot−1

�
3
ffiffiffiffi
39

p
7

�
12

ffiffiffiffiffi
39

p ≃ −0.635:

It is clear that, for small values of ϵ1H�, the number of
e-foldings is determined by the first term but, in our
analysis of the N3LO power spectrum, we will need also
the higher order terms. The relation (82) can be perturba-
tively inverted to find the following expression:

ϵ1H�ðN�Þ ¼
1

2N�
þ

D0

2
− 1

24
ln
�

1
2N�

�
N2�

þ
D1 −D2 ln

�
1

2N�

�þ 1
288

ln
�

1
2N�

�
2

N3�
þOðN−4� Þ; ð83Þ

where D1 ¼ ð3 − 4D0 þ 48D2
0Þ=96 ≃ 0.259 and D2 ¼

ð−1þ 24D0Þ=ð288Þ ≃ −0.056. Again, for large values of
N�, the main contribution comes from the first term. In
the range N� ∈ ½50; 60�, we have the associated range
ϵ1H� ∈ ½0.00995; 0.00830�. By combining the expansions
(79) with the expression for ϵ1H� given in (83), we can
express all the features of the power spectra for Starobinsky
inflation in terms of N�. As our N3LO calculations can be
trusted only up to order Oðϵ3Þ, a truncation of the
cosmological observables up to order OðN−3� Þ will remain
consistent for predictive purposes. In this way, the N3LO
corrections allow us to check and improve the precision of
the predictions in the geometric frame with respect to the
known expressions of order OðN−2� Þ in the Einstein frame.

B. Perturbations

We derive the quadratic action for SVT perturbations in
Starobinsky inflation, working purely in the geometric
framework. The starting point is the tensor Fμν½gμν�
obtained from the variation of the action (71),

Fμν½gμν�≡ δS
δgμν

¼ −
1

16πG
ffiffiffiffiffiffi
−g

p ðGμν þ αHμνÞ; ð84Þ

where we used (75), (76), and δgμν ¼ −gμαgνβδgαβ.
Expanding around the FLRW metric (3), we write

Fμν½ḡμν þ δgμν� ¼ F̄μν
0 ðtÞ þ F̄μνρσ

1 ðtÞδgρσ þOðδg2Þ:

As we assume that the background metric satisfies the
Friedman equation (77), the term F̄μν

0 ¼ 0 vanishes.
Therefore, the action (71), at quadratic order in the
perturbation, can be written as

FIG. 1. Diagram of a typical solution of Rþ αR2 inflation in
the ðH; ḢÞ plane. The red dot indicates the end of the inflationary
phase, while the gray star illustrates a point associated to a pivot
scale k�. When ϵ1H → 0, Ḣ reduces to −1=36α, as shown by the
green dashed line. The dotted gray line indicates the approximate
scale H ≈ 1=

ffiffiffiffiffiffiffiffi
36α

p
.
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S½ḡμν þ δgμν� ¼ S̄ðtÞ þ
Z

d4x
1

2
δgμνF̄

μνρσ
1 ðtÞδgρσ

þOðδg3Þ: ð85Þ

We can then use the homogeneity and isotropy of the
background to organize perturbations into SVT represen-

tations of the 3d Euclidean group, δgμν ¼ δgðsÞμν þ δgðvÞμν þ
δgðtÞμν which in the quadratic action decouple, as most easily
shown by working with the Fourier transforms.
Let us consider scalar perturbations first. In the Fourier

domain (5), using the Arnowitt–Deser–Misner (ADM)
variables gμνdxμdxν ¼ −N2dt2 þ hijðNidtþ dyiÞðNjdtþ
dyjÞ (with i, j ¼ 1, 2, 3), the perturbation δgðsÞμν can be
written in terms of the lapse N ¼ 1þ δN and of the shift
Ni ¼ 0þ δNi, with scalar perturbations δN and S,

δNðk; tÞ; ð86Þ

δNiðk; tÞ ¼ ikiSðk; tÞ ð87Þ

together with the 3d metric hij ¼ aðtÞ2δij þ δhðsÞij , with
scalar perturbations R and C

δhðsÞij ðk; tÞ ¼ −2Rðk; tÞaðtÞ2δij − kikjCðk; tÞ: ð88Þ

Wework in the comoving gaugeH0
i ¼ 0, which generalizes

the comoving gauge T0
i ¼ 0 for the energy-momentum in

general relativity with matter. Solving perturbatively the
Hamitonian constraint F0

0 ≈ 0 and the diffeomorphism
constraint F0

i ≈ 0, we can express the scalar perturbations
δNðk; tÞ, δNi, and C in terms of the curvature perturbation
R. At first order in the perturbation, constant-t spatial
sections have scalar curvature given by the 3d Ricci scalar
ð3ÞR ¼ 4aðtÞ−2δij∂i∂jR. Substituting these expressions into
(85) and introducing the useful definitions

χðtÞ≡ 1þ 2αR̄ðtÞ ¼ 1þ 24αHðtÞ2
�
1 −

1

2
ϵ1HðtÞ

�
; ð89Þ

ϵχðtÞ ¼ −
χ̇ðtÞ

HðtÞχðtÞ ; ð90Þ

we find that the quadratic action for the single scalar mode,
the curvature perturbation Rðk; tÞ, takes the form (4) with
kinetic amplitude and speed of sound:

ZsðtÞ ¼
3χðtÞ
16πG

�
ϵχðtÞ

1þ 1
2
ϵχðtÞ

�
2

; ð91Þ

csðtÞ ¼ 1: ð92Þ

For vector perturbations, working in the same comoving
gauge, introducing the transverse vector fields δNa

T for

the shift and Baðx; tÞ for the ADM metric δhðvÞab ðk; tÞ ¼
iaðtÞðkaBbðx; tÞ þ kbBaðk; tÞÞ, and solving the transverse
part of the diffeomorphism constraint, one finds as usual
that there is no propagating vectorial perturbation. Finally,
for transverse-traceless tensor perturbations

δhðtÞabðk; tÞ ¼ eðþÞ
ab ðkÞγðþÞðk; tÞ þ eð−Þab ðkÞγð−Þðk; tÞ; ð93Þ

one finds again that the action takes the form (4) with
kinetic amplitude and speed of sound:

ZtðtÞ ¼
χðtÞ
64πG

; ð94Þ

ctðtÞ ¼ 1: ð95Þ

As a check of this expression, note that, in the geometric
framework for Starobinsky inflation discussed here, the
kinetic amplitude of tensor modes (94) reduces to the
familiar one in general relativity (70) in the limit α → 0.
Note also that these expressions for the kinetic amplitude
and speed of sound are exact as we did not use up to this
point any Hubble-flow expansion. Since cs ¼ 1, ct ¼ 1, we
have τ ¼ η, and the pivot scale considered in this case is the
same for both scalar and tensor modes, as previously
discussed, so no further shift is needed to compare the
predictions to data. More explicitly, the pivot time t�
considered in this section is such that the associated pivot
scale k� is defined by k�ηðt�Þ ¼ −1, where the conformal
time η is fully expanded in (A11).

C. Power spectrum

Let us now use the Hubble-flow expansion to express
the kinetic amplitude in terms of a series in the single
parameter ϵ1H�, the first Hubble flow parameter evaluated
at the pivot time t�. For scalar perturbations, we find

Zs� ¼
ϵ1H�
2πG

�
1 −

19

6
ϵ1H� þ

74

9
ϵ21H�

�
þOðϵ41H�Þ; ð96Þ

with Hubble-flow parameters for Zs given by

ϵðsÞ1Z� ¼ −2ϵ1H� þ
20

3
ϵ21H� −

130

9
ϵ31H� þOðϵ41H�Þ;

ϵðsÞ2Z� ¼ −2ϵ1H� þ 7ϵ21H� −
25

3
ϵ31H� þOðϵ41H�Þ;

ϵðsÞ3Z� ¼ −2ϵ1H� þ
22

3
ϵ21H� þ

37

3
ϵ31H� þOðϵ41H�Þ: ð97Þ

For tensor perturbations, we find
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Zt� ¼
1

96πGϵ1H�

�
1þ 5

6
ϵ1H� þ

2

9
ϵ21H�

−
8

27
ϵ31H� þ

2

3
ϵ41H�

�
þOðϵ41H�Þ; ð98Þ

with Hubble-flow parameters for Zt given by

ϵðtÞ1Z� ¼ 2ϵ1H� − 2ϵ21H� þ
4

3
ϵ31H� þOðϵ41H�Þ;

ϵðtÞ2Z� ¼ −2ϵ1H� þ
7

3
ϵ21H� −

14

9
ϵ31H� þOðϵ41H�Þ;

ϵðtÞ3Z� ¼ −2ϵ1H� þ
8

3
ϵ21H� −

4

3
ϵ31H� þOðϵ41H�Þ: ð99Þ

We can substitute the expressions found above into the
general formulas reported in Tables VII and XI to find the
N3LO expressions of the power-law quantities for Rþ αR2

inflation. Then, Eq. (83) can be used to truncate the results
in terms of the number of e-foldings until the end of
inflation, N�. In this way, a N3LO computation gives us a
self-consistent and reliable truncation of the expressions, as
long as it is taken up to order N−3� . Furthermore, given the
phenomenological success of Rþ αR2 inflation in account-
ing for current cosmological observations of primordial
perturbations, it is useful to comment on the precision of its
predictions. For this goal, let us consider a fiducial value of
N� ¼ 55 and use it to compare different truncations
allowed by the N3LO calculation. The numerical results
are shown below in Table VIII.
Note that the order OðN−3� Þ correction to the tensor-to-

scalar ratio is non-negligible and results in a decrease of 7%
with respect to the value at order OðN−2� Þ; see also Fig. 2.
The standard OðN−2� Þ result is r ≈ 12=N2� [19], and one
might expect that the correction has simply an extra 1=N�
factor. This is not the case as, in fact, the detailed
calculation (Table IX) shows that the correction comes
with a large coefficient and also a logarithmic correction
which cannot be neglected for N� ¼ 55.
Our calculation also allows us to identify the order of

magnitude of violation of the single-field consistency
condition, generally stated as r ¼ −8nt at LO [61]. The
formalism developed in this work provides a precise
prediction of the amount of deviation from this condition
for Rþ αR2 inflation, δ≡ rþ 8nt ¼ −48=N3� þOðN−4� Þ.
The values of δ and nt up to order OðN−3� Þ are reported in

TABLE VIII. Values of power-law quantities for Starobinsky
inflation in the geometric frame with a fiducial number of
e-foldings N� ¼ 55. In the N3LO calculations, we can trust
the truncations up to order N−3� , according to Table IX. We
report the explicit numerical values for different truncations,
illustrating the improvement from NLO to N3LO.

Quantity OðN−1� Þ OðN−2� Þ OðN−3� Þ
ns 0.9636 0.9642 0.9642
r 0 3.967 × 10−3 3.694 × 10−3

nt 0 −4.959 × 10−4 −4.964 × 10−4

rþ 8nt 0 0 −2.776 × 10−4

αs 0 −6.612 × 10−4 −6.468 × 10−4

αt 0 −1.803 × 10−5 −1.803 × 10−5

βs 0 0 −2.404 × 10−5

FIG. 2. Marginalized joint 68% and 95% C.L. regions for ns and r at k� ¼ 0.002 Mpc−1 as reported by the Planck Collaboration [11]
and the BICEP2/Keck Collaboration [60]. The orange region represents the forecast of the upcoming LiteBIRD experiment for a fiducial
model with r ¼ 0.005 [17]. Note that the C.L. regions are obtained assuming a power spectrum of the formAsðk=k�Þns−1. Our results for
Starobinsky inflation up to N3LO, in the r-ns plane, are shown in the dashed red line. We note the 7% decrease for r and 0.05% increase
for ns with respect to the standard NLO expressions, for N� ¼ 55.

EUGENIO BIANCHI and MAURICIO GAMONAL PHYS. REV. D 110, 104032 (2024)

104032-16



Table VIII and can be compared to the constraints imposed
by Planck and LIGO/VIRGO on r and nt, as shown in
Fig. 3. Moreover, we find that Rþ αR2 inflation predicts a
value of the running and running of the running for the
scalar power spectrum, also reported in Table VIII. These
values can also be compared with current constraints
reported by Planck, as illustrated in Fig. 4. Note also that
the predicted value of the running αs is negative and
consistent with the 68% C.L. interval αs ¼ ð−6.75�
2.05Þ × 10−4 recently obtained in [62] using the posterior
probability distribution marginalized over nearly 300 mod-
els of single-field inflation.

Furthermore, since the amplitude of curvature perturba-
tion is constrained to be lnð1010AsÞ ¼ 3.044� 0.014, the
corresponding value of the coupling constant α is α ¼
2.663 × 1010Gℏ ≃ ð2.7 × 10−30mÞ2 for N� ¼ 55. It is inter-
esting to remark also that if in the near future an amplitude
At ∼Gℏ=α of tensor modes is observed, it will provide
evidence for the quantization of gravity [64]. The geometric
framework discussed here highlights how the observed
amplitude As ∼ ðGℏ=αÞN2� of scalar perturbations via
CMB temperature anisotropy already provides a probe
of (perturbative) quantum gravity, as implied by the Planck
area l2

P ¼ Gℏ in this expression.
We note that the results presented in Table IX are

expressed in terms of the number of e-foldingsN� computed
in the geometric (or Jordan) frame. Alternatively, one can
express the power-law quantities directly in terms of the
scalar tilt ns, which is one of the most accurately measured
cosmological parameters, ns − 1 ¼ −0.0351� 0.0042 at
68% C.L. [11]. Introducing a truncation in the parameter
jns − 1j ≪ 1, we find that the tensor-to-scalar ratio r, the
tensor tilt nt, and the running of the scalar tilt αs are

r ¼ þ3ðns − 1Þ2 þ 7

2
ðns − 1Þ3 þOððns − 1Þ4Þ; ð100Þ

nt ¼ −
3

8
ðns − 1Þ2 þ 5

16
ðns − 1Þ3 þOððns − 1Þ4Þ; ð101Þ

αs ¼ −
1

2
ðns − 1Þ2 þ 5

48
ðns − 1Þ3 þOððns − 1Þ4Þ: ð102Þ

These expressions are directly formulated in terms of the
observed parameter jns − 1j ≪ 1. Note that the equivalence
between the Jordan and Einstein frames requires the
identification of a mapping between pivot scales in the
two frames, or of the number of e-foldings as discussed, for
instance, in [55]. On the other hand, expression (100), for
instance, gives the deparametrized curve in the r − ns plane
which is independent of the number of e-foldings from a
given pivot scale. As a result, these expressions are inde-
pendent of the pivot scale and provide a concrete illustration
of how both frames lead to the same observational con-
straints. Therefore, the results on the decrease in r at N3LO
discussed in Fig. 2, the violation of the consistency relation
rþ 8nt < 0 (Fig. 3), and the negative value of the running of
the scalar tilt αs are robust predictions of Starobinsky
inflation, regardless of the frame one is working with.

VIII. DISCUSSION

In this paper, we derived N3LO expressions for the
primordial power spectrum in a broad class of effective
theories of inflation with an action for perturbations of the
form (4). We adopted the Green’s function method [32,33]
to compute the late-time behavior of the mode functions
of the quasi-Bunch-Davies initial state at N3LO, assuming

FIG. 3. Marginalized joint 68% and 95% C.L. regions for nt
and r at 0.01 Mpc−1 as reported by the Planck Collaboration,
assuming a power spectrum of the form rAsðk=k�Þnt [11]. The
purple region of LIGO/VIRGO is associated to the constraints on
the stochastic gravitational-wave background, i.e.,ΩGW [63]. The
dotted black line illustrates the exact consistency relation
r ¼ −8nt. The symbol × (þ) indicates N� ¼ 50ð60Þ for Star-
obinsky inflation.

FIG. 4. Schematic visualization of the constraints on the
running and the running of the running of the scalar tilt. The
solid black lines indicate αs ¼ βs ¼ 0, and the dashed green lines
the values αs ¼ 0.002� 0.010 and βs ¼ 0.010� 0.013, as re-
ported by the Planck Collaboration, both at 68% C.L. [11]. The ×
(þ) indicate N� ¼ 50ð60Þ for Starobinsky inflation.
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a sufficiently long quasi-de Sitter inflationary phase
ðN ≫ N�Þ. Our main results are summarized in Table X.
Current measurements of primordial observables already

probe the amplitude and tilt of scalar modes and provide
contraints on the amplitude and tilt of tensormodes [11]. The
next generation of CMB experiments, such as CORE [15],
CMB-S4 [16], LiteBIRD [17], and PICO [65], or surveys,
such as the Simons Observatory [66] or EUCLID [67], are
expected to measure N2LO corrections and put stronger
constraints on N3LO terms, under the assumption of single-
field inflation. In this work, we introduced a framework that
covers up to N3LO all effective models parametrized by the
two functions ZðtÞ and cðtÞ, treated as independent here. As
illustrated in Table I, many effective theories fit within the
framework developed in this paper. In the case of Rþ αR2

Starobinsky inflation, we computed the N3LO corrections,
expressing them explicitly in terms of one single free
parameter—the number of inflationary e-foldings N� from
the exit of the pivot mode k� until the end of inflation. The
explicit expressions are reported in Table IX in terms of N�

TABLE X. Summary of results.

Result Where to find it

Generic Zψ , cψ Power spectrum: Tables III–VI
θðψÞ� ; αðψÞ� ; βðψÞ� : Table VII

Rþ αR2 As;t; ns;t; αs;t; βs;t: Table IX
Scalar field
(Appendix E)

ScalarAs; ns; αs; βs: Table XII
TensorAt; nt; αt; βt: Table XIII

TABLE IX. Curvature and tensor perturbations for Rþ αR2 inflation, up to N3LO.

Quantity Coefficientsa

As ¼ GℏN2�
18πα ½1þ

pðsÞ
1

N�
− lnð2N�Þ

6N�

þ pðsÞ
2

N2�
− pðsÞ

2L
lnð2N�Þ

N2�
þ lnð2N�Þ2

144N2�

− pðsÞ
3L

lnð2N�Þ
N3�

þ pðsÞ
3L2

lnð2N�Þ2
N3�

þ lnð2N�Þ3
864N3�

þ pðsÞ
3

N3�
þOðN−4� Þ�

pðsÞ
1 ¼ 1=2 − 2C − 2D0 ≃ 3.2298819

pðsÞ
2 ¼ −ð283=48Þ þ C2 −D0=2þ 3D2

0

þ Cð−ð4=3Þ þ 2D0Þ − 4D1 þ ð7π2Þ=12
≃ 2.7841172

pðsÞ
2L ¼ ð1 − 4C − 12D0 þ 96D2Þ=24 ≃ 0.25526794

pðsÞ
3L ¼ D2

0 −D1 þ 1=12D0ð−1þ 4C − 144D2Þ
þ D2 − 4CD2 ≃ −0.29960351

pðsÞ
3L2 ¼ −ðD0=24Þ þD2 ≃ −0.029943214

pðsÞ
3 ¼ −ð553=432Þ þ ð5C2Þ=12þD2

0=2 − 4D3
0

− D1 þ 12D0D1 þ C½−ð127=72Þ − 2D2
0

þ 4D1� þ ð25π2Þ=48 − 6ζð3Þ
≃ − 3.0222532.

ns ¼ 1 − 2
N�

þ θðsÞ
2

N2�
− lnð2N�Þ

6N2�

− θðsÞ3L
lnð2N�Þ

N3�
− lnð2N�Þ2

72N3�

þ θðsÞ
3

N3�
þOðN−4� Þ

θðsÞ2 ¼ −ð1=3Þ − 2C − 2D0 ≃ 2.3965486

θðsÞ3L ¼ 1=18þ C=3þ 4D2 ≃ −0.41331365
θðsÞ3 ¼ −ð241=18Þ − 2C2 − ð2D0Þ=3 − Cð3þ 8D0Þ=2

− 4D1 þ ð7π2Þ=6 ≃ −4.3133704.

αs ¼ − 2
N2�

− lnð2N�Þ
3N3�

þ αðsÞ
3

N3�
þOðN−4� Þ αðsÞ3 ¼ −ð3=2Þ − 4C − 4D0 ≃ 3.9597638

βs ¼ − 4
N3�

þOðN−4� Þ
At ¼ 2Gℏ

3πα ½1 − 3
2N�

þ pðtÞ
2

N2�
− lnð2N�Þ

8N2�

− pðtÞ
3L

lnð2N�Þ
N3�

− lnð2N�Þ2
96N3�

þ pðtÞ
3

N3�
þOðN−4� Þ�

pðtÞ
2 ¼ −ð1þ 24Cþ 24D0Þ=16 ≃ 1.9849114

pðtÞ
3L ¼ 1=96þ C=4þ 3D2 ≃ −0.34123524

pðtÞ
3 ¼ −½85þ 72C2 þ 6D0 þ 36Cð1þ 4D0Þ

þ 144D1 − 6π2�=48 ≃ −2.8782506.

nt ¼ − 3
2N2�

− lnð2N�Þ
4N3�

þ θðtÞ
3

N3�
þOðN−4� Þ θðtÞ3 ¼ −3ðCþD0 þ 1Þ ≃ 1.0948228

αt ¼ − 3
N3�

þOðN−4� Þ
βt ¼ 0þOðN−4� Þ
r≡ At

As
¼ 12

N2�
þ 2 lnð2N�Þ

N3�
− r3

24
N3�

þOðN−4� Þ r3 ¼ 1 − C −D0 ≃ 2.3649409

δ≡ rþ 8nt ¼ − 48
N3�

þOðN−4� Þ
aRecall that C ≃ −0.72963715, D0 ≃ −0.63530380, D1 ≃ 0.25952645, and D2 ≃ −0.056414205.
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and in (100)–(102) in terms of ns. In particular, we predict a
negative running αs ¼ − 1

2
ðns − 1Þ2 þ � � � of the scalar tilt.

We expect these results to be useful to further test this model
with even more precise CMB observations in the future, as
illustrated in Figs. 3 and 4.

The fact that the primordial power spectrum probes
physics at a scale that is only ∼5 orders of magnitude away
from the Planck length lP is remarkable. This is a regime
that lies at the interface of effective field theory and quantum
gravity. While, on one hand, it is important to identify top-
down derivations of the cosmological regime of quantum
gravity theories such as [23,24,68–70], on the other hand,
working at this interface where one parametrizes quantum
gravity effects into an effective field theory can allow us to
put observational constraints and identify features of quan-
tum geometry in the CMB sky [71]. In particular, it would be
interesting to develop a similar N3LO framework for
functions Ztðt; kÞ and ctðt; kÞ with a Fourier mode depend-
ence, such as the ones that appear in models with a parity-
violating coupling to the Chern-Simons density [27]. In fact,
extracting precise predictions for effective theories such
as [72,73] could allow us to distinguish quantum gravity
theories with observations of primordial parity violation.
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APPENDIX A: GENERALIZED CONFORMAL
TIME WITH SPEED OF SOUND

In conformal time η, the FLRW metric takes the form

ḡμνdxμdxν ¼ aðtÞ2ð−dη2 þ δijdxidxjÞ; ðA1Þ

which corresponds to the following relation to the cosmic
time t:

dη
dt

¼ 1

aðtÞ : ðA2Þ

In de Sitter space, we have the exact relation ηdS ¼
−1=ðaH0Þ. Here we consider the case of quasi-de Sitter
with, in addition, a speed of sound cψ ≠ 1. Then, we will
use a generalized conformal time τ, such that x ¼ −k�τ and
which solves (31). Hence, the goal is to write

dτ
dt

¼ cψ ðtÞ
aðtÞ ¼ −

d
dt

�
cψðtÞ

aðtÞHðtÞ
�
þ corrections ðA3Þ

in an order-by-order expansion. At zero order, we can start
with the ansatz

τð0Þansatz ¼ −
cψðtÞ

aðtÞHðtÞ

→
cψðtÞ
aðtÞ −

d
dt
τð0Þansatz ¼ 0þOðϵÞ

→ τð0Þ ¼ −
cψðtÞ

aðtÞHðtÞ : ðA4Þ

For the next order, we consider the most general ansatz of
order one,

τð1Þansatz ¼ −
cψ ðtÞ

aðtÞHðtÞ ð1þ b1ϵ1HðtÞ þ b2ϵ1cðtÞÞ

→
cψðtÞ
aðtÞ −

d
dt
τð1Þansatz

¼ −
cψðtÞððb1 − 1Þϵ1HðtÞ þ ðb2 þ 1Þϵ1cðtÞÞ

aðtÞ
þOðϵ2Þ; ðA5Þ

which vanishes for b1 ¼ 1 and b2 ¼ −1. Hence,

τð1Þ ¼ −
cψ ðtÞ

aðtÞHðtÞ ð1þ ϵ1HðtÞ − b2ϵ1cðtÞÞ: ðA6Þ

Similarly, at the next order, we have

τð2Þansatz ¼ −
cðtÞ

aðtÞHðtÞ ð1þ ϵ1HðtÞ − ϵ1cðtÞ þ c11ϵ1HðtÞ2

þ c22ϵ2HðtÞ2 þ c12ϵ1HðtÞϵ2HðtÞ þ b11ϵ1cðtÞ2
þ b22ϵ2cðtÞ2 þ b12ϵ1cðtÞϵ2cðtÞ þ bc1ϵ1cðtÞϵ1HðtÞ
þ bc2ϵ2cðtÞϵ1HðtÞ þ bc3ϵ1cðtÞϵ2HðtÞ
þ bc4ϵ2cðtÞϵ2HðtÞÞ: ðA7Þ

After replacing the ansatz, we find that

cψðtÞ
aðtÞ −

d
dt
τð2Þansatz ¼ 0þOðϵ3Þ ðA8Þ
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for c11 → 1, c12 → −1, c22 → 0, b11 → 1, b22 → 0, bc4 → 0, c22 → 0, bc1 → −2, b12 → 1, bc3 → 0, bc2 → 0, c12 → −1.
Then, up to second order,

τð2Þ ¼ −
cψðtÞ

aðtÞHðtÞ ½1þ ϵ1HðtÞ − ϵ1cðtÞ þ ϵ1HðtÞ2 − ϵ1HðtÞϵ2HðtÞ − 2ϵ1cðtÞϵ1HðtÞ þ ϵ1cðtÞϵ2cðtÞ þ ϵ1cðtÞ2�: ðA9Þ

The same procedure can be extended order-by-order. In particular, for the next order, we need to assume an ansatz with all
the possible combinations of third-order quantities. Repeating the same process, we find that the conformal time up to third
order is given by

τð3Þ ≡ c̃ψ ðtÞ
aðtÞHðtÞ

¼ −
cψðtÞ

aðtÞHðtÞ
	
1þ ϵ1HðtÞ − ϵ1cðtÞ þ ϵ1HðtÞ2 − ϵ1HðtÞϵ2HðtÞ − 2ϵ1cðtÞϵ1HðtÞ þ ϵ1cðtÞϵ2cðtÞ þ ϵ1cðtÞ2

þ ϵ1HðtÞ3 þ ϵ1HðtÞϵ2HðtÞϵ3HðtÞ − 3ϵ1HðtÞ2ϵ2HðtÞ þ ϵ1HðtÞϵ2HðtÞ2 − ϵ1cðtÞϵ2cðtÞ2 þ 3ϵ1cðtÞϵ1HðtÞϵ2HðtÞ
− 3ϵ1cðtÞ2ϵ2cðtÞ þ 3ϵ1cðtÞϵ1HðtÞϵ2cðtÞ − ϵ1cðtÞϵ2cðtÞϵ3cðtÞ − ϵ1cðtÞ3 þ 3ϵ1cðtÞ2ϵ1HðtÞ − 3ϵ1cðtÞϵ1HðtÞ2



: ðA10Þ

Note that, by setting cψ ðtÞ ¼ 1 and ϵ1cðtÞ ¼ 0, ϵ2cðtÞ ¼ 0, and ϵ3cðtÞ ¼ 0, we recover an expression for the standard
conformal time η in a quasi-de Sitter background:

ηð3Þ ¼ −
1

aðtÞHðtÞ ð1þ ϵ1HðtÞ þ ϵ21HðtÞ− ϵ1HðtÞϵ2HðtÞ− 3ϵ21HðtÞϵ2HðtÞ þ ϵ1HðtÞϵ22HðtÞ

þ ϵ1HðtÞϵ2HðtÞϵ3HðtÞ þ ϵ31HðtÞÞ: ðA11Þ

The generalized conformal time τ can also be expressed as τðtÞ ¼ ĉψðtÞηðtÞ, where

ĉψ ðtÞ≡ cψðtÞf1 − ϵ1c�ðtÞ þ ϵ1c�ðtÞ2 − ϵ1c�ðtÞ3 − ϵ1c�ðtÞϵ1H�ðtÞ þ 2ϵ1c�ðtÞ2ϵ1H�ðtÞ − ϵ1c�ðtÞϵ1H�ðtÞ2 þ ϵ1c�ðtÞϵ2c�ðtÞ
− 3ϵ1c�ðtÞ2ϵ2c�ðtÞ þ 2ϵ1c�ðtÞϵ1H�ðtÞϵ2c�ðtÞ − ϵ1c�ðtÞϵ2c�ðtÞ2 þ 2ϵ1c�ðtÞϵ1H�ðtÞϵ2H�ðtÞ − ϵ1c�ðtÞϵ2c�ðtÞϵ3c�ðtÞg:

ðA12Þ

APPENDIX B: COMPARING TWO POWER SPECTRA AT DIFFERENT PIVOT SCALES

To illustrate the procedure, let us consider without loss of generality two different SVT modes, A and B, such that
τðAÞ ¼ ĉðAÞη and τðBÞ ¼ ĉðBÞη, with ĉðAÞ ≠ ĉðBÞ. Different speeds of sound imply that we have two different pivot scales,

k�τ
ðAÞ
� ¼ −1 and k⋄τ

ðBÞ⋄ ¼ −1, so one SVT mode will have a power PðAÞ
0 ðkÞ expanded around k� and the other will have

PðBÞ
0 ðkÞ expanded around k⋄. More explicitly, we would have

PðAÞ
0 ðkÞ ¼ ℏH2�

4π2c3�Z�

�
1þ pðAÞ

0� þ pðAÞ
1� ln

�
k
k�

�
þ pðAÞ

2� ln

�
k
k�

�
2

þ pðAÞ
3� ln

�
k
k�

�
3
�
; ðB1Þ

PðBÞ
0 ðkÞ ¼ ℏH2⋄

4π2c3⋄Z⋄

�
1þ pðBÞ

0⋄ þ pðBÞ
1⋄ ln

�
k
k⋄

�
þ pðBÞ

2⋄ ln

�
k
k⋄

�
2

þ pðBÞ
3⋄ ln

�
k
k⋄

�
3
�
: ðB2Þ

Let us consider the standard conformal time η, as defined in (A11). We can implicitly assume that η⋄ ¼ η�, i.e., replacing
the coefficients ρðBÞ⋄ by ρðBÞ� , while the change of pivot gets encoded in the running of the scale. To find this running, note
first that
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τðAÞ

τðBÞ
¼ ĉðAÞðtÞ

ĉðBÞðtÞ

¼ cðAÞðtÞ
cðBÞðtÞ

n
1þ ð−ϵðAÞ1c ðtÞ þ ϵðBÞ1c ðtÞÞ þ ðϵðAÞ1c ðtÞ2 − ϵðAÞ1c ðtÞϵðBÞ1c ðtÞ − ϵðAÞ1c ðtÞϵ1H�ðtÞ þ ϵðBÞ1c ðtÞϵ1H�ðtÞ

þ ϵðAÞ1c ðtÞϵðAÞ2c ðtÞ − ϵðBÞ1c ðtÞϵðBÞ2c ðtÞÞ þ ð−ϵðAÞ1c ðtÞ3 þ ϵðAÞ1c ðtÞ2ϵðBÞ1c ðtÞ þ 2ϵðAÞ1c ðtÞ2ϵ1H�ðtÞ
− 2ϵðAÞ1c ðtÞϵðBÞ1c ðtÞϵ1H�ðtÞ − ϵðAÞ1c ðtÞϵ1H�ðtÞ2 þ ϵðBÞ1c ðtÞϵ1H�ðtÞ2 − 3ϵðAÞ1c ðtÞ2ϵðAÞ2c ðtÞ þ ϵðAÞ1c ðtÞϵðBÞ1c ðtÞϵðAÞ2c ðtÞ
þ 2ϵðAÞ1c ðtÞϵ1H�ðtÞϵðAÞ2c ðtÞ − ϵðAÞ1c ðtÞϵðAÞ2c ðtÞ2 þ ϵðAÞ1c ðtÞϵðBÞ1c ðtÞϵðBÞ2c ðtÞ þ ϵðBÞ1c ðtÞ2ϵðBÞ2c ðtÞ − 2ϵðBÞ1c ðtÞϵ1H�ðtÞϵðBÞ2c ðtÞ
þ ϵðBÞ1c ðtÞϵðBÞ2c ðtÞ2 þ 2ϵðAÞ1c ðtÞϵ1H�ðtÞϵ2H�ðtÞ − 2ϵðBÞ1c ðtÞϵ1H�ðtÞϵ2H�ðtÞ − ϵðAÞ1c ðtÞϵðAÞ2c ðtÞϵðAÞ3c ðtÞ
þ ϵðBÞ1c ðtÞϵðBÞ2c ðtÞϵðBÞ3c ðtÞÞ

o
: ðB3Þ

Then, since k⋄=k� ¼ τðAÞ⋄ =τðBÞ⋄ , one can compute the following expression order-by-order:

lnðk⋄Þ ¼ lnðk�Þ þ ln

�
τðAÞ�
τðBÞ�

�
→ ln

�
k
k⋄

�
¼ ln

�
k
k�

�
− ln

�
ĉðAÞ�
ĉðBÞ�

�
: ðB4Þ

Finally, by replacing the last expression into (B2), we will find the expression for the power spectrum PðBÞ
0 ðkÞ now fully

expanded around the pivot scale k�, which now can be consistently compared withPðAÞ
0 ðkÞ, as both are expanded around the

same pivot scale, i.e., in powers of lnðk=k�Þ.

APPENDIX C: FINITE EXPRESSION

We report the N3LO expression of p⊛:

p⊛¼ 1þð2þ3CÞϵ1c⊛−
�
8þ3Cþ9C2

2
þ9π2

8

�
ϵ21c⊛−2ð1þCÞϵ1H⊛þ

�
10−5C−6C2−

3π2

2

�
ϵ1c⊛ϵ1H⊛

þ1

2
ð−6þ4Cþ4C2þπ2Þϵ21H⊛þCϵ1Z⊛−

�
6−Cþ3C2þ3π2

4

�
ϵ1c⊛ϵ1Z⊛

−
1

2
ð−8þ2Cþ4C2þπ2Þϵ1H⊛ϵ1Z⊛þ1

8
ð−8þ4C2þπ2Þϵ21Z⊛−

�
2þ2Cþ3C2

2
−
π2

8

�
ϵ1c⊛ϵ2c⊛

−
1

8
ð−96þ36C2þ36C3þ13π2þ15Cð−8þπ2ÞÞϵ21c⊛ϵ2c⊛þ

�
−8þ3C2þ3C3þ13π2

12
þ5

4
Cð−8þπ2Þ

�
ϵ1c⊛ϵ1H⊛ϵ2c⊛

−
1

24
ð−96þ36C2þ36C3þ13π2þ15Cð−8þπ2ÞÞϵ1c⊛ϵ1Z⊛ϵ2c⊛þ

�
2þ2CþC2−

π2

12

�
ϵ1H⊛ϵ2H⊛

þ
�
−12þ9C2

2
þ3C3þ13π2

8
þC

�
−9þ5π2

4

��
ϵ1c⊛ϵ1H⊛ϵ2H⊛þ

�
8−3C2−2C3−

13π2

12
þC

�
6−

5π2

6

��
ϵ21H⊛ϵ2H⊛

þ
�
−4þ3C2

2
þC3þ13π2

24
þC

�
−3þ5π2

12

��
ϵ1H⊛ϵ1Z⊛ϵ2H⊛þ 1

24
ð−12C2þπ2Þϵ1Z⊛ϵ2Z⊛

−
1

8
Cð−48þ12C2þ5π2Þϵ1c⊛ϵ1Z⊛ϵ2Z⊛þC

�
−4þC2þ5π2

12

�
ϵ1H⊛ϵ1Z⊛ϵ2Z⊛

−
1

24
Cð−48þ12C2þ5π2Þϵ21Z⊛ϵ2Z⊛þϵ1c⊛ϵ1H⊛ϵ1Z⊛

�
24−6C3−

9

2
Cð−8þπ2Þ−21ζð3Þ

�

þ1

3
ϵ31H⊛ð16−4C3−3Cð−8þπ2Þ−14ζð3ÞÞ− 1

24
ϵ1Z⊛ϵ22Z⊛ð16−4C3þCπ2−8ζð3ÞÞ

−
1

24
ϵ1Z⊛ϵ2Z⊛ϵ3Z⊛ð16−4C3þCπ2−8ζð3ÞÞþϵ1H⊛ϵ21Z⊛

�
4−C3−

3

4
Cð−8þπ2Þ−7ζð3Þ

2

�
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þϵ1c⊛ϵ22c⊛
�
C2þC3

2
−
π2

12
þC

�
2−

π2

8

�
þζð3Þ

�
þϵ1c⊛ϵ2c⊛ϵ3c⊛

�
C2þC3

2
−
π2

12
þC

�
2−

π2

8

�
þζð3Þ

�

þϵ21H⊛ϵ1Z⊛
�
−8þ2C3þ3

2
Cð−8þπ2Þþ7ζð3Þ

�
þ 1

12
ϵ1H⊛ϵ22H⊛ð−12C2−4C3þπ2þCð−24þπ2Þ−8ð1þζð3ÞÞÞ

þ 1

12
ϵ1H⊛ϵ2H⊛ϵ3H⊛ð−12C2−4C3þπ2þCð−24þπ2Þ−8ð1þζð3ÞÞÞþ9

8
ϵ31c⊛ð4C3þ3Cð−8þπ2Þþ2ð−8þ7ζð3ÞÞÞ

−
9

4
ϵ21c⊛ϵ1H⊛ð4C3þ3Cð−8þπ2Þþ2ð−8þ7ζð3ÞÞÞþ9

8
ϵ21c⊛ϵ1Z⊛ð4C3þ3Cð−8þπ2Þþ2ð−8þ7ζð3ÞÞÞ

þ3

8
ϵ1c⊛ϵ21Z⊛ð4C3þ3Cð−8þπ2Þþ2ð−8þ7ζð3ÞÞÞþ 1

24
ϵ31Z⊛ð4C3þ3Cð−8þπ2Þþ2ð−8þ7ζð3ÞÞÞ

þϵ1c⊛ϵ21H⊛
�
6C3þ9

2
Cð−8þπ2Þþ3ð−8þ7ζð3ÞÞ

�
:

APPENDIX D: AMPLITUDE OF POWER SPECTRUM FOR A GENERIC THEORY AT N3LO
EVALUATED AT k�

We report the NLO, N2LO, and N3LO corrections to the amplitude of the power spectrum for any SVT mode in a theory
with generic Zψ and cψ .

TABLE XI. Amplitude of the power spectrum for a theory with generic Zψ and cψ , up to N3LO.

Order Expression

LOþ NLO: AðψÞ
� ¼ ℏH2�

4π2c3�Z�
½1 − 2ð1þ CÞϵ1H� þ Cϵ1Z� þ ð2þ 3CÞϵ1c�

N2LO: þ 1
2
ð−6þ 4Cþ 4C2 þ π2Þϵ21H� þ ð2þ 2Cþ C2 − π2

12
Þϵ1H�ϵ2H� − 1

2
ð−8þ 2Cþ 4C2 þ π2Þϵ1H�ϵ1Z�

þ 1
8
ð−8þ 4C2 þ π2Þϵ21Z� þ 1

24
ð−12C2 þ π2Þϵ1Z�ϵ2Z� þ ð−6þ Cþ 3C2 þ 3π2

4
Þϵ1c�ϵ1Z�

þ 1
8
ð−64þ 24Cþ 36C2 þ 9π2Þϵ21c� þ ð10 − 5C − 6C2 − 3π2

2
Þϵ1c�ϵ1H� þ 1

8
ð−16 − 16C − 12C2 þ π2Þϵ2c�ϵ1c�

N3LO: þ 1
3
ϵ31H�ð16 − 4C3 − 3Cð−8þ π2Þ − 14ζð3ÞÞ þ ð8 − 3C2

2
− 2C3 − 13π2

12
þ Cð6 − 5π2

6
ÞÞϵ21H�ϵ2H�

þ 1
12
ϵ1H�ϵ22H�ð−12C2 − 4C3 þ π2 þ Cð−24þ π2Þ − 8ð1þ ζð3ÞÞÞ

þ 1
12
ϵ1H�ϵ2H�ϵ3H�ð−12C2 − 4C3 þ π2 þ Cð−24þ π2Þ − 8ð1þ ζð3ÞÞÞ

þ ð−4þ 3C2

2
þ C3 þ 13π2

24
þ Cð−3þ 5π2

12
ÞÞϵ1H�ϵ1Z�ϵ2H� − 1

24
Cð−48þ 12C2 þ 5π2Þϵ21Z�ϵ2Z�

− 1
8
Cð−48þ 12C2 þ 5π2Þϵ1c�ϵ1Z�ϵ2Z� þ Cð−4þ C2 þ 5π2

12
Þϵ1H�ϵ1Z�ϵ2Z�

þ 1
24
ϵ1Z�ϵ22Z�ð4C3 − Cπ2 þ 8ð−2þ ζð3ÞÞÞ þ ϵ1H�ϵ21Z�ð4 − C3 − 3

4
Cð−8þ π2Þ − 7ζð3Þ

2
Þ

þ ϵ21H�ϵ1Z�ð−8þ 2C3 þ 3
2
Cð−8þ π2Þ þ 7ζð3ÞÞ þ 1

24
ϵ1Z�ϵ2Z�ϵ3Z�ð4C3 − Cπ2 þ 8ð−2þ ζð3ÞÞÞ

þ 1
24
ϵ31Z�ð4C3 þ 3Cð−8þ π2Þ þ 2ð−8þ 7ζð3ÞÞÞ þ 9

8
ϵ31c�ð4C3 þ 3Cð−8þ π2Þ þ 2ð−8þ 7ζð3ÞÞÞ

þ ϵ1c�ϵ22c�ðC2 þ C3

2
− π2

12
þ Cð2 − π2

8
Þ þ ζð3ÞÞ þ 1

8
ð96 − 36C2 − 36C3 − 13π2 − 15Cð−8þ π2ÞÞϵ21c�ϵ2c�

þ ϵ1c�ϵ1H�ϵ1Z�ð24 − 6C3 − 9
2
Cð−8þ π2Þ − 21ζð3ÞÞ þ ϵ1c�ϵ2c�ϵ3c�ðC2 þ C3

2
− π2

12
þ Cð2 − π2

8
Þ þ ζð3ÞÞ

þ ð−8þ 3C2 þ 3C3 þ 13π2

12
þ 5

4
Cð−8þ π2ÞÞϵ1c�ϵ1H�ϵ2c�

þ 1
24
ð96 − 36C2 − 36C3 − 13π2 − 15Cð−8þ π2ÞÞϵ1c�ϵ1Z�ϵ2c�

þ ð−12þ 9C2

2
þ 3C3 þ 13π2

8
þ Cð−9þ 5π2

4
ÞÞϵ1c�ϵ1H�ϵ2H�

− 9
4
ϵ21c�ϵ1H�ð4C3 þ 3Cð−8þ π2Þ þ 2ð−8þ 7ζð3ÞÞÞ þ 9

8
ϵ21c�ϵ1Z�ð4C3 þ 3Cð−8þ π2Þ þ 2ð−8þ 7ζð3ÞÞÞ

þ 3
8
ϵ1c�ϵ21Z�ð4C3 þ 3Cð−8þ π2Þ þ 2ð−8þ 7ζð3ÞÞÞ þ ϵ1c�ϵ21H�ð6C3 þ 9

2
Cð−8þ π2Þ þ 3ð−8þ 7ζð3ÞÞÞ�
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APPENDIX E: POWER-LAW QUANTITIES FOR SINGLE FIELD INFLATION AT N3LO

In general, we can compute power-law quantities, i.e., amplitude A� at pivot mode k�, together with its log-derivatives:
the spectral tilt θ�, the running of the tilt α�, and the running-of-the-running of the tilt β�, which are defined as

A� ≡ P0ðk�Þ; ðE1Þ

θ� ≡ k
d
dk

lnðP0ðkÞÞ




k¼k�

; ðE2Þ

α� ≡ k
d
dk

�
k
d
dk

lnðP0ðkÞÞ
�





k¼k�

; ðE3Þ

β� ≡ k
d
dk

�
k
d
dk

�
k
d
dk

lnðP0ðkÞÞ
��





k¼k�

: ðE4Þ

Note that the power-law quantities above can be straightforwardly obtained from an expansion of lnðP0ðkÞÞ up to N3LO,
since

lnðP0ðkÞÞ ¼ lnðA�Þ þ θ� ln
�
k
k�

�
þ α�

2!
ln

�
k
k�

�
2

þ β�
3!

ln

�
k
k�

�
3

þOðN4LOÞ: ðE5Þ

Below, we report these quantities for minimally coupled single field inflation.

TABLE XII. Power-law quantities of curvature perturbations for a minimally coupled single field up to N3LO.

Quantity Order Expression

As LOþ NLO∶ GℏH2�
πϵ1H�

½1 − 2ð1þ CÞϵ1H� þ Cϵ2H�
N2LO∶ þ 1

2
ð−6þ 4Cþ 4C2 þ π2Þϵ21H� þ ð6þ C − C2 − 7π2

12
Þϵ1H�ϵ2H�

þ 1
8
ð−8þ 4C2 þ π2Þϵ22H� þ 1

24
ð−12C2 þ π2Þϵ2H�ϵ3H�

N3LO∶ þ 1
24
ϵ2H�ϵ23H�ð4C3 − Cπ2 þ 8ð−2þ ζð3ÞÞÞ þ 1

24
ϵ2H�ϵ3H�ϵ4H�ð4C3 − Cπ2 þ 8ð−2þ ζð3ÞÞÞ

þ 1
3
ϵ31H�ð16 − 4C3 − 3Cð−8þ π2Þ − 14ζð3ÞÞ þ ϵ21H�ϵ2H�ð−3C2 − 13π2

12
þ 2

3
Cð−9þ π2Þ þ 7ζð3ÞÞ

þ 1
12
ϵ1H�ϵ2H�ϵ3H�ð−12C2 þ 8C3 þ π2 þ 6Cð−12þ π2Þ − 8ð1þ ζð3ÞÞÞ

þ 1
24
ϵ32H�ð4C3 þ 3Cð−8þ π2Þ þ 2ð−8þ 7ζð3ÞÞÞ − 1

24
Cð−48þ 12C2 þ 5π2Þϵ22H�ϵ3H�

þ 1
24
ϵ1H�ϵ22H�ð12C2 − 8C3 þ 15π2 − 6Cð−4þ π2Þ − 4ð4þ 25ζð3ÞÞÞ�

ns LOþ NLO∶ 1 − 2ϵ1H� þ ϵ2H�
N2LO∶ −2ϵ21H� þ ð3þ 2CÞϵ1H�ϵ2H� − Cϵ2H�ϵ3H�
N3LO∶ −2ϵ31H� þ ð15þ 6C − π2Þϵ21H�ϵ2H� þ 1

12
ð−84 − 36C − 12C2 þ 7π2Þϵ1H�ϵ22H�

þ 1
12
ð−72 − 48C − 12C2 þ 7π2Þϵ1H�ϵ2H�ϵ3H� þ 1

4
ð8 − π2Þϵ22H�ϵ3H�

þ 1
24
ð12C2 − π2Þϵ2H�ϵ23H� þ 1

2
C2ϵ2H�ϵ3H�ϵ4H� − 1

24
π2ϵ2H�ϵ3H�ϵ4H�

αs N2LO∶ 2ϵ1H�ϵ2H� − ϵ2H�ϵ3H�
N3LO∶ 6ϵ21H�ϵ2H� þ ð−3 − 2CÞϵ1H�ϵ22H� − 2ð2þ CÞϵ1H�ϵ2H�ϵ3H� þ Cϵ2H�ϵ23H� þ Cϵ2H�ϵ3H�ϵ4H�

βs N3LO∶ −2ϵ1H�ϵ22H� − 2ϵ1H�ϵ2H�ϵ3H� þ ϵ2H�ϵ23H� þ ϵ2H�ϵ3H�ϵ4H�
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APPENDIX F: DERIVING THE EXPANSION
OF HðtÞ IN TERMS OF ϵ1HðtÞ

Let us recall the modified Friedmann equation for the
model Rþ αR2, reported in (77), which can be rewritten as

1 − 36αHðtÞ2ϵ1HðtÞ þ 18αHðtÞ2ϵ1HðtÞ2
− 12αHðtÞϵ̇1HðtÞ ¼ 0: ðF1Þ

From the above expression, one can also solve for ϵ̇1HðtÞ,

ϵ̇1HðtÞ ¼
dϵ1HðtÞ

dt

¼ 1 − 36αHðtÞ2ϵ1HðtÞ þ 18αHðtÞ2ϵ1HðtÞ2
12αHðtÞ : ðF2Þ

If we neglect contributions of order Oðϵ2Þ, the Friedmann
equation (F1) is solved by HðtÞ ∼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

36αϵ1HðtÞ
p . Hence, one

would like to determine an expansion of HðtÞ order-by-
order in ϵ1HðtÞ of the form

HðtÞðanzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36αϵ1HðtÞ

p ½1þ a1ϵ1HðtÞ þ a2ϵ1HðtÞ2

þ a3ϵ1HðtÞ3 þ a4ϵ1HðtÞ4 þ � � ��: ðF3Þ

This also defines an ansatz ϵ1HðtÞðanzÞ ¼ −ḢðanzÞ=HðanzÞ2 .
Using (F3) as an ansatz, we can impose the condition
ϵ1HðtÞðanzÞ ¼ ϵ1HðtÞ þOðϵ5Þ. From this self-consistency
condition, we find the coefficients a1, a2, a3, and a4,
which are finally reported in (78). This expression also
allows us to expand ϵ2HðtÞ, ϵ3HðtÞ, etc. in terms of ϵ1HðtÞ,
as reported in (79). It can be checked that the resulting
Hubble rate is a solution of (F1), up to N3LO corrections.
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