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Primordial power spectrum at N3LO in effective theories of inflation
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We develop a systematic framework to compute the primordial power spectrum up to next-to-next-to-next
to leading order (N3LO) in the Hubble-flow parameters for a large class of effective theories of inflation. We
assume that the quadratic action for perturbations is characterized by two time-dependent functions—the
kinetic amplitude and the speed of sound—that are independent of the Fourier mode k. Using the Green’s
function method introduced by Stewart and Gong and extended by Auclair and Ringeval, we determine the
primordial power spectrum fully expanded around a pivot scale up to N3LO, starting from a given generic
action for perturbations. As a check, we reproduce the state-of-the-art results for scalar and tensor power
spectra of the simplest “vanilla” models of single-field inflation. The framework applies to Weinberg’s
effective field theory of inflation (with the condition of no parity violation) and to the effective theory of
spontaneous de Sitter symmetry breaking. As a concrete application, we provide the expression for the N3LO
power spectrum of R + R? Starobinsky inflation in metric variables, without a field redefinition. All
expressions are provided in terms of an expansion in one single parameter, the number of inflationary
e-foldings N,. Surprisingly, we find that, compared to previous leading-order calculations, for N, = 55 the
N3LO correction results in a 7% decrease of the predicted tensor-to-scalar ratio, in addition to a deviation

from the consistency relation and a prediction of a negative running oty = —1 (n, — 1)? + - - - of the scalar tilt.

2

These results provide precise theoretical predictions for the next generation of CMB observations.
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I. INTRODUCTION

Cosmic inflation [1-10] provides a mechanism for the
production of primordial perturbations that is successful in
explaining a wide range of cosmological observations,
including the nature of anisotropies in the temperature
fluctuations of the cosmic microwave background (CMB),
and the quantum origin of the large scale structure of the
Universe [11,12]. Within this theoretical framework, there
is a plethora of inflationary models which range from
quantum-gravity motivated models to phenomenological
parametrizations of potentials [13,14], and additional
observations are required to distinguish between different
models. Thus, as upcoming cosmological observations are
expected to improve the constraints on many of the
primordial observables [15—17], precise theoretical predic-
tions for these future observations are also required. We
address this issue directly for the large class of inflationary
models summarized in Table 1.

The primordial power spectrum is one of the most relevant
cosmological observables. The Green’s function method
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introduced by Stewart and Gong in [32] was recently
extended by Auclair and Ringeval [33] to provide a detailed
computation of the power spectrum at next-to-next-to-next to
leading order (N3LO) in the framework of single-field slow-
roll inflation—a phase driven by a minimally coupled scalar
field slowly rolling down its potential—together with an
extension to nonminimal kinetic terms obtained via a
mapping method [34]. These models belong to a broader
class of effective theories of inflation: a prototypical example
is the action for the free propagation of scalar curvature
perturbations R,

o(1)?

a(t)?

where the nontrivial time-dependence of the background
fields and geometry, assumed to be homogeneous and
isotropic, is encoded in three functions of time—the scale
factor a(t), the kinetic amplitude Z(¢), and the speed of
sound ¢, () [28]. While in a given model these functions take
a specific form, it is useful to treat them as independent to
obtain general formulas which apply to all perturbations in a
scalar-vector-tensor decomposition. We work in a spatially
flat quasi-de Sitter background and assume that there is no

$,[R] :% / d*xa(1)Z,(1) (7‘22 - (6,-73)2>, (1)
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TABLEL Effective models of inflation. The functions Z(z) and
¢(t) are defined by the quadratic action for scalar (s) and tensor (t)
perturbations of the form (4). The symbols indicate that the
functions reported are of the form considered here (v') or not (X).

Theory Z(1) o) Zd1)  «(d)
Single-field [18] Eq. (69) 1 Eq. (70) 1
R + aR? [19-21] Eq. 91) 1 Eq.(94) 1
K-inflation [22] v v v 1
LQC + inflaton [23,24] v v v v
f(@)-Gauss Bonnet [25] 4 4 4 v/
f(¢)-Chern Simons [26,27] v v X X
General scalar-tensor [19] v v v v
Goldston mode EFT [28] v ve v v
Multifield EFT [29] v v v v
Minimally broken CFT [30] v v Va va
Weinberg’s EFT [31] v v va va

“The effective theory requires an additional assumption of no
parity violation to exclude a dependence on k in the functions
Z(t) and c(1).

gravitational parity violation, which implies that the func-
tions Z, () and c,(¢) admit a Hubble-flow expansion and are
independent of the mode k in Fourier space. The goal of this
paper is to provide a N3LO computation of the primordial
power spectrum and its associated power-law quantities for
the broad family of effective theories of inflation (Table I)
which have a quadratic action of this form.

In an exactly de Sitter background, the Mukhanov-Sasaki
equation admits an exact solution for the mode functions,
which corresponds to the choice of the Bunch-Davies
vacuum for the quantum perturbations. The constant
Hubble rate H(r) = H, results in a scale-invariant power
spectrum P ~ H?. This leading order (LO) prediction is
corrected by a next-to-leading order contribution (NLO) that
takes into account the fact that the Hubble rate H(¢)
decreases slowly, imprinting more power in red than in
blue modes—ared tilt ng, < 1. At this order, the approximate
equation admits again an exact solution which defines a
quasi-Bunch-Davies vacuum with mode functions given by
a combination of Bessel functions [35]. However, the
solution in terms of Bessel functions is not easily extended
to higher orders, and various approximation schemes have
been developed, including the uniform approximation
[36—42]. The next-to-next-to-leading order (N2LO) correc-
tions for scalar perturbations were derived in [43] using the
constant-horizon approximation, and in [32] as a systematic
expansion using the Green’s function method, while the
N2LO corrections to tensor modes were obtained in [44].
The fully expanded N3LO corrections for slow-roll inflation
were derived in [33], which is the method we adopt and
extend here. Motivated by these recent results, we address
the problem of finding the contributions to the power
spectrum up to N3LO for the broad class of models with
perturbations described by the quadratic action (4). In
particular we work out the N3LO predictions of the model

of inflation introduced by Starobinsky, motivated by quan-
tum gravity considerations [2,3]. Remarkably, this model
provides the best account of current observations in terms of
asingle free parameter, the number of inflationary e-foldings
N,. While its analysis is generally done via a field redefi-
nition that maps it into an inflaton potential, here we work in
the geometric framework where inflation is driven by higher
curvature terms. Our explicit N3LO computations show a
tensor-to-scalar ratio that is 7% smaller compared to its
standard expression.

The manuscript is structured as follows: In Sec. II, we
describe the assumptions, the general framework, and the
Hubble-flow expansion of the background variables. In
Sec. 1II, we discuss the quantization of perturbations, a
choice of variables analogous to Mukhanov-Sasaki varia-
bles, and a logarithmic expansion of the Hubble-flow
parameters. In Sec. IV, we find the mode equation satisfied
by our dynamical variables and describe the Green’s
function method introduced in [32,33]. In Sec. V, we report
the final expressions for the power spectrum, which takes
the schematic form,

hH?

P [1+ pi(k) + pa(k) + p3(K)].  (2)
with H, Z, and c evaluated at a pivot scale k., as described
in (67). The functions p, (k) have a logarithmic depend-
ence, i.e., include powers of In(k/k,), and represent the
NnLO correction to the power spectrum. The explicit form
of these functions is reported in Tables III-VI. From the full
power, we can also extract the predictions for the ampli-
tude, tilt, running of the tilt, and running-of-the-running of
the tilt, which are reported in Tables VII and XI. In Sec. VI,
we discuss our results in the context of single-field
inflation. In Sec. VII, we analyze Starobinsky inflation
and compute the N3LO corrections as an expansion in the
single parameter N,, reported in Table IX. Finally, in
Sec. VIII, we discuss the results obtained in this work
and outline possible extensions.

Throughout the paper, we adopt units with the speed of
light ¢ = 1, while we keep track of Planck’s constant /2 and
Newton’s gravitational constant G. The metric signature is
(—+++), a derivative with respect to cosmic time is
denoted by (), and a derivative with respect to other
variables by ()’. Complex conjugation is denoted by (),
and evaluation at a pivot scale by (),.

II. ACTION AND PERTURBATIONS

A. Quadratic action

We consider an inflationary background geometry given
by the spatially-flat Friedman-Lemaitre-Robertson-Walker
(FLRW) metric

G dxtdx? = —d? + a(1)?6;;dx'dx/, (3)
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which, together with other homogeneous and isotropic
fields, satisfies the background equations of motion of an
inflationary theory of gravity and matter. Because of the
symmetry of the background, perturbations of the geometry
and of matter fields decompose in scalar, vector, and tensor
(SVT) modes. Once one fixes a gauge and solves the
Hamiltonian and diffeomorphism constraints perturba-
tively, the action of perturbations decouples at quadratic
order and takes the general form

=

- 5 Cl//(t)

P2, 0) 3 . )P

w<nﬂ )

a(t)?

where k = |k|, and we used the generic name (K, ) for
the Fourier transform of each of the SVT modes ¥(x, 7),

Pk
(2m)?

Together with the scale factor a(z), the quadratic action
encodes the coupling of the SVT modes to the background
via two functions of time 7: the kinetic amplitude, Z,(¢),
and the speed of sound, ¢, (7). In a given model, their time
dependence can be expressed in terms of time-derivatives
of the Hubble rate H(¢) = a(r)/a(t), but here we treat them
as independent as it allows us to derive general results. We
make the assumption that they do not depend on the mode k
(which excludes some models of inflation) and require both
a no-ghost condition, Z,(z) >0, and a no-Laplacian-
instability condition, ¢, (¢)* > 0.

The well-studied case of single-field inflation corre-
sponds to the two functions being constant for tensor
modes, while scalar curvature perturbations have a constant
speed of sound and a time-dependent kinetic amplitude
Z,(t) proportional to the slow-roll parameter —H (¢)/H (t)>.
In the case of Starobinsky inflation treated in the geometric
framework, Z () and Z(¢) depend nontrivially on higher
time-derivatives of the Hubble rate both for scalar and for
tensor modes, but the speed of sound is still constant
for both.

The effective field theory of single-field [28] and
multifield [29] inflation has a quadratic action of this form,
with a nontrivial speed of sound ¢, (#) that needs to be
determined via observations and a nontrivial kinetic ampli-
tude Z,, () that depends on the slow-roll parameter and on
the speed of sound.

In loop quantum cosmology, quantum geometry
effects modify the Mukhanov-Sasaki equation which, in
a self-consistent approximation, can also be cast in the
form (4) [23,24].

In models of K-inflation [22], the action of the inflaton
field includes higher derivative terms of the form

Y(x,1) = w(k, t)elkx, (5)

&m:/&WQme@wm% (6)

which result again in an action for scalar perturbations of
the form (4) with a nontrivial speed of sound. Similarly,
models that include a coupling fgg(¢)Lgp to the Gauss-
Bonnet density [25],

Lap = RyypuRH7 —

HUpc 4R/,HJRMD + Rz? (7)
can be cast in the form (4) for scalar pertubations. On the
other hand, in models with a coupling fcg(¢)Lcs to the
Chern-Simons density,

’CCS = _(\/ _g) em/paRaﬂ I/Rﬂapm (8)

tensor perturbations with circular polarization (&) have a
kinetic term Z.(t,k) and speed of sound c. (¢, k) which
depend linearly on =k, resulting in gravitational parity
violation [26,27]. Therefore, they cannot be cast in the
form (4) assumed here because of the dependence on k.
Weinberg’s formulation of an effective field theory of
single-field inflation starts from the most general action
S[gu- @] which includes all diffeomorphism invariant
terms, organized in an order-by-order expansion in the
number of spacetime derivatives, up to fourth order [31]. In
particular, it includes a coupling of the inflaton field ¢ to
quadratic terms in the Weyl tensor, C,,,,C**? and
(v=9) 'emrocey,,CPyy, and a term of the K-inflation
type (6). Up to ﬁeld redefinitions, and using reduction
of order of the four-derivative terms with respect to the
(two-derivative) Einstein equations of motion

R, = 8xG (le

one can reabsorb quadratic terms in the Ricci tensor into a
K-inflation term. Therefore, the effective action takes the
form of single-field inflation with an inflaton potential
V(p), a K-inflation term (6), a GB-coupling (7), and a
CS-coupling (8). If we further assume that the theory is
invariant under all diffeomorphisms, including diffeomor-
phisms not connected with the identity such as orientation
reversals, then the parity-violating coupling to Lcg has to
vanish, and the quadratic action for scalar and tensor
perturbation takes once more the form (4), with the kinetic
amplitude and the speed of sound expressed in terms of
time-derivatives of the Hubble rate H(¢), of the background
inflaton field @(7), and of the couplings V(¢@(?)), fx(@(1)),
and fp(9(1)).

In summary, the formalism that we develop in this work
applies to the broad class of effective theories of inflation in
which quadratic action can be cast in the form of (4) and,
among others, include most of the models discussed above,
as shown in Table I.

1
- 5 g;w T> ’ (9)
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B. Hubble-flow expansion

The variational principle for the quadratic action (4)
results in equations of motion for the SVT perturbations
that depend on the background functions a(t), H(t), Z,,(t),
¢,/ (t) and their time derivatives. In the simplest models, the
mechanism that produces a frozen power spectrum for
tensor modes is a transition in the mode equation ii(z) +
3H(t)i(t) + (k/a(t))*u(t) = 0 from an oscillatory phase
with small friction H(#) < k/a(t) to an overdamped phase
with large friction H(z) > k/a(t). For a given mode k, the
transition requires an increasing comoving scale a(¢)H (1),
i.e., an accelerating phase

0<i= S (a(H®) = (1~ eiy(Da(HER,  (10)

or equivalently a Hubble-flow parameter €,4(f) < 1 with

H(t)
H(t)*

(11)

en(t) = -

During a de Sitter phase, a(t) = ef’o’, the Hubble rate is
constant and therefore the Hubble-flow parameter vanishes
exactly. In a quasi-de Sitter phase, the Hubble rate is
assumed to change slowly and it is useful to introduce a
systematic expansion, called Hubble-flow expansion,
defined recursively in terms of the dimensionless param-
eters €,y, with

i) = —H(EI)Z—% (12)

A phase of quasi-de Sitter inflation is characterized by
le.n] < 1. Different conventions have been used in the
literature for the Hubble-flow expansion, and to avoid
confusion a dictionary is provided in Table II. Generally
speaking, our definition has a relative sign of ¢,y, for
n > 2, with respect to the definition used in [33]. Similarly,
we introduce new Hubble-flow parameters for the kinetic
amplitude Z,(t),

exslr) = —% (13)
€mt)z(t) = —%’ (14)

TABLE II. Dictionary of definitions for the first Hubble-flow
parameters. Compare also with the conversion table in [43].

This work Stewart and Gong [32] Auclair and Ringeval [33]

€1H €] €]
€y —261 - 251 —€)
€2HE3H €2 + 6¢,85; —28% + 26, €65

and for the speed of sound ¢, (1),

_ &)
€1c(t) = —W, (15)

_ énc(t)
Ent1)e(t) = “He ) (16)

All the flow parameter are assumed to be of the same order,
e.g., Ole,y) = O(eyz) = O(e,.). To simplify the nota-
tion, we use a placeholder e to track the corresponding
order of the expansion, ie., O(e;y) = O(e), O(el,) =
O(e?), and so on. In a specific model of inflation, this
assumption is to be checked a posteriori. In this work, we
consider corrections up to order €.

III. QUANTIZATION OF PERTURBATIONS

A. Field representation and mode expansion

Inflation explains the anisotropies in the CMB temper-
ature and the seeds of large-scale structures in terms of
vacuum fluctuations that are assumed to be homogeoneous
and isotropic. Specifically, the SVT fields W(x,7) are
assumed to be initially in a vacuum state |0) with a two-
point correlation function that, at an equal time ¢, is
invariant under rotations and translations,

O]¥(x, 1) P(x',1)|0) = G(]x = X/|, 7). (17)

Neglecting interactions and non-Gaussianities, this condition
can be encoded in a Gaussian vacuum state in Fock space,
defined by the condition a(k)|0) = 0, V k, with bosonic
creation and annihilation operators, [a(k),a’(k')] =
(27)36%) (k — k'), together with a mode expansion of the
quantum field

A 3 .
B(x, 1) = / % (u(k, )a(k) + u (k, 1)a" (=) ).
(18)

The assumption of homogeneity and isotropy (17) implies
that the modes u(k, r) depend only on k = |k|. Moreover, at
the classical level, the conjugate momentum derived from the
action (4) is defined by

a(k, 1) = 58, [w] _

oy (k. 1)
and denoted TI(x, ) in position space. Canonical quantiza-
tion of the Poisson brackets results in the canonical commu-
tation relation (CCR), [¥(x, 1), [I(x',7)] = ins®) (x — x'),
which, together with (18), implies the canonical Wronskian
condition for the mode functions

a(t)*Z,(1)
(2z)?

yr(=k,7)  (19)

in

ks i (1) = il (ko) = s

(20)
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where u* is the complex conjugate of u. Finally, the equations
of motion (EoM) derived from the action (4) for each of the
SVT modes results in the mode equation

2
m&g+@—%AMHmwh0+%@i£V

u(k,t) =0.
(21)

A choice of initial conditions u(k, t,), it(k, ty) for the EoM
(21), satistying the CCR constraint (20), or equivalently a
choice of solution of the two equations, defines a Gaussian
state |0) that is homogeneous and isotropic, (17). In the next
section, we discuss how to select an adiabatic solution
of (20) and (21) that generalizes the Bunch-Davies vacuum
to quasi-de Sitter space, order-by-order in the Hubble-flow
expansion.

B. Mukhanov-Sasaki variables

In de Sitter space, the Hubble rate is constant,
ay(t) = efv’, and in the simplest models of a test quantum
field, the EoM reduces to ii + 3Hgit + (k/ao(t))*>u =0
and the CCR equation to uit* — itu* = ih/ay(t)*. Using a
reparametrization of time # — n and a change of variables
u—w,

1

n=-——" w(n) =

ao(NHy ag(1)*/hu(r),  (22)

the EOM and CCR take the simpler form

1 2 E w _
wwm+(k %)<m—a (23)
w(mw™ (n) = w' (imw*(n) = i. (24)

These two equations admit a basis of linearly independent
solutions (w(n), w*(5)), with

w(n) = L (1 i > ek, (25)

iz

which defines the Bunch-Davies vacuum, i.e., the de Sitter
invariant state |0) for the test quantum field [45]. In quasi-
de Sitter space, one can follow a similar strategy as
first done by Mukhanov and Sasaki [46,47], with the
conformal time # and a choice of pivot scale k, defined
by the horizon-crossing condition k, = a(t.)H(t,) or,
equivalently, k.7, = —1, which characterizes the transition
from the oscillatory to the frozen overdamped phase
discussed earlier. Mathematically, the first step of this
strategy relies on recasting a second-order linear differ-
ential equation with time-dependent coefficients,
V' (x) + f1(x)?'(x) + f2(x)v(x) = 0, in the standard form
w'(n) + Q(n)w(n) =0, where Q(n) is made as nearly
free from poles and branch points as is conveniently

possible, by changing both independent and dependent
variables [48,49].

In this section, we address this problem for Eqs. (20) and
(21), extending the analysis of [32,33]. We start by noticing
that the EoM for u includes a term proportional to iz that we
can remove via a change to a new variable v(x), which also
includes a time reparametrization ¢ — x(r) to be deter-
mined. Starting from the ansatz

u(r) = M (26)

the EoM takes the form

V(%) + f1(0) v/ (x) + f2(x)v(x) = 0. (27)
The function f(x) is given by

. Z . .
fl(x)=%+<3H+Z—W—g)§, (28)

and f,(x) reads

20
_ ke,

3% — 2 pji + 2Huj (e —3)
Al '

f2 (x) 4/12)'62

(29)

By imposing the condition f;(x) = 0, we find p(x(z)) =
poa(1)*Z,,(t)x/h, where y is an integration constant that
can be determined to be x4, = 1 by imposing the canonical
normalization of the CCR,

v(x)v*(x) = o' (x)v*(x) = 1. (30)

The next step is to impose that a term of the form
((k/k,)? = ...)v(x), where k, is a pivot scale later defined
in terms of a horizon-crossing time. Imposing this con-
dition on f,(x), we find the equation

¢y (1)
= _k* Cl(t) ’ (31)

which defines the change of time variables  — x. Note that
the time variable x is not the conformal time 7, i.e., (22), but
a generalized version that we denote by 7, as a consequence
of the time-dependent speed of sound c,(¢). With this
identification, the map between u(¢) and v(x) is fully
characterized,

PR G

VH(x) - \/k*azcu,Z,l,/fl ‘

Now, notice that the EoM (21) becomes

(32)

K a(t)H(1)?

U//(X) + [k_z + WQ(t)] v(x) =0, (33)

104032-5
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where

q(t) = =2+ e (t )+3621 )+

_en(t)eiz(t) €1z(1)° ez(1)eaz (1)
2 4 2
cre()ern(r) erc(t)ere(r) | €. (1)
B 2 B 2 + 14 ' (34)

+ e1(1)? — €1 (t)ery (1)
e3n (1) —

EU/(I) = cy/(t)[l + elH(t) - elc(t
+ e (1) + e (e (r

)
)

One can use (35) whenever we need to write a(f) exclusively
in terms of x, order-by-order. The next step is to write each
flow parameter in terms of the new time variable x, which can
be done via a logarithmic expansion around the value x, = 1.
The time ¢, w1th x, = x(t,) = 1 encodes a “generalized
horizon-crossing” condition in the expansion (35), i.e.,
¢k, =a.H,. Note that the standard ‘“horizon-crossing”
condition is only recovered when ¢, = 1, i.e., in exact de
Sitter space and with ¢, = 1. In quasi-de Sitter space, where
the Hubble-flow parameters are generically nonzero, even if
¢, = 1 there will be contributions to ¢,,. However, in that
scenario, the contributions come only from €, 4, €,5, and €3y,
i.e., the background geometry. Then, the expansion around a
particular pivot scale k, will be the same for scalar and tensor
modes. A different situation occurs if ¢, # 1, where the
additional contributions make the comparison of two differ-
ent SVT modes at the same pivot scale, as in the case of the
tensor-to-scalar ratio r, not immediate. In Appendix B, we
describe a procedure to expand the power spectra of two
different SVT modes, with speeds of sound c¢(4) # ¢(B)
around the same pivot scale in such a way that both spectra
can be consistently compared with each other.

C. Logarithmic expansion

To illustrate the procedure, let us consider an arbitrary
function p(7), such as H(t), Z,(t), or c,(t). For
|

p( ) [)*[1 <€1p* + elp*(elH*

1
2

3e1y (1) e (1) + €1 (1)ery (1)
= 3e1.(1) 220 (1) + 3e1.(1)e1y (1) eae (1) — €10(1)enc (1)es (1) — €1.(1)* + 3€1.(2) €11 (1)

—€10:) F €pel€1m (€115

This equation is exact in the flow parameters €, 4(7), €,7(¢),
€1.(1), etc. The last step is to write 7 in terms of the time x
by solving (31). This can be done self-consistently in a
Hubble-flow expansion as discussed in Appendix A, where
we find

x(t) = —k.z(t) =

with ¢, () defined as

(35)

—2¢1.(t)ern (1) + e1.(t)erc (1) + €10(1)?

— €1.(1)e2c(1)* + €1 (1)1 (1)erp (1)
—3er(1)ery (1) + O(eh)].
(36)

[

definiteness, suppose that this function is smooth and only
depends on time. The goal is to write it explicitly in terms of
the new time variable x, i.e., p(x), as a perturbative
expansion around a pivot value x,=x(z,) =1, ie,
k,t, = —1. In a quasi-de Sitter phase of cosmic inflation,
these geometric functions are assumed to be slowly varying
with respect to time x. Thus, a logarithmic expansion is
appropriate in this context. In other words, we look for an
expression of the form

p(x) = p. + prIn(x) + pa, In(x)?
+p3. In(x)’ + O(e*). (37)

where the expansion is always understood to be around
x, =1, the first term p, = p(x,), and the rest of coef-
ficients are given by p,, = (n!)~'d"p(x)/d In(x)"|,_, .
n =1, 2, 3. These coefficients are given by expressions
that can be recursively expanded by using (31) and its
derivatives and then replacing (35) in combination with the
flow expansion. In this way, the logarithmic expansion is
extended to all the relevant variables, including the flow
parameters. The generic expressions for p = H, Zvn Cy and
the associated flow parameters are given by (38),

- €2H*> + elc*(_2€1H* + 620*) + E%C*D 11’1()6)

(el/)* (el/)* + 62/1*) + 61/)*[ €lex (261/)* + €20 + 262/)*) + €1Hx (261/)* + €2Hx + 262/)*)]) In (X)2

1
+ 661/7* (e%p* + 3€1p*€2/)* + 62/)* (€2p* + €3p*)) In ()C)3] + 0(64)’
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1

€1/,(X) = €1y« + (61/)*62/)* + (_elc* + €1H*)€1p*€2/)*) ]n(x) + (6111*62/)* (62/)* + e3/)*)> In (X)2 + 0(64)7

€2p(x) = €2p* =+ €2p*€3p* ln(x) + 0(63)7

€3,(x) = €3,, + O(e?).

In this way, for instance, the Hubble rate H(x) in a
neighborhood of x, can be completely written in terms
of In(x)" and other coefficients evaluated at the pivot time,

€.8. €1Hx = €1H<t*)9 €lex = 6100*)? ete.

IV. GREEN’S FUNCTION METHOD

The logarithmic expansion is a crucial tool to write the
final expression of the equation of motion that describes the
dynamics of the mode functions v(x) and, therefore u(k, t),
|

3ez1. 9€.r.
2 2

2
S€1:€1 2+ + €17«

Jix = €1 —

+ 46%[—1* -

€17+€27x

2

(38)

during the inflationary epoch. Using the expansion (35) in
Eq. (33), the EoM for the modes becomes

o)+ (£) - 3]oe0 - Lo, 9

where g(x) = g, + ¢, In(x) + g3, In(x)?, and the coeffi-

cients ¢gi., ¢», and g3, are given by

2161[-1*610* 276%6* 9

—deiperp, +

2 4 2

+ 3€IZ*€15* + + A €1cx€20x

2 4 2

7 1
3 2 2 2 2
+5eiy, + 4y — ldeTy e, + 461560y, — 5 €1 €12 + 5 €1HET 7 + 3€1H €1 2420,

2 2

2 2 2
+ €114€12:€27+ — §€1c*€12* - 18610*626* + 15€104€115€205 = 3€164€124€201 — 4610*625* + 17€) cv€ 114204

45 ,

3
— €1ex€124€27% — 4elc*€2c*€3c* - 9€lc* + 7610*€1H* -

3 9

Gos = 3€11:€0p, — 5612*622* _5616*626*

37, 9

2
7610*€1H* - Eelc*€12* + 8€IC*€1H*€IZ*’

1
2 2
—4e\g€rm€3py + 1€Ty €20, — 4€11.E0y, + 5 €124€224€374 — 5 C1H€1Z+ €2t + 5 €124€224€104

2

1 1
2 2 2
—4e12.€15:€27: + 5 €17.€224 T 5 €12:€57, + 3€104€1 24600, + 5 €1ex€2cx

2 2

9
2
+ 5616*626*63()* =+ 18€lc*€2c‘* - 15616*611‘1*626*’

2

27
- 7€1H*€2H*€lc*

_ 3€1H*€2H*€3H* 3€1H*€%H* _ 3€IZ*€2Z*€3Z* _ 3612*652* _ 9610*6‘25*636* _ 9€lc*€%c* (40)

e = 2 2 4 4 4 4
with all quantities truncated at order O(e?), i.e., N3LO. k, k
Notice that the lowest order flow parameter contained in g,,,, v(x) = Z_kW(y ) and y= k_x ‘ (41)
is of order O(el). Given the functional form of g(x), it :
is clear that Eq. (39) does not admit a closed-form
analytical solution, but in this form it can now be solved Notice that under this rescaling we have y — —kz and
in an order-by-order expansion as we discuss as we discuss . .2 .
below. X = —k,t, where .the generalization of conformal time is

Following and extending [32,33], we use the Green’s given by (r), which solves
function method to correct the Bunch-Davies vacuum
order by order in a systematic expansion. To simplify
the intermediate formulas, we rescale our variables x — y Ht) = ¢y (1) , (42)

and v — w to remove the dependence on the pivot scale k. :
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as it can be seen from (31). Then, the EoM (39) reads as

W)+ 1= 3o =20, @)

where g(y) = g1 + e In(y) + g3 In(y)?, i.e., the coef-
ficients g, are of the same form as (40) but are implicitly
assumed to be evaluated at yg = 1, and the CCR relation of
(30) becomes

wy)w™(y) —w (y)w(y) = =2i. (44)

Note the factor of 2 in the mode (41) and in the CCR
normalization (44), fixed to match the normalization used
in [33]. Now, the goal is to solve (43) in a systematic
expansion around the Bunch-Davies solution (25),

wo(y) = (1 + ;) ev. (45)

The lhs of (43) takes the same form as (23), and we can
capture the correction from the rhs introducing the
advanced Green’s function in the variable y (which is
the causal Green’s function for cosmic time t):

i
G(v.5) = 5 (wo(y)wi(s) = wo(s)w5())O(s — ). (46)
where ©(s — x) is the Heaviside step function. The solution

of the EoM (43) can be found recursively as

w0) =m0+ [T w6 @)

We note that the structure of the function g(y) allows us to
write an expansion of the form w(y) = wy(y) +wi(y) +
wa(y) +ws(y) + O(e?), where

n0) =0 ["E s, @)
w2 (¥) = Gre /°° G(ijz,s In(s)wo(s)ds
+ g6 / N G(syz’ ) o (5)ds. (49)

It can be checked that w,(y) = O(€") in the flow expan-
sion. These integrals are difficult to work with, especially at
the third order. However, as we discuss in the next section
on the late-time power spectrum, to extract the physically
relevant information from the vacuum state described by
the mode functions, we only need to know the asymptotic
behavior of [w(y)|? in the limit y — 0%, The freezing in the
power spectrum corresponds to a finite value of the ratio
lw()|?/u(y) as y — 0T, despite the divergent behavior of
w(y) and u(y) by themselves. Fortunately, it was shown
in [33] that this asymptotic behavior is fully captured by a
family of one-dimensional integrals, starting with

Foly) = [ ds = —mn(y) - B+ 00,

o e2is
i) = [T ns)ds
y
1 B2 2
= —Eln(y)z += 42

-+ T4 00), (51)

3 71.2
=30y =T B-2e3) 4 00),  (52)

where B = yg + In(2) —in/2, with yz ~0.577 being the
Euler-Mascheroni constant and ¢(3) ~ 1.202 being the
Riemann zeta function evaluated at 3. Next, one considers
the two-dimensional integral,

0 e—Zis
Foo(y) :/ Fy(s)ds,
y

N

”2 2

= T BInG) 1302 + 0. ()

and the three-dimensional integral,

0 e+2is
Fopo(y) = /
y

Foo(s)ds

7 7T2 7T2 2
—- 360 -G p-g5 - (T 5 ) mo)
— () - () + O0). (54)

The details of the asymptotic expansions and the explicit
expressions of the solution w(y) in terms of these integrals
can be found in [33]. As in the limit y - 0" we have
p~a’>~x"2~y2 we have that the relevant quantity to
compute in detail in the limit is [yw(y)|?. In terms of the

integrals given above, it is given by
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2

)P = 1439162+ Re(Fy)]
L2
79

L2
243918

2
tol4 + 3|Fol* + 11Re(Fy)] + g% [8 + 7TRe(Fy) + 3Re(F,) + 61n(y)]

3|8 + 14Re(Fy) + 30|F|> + 9Re(FooFo) + 9Re(Fogo)]

4 _
+ 8—191®92®[—4 + 21 |F0|2 + 9R6(F1F()) -+ 40RG(F0) + 15R6(F1) + 121n(y) + ISRG(F(]) 1n(y)]

2
+ ﬁg3®[52 + 50Re(Fy) + 42Re(F,) + 9Re(F,) + 481Inx + 181In(y)?] + O(e*, x), (55)
and the asymptotic evaluation of the multidimensional integrals gives
() = 1 - 2 _ 4gte | 200 2C01s  89ig  68Cals _4C0g
3 9 27 9 27 243 81
4C3g 2Cg C?g 8019 80Cg,69 2 2
] 1© 92® + 32® - 217 : 811® = ﬁC291®gz® - §C391®92®
Te™ Gie® 1 5 5 e Giem” 1 2
_Jie? - ~c C
15 81 27 00T T 35 Tigdiede ~55Coiehen ~ o 15 Caer
n 83106 4Cge  2C°g39 2C°gse
9 27 9 9
() (- 2910 + 29%@ 4C9%® 689?@ _ SCQ?(@ _ 4C29?® 206 | 8910920
3 27 9 243 81 27 9 81
8CYi00re 2 4oy Gamt 1 14 4
+$—§ 91690 —2—7®— 1597 +5—491®92®7T2 8191@5( ) - 593@5(3)
29%@9 49?@9 4C9?® Do | 291890 | 2Cli1e%e 2930
— — ) _ L 1 2
+<9 81 27 3 7 9 9 g )W)
4gie 2 2
- ( ?1(’9 e 993®> In(y)?, (56)

where C =y +1n(2) —2~-0.730. We report the
numerical value of mathematical constants with only few
figures, but, as the N3LO power spectrum is at order O(e?),
with € ~ 1072, the appropriate number of significant figures
of each exact mathematical constant should be used.

V. PRIMORDIAL OBSERVABLES

A. Power spectrum

We proceed to briefly review the definition of power
spectrum. The quantum field ‘i’(x, t) is an operator-valued
distribution. What we measure with a finite-resolution
detector at X is the smearing of the quantum field against
atest function f(|x — X,|) that characterizes its response, i.e.,

|
where y(k,7)=u(k,t)a(k)+u*(k,1)a’ (-k). The Fourier
transform f (k) of the test function is assumed to be smooth
and with a compact support in [k, kmax] Which captures the
band or range of wavelengths that our observations probe.
The quasi-Bunch-Davies vacuum |0), discussed earlier in
terms of the mode functions u(k, t), is defined as the state that
approaches the Bunch-Davies vacuum in the far past where
quasi-de Sitter space approaches de Sitter space. As
a(k)|0) = 0, the expectation value of measurements of
the smeared field is zero, (¥;) = <0|‘i’f(t)|0) =0, and
the variance (AW;)? = (¥/%) — (¥,)* is given by the
equal-time two-point correlation function

3
O ()0, (1)0) = / %m(k, OEIFR)P

3
= [ kPP
0
= [ dtog Pk F0P.  (58)
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where we integrated away the angular variables (using the
assumed invariance of the test function under rotations and
the homogeneity and isotropy of the state) and defined the
power spectrum in a band d(log k) at time ¢ as usual:

3
PV (k, 1) = % |u(k, 1) (59)
JT

Therefore, by specifying the vacuum state |0) in terms of the
mode function u(k, ), one has an immediate way to predict
the size of quantum fluctuations in terms of |u(k,1)|*.
Moreover, the mode k. that transitions from an oscillatory
phase to an overdamped phase around a time ¢, before the end
of inflation has a power PW)(k,, ) that freezes to a finite
value for > t,. The late-time power spectrum, defined
formally as the limit Py (k) = lim,_ o, P(t, k), is then given by

, . B [o(x)?
PY6) = fim 5 (ko0 = Jim
_ hH (y)?
= lim ~ iy 2
y—0* 4n20w(y>03/(y)z"’(y) | !
. hH(y)? 2
= lim yw)IF(L+..), 0
y—»0+47z2031()’>zw( )| I ) ( |

where the ellipses indicate the Hubble-flow expansion of
¢, (¥)?/2,(y)* = (1 + ...) as defined in (36). Furthermore,
all the y dependent functions will admit a logarithmic
expansion as done in (38). The caveat resides in the new
pivot scale associated to this new logarithmic expansion in
terms of In(y). Notice that, using (42),

In(y) = In(—kz) = In (i) (61)

Te

where the new reference time is 74 = —1/k, such that
ye = —ktg = 1. Hence, a function p(y) could be expanded as

T 72
p(y) = pe + pieIn <> + p2g In (>

Te Te

\3
®

In this way, the leading order term of the late-time power
spectrum becomes

v) . hHY
PV (k) = lim ——&
0 ( ) yil(l)l 47T2C2EZ®

_ hH%
4n’cd Zg

yw)P(1+---)
Pe- (63)

Note that, both the terms |yw(y)[> and (1 + ...) contain
logarithmically divergent terms in the limit y — OT.

Remarkably, these logarithms exactly cancel out, and in
(63) there are no divergences in the limit. The coefficients in
D& can be found in Appendix C, and are a combination of €’s
evaluated at the reference time 7 without any direct scale
dependence. To compare with the pivot scale' associated to
the generalized horizon-crossing k, = a,.H,/¢,, equivalent
to x, =1, we need the y-dependent functions to be
expanded around 7, and not 7, which can be obtained by

noticing that
T k
In(-2) =—In(— ). 64
()@

On the other hand, the usual expansion in terms of the
variable x satisfies In(x) = In(—k,z) = In(z/z.). As a con-
sequence, we can write

—,(f®)_, _
p@—p<f*) Ps

k\?2 k3
+pa.In (kt) —p3In <k_*) . (65)

Thus, one can check that all the quantities pg, €;,q that we
would obtain in the logarithmic expansion can be expressed
in terms of p,, €,,, and so on, by only applying the map

Pe = p(x>|1n(x)<—>—ln(k/k*)’

Cnpe €np(x)|ln(x)<—>—ln(k/k*)’ (66)

where p(x) and €,,,(x) are the functional expressions of (38).
Now we have all the pieces to compute the third-order
corrections to the late-time power spectrum, which can be
parametrized as follows:

hH?> k
73(()”’>(k) = 1237 [1 + pos + picIn (k_*>

k\?2 k3
+ paIn <k_> + p3.In <k_> } (67)

where the coefficients p., pi., P2 and ps, are reported
Tables III-VI, respectively. The above expression together
with the reported coefficients are directly useful in analyzing
data from cosmological observables and represent the main
result of this work. A Mathematica notebook with the
explicit expressions can be found in [50]. Additionally, we
report in Table VII the power-law quantities, and in
Appendix D the corresponding expression for the amplitude

of the primordial power spectrum, i.e., A" = P(()W)(k*).

'To consider a comparison between the spectra of two SVT
modes with different speeds of sound, see Appendix B.
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TABLE III.  Full expression of py, for a theory with generic Z,, and c,,, up to N3LO corrections.

Order Expression

NLO:  po. = =2(1 + C)eyp + Ceyz. + (2 + 3C)ey
N2LO: i {12(-6 +4CH4C? +12)ey,, + €1z [3(—8 F4C? + e + (—12C2 + 77:2)622*}
~ e [6(—8 F2C +4C? 1 72)eg + (=24 —24C — 12C2 + 71'2)6211*} +3(=64 + 24C + 36C? + 972)é2,,

~ 3y, {4(—20 F10C + 12C% + 372)e 0 — 2(=24 + 4C + 12C% + 37)e1z0 — (=16 — 16C — 12C2 + n2)ezc*} }

N3LO: + 271 =863y, (=16 = 24C +4C3 + 3Cn® + 144(3)) + 2€1,, ((96 — 36C% — 24C° — 1372 — 2C(=36 + 57%) ) €211,
+ 6€)2,[—16 — 24C + 4C3 + 3Cn* + 14£(3)]) + €111, [€12. (=96 = 72C + 36C* + 24C° + 137% + 10C7? )€y,
+2C(—48 + 12C% + 57%)ey7.) + 2€ap7. (€2, + €3.) (=8 = 12C? = 4C3 + 7% + C(-24 + n%) — 8£(3))
— 661, (=16 = 24C +4C° 4+ 3Cx* + 14(3))]| + €12, [—€2z. (€27, + €32.) (16 —4C® + Cn* — 8L(3))
+ C(48 = 12C% = 57% )€1 7,637, + €35, (=16 —24C + 4C° + 3Cn* + 144(3)) ] — 3€2,, [(=96 + 36C* + 36C3
+ 1322 + 15C(=8 + 7)) €30, + 18€11, (=16 = 24C + 4C3 + 3Cn? + 14£(3))
—9€17.(—16 = 24C + 4C + 3Cn® + 14£(3))] + €10 [€12:(—(=96 + 36C? + 36C° + 137% + 15C(=8 + 7%))€se
—3C(—48 4 12C2 + 57%)€27,) + €20 (€204 + €30, ) (—=48C — 24C2 — 12C% + 272 + 3Cx% — 24£(3))
+36€2,,, (=16 —24C + 4C3 + 3Cn® + 14¢(3)) + 9¢1,, (=16 — 24C + 4C° + 3Cx* + 14£(3))
+ €17, (2(=96 4+ 36C2 + 36C% + 1372 + 15C(=8 + 7%))€ger + 3(—96 — 72C + 36C? + 24C3 + 1372 + 10C7?) ey,

—36€,7,(—16 = 24C + 4C% + 3Cn> + 14£(3)))] + 27€3,., (=16 — 24C 4+ 4C* + 3Cx* + 14§(3))}

TABLE IV. Full expression of p,, for a theory with generic Z,, and c,,, up to N3LO corrections.

Order Expression
NLO: Pie = —2€1. + €17: + 3€1c4
N2LO: + (2+4C)ely, + €1p[—€12. —4Ceiz, +2(1 + Cleay,] + Cez. (€17, — €22.)
+ €10: [B34+9C)e s + (=5 = 12C)€1 11, + €120 + 6Ce 7. — 2630, —3Ces,.
N3LO: + % {—24(—8 +4C? + 7)€y, + 4€3,(9(—8 4+ 4C* + n2)e 2, + (36 — 36C — 36C* — 57%)eyyy,.)

- 261].]* |:9(—8 + 4C2 —+ 7[2)6%2* —+ €1Z*(—(—36 —+ 36C —+ 36C2 —+ 577,'2)62].]* - (—48 —+ 36C2 —+ 5772)622*)

— (=24 = 24C — 12C° + 7)erp. (€xrs + e%)} ¥ ez [3(—8 FAC + 12)éd,, + (48 — 36C2 — 57%)e1znEams
— (—12C* + 7)erz. (€27 + 632*)} —9¢2 . (18(=8 +4C% + 7%)e 1, — 9(—=8 +4C% + 7%)e 1z,

+ (=40 + 24C + 36C? + 57%)€re.) + 3€1cn {36(—8 +4C? + 22)ey, +9(-8 +4C? + 7?)e?,,

+ 2611, (—18(=8 + 4C? + 7%)e1 7. + (=40 + 24C + 36C? + 57%)ea,, + (=36 4 36C + 36C* + 57°)ey. )
+ €12, (—(—40 + 24C + 36C2 + 57° )€y, — (=48 + 36C? + 57%)e, 7. )

- (_16 —-16C - 12C2 + ”2)621,‘* (620* + 63(,‘*)i| + 81(_8 + 4C2 + 7[2)6:156*}

TABLE V. Full expression of p,, for a theory with generic Z,, and c,,, up to N3LO corrections.

Order Expression
N2LO: Do = % {4€%H* — e €12+ €17, + 26116201, — €12:€270 + €10 [9515* —3(4ery, — 2612, + 62”)} }
N3LO: +1 {elH*SZH*(_6€IH* +3€12. = 2(ean + €31.)) + C(=8€ly, + 12614, (€12, — €21.)

—2¢€1h+ {36%2* = 3e1z. (€24 + €27:) + €2 (€21 + 6311*)} + €17 €1, — 3€12:€22. + €27, (€27, + €37.)])
- 9€%c*€20* + €lex |:_3€]Z*€2c* + €1+ (6€20* + 9€2H*) + 2620* (€2c* + 630*)
+ C<27€?C* —27€2 . (2€1hy — €124 + €2¢x) + 3€1ex [126%1_1* +3€1,, + 661, (=2€12, + €204 + €211

- 3612* (€2c* + 622*) + €2cx (620* + 630*)i| ) }

104032-11



EUGENIO BIANCHI and MAURICIO GAMONAL

PHYS. REV. D 110, 104032 (2024)

TABLE VI. Full expression of ps, for a theory with generic Z,, and c,,, only containing N3LO corrections.
Order Expression
N3LO: P =1t {—Se?H* + 1261y, (€12 = €2114) = 2611, [36%2* = 3e1z.(€2m: + €22.) + (€21 + €311)]
+ €1z:l€17. = 3€1z.€22, + €2z (€27, + 632*)} = 2761, (2€11, = €12, + €2c4)
+ 3€1ex [126%11* +3ei,, + 661, (—2€12. + €20r + €2p1.) = 3€12:(€20x + €27.) + €20s (€20 + €3c*)i| + 276?”}
TABLE VIL.  Quantities characterizing deviations from an exact power law, as defined in (E1)~(E4), for a theory with generic Z,, and

Cy» Up to N3LO.

Quantity Order Expression
gglf) NLO: —26']].[* + €124 +3€1€*
N2LO: =261y, +2(1 + C)erpean, + €1z.(€11s — Cerz,) + €162 (€11 = 3€100 — €12.) = (2 + 3C)€cu€5cs
N3LO: =26, 4+ (14 + 6C — m2)ely eap, + 15 (=24 = 24C — 12C° + n°)e €3y,
+ le (—24 —24C - ]2C2 -+ 7l'2)€1[.[*6‘2[.1*(:‘3].1,F -+ 6‘%1_]*6129F + % (—]0 -2C+ 7[2)6'1[.]*612*52[.1*
+ 3 (=8 —4C + m?)erpu€1z:€22. + 5 (8 — 2)€d, €27, 4 27 (12C% — m2)ey 7,63,
=+ ﬁ (12C2 - 71'2)612*622*632* + 36:1;5* - Se%c*elH* + 761(?*€%H* + G%C*SIZ* - 261(,‘*61H*€IZ*
+ %(100 +36C — 9n%)€?, €20, + % (=36 — 16C + 37%)€) 0 €1:€2¢x + ﬁ (28 +4C = 37%)e1 0 €12:€20n
+% (16 =+ 16C =+ 12C2 - ”2)610*636* + % (—38 - 14C + 377.'2)6'10*6”.1*621.1*
+41—1(24 =+ 8C - 377:2)6'16*612*622* + % (16 =+ 16C =+ 12C2 — 77.'2)6'16*626*630*
al?) N2LO: 2€1154€21% — €124€27+ — 3€1c4€2¢+
N3LO: + 6€%H*€2H* - 2(1 + C)GIH*E%H* - 2(1 + C)GIH*GZH*GSH* — €1H+€21:€12+ — 2€11:€12:€27
+ CelZ*egz* + CelZ*€22*€3Z* + 9€%c*€2c* - 8€lc*€]H*€2c‘* + €1cx€172x€20x + (2 + 3C)€lc*€%c*
= Te1cx€1m:€2m + 2€104€12:4€275 T (2 + 3C)€1 €004 €30-
ﬁi‘ll) N3LO: - 2€1H*€2H* (EZH* + €3H*) + €124€27+ (€2Z* + €3Z*) + 3615*625* (625* + 630*)

VI. SINGLE-FIELD INFLATION

As a consistency check of our general formulas, let us
consider the well-studied case of single-field inflation: a
scalar field ¢ with potential V(¢), minimally coupled to
Einstein gravity, that is, a system with action

1

" 162G
+/d4x\/—_g<—%a”(p0”go—V(go)). (68)

S[g[ll/’ (P] d4x V _gR

Once we choose a homogeneous and isotropic solution
9 (1), @(t), the action for the perturbations &g, (x,1),
d¢p(x, 1) can be expanded to quadratic order and decom-
posed in SVT modes, and once gauge conditions are
imposed and the constraints solved, it takes the form (4).
The kinetic amplitude and the speed of sound for scalar and
tensor’ modes takes the form [18]:

*This form of Z,(t) already considers the trace over the two
polarizations, i.e., an extra factor of 4 to the total power.

2= =1 ®)
zm:ﬁ, () =1. (70)

Using these expressions, one can determine the full power
spectrum for both scalar and tensor modes. From the results
of Table VII, we can compute the quantities characterizing
gW) SKV’)’ and

power-law quantities, i.e., the tilt 6,”’, the running o

the running-of-the-running ﬂgf"), discussed in Appendix E.
The quantities for scalar modes are reported in Table XII
(with the scalar spectral index defined as ng =1+ Hff) as
usual). The power-law quantities for tensor modes are

reported in Table XIII (with the tensor spectral index

defined as n, =0 as usual). These expressions fully
reproduce3 the state—of-the—art results of Auclair and
Ringeval [33] where they first derive the N3LO formula

*Note that the extra minus signs in €,y, €3, and €4 are simply
due to the different sign in the definition of Hubble-flow
parameters, as shown in Table II.
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for tensor modes (Z = const, ¢ = const), and then derive
the formula for scalar modes [Z(r), ¢ = const] via a
mapping method [34] from the one for tensor modes.
Hence, as a consistency check, our formalism completely
reproduces previous calculations for single-field inflation.

In general, one could also consider an extension of the
mapping method of [34] that applies to the effective
action (4) and, via a suitable redefinition of time and of
the scale factor, brings it into a reference action with
Z,=1, ¢, =1 for which N3LO results are already
available [33]. Developing this method would provide an
additional consistency check of the general formulas in
Tables III-VII. The new framework introduced here does
not require a mapping and provides directly the N3LO
expressions for the effective action (4). Moreover, by
keeping the form of Z,(¢) and ¢, (f) general, we obtain
a single set of expressions that apply to the broad class of
inflationary models of Table I. Note that, since in any given
model these functions are assumed to be determined by the
Hubble rate H() and its time-derivatives, the remaining
nontrivial step is to express the Hubble-flow parameters
€17, €10, and so on, in terms of the background Hubble-
parameters €1y, €y, etc. A concrete example of this
procedure is described in the next section for the particular
case of Starobinsky inflation in the geometric framework,
which requires a more sophisticated machinery in com-
parison with single-field inflation.

VII. STAROBINSKY INFLATION IN THE
GEOMETRIC FRAMEWORK

The Starobinsky model [2,3] is described by the action
for gravity with a higher-curvature term,

19 d*x\/=g(R + aR?). (71)

~ 162G

It is the oldest proposed model of inflation, originally
motivated by quantum-gravity considerations on the renorm-
alization of the energy-momentum tensor. To date, it pro-
vides an accurate account of primordial-power-spectrum
observations in terms of one single parameter [11], the
coupling constant @ of dimensions [a] = length?>. The
theory is purely gravitational, with the inflationary phase
driven by the higher-order curvature term, without the need
of any additional inflaton field. The technique generally
used for computing the predictions of the power spectrum
for this model does not directly use the geometric frame-
work (or Jordan frame) described by (71), but instead
involves a mapping to an action of the form (68) via a
field redefinition g,, — (). The auxiliary metric g,
(Einstein frame) is conformally related to the metric g,,,
and the potential V(¢) depends only on the single param-
eter a [51,52]. While a field redefinition can simplify
calculations without affecting physical predictions (once the
same observable is identified in the new variables) [53-57],

it is important to remark that observations of the reheating
phase can in principle distinguish between the minimal
coupling of the metric g, to the standard model of particle
physics, as opposed to the minimal coupling to the
auxiliary metric g,, [12,58]. The goal of this section is
to use the formalism introduced in the previous sections to
compute the power spectrum of Starobinsky inflation at
N3LO, working purely in the geometric framework [19]
and expressing all observables in terms of the number of
inflationary e-foldings N, measured with respect to the
metric g, .

The variational principle for the action (71) results in the
Einstein equation with a higher curvature term,

G + aH,, =0, (72)

in vacuum (7', = 0) and with the covariantly conserved
tensors (V,G* = 0 and V,H** = 0) defined by

| )
G, =— d*x\/=gR, 73
" \/—_959"”/ e (73)

1 o
H, = —— d*x\/=gR? 74
. \/—_959’”/ Ve 4

and given by
1

G/w = R;w - ERg;w’ (75)

1
H,, =2 <RGW -~V V)R+ (DR + ZRz)g,w) (76)

where [J = ¢*V,V,.

A. Background dynamics

Evaluating the vacuum FEinstein equation (72) on the
FLRW metric (3), we obtain the Friedmann equation with
the Starobinsky higher-curvature term,

H(t)> +6aH (1) *e 5 (t)(3e15(t) + 2,5 () —6) =0.  (77)

This theory admits an inflationary phase with approxi-
mately constant H ~ —1/36a [59], as shown in the (H, H)
plot in Fig. 1. From the Friedmann equation (77), we can
find a systematic and self-consistent expansion of H(7) in
terms of €,4(1),

1 1 19
H(t) = ———— |1 ——e15(1) + == €1(1)?
(1) 6+/ac. () B 11 (1) 7383 11 (1)
373, 44035
3456€1H(f) +16588861H(I) +0()|. (78)
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By —— R+ aR?solution
—=- H=—(36a)"
en(t)=1

i

H(t)

FIG. 1. Diagram of a typical solution of R + aR? inflation in
the (H, H) plane. The red dot indicates the end of the inflationary
phase, while the gray star illustrates a point associated to a pivot
scale k,. When ¢, — 0, H reduces to —1 /36a, as shown by the
green dashed line. The dotted gray line indicates the approximate

scale H ~ 1/+/36a.

The derivation of the above expression is discussed in
Appendix F. Similarly, for e,5(¢) and e35(7), we find

ep(t) = =2e5(t) + %em(t)z - gelH(t)3

+ %€1H(f)4 + O(€),
e3(t) = —2e14(t) + §€1H(t)2 - §€1H<t)3 + O(e*),
ean(1) = =2e1(1) + €14(1)> + O(€?). (79)

It can be directly checked that the expression (78) in
combination with (79) solves the Friedmann equation (77),
up to € corrections. Inflation ends at a time f,,4 defined by
d(tenq) = 0 or, in terms of Hubble flow parameters (10),
when €4(t.nq) = 1. The expansion from a reference time
t, during inflation until the end of inflation or, equivalently,
the e-folding number N, in

a(tend) = eN*a(I*) (80)
can be computed by noticing that N, can be written as

d€1H

tend 1
N*E/ tht:—/ _ 81
1, ( ) €1h €1H€2H(€1H> ( )

where the second Hubble-flow parameter is expressed
as a function of the first, e,y = e;5(€1y), using (79).
Integrating order-by-order, we find

1 1 19 71
N (e1p:) = 2 +§€1H* +@€%H* _ﬁe?y*
In(e44)
G 4 1 ofety). (52)

with
1 In(2) In(3) In(20)
Dy = —~ -
0 2T T2 24

19tan” (75)  19cor”! (22
- (75)  19cot! (24 )~ 0635,

124/39 124/39

It is clear that, for small values of €,y,, the number of
e-foldings is determined by the first term but, in our
analysis of the N3LO power spectrum, we will need also
the higher order terms. The relation (82) can be perturba-
tively inverted to find the following expression:

1 gy
2N, N2
Dy = Dy In(53) +mgIn(537)°
+ 3
+ O(N7), (83)

€1H*<N*)

where D = (3 —4D, + 48D3)/96 ~0.259 and D, =
(=14 24D,)/(288) ~ —0.056. Again, for large values of
N,, the main contribution comes from the first term. In
the range N, €[50,60], we have the associated range
€15+ €[0.00995,0.00830]. By combining the expansions
(79) with the expression for €y, given in (83), we can
express all the features of the power spectra for Starobinsky
inflation in terms of N,. As our N3LO calculations can be
trusted only up to order O(e’), a truncation of the
cosmological observables up to order O(N;?) will remain
consistent for predictive purposes. In this way, the N3LO
corrections allow us to check and improve the precision of
the predictions in the geometric frame with respect to the
known expressions of order O(N;?) in the Einstein frame.

B. Perturbations

We derive the quadratic action for SVT perturbations in
Starobinsky inflation, working purely in the geometric
framework. The starting point is the tensor F*[g,,]
obtained from the variation of the action (71),

oS 1
FPg,) = —— = ———/=g(G" + aH"), (84
0] = 5, =~ oGV IG H @), (34)

where we used (75), (76), and &g, = —u.0.309™
Expanding around the FLRW metric (3), we write

Fﬂy[g;w + 59;41/] = F/(;y(t) + Fllwpa(t)égpﬁ + 0(692)

As we assume that the background metric satisfies the
Friedman equation (77), the term F§’ =0 vanishes.
Therefore, the action (71), at quadratic order in the
perturbation, can be written as
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_ 1 -
Sl + 0] = S(0) + [ 300, 7 ()30,
+ OGF). (85)

We can then use the homogeneity and isotropy of the
background to organize perturbations into SVT represen-

tations of the 3d Euclidean group, &g, = (592) + 69,9,’,) +

69,(2 which in the quadratic action decouple, as most easily
shown by working with the Fourier transforms.

Let us consider scalar perturbations first. In the Fourier
domain (5), using the Arnowitt—Deser—Misner (ADM)
variables g, dx*dx* = —N?dr* + h;;(N'dr 4 dy')(N/dr +
dyj) (with i, j =1, 2, 3), the perturbation égf,sl,) can be
written in terms of the lapse N = 1 + 6N and of the shift
N = 0+ 6N, with scalar perturbations SN and S,

SN (Kk, 1), (86)
SNi(k,t) = ik'S(k, 1) (87)
with

together with the 3d metric h;; = a(r)5;; +5h,(-;>,
scalar perturbations R and C

5hy) (k. 1) = —2R(K. 1)a(1)?6;; — kik;,C(k.1).  (88)

We work in the comoving gauge H°; = 0, which generalizes
the comoving gauge T°; = 0 for the energy-momentum in
general relativity with matter. Solving perturbatively the
Hamitonian constraint F; ~0 and the diffeomorphism
constraint F9; ~ 0, we can express the scalar perturbations
SN (K, 1), SN, and C in terms of the curvature perturbation
R. At first order in the perturbation, constant-¢ spatial
sections have scalar curvature given by the 3d Ricci scalar
()R = 4a(1)725"0,0,R. Substituting these expressions into
(85) and introducing the useful definitions

() =1+4+2aR(t) =1 +24aH(t)2(1 —%eu_](t)>, (89)

() =-A0 (90)

H(t)x (1)

we find that the quadratic action for the single scalar mode,
the curvature perturbation R(Kk, ), takes the form (4) with
kinetic amplitude and speed of sound:

€

~ 3x(1) e,(t) \?2
%0 = 1626 <1 —Q—%e){(z‘)) ’ (1)
es(r) = 1. (92)

For vector perturbations, working in the same comoving
gauge, introducing the transverse vector fields 0N for

the shift and B,(x,¢) for the ADM metric 5hflvb)(k, t) =
ia(t)(k,By(x,1) + k;B,(Kk, 1)), and solving the transverse
part of the diffeomorphism constraint, one finds as usual
that there is no propagating vectorial perturbation. Finally,
for transverse-traceless tensor perturbations

ShY) (k1) = e\ (K)y oy (k. 1) + €5 (K)y oy (ko 1), (93)

a

one finds again that the action takes the form (4) with
kinetic amplitude and speed of sound:

7 = 2 (94)
c (1) =1. (95)

As a check of this expression, note that, in the geometric
framework for Starobinsky inflation discussed here, the
kinetic amplitude of tensor modes (94) reduces to the
familiar one in general relativity (70) in the limit @ — O.
Note also that these expressions for the kinetic amplitude
and speed of sound are exact as we did not use up to this
point any Hubble-flow expansion. Since ¢, = 1, ¢, = 1, we
have 7 = 1, and the pivot scale considered in this case is the
same for both scalar and tensor modes, as previously
discussed, so no further shift is needed to compare the
predictions to data. More explicitly, the pivot time ¢,
considered in this section is such that the associated pivot
scale k, is defined by k.#(z,) = —1, where the conformal
time # is fully expanded in (A11).

C. Power spectrum

Let us now use the Hubble-flow expansion to express
the kinetic amplitude in terms of a series in the single
parameter €;y,, the first Hubble flow parameter evaluated
at the pivot time ¢,. For scalar perturbations, we find

€1Hx 19 74
2o =506 | 6 e g €

+O(ety.). (96)

with Hubble-flow parameters for Z; given by

. 20 130
€EZ)* = _261H*< +?€%H* - Te%H* + (9(641‘H*)7
s 25
€gZ)* = _2€1H* + 7€%H* _?g%H* + O(GAI‘H*)’
22 37
€gsZ)* = =21, +?€%H* + ?eil;H* + O(eéllH*) (97)

For tensor perturbations, we find

104032-15



EUGENIO BIANCHI and MAURICIO GAMONAL

PHYS. REV. D 110, 104032 (2024)

TABLE VIII. Values of power-law quantities for Starobinsky
inflation in the geometric frame with a fiducial number of
e-foldings N, = 55. In the N3LO calculations, we can trust
the truncations up to order N33, according to Table IX. We
report the explicit numerical values for different truncations,
illustrating the improvement from NLO to N3LO.

We can substitute the expressions found above into the
general formulas reported in Tables VII and XI to find the
N3LO expressions of the power-law quantities for R + aR?
inflation. Then, Eq. (83) can be used to truncate the results
in terms of the number of e-foldings until the end of
inflation, N,. In this way, a N3LO computation gives us a

Quantity O(N7Y) O(N7?) O(N7?) self-consistent and reliable truncation of the expressions, as
., 0.9636 0.9642 0.9642 long as it is taken up to order N33. Furthermore, given the
- 0 3.9 6'7 % 10-3 3 69' 4x 103  Phenomenological success of R + aR? inflation in account-
n, 0 _ 4:959 % 10~ _ 4:96 4% 104  ing for current cosmological observations of primordial
r+ 8n, 0 0 2776 x 10+  perturbations, it is useful to comment on the precision of its
a, 0 —6.612 x 10~4 _6.468 x 10-+  predictions. For this goal, let us consider a fiducial value of
05; 0 ~1.803 x 10-5 1803 x10-5 N. =155 and use it to compare different truncations
B 0 0 —2.404 x 10-5  allowed by the N3LO calculation. The numerical results
are shown below in Table VIII.
Note that the order O(N;3) correction to the tensor-to-
1 5 2, scalar ratio is non-negligible and results in a decrease of 7%
Zy = 967Ge,p. {1 + 6 1 + g €1Hx with respect to the value at order O(N;?); see also Fig. 2.
X i 5 The standard O(N;?) result is r~ 12/N? [19], and one
_EG%H* + 3 €?H*:| + O(ety,). (98)  might expect t.hat the correction has §1mply an extra 1 / N,
factor. This is not the case as, in fact, the detailed
calculation (Table IX) shows that the correction comes
. . ith a large coefficient and also a logarithmic correction
with Hubble-flow parameters for Z, given b Wlt, g g
P 8 y which cannot be neglected for N, = 55.
Our calculation also allows us to identify the order of
o a0 4_1 3 4 magnitude of violation of the single-field consistency
€1z = 2611 — 2€ip. + 3 €l +O(ein.). condition, generally stated as r = —8n, at LO [61]. The
® 7, 14 . . formalism developed in this work provides a precise
€7, = —2€11: + 3 €10 T g ClHs + O(eiy.). prediction of the amount of deviation from this condition
4 for R + aR? inflation, 6 = r + 8n, = —48/N3 + O(N7*).
v _ 2 3 4 3 .
€37, = —2€1m: + 3 €THe =3 €1H T O(efy.)- (99)  The values of & and n, up to order O(N33) are reported in
1071 F
= Planck TT, TE, EE + lowE + lensing
9 —— +BKI18+ BAO
g +LiteBIRD (2022 forecast)
: — V(@)
<102} —— R+ aR?inflation : O(N2)
g __________ . 0 N 7 N1 | - R+ aR? inflation : O(N3)
Z N N = —— x N.=50
a | — . + N.=60
10—3 \ 1 \ 1 I
0.950 0.955 0.960 0965 0.970 0.975  0.980

Scalar spectral index (ns)

FIG. 2. Marginalized joint 68% and 95% C.L. regions for ng and r at k, = 0.002 Mpc~! as reported by the Planck Collaboration [11]
and the BICEP2/Keck Collaboration [60]. The orange region represents the forecast of the upcoming LiteBIRD experiment for a fiducial
model with » = 0.005 [17]. Note that the C.L. regions are obtained assuming a power spectrum of the form A, (k/k,)™~". Our results for
Starobinsky inflation up to N3LO, in the r-n, plane, are shown in the dashed red line. We note the 7% decrease for r and 0.05% increase

for ng with respect to the standard NLO expressions, for N, = 55.
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0.12 :
—— R+ aR? inflation (N3LO)
0.10F = Planck TT, TE, EE + lowE + len + BK15
= —— +LIGO/VIRGO16
2 L :
5 0.08
g
= 0.06
12
$
% 0.04 7 <
S & &
0.02 b ¥
0‘0072 -1 0 1 2 3 4
Tensor tilt (ny)
FIG. 3. Marginalized joint 68% and 95% C.L. regions for n,

and r at 0.01 Mpc™! as reported by the Planck Collaboration,
assuming a power spectrum of the form rA (k/k,)™ [11]. The
purple region of LIGO/VIRGO is associated to the constraints on
the stochastic gravitational-wave background, i.e., Qgw [63]. The
dotted black line illustrates the exact consistency relation
r = —8n,. The symbol x (+) indicates N, = 50(60) for Star-
obinsky inflation.

.............................. Grerenesnnnn [k
. 0.02f : i :
& ! E /-
ERRUOY IR RS EEPERES At = -
2 f 1 3
2 i
= 1
<000 '
A YRR oo Lo It SRR R
g 1
E 1
E —0.01F :
= : 1
E —— R+ aR? inflation (N3LO)
0
—0.02f Planck TT, TE; EE + lowE + lensing

n n 1 1 1 . 1
—0.02 —0.01 0.00 0.01 0.02
Scalar running (o)

FIG. 4. Schematic visualization of the constraints on the
running and the running of the running of the scalar tilt. The
solid black lines indicate a, = f; = 0, and the dashed green lines
the values a, = 0.002 £ 0.010 and S, = 0.010 £ 0.013, as re-
ported by the Planck Collaboration, both at 68% C.L. [11]. The x
(+) indicate N, = 50(60) for Starobinsky inflation.

Table VIII and can be compared to the constraints imposed
by Planck and LIGO/VIRGO on r and n,, as shown in
Fig. 3. Moreover, we find that R + aR? inflation predicts a
value of the running and running of the running for the
scalar power spectrum, also reported in Table VIII. These
values can also be compared with current constraints
reported by Planck, as illustrated in Fig. 4. Note also that
the predicted value of the running «, is negative and
consistent with the 68% C.L. interval a, = (—6.75+
2.05) x 10~* recently obtained in [62] using the posterior
probability distribution marginalized over nearly 300 mod-
els of single-field inflation.

Furthermore, since the amplitude of curvature perturba-
tion is constrained to be In(10'°A4;) = 3.044 + 0.014, the
corresponding value of the coupling constant a is a =
2.663 x 10'9Gh ~ (2.7 x 1073%m)? for N, = 55. Itis inter-
esting to remark also that if in the near future an amplitude
A~ Gh/a of tensor modes is observed, it will provide
evidence for the quantization of gravity [64]. The geometric
framework discussed here highlights how the observed
amplitude A ~ (Gh/a)N? of scalar perturbations via
CMB temperature anisotropy already provides a probe
of (perturbative) quantum gravity, as implied by the Planck
area % = Gh in this expression.

We note that the results presented in Table IX are
expressed in terms of the number of e-foldings NV, computed
in the geometric (or Jordan) frame. Alternatively, one can
express the power-law quantities directly in terms of the
scalar tilt ny, which is one of the most accurately measured
cosmological parameters, n, — 1 = —0.0351 + 0.0042 at
68% C.L. [11]. Introducing a truncation in the parameter
|ng — 1] < 1, we find that the tensor-to-scalar ratio r, the
tensor tilt n;, and the running of the scalar tilt «, are

r:+3(ns—1)2+%(ns—1)3+(’)((n5—1)4), (100)
3 5
nt=—§(ns—1)2+ﬁ(ns—1>3+(9((ns—1)4)7 (101)
1 5 3
ag = —E(ns - 1) +&(ns -1 +0O((ns— 1)%).  (102)

These expressions are directly formulated in terms of the
observed parameter |ny — 1| < 1. Note that the equivalence
between the Jordan and Einstein frames requires the
identification of a mapping between pivot scales in the
two frames, or of the number of e-foldings as discussed, for
instance, in [55]. On the other hand, expression (100), for
instance, gives the deparametrized curve in the r — ng plane
which is independent of the number of e-foldings from a
given pivot scale. As a result, these expressions are inde-
pendent of the pivot scale and provide a concrete illustration
of how both frames lead to the same observational con-
straints. Therefore, the results on the decrease in r at N3LO
discussed in Fig. 2, the violation of the consistency relation
r 4+ 8n; < 0 (Fig. 3), and the negative value of the running of
the scalar tilt @ are robust predictions of Starobinsky
inflation, regardless of the frame one is working with.

VIII. DISCUSSION

In this paper, we derived N3LO expressions for the
primordial power spectrum in a broad class of effective
theories of inflation with an action for perturbations of the
form (4). We adopted the Green’s function method [32,33]
to compute the late-time behavior of the mode functions
of the quasi-Bunch-Davies initial state at N3LO, assuming
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TABLE IX. Curvature and tensor perturbations for R + aR? inflation, up to N3LO.

Coefficients”

Quantity
A — G2 i Y men)
S 7 18za N, 6N,
) )
Py (s)In(2N.) , In(2N,)?
R R 2 Ay R

Q s 2 3
R

(s)
+ 5+ O(NTY)]

S =1/2-2C—-2D,~3.2298819
p( = (283/48) +C? = Dy/2 43D}
C(=(4/3) +2Dy) — 4D, + (17%)/12
~ 2 7841172
pY) = (1 —4C — 12Dy + 96D,) /24 ~ 0.25526794
pY) = D2 = D, + 1/12Dy(~1 + 4C — 144D,)
+ D, —4CD, ~ —0.29960351
pgsgz = —(Dy/24) + D, ~ —0.029943214
Py = —(553/432) + (5C?)/12 + D3/2 — 4D}
— Dy + 12DyD; + C[-(127/72) — 2D3

+ 4D\] + (2572)/48 — 6£(3)
~ —3.0222532.
no=1-2+ % _ nan.) 0 = —(1/3) — 2C — 2D, ~ 2.3965486
o) 2N N, 0%) = 1/18 + C/3 + 4D, ~ —0.41331365
- 3L N> T TN (

0% = —(241/18) — 2C? — (2Dy)/3 — C(3 + 8Dy) /2

+ ,7 +O(NZY) — 4D, + (77%)/6 ~ —4.3133704.
N e (s) _ ~
a = _% _ha) L d L oY) o) = —(3/2) —4C — 4D, ~ 3.9597638
ﬂs = __ ( )
At:%[l_zizv* PV = —(1+24C + 24D,) /16 ~ 19849114
n 1;7“ _ o) pY) =1/96 + C/4 + 3D, ~ —0.34123524
_ 0 mON _ e o - O(NH] pg> — [85 +72C% 4 6D, +36C(1 +4D)
3LTNT T %N, TN . + 144D, — 67%]/48 ~ —2.8782506.
In(2 o _ _ ~
n = =k "iN”.:>+ ) 0 = —3(C + Dy + 1) = 1.0948228

a = —N%—}— O(N:%)

ﬁt =0+ O(N*_4)

2 ln(2N )

Ay _

r3 =1 = C— Dy =~ 2.3649409

5=r-+8n :—W+O(N;4)

*Recall that C ~ —0.72963715, D ~

a sufficiently long quasi-de Sitter inflationary phase
(N > N,). Our main results are summarized in Table X.

Current measurements of primordial observables already
probe the amplitude and tilt of scalar modes and provide
contraints on the amplitude and tilt of tensor modes [11]. The
next generation of CMB experiments, such as CORE [15],
CMB-S4 [16], LiteBIRD [17], and PICO [65], or surveys,
such as the Simons Observatory [66] or EUCLID [67], are
expected to measure N2LO corrections and put stronger
constraints on N3LO terms, under the assumption of single-
field inflation. In this work, we introduced a framework that
covers up to N3LO all effective models parametrized by the
two functions Z(¢) and ¢(¢), treated as independent here. As
illustrated in Table I, many effective theories fit within the
framework developed in this paper. In the case of R + aR>

—0.63530380, D ~0.25952645, and D, ~ —0.056414205.

Starobinsky inflation, we computed the N3LO corrections,
expressing them explicitly in terms of one single free
parameter—the number of inflationary e-foldings N, from
the exit of the pivot mode k., until the end of inflation. The
explicit expressions are reported in Table IX in terms of N,

TABLE X. Summary of results.

Result Where to find it

Power spectrum: Tables I1I-VI
0" o) g% Table VII

A g ag . P Table IX

Scalar Ay, ng, ag, f;: Table XII
Tensor Ay, n, &, B: Table XIII

Generic Z,,, ¢,

R + aR?
Scalar field
(Appendix E)
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and in (100)—(102) in terms of ng. In particular, we predict a
negative running o, = —% (ng—1)? + - - - of the scalar tilt.
We expect these results to be useful to further test this model
with even more precise CMB observations in the future, as
illustrated in Figs. 3 and 4.

The fact that the primordial power spectrum probes
physics at a scale that is only ~5 orders of magnitude away
from the Planck length #p is remarkable. This is a regime
that lies at the interface of effective field theory and quantum
gravity. While, on one hand, it is important to identify top-
down derivations of the cosmological regime of quantum
gravity theories such as [23,24,68-70], on the other hand,
working at this interface where one parametrizes quantum
gravity effects into an effective field theory can allow us to
put observational constraints and identify features of quan-
tum geometry in the CMB sky [71]. In particular, it would be
interesting to develop a similar N3LO framework for
functions Z,(¢, k) and ¢(¢, k) with a Fourier mode depend-
ence, such as the ones that appear in models with a parity-
violating coupling to the Chern-Simons density [27]. In fact,
extracting precise predictions for effective theories such
as [72,73] could allow us to distinguish quantum gravity
theories with observations of primordial parity violation.
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APPENDIX A: GENERALIZED CONFORMAL
TIME WITH SPEED OF SOUND

In conformal time #, the FLRW metric takes the form
G dxtdx” = a(t)?(=dn? + 5ijdxidxj), (A1)

which corresponds to the following relation to the cosmic
time #:

(A2)

In de Sitter space, we have the exact relation 735 =
—1/(aH,). Here we consider the case of quasi-de Sitter
with, in addition, a speed of sound c,, # 1. Then, we will
use a generalized conformal time 7, such that x = —k,z and
which solves (31). Hence, the goal is to write

e _c,(t) d < c, (1)
a(t)H (1)

dt  a(r)  dr
in an order-by-order expansion. At zero order, we can start
with the ansatz

) + corrections  (A3)

L0 o)
ansatz a(t)H(t)
) d o _
- a(t) _&Ta.?lmtz O+O( )
c, (1)
Lo %)
aou@AY

For the next order, we consider the most general ansatz of
order one,

mn ¢y (1)
Tansatz = _W(l + blelH(t) + b2€10(t)>
Lol _d o

a(t) aTansatz
¢y (1)((by — Derg (1) + (ba + V)e(1))

a(t)
+ O(€?), (A5)
which vanishes for »; = 1 and b, = —1. Hence,
y__ &) _
a(t)H(t) (1 +€lH(Z) b2€lc(t))' (A6)

Similarly, at the next order, we have

clt
ﬁ)satz = _a(t)(H)(t)(l +e1u (1) — €1.(1) + cpyerp(1)?
+ ey (1)? + cpery (t)ea (1) + byyeo(1)?

(
(

+ bysere(1)* 4 bioero(1)ere (1) + bejer (t)er (1)

+ beserc(1)er (1) + beserc(t)ern (1)
+ begerc (1)eap (1)) (A7)
After replacing the ansatz, we find that
c,(t) d
W _do o1 o) (A8)

a(t) _E ansatz —
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forciy = 1,cpp = —1,¢00 50,01y = 1,0y, -5 0,bcy — 0,¢00 = 0,bc; - =2,b1, > 1, bc3 = 0,bcy, - 0, ¢y = —1.
Then, up to second order,

cy (1)
@ =X €1p\l) = €1c e1p(1)* — €1 (e (1) = 2€1.(1ery €1c(1)€2c €10(1)?].
a1 en) =)+ el = em(tean(t) = 26 (Den(t) + erc(Dex(t) + el (A9)

The same procedure can be extended order-by-order. In particular, for the next order, we need to assume an ansatz with all
the possible combinations of third-order quantities. Repeating the same process, we find that the conformal time up to third
order is given by

= Gl
a(t)H (1)
= —a(c;l)l% [1 + (1) — €10(1) + €1 (1)* — €1 (1)ean (1) = 261 ()€1 (1) + €1(1)€rc (1) + €1.(1)?
+ €1 (1) + erp()eay (t)esy (1) = 3e1p(1)* €21 (1) + €1 (1) e (1)* — €10 (1)€20(1)* + 3eyc (1)1 (1)erpy (1)
—3e1.(1)%€2.(1) 4 3e1.(1)er (1) €xc (1) — €10 (1) €rc (1)e30 (1) — €10(1)* + 3e1.(1) €1 (2) — 3€1c(t)€1H(t)2]- (A10)

Note that, by setting ¢, (t) = 1 and €;.(t) = 0, €,.(¢) = 0, and €5.() = 0, we recover an expression for the standard
conformal time # in a quasi-de Sitter background:

1
n® = —m(l + (1) + ety (t) —erp(t)ern (1) = 3ety(Dern (1) + €1 (1)€3, (1)

+ e (t)ern(esp (1) + e (1)) (A11)

The generalized conformal time 7 can also be expressed as 7(t) = ¢, (#)n(t), where

6'l//(l‘) = Cl//(t){l - 610*(t) + elc*(t)z - €1c*(t)3 - elc*(t)elH*(t) + 2€lc*(t)2€1H*(t) - elc*(t)elH*(t)z + 610*(1‘)626.*(1‘)
- 361(’*(t)2€2c*(t) + 2610*(1‘)6”1*(1‘)620*(1) - €1c*(t)€2c*(t)2 + 2610*(I)61H*(t)€2H*(1) - elc*(t)GZC*(l)e?ac*(t)}'
(A12)

APPENDIX B: COMPARING TWO POWER SPECTRA AT DIFFERENT PIVOT SCALES
To illustrate the procedure, let us consider without loss of generality two different SVT modes, A and B, such that
) = @y and 78 = ¢B)y, with ¢4 # ¢(B), Different speeds of sound imply that we have two different pivot scales,
k*TSFA) —1 and /c<>rE>B> = —1, so one SVT mode will have a power P(()A>(k) expanded around k, and the other will have

PE)B)(k) expanded around k,. More explicitly, we would have

2 2 3
Ay, PHY ), ), [k (), [ k ), [k
Py ( )_4ﬂ2c£Z* [1 + Pos T Pl 1n<k_*> + Pa. ln<k_* + p;3, In )| (B1)
2 2 3
B),y_ hH B B, (K B, [k ®), [k
Py (k) = 4;:%1020 {1 + Pos + P In (k_o) + P 111(,{—(> + P3 In w) | (B2)

Let us consider the standard conformal time #, as defined in (A11). We can implicitly assume that n, = #,, i.e., replacing

the coefficients p&B) by pka), while the change of pivot gets encoded in the running of the scale. To find this running, note

first that
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{14 0+l + (€2 (07 - el (el (1) = 2 (Ve (1) + € (Der (1)

)
e (e (1) = €2 (1S (1) + (=i (1) + € (126l (1) + 2612 (1)1 1. (1)
)

e (er (1) — e (Der (1) + 2 (Der (12 = 3 (1265 (1) + €2 (1€l (€S (1)

f)
N (Der (e (1) — eV (e (12 + e (06 (16 (1) + 2 (126 (1) = 261 (H)e . (1€ (1)
e (1) + 2 (e (1)eanre (1) = 2610 (e (1)ensr (1) — €2 (D)X (1)l (1)

)
+ e (el (el (1) }. (B3)

Then, since k,/k, = TE;” / T(f), one can compute the following expression order-by-order:

In(k,) = In(k, )+1n<75(‘: Z) —>ln<kk<>> :1n<:*> ln( E ;) (B4)

Finally, by replacing the last expression into (B2), we will find the expression for the power spectrum P(()B)(k) now fully

expanded around the pivot scale k., which now can be consistently compared with P(()A) (k), as both are expanded around the
same pivot scale, i.e., in powers of In(k/k.).

APPENDIX C: FINITE EXPRESSION
We report the N3LO expression of pg:

9c? 9 3n2
Po=1+(2+43C)e)0— <8+3C+T+ g >elc® 2(1+C)e iy + <10—5C—6C2—%>€10®61H@

1 37
+5(=6+4C+4C + )€l g + Cerze - (6 C+3C+7 >€lc®€lz®
3C? 71'2

1 1
—5(—8 +2C+4C? +7%)e 1 ng€ize +< (-8 +4C2 +1%)el 0 — <2+2C+ > €1ee€2em

8 2 8

1 1322 5
—8(—96+36C2+36C3+13n2+15C(—8+n2))e%6®526®+< 8+3C2+3C3+ﬁ+4C( 8—|—ﬂ2)>elc®€m®ezc®
2

1
——(—96 +36C2 +36C3 + 137[2 + ISC(—S +ﬂ2>)€16®€12®€20® + <2+2C+ C2 —71[—2> 61H®€2H®

9C? 13 572 13 572
+< 12+7+3c3+7”+c< 9+%>)€1c®€1H®62H®+<8—3C2—2C3 1—;+C<6—%>>6%H®62H®

3C? 1372 57° 1
< 4+T+C3 24 < 3+ 12>>€1H®€IZ®€2H®+ﬂ(_]2C2+”2)€lZ®GZZ®

2

€1HaC1za€22
12) ®€1zef2ze

1

—8C(—48+12C2+5n2)elc®elz®ezz®+c< —44+C*+
1 2 2\ 2 3 9 2

—QC(—48+12C +57°)€1 256220 + €1ca€1H0E 120 | 24— 6C —EC(—8+7T )=21£(3)
1

— €170 €375 (16 —4C3 + Cx> —8¢(3))

24
| 3 7¢(3
—ﬂ€lz®€22®€3z®(]6—4c3 + Cﬂ.’z - 8(;(3)) +€1H®€%Z® (4— C3 —ZC(—g +7T2) —#>

1
+§e§H®(16—4C3 —3C(-8+x%)—14£(3))
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c 7 72 P 72
+€1L®€20® <C2+7—E+C< 8)4—5;(3)) +€1c0€200€3c@ <C2+7—E+C( 8> +§(3)>

€lHeEape (—12C7 —4C° + 77 4+ C(-24+7%) - 8(1+((3)))

3 1
+elng€ize (—8 +20° +§C(—8 + %) +7C(3)> 15

ge?@ (4C*+3C(-8+ %) +2(-8+7¢(3)))

€1.e€120 (4C° +3C(—8+7%) +2(-8+7¢(3)))

1
+E€1H®€2H®€3H®(_12C2 —4C + 22+ C(-24+7%)-8(1+L(3))) +

9 9
—Ze%c®€1H®(4C3 +3C(-8+7%)+2(-8+7¢(3))) +§

+%elc®efz®(4c3 +3C(-8+m%)+2(-8+7£(3))) + 214elz® (4C3+3C(-8+7%) +2(-8+7£(3)))

9
+€1e0€ine <6C3 +§C(—8 +r%)+3(-8 +7§(3))) )

APPENDIX D: AMPLITUDE OF POWER SPECTRUM FOR A GENERIC THEORY AT N3LO
EVALUATED AT k,

We report the NLO, N2L.O, and N3LO corrections to the amplitude of the power spectrum for any SVT mode in a theory
with generic Z,, and c,,.

TABLE XI. Amplitude of the power spectrum for a theory with generic Z,, and c,,, up to N3LO.

Order Expression

LO + NLO: AW = 4;5?:22 [1 -2(1 4+ C)eypgs + Ceyz, + (24 3C)ey

N2LO: 5 L(=6+4C+4C* + n*)edy, + (2+2C+ C* - )elH*€2H* 3(-8+ 2C + 4C? + 7%)e €124
§(=8+4C* +7)et,, + 5 (-12C° + 7 )612*522* (- 6 +C+3C + ey 617,
1(—-64 +24C +36C% + 97r )eto, + (10 = 5C = 6C% = ey €1, + 5 (=16 = 16C — 12C% + 7)€en€1c
N3LO: +1 elH*(16 4C% —3C(=8 + %) — 14L(3)) + (8 =38 —2C% = B2 1 C(6 - 32))el ;e
+ 12€1H*€2H*( 12C2 - 4C% 4 72 + C(-24 4 72) — 8(1 + g(3)))
+ €€ (—12C7 —4C3 + 7% + C(=24 + %) — 8(1 +£(3)))
( —443C 1 CP + B2 4 C(=3 +32))e g1 202 — % L C(—48 + 12C% + 572)é2, €57,
- 5C(= 48 +12C* + 57% )€y ,€12.€27, + C(=4 + C* + 12)5111*612*622*
+ 46122637, (4C = O +8(=2+((3))) + €163, (4 — CF = 3C(=8 + 7°) - E1)
+ €1y, €12: (-8 4+ 2C° +%C(—8 +7%) +7¢(3)) + 24612*622*632*(46‘ - Cn* +8(-24¢(3)))
+ €1, (4C + 3C( 8 +7%) +2(-8+7¢(3))) + 361, (4C* +3C(-8 + 7?) + 2(-8 + 7£(3)))
+ €103, (CP+ S -2 + C(2 —Z) +£(3)) + (96 — 36C* — 36C° — 137: - 150( 8 + 71'2))6%(*625*
+ €1c*€1H*€1Z*(24 6C3 2C(-8 + 7%) = 214(3)) + €106206304 (CP + 5 — 55 + c(2- ) +£(3))
+ (=84 3C2 +3C% + B2 1 3C(=8 4 72))€104 €114 €2c
3:(96 = 36C? — 36C3 — 137 — 15C(—8 + 72))€1 0112+ €20+
+ (=12 + gzﬁ +3C% + % +C(-9 + %))GIC*EIH*GZH*
— 96l €11 (4C° +3C(=8 + 7%) + 2(=8 + 74(3))) + g €7 ,€12.(4C* + 3C(—8 + 7?) + 2(=8 + 7£(3)))
+ 36104615, (4C% +3C(—=8 4 7?) 4+ 2(=8 + 7£(3))) + €104€15,.(6C° +5C(=8 + %) + 3(—=8 + 7¢(3)))]
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APPENDIX E: POWER-LAW QUANTITIES FOR SINGLE FIELD INFLATION AT N3LO

In general, we can compute power-law quantities, i.e., amplitude A, at pivot mode k,, together with its log-derivatives:
the spectral tilt ., the running of the tilt ,, and the running-of-the-running of the tilt 3., which are defined as

A, = Py(k,), (E1)
0, = k%ln(Po( )>‘k:k; (E2)

: (E3)

B, = k% {k(ﬁC [k(;ikln(Po(k))] } (E4)

Note that the power-law quantities above can be straightforwardly obtained from an expansion of In(Py(k)) up to N3LO,
since

k=k,

In(Py(k)) = In(A.) +0. 1“(:) 2!1 (:)2

+ %m (k> + O(N4LO). (ES)

Below, we report these quantities for minimally coupled single field inflation.

TABLE XII. Power-law quantities of curvature perturbations for a minimally coupled single field up to N3LO.

Quantity Order Expression
As LO +NLO: (,Zﬁ:lz [1=2(1+ C)erp. + Cerp.
N2LO: l( 6+ 4C +4C? + ? )elH* (6+C—C* Ve e,

§ (=8 +4C% + 7°)e3y, + 53 (=12C° + 2°)erpan
N3LO: + i L eon €3, (4C° = Cn? + 8(—2 +¢(3))) + 5 €2mE3mn€a (AC? — Cr* 4+ 8(=2 4 £(3)))
+ 16l (16 —4C° =3C(-8 + ) — 143) + o (-3C2 = BE 4+ 2C(-9 + 7) + 7¢(3))
+ 112€1H*€2H*€3H*( 12C% 4 8C3 + 7% + 6C (=12 + 7%) — 8(1 + ¢(3)))
+ €3y, (4C° +3C(=8 + ) +2(=8 + 7£(3))) — 25 C(—48 + 12C* + 57%) €3y, €311
+ Le1p.edy, (12C% = 8C + 1577 — 6C(—4 + 7%) — 4(4 + 25((3)))]

ng LO + NLO: 1 —2¢e1y + €21
N2LO: —26‘%[_[* (3 + 2C)€]H*€2H* - C€2H*€3H*
N3LO: —2efH* + (15 + 6C — m2 )€ty €ap1, + 75 (=84 = 36C — 12C? + T7)e €3,

+ 5 (=72 =48C — 12C* + Tn%)e 1 €am€30- + 5 (8 — 1) €341, €3m1.

1 2 2 2 12 1.2
+ ﬂ(lzc - )€2H*€3H* +§C €2H+E3H+E4Hx — 33 T €24 €31+ €4H

o N2LO: 2€1 g2 — E2HAE3H
. 2 2 2
N3LO: 61y, €20+ + (=3 = 2C)e1 g€y, — 2(2 + C)e1g€2p.€30. + Cerpn€iy, + Cerp.€30.€41,
. 2 2
s N3LO: 261163y, — 2€15:€21:€315 T €21:€3py, T €2 €31 €4
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TABLE XIII. Power-law quantities of tensor perturbations for a minimally coupled single field up to N3LO. Notice that a deviation
from the exact consistency relation, denoted by 4, is already expected at N2LO.
Quantity Order Expression
A, LO + NLO: %[1 —2(1+ C)eyps
b2
N2LO: +3 (=6 +4C +4C% + 2)ely, + (2+2C + C* = Der.con.
N3LO: €1y, (16 —4C° - 3C(—28 + %) - 1f1¢(3))
+ (8 =3C* =207 - 5+ C(6 —°F))ety.e2m
+ Sy, (—12C* = 4C3 + % + C(=24 + 7*) — 8(1 + £(3)))
+ ﬁﬁﬂ*%ﬂ*ﬁ%ﬂ*(‘lzcz —4C + 7 + C(=24+ 7°) = 8(1 +£(3)))]
ne NLO: —2611.1*
N2LO: _ZS%H* + 2(1 -+ C‘)e”.[*ezy,F
N3LO: =26y, + (14 4+ 6C — 2°)ely e, + 15 (=24 = 24C — 12C* + 7%)e €3y,
+ 5 (=24 = 24C = 12C? + 7%) ey €21.€3 1,
ey N2LO: 2€]H*€2H*
N3LO: 6¢t .21 — 2(1 + Clerga€3y, — 2(1 + Cléipa€r1.€30
ﬂt N3LO: _2611‘1*6%]{* - 2€1H*€2H*€3H*
r= %ﬁ NLO: 1661[.1*
N2LO: _16C61H*€2H*
N3LO: +8(—8 —2C + n?)edy €2, + 2(8 +4C? — 7?)eryu€dyy, — % (—12C2 + 7%)e s €2114€315
5=r+8n, N2LO: —16€3,, + 1661621,
N3LO: —16€3,, +16(3 +2C)ely, e, —3 (12C + 7)€l — 16(1 + C)eyyeapesp.

APPENDIX F: DERIVING THE EXPANSION
OF H(t) IN TERMS OF ¢(?)

Let us recall the modified Friedmann equation for the
model R + aR?, reported in (77), which can be rewritten as

1 —36aH (1)%e14(t) + 18aH (1)%€,4(1)?
— 12aH(t)é (1) = 0. (F1)

From the above expression, one can also solve for é,4(¢),

) ~ deyy(1)
én(t) = ldHt

1 -36aH(1)%¢1(t) + 18aH (1)%e1(1)?
B 12aH (1)

(F2)

If we neglect contributions of order O(e?), the Friedmann
equation (F1) is solved by H(¢) L Hence, one

~ \/36ae (1)

would like to determine an expansion of H(¢) order-by-
order in €;4(t) of the form

1
H(1)®) = ———=[1 + aje14(t) + aze1(1)?
36(I€IH<I)
+azery (1)’ + age (0 +- ). (F3)
This also defines an ansatz e, (7)) = —Ff(@2) / glanz)’*,

Using (F3) as an ansatz, we can impose the condition
e ()™ = e,4(1) + O(e®). From this self-consistency
condition, we find the coefficients a;, a,, a;, and ay,
which are finally reported in (78). This expression also
allows us to expand e,y(1), e35(1), etc. in terms of e14(7),
as reported in (79). It can be checked that the resulting
Hubble rate is a solution of (F1), up to N3LO corrections.
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