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Global Stabilization of Nash Equilibrium for Mixed Traffic

Jeffrey T. Scruggs, Richard Lee, and Yafeng Yin

Abstract— We consider a traffic network in which the traffic
is a mix of regular and connected-autonomous vehicles. We
presume the headways for vehicles in each link in the network
are distinct for the regular and autonomous vehicles, and
the autonomous vehicle headways differ depending on type of
vehicle being followed. We analyze the network in the context
of a population game, with each population corresponding
to an origin-destination pair and vehicle type. We assume
the evolutionary dynamics of each population distribution are
governed by an Impartial Pairwise Comparison (IPC) Protocol.
For the regular vehicles, we presume the payoff mechanism is
the negative of the travel time. For the autonomous vehicles,
we presume the payoff mechanism is an algorithm that is
controlled centrally, using feedback about the current state of
the system. For this scenario, we propose a dynamic payoff
control algorithm for the autonomous vehicles that guarantees
global convergence to Nash equilibrium. Additionally, the algo-
rithm assures that in steady-state, the regular and autonomous
vehicles for each origin-destination pair equilibrate to the same
optimum routes.

I. INTRODUCTION

Connected-autonomous vehicles (CAVs) are expected to
improve safety and mobility in traffic flow. Safety benefits
may be realized by reducing crashes attributed to human
error [1], while connected vehicle platooning has been shown
to potentially double throughput in urban roads [2]. Mobility
benefits are achieved by the ability of connected vehicles to
drive with a shorter headway than non-connected vehicles
[3]. This paper is concerned with analyzing the network
stability of the mixed traffic environment. While the greatest
societal benefits will be realized in a network with near full
CAV market penetration, there will be a transition phase
where regular vehicles (RVs) and CAVs coexist. Interactions
between RVs and CAVs have been shown to cause unstable
traffic flow behaviors [4], [5], thus motivating the study of a
mixed autonomy traffic network.

Population games are a useful framework for model-
ing the dynamic interactions between many noncooperative
agents that choose strategies to maximize their individual
utility. Transportation networks are commonly modeled as
a congestion game [6], [7], [8], which is a specific type
of population game. Congestion games have been shown
to be potential [9] and contractive [10], [11], which are
two key properties for studying the existence and stability
of equilibria. In this context, agents are drivers traveling
across a roadway network, and agent populations are defined
by a particular origin-destination (OD) pair and vehicle
type (regular or autonomous), with each population having
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its own mass. Agents belonging to a population choose
a strategy from a common set of paths, and they revise
their paths at each time step with the goal of minimizing
their individual travel time. The revision process for agent
strategies is governed by an evolutionary dynamics model
(EDM), where we consider EDMs belonging to the class
of so-called impartial pairwise comparison (IPC) dynamics.
The payoff for each population is defined as the negative
of the travel time, and the system states are defined by the
fraction of drivers adopting a particular strategy. The state
in which no driver can unilaterally improve their travel time
by switching paths is known as a Wardrop equilibrium [12],
which is a special case of Nash equilibrium.

When considering a single vehicle type, assuming a con-
tinuously differentiable and monotone payoff function leads
to the existence of a potential function which can be used
to prove the stability of the system equilibria [13], [14],
[15], [16]. However, no such potential function is believed
to exist for the mixed traffic setting, as the payoff function is
typically not monotone in the total traffic volume. Existing
analysis has modeled mixed traffic networks as a weighted
congestion game [17], [18], [19], [20], where the link travel
time is an increasing function of the sum of the regular
vehicle flow and the discounted autonomous vehicle flow
(representing reduced headway). This approach was used in
[21] to bound the price of anarchy for selfish routing, while
[22], [23] consider passivity techniques for network control.

Reference [24] builds off the work introduced in [25] and
continued in [26], [27] to present a passivity-based approach
for proving global asymptotic stability of the so-called mean
closed-loop model. This feedback interconnection consists of
the revision process described by the EDM and the payoff
mechanism described by the payoff dynamics model (PDM).
The analysis derives stability conditions for the closed loop
by leveraging the concept of delta-passivity, which describes
stability conditions in terms of the derivative of the system
input and the derivative of the system output. By modeling
the mixed traffic environment as a weighted congestion
game, global convergence to Nash equilibrium is assured.

This paper extends the approach developed in [24] by
considering the mixed traffic model presented in [28]. In
this model, the vehicle headway is dependent on the type of
vehicle being followed (CAV following CAV, CAV following
RV, RV following either RV or CAV). The link travel time is
a strictly increasing function in one vehicle type flow when
the other flow is held constant, but the travel time is not
strictly increasing as a function of total flow. The methods
in [24] cannot be used to assure global stability of Nash
equilibrium, due to asymmetry of the payoff Jacobian. We
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propose a control algorithm for the CAV payoff vector, which
guarantees global stability to the Nash equilibrium set. We
then modify this control algorithm so that it also ensures
equity of route choice between RV and CAV populations.

The paper is outlined as follows. Section II introduces the
modeling notation for the EDM and the PDM and describes
key assumptions used in the model. It reviews the notion
of delta-passivity and its use to derive stability conditions
for the case with homogenous traffic and a static payoff
mapping. Section III introduces the mixed traffic network and
summarizes the stability analysis using delta-dissipativity
for the case with uniform headways for autonomous and
regular vehicles. Section IV presents a model for mixed
traffic in which vehicle headways are dependent on the type
of vehicle being followed and shows that the techniques from
prior analysis cannot be used to describe the stability of the
system. A dynamic payoff control algorithm is presented that
guarantees global convergence to Nash equilibrium. Section
V provides some brief conclusions.

II. PRELIMINARIES
This section introduces modeling conventions, which
closely mirror those in [24].
A. Population Modeling

We assume p populations, each corresponding to a distinct
combination of origin-destination pair and vehicle type. Each
population is characterized as a vector z"(t) € X" C Rg(').
Each component 7 (¢) represents the mass of population r
that chooses the i available strategy (i.e., route). We then
have

Xré{geRg:):Zgi:m’“} (1)
=1

where m” is the total mass of population r € {1,...,p}. We
concatenate all populations, to obtain the total state vector

z(t) Zvec{z'(t),...,z (1)},

We denote as T, the associated tangent space of X, i.e.,

T & {zeR”";Zzi:o} (3)
i=1

x T~.

X£2X!'x---xX" (2

with the concatenated tangent space as T = T! x - - -

B. Payoff Mechanism

For population r € {1,...,p} the payoff vector p"(t) €
R™" represents the incentive rewarded for each strategy, i.e.,
pr(t) is the incentive for choosing strategy ¢ € {1,..,n"} at
time t. The total payoff vector is just the concatenation for
all populations, i.e.,

where we assume F'(-) is continuously differentiable.

Definition 1: The Nash equilibrium associated with a
memoryless payoff mechanism F is characterized by the set
of all z € X with the property that

vIF(z) <zTF(z), YveX (6)

We denote the set of all Nash equilibria associated with F

as Np. This set can be shown to be nonempty and closed.
Remark 1: Where it causes no ambiguity, we henceforth

suppress time-dependency of x and p, to ease the notation.

C. Evolutionary Dynamic Model

We presume that the strategy vectors for populations r €
{1,...,p} evolve according to EDMs of the form

j:T :1/7"<x7’"p7") (7)

where we assume each v is a Lipschitz continuous function.
We denote v as the concatenation of the EDMs for each
population, i.e.,

v(z,p) =vec{v!(z',pl),....v ", p")}. (8

We assume v(x,p) € T for all z € X and p € R™.
Definition 2: An EDM v is said to exhibit Nash station-
arity if the following equivalence holds for all p € R™:

v(iz,p) =0 < ovip<aTp,weX 9)

We consider EDMs that adhere to the IPC protocol. This

may be expressed for each population r € {1,...,p} and
each strategy ¢ € {1,...,n"} as

n’

vl p") =) [ejor (o] — pj) — e (0) — pi)] (10)
j=1
where each ¢ is Lipschitz continuous, and such that ¢7 (p) >
0 for all p > 0 and ¢} (p) = 0 otherwise.
Theorem 1 ([7]): The IPC protocol exhibits Nash station-
arity.

D. §-Passivity

Definition 3: EDM v is called J-passive if there exist
continuously-differentiable storage function § = X x R" —
R> and dissipation function o : X x R™ — R satisfying

95(x, p) 95(z,p)

e et ¥ A IO P) < T
s vt p)+ =g P < ~o(ap)+ulv(e.p) ()

for all x € X, p € R™, and u € R", where
o(z,p) =0< S(x,p) =0< v(z,p) =0 (12)

Theorem 2 ([26]): Let v be an IPC EDM. Then it is d-
passive, with

p n"
p(t) = VeC{p1 (t)7 . 7pp(t)} @) S(x,p) _ Z Z x:w:(pr) (13)
A static payoff mechanism F' : X — R" is a feedback ’:1;:1 .
relationship that determines p(t) from x(%), i.e., - s
P i) from (1) o) = -SSP WE) ()
p(t) = F (z(t)) ) r=1i=1
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where

n’ o pi—pl
Vi) =Y / &7 (p)dp. (15)
j=170
Theorem 3 ([26]): Suppose that EDM v exhibits Nash
stationarity, and is J-passive. Suppose further that static
payoff mechanism F' satisfies

("' [W(z)+Wh(2)] (<0, VeT,zeX (16)

where W (z) = %F (x). Then Np is a globally asymptoti-
cally stable set.

E. Application to Homogeneous Traffic

Let R be the routing matrix for a transportation network,
ie., let R;; =1 if strategy x; contains link j € {1,...,L},
and is 0 otherwise. The link flow for link j is

z=R"z. (17)

If each vehicle has the same headway (irrespective of
whether it is a RV or CAV) then the travel time on link
j can be assumed to simply be a function of the total link
flow, i.e., ®;(z;), where the function ®; is increasing and
continuously-differentiable on z; € Rxq. Let the payoff p
be the negative of the travel time for each strategy, i.e.,

p=F(z) = —Rvec{®1(21),...,Pr(z)}. (18)
Then we have that
OF
aix) = — Rdiag{®/(z1),...,®} (21)}R" (19)

where @ (z;) = ;2-®;(2;) > 0 for all z; > 0. Clearly, this
matrix is symmetric and negative-semidefinite. As such, if
v is d-passive and satisfies Nash-stationarity, it follows from
Theorem 3 that N is a globally asymptotically-stable set.

III. THE CASE WITH UNIFORM HEADWAYS FOR
AUTONOMOUS AND REGULAR VEHICLES

The results in this section are merely summarized from
[24], and no novelty is claimed. Without loss of generality,
we assume that the state vector x is partitioned as

x = vec{z, 27} (20)

where 24 and 2% are the population vectors corresponding
to each strategy, for the autonomous and regular vehicles,
respectively. Respective state vectors for the each population
(i.e., OD pair) are denoted z" and z%", for r € {1,..., 0}
with ¢ 2 n/2. For i € {1,...,n"} we assume components
22" and 1" correspond to the same strategy (i.e., route) for
the two populations. As such, R can be partitioned as

The travel time associated with a given link j € {1,...,L}
is in general an independent function of both z# and 2%,
ie.,

T; = @;(2), 2) (23)

where @, : Ry xR — R ¢ is a monotonically increasing
function of either argument with the other argument fixed.
Formulating the payoff as the negative of the travel time for
each strategy, we have that

p? R A _R A _R
p=[Pa] == | B] vectmett ot mutet o)
(24)
In this section, we assume the special case in which ® can
be reduced to a function of the form

(2, 2f") = @;(nzf! + 2f7)

(25)

where i)j : Ry9 — Ry is an increasing function. In the
above expression p is the ratio of the headway of CAVs,
to that of RVs. It is assumed that this ratio is uniform for
all links, and the same irrespective of which type of vehicle
the autonomous vehicle follows. In this case, the Jacobian
matrix for the static payoff mechanism is asymmetric, as
= =T
W(zh, z®) = - {g] diag{®}(z1),..., 97 (z1)} [MI?] .
(26)
It is straight-forward to verify that the Hermitian component
of the Jacobian is negative-semidefinite only if © = 1. There-
fore, Theorem 3 cannot be used to prove global stability. This
issue is resolved via the introduction of J-dissipativity.

In Definition 3 for J-passivity, the term
s(z,u) 2 ulv(z,p) (27)

is called the supply rate. In the generalization to o-
dissipativity, the supply rate can be any function of the form

v(z,p)]" | [v(@.p)
s(z,u) = { ’p] H[ ’p} (28)
u U
where II = TIT can be any matrix. Then, in Theorem

3, we modify the condition for stability to accommodate
generalized supply rates, resulting in the alteration of (16) to

T

1 I

¢t |:8F(ac):| II |:8F(a;):| (<0, W(eT,reX (29

ox ox

It is straightforward to verify that Theorem 3 still holds with

the above generalization, which recovers the d-passivity with
10 I

=3 L’ o] '

Now, consider the alteration of .S in (13) and o in (14) such

that all summand terms corresponding to CAV populations

are multiplied by u. Then it follows that the above storage
function renders the system J-dissipative with parameter

(30)

R= {g] . 21
0 0 wulI O
The link flows for the CAVs and RVs, respectively, are 1170 0 o0 I
_ _ =314 0 0 o0 S
A =RTgA, 2= RTzE (22) o I 0 0
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Meanwhile, we have that

T

I I
o) | 1| or()
ox ox

_ {“}ﬂ diag{®, (1), &, (21)} [“}fr (32)

which is negative-semidefinite. As such, we conclude that
the above model for mixed traffic exhibits global asymptotic
stability to Nash equilibrium.

IV. CASE WITH NON-UNIFORM HEADWAYS

It is interesting to ask what happens if we try to apply
d-dissipativity techniques to more realistic models for mixed
traffic, in which ®; (-, -) cannot be reduced to a single-variate
function @ as in (25). In particular, it has been shown [28]
that a more realistic model of the link travel time is

T; = ®;(25) (33)
where z; is related to z and z via
(24?2 A R
R_R c_\%j A_%j %5
zj = hjz;" + hi — 7 2 = (34)
J 7 J Z] + Zj J ZJ + ZJ
where {hf, hc hA} C Ry with hA hit > hc These

constants are the critical time headways respectlvely, for
CAVs following RVs, RVs, and CAVs following each other.
Assuming the static payoff mechanism (24), it is a straight-
forward calculation to show that the Jacobian is

WA, oF) = RAA(z4,2®)RT  RAR(24,2R)RT
’ T |RAA(ZA, 2BHRT RAR(2A, 2B)RT
(35)

where
AN, 2R) & diag { @ (1) [b§ + (b = hE)(1 = m1)?],

@ (z) [ + (bt = RE) (1 —m0)?] ],

(36)
AR(zA 2R) 2 diag {ciﬂl(zl) [hF 4 (b = hE)m2] ..,
¥y (a0) [ + (hE —RE)m3] }. 6D
and
P . (38)
zi + 25

is the market share of autonomous vehicles on link j. (Note
that the A4 > 0 and A® > 0, due to the inequality
assumptions made for hZ', hf, and h§'.) Although each of
the four blocks of W (x4, 2%) is Hermltlan and negative-
semidefinite, the Hermman component of the matrix itself
is always sign-indefinite unless A4 (24, 21) = AR(24 7).
Therefore, we conclude that condition (16) in Theorem 3
does not apply. Furthermore, even for the generalized notion
of §-dissipativity, Nash stability cannot be assured.

A. Nash Stabilization

Global asymptotic stability to Nash equilibrium can be
assured, by changing the payoff mechanism for the CAV
populations. We presume that the RVs retain the same static
payoff function introduced in (24), which we denote

R — FR(z). (39)

For the CAVs, rather than a static payoff, we presume a first-
order dynamic mechanism of the form

A= @A, p?) (40)

We assume G4 : XxR™/? is such that the augmented system
A
. p
=l Q)
b

GA(x,p)
has a solution (z(t),p?(t)) for all initial conditions
(z(0),p*(0)) € X x R*¥2, and all ¢ € [0, 00).
Definition 4: The Extended Nash equilibrium associated
with the pair of payoff mechanisms (G4, F%) is character-
ized by all ordered pairs (Z,p) € X x R™/? for which

[ p* [ p*
<7
We denote the extended Nash equilibrium set associated with
GA and FT as Ega pr.

Theorem 4: Suppose that EDM v exhibits Nash station-
arity, and is J-dissipative with supply rate parameter II.
Let (G4, F®) be a pair of payoff mechanisms as described
above, and satisfying

(41)

(42)

=7 (2,p?) I E(z,p?) <0, Vo eX,p? e RY2  (43)
where
A
) ( [F <x>D
E(x,p?) £ G4 (z,p*) NS
BFR(:I:

Qe

Then Ega pr is a globally asymptotically stable set, with
respect to differential equation (41).

On its own, Theorem 4 does not imply that either x(t)
or p(t) approaches a well-defined limit as ¢ — oco. It does
guarantee that &(t) = v(x(t),p(t)) — 0 as ¢ — oo, but it
may be possible for this to be true and lim;_, . x(t) to be
undefined. We now establish a particular G which ensures
convergence t0 Ega pr.

Theorem 5: Let v be a valid IPC model as in (10). Assume

R = FE(x) where

FR(z) = —Rvec {®@1 (21", 2]"),..., @L(21, 28)}  (45)
where with z# and 2% as defined in (22) and ®; as in (23).
Assume that G4 (z, p?, pf) is

G4 (z,p?) = — RAY(»

A )R (@ )
— RAA (24

ZRTVE (2R pR)  (46)
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where

AC & [AA(ZszR)f [AR(ZA’ZR)]_l S

and A4 and AP are defined in (36) and (37), respectively.
Then Ega pr is a globally asymptotically stable set, with
respect to differential equation (41).

Remark 2: Tt is possible to evaluate p“(t) in several
different ways, rather than via equation (46). Consider that
we may write

pA _ —RAA(ZA,ZR) [AR(ZA,ZR)}_l T (48)

where we recall that T is the vector of travel times for each
link in the network. Via (36) and (37) we have, equivalently,

pt = —ROT (49)

where
0 =t {12 0 IO
hit+ (bt = h{)mf 77

B + (b —hE)A —m)*) s
Wi+ (hy = hE)mh

where we recall that 7; is the market share of autonomous
vehicles on link j € {1,...,L}. We can further manipulate
this to avoid having to take a derivative of the travel time
vector T, as the state space

£(t) =RO(T (1)
P (1) =€(t) — RO(T(1)

(G
(52)

Note that the above implementation only requires real-time
knowledge of the link travel times, the link market shares,
and the rates of change of the link market shares.

B. Nash Stabilization with Payoff Equity

The payoff mechanisms in Theorem 5 stabilize the system
to an extended Nash equilibrium set. However, in order
to do this, it was necessary to redefine the payoff for the
CAV populations. The payoff for the regular vehicles, p%, is
generated by a static payoff function, F'¥, that has tangible
physical meaning. Each component pf*" is the negative of
the travel time associated with a vehicle in population r
taking route i. Meanwhile, as determined by the G* given
by Theorem 5, it is not clear what the meaning of p#\”. In
this section, we modify G such that in the limit as ¢ — oo,
the routes of maximum payoff are the same for both the RV
and CAV populations, for each OD pair.

As such, g7 is just a rearrangement of £ (¢), in order of

descending payoff. Next, define

?

O SrA0)

j=1

Then it follows that d2"(t) > 0 for all i € {1,...,n"}, with
dﬁl' (t) = 0. To see this, consider, first, that

(55)

A1z fus Ainr
—02  [lo3 fiznr | [T
gir=| 0 =03 - fizpr : (56)
: : AT
0 0 G
where
j—1
fuij 261 (Bi — b), G; &Y i (57)
i=1
and where {ggf“’ 24 =1,...,n"} is the permuted set of ¢:\"

functions. The values of dfr are obtained by adding the first
i rows of the above expression. The first ¢ — 1 columns of
these rows add to zero (for 7 > 1), and the remainder contain
positive terms. Because f{” > 0, we conclude that J{“’ > 0.
That Jf}f = 0 is verified by noting that each column of the
above matrix has zero sum.

Let 55" (t) be the values of pf"(t) permuted according to
the descending order of p“”(t), i.e.,

pE(t) =X (p7 () p™ (1),

Now, the key idea here is to observe that if p7"(t) is
in descending order, then this implies that the RV and
CAV populations for OD pair r have the same route(s) of
maximum payoff. If this is the case as t — oo, then because
the IPC EDM equilibrates at the routes of maximum payoff,
both populations will converge to the same routes.
Definition 5: We say that p(t) has common priority with
pA(t) if p*"(¢) is in descending order for all » € {1,..., o}.
Definition 6: Let $(t) be a vector with elements defined
forall r € {1,...,0} and all s € {1,...,n" — 1} as

B7 (t) = min {p/" (t) — pi1 (1),0}

where the minimum is taken element-wise. We say that p’?
converges to common priority with p? if for any § € R,
it is the case that

(58)

(59)

(60)

t—o0

t+6
lim / Bi(r)dr =0
t

forall r € {1,...,0} and all : € {1,...,n" —1}.

For autonomous vehicle population r € {1,..., 0}, let The theorem below entails the modification of G4 from
¥ (p"(t)) be a permutation matrix such that Theorem 5 such that for each r € {1,..., o}, p'*" converges
a . A " to common priority with pA”. To present the result concisely,
() £ X7 (pAT (1) p(t) (33)  we introduce the following matrices for r € {1,..., o}:

is in descending order, i.e., 1" () = poT(t) = ... = pAr(t). r -1

Next, for ¢ € {1,...,n"}, define U — eRVX" BT — [0 Inr } 61)
o Ixnr—1-
¢ () £ (V@) v (@ (0).pV () (54 © L
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Also, we define

~R

P & vec {ﬁRl,..., ~RL’} (62)
z (pA(t)) £ blockdiag { £ (pAl(t)) yeee, 28 (pAQ(t))}
(63)
U £blockdiag {U',...,U%} (64)
E £blockdiag {E",..., E}. (65)

Theorem 6: In Theorem 5, assume G is modified to
GA(I',pA) - _ RAC’(ZA7 ZR)RTVA($A7])A)
~ RAAGA, M) RT (T, )

+2(p*) UAEB (66)

where A = blockdiag{ail,1,...,aplne}, {a1,...,a,} are
positive constants, and 3 is defined as in (59). Then Ega pr
is a globally asymptotically stable set, with respect to differ-
ential equation (41). Furthermore, phR converges to common
priority with p4.

Remark 3: Note that G#, as defined in (66) is discon-
tinuous in p?, due to the presence of the permutation
matrix X (pA(t)), which changes discontinuously whenever
the sorting order of p*(¢) changes. At times when ¥ (p*(t))
is non-unique (i.e., at times when p;" (t) = p:'" (t) for some
r € {1,...,0} and some 4,5 € {1,...,n"} with ¢ # j),
we treat G4 (z(t), p”(t)) as a set. Specifically, we treat it as
the convex hull of all the permutation matrices that sort each
pA7(t) in non-ascending order, for r € {1,..., o}. Equation
(41) then becomes a differential inclusion at these times.

V. CONCLUSIONS

The objective of this paper has been to formulate a feed-
back control law for the CAV populations in a transportation
network, such that global convergence to Nash equilibrium
is achieved. In particular, we have focused on the case in
which the static payoff mechanism, F’, that generates the
Nash equilibrium set is the negative of the travel time. Our
objective has been accomplished through the formulation of a
secondary, dynamic payoff mechanism, which governs route
choice for the CAVs. This payoff mechanism takes the form
of (40). Our main result is Theorem 6, which formulates
this payoff mechanism such then global asymptotic stability
to the Nash equilibrium set generated by F'* is assured.

APPENDIX
A. Proof of Theorem 4

If v is d-dissipative then it has storage function S(z,p),
dissipation function o (z, p), and supply rate parametrized by

dS(z,p) |GA(x,p?, p"
ox ’ pR=FR(z)

d-dissipativity implies that the above is bounded by
V g 7U(xap)|pR:FR(z) =+ ET(I'7PA) I E(xva) (69)

But o(x,p) > 0 with the equality holding only if v(z,p) =
0. We conclude that if (43) holds then V (z(t), p*(t)) < 0 for
all 2(t) € X and pA(t) € R™/? except where v(xz(t), p(t)) =
0. Let the set F be defined as

F= {(x,pA) EXXRY?:y <l {Fg‘;x)D = 0} (70)

Recall Definition 4 for extended Nash equilibrium, and Defi-
nition 2 for Nash stationarity, to conclude that F = Ega pr.
Then because V (z(t), p(t)) > 0 and

(#,p%) € Ega pr < V (2(t),p(t)) =0 (7D

we conclude that V(x(t),p*(t)) — 0 as t — oo, and
(z(t),p*(t)) = Ega pr. This implies that V is a global
Lyapunov function with attracting set Ega pr.

B. Proof of Theorem 5

It is known from Theorem 2 that v is J-passive with
storage function (13) and dissipation function (14). It is
therefore §-dissipative with supply rate parameter IT as in
(30). We need only verify that F'* and G, as defined, satisfy
(43). Substitution of (45) and (46) into (43) results in

RAC (24, 2B)RT  RAA(zA, 2®)RT

T
v (z,p) RAA(ZAJR)RT RAR(ZA7ZR)RT v(z,p)
<0 (72

which is equivalent to
— [Q(ZA,zR)u(x,p)]T [Q(ZA,ZR)Z/(.’L‘,]))} <0 (73)

where
RAA(24, 21) [AR (24 zR)]_1/2 !
Q24,27 2 _ L2 . (74)
R [AR(zA, ZR)]

The inequality is therefore satisfied for all z € X and p € R"”,
thus concluding the proof.

C. Proof of Theorem 6

To show that EGA7 rr 1s a globally asymptotically stable
set, it is sufficient to show that (43) is still satisfied after
the addition of the extra term added to G4 in (66), beyond
the terms in (46). Let Zo(z,p?) be the value of =(x, p?)
without this additional term. Then we have that

I1 = 7. Define V (x, p?) as Onx1
4 E(z,p") = Zo(z,p") + | B TUAES|  (75)
It is straightforward to show that
Then
. aS(m p) ET(a:va) H E(x7pA) = Eg(x’pA) H EO(‘rapA)
V= =" T T
ox V<x’p> pRE=FE(z) + [VA(xA’pA)] X (pA) UAEﬁ (76)
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It is known from Theorem 5 that the first term on the right-
hand side is negative-semidefinite. We now show that the
second term is as well. Using (54) and (55), this term is
equivalently

(¢")"UAES =(d")T AEB (77)
n"—1
= Z Z ardi" g7 (78)
r=1 i=1
First, we evaluate this expression assuming X (pA (t)) is not

at a time of transition such that its value (and therefore
those of dA", pI'" and p! +1) are unique. In this case, because
it is known that d2” > 0, it follows that the summand
in the above expression is nonpositive. Now, consider the
case in which expression is evaluated at a time ¢ at which
T (pAT(t)) jumps from one value to another, for some
r € {1,...,0}. This implies that there are sets [{"(¢), for
ke {l,...,K"} with 1 < K" < n", and a corresponding
set of scalar values ~;, such that

i,j€T() «  pi(t)=pi(t) = (79)

(In other words, the values of «; constitute the set of
unique values in the vector pA”.) With reference (56), let
the configuration shown correspond to one of the possible
orderings of the indices. Then relative to this ordering, the
sets I:17(t) must each be consecutive. As such, any other
admissible ordering of the indices in I{}" would entail the
switching of one or more consecutive rows corresponding to
pZ = ;- But for consecutive rows with ]5 = p] =V,
it follows that fi;; = 0. Consequently, the value of dar(t)
as in (55) is nonnegative for all ¢ € ]IA’" irrespective of
the reordering of the rows corresponding to this index set.
It therefore follows that (78) is negative for all the values
% (p*(t)) can take at time ¢, as well as over the entire convex
hull of these values. We conclude that (43) holds, proving
that E;a pr is a globally asymptotically stable set.

It remains to be shown that p* converges to common
priority with p?. Let W () be defined as

n"—1

DR UR ) BT

r=1 i=1
and consider that with differential equation (41) imposed,
W(t) is
n"—1
Z > aBi(t) = YT (r®),p(t) 6D
r=1 i=1
where
TT(t) = w(t)=" (1), (1) (82)
with € as in (74),
wt) £ eTETU 1y (pA(t)) RAA(24(t), 21 (1))
< [ARGA@), @] 83)

and where € is a vector in which every component is 1. (As
before, at times when ¥ (p(¢)) is discontinuous we treat

W (t) as a set. This set is comprised of W (t) evaluated over
the convex hull of all possible values of X (p®(t))). Note
that the components of w(t) are uniformly bounded in ¢,
and are all nonnegative. There is consequently a constant
matrix w > 0 such that

We therefore have that

o n”

<D Z ar By () +@ |24 (8), 22 (8)w(a(t), p(0))]
r=1 i=1 (85)
and it follows that for any ¢ > 0, and any 6 > 0,
e n"—1 t+6
WEt+0)<WEH) +> > ar/t pi (r)dr
o r=1 =1
+o / Q(=A(7), 2R (r)w(a(r), p(r) | dr - (86)
Now, consider that
t+0
/t T (r)p(r)dr
:/t+9 |:VA(.IA T),pA(T>):| GA( (;')apA(T» dr
. BB (), pR(r) OF (@) (1)
87)
t4+60
= —/t 19z (7), 2% (7)) v(a(r), p(r)) || 3dr
o n"—=1 449
+> Z/t di"(7)B; (1) (88)
> S(z(t+0),p(t +0)) — S(x(t), p(t))
t+0
+/ o(x(r), p(r))dr (89)
! t+60
> =SG)p)+ [ olalr)plr)ir 90)
Rearranging, we have that
t4-60
S(@(t),p(t)) > / o(a(7), p(r))dr
_ Z i / ardAT ﬂr( )
r=1 i=1
t+60
+/ 12z (7), 2%(r))v(a(7), p(r)) | 3d
t 1)

Each of the three terms on the right-hand side is positive,
and therefore each is in the range [0,.5(x (o), p(to))]. We
therefore conclude that

t+6
/ 12(z4(7), 2% (7))v(2(r), (1)) |3dT < S(z(t), p(t))
' 92)
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But via the Cauchy-Schwarz inequality,

t+60
/t 192024 (7), 25 (r))v((7), p(7)) L dr

[4]

[5]

10 1/2
<VIB( [ 10GA), (), o)l
t
[6]
(93)
7
< VIOv/S@ 0, p(0) o
. . [8]
Consequently, (86) implies that
[9]
e n"—=1 .t40
W(t+0) <WE) + ) Z B (r)dr [10]
r=1 i=1 [11]
+(miaxa;1;) \/LH«/S(x(t),p(t)) ©5) 1
Let Qp be the limit set for the quntity [W (¢t + 6) — W(¢)]
as t — oo. In other words, for every Q € Qp, there is an  [13]
increasing sequence of times {t1,t2,...} with ¢ — oo as
k — oo, such that [14]
hm (Wt +0) — W(tr)] = Q. (96)
k—o0 [15]
Because S(z(t),p(t)) — 0 as ¢ — oo, we have that for all
Q € Qo, [16]
0 n "—1 Lti46 [17]
o< im >3 [ a ©7)
to—00
r=1 i=1 Yl
But 87 (1) < 0 so we conclude that @ < 0 for all @ € Qy. [18]
Furthermore, the fact that W (¢) > 0 for all ¢ then implies that
Q@ > 0, because otherwise (96) implies that W (¢;,) decreases
without bound as £ — oo. As such, we conclude that Qy = (191
{0}. Taking the limit of (95) as ¢ — oo therefore gives that
[20]
n"—1
lim / Br(r (98)
o< im Y Y
r=1 i=1
Because the integrand is negative-semidefinite, we conclude -
that the equality holds tightly, i.e., 221
o n -1
. [23]
hm / Bi(r = (99)
t—)oo
r=1 i=1
[24]
From Definition 6, we conclude that pf* converges to com-
mon priority with p 25]
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