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This paper reports the first measurement of the transverse momentum (p) spectra of primary charged
pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp
collisions at /s = 13 TeV. Flattenicity is a novel event shape observable that is measured in the
pseudorapidity intervals covered by the VO detector, 2.8 < < 5.1 and —3.7 < n < —1.7. According to
QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less
affected by biases toward larger pt due to local multiplicity fluctuations in the VO acceptance than
multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to
pt = 20 GeV/c. The event selection requires at least one charged particle produced in the pseudorapidity
interval |n| < 1. The measured py distributions, average pr, kaon-to-pion and proton-to-pion particle
ratios, presented in this paper, are compared to model calculations using PYTHIA 8 based on color strings
and EPOS LHC. The modification of the pr-spectral shapes in low-flattenicity events that have large event
activity with respect to those measured in MB events develops a pronounced peak at intermediate
pr 2 < pr < 8 GeV/c¢), and approaches the vicinity of unity at higher pr. The results are qualitatively
described by PYTHIA, and they show different behavior than those measured as a function of charged-

particle multiplicity based on the VOM estimator.
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I. INTRODUCTION

In proton-proton (pp) collisions at the LHC energies,
hard parton-parton scatterings with momentum transfer
above several GeV/c produce high transverse momentum
(pr) particles that can be described by perturbative quan-
tum chromodynamics (pQCD). Additional parton-parton
scatterings that are not part of the main hard process
constitute the underlying event (UE), which is modeled
using phenomenological approaches [1,2]. At LHC ener-
gies, the large parton densities result in a significant
probability of more than one partonic interaction in a
single pp collision [3], a phenomenon known as multi-
parton interaction (MPI) that is supported by data [4,5]. In
MPI-based models, pp collisions with high charged-particle
multiplicities are dominantly those with a larger-than-
average number of MPIs. The properties of the hadronic
final state are sensitive to the interplay between the final
states of several parton-parton interactions, the modeling of
MPI, and nonperturbative final-state effects such as color
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reconnection (CR) implemented in pYTHIA § [3,6]. For
example, CR in pp collisions containing a large amount of
MPI creates a strong correlation between the average
transverse momentum of the produced particles and the
charged particle multiplicity [7]. The strength of this
correlation is mass dependent, and therefore, reminiscent
of radial flow effects in heavy-ion collisions [8].

Recent measurements in small collision systems such as
high-multiplicity (HM) pp and p-Pb collisions at the LHC
have revealed several effects that are qualitatively similar to
the ones observed in heavy-ion collisions. Such phenomena
include collective flow [9-23] and the enhanced production
of strange hadrons with respect to the charged-pion yield
[24-28]. Despite the large amount of soft-QCD results on
collectivity, the origin of these phenomena in small systems
is not yet fully understood. For example, experimental
searches for jet modifications due to the presence of a
medium in small collision systems have not been successful
within current experimental precision, though its effects are
expected to be small [29-36]. Moreover, recent results from
ALICE suggest that the measured ridge yields in low-
multiplicity pp collisions are nonzero and substantially
larger than the limits set in eTe™ annihilation [37]. ATLAS
also observed significant nonzero values of the second- and
third-order flow coefficients measured in photonuclear
ultraperipheral Pb-Pb collisions [38]. Thus, the existing
measurements do not yet provide an answer to the
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important question of whether the origin of collectivity in
small systems is attributed to the formation of a strongly
interacting quark-gluon plasma (QGP), or if it originates
from different physical mechanisms. Several theoretical
approaches have been suggested to explain the QGP-like
effects in small collision systems. For example, the
PYTHIA 8 [6] model can qualitatively describe some of
the observed features by incorporating new phenomeno-
logical final-state prehadronization mechanisms, such as
rope hadronization [39], string shoving [40], and MPI
together with the CR mechanisms [6,8].

The production of (un)identified charged hadrons as a
function of multiplicity has been studied to understand the
origin of the collectivelike effects observed in pp and p-Pb
collisions. Measurements of the inclusive charged particle
production as a function of multiplicity indicate a stronger-
than-linear increase of the high-pr particle yields with
increasing multiplicity relative to the yield in minimum-
bias (MB) pp collisions [41], which is a consequence of an
autocorrelation bias. To minimize such biases, the event
classification has also been performed using charged-
particle multiplicity measurements at forward pseudora-
pidity, i.e., in a different pseudorapidity interval than the
one in which the observable of interest is measured [24].
However, this event selection approach is still sensitive to
biases from local multiplicity fluctuations originating from
jets that in turn enhance the high-pr particle production,
affecting the search for medium-induced jet modification in
small systems [34]. For example, a detailed analysis using
data and MC simulations showed that high-multiplicity pp
collisions selected at forward and backward rapidities,
and requiring a hard process at midrapidity, results in
the distribution of particles with multijet topologies, con-
sequently affecting the search for medium-induced jet
modification in small system [29].

Different event classifiers are proposed to reduce the
existing biases in selectors based only on the forward
multiplicity. These include transverse spherocity (Sg)
[41-43] and the relative transverse activity classifier
(Rt) [44], both measured at midrapidity. Spherocity is
used to isolate pp collisions characterized by dijet topol-
ogies, which are dominated by hard partonic scatterings.
Furthermore, it can select events with a large number of
partonic interactions that yield an isotropic distribution of
charged particles in the transverse plane [45]. Regarding
spherocity, pp collisions with spherocity values near zero
are characterized by a dijet topology and are dominated by
hard partonic scatterings. In contrast, events with spher-
ocity values close to unity have an isotropic particle
distribution in the transverse plane and are dominated by
multiparton interactions. In Ref. [43], particle spectra are
analyzed as a function of spherocity and multiplicity, both
measured at midrapidity and forward rapidity. Using the
midrapidity multiplicity estimator together with a selection
based on spherocity, it is possible to select events with a

relatively large difference between the (py) of jetty and
isotropic events as opposed to the case when the forward
multiplicity estimator is used. However, a potential bias
from jets fragmenting into many low-pr particles emerges
when the selection of high event activity at midrapidity
is made.

The Ry classifier selects pp collisions based on their UE
activity in the region perpendicular to the direction of the
leading charged particle, i.e. the one with the highest pr, in
the event [44]. This approach probes the structure of the
underlying event by separating events with exceptionally
large or small transverse activity with respect to the event-
averaged mean. This classification is applied in recent
measurements of charged and identified particle production
by ALICE [46], where the particle production is inves-
tigated as a function of the UE activity [46,47]. Pheno-
menological studies have found that transverse activity is
strongly correlated with the average number of MPIs. In the
region perpendicular to the leading particle, the spectral
shapes of all particle species harden with increasing UE
activity, which could be an indication of selecting multijet
topologies. These effects could be a consequence of a
selection bias originating from initial- and final-state
radiations [48].

Efforts have been made to develop a new event selector
with reduced biases from local multiplicity fluctuations in
the pseudorapidity region where multiplicity is measured.
A necessary condition is to have a large sensitivity to
quantities at the partonic level, such as MPI. For example,
Ref. [49] proposes an event activity estimator with strong
sensitivity to soft multiparton interactions and color recon-
nection effects using machine-learning-inspired tech-
niques. In this study, the ratio of the yield of charged
pions in pp collisions with a large number of MPIs to that
in MB collisions shows a pronounced peak in the inter-
mediate-pr region (2 < pp < 8 GeV/c¢), which is attrib-
uted to CR. At larger pr, such a ratio is consistent with
unity. These effects have not been observed with the
existing event activity estimators. In this context, the
present paper explores a novel event classifier called
flattenicity, which combines information from both the
azimuthal and polar (pseudorapidity) angles [50]. The pr
spectra are studied in events selected as a function of
flattenicity, with and without a multiplicity preselection in
pp collisions at /s = 13 TeV. This measurement aims to
provide further insights into the underlying processes
behind collective phenomena, and it gives a better under-
standing of the partonic dynamics of the collisions.
Moreover, it offers valuable information needed to improve
the accuracy of event generators in describing the soft-QCD
regime in small collision systems.

The paper is organized as follows. The ALICE exper-
imental setup is described in Sec. II, focusing on the
detectors which are relevant to the presented measure-
ments. Section III introduces charged-particle flattenicity
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and discusses its properties. Section IV discusses the
analyzed data samples, the details of the event and
track selection criteria, the event classification, as well
as the analysis techniques to measure the pr spectra for the
different particle species. Sections V and VI outline the
correction procedures and the estimation of systematic
uncertainties. The results are presented and discussed in
Sec. VII, including comparisons to Monte Carlo model
predictions. Finally, Sec. VIII gives the summary and draws
the conclusions.

II. EXPERIMENTAL APPARATUS

A detailed description of the ALICE detector can be
found in Ref. [51]. The relevant detectors for the present
analysis are the Inner Tracking System (ITS) [52], the Time
Projection Chamber (TPC) [53], the Time-Of-Flight (TOF)
detector [54], and the VO detectors [55]. These detectors are
located in the central barrel surrounded by a solenoidal
magnet, providing a homogeneous B = 0.5 T-magnetic
field along z. The barrel includes a set of tracking detectors:
the six-layer silicon ITS detector surrounding the beam
pipe, the large-volume (5 m length, 0.85 m inner radius and
2.8 m outer radius) cylindrical TPC, and the TOF detector.
The ITS is the innermost detector, covering the pseudor-
apidity region || < 0.9. The two innermost layers are
silicon pixel detectors (SPD), followed by two intermediate
layers composed of silicon drift detectors (SDD), and
finally, the two outermost layers are silicon strip detectors
(SSD). The ITS measures the position of the primary
collision vertex, the impact parameter of the tracks, and
improves considerably the track-pt resolution at high-pr.
The TPC is the main detector for tracking and particle
identification, covering the pseudorapidity range |n| < 0.8
with full-azimuth coverage. With the measurement of drift
time, the TPC provides three-dimensional space-point
information for each charged track, with up to 159 tracking
points. Tracks originating from the primary vertex can be
reconstructed down to pr ~ 100 MeV/c [56], albeit with a
lower tracking efficiency for identified charged hadrons
below pp =200 MeV/c. The TPC provides charged-
hadron identification via measurement of the specific
energy loss dE/dx in the gas, with a resolution of ~5%
in pp collisions [56]. The TOF detector is a cylindrical
array of multigap resistive plate chambers that surrounds
the TPC and covers the pseudorapidity range || < 0.9 with
full azimuthal acceptance. The time-of-flight is measured
as the difference between the particle arrival time and the
collision time of the event. The total time resolution,
including the resolution on the collision time, is about
90 ps in pp collisions. It enables particle identification up
to about pr =3 GeV/c [20,46]. In addition, the central
barrel includes the VO detectors. They are composed of two
scintillator arrays placed along the beam axis (z) on
each side of the nominal interaction point at z = 340 cm
and z = —90 cm, covering the pseudorapidity regions

2.8 <n <5.1(VOA)and -3.7 < n < —1.7 (VOC), respec-
tively. Each of the VO arrays is segmented into four rings in
the radial direction, and each ring is divided into eight
sections in the azimuthal direction. This results in a lattice
of N = 64 cells. The amplitudes of VOA and VOC
detector signals are proportional to charged-particle multi-
plicity, and their sum is denoted as VOM, used in event
classification. The VO detectors provide the interaction
trigger, and it is also used for beam-induced background
suppression. Furthermore, it is employed for event classi-
fication based on multiplicity and flattenicity (see Sec. III).

III. CHARGED-PARTICLE FLATTENICITY

Charged-particle flattenicity (p) is measured on an event-
by-event basis using the deposited energy registered in each
cell of the VO detector. The energy deposit in a given cell i
is proportional to the multiplicity of primary charged
particles (N1, Flattenicity is defined as follows [50]

VI (VSN — (NN,
(NG

: (1)

p:

where, Ngﬁll’i is the particle multiplicity in the i-th cell and
(N is the average over the total number of 64 cells per
event. Flattenicity is therefore a measurement of the local
multiplicity fluctuations in the VO detector, small fluctua-
tions are associated with p — 0. It is demonstrated in
Ref. [50] that p is a robust observable against variations in
the size of the cell. The values of p range between 0 and 1.
To associate flattenicity with other event shape observables,
e.g. spherocity [41,43], the results are presented as a
function of 1 — p. Based on PYTHIA § simulations, multijet
topologies, that are produced by MPI, yield small flatte-
nicity values (1 — p — 1), whereas pp collisions with a few
MPIs have large flattenicity values (1 —p — 0). As a
consequence, the lower bound of 1 — p aims at selecting
“soft” pp collisions (including diffractive events), which,
on average, produce a lower number of high-pr hadrons
compared with the inclusive (1 — p -integrated) distribu-
tion, thereby making the pr spectra softer. In contrast, the
upper bound of 1—p is associated with events with
spherical topologies that contain particles from several
multiparton interactions. By definition, flattenicity is a
multiplicity-dependent quantity. Low-flattenicity events
(1 —p — 1) have large event activity (i.e. large number
of MPIs), and therefore rich QCD dynamics; this scenario
can be reached in HM events [43]. On the contrary, the
high-flattenicity limit (1 —p — 0) is associated with low-
multiplicity events, mostly pp collisions with a few MPIs.
These effects can be factorized by performing the event
classification using a double-differential selection based on
both multiplicity and flattenicity.

One can avoid trivial auto-correlation effects by meas-
uring flattenicity in the forward rapidity region and the pt
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FIG. 1. Ratios of parton yields for the events with the 0%—1%

highest activity according to various event activity measures to
that without any event selection as a function of the parton
transverse momentum (pr). The results are for pp collisions at
/s = 13 TeV simulated with PYTHIA 8 Monash 2013 tune.

spectra of charged particles in the midrapidity region.
Studies based on PYTHIA 8 showed that the calculation
of flattenicity in the VO acceptance (rather than at mid-
rapidity) enhances the sensitivity to the global shape of the
event [50]. As discussed earlier, there is a trivial correlation
between MPI and the hardness of the collision. The larger
the number of MPIs, i.e. collisions with small impact
parameters, the larger the likelihood to produce a harder
parton-parton scattering. However, selecting pp collisions
based on their multiplicity biases the sample toward local
multiplicity fluctuations originating from jets which yield a
nontrivial effect. This is illustrated in Fig. 1, which shows
the distribution of outgoing parton transverse momenta
(pr) in pp collisions simulated with PYTHIA 8 with the
highest 0%—1% event activity normalized to that in MB pp
collisions. The event selection is done using the number of
MPIs, flattenicity, and the VOM multiplicity estimator. The
event selection based on MPI yields a ratio that is nearly flat
up to pr ~ 10 GeV/c, and, from that p onward, followed
by a slightly decreasing trend. For pr > 30 GeV/c, a
similar ratio as a function of pr is obtained when the event
selection is performed using flattenicity. In contrast, the
event selection based on VOM multiplicity yields a ratio
that increases with pr. Overall, the flattenicity-dependent
results are closer to the MPI-dependent results.

Given the sensitivity of the flattenicity to MPI, the
selection of events with 1 —p — 1 can enhance the color
reconnection effects, which are more pronounced in colli-
sions with a higher number of MPIs [8]. Color reconnection
is expected to make a connection between the event
activity in the forward region and the midrapidity region
where the actual particle py spectra are measured [57]. To
test this assumption, a quantity Q,, can be defined that

demonstrates the evolution of the pr-spectral shapes with
flattenicity

_ /(AN /dn),_, (N/dydpr),,
PP 1/(dNgy/dn)yp (42N /dydpr)ys

The Q,, quantity is given by the ratio of the particle yield
measured in a given 1 — p class to the yield measured in
MB pp collisions. The Q,,, ratio is scaled by the ratio of
average charged-particle pseudorapidity density measured
in || < 0.8 for a given flattenicity event class to that for the
MB event class (dNy,/dn);_,/(dNg/dn)yp that, accord-
ing to PYTHIA 8, is proportional to the average number of
MPIs. If a pp collision in a given flattenicity class behaved
like a simple superposition of independent semihard
parton-parton scatterings, the Q,, would approach unity.

Figure 2 shows Q,,, of 7, K, p, and h* for two extreme
limits of flattenicity, the 0%—1% and 50%-100% 1 —p
event classes, simulated with PYTHIA 8 (with and without
CR). There is a |y| < 0.8 (|| < 0.8) cut in the rapidity
(pseudorapidty) of identified (unidentified) particles. The
Q,p is around unity for 0%—1% 1 — p events without color
reconnection regardless of particle species or event activity
selection based on VOM [49]. This feature results from the
sum of incoherent parton-parton collisions. Moreover, the
Q,p in the 50%-100% 1 — p class shows a slight decrease
with increasing pr because this type of pp collisions
involve smaller momentum transfers than in MB pp
collisions. On the other hand, the inclusion of the CR
mechanism causes a deviation from unity: a “bump”
structure and a dip emerge in the intermediate-pr range
(I < pr <8GeV/c) for the 0%—1% and 50%-100%
1 — p event classes, respectively. At higher pr, the ratios
approach unity like in the analogous pr plot shown in
Fig. 1. The bottom row of Fig. 2 shows the corresponding
results for the HM event class. The results reveal similar
features in the case of 0%—1% 1 — p. However, the Q,, in
the 50%—-100% 1 — p event class increases over the entire
pr range. It is important to note that this effect was also
seen for VOM-only event selections [20,46], and it is a
consequence of jet fragmentation bias [41]. Despite the fact
that the flattenicity is closely related to the event multi-
plicity (p « 1/4/Ng,), the observed features in the pp
collisions with p close to zero go beyond those obtained
using a simple high-multiplicity selection. Moreover, the
events with p close to zero can be associated with collisions
with many MPIs.

(2)

IV. EVENT AND TRACK SELECTION

The present study uses a minimum-bias data sample
from pp collisions at /s = 13 TeV collected between
2016 and 2018 during the Run 2 data-taking period
of the LHC. The minimum-bias events are selected by
the requirement of a charged-particle signal in both VO
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FIG.2. The Q,, ratio of 7, K, p, and h* for the 0%—1% and 50%—100% flattenicity (1 — p) event classes (top row), and for HM events
(0%-1% VOM) in the same 1 — p event classes (bottom row) simulated using PYTHIA 8 with and without CR. There is a |y| < 0.8
(In] < 0.8) cut in the rapidity (pseudorapidty) of identified (unidentified) particles. The shaded bands around the lines represent the

statistical uncertainty.

detectors. Contamination from beam-induced background
events is removed offline by using the timing information
of the VO detectors and by taking into account the
correlation between the number of tracklets (short track
segments reconstructed using only SPD information) and
the number of SPD clusters. Events are required to have a
vertex position along the beam axis within |z| < 10 cm,
where z = 0 corresponds to the center of the detector. A
selection criterion based on the offline reconstruction of
multiple primary vertices in the SPD is applied to remove
contamination from pile-up events in the same bunch
crossing [51]. Furthermore, events with multiple interaction
vertices reconstructed are rejected. After the offline rejec-
tion, the remaining pile-up has a negligible impact on the
final results.

The MB events are further required to have at least one
charged particle produced in the pseudorapidity interval
|n| < 1. This class of events is referred to as INEL > 0 and
corresponds to about 75% of the total inelastic cross section
[20,26,58]. This study exploits about 1.64 x 10° selected
minimum-bias pp collisions, corresponding to an inte-
grated luminosity of about 21 nb~!. The multiplicity is
classified in VOM percentiles, where 0%—1% corresponds
to the highest (0%—1% VOM) multiplicity events. This HM
event class will be used throughout the paper. The event
selection based on flattenicity uses a procedure similar to
that performed with the VOM multiplicity estimator. The
simulated and the measured flattenicity distributions are
divided into classes with different percentiles of the
corresponding distribution. The measured flattenicity prob-
ability distribution with the minimum-bias sample and its
division into percentiles is shown in Fig. 3. The percentiles

used for the measurement of the pt spectra of charged and
identified particles and the corresponding average charged-
particle pseudorapidity densities (dN,/dy) measured
within || < 0.8 are listed in Table I, where the values
for 0%—1% VOM event class are also reported. Roman
numerals represent the labeling convention for these
percentiles, similar to what was reported in earlier
ALICE publications [41,43,46]. The (dN.,/dn) is mea-
sured by integrating the fully corrected pr spectra of
charged particles. The details regarding the measurement
of (dNg,/dn) are given in Sec. VI. The flattenicity-
integrated values of (dN,/dy), i.e., the minimum-bias
as well as the 0%—1% VOM values, are taken from

ALICE

pp, Vs = 13 TeV

B 0%-1% 1-p  EH1%-5% 1-p
5%-10% 1-p [10%-20% 1-p

[ 20%-30% 1-p [ 30%-40% 1-p

[ 40%-50% 1-p [I50%-100% 1-p

0 0.2 0.4 0.6 0.8 1
1-p

FIG. 3. Measured flattenicity probability distribution using the
minimum bias sample. The colored areas represent the different
percentile classes used in the measurement of the pr spectra.

012010-5



S. ACHARYA et al.

PHYS. REV. D 111, 012010 (2025)

TABLE 1. Average -charged-particle multiplicity density
(dNg,/dn) in || < 0.8 measured in different flattenicity event
classes for multiplicity-integrated (VOM percentile 0%—100%)
and high-multiplicity (VOM percentile 0%—1%) events. The
(dN,/dn) is measured by integrating the fully corrected pr
spectra of charged particles. The reported uncertainties corre-
spond to the systematic contributions. Statistical errors are
negligible compared to the systematic ones.

Multiplicity-integrated (VOM percentile 0%—100%)
Class name I II 10 v
0%—1% 1%-5% 5%-10% 10%—-20%

1 — p percentile

(dN,/dn) 222407 182405 153+£0.5 126 +04

Class name \% VI VII VIII

1 — p percentile 20%-30% 30%-40% 40%-50% 50%—100%

(dNg,/dn) 10.0 £0.3 8.06 +=0.19 6.47 £0.13 3.51 £ 0.04
VOM percentile 0%—1%

Class name 1 11 111 v

09%—1% 19%-5%  5%-10% 10%-20%
312£0.5 29.84+04 29.0+04 28.1+£04

1 — p percentile
<chh/d’7>

Class name \% VI VII VI

1 — p percentile 20%-30% 30%-40% 40%-50% 50%—100%
(dN,,/dn) 274405 26.74+0.5 26.1+£0.6 24.0+0.9

Ref. [59]. A clear correlation between p and (dN,/dy) is
observed: the 50%-100% 1 — p event class has lower
(dN,/dn) values than the 0%—1% 1 — p event class.

The transverse momentum spectra are measured with
primary charged particles [60]. Charged particles are
reconstructed using information from the ITS and TPC
detectors within the pseudorapidity interval, || < 0.8. The
track selection criteria closely follow those used in
Ref. [61]. In particular, tracks are required to have clusters
on at least 70 TPC pad rows. They are also required to have
at least two hits in the ITS, out of which at least one is in the
SPD layers. The fit quality for the ITS and TPC track points
must satisfy yrg/Nnis < 36 and y3pc/Neusiers < 4, Where
Nhits and N gjyqers are the number of hits in the ITS and the
number of clusters in the TPC associated with the track,
respectively. A 2-cm cut on the distance-of-closest
approach (DCA) to the reconstructed primary vertex in
the z-direction (DCA,) is applied to limit the contamination
from secondary particles. Furthermore, a pr-dependent
selection on the DCA,, in the plane perpendicular to the
beam axis is applied.

The particle identification (PID) is performed using the
standard techniques explained in previous ALICE publi-
cations [20]. Table II lists the names of the analysis
techniques and the pt range in which the spectra are
measured. Below pp =1 GeV/c, PID is performed on a

TABLE II. The name of the analysis technique and the trans-
verse momentum ranges in which z, K, p are measured.

pr(GeV/c) ranges

Analysis technique b/ K p
TPC 0.3-0.7 0.3-0.6 0.45-1
TOF 0.7-3 0.6-3 1-3
TPC rel. rise 2-20 3-20 3-20

track-by-track basis [20]. Up to pr = 3 GeV/c, the yield
of z, K, and p is extracted from the information provided by
the TOF detector [46]. Finally, the TPC relativistic rise
method is employed in the region 2 < pr < 20 GeV/c,
where the yield is measured by fitting the dE/dx spectrum
in the relativistic rise regime of the Bethe—Bloch curve as
described in Ref. [62].

V. CORRECTIONS

The fully corrected pt spectra are obtained using
standard methods [63]. The set of corrections includes
the limited acceptance and tracking inefficiency, TPC -TOF
matching inefficiency (only where the TOF measurement is
used for PID), secondary particle contamination, and event
and signal losses. All corrections are calculated using
events simulated with PYTHIA 82 tune Monash 2013,
hereafter referred to as PYTHIA 8 [64]. The simulated
particles are subsequently propagated through a simulation
of the ALICE detector using the GEANT 3 transport code
[65]. The simulated particles are reconstructed using the
same algorithms as for the data. Since the tracking and
matching efficiencies, and the contamination of secondary
particles show little or no dependence on the event
multiplicity, the minimum-bias result is used for all the
multiplicity and flattenicity classes. The tracking ineffi-
ciency of unidentified charged particles takes into account
the measured particle composition of the charged spectrum
as described in [66]. The residual contamination from
secondary particles (the products of weak decays and
particles produced due to interactions with the detector
material) is estimated by fitting the data DCA,, distribu-
tions in pr bins using Monte Carlo templates describing the
contribution of primary and secondary particles [46,63].
This correction amounts to 1%, 10%, and 3% at pr =~
0.5 GeV/c for z*, p (p), and charged hadrons, respec-
tively. Finally, the spectra are corrected for event and signal
losses, which take into account the trigger selection
inefficiency [26]. Both corrections are relevant for low-
multiplicity events. In particular, the signal-loss correction
is the largest for events in the 50%—100% 1 — p class, it
amounts up to 6% at pr = 0.3 GeV/c and decreases to 1%
at pr =10 GeV/c. For the same class of events, the
magnitude of the event loss correction is about 12%.
The correction procedure is tested by performing a
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TABLE III. Main sources and values of the relative systematic
uncertainties on the pr spectra of charged particles. They are
given for three different pt values. The abbreviation “negl.”
indicates a negligible value.

pr(GeV/c) 0.15 3.0 10
Source of uncertainty

Vertex selection 0.1% 0.1% 0.7%
Track selection 1.1% 0.5% 0.9%
ITS -TPC matching efficiency 2.0% 4.0% 5.0%
Secondary particles 1.1% Negl. Negl.
pr resolution Negl. Negl. 0.1%
Particle composition 0.2% 1.5% 0.3%
MC nonclosure 1.5% 15.9% 4.8%
Total 2.9% 16.5% 7.0%
Monte Carlo closure test, which is defined as,

(dzN/dedy) 1—/),meas/(d2N/dedy) 1-p.gen> where the

numerator is the fully corrected pr spectrum for a

flattenicity class selected using the measured 1 —p per
event, and the denominator is the p spectrum at generator
level (no detector effects included) for the same flattenicity
class using the true 1 — p.

VI. SYSTEMATIC UNCERTAINTIES

The total systematic uncertainty on the pt spectra is
estimated wusing standard procedures described in
Refs. [20,41,46]. The different sources of uncertainty are
grouped into two disjoint classes: common uncertainties
between the charged and identified-particle analyses, and
analysis-specific uncertainties. The former class includes
the uncertainties due to the vertex and track selections,
event and signal loss corrections, ITS-TPC and TPC-TOF
matching efficiencies, and Monte Carlo non closure. The
systematic uncertainty on the ITS-TPC and TPC-TOF
matching efficiencies is taken from Ref. [20]. The quanti-
fication of the systematic uncertainty specific to the
extraction of the identified-particle yield, and to the
estimation of the secondary particle contamination

TABLE IV. Summary of systematic uncertainties on the pt spectra of z, K, and p. The uncertainties are shown for three different
representative pp values. The last two rows show the total systematic uncertainty on the pt spectra and the pr -differential particle ratios.
The values of MC nonclosure are given for the 0%—1% 1 — p class.

Source of uncertainty common T K p

pr(GeV/c) 0.3 3 10 0.3 3 10 0.45 3 10
ITS-TPC matching efficiency 1.4% 2.6% 5% 1.4% 2.6% 5% 1.4% 2.6% 5%
Vertex selection 0.1% 0.1% 0.7% 0.1% 0.1% 0.7% 0.1% 0.1% 0.7%
Track selection 0.7% 0.5% 1% 0.7% 0.5% 1% 0.7% 0.5% 1%
MC non closure 10% 9.3% 1.8% 10% 9.3% 1.8% 10% 9.3% 1.8%
Analysis-specific 7 K p

TPC, pr(GeV/c) 0.3 0.7 0.3 0.6 0.45 1
PID 0.1% 3% 1.5% 7.8% 2.5% 32%
Feed-down 0.8% 0.1% e e 10% 1%
TOF, pr(GeV/c) 1 2 1 2 1 2
PID Negl. 2.3% 1.4% 7.2% Negl. 0.9%
Feed-down Negl. Negl. e e 1% 0.1%
TOF matching efficiency 3% 3% 6% 6% 4% 4%
TPC rel. rise, pr(GeV/c¢) 3 10 3 10 3 10
PID 1% 1.5% 10.3% 3.5% 11.6% 5.8%
Feed-Down Negl. Negl. e 0.1% 0.1%
Total 7 K p

pr(GeV/c) 0.3 2 10 0.3 2 10 0.45 2 10
Total 10.1% 10.7% 5.5% 10.2% 15.4% 6.4% 14.4% 10.6% 8%
Particle ratios K/z p/7

pr(GeV/c) 0.3 2 10 0.45 2 10
Total 7% 4% 4.4% 10.4% 3.5% 4.7%
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correction is described in detail in Ref. [63]. The individual
sources of uncertainty are summed in quadrature to obtain
the total systematic uncertainty on the pt spectra. Tables I11
and IV summarize the different sources of uncertainty in
the charged and identified particle analyses. Below, only a
brief description of the sources of systematic uncertainty,
which depend on the flattenicity selection is given.

(i) Monte Carlo (MC) nonclosure: This is measured as a
function of the multiplicity and flattenicity selec-
tions. It is estimated by comparing the fully cor-
rected pr spectra with the spectra obtained in the
MC simulation at the generator level. For the 50%-—
100% 1 — p class, the nonclosure has its maximum
value of about 16% at pr = 3 GeV/c, whereas, for
the 0%—1% 1 — p class, its value is estimated to be
10% at pr = 0.15 GeV/c, at which the value is
largest. For the HM events (0%—1% VOM), the non
closure is between about 3.5% and 21% for the
0%—1% 1 — p class, whereas it amounts to 12%-
19% in the 50%—-100% 1 — p class, depending on
pr- The main source of the uncertainty of the MC
nonclosure is related to the effect of secondary
particles that enter the measured flattenicity, which
are not considered in the calculation of flattenicity in
MC at the generator level.

(i) Event and signal loss corrections: These corrections
have a modest dependence on the Monte Carlo event
generator. Therefore, the EPOS LHC model is used
to quantify a second set of corrections. These
corrections depend on the multiplicity and/or flatte-
nicity class, the transverse momentum, and the
particle species. The difference between the correc-
tions obtained with pyTHIA 8 and EPOS LHC is
assigned as the systematic uncertainty. In particular,
the signal loss correction uncertainty for unidentified
charged particles in the 50%—100% flattenicity class
is between 0.6% and 2.6% over the entire pt range
and becomes negligible for the 0%—1% class. The
event loss correction uncertainty, which depends
only on the multiplicity and/or flattenicity class is
about 0.6% for the 50%—100% flattenicity class and
negligible for the 0%—1% class.

The charged-particle pseudorapidity densities (AN, /d#)
(cf. discussion in Sec. IV), the pr -integrated particle yields
(dN/dy), and the average transverse momenta ({pr)) were
calculated using the measured pr distributions and their
extrapolations based on Lévy—Tsallis fits to unmeasured pr
regions, similar to what was done in previous measure-
ments [20,24,67]. The fractions of extrapolated yields in
the 0%—1% 1 — p class amount to 34%, 14%, and 15% for
7z, K, and p, respectively. The variation of fit ranges
and other fit functions (Boltzmann—Gibbs blast wave,
mr-exponential, Fermi—Dirac, and Bose-Einstein) were
considered to estimate the systematic uncertainties related
to the procedure. The resulting variations in the (dN,/dn),

dN/dy, and (pr) values are incorporated into the system-
atic uncertainties. The total systematic uncertainties, for
example for the 0%—1% 1 — p class, on the dN/dy and
(pr) amount to 4.4% and 3% for z, 4% and 2% for K, and
3.2% and 2% for p, respectively.

VII. RESULTS AND DISCUSSION

This section describes the transverse momentum
spectra, dN/dy, (pr), pr-differential particle ratios, and
pr-integrated particle ratios as a function of flattenicity and
double-differentially as a function of flattenicity in HM
(0%—1% VOM class) events.

The results presented below are compared with theo-
retical predictions from QCD-inspired MC models. Besides
the PYTHIA 8 model introduced earlier, EPOS LHC [68,69]
is also used for comparisons. EPOS LHC is a two-
component core-corona model: the high energy-density
“core” region undergoes a collective expansion and hadro-
nization including radial and longitudinal flow effects,
whereas the low-density “corona” region is described by
independent string fragmentation and hadronization.

The top part of Fig. 4 shows the p spectra of 7, K, p, and
h* as a function of charged-particle flattenicity. As dis-
cussed in Sec. I, the Q,,, ratio can be used to illustrate the
sensitivity to MPI and CR effects. The pt spectra of
charged particles are used to derive the average charged-
particle pseudorapidity densities (dN,/dn). These values
are reported in Table I in Sec. IV and illustrate the implicit
multiplicity dependence of flattenicity. The bottom panels
of Fig. 4 show the pr dependence of Q, for the
corresponding flattenicity classes. A clear development
of a peak structure for the flattenicity event class I is
observed for 1 < pr < 8 GeV/c. In contrast to previous
measurements as a function of VOM multiplicity [20,41],
where similar ratios to Q,,, show an increasing trend with
pr for HM events, the Q,, shows a hint for a gradual
decrease at higher pr for all flattenicity classes. This is
consistent with the MC results, which suggest that flatte-
nicity can be a potential observable to select HM pp
collisions while minimizing the bias due to local multi-
plicity fluctuations. The bottom part of Fig. 4 reports the
results from a double-differential analysis, where HM
events (0%—1% VOM) are first selected, and then a
flattenicity classification is applied. The HM event class
has, on average, three to four times larger (dN,/dn) with
respect to MB events. However, the 0, in the event class
VIl increases over the entire pr range. In addition, the Q,,,
measurements from this double-differential study are com-
pared with those obtained for VOM-only event selections
[20,46], shown as black markers. The Q,, that depends
only on the multiplicity selection is closer to that in the
50%—-100% 1 — p class for the same multiplicity class.
The increasing trend of the Q,, can be attributed to a
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FIG. 4. Transverse momentum (pr) spectra of 7, K*, (p)p, and h* for different flattenicity event classes (top panels), and for HM
events (0%—1% VOM) in the same flattenicity event classes (bottom panels). The spectra are scaled by powers of ten for better visibility.
The yield of identified and unidentified particles is reported as a function of rapidity and pseudorapidity, respectively. The bottom panels
in each figure show the Q,, for the corresponding event classes. The statistical, total, and uncorrelated systematic uncertainties are
represented with bars, boxes, and shaded areas around the data points, respectively. The flattenicity-integrated Q,,, values are taken from

Refs. [20,41].

multiplicity-based selection biasing the sample toward
collisions featuring fragmentation of hard partons.

Figure 5 shows the measured Q,,, ratios of r, K, p, and
h*, and model predictions from PYTHIA 8 [64] (with and
without CR) and EPOS LHC [69]. Here, only the extreme
flattenicity selections are examined, 0%—1% and 50%—
100% 1 — p. Results in the top row were obtained for
multiplicity-integrated (0%—100% VOM) events, whereas
those shown in the bottom row were produced for high-
multiplicity (0%—1% VOM) events. The measured Q,,
ratios for low- and high-flattenicity selections intersect
unity at pr ~ 0.5 GeV/c regardless of particle species and

multiplicity selection. The data deviates from unity, and it
depends on both the flattenicity selection and pt. The
prediction based on PYTHIA 8 without color reconnection
effects (cf. discussion in Sec. III) yields Q,, ratios
consistent with unity, and it is far from describing the
data. On the contrary, the PYTHIA 8§ model with the Monash
2013 tune, that includes MPIs and CR effects, generally
describes better the measurements of z, K, p, and h* in
flattenicity event classes. The EPOS LHC model with
parametrized collective hydrodynamics describes the data
only partially (low-to-mid pr), while at high pr it under-
estimates Q,,, for pions, kaons, and unidentified hadrons.
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(0%—1% VOM class) events (bottom row). The data are compared with pYTHIA 8 and EPOS LHC model predictions. The statistical and

systematic uncertainties are represented with bars and shaded areas.

In the double-differential analysis, PyTHIA 8 with CR
describes the data well for both flattenicity event classes,
although it gives only a qualitative description for protons.

Figure 6 shows the pr -differential proton-to-pion (p/x),
and kaon-to-pion (K/7) ratios for the two extremes of
flattenicity: 0%—1% and 50%—-100% 1 — p. Left and right
columns include results for multiplicity-integrated and 0%—
1% VOM event classes. The K /7 ratio does not depend on
flattenicity, neither in the multiplicity-integrated case nor in

high-multiplicity events. The same is true for the model
calculations with PYTHIA 8. A higher p/z ratio is observed
in the 0%—1% 1 — p class with respect to the 50%—-100%
1 —p one for 2 < pr < 10 GeV/c when only a selection
based on flattenicity is applied. This effect has already been
reported in previous ALICE publications, where the par-
ticle production was measured as a function of event
multiplicity [20,24,50]. The pYTHIA 8 model with color
reconnection also predicts an enhanced baryon-to-meson
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FIG. 6. The p -differential proton-to-pion (top row) and kaon-to-pion (bottom row) particle ratios for two extremes of flattenicity
event classes, as indicated in the legends, are shown. Left and right columns include results for multiplicity-integrated and 0%—1% VOM
event classes. The statistical, total, and uncorrelated systematic uncertainties are represented with bars, boxes, and shaded areas around
the data points, respectively. The shaded regions around the model line represent the statistical uncertainties.
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ratio for the 0%—1% 1 — p class with respect to the 50%—
100% 1 — p one. EPOS LHC predicts different p/x ratios
as a function of flattenicity, and while it shows a very good
agreement with the 50%—-100% 1 — p class, it overestimates
the data in the 0%—1% 1 — p one. For pr > 10 GeV/c, the
measured p/z ratio between the two flattenicity classes is
the same. However, the maximum in the highest 1 —p
interval is shifted to the right with respect to the lowest
1 — p interval; this might be attributed to the jet hardening
effect with increasing multiplicity. Finally, for the 0%—1%
VOM multiplicity class, the p/z ratios do not exhibit a
strong flattenicity dependence. This feature is replicated by
PYTHIA 8 with and without color reconnection effects, while
EPOS LHC predicts trends that are not observed in the data.
It is worth mentioning that a complementary analysis based
on multiplicity and spherocity measured at midrapidity
exhibits a strong event-shape dependence. A reduction of
the particle ratios for jetlike events is observed [43,45].
Figure 7 shows the py -integrated K/z and p/ 7 ratios as
a function of (dN,/dn) with a flattenicity-based selection
only. The measurements are compared with their counter-
parts using the VOM multiplicity-based estimator [20]. The
K/7z and p/x ratios show an increasing trend going from
50%—-100% 1 — p (low-multiplicity) to 0%—1% 1 — p (HM)
events. This represents a 30% and 27% increase between
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the two extremes of flattenicity classes for the K/z and
p/ =, respectively. In order to compare these results with
their multiplicity-dependent counterparts [20], the flatte-
nicity-dependent particle ratios are fitted first using the a —
bx(c— x)‘l parametrization, where a, b, and c are free fit
parameters. The fit is then used to quantify the data-to-fit
ratio using the flattenicity and multiplicity-dependent
measurements, which are shown in the lower panels of
Fig. 7. The K/z measured with the flattenicity selection is
marginally higher than the ratio observed in the multiplic-
ity-dependent measurement. However, this is barely
significant considering the current uncertainties. By com-
paring the Q,, ratios (cf. Fig. 4) with the similar ratios
computed for the multiplicity-only dependent results mea-
sured in VOM event classes [20,41], one can observe that
the VOM-based event classification produces more pions at
low pt (S500 MeV/c). This might result in a larger K/z
particle ratio when it is measured in flattenicity event
classes. This observation is relevant for interpreting the
measurements with strange and multistrange hadrons in the
high-multiplicity program at the LHC. A similar effect is
seen for the p/z ratio measured using the flattenicity
estimator, i.e. it is above the one measured as a function
of multiplicity at high-particle densities, however,
these differences are within the systematic uncertainties.
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FIG. 7. Top panels: Transverse momentum-integrated particle ratios as a function of the average charged-particle density, and
predictions using the PYTHIA 8 and EPOS LHC models. The model calculations and fits (shown with the red dashed lines) correspond to
the flattenicity-dependent measurements. The fit uses the a — b/(c — x) parameterization, where a, b, and c are free fit parameters.
Bottom panels: Data-to-fit ratios for both the flattenicity- and multiplicity-dependent measurements. The multiplicity-dependent results
are taken from Ref. [20]. The statistical and systematic uncertainties are shown with lines and empty boxes.
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FIG. 8.

Top panels: average transverse momentum as a function of the average charged-particle density, and predictions using the

PYTHIA 8 and EPOS LHC models. The model calculations and fits (shown with the red dashed lines) correspond to the flattenicity-
dependent measurements. The fit uses the @ — b x (¢ — x)~! parameterization, where a, b, and ¢ are free fit parameters. Bottom panels:
data-to-fit ratios for both the flattenicity- and multiplicity-dependent measurements. The multiplicity-dependent results are taken from
Ref. [20]. The statistical and systematic uncertainties are shown with lines and empty boxes.

The flattenicity-dependent measurements are accompanied
by model predictions from pYTHIA 8 and EPOS LHC.
PYTHIA 8 predicts no evolution with multiplicity for both
particle ratios. On the contrary, EPOS LHC describes the
multiplicity dependence of the K/z ratio, although it
underestimates the data.

Figure 8 shows the average transverse momenta of z, K,
and p as a function of the charged-particle density using the
flattenicity and VOM multiplicity [20] based estimators. In
both cases, the data show an increasing trend with
increasing multiplicity. A mass ordering is observed among
the particle species, where protons have the largest (pr)
values. The (pr) of pions with a flattenicity selection is
slightly higher than the value observed in the multiplicity-
based selection at similar multiplicities. This effect can be
attributed to an excess of low-pr pions (<500 MeV/c¢)
when using the VOM multiplicity estimator [20], thereby
yielding a lower (pr) with respect to its counterpart as a
function of flattenicity. On the other hand, the (py) values
of kaons and protons are similar within the reported
systematic uncertainties between the two selections across
the entire multiplicity range. The prediction from PYTHIA 8
with color reconnection effects and EPOS LHC provide a
qualitative description of the data, while PYTHIA § without
color reconnection effects predicts no evolution neither
with multiplicity nor with flattenicity.

VIII. CONCLUSIONS

This paper reports on a new event activity estimator
named flattenicity (1 — p), which can effectively select pp

collisions with large number of multiparton interactions
with smaller bias due to local multiplicity fluctuations than
the multiplicity-based estimator. The local multiplicity
fluctuations are due to high-momentum jets affecting the
high-pr particle yield. To prove this, the transverse
momentum spectra of charged pions, kaons, (anti)protons,
and unidentified particles are reported as a function of
flattenicity and compared with previous multiplicity based
results. According to PYTHIA 8, flattenicity is sensitive to
multiparton interactions and is less affected by biases
toward larger pt due to local multiplicity fluctuations in
the VO acceptance than multiplicity. Therefore, the inter-
pretation of flattenicity is based on the specific implemen-
tation of MPIs and the modeling of high-multiplicity pp
collisions in PYTHIA. A sample of pp collisions in which
multiparton interactions dominate corresponds to the
0%—-1% 1 — p class, whereas a sample of pp collisions
with a few MPIs corresponds to the 50%—100% 1 — p class.
The former implicitly includes high-multiplicity pp colli-
sions, and the latter, low-multiplicity pp collisions. The
modification of the pr distributions as a function of
flattenicity with respect to those measured in MB events
is quantified by the Q,, ratio, defined in analogy to the
nuclear modification factor widely used in heavy-ion
collisions. Models like PYTHIA 8 without color reconnec-
tion, in which color strings are not allowed to interact with
each other, predict a Q,,, close to unity. However, the Q,,,
for events in the 0%—1% 1 —p class exhibits a bump
structure at intermediate py (1-8 GeV/c), while for higher
pr values the Q,, gradually decreases to the vicinity of
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unity. The effect is hadron mass dependent. The transverse
momentum spectra and Q,, as a function of pr for
different flattenicity classes are quantitatively described
by pYTHIA 8 with color reconnection. This observation
suggests that pp data cannot be described by a mere
superposition of independent parton-parton scatterings.
The EPOS LHC model overestimates Q,,,, at intermediate
pr in particular for the 0%—1% 1 — p class. To factorize the
multiplicity dependence of flattenicity, high multiplicity pp
collisions are analyzed in the same way. Overall, the
observations and conclusions are very similar. The pr-
integrated particle ratios as a function of flattenicity also
exhibit features that have not been observed before. For
example, the kaon-to-pion and the proton-to-pion ratios
increase from low to high charged-particle multiplicity.
Such a increase is slightly steeper than that measured as a
function of the VOM multiplicity due to different biases on
the multiplicity estimators. These results suggest that
flattenicity is a complementary event activity estimator
that can help us understand the biases induced when
selecting high-multiplicity pp collisions.
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