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This Letter presents the first measurement of event-by-event fluctuations of the net number (difference
between the particle and antiparticle multiplicities) of multistrange hadrons Z~ and 2 and its correlation
with the net-kaon number using the data collected by the ALICE Collaboration in pp, p-Pb, and Pb-Pb
collisions at a center-of-mass energy per nucleon pair /sy = 5.02 TeV. The statistical hadronization
model with a correlation over three units of rapidity between hadrons having the same and opposite
strangeness content successfully describes the results. On the other hand, string-fragmentation models that
mainly correlate strange hadrons with opposite strange quark content over a small rapidity range fail to

describe the data.
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In high-energy hadronic and heavy-ion collisions,
strange quarks are dominantly produced from gluon fusion
[1]. In Pb—Pb collisions at the Large Hadron Collider
(LHC), a thermalized medium of deconfined partons, the
strongly-interacting quark—gluon plasma (sQGP) is
expected to form, where the efficient production of
strange—antistrange quark pairs enables the thermal and
chemical equilibration of strangeness in the medium [1,2].
Various experimental results from high-multiplicity p. p.
collisions at the LHC demonstrate striking similarities to
results from Pb-Pb collisions. Notably, the ratios between
strange and nonstrange hadron yields show a smooth
increase with increasing particle multiplicity across colli-
sion systems [3-5], and the patterns of multiparticle
correlations in p. p. collisions closely resemble those seen
in Pb-Pb collisions [6-9]. Theoretically, explaining such
experimental observations, and the hadron production in
general, requires phenomenological modeling of the hadro-
nization process, as its inherently nonperturbative nature
prevents us from performing reliable quantum chromody-
namics (QCD) ab initio calculations. Two different
approaches, namely statistical hadronization [10,11] and
Lund string fragmentation [12], are commonly employed to
address this problem. The statistical hadronization model
(SHM) is based on a thermodynamic approach and the
hadron abundances are determined at the freeze-out of
inelastic interactions from the derivatives of the partition
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function of the system, which is assumed to be an ideal gas
of hadrons and resonances (HRG) at local equilibrium.
Event-by-event conservation laws are implemented using
the canonical ensemble (CE) formulation of statistical
mechanics [13,14]. Using the CE, the SHM model can
describe the yield of light-flavored particles across all
colliding systems with a precision better than 20%
[15,16]. The SHM implementations of Refs. [15,16] differ
in the parametrizations of the system volume, V, and
chemical freeze-out temperature, 7 ., as well as in the
accounting for a possible incomplete thermalization of the
total strangeness at low multiplicity via a strangeness
saturation factor, y; [17]. On the other hand, in the
string-fragmentation picture, as implemented in PYTHIA
[18], final-state partons are connected by color flux tubes,
known as strings, which break up into smaller segments for
large string lengths. Additional quark-antiquark pairs are
produced during this process: once no more energy is
available for further splitting, hadrons are formed. The
starting string configuration for hadronization is deter-
mined by the arrangement of opposite colors and anticolors
according to color reconnection mechanisms [18-20].
Adding further interactions between the strings leading
to the formation of baryon junctions [20] and ropes [21],
PYTHIA can describe the multiplicity dependence of the
ratio between the yields of strange and nonstrange particles
[22]. Consequently, new observables are needed to dis-
criminate between these two approaches.

String fragmentation and canonical statistical hadroniza-
tion provide different treatments of the conservation laws.
In the former, quantum numbers are conserved at a local
level because of the formation of quark-antiquark pairs in
the string breaking process, while in the latter, conservation
laws hold over a finite correlation volume, V. [I5].
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Consequently, canonical charge conservation implies cor-
relations between any two hadrons carrying either same- or
opposite-sign quantum numbers, showing a decreasing
correlation strength for increasing correlation volume.
Instead, in the string fragmentation model, a strong
correlation exists mostly between oppositely-charged
hadrons because of the quantum number conservation at
each string breaking. In principle, such an effect has no
significant multiplicity dependence, except from that com-
ing from specific implementations of the color reconnec-
tion mechanism.

The difference in the quantum number conservation
between these two models can be probed by analyzing
the event-by-event correlation between different hadron
species. This approach has previously been applied by the
ALICE Collaboration to study baryon number conservation
via net-proton fluctuations [23]. There, it was concluded
that baryon number is conserved through long rapidity-
range correlations. In this Letter, the first study in this
regard in the strangeness sector is presented analyzing the
event-by-event correlation between charged kaons and =~
and 2T baryons. In the following, E is used instead of =~
and E* for brevity, unless otherwise specified. These
species are chosen because they are minimally affected
by correlations other than those induced by the quantum
number conservation, e.g. by the decay of heavier states
into charged kaons and Z baryons. In addition, their
production is only marginally affected by weak feed down,
which comes from Q-baryon decays. The observables
considered in this Letter are the normalized second-order
cumulant of net-Z number and the correlation between net-
2 and net-kaon numbers. The net-particle numbers are
defined in terms of the event-by-event multiplicities, n, of
particles and antiparticles as npg = ng+ — ng- and npg =
ng+ —ng- for charged kaons and charged = baryons,
respectively. The normalized second-order cumulant of
net-Z number and the correlation between net-Z and net-
kaon numbers are defined as

K_2 AE) _ K2(E+) + KZ(F'_) - 2K11(E+,E_) (l)
ki (BT 4+E7) k(BT +E7) ’
PAEAK
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respectively, where

and n, g and (n, ) indicate the event-by-event and event-
averaged number of particles of species A or B, respec-
tively. The mth order cumulants of net particles are denoted
as k,, in Egs. (1) and (2). The normalized second-order
cumulant is only affected by opposite strangeness sign
correlation, whereas both the correlations of same- and
opposite-strangeness pairs have an impact on pa= k. Both
observables are sensitive to the locality of strangeness
conservation, which affects the magnitude of the correla-
tions. Therefore, these observables are powerful tools to
distinguish among different hadronization scenarios. In
addition, the studied quantities are independent of volume
fluctuations under the hypothesis of particle-antiparticle
balance at the energies available at the LHC from small to
large systems [24,25].

The results reported in this Letter are extracted from data
collected by the ALICE Collaboration in p. p., p-Pb, and
Pb-Pb collisions at a center-of-mass energy per nucleon-
nucleon pair /sy = 5.02 TeV. The ALICE apparatus and
its performance are described in detail in Refs. [26,27].
Events are selected with a minimum bias (MB) trigger
based on a coincidence of signals in the two VO scintillator
arrays [28], which are placed at both sides of the nominal
interaction point, covering the pseudorapidity, #, intervals
—3.7<n < —1.7and 2.8 <5 < 5.1. In the Pb-Pb sample,
an additional trigger based on the amplitude of the VO
signal is applied to enhance the selection of central (head-
on) and semicentral collisions. Further selections are
applied to reject pileup events [29]. Finally, the position
of the reconstructed primary vertex (PV) along the beam
direction (z axis) is required to be within 10 cm around the
nominal interaction point. After event selections, the data-
sets consist of about 900 x 10° p.p. collisions, 600 x 10°
p-Pb collisions, and 400 x 105 Pb-Pb collisions. The
selected samples are subdivided into multiplicity classes
defined according to the signal amplitudes measured in the
VO detectors [30].

Charged particles are tracked in the central-barrel detec-
tors of ALICE, which cover the full azimuth in the
midrapidity region. The pseudorapidity acceptance of the
present measurement is |7| < 0.8. The charged kaon and
charged E candidates are selected in the transverse momen-
tum (py) ranges 0.2 < py <1.0GeV/c and 1.0 <
pr < 3.0 GeV/c, respectively, to cover the bulk of the
production. The purity of the selected samples of candi-
dates in these momentum intervals is 295%. Charged
kaons are directly tracked in the detectors, while = baryons
are reconstructed via their weak decay to a charged pion
and a A baryon: the latter is identified via its weak
decay into a proton and a charged pion, 2= — 77+
A(— p+ 7). The charge-conjugate decay is employed
for =7

The reconstruction of tracks is based on the space points
measured in the inner tracking system (ITS) [31] and the
time projection chamber (TPC) [32]. Track selections are
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applied to ensure a good quality of the track reconstruction
[33,34]. To avoid intersections in the samples of tracks used
for the reconstruction of kaons and E, which might produce
spurious correlations, complementary selections are
applied to the distance of closest approach (DCA) of tracks
to the PV. Specifically, [DCA| < 0.1 cm for kaons, while
IDCA| > 0.1 cm for E-decay products. Tracked particles
are identified by measuring their specific energy loss,
dE/dx, in the TPC gas volume. For all candidates, the
difference between the measured TPC dE/dx signal and the
one expected for the considered particle species is required
to be less than 30, where o is the resolution on the dE/dx in
the data assuming a Gaussian shape for the TPC particle
identification (PID) signal. For kaons, additional particle
selection criteria are applied: for candidates with pp <
0.4 GeV/c in Pb-Pb collisions, the dE/dx measured with
the ITS is used to improve the rejection of electrons and
positrons; for pr > 0.4 GeV/c, the particle velocity mea-
sured with the time-of-flight (TOF) detector is employed to
reject charged pions and muons: the discrepancy between
the measured velocity and the one expected for kaons is
requested to be smaller than 3¢. The algorithm used to
reconstruct the ZE-decay vertices from tracks is similar to
that used in previous studies [35-37]. A large fraction of
combinatorial background contaminates the sample of
selected E candidates. To address this, a machine learning
(ML) method is used to enhance the signal-over-back-
ground ratio of the sample, as detailed in Ref. [38]. The
training of the ML algorithm is based on the cascade and
two-body decay topological variables of the = and A
candidates, respectively. A few examples of the invari-
ant-mass distribution of the selected = and of the TPC and
TOF PID variables of the selected kaons are reported in
Ref. [38]. In the 10% most central Pb-Pb collisions, the
average number of selected Z+ + Z~ and K* 4 K~ is about
0.07 and 16 per collision, respectively, before applying
efficiency corrections.

The observables defined in Egs. (1) and (2) are corrected
for the candidate-selection efficiency assuming a detector
response with binomial fluctuations. The analytic expres-
sion for the efficiency correction of first- and second-order
cumulants were obtained in previous works [39]. The
efficiencies are calculated using MC simulations in which
particles produced by an event generator (PYTHIAS with
Monash tune [18,19] for pp, EPOS LHC [40] for p-Pb, and
HIJING [41] for Pb-Pb) are transported through an accurate
model of the ALICE apparatus via GEANT4 [42]. The
efficiencies are pr and multiplicity dependent, ranging
from 1% to 8% for = baryons and from 5% to 30% for
kaons. The resulting correction factors on pazax and
Kk, (AE) /k; (BT + E7) are 10 to 15 and 0.95, respectively.
Using a closure test based on MC simulations, it was
checked that the efficiency-correction procedure does not
introduce any significant bias in the corrected cumulants.
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FIG. 1. Normalized second order cumulant of net Z (left panel)
and correlation between net E and net kaon (right panel), as a
function of the average multiplicity at midrapidity, in p. p. (red
squares), p-Pb (green diamonds), and Pb-Pb collisions (blue
circles) at /syny = 5.02 TeV. Statistical and systematic uncer-
tainties are shown via error bars and boxes, respectively. The
experimental measurements are compared to several model
predictions, shown as bands. The width of the bands represents
the statistical uncertainty of the predictions. The average multi-
plicity values are obtained from Refs. [33,44,45]: their uncer-
tainties are not shown in the plot.

The statistical uncertainties are estimated using the
subsample method [43]. The systematic uncertainties are
obtained by extracting cumulants and correlations using
different variations of the candidate selection criteria. This
procedure is repeated using several combinations of the
different variations [38]. The systematic uncertainty asso-
ciated to each of the sources are reported in Appendix A.1.
The total systematic uncertainty in the cumulants is
computed, for each multiplicity class, as the standard
deviation of the results obtained with the different combi-
nations. The average of the multitrial results is employed as
the central value of the observable. The systematic uncer-
tainties are fully correlated across different multiplicity
intervals.

The normalized second-order cumulant of net = and the
correlation between net-kaon and net-E numbers are shown
in the left and right panels of Fig. I, respectively. The
observables are shown as a function of the average charged-
particle multiplicity at midrapidity, (dN,/dz), enabling the
comparison of the results from different colliding systems.
The results show a continuous evolution as a function of the
multiplicity from pp to Pb-Pb collisions for the corre-
lation term and the normalized second-order cumulant. The
measurements are compared to the SHM and Lund string-
fragmentation model, to probe the correlation volume
between strange hadrons and the presence of same-sign
correlations originating from the different treatments of net-
strangeness conservation. The width of the bands in Fig. 1
depicts the statistical uncertainty of the MC simulations
corresponding to the different models. A long-range
rapidity correlation implies a smaller deviation from the
Poisson baseline, corresponding to the grand canonical
ensemble (GCE) limit, than a short-range correlation,
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which is generally present in string models. For the
normalized second-order cumulant of net =, the Poisson
baseline equals unity, while it is zero for pa=zax. The
predictions of the SHM within the CE framework, shown in
Fig. 1, are obtained with the Thermal-FIST package [46].
The model parameters, such as the chemical freeze-out
temperature, 7., and the volume per unit of rapidity,
dV/dy, are tuned using the hadron yields measured
by ALICE and setting the correlation volume to
V. = 3dV/dy. The model includes a strangeness saturation
parameter, y,, which accounts for incomplete total strange-
ness equilibration at (dN,/dn) < 100 [15]. This parameter
is needed in Thermal-FIST to describe the average yields of
(multi)strange hadrons but it does not have any significant
effect on the observables shown in Fig. 1. This para-
metrization allows us to describe both the normalized
second-order cumulant of net Z and pazag Within uncer-
tainties, with a slight tension in semicentral Pb-Pb colli-
sions for pazak. Predictions from the Lund string-
fragmentation models for the high-multiplicity regime
corresponding to heavy-ion collisions are obtained with
HIJING [41] and pYTHIA Angantyr [47]. The Angantyr
model is also used for p-Pb collisions, while for p. p. colli-
sions, the PYTHIA model with different color reconnection
(CR) schemes is used [18]. The predictions shown in Fig. 1
are obtained either with the multiparton-interaction (MPI)
based CR (Monash tune [19]) or with a QCD-based CR
approach [20]. For the latter calculation, the effect of rope
hadronization, in which spatially overlapping strings are
allowed to combine into ropes with a larger effective string
tension, is also included. Rope hadronization is responsible
for an enhancement in the production of strangeness [20],
while the QCD CR describes an increase in baryon
production due to the formation of baryon junctions [21].

The normalized second-order cumulants of net E are
consistently below unity over the entire multiplicity range,
which can be understood as an effect of quantum number
(baryon, strangeness) conservation [48]. The results are
consistent with the SHM with a correlation range of three
units of rapidity throughout the analyzed collision systems.
In the context of the SHM, this suggests the presence of a
long-range rapidity correlation between two hadrons with
opposite strangeness contents due to the conservation of
strangeness. On the other hand the different kinds of string
models overestimate the strength of the correlation, which
is quantified by the deviation of the predictions from unity.

Furthermore, the measured correlation between net kaon
and net E, pazak, 1S sensitive to the range of the correlation
due to strangeness conservation and to the possible
correlation between hadrons with same-sign strange quan-
tum numbers. A significant anticorrelation between net
kaon and net- E is observed across all collision systems.
Even though the string fragmentation model has small-
range rapidity correlation, the SHM predicts a more
significant deviation from the Poisson baseline with respect

to the string fragmentation model, as the latter does not
include any significant correlations among hadrons with
same-sign strangeness. The SHM prediction describes the
measured pzax, indicating a sizeable contribution of same
strangeness sign correlation.

From the simultaneous fit of the pyzax and normalized
second-order cumulant for net Z in Pb-Pb collisions using
the Thermal-FIST package, the correlation volume is
determined to be V., =3.19+0.14 dV/dy, with a fit
probability of P =0.94 (see Appendix A.2 for further
details). This volume, valid only for Pb-Pb collisions, is
compatible within 1.4¢ with a value V., = 3 dV/dy, which
was obtained in previous analyses of hadron yield ratios
within the canonical statistical model across different
colliding systems [15]. In the context of the SHM, this
result shows that a large correlation volume regulates the
conservation of strangeness, implying that correlations are
formed at earlier times than predicted by string fragmenta-
tion. A large correlation volume for baryon number con-
servation was also observed from the study of net-proton
fluctuations. See a comparison between the experimental
data from the ALICE Collaboration and the predictions
obtained with Thermal-FIST in Appendix A.3. On the other
hand, a correlation volume of 1.6 dV/dy was obtained
from the analysis of event-by-event fluctuations of anti-
deuterons [49], possibly because the formation of bound
objects such as light nuclei differs from the production of
other light-flavor hadrons. Specifically, these results might
indicate later formation times of light nuclei compared to
other hadron species [50].

In summary, the simultaneous measurement of both the
presented observables has a high discriminative power
against the different model predictions. The correlation
and normalized second-order cumulant measurements are
well described by the CE SHM formalism. The model
reproduces both the absolute value of the observables and
their multiplicity trends. These results are consistent with
previous work [15], in which the yield ratios of charged
particles, such as 2/, in pp, p-Pb, and Pb-Pb collisions
were also studied within the framework of the canonical
statistical model implemented in Thermal-FIST. All of the
tested predictions based on nonthermally equilibrated
systems and string fragmentation, qualitatively describe a
negative correlation of net-= and net-kaon numbers, along
with a normalized second-order cumulant smaller than one.
However, they fail to quantitatively describe the exper-
imental results, both in the low- and high-multiplicity
regions. The PYTHIAS tune closest to the experimental
results is the QCD-based CR approach with rope hadro-
nization: this model can describe the hadron yield ratios
at low multiplicity, as shown in previous studies [22].
Nevertheless, a significant combined deviation of 7.5¢
between the data in p.p. collisions and the string fragmen-
tation predictions is observed. Such a discrepancy could be
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resolved only by simultaneously including long-range and
same-sign correlations in the string fragmentation frame-
work. Such long-range correlations are a feature of the
thermally-equilibrated system modeled by Thermal-FIST
that successfully describe the measurements. It is possible
that for cuamulants higher than the second order, deviations
from the thermal baseline might occur, as these are
associated with different relaxation times to reach thermal-
ization [51] or due to the presence of a phase transition [52].
Such a scenario could be probed in the future, with the
ongoing LHC Run 3 data, extending such studies to higher
order cumulants. Furthermore, the measurements provided
here can also be used to probe the correlation volume in
more elaborated statistical hadronization models such as
in Ref. [53].
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End Matter

Appendix—

Systemic uncertainties: The systematic uncertainties
on both pazak and k,(AE)/k (ET + E7) are summarized
in Table I. The contributions associated to the different
sources are separately reported. The sources considered for
charged kaon candidates are the selection on the number of
TPC space points per track, the TPC and TOF PID criteria,
the selection on the distance of closest approach (DCA) to
the primary vertex (PV) of the reconstructed tracks, and the
track y? selection for charged kaons. For the Z candidates,

TABLE 1. Relative systematic uncertainties on the event-by-
event observables due to the different sources considered in this
Letter. Only the contributions relevant to the employed particle
species are reported.

Source PAZAK K (AE) /K (BF +E7)
TPC space points 0.6%

PID selections 0.6%

DCA to PV 0.6%

Track y2 0.3% -

= mass selection 1% 0.3%

BDT 1% 0.2%

the systematic sources are the applied BDT threshold and
the invariant-mass selection.

V. determination: The best estimate of the correlation
volume, V, for quantum number conservation in CE SHM
is extracted from the data by comparing the experimental
results to SHM model predictions based on different values
of V.. This study is performed in the multiplicity region
corresponding to Pb—Pb collisions, where the approxima-
tion y, = 1 holds, by varying the correlation volume in the
range 1.0<V, <4.0dV/dy with a step of AV, =
0.5 dV/dy [38]. The step is decreased close to the mini-
mum of the y? profile to obtain a better sampling in that
region. The chemical freeze-out temperature is set to
T hem = 155 MeV. The quantum numbers that are con-
served over V. are the baryon number, B, and strangeness,
S. The latter has a larger effect on the magnitude of the
anticorrelation between the net-kaon and net-Z numbers.
The agreement between the experimental measurements
and the model predictions is quantified by a combined y?
that simultaneously accounts for the discrepancy between
model predictions and data for both the analyzed observ-
ables. The six multiplicity intervals corresponding to the
results in Pb—Pb collisions are used in this comparison,
consisting of 12 data points in total for pazax and the
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FIG.2. Combined y? profile for the extraction of the correlation
volume for baryon and strangeness conservation obtained by
comparing the normalized second order net-Z cumulants and the
pazak in Pb-Pb collisions to the Thermal-FIST predictions. The
region close to the minimum y? is shown in the inset. The dashed
line represents a fit to the y? profile with a fourth-degree
polynomial function.

K, /K, ratio. The y? calculation takes into account only the
statistical uncertainties. The obtained y> profile as a
function of V, is shown in Fig. 2. The observed y? is
dominated by pazax because it has smaller uncertainties
with respect to the k,/k; ratio of the net-2 number. The
systematic uncertainties on pazax and k,/k; (AE) are also
included in the V. evaluation assuming full correlation of
the systematic uncertainties with multiplicity. The
assigned uncertainty is obtained as half of the difference
between the V. values obtained by repeating the fit,
shifting upward and downward the event-by-event observ-
ables by their systematic uncertainties. The final
uncertainty on V_ is obtained by adding the statistical

T ‘ T T
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FIG. 3. Comparison between the net-proton normalized second-

order cumulant as a function of the average multiplicity at
midrapidity measured by the ALICE Collaboration in Pb-Pb
collisions at /syy = 5.02 TeV (blue circles) [54] and the pre-
dictions of the Thermal-FIST model, with 7., = 155 MeV and
V. = 3dV/dy (orange band).

and systematic contributions in quadrature. The correla-
tion volume obtained from the minimization of the
observed y* profile is V. = 3.19 +0.14 dV/dy, with a
fit probability of P = 0.94.

Comparison to net-proton fluctuations: In Fig. 3, the
comparison between the published x,/x; normalized sec-
ond-order cumulant of net protons and the model calcu-
lations obtained with the Thermal-FIST model is shown. In
the model parametrization, the chemical freeze-out temper-
ature and the strangeness saturation factor are set to
T chem = 155 MeV and y, = 1, respectively. The paramet-
rization of the system volume per unit of rapidity, dV /dy, is
obtained from Ref. [15].
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