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This work aims to differentiate strangeness produced from hard processes (jetlike) and softer processes
(underlying event) by measuring the angular correlation between a high-momentum trigger hadron (%) acting as
a jet proxy and a produced strange hadron [¢(1020) meson]. Measuring /-¢ correlations at midrapidity in p-Pb
collisions at ,/syy = 5.02TeV as a function of event multiplicity provides insight into the microscopic origin
of strangeness enhancement in small collision systems. The jetlike and the underlying-event-like strangeness
production are investigated as a function of event multiplicity. They are also compared between a lower and
higher momentum region. The evolutions of the per-trigger yields within the near-side (aligned with the trigger
hadron) and away-side (in the opposite direction of the trigger hadron) jets are studied separately, allowing
for the characterization of two distinct jetlike production regimes. Furthermore, the s-¢ correlations within the
underlying event give access to a production regime dominated by soft production processes, which can be
compared directly to the in-jet production. Comparisons between h-¢ and dihadron correlations show that the
observed strangeness enhancement is largely driven by the underlying event, where the ¢ /A ratio is significantly
larger than within the jet regions. As multiplicity increases, the fraction of the total ¢(1020) yield coming from
jets decreases compared to the underlying event production, leading to high-multiplicity events being dominated

by the increased strangeness production from the underlying event.
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I. INTRODUCTION

The enhancement of strange-quark production in heavy-ion
collisions with respect to minimum bias proton-proton (pp)
collisions has long been one of the suggested signatures of
the existence of a deconfined, partonic phase of nuclear mat-
ter known as the quark-gluon plasma (QGP) [1]. The QGP
phase is expected to be formed in extremely high-energy-
density environments, such as those produced in heavy-ion
collisions [2]. The enhancement of strange and multi-strange
hadrons in the QGP with respect to their production within
a hadronic-gas phase was one of the major predicted sig-
natures of QGP formation in heavy-ion collisions [3]. The
measurement of strange-quark enhancement via the produc-
tion of strange hadrons has been investigated for many years in
different collision systems and at different energies by experi-
ments at the Super Proton Synchrotron (SPS), the Relativistic
Heavy Ion Collder (RHIC), and the Large Hadron Collider
(LHC) [4-6]. The production of strange particles in heavy-
ion collisions is successfully described by a grand canonical
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statistical model of particle production in an equilibrated QGP
medium [7,8].

In addition to enhancement in heavy-ion collisions, more
recent studies at LHC energies have measured strangeness
enhancement in high-multiplicity pp and p-Pb collisions with
respect to minimum-bias pp collisions [9,10]. Strikingly, this
enhancement, quantified by the ratio of strange to nonstrange
hadron (i.e., pion) yields, is seen to increase smoothly as a
function of the event multiplicity, independent of the col-
lision system. Since the enhancement in larger systems is
attributed to a thermalized QGP state, this experimental ev-
idence of strangeness enhancement in small collision systems
raises questions about the early characteristics and evolution
of pp and p-Pb collision systems. While certain theoretical
models—such as statistical thermal models [11,12], color
reconnection and rope hadronization [13,14], and the dy-
namical core-corona model [15,16]—can qualitatively explain
this behavior in small collision systems, the exact production
mechanism responsible for this increase in strangeness in
these systems remains unknown.

Experimentally, strangeness enhancement can be measured
by looking at the ratio of strange particles to nonstrange
particles, most commonly pions. The increase of this yield
ratio with increasing multiplicity scales with the strange-
quark content of the particle species under study. Even though
the ¢(1020) meson (s5) has hidden strangeness, the ALICE
Collaboration have measured an enhancement in the ¢(1020)
production in between the increase seen for hadrons con-
taining one and two strange quarks, such as the A and the
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8, respectively [9,10,17]. In this paper, the enhancement in
strange-quark production in small collision systems is inves-
tigated by studying the ¢(1020) production in p-Pb collisions
at center-of-mass energy per nucleon pair /syy = 5.02 TeV
collected during the LHC data-taking period Run 2. The event
multiplicity classes in p-Pb collisions provide a valuable span
of collision activity, overlapping the event multiplicity of pp
collisions as well as peripheral Pb-Pb collisions. The p-Pb
collision system also allows for a balance between hard scat-
tering and soft production processes, allowing for both in-jet
and underlying-event production to be investigated across a
range of collision multiplicities. Therefore, the p-Pb colli-
sion system is ideal for studying the origin of strangeness
enhancement.

In order to explore the mechanisms responsible for the
enhancement of ¢(1020) meson production as a function of
system size, the analysis presented in this paper separates the
¢(1020) production into event regions that are dominated by
hard-scattering processes (i.e., jets) from those dominated by
softer interactions (i.e., the underlying event). Separation of
the yields corresponding to these different production regimes
can be achieved through measurements of two-particle an-
gular correlations [18,19]. Previous studies have used both
jet reconstruction and two-particle angular correlations to
study strange baryon and meson production (A°, Kg) in jets,
showing a significant difference in behavior between jet and
nonjet production [20-22]. By looking at the angular cor-
relation between a high-pr trigger hadron, interpreted as a
proxy for the jet axis, and a ¢(1020) meson, the ¢(1020)
meson yield can be divided into three regions: the yield
within the near-side jet (aligned with the trigger hadron),
within the away-side jet (opposite the trigger hadron), and
within the underlying event. Similar correlation measure-
ments are obtained using the same trigger requirements
correlated with inclusive charged hadrons (h-h) for direct
comparison.

The per-trigger yield ratio of (h-¢)/(h-h) pairs gives the
¢ /h ratio within events that contain trigger hadrons. Thus, us-
ing angular correlations to extract pairwise h-¢ and h-h yields
in different regions of correlation space the approximate ¢/h
production ratio is extracted within the near-side jet, the
away-side jet, and the underlying-event-dominated regions.
This allows one to study the multiplicity (and system size)
dependence of ¢(1020) production in a region dominated by
hard-scattering processes by measuring the ¢/h ratio in the
jet-dominated regions, and for soft processes by measuring
it in the region where the underlying event is dominant. The
separated near-side and away-side jet yields are also used
to investigate possible modification of the ¢/h ratio caused
by differences in jet fragmentation and potential jet-medium
interactions.

The next section, Sec. II, describes the ALICE sub-
detectors that are used for this analysis. Section III explains
the data analysis details, while Sec. IV describes the specific
measurement procedure in more detail, followed by a discus-
sion of the systematic effects and corresponding uncertainties
in Sec. V. Finally, the h-¢ correlation results are presented in
Sec. VI, concluding with a discussion on how these findings
address the origin of strangeness enhancement.

II. EXPERIMENTAL SETUP

The ALICE detector at the LHC consists of a central bar-
rel encompassing several subdetectors housed within a large
solenoid magnet, which provides a magnetic field of 0.5 T in
the direction of the beam axis. In addition, several forward
and backward detectors are used for event characterization
and triggering. A detailed description of the ALICE detector
can be found in [23,24]. The primary detectors used in this
analysis are the inner tracking system (ITS), the time projec-
tion chamber (TPC), and the time of flight (TOF) detector. The
ITS allows an accurate reconstruction of the primary collision
vertex and distinguishes between primary tracks originating
from the primary vertex and secondary tracks resulting from
weak decays. The TPC is a cylindrical drift chamber that
acts as the main tracking detector of the ALICE apparatus,
covering the central pseudorapidity region within |n| < 0.9.
In addition, the TPC track information is also used for particle
identification (PID) by measuring the specific energy loss
dE /dx of the tracks traversing the chamber, parametrized with
the Bethe-Bloch formula. Situated outside of the TPC and
covering the same |n| < 0.9 range is the TOF detector, an
array of multigap resistive plate chambers (MRPCs). The TOF
gives precise track timing information with a resolution of 56
ps that is used for additional PID constraints [25].

In addition to the central tracking detectors, the VO detector
is used for event characterization. The VO detector is made of
two plastic scintillator detectors, VOA and VOC, that cover the
forward (2.8 < n < 5.1) and backward (—3.7 < n < —1.7)
pseudorapidity regions, respectively. The VO detector is used
to determine the charged-particle multiplicity and for trigger-
ing purposes.

III. DATA ANALYSIS

A. Event selection

The dataset analyzed in this paper consists of p-Pb col-
lisions recorded in 2016 during LHC Run 2 at /syy =
5.02 TeV. Events were selected using the minimum bias (MB)
trigger, which requires a hit in both the VOA and VOC de-
tectors [26]. In addition, events are constrained to have their
reconstructed primary vertex position within |zy| < 10 cm
from the nominal interaction point in the beam-axis direction.
To perform correlation measurements with a reconstructed
¢(1020) meson, only events with at least three charged tracks
with pr > 0.15 GeV/c in the central |np| < 0.9 region are
used in this analysis. This requirement is also applied to
the dihadron correlation measurement to ensure an accurate
comparison.

Due to the asymmetric energy-per-nucleon of the proton
and lead-ion beams, the nucleon-nucleon center of mass is
shifted by a rapidity of Ayyy = —0.465 in the direction of
the proton beam [27]. Events are categorized based on their
charged-particle multiplicity in the positive rapidity (incom-
ing Pb beam direction) region as detected by the VOA, and
are divided into multiplicity percentile intervals based on the
multiplicity distribution of the entire dataset. For this analysis,
three multiplicity ranges were chosen: 0—-20% (highest mul-
tiplicity), 20-50%, and 50-80% (lowest multiplicity). These
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intervals allow for grouping of events with similar event char-
acteristics while still maintaining a significant ¢(1020) signal
in each multiplicity range. After the trigger and offline event
selection criteria are applied, a total of ~4 x 10® events are
selected for this analysis, corresponding to an integrated lumi-
nosity of 2200 ub~! [28]. For simplicity, quoted rapidity and
pseudorapidity ranges in this paper will refer to the laboratory
frame.

B. Track selection and ¢(1020) reconstruction

To measure the h-¢ angular correlation function required
for separating ¢(1020) production in jets and in the underly-
ing event, and the h-h correlations to extract ¢ /h ratios, three
different types of particles are considered: high-momentum
trigger particles (jet proxy), ¢(1020) meson decay products,
and inclusive charged hadrons for the dihadron correlation.
Trigger particles are selected in the transverse momen-
tum range of 4 < pr < 8 GeV/c, while associated particles
[¢(1020) and charged hadrons] are split into lower (1.5 <
pr < 2.5 GeV/c) and upper (2.5 < pr <4 GeV/c) trans-
verse momentum ranges.

1. Kaon identification

For this analysis, the ¢(1020) meson is reconstructed
through the decay channel ¢(1020) — K*tK~, and the yields
are corrected for this decay branching ratio B.R. = 0.491 +
0.005 [29]. Kaon candidates are selected from the central
pseudorapidity region of |n| < 0.8. A standard set of qual-
ity selections is applied to ensure high quality for the kaon
candidate tracks, as described in Ref. [30]. These include
requirements on the minimum number of TPC clusters that
compose the track (N%}‘ét > 80 out of 159), as well as an upper
limit on x % per TPC cluster in the track fitting (2 /Nt < 4).
The tracks are also selected with a momentum-dependent
requirement on the distance of closest approach (DCA) be-
tween the track and the reconstructed primary vertex, such
that the DCA in the transverse plane (DCAxy) is constrained
by DCAyy < {0.0105 + 0.0350/[pr/(GeV/c)]"!} cm. This
DCA requirement selects all tracks originating from within a
radius 7oy around the primary vertex in the XY plane, where
oxy is the resolution of the distance of closest approach from
the track to the vertex in the transverse plane [24]. Since the
¢(1020) has a short lifetime (=46 fm/c) [29], and therefore a
decay vertex close to the primary vertex, this DCA selection
removes particle tracks coming from secondary weak decays
while still preserving the tracks of the ¢(1020) decay parti-
cles.

Kaon candidates for ¢(1020) reconstruction are further
selected using the PID information from both the TPC and
TOF detectors [31,32]. In the TPC, the energy loss (dE /dx)
of charged particles traveling through the detector gas
can be calculated using the Bethe-Bloch formula, and the
momentum-dependent dE /dx signal of a candidate kaon can
be compared with this expected value. Due to the finite res-
olution of the track momenta and energy loss in the TPC
(orpc = 5% of the dE/dx signal [33]), the distribution of
dE /dx signals for real kaons at a given momentum is treated
as a Gaussian with the mean at the expected kaon value, and

a width orpc that is fit experimentally. Kaons are selected by
requiring the difference between the measured and expected
dE /dx to be within |(dE/dx) — (dE/dx)Bethe-Bloch|/0TPC < 3.
A similar process is followed for the timing signal measured
by the TOF detector, selecting kaon candidates at a given mo-
mentum with the constraint |8 — Bx|/oror, Where Bk is the
expected track velocity given the kaon mass hypothesis and
the specified momentum. These selections for PID allow for
high efficiency in detecting produced kaons. The additional
invariant mass reconstruction steps discussed in the following
section eliminate all misidentified pions and protons from the
set of candidate ¢ decay particles, as well as the combinatorial
background due to uncorrelated kaon pairs.

2. ¢(1020) invariant mass reconstruction

The invariant-mass distribution of the ¢(1020) meson is
computed by considering all unlike-sign (US) pairs of kaons
satisfying the selections described above, which includes both
kaon pairs from ¢(1020) decays as well as uncorrelated
combinatorial kaon pairs. The invariant-mass distribution of
like-sign (LS) kaon pairs, which is entirely composed of
combinatorial kaon pairs, is used to estimate the combina-
torial background underneath the mass-peak region of US
kaon pairs Fig. 1(a). For this purpose, the LS invariant-mass
distribution is scaled to match the US distribution in the left
and right sideband regions (0.995 < mgx < 1.005 GeV/c?
and 1.04 < myg < 1.06 GeV/c?, respectively) away from the
¢(1020) mass peak. The scale factor is defined as the sum of
the yields in the left and right sidebands in the US mass distri-
bution divided by the same yields in the LS mass distribution.
The invariant mass distribution obtained after subtracting the
scaled LS distribution is fitted with a Voigtian function (Gaus-
sian convoluted with a relativistic Breit-Wigner distribution)
for the resonance mass peak added to a polynomial term to
describe the residual background, following the procedure
described in Ref. [34]. For the pr ranges considered in this
analysis, the like-sign subtraction method leaves a residual
background under the ¢(1020) mass peak of less than 1% of
the total signal as shown in Fig. 1(b).

In order to ensure a large sample purity, the invariant-mass
region used to extract the ¢(1020) yield in this analysis is
defined as +6 MeV/c2 around the nominal ¢(1020) mass
(i.e., 1.014 < mgx < 1.026 GeV/c?). However, this region
does not encompass the entire mass distribution of the signal,
and therefore an additional factor is needed to correct for
the missing distribution tails while calculating the yield. This
factor, denoted as ksignal, is computed as the integral of the
Voigtian fit across the entire mass range divided by the integral
in the selected mass-peak region, resulting in a correction
factor ksjgnal = 1.22.

To correct for the finite acceptance and inefficiencies of the
detector, a Monte Carlo simulation of minimum bias events
based on the PYTHIA 8 event generator [35] is used to esti-
mate the acceptance x efficiency (A X &) for the ¢(1020).
Within the simulated events, the ¢(1020) decay products are
propagated through a full simulation of the ALICE detector
material using GEANT 3 [36]. The A X & of the ¢(1020) is
then defined as the number of ¢(1020) at mid-pseudorapidity
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FIG. 1. (a) Invariant-mass distribution of unlike-sign (US) kaon pairs (black), with the scaled like-sign (LS) pair distribution (red) used
to approximate the combinatorial background (BG). (b) Background subtracted invariant-mass distribution of unlike-sign kaon pairs (black).
The ¢(1020) mass peak is fit (blue dashed line) by a sum of a Voigt function and a first-order polynomial, which accounts for the residual
background. This linear fit of the residual background is shown as a red line. Statistical uncertainties are plotted as bars, but are too small to

be visible here.

(Ingl < 0.8) that are reconstructed after the decay products
pass the track quality, PID, and pseudorapidity requirements
(Inwack| < 0.8) divided by the total number of ¢(1020) that
were produced in the same pseudorapidity window in the
simulated events. With the track quality selections described
above, the two-track reconstruction efficiency fraction in-
creases from 0.3 to 0.6 with increasing pr in the range
considered in this analysis (1.5 < p‘? < 4.0 GeV/c). The PID
selection and the requirement for a matching TOF hit in-
troduces another factor ranging from 0.25 to 0.4, leading to
a final A X &g for the ¢(1020) ranging from 0.09 to 0.22.
This efficiency is independent of multiplicity, and is therefore
calculated from the full minimum bias sample of events.

C. Associated hadrons and trigger track selection

For the associated hadrons in the dihadron correlation mea-
surement, the same track-quality selections are used that are
required for the kaon candidates (N%,“é‘ > 80, X2 N%)“CS < 4,
[n] < 0.8, the pr-dependent DCA requirement). These selec-
tion criteria are used to select associated hadrons that are
physical primary particles, defined as those hadrons that are
produced either directly from the collision or from resonance
decays [37]. After primary selection, secondary decay prod-
ucts contribute less than 1% to the total associated hadron
yield. The tracking efficiency for the associated charged
hadrons is approximately 0.8 for the entire pr range consid-
ered of 1.5 < pr <4 GeV/c.

For the high-pt trigger hadron, tracks are selected in
the transverse momentum range 4 < pr < 8 GeV/c, and a

slightly modified set of track quality requirements is used in
order to achieve higher track reconstruction efficiency. These
selections, also detailed in Ref. [38], relax the pr-dependent
DCA requirement and replace it with a simple 2.4 cm (3.2 cm)
cutoff in the transverse (longitudinal) distance to the primary
vertex. This gives a reconstruction acceptance times efficiency
(A X é&rec) of approximately 0.85 for the trigger hadron.

The validity of the above efficiency corrections is checked
using Monte Carlo closure tests, where the fully efficiency
corrected h-¢ and h-h measurements are built from re-
constructed tracks in PYTHIA 8 generated MC events. The
reconstructed MC distributions are in good agreement with
the generated MC h-¢ and h-h signal.

IV. ANGULAR CORRELATION MEASUREMENT

A two-particle correlation function in two-dimensional an-
gular space can be written as:

P o(@1, 05 Qas Ma)
C((pt, nt’ @a’ na) _ t,a t t a a

= , 1
Pl((plv nt)Ptl((paa 77a) ( )

where P, , is the joint probability distribution of finding an
associated particle at azimuthal angle ¢, and pseudorapidity
n, along with a trigger particle at azimuthal angle ¢, and
pseudorapidity 7, and P, and P, are the single-particle proba-
bility distributions. This correlation function can be simplified
experimentally by using only the measured relative angles Ag
and An between the trigger and associated particles. Using
this simplification, an experimental correlation function can
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be approximated as
S(Agp, An)

ClAp, An) " ———r,
B(Ag, An)

2

where S(Ag, An) = dik‘;vﬁn is the distribution of trigger-

associated particle pairs from the same event, and B(Ag, An)
is the mixed-event distribution, constructed by taking trig-
ger and associated particles from different events. The
mixed-event distribution depends on the single-particle dis-
tributions, and represents the two-particle acceptance of
trigger-associated pairs [39]. This correlation function can be
scaled to give the per-trigger yield of associated particles:

Ctrig(A‘p» Aﬁ)

1 d>Npair
Nyig dAp dAn

_ 1 1 B(0,0) x S(Ag, An)’ 3
Ny’ Euig X Eassoc  B(Ag, An)

where Niiv' is the efficiency corrected total number of trig-
ETS, Eyig X Eassoc denotes the product of the pr-dependent
acceptances and efficiencies for the trigger hadron and as-
sociated particle, and S(Ag, An) and B(A¢, An) are the
same-event and mixed-event correlation distributions, respec-
tively [40-42]. Both the same- and mixed-event correlations
are corrected by the trigger and associated particle efficiency.
Here the mixed-event correlation is used as a pair acceptance
correction, and is normalized by the factor B(0, 0). This en-
sures that trigger and associated particles traveling in the same
direction (Ag ~ 0, An =~ 0) have a pair acceptance equal to 1
[43]. This way of restructuring the correlation function gives
the number of correlated trigger-associated particle pairs per
trigger, or the yield of associated particles per trigger.

When performing the correlation with a ¢(1020) me-
son, it is necessary to remove the combinatorial background
from the pool of ¢(1020) candidates. To do this, the cor-
relation measurement is performed for three different US
kaon-pair invariant mass regions: the ¢(1020) mass-peak re-
gion (C=KKIPeaky “he left sideband region (C-%%)158) "and

trig trig
the right sideband region (Cgi'éKK)RSB ). The correlations in

the two sideband regions are averaged together and used to
estimate the shape of the distribution produced by correlating
the trigger hadron with a combinatorial kaon pair. Taking into
account these additional terms, the final correlation function
is given as

Ct};g(A(pv Aﬂ) = kSignal (Ch_(KK) Peak(A(p’ Ar;)

trig

kLs 1 h-(KK) LSB
- T[NILSB Cn—ig (va An)
nt

I k) RSB

+ Wctrig (A(pﬂ An) 5 (4)
Int

where the factor kg is the integral of the scaled LS distri-

bution in the mass-peak region, 1/ksjgna is the fraction of

¢(1020) in the mass-peak region (defined in Sec. III B 2), and

factors NRSB and NL5B are defined as the total integral of the

correlations for the right and left sideband regions, respec-
tively. Scaling by the inverse of these total integral factors
normalizes the correlation functions in the sideband regions
to an integral of 1, before scaling up by factor kg to estimate
the background under the peak region.

Once the correlation is computed, the angular correlation is
divided up into three different regions to calculate the yields
of correlated pairs: the near-side jet (centered at Ag = 0), the
away-side jet (centered at Ag = ), and the underlying event
which lies under both jet peaks. To reduce the error in this
separation due to statistical noise, the two-dimensional corre-
lation is projected onto Ag from the range —1.2 < An < 1.2.
The range for A¢ is chosen to be [—m /2,37 /2]. In order
to separate the jet peaks from the underlying event in this
one-dimensional correlation, a flat background estimate is
used by computing the average over the region farthest away
from the two jet peaks (—7m/2 < Agp < —nm /4, w/4 < Ap <
57 /8, and 117 /8 < Ag < 31 /2). The near-side (away-side)
yield is then defined as the area above this background in
the region —m/2 < Ap <m/2 (/2 < Ap <31 /2). The
underlying-event yield is computed as the area underneath this
flat background across the full Ag range.

V. SYSTEMATIC UNCERTAINTIES

The dominant systematic uncertainties for this analysis
are divided into two main categories: those associated with
the h-¢ correlation measurement directly, which are related
to the detector tracking efficiency, the identification of pro-
duced kaons, and the ¢(1020) reconstruction method; and
those associated with separating the correlation measurement
into jet and underlying-event contributions. The tracking sys-
tematic uncertainties include contributions from the global
tracking efficiency, the material budget of the detector, and
the track selection cuts. These uncertainties are estimated
as in Ref. [44], and are found to be pr independent. Their
contribution provides the largest uncertainty to the associated
yields, approximately 3.6% for the hadron yields and 5.2% for
the yields of the reconstructed ¢(1020). The error associated
with the PID selection of kaon candidates was estimated by in-
dependently varying the ranges for nopc and notor between
n =2 and n = 3 by steps of 0.2 and 0.5 for the TPC and TOF
selection cuts, respectively.

For the h-¢ correlation, additional systematic uncertainties
due to the ¢(1020) reconstruction method are estimated by
varying the invariant-mass ranges used for the ¢(1020) mass
peak, and varying the left and right sideband mass regions
used for combinatorial background subtraction. The mass-
peak region is varied from 1.010 < mgg < 1.030 GeV/c? to
1.015 < mgg < 1.025 GeV/c? in steps of 2 MeV/c?, lead-
ing to a variation of the total fraction of ¢(1020) signal
that is measured from 90% to 76%. The systematics due
to the choice of sideband regions are estimated by inde-
pendently varying the upper and lower limit of the left and
right sideband by £5 MeV/c?, as well as using only the
left or only the right sideband for the background estima-
tion. The contributions of these systematic uncertainties are
detailed in Table 1. All systematic effects considered for the
correlation measurement are Ag independent and are applied
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TABLE I. Summary of the systematic uncertainty on the h-¢
angular correlation for each multiplicity interval, expressed in per-
cent of the central value. The table also quotes the average statistical
relative error per Ay interval for comparison.

h-¢ relative error per Ag bin

Multiplicity 0-20% 20-50% 50-80%
Tracking eff. 5.2% 5.2% 5.2%
PID selection 1.0% 1.0% 1.0%
Mass-peak range 0.8% 1.3% 2.7%
LSB mass range 1.1% 0.9% 2.6%
RSB mass range 0.2% 0.3% 1.2%
ks scale factor 0.9% 0.6% 3.0%
ksigna scale factor 0.8% 0.8% 0.8%
Total syst. 5.6% 5.6% 7.3%
Avg. statistical error 2.2% 3.2% 7.3%

evenly to the full Ag correlation. These uncertainties also
do not vary within the pr ranges considered, and therefore
are applied equally to the two pr ranges considered in this
analysis. The dominant systematic uncertainty for the corre-
lation emerges due to uncertainties in the tracking efficiency
correction.

In addition to the sources of systematic uncertainty for
the correlation measurement in Table I, the pairwise yield
measurement includes an additional uncertainty stemming
from the method of determining the underlying-event base-
line to separate the jet and nonjet yields. This systematic is
determined using a variety of different background estimation
methods: fitting a constant to different Ag subranges around
the minima of the correlation function (i.e., only considering
points around the near-side peak, only points around the away-
side peak, and combinations of both subranges); the zero yield
at minimum (ZYAM) method as detailed in Refs. [45,46]; and
a full fit with two Gaussian distributions for the near- and
away-side peaks plus a constant for the background. The sys-
tematic uncertainty on the background is determined by taking
the standard deviation of these values across the different
background methods, giving an uncertainty for the near-side
yields ranging from 2% in the high-multiplicity s-¢ cor-
relation, to ~5% in the lowest multiplicity class. The h-¢
away-side yields, being more dependent on the background
estimation, are found to have a systematic uncertainty of ~7%
for each multiplicity class, while the effect on the underlying
event yields was negligible. For the h-h correlations, all differ-
ent background estimation methods give similar values (<1%
difference to the nominal yields), and the systematic effects
from the i-h background estimation are considered negligible.
For both the h-¢ and h-h yield measurements, the systematic
uncertainties are correlated between the near- and away-side
yields, and therefore have a negligible effect on differences
between the two.

The central measurement uses a flat background estimate
to separate jet and underlying-event contributions. However,
previous studies have measured collective behavior of par-
ticles produced within p-Pb collisions [47]. In two-particle
angular correlations, this collective expansion manifests

itself as an anisotropic azimuthal distribution, which can be
expanded as a Fourier series in Ag. Higher-order components
of the collective flow have a negligible effect at the momentum
ranges studied here. However, the second Fourier coefficient
(vy), referred to as elliptic flow and characterized by the sim-
plified expression ap[1 + 2v§_¢ cos(2Ag)], does affect our
yield measurements. Given the absence of published direct
measurement of the ¢(1020) meson vf in p-Pb collisions, we
have chosen the flat background assumption as the basis for
the central values and include an additional systematic uncer-
tainty for the near- and away-side jet yields based on using
the charged hadron vg measured by the ALICE Collaboration
[48]. Recent studies have also measured a nonzero third-order
Fourier coefficient (v3) in small systems [49]. However, the
effect on the correlation measurement due to the measured
vé‘ is a factor of 10 smaller than for the vé’ in the momentum
ranges considered here, and is therefore not included in this
analysis. Cross-checks performed using long-range correla-
tions to estimate the v‘zz’ from the p-Pb data being used for this
paper are consistent with the inclusive charged-hadron v/ that
was chosen as an estimate. As the measured v/ is momentum
dependent, this cross-check is performed separately for the
lower associated particle pr interval (1.5 < pr < 2.5 GeV/c)
and the higher associated particle pr interval (2.5 < pr <
4.0 GeV/c). For the low momentum h-¢ (h-h) yields, the
nonzero v, assumption lowers the jet yields between 4% (1%)
for the lowest multiplicity and 25% (16%) for the highest
multiplicity. Likewise, the high momentum h-¢ (h-h) yields
are lowered between 1.4% (0.6%) for the lowest multiplicity
and 16% (9%) for the highest multiplicity. Due to the nonzero
v, affecting the near- and away-side yields in similar amounts,
this phenomenon does not affect any differences in behavior
between the two jet peaks. Likewise, because the h-¢ and
h-h correlations are affected by the v, in similar amounts, the
impact on the final ratio is small, with a negligible effect at
low multiplicity and an approximately 10% (8%) effect on the
highest-multiplicity jet-yield ratios for the measurement in the
low (high) associated pt interval.

VI. RESULTS

The measured per-trigger h-¢ correlation functions for
the lower (1.5 < pr < 2.5 GeV/c) and higher (2.5 < pr <
4.0 GeV/c) associated pr intervals can be seen in Fig. 2.
For ease of comparison, the y axes of the plots are kept at
a constant scale across multiplicities, and the ranges are set
such that the nonjet background is aligned across all three
multiplicity classes. The width of the grey band represents the
systematic uncertainty on the underlying-event background,
while the dotted line displays the v, background estimate, as
discussed in the previous section. In both the low and high
momentum correlations, the majority of h-¢ pairs are found
within the underlying-event region, with this fraction increas-
ing significantly as a function of charged-particle multiplicity.
The per-trigger dihadron correlation functions can be seen in
Fig. 3. The background and v, estimates are again shown.
Similarly to the s-¢ correlations, the majority of h-h pairs are
found in the underlying event.

064912-6



INVESTIGATING STRANGENESS ENHANCEMENT IN JET ...

PHYSICAL REVIEW C 110, 064912 (2024)

-3 -3

-3

10

~ Ry e~ B ey e~ B e
B 50 h 50-80% multiplicity class | g [ 20-50% multiplicity class | g 11-0F 0-20% multiplicity class |
= T I 1 = 7.0F 14 = _ _ 1
g : 4.0<p_hrmg<8.0GeV/c: g g —_ FlatUE. | 5110.5? ALICE, p Pb,\sNN—S.OZTeVi
g 45 15<p?  <25GeV/c| 3 65~ e v,Est. 1 § | ]
ke L T,assoc 1 B r ] Q.IOO_ a
2 4o0- a1 =Z2 r Z L ]
2T 1 2 6.0 4 =2 1
2‘3 r ] Z'E’ F b 2—5’9.55 s
= 351 W = 550 1 = ‘+
r . F 9.0 B
3.0° | 5.0f s B L o L ; ;
a g = iz 8.5k <
25 1 a5 ] g ]
r ] t 8.0 =
200 e 408l e L S N N N BN

-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4
A (rad) Ao (rad) Ao (rad)

-3 -3 -3

— Y11 ~ M ~
g h ¢ 50-80% multiplicity class | g r 20-50% multiplicity class g r 0-20% multiplicity class
= 30 = 1= 400 1 0 ) i ]
57 40<p) <80GeVic | & +0 ———FlatUE. | § % AUCE pPb.ysy=5.02TeV]
s [ o 1 o e 1 & F .
g 2,51 2.5<pT’aSSOC<4.0GeV/ci g 3.5 v, Est ] g o ]
3 | 13 3 ]
> 20- [ﬂ}] 1 a0 1 2asf .
2 [ 1 Z F = [ ]
E 15; EEEB] B E 25: ] E N ]
2 pacar B I R el vy 4 P 4 O e [, f
T —" | ety " s e
0.5 = 1.5F . 3.0C .
I AR AN PRI SFTETATIN APRFIVET S S PRI EPRTENN APRTIVET I N N AN EFUVRTAIN SFTENATIN APRPIVER B

-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4
Ao (rad) Ao (rad) Ao (rad)

FIG. 2. Per-trigger h-¢ Ag angular correlations integrated over the range |An| < 1.2 for the lower pr range of associated ¢(1020), 1.5 <
pr < 2.5 GeV/c (top), and the higher pr range of associated ¢(1020), 2.5 < pr < 4.0 GeV/c (bottom). The three multiplicity classes are
plotted in increasing order from left to right. All plots for a given associated particle pr have the same axis scale, with offsets set to their
respective underlying background estimation. Statistical uncertainties are represented as error bars, while systematic uncertainties are marked
with open rectangles. The grey band shows the systematic range for the different background estimation methods. The long dashed line shows
the flat background assumption, while the short dotted line shows the alternative background with non-zero v, (used as systematic for pair

yields).

Yields of per-trigger correlated pairs are extracted from
the correlation function for the near- and away-side jet peaks
by integrating above the background in the defined Ag
ranges, and are shown versus multiplicity for the lower and
higher associated-particle momentum interval in Fig. 4. Here
the three multiplicity percentile bins are converted to mean
charged-particle multiplicity (Ncy) in the range |n| < 0.5 and
pr > 0.15 GeV/c, calculated using similar techniques to
Ref. [50], but with the additional requirement of a high-pr
trigger hadron present in the event. Due to the per-trigger
scaling, these pairwise yields are good proxies for the ac-
tual ¢(1020) and inclusive-hadron per-trigger yields in the
different azimuthal regions. The differences between the jet
yields found using the nonzero v, contribution and the flat
background estimates are depicted as shaded bands in the
figures. While the magnitude of the v, effect on the yield
grows with multiplicity, the near- and away-side yields are
lowered by similar amounts, and therefore differences be-
tween the behavior of the near- and away-side yields are
independent of the background v, assumption. The other

systematic uncertainties, namely those associated with the
tracking efficiency estimation and the ¢(1020) reconstruction,
are correlated across multiplicity. Since all of the considered
sources of systematic uncertainty are correlated between the
near- and away-side yields (i.e., they have a negligible effect
on the relative difference between the near- and away-side
yields, and therefore no effect on the difference in trends with
increasing multiplicity between the two), they are not shown
in these plots.

In both associated particle momentum intervals, the di-
hadron jet-peak yields seen in Fig. 4 show little to no change
with increasing multiplicity, with the yields in the away-side
jet consistently lower than for the near-side jet. However, for
the h-¢ jet yields, there is a distinct difference in behavior be-
tween the two momentum regions. For the higher momentum
region, the near- and away-side yields are consistent within
uncertainties. They also are consistent with a flat trend with
respect to multiplicity, taking into account uncertainties and
the v, systematic effect. In contrast, for the lower momentum
region the data suggest an increase in the jet yields as a
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FIG. 3. Per-trigger dihadron Ag angular correlations integrated over the range |An| < 1.2 for the lower pr range of associated hadrons,
1.5 < pr < 2.5 GeV/c (top), and the higher pr range of associated hadrons, 2.5 < pr < 4.0 GeV/c (bottom). The three multiplicity classes
are plotted in increasing order from left to right. All plots for a given associated particle pr have the same axis scale, with offsets set to their
respective underlying background estimation. Statistical uncertainties are represented as error bars, while systematic uncertainties are marked

as open rectangles.
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function of multiplicity. To test the increase in the low mo-
mentum jet yields, the data are fit with a flat line assuming the
null hypothesis of no dependence on (N,). The x? probability
of this fit gives a p value of 0.06 and 0.001 for the near
and away sides, respectively. Performing the same test using
the nonzero v, assumption for the UE background, which
lowers the increase seen in both jet yields, gives a p value
of 0.36 and 0.03 for the near and away sides, respectively.
Figure 4 also shows a hint that at low momentum the away-
side yields grow faster as a function of multiplicity than the
near-side yields. Differences in near-side and away-side jet
yields for high-multiplicity collisions could point to several
physical effects, including differences in ¢(1020) production
within quarklike and gluonlike jets [51,52], as well as possi-
ble jet-medium interactions affecting strangeness production.
However, more precise measurements on future larger data
samples are needed to demonstrate significance in the differ-
ent trends for the near- and away-side yields.

To directly compare the behavior of the ¢(1020) produc-
tion in jets and the underlying event, it is useful to look at the
pairwise yield ratio (h-¢)/(h-h) as a function of multiplicity
as a proxy for the ¢/h ratio. These ratios are plotted for the
low-momentum and high-momentum regions in Figs. 5(a) and
5(b), respectively. The ratios for the near side (red), away side
(blue), and the underlying event (green) show the (h-¢)/(h-h)
yield ratio within their respective region of the measure two-
particle correlations. The total ratio (violet) represents the full
(h-¢)/(h-h) yield ratio. The variation between the ratios using
a flat background estimation and using the nonzero v, assump-
tion is depicted as a shaded area below the central points. This
nonzero v, assumption has a small effect on the near- and
away-side ratios that increases slightly with multiplicity. The
effect of the v, on the underlying event ratios is negligible for
all multiplicities.

From the pairwise (h-¢)/(h-h) ratios, the ratio in the under-
lying event is observed to be significantly higher than the ratio
within the jets for both momentum intervals considered here
by &50, and is consistent with being multiplicity indepen-
dent. The away-side ratio is higher than the near-side ratio for
all multiplicities in both momentum ranges. As these pairwise
ratios are approximately equal to the per-trigger ¢ /h ratio, this
suggests that ¢(1020) mesons have a higher probability to be
produced outside of the jet compared to unidentified hadrons.
It can also be seen that the total (h-¢)/(h-h) ratio (violet) is
predominantly determined by the underlying event produc-
tion, as the majority of h-h and h-¢ pairs do not come from
the jets. In fact, the increase in the total (h-¢)/(h-h) ratio is a
consequence of the change in the contribution from jets as a
function of multiplicity: for the low (high) momentum range,
the fraction of total hadrons coming from jets decreases from
approximately 20% (35%) to 10% (20%) as the multiplicity
increases.

The general ordering of the ratios (e.g., jet-yield ratios
are consistently lower than the underlying-event yield ratios)
is seen for both momentum ranges. In the lower momen-
tum interval, the away-side ratio shows a hint of an increase
of (140 £ 90)% from the lowest to the highest multiplicity,
nearly reaching the values of the underlying event ratio at high
multiplicity. The convergence of the ratio in the away-side
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FIG. 5. Pairwise (h-¢)/(h-h) ratio vs (N,) for the lower asso-
ciated momentum range, 1.5 < pr < 2.5 GeV/c (top), and higher
associated momentum range, 2.5 < pr < 4.0 GeV/c (bottom). Sta-
tistical uncertainties are presented as error bars, while systematic
uncertainties, including uncertainties on the calculated (N.,) value,
are shown as open boxes. The additional uncertainty in the ratio
due to a nonzero v, in the underlying-event background estimation
is depicted as a gray band. Systematic uncertainties for the (4-h)
and (h-¢) yields are treated as uncorrelated when calculating the
uncertainty on the ratio. Ratios from p-Pb data are depicted as solid
points, while ratios from PYTHIA 8 [53] simulations of pp events are
depicted as open points.

jet and the underlying event at high multiplicity is suggestive
of a change in the production measured within the away-side
jet, from a more jetlike ¢ /h production towards a more medi-
umlike ¢ /h production. The near-side jet also shows hints of
an increase by (100 &£ 75)%, though a larger data sample is
needed to better constrain this possible increase in jet produc-
tion of ¢(1020). In the higher momentum interval both the
near- and away-side ratios are consistent with a flat trend with
increasing multiplicity.

These results are also compared to (h-¢)/(h-h) yield ratio
calculated for a pp baseline using the Monash 2013 tune of
the PYTHIA v8.210 Monte Carlo generator [53]. This is used
to establish the modeled behavior of strangeness production
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in jets and the underlying event within small collisions with-
out an explicit deconfined phase. Similarly to data, PYTHIA
8 events are separated into two multiplicity classes, 0-20%
and 20-80%, based on the particle production in the forward
VOA acceptance. The mean multiplicity in the central pseudo-
rapidity region is then measured for each of the two PYTHIA 8
multiplicity classes to compare directly with data. The PYTHIA
8 ratios within the near- and away-side jet are consistent with
the low multiplicity p-Pb data. For both momentum bins,
PYTHIA 8 underpredicts the ratio in the underlying event,
as well as the total ratio, by roughly a factor of 3. Unlike
the measured ratios, the ratios predicted by PYTHIA show
no changes with respect to multiplicity for both the jet and
underlying-event contributions.

VII. CONCLUSION

This paper presents new measurements of h-¢ angular
correlations in p-Pb collisions at ,/syy =5.02 TeV. The
correlations are measured for associated ¢(1020) mesons in
two transverse momentum intervals and in three multiplicity
ranges in order to obtain the per-trigger yields of ¢(1020)
mesons in the near-side peak, away-side peak, and underlying
event separately. The measured yields show a distinct differ-
ence in behavior between the two momentum ranges. While
the ¢(1020) yields measured in jets in the lower momentum
interval tends to increase with increasing multiplicity, the
yield measured in the higher momentum interval is roughly
independent of event multiplicity. Further, the ¢(1020) yield
measured in the lower momentum interval in the away-side
jet tends to exhibit faster growth with multiplicity when
compared to the near-side jet. This suggests changes to the
strangeness production within the away-side jet with increas-
ing multiplicity, though further study is needed to differentiate
between possible physical causes.

Also presented are the first measurements of differentiated
pairwise (h-¢)/(h-h) yield ratios corresponding to the ¢ /h ra-
tio within jets and within the underlying event in p-Pb events.
These ratios show a clear ¢ /h ordering for both momentum
ranges. The ratio is lowest in the near-side jet, followed by
the away-side, and the underlying event is the highest. In-
terestingly, the (h-¢)/(h-h) ratio within the underlying event
is significantly higher than the ratio in jets even within the
lowest multiplicity events, showing a ~5¢ difference between
the underlying-event ratio and the jet ratio for the lower
momentum yields. This difference in production at mid-pr
even in low multiplicity p-Pb events invites further study of
strangeness production at lower event multiplicity.

It can be seen that the ratios obtained in the underlying
event, as well as in the jets within the higher momentum
interval, do not exhibit significant dependence on multiplicity.
However, the away-side jet ratio in the lower momentum
range shows a slight enhancement as a function of charged-
particle multiplicity. The yield ratios in jets are consistent
between PYTHIA generated pp events and low multiplicity
p-Pb events for both momentum ranges considered. However,
the total and underlying event ratio within p-Pb data is sig-
nificantly higher than the PYTHIA 8 pp baseline, across all
multiplicities. This points to the enhanced ¢/h production

within the underlying-event even in low multiplicity p-Pb
events. The trends in these ratios point to the need for further
studies in small systems such as high-multiplicity pp colli-
sions, and demonstrate the usefulness of differentiated particle
yields in constraining the different sources of strangeness
production and enhancement.
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