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Abstract The total charm-quark production cross sec-
tion per unit of rapidity do(cc)/dy, and the fragmenta-
tion fractions of charm quarks to different charm-hadron
species f(c — h¢), are measured for the first time
in p—Pb collisions at ,/sx\e = 5.02 TeV at midrapid-
ity (—0.96 < y < 0.04 in the centre-of-mass frame)
using data collected by ALICE at the CERN LHC. The
results are obtained based on all the available measure-
ments of prompt production of ground-state charm-hadron
species: D’, D*, D, and J/y mesons, and A} and
Eg baryons. The resulting cross section is do(cc)/dy =
219.6 £ 6.3 (stat.) 193 (syst.) T53 (extr.) £ 5.4 (BR) £
4.6 (lumi.)%19.5 (rapidity shape)+15.0 (Qg) mb, whichis
consistent with a binary scaling of pQCD calculations from
pp collisions. The measured fragmentation fractions are com-
patible with those measured in pp collisions at /s = 5.02 and
13 TeV, showing an increase in the relative production rates
of charm baryons with respect to charm mesons in pp and
p—Pb collisions compared with eTe ™ and e ~p collisions. The
pr-integrated nuclear modification factor of charm quarks,
Rppy(c®) = 0.91 £ 0.04 (stat) 05 (syst.) 1003 (extr.) +
0.03 (lumi.), is found to be consistent with unity and with
theoretical predictions including nuclear modifications of the
parton distribution functions.

1 Introduction

The processes governing the production of heavy-flavour
hadrons (those containing at least one charm or beauty quark)
in hadronic collisions have recently become a focal point
of study at the CERN LHC. Due to their large masses
(mcp > Aqgcp), heavy-flavour hadron production is calcu-
lable using perturbative quantum chromodynamics (pQCD)
under the assumption of factorisation [1,2]. In this approach,
the production cross section of a given hadron species is
considered as a convolution of: (i) the parton distribution
functions (PDFs) of the colliding hadrons; (ii) the partonic
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hard-scattering cross sections for a heavy quark to be pro-
duced; and (iii) the fragmentation functions, which describe
the fraction of the heavy-quark momentum carried by the
heavy-flavour hadron. The fragmentation term in the calcu-
lation also governs the relative abundances of each hadron
species, which are often referred to as ‘fragmentation frac-
tions’. Typically, in the factorisation approach, the hadro-
nisation process is taken to be independent of the collision
system. Therefore, the fragmentation functions measured in
ete™ collisions are applied equally to calculations in proton—
proton (pp) collisions. The assumption of fragmentation as a
universal hadronisation mechanism would also result in iden-
tical fragmentation fractions between e e~ and pp collisions.
This has been tested extensively by measuring the production
cross section ratios of different charm-hadron species.
Measurements of the D*/D® and D /D’ meson-to-
meson production ratios in pp collisions at different ener-
gies by the ALICE Collaboration [3,4] have shown consis-
tent production rates of charm mesons between hadronic
collisions and earlier measurements from ete™ and e p
collisions [5]. However, more recent measurements of the
AT /DY and Eg’+ /DY production ratios in pp and heavy-
ion collisions [4,6—11] have shown a marked increase in
charm-baryon production with respect to charm-meson pro-
duction over the eTe™ baseline in hadronic collisions at
LHC energies. This was further quantified by determining
the charm-hadron fragmentation fractions in pp collisions at
/s = 5.02 TeV [3,4] and /s = 13 TeV [4]. In both cases,
a significant relative enhancement of charm-baryon produc-
tion was observed, along with a corresponding depletion in
the charm-meson fragmentation fractions. The results are
also consistent within uncertainties between /s = 5.02 TeV
and /s = 13 TeV, implying that the collision energy does
not play a significant role in the relative abundances of
charm-hadron species in hadronic collisions at the LHC. The
increase in charm-baryon production is also reflected in an
increase of the total charm production cross section in pp
collisions over earlier determinations using only the mea-
sured D-meson cross sections with the fragmentation frac-
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tions from leptonic colliders [12—14]. More recently, efforts
have also been made to extrapolate and combine the available
measurements of charm hadrons in pp collisions from differ-
ent LHC experiments in complementary regions of phase
space in order to determine the total charm production cross
section [15].

Measurements of the charm fragmentation fractions in
p—Pb collisions are also of particular interest, as they reveal
whether the observed changes in relative hadronisation rates
for eTe™ and pp collisions are mainly due to the increase
of the particle multiplicity between these collision systems.
The mean charged-particle multiplicity per unit of pseudora-
pidity (dNch/dn)|j, <10 in collisions at the LHC increases
both as a function of energy and system size — for minimum-
bias pp collisions at /s = 5.02 TeV, (dNeh/dn)ljpi<1.0 =
5.48 £ 0.05 (uncorr.syst.) £ 0.05 (corr.syst.) [16], and
for minimum-bias p—Pb collisions at /sn\yv = 5.02 TeV,
(dNeh/dn)|jpj<1.0 = 16.81 £0.71 (syst.) [17]. The ALICE
Collaboration measured the A} /D° yield ratio in intervals
of charged-particle multiplicity in pp collisions at /s =
13 TeV [18], showing that in a hadronic collision, even at rel-
atively small multiplicities, charm-quark hadronisation pro-
ceeds differently from e™e™ collisions. In the beauty sec-
tor, the measurements of Ag-baryon production relative to
that of B mesons at forward rapidity in pp and p—Pb col-
lisions by the LHCb Collaboration show a modification of
the fragmentation fractions among collision systems similar
to that observed for charm quarks at midrapidity [19-22].
The ALICE Collaboration measured production cross sec-
tions of D? and A7 hadrons originating from beauty-hadron
decays at midrapidity in proton—proton collisions at a centre-
of-mass energy /s = 13 TeV [23], and a baryon-to-meson
enhancement similar to the one measured by LHCb at for-
ward rapidity was observed.

The study of charm production in p—Pb collisions serves
as an additional baseline to examine so-called cold nuclear
matter (CNM) effects at the LHC. Due to different effects
related to the presence of a nucleus in the colliding system,
there may also be corresponding changes to the yield and
transverse momentum (pr) distribution of charm hadrons.
These effects include modifications of the PDFs in nuclei
(nPDFs) with respect to the proton PDFs [24,25] or k-
broadening due to multiple soft collisions before the heavy-
quark pair is produced [26,27]. The resulting modifications
of the yields are typically examined using the nuclear mod-
ification factor Rppp [28]. The ALICE measurements of A:’
production in pp and p—Pb collisions at \/syn = 5.02 TeV [6]
revealed a significant modification of the p distribution of
the charm baryon-to-meson ratio between p—Pb and pp colli-
sions, which was not observed for the charm meson-to-meson
ratios within the current measurement uncertainties. In addi-
tion, an increase of the mean transverse momentum of Aj‘
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baryons was observed in p—Pb collisions with respect to pp
collisions, with no significant difference seen for D° mesons.
This hardening of the pt spectrum of A baryons in p-Pb
collisions indicates a possible influence of radial flow [29,30]
and/or hadronisation via coalescence [31-33]. These effects
are consistent with observations from the light-flavour sector,
such as measurements of the A/ Kg baryon-to-meson ratio in
p—Pb collisions [34]. However, the pr-integrated Rppp of Aj
baryons was found to be consistent with that of D® mesons
and with unity. With the recent addition of EY baryons to
the available measurements [7], it has become possible to
study potential nuclear modifications of the total cc produc-
tion cross section to conclude whether nPDFs affect the over-
all creation of charm hadrons. A recent review with a more
comprehensive overview of heavy-quark hadronisation can
be found in Ref. [35].

In this article, the first measurements of the total charm
production cross section per unit of rapidity and the charm-
hadron fragmentation fractions at midrapidity in p—Pb col-
lisions at the LHC are presented. Section 2 outlines the pre-
vious measurements by the ALICE Collaboration that were
used to compute the total charm-quark production cross sec-
tion and the fragmentation fractions of charm quarks to dif-
ferent charm-hadron species. It also details the theoretical
models that were used to extrapolate the measured charm-
hadron production cross sections down to pr = 0, where
necessary. Section 3 shows the results for the charm-hadron
fragmentation fractions and cC production cross section in
p-Pb collisions at ,/sx\y = 5.02 TeV, along with the pr-
integrated nuclear modification factor Rppy. A summary is
given in Sect. 4.

2 Dataset and analysis

The ALICE detector system is described in detail in Ref. [36].
The measured prompt charm-hadron production cross sec-
tions used in this article were obtained from a sample of
minimum-bias p—Pb collisions collected in 2016 during Run
2 of the LHC with a total integrated luminosity of Lip =
287 £ 11 ub~! [37]. The measurements were performed at
midrapidity (defined as —0.96 < y < 0.04 in the collision
centre-of-mass frame). Prompt charm hadrons are those pro-
duced directly in the hadronisation of a charm quark or via the
decay of a directly produced excited charm-hadron or char-
monium state, while charm hadrons produced by the decays
of beauty hadrons are denoted as ‘non-prompt’. D mesons
were reconstructed in the decay channels D0 — K nt,
Dt — K zn*tz*, Df — ¢nt, and Dt — Dz+
(and respective charge conjugates) [28]. Charm baryons
were reconstructed in the channels Aj — ng [6,38],
A} — pK~nt [38],and B — E~x* [7] (and respec-
tive charge conjugates). The J /1 mesons were reconstructed
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in the channel J/y — ete™ [39]. The details of the hadron
reconstruction methods can be found in the corresponding
citations.

In order to derive the total charm production cross sec-
tion and the individual charm-hadron fragmentation fractions
at midrapidity, the pt-integrated rapidity-differential cross
sections must be considered. For D? mesons [28] and A:’
baryons [6], the pr-differential yields were measured down
to pr = 0 and the calculation of the pr-integrated cross sec-
tion did not require further extrapolation. For the remaining
hadron species, where no measurement down to pt = 0 is
available, an extrapolation was performed based on model
calculations.

For D*, D, and D** mesons, POWHEG+PYTHIA 6
calculations were used to extrapolate the pt spectra, which
were measured down to pr = 1 GeV/c for D™ and D*T, and
pr = 2 GeV/c for D} . POWHEG is an event generator with
next-to-leading order (NLO) accuracy [40]. It is matched
with PYTHIA 6 [41] to generate the parton shower and frag-
mentation. The CT14NLO parton distribution functions [42]
with the EPPS16 parameterisation of the nPDFs [43] were
used in the calculations. The POWHEG+PYTHIA 6 simu-
lations describe the charm-meson production cross sections
within uncertainties. The extrapolation factors were deter-
mined from the fraction of the theoretically calculated cross
section in the visible region with respect to the pr-integrated
one, relying on the pt shape of the production spectra with-
out directly using the magnitude from theory. This was per-
formed by taking the integral of the calculated production
cross section for 0 < pr < 50 GeV/c and dividing it by
the corresponding integral in the measured pr region for
that species. The contribution to the total cross section for
pt > 50 GeV/c is negligible with respect to that for pt <
50 GeV /¢, so any extrapolation to higher pt values than this
would have no impact on the final result. An uncertainty on
this extrapolation factor was then determined by separately
performing the same procedure using the following standard
variations on the POWHEG+PYTHIA 6 model: (i) varying
the factorisation and renormalisation scales in the POWHEG
simulation (u, ) within the range 0.5 < purr/pno < 2.0

(where g =
0.5 < pur/put < 2; and (ii) considering differences due to
the uncertainty sets on the EPPS16 nPDF parametrisations.
The maximum relative upward and downward differences
from the central extrapolation factor provided by (i) and (ii)
were added in quadrature to give the overall extrapolation
uncertainty on the cross sections, which amounted to f;:;%
for DT, “_ngig% for D, and 4_'2;:(3)% for D** mesons. In all
cases, the contribution due to the values of i, was much
larger than that from the nPDF uncertainty sets. The extrap-
olation factors were 1.27J_r8:(1)2 for Dt mesons, 1.25f8:8§ for

\/m%+ p3), with the additional constraint

D** mesons, and 2.08f8:‘2‘8 for D mesons.

For Eg baryons, the extrapolation was performed and
reported in Ref. [7]. The POWHEG+PYTHIA 6 calculations
were found to poorly describe the pt shape of the measured
differential cross sections of charm baryons in p—Pb colli-
sions. Instead, for the case of Eg, the quark (re)combination
model (QCM) [44,45] was chosen to perform the extrapo-
lation, as it is tuned to reproduce previous measurements of
A7 -baryon production from ALICE and provides a reason-
able description of the shape of the measured do/d pt of E(C)
baryons [7]. As the QCM model does not provide any theoret-
ical uncertainties, the extrapolation uncertainty was defined
by adding in quadrature (i) the maximum difference between
the central extrapolation factor determined using QCM and
those calculated using PYTHIA 8 with the Angantyr gener-
ator [46] and POWHEG+PYTHIA 6 (T20:%), and (ii) the
envelope of the POWHEG+PYTHIA 6 variations for E as
described above for the D mesons (fzgig%). The resulting
extrapolation uncertainty is +3 g:g% of the total E; production
cross section at midrapidity. The final extrapolation factor for
E(C) baryons is 1.741’8:?2. As no measurement of the EF pro-
duction cross section is available in p—Pb collisions at midra-
pidity, the contribution of &7 to the total charm cross section
was considered as equal to that of Eg baryons, as also done
in Refs. [3,4]. This assumption was made based on isospin
symmetry, and is further supported by the measurements of
Eg’+ in pp collisions at »/s = 13 TeV [4], which showed
that the production cross sections are consistent between the
two charge states.

For J/y mesons, the extrapolation was performed and
reported in Ref. [39]. While the inclusive J/y-meson cross
section (defined as the sum of prompt and non-prompt
J/¢¥ mesons) was measured for pt > 0, an extrapolation
was required for the non-prompt J/i cross section to
account for the prt region 0 < pt < 1 GeV/c in order to
extract the prompt cross section. The extrapolation was
performed using Fixed Order plus Next-to-Leading Loga-
rithm (FONLL) pQCD calculations [47,48], with the stan-
dard CTEQ6.6 PDFs [49] modified according to the EPPS16
nPDF parametrisation [43] to describe p—Pb collisions. The
corresponding value for the prompt component is obtained as
the difference between the inclusive J /1 -meson cross section
and the non-prompt one, as determined with the extrapola-
tion procedure described above. The do'/dy value for prompt
J/vyr-meson production from Ref. [39] was used directly in
this work.

In the calculation of the total charm-hadron yield, the con-
tribution from Q2 baryons must also be considered. Cur-
rently, no measurements of the QS are available in p—Pb
collisions. In addition, as there is no measurement of the
absolute branching ratios for any of the decay modes of the
Q(C) baryon, it is not yet possible to directly measure its pro-
duction cross section and so it is not included in the sum of
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the charm-hadron cross sections. The potential contribution
from Q¥ baryons was instead taken into account by assum-
ing an extreme upper limit of U(Qg) = O’(EB), and assign-
ing this as a fully asymmetric uncertainty bound on the total
charm-hadron yield, as was previously done in Refs. [3,4].
The uncertainty related to the estimated Q(C)-baryon produc-
tion cross section is added in quadrature to the upper extrapo-
lation uncertainty on the total cross section. There are further
contributions to the total charm cross section from doubly-
and triply-charmed baryons such as E7, and Q1 as well as
charmonium states that do not decay to J/¢» mesons. How-
ever, these are considered to be negligible compared to the
precision of the current measurement of the total cross sec-
tion.

When calculating the total cc production cross section,
additional correction factors were applied to account for the
differing rapidity distributions between charm hadrons, indi-
vidual charm quarks, and cc pairs. These were computed
using the same procedure as in Refs. [3,4]. The scaling fac-
tor between charm hadrons and single charm quarks was
determined from FONLL calculations of pp collisions at
/s = 5.02 TeV [50] and found to be unity, with a 2% uncer-
tainty assigned based on the differences between FONLL and
PYTHIA 8 calculations. The scaling between single charm
quarks and charm-anticharm pairs was determined using
POWHEG+PYTHIA 6 calculations. In the range —0.96 <
y < 0.04, this correction factor was found to have a value
of 1.03. An uncertainty was assigned by adding in quadra-
ture the envelopes defined by (i) variations of the u,  scale
parameters in POWHEG and (ii) the uncertainty sets of the
EPPS16 nPDFs, with a final value of 8.7%. Combining these
two factors, the uncertainty on the total charm cross section
due to the rapidity shape is 8.9%.

In calculating the fragmentation fractions and total cC pro-
duction cross section at midrapidity, the systematic uncer-
tainties related to tracking, feed-down from beauty-hadron
decays, pr extrapolation, and luminosity were propagated
as fully correlated among different charm-hadron species;
all other uncertainties were propagated as uncorrelated.

3 Results

The pr-integrated do (he)/dy|_g 96<y<0.04 Values for all of
the considered charm-hadron species in p—Pb collisions at
/SNN = 5.02 TeV are listed in Table 1. For all species, the
systematic uncertainties related to the extrapolation (extr.),
luminosity determination (lumi.), and branching ratio (BR)
are reported separately from the systematic uncertainties
related to the data analysis, except where these values were
combined or not applicable in their original publications.
The fragmentation fractions f(c — h,) were computed
from the integrated production cross sections of the charm

@ Springer

Table 1 The pr-integrated rapidity-differential cross sections for all
measured charm-hadron species at midrapidity in p—Pb collisions at
/SNN = 5.02 TeV. For Aj’ (J/¥) hadrons, the published systematic
uncertainties include the contributions from the BR (BR and luminosity)
uncertainties

he dU(hc)/d)’|7o,96<y<o,04 (mb), pr >0

DY 88.5 2.7 (stat.) "3 (syst.) +
3.3 (lumi.) £ 0.9 (BR) [28]

Dt 39.14+24 (stat.)f%:; (syst.)f?:? (extr.) £
1.4 (lumi.) & 1.0 (BR)

DY 19.2 + 1.0 (stat.) T} 3 (syst) T3¢ (extr.) =
0.7 (lumi.) 0.7 (BR)

AT 36.9 £ 3.3 (stat.) + 4.5 (syst.) & 1.4 (lumi.) [6]

g2 15.0 + 2.8 (stat.) 733 (syst.) T S (extr.) £
0.6 (lumi.) & 3.3 (BR) [7]

1)y 0.8731 + 0.0336 (stat.) &
0.0504 (syst.)TO908 (extr.) [39]

D+t 27.7 4 1.4 (stat) T2 (syst) T aextr.) +

1.0 (lumi.) & 1.0 (BR)

hadrons according to

do (he)/dyl—0.96<y<0.04
Z do (hc)/dy|—0.96<y<004 .
he

fc— he) = (1)

In the denominator, only ground-state charm hadrons were
considered. The production cross section of EY was consid-
ered twice to represent both of the E. charge states.The frag-
mentation fractions of all measured charm-hadron species in
p—Pb collisions are reported in Fig. 1 (left panel) and sum-
marised in Table 2. The results are compared with those mea-
sured previously in pp collisions at v/s = 5.02 TeV by the
ALICE Collaboration. The original measurements in pp col-
lisions published in Ref. [3] were updated in Ref. [4] by
taking into account more recent measurements of the A -
baryon cross section down to pr = 0 and of the prompt J /v
cross section. No significant modification of the hadronisa-
tion between the two colliding systems is observed despite
the larger system size and higher charged-particle multiplic-
ity density in p—Pb collisions. The values are consistent with
those measured in pp collisions at /s = 13 TeV [4]. The
measurements are also compared with those from eTe™ and
e p collisions [5]. As observed for pp collisions, the frag-
mentation fractions in p—Pb collisions also exhibit an overall
enhancement in the relative production of charm baryons
and a corresponding deficit in charm-meson production with
respect to eTe™ and e~ p collisions.

The total cc production cross section at midrapidity was
computed as the sum of the measured pr-integrated cross
sections of the ground-state charm hadrons: D°, D*, DY,
AF, B, and J/y. The EY contribution was considered twice
to account for the Ej cross section, as discussed above. The
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Fig. 1 Left: the fragmentation fractions for charm hadrons in p—Pb col-
lisions at /sNn = 5.02 TeV, compared with results from pp collisions
at /s = 5.02 TeV [3,4] and from ete™ and e” p collisions at lower
energies [5]. The fragmentation fractions for J /1 are multiplied by 20
for visibility. Right: total c€ production cross section per unit of rapidity

(s (TeV)

and per nucleon in p—Pb collisions, compared with measurements in pp
collisions from ALICE [3,4], PHENIX [51], and STAR [52], and with
FONLL [47,48] and NNLO [53-55] pQCD calculations. The statisti-
cal uncertainties are shown as bars, and the systematic uncertainties as
unfilled boxes

Table 2 Fragmentation

fractions f(c — h¢) of charm f (e — he) (%)

pp, /s = 5.02 TeV [4]

p-Pb, /snn = 5.02 TeV

Zgﬁgggilsnaﬁ’%rf IS)._OPZbTeV DO 39.6 % 1.7 (stat.) 728 (syst.) 4134 1.3 (stat.) 727 (syst.)
D+ 17.5 + 1.8 (stat.) T3 7 (syst.) 18.2 % 1.0 (stat.) T16 (syst.)
D} 7.4 4 1.0 (stat.) ] (syst.) 9.0 +0.5 (stat.) 1S (syst.)
A 18.9 + 1.3 (stat.) T35 (syst.) 17.1 £ 1.1 (stat.) 7] 3 (syst.)
g? 8.1+ 1.2 (stat.) "33 (syst.) 7.0 + 1.1 (stat.) T3 (syst.)
Iy 0.44 £ 0.03 (stat.) 02 (syst.) 0.41 £ 0.02 (stat.) )04 (syst.)
D*+ 15.7 + 1.2 (stat.) ' (syst.) 12.9 + 0.6 (stat.) T} (syst.)

rapidity shift between the measured charm hadrons and the
originating charm-quark pairs was accounted for by multi-
plying the sum of the hadron species by the aforementioned
correction factor of 1.03. The correlations of the systematic
uncertainties between charm-hadron species were treated in
the same way as for the fragmentation fractions discussed
above. The resulting charm cross section is

do (CE) p-Pb,/snn=5.02 TeV

+10.5
5 =219.6 6.3 (stat.) "3
,().96<y<0.04

(syst) 53 (extr.) £ 5.4 (BR) £ 4.6 (lumi.) + 19.5
(rapidity shape) + 15.0 (Q(C)) mb. 2)

The measured cross section is compared to results in pp
collisions at other centre-of-mass energies from ALICE [3,
4], PHENIX [51], and STAR [52] in Fig. 1 (right). In order to
be directly comparable with the pp results, the cross section
measured in p—Pb collisions is scaled down by a factor 1/A
with A = 208, under the assumption that the charm produc-

tion cross section in proton—nucleus collisions scales with
the mass number of the larger nucleus due to the binary scal-
ing of hard processes with the number of nucleon—nucleon
collisions. The charm production cross section per nucleon
in p—Pb collisions at ,/sny = 5.02 TeV is consistent with
the one measured in pp collisions at v/s = 5.02 TeV, and
is also in agreement with the general trend of results across
different collision energies. The results are compared with
pQCD calculations in the FONLL [47,48] and Next-to-Next-
to-Leading Order (NNLO) [53-55] approaches. As observed
in previous works relating to the charm production cross sec-
tion in pp collisions, while the experimental results tend to lie
at the upper edge of the theoretical uncertainties, the pQCD
approaches describe the evolution of the cc production cross
section as a function of ,/sxn.

The pr-integrated nuclear modification factor Rppy for
cc production in p—Pb collisions at ,/snn = 5.02 TeV was
computed from the total charm cross section discussed above.
The Rppp is calculated from the measured cross sections in
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s 27 T x
A | ALICE p-Pb
—
S - \Syn=5.02 TeV, -0.96 <y <0.04
Kol -
o 3.7% lumi. uncertainty not shown
o 1.5

0.5 B — EPPS16, 90% CL
i — nCTEQ15_,,., 90% CL
0 L | !
D° AS Jhy ct

Fig. 2 The pr-integrated nuclear modification factor Rppy for DO
mesons [28], A baryons [6], J/y mesons [39], and cC pairs in p-Pb
collisions at \/sN\y = 5.02 TeV. The results are compared with cal-
culations using the nCTEQ15wnr [56,57] (yellow shaded band) and
EPPS16 [43] (blue crosshatched band) nPDF sets. The horizontal lines
represent the central values of the respective predictions

p—Pb and pp collisions at the same centre-of-mass energy as

pPb
_ 1.do/dylZp 96y <0.04
A PP ’
A do/dy||y|<0.5 X oty

3

Rppob

with A = 208 as the Pb-nucleus mass number. A value of
Rppp = 1 would imply that there is no modification of the
total yield at midrapidity in p—Pb collisions with respect to
pp collisions. The correction factor oy, = 1.01 accounts for
the different y coverage of the measurements in pp and p—Pb
collisions due to the centre-of-mass rapidity shift between
the two collision systems. It was estimated from FONLL
calculations of the do/dy distribution of charm quarks. The
uncertainties on the measured charm cross sections in pp and
p—Pb collisions due to the branching ratios and the contribu-
tion from Qg baryons were treated as fully correlated in the
ratio, and the rapidity shape uncertainties as partially corre-
lated. All other sources of uncertainty were propagated as
fully uncorrelated.

The Rppy, for cC pair production at midrapidity at \/sNN =
5.02 TeV is shown in Fig. 2 and is

Ropo| %0 =% (c2) = 0.91 %004 (stat) *$08
(syst) 003 (extr.) £ 0.03 (lumi.), )

which is consistent with unity within 1o. This implies that the
overall charm production rate in p—Pb collisions is consistent
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with a binary scaling of pp collisions without any significant
modification from nuclear effects.

The resultis also compared with those for DY mesons [28],
A;r baryons [6], and J/¢¥ mesons [39]. The pr-integrated
Rppy values are consistent within uncertainties between all
species, implying that the individual particle species’ produc-
tion rates at midrapidity are similarly unaffected by nuclear
effects. The results are compared with calculations of the
pr-integrated D° Rppy using both the EPPS16 [43] and
nCTEQI15;wur [56,57] nPDF sets. In the latter case, the
nCTEQ15 predictions are modified by a Bayesian reweight-
ing, constrained to heavy-flavour hadron measurements from
the LHC [57]. The predictions of the pr-integrated Rppy, are
considered to be equivalent for all charm-hadron species, as
only the parton distribution functions are varied between the
pp and p—Pb calculations, and the pr-integrated fragmen-
tation functions cancel in the ratios. The calculation using
EPPS16 is consistent with unity within large uncertainties,
while the nCTEQ15 nPDFs predict a slight suppression of
charm production. The experimental results are described by
both of the calculations within uncertainties. In the case of
calculations with nCTEQ15, the experimental results are on
the upper edge of the model uncertainty.

4 Summary

The total charm production cross section per unit of rapid-
ity and charm-hadron fragmentation fractions were mea-
sured for the first time at midrapidity in p—Pb collisions
at /snu = 5.02 TeV. The fragmentation fractions for all
charm-hadron species were found to be consistent for pp
and p—Pb collisions at the same collision energy, indicating
that there is no significant modification of the charm-quark
hadronisation process due to the different hadronic colli-
sions’ system sizes. The total charm production cross section
per nucleon in p—Pb collisions was measured to be consistent
with pp collisions at the same centre-of-mass energy within
the uncertainties, meaning that the assumption of binary scal-
ing holds for charm-quark production. This was further con-
firmed by examining the nuclear modification factor Rypp,
which has a value consistent with unity at midrapidity and
compatible with both the individual pr-integrated charm-
hadron Rppy results and with model calculations including
nuclear modification of the PDFs. Future measurements dur-
ing Run 3 of the LHC will allow for a reduction of the uncer-
tainties possibly reducing the reliance on model-dependent
extrapolations. A particular focus in this field will be the
determination of charm and beauty fragmentation fractions
in Pb—Pb collisions, in order to precisely quantify modifica-
tion of hadronisation driven by the formation and presence
of a quark—gluon plasma, like modification of the abundance
of different charm-hadron species [S8—61] and quarkonium



Eur. Phys. J. C (2024) 84:1286

Page 7 of 16 1286

states [62,63]. Future measurements in p—Pb collisions with
higher precision will further allow significant constraints to
be drawn on nuclear modifications of the PDFs.
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