
Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Letter

Rapidity dependence of antideuteron coalescence in pp collisions 

at 
√
𝑠 = 13 TeV with ALICE

.ALICE Collaboration ⋆

A R T I C L E I N F O A B S T R A C T 

Editor: M. Doser The production yields of antideuterons and antiprotons are measured in pp collisions at a center-of-mass energy of √
𝑠 = 13 TeV, as a function of transverse momentum (𝑝T) and rapidity (𝑦), for the first time rapidity-differentially 

up to |𝑦|= 0.7. The measured spectra are used to study the 𝑝T and rapidity dependence of the coalescence 
parameter 𝐵2, which quantfies the coalescence probability of antideuterons. The 𝑝T and rapidity dependence 
of the obtained 𝐵2 is extrapolated for 𝑝T > 1.7 GeV/𝑐 and |𝑦| > 0.7 using the phenomenological antideuteron 
production model implemented in Pythia 8.3 as well as a baryon coalescence afterburner model based on EPOS
3. Such measurements are of interest to the astrophysics community, since they can be used for the calculation 
of the flux of antinuclei from cosmic rays, in combination with coalescence models.

1. Introduction

Antinuclei such as antideuterons and antihelium still elude detection 
in space and, if discovered, would likely open the door to the indirect de
tection of weakly interacting dark-matter (DM) candidates [1,2]. Other 
scenarios speculate about the existence of anticlouds or antistars as 
another possible explanation of antinuclei in space [3]. Indeed, the pos
sible presence of antinuclei in our Galaxy could be explained either by 
reactions of high-energy cosmic rays (CRs) with the interstellar medium 
(ISM) or by more exotic sources such as decays/annihilations of DM 
candidates. Proton–proton (pp) and proton–nucleus (p–A) collisions are 
notably interesting in such a context, since the collisions between CRs 
and the ISM are the most relevant sources for the formation of nuclei in 
the Galaxy, because both, CRs and the ISM, consist mostly of hydrogen 
(∼ 90%) and helium (∼ 9%), and only in small percentage of heavier 
nuclei. The observation of a significant antimatter excess with respect 
to the expected background of antimatter produced in ordinary cosmic
ray interactions would represent a signal for dark-matter annihilation 
in the galactic halo or for the existence of antimatter islands in our Uni
verse [3,4].

Information on the production of antinuclei from accelerator exper
iments, particularly in small collision systems (i.e., pp and p–A col
lisions), is essential for the theoretical description of the background 
constituted by antinuclei from cosmic-ray collisions with ISM. Since the 
ISM is almost at rest and the CRs have kinetic energies peaked at around 
300 GeV, the values of relevant center-of-mass energies per nucleon--
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nucleon collision for the antideuteron production range from 
√
𝑠NN ∼17 

GeV to several TeV [5].
The goal of the existing experimental programs at different accelera

tor facilities is to obtain antinucleus production cross sections for pp and 
p–A reactions over a broad range of kinetic energies, to cover as much 
as possible the energy range spanned by the cosmic rays. To this end, 
several experiments have measured the production of (anti)nuclei in dif
ferent collision systems and center-of-mass energies. These include the 
low collision energies of the AGS [6--9], SPS [10], and RHIC [11--16], 
and the TeV scale energies of the Large Hadron Collider (LHC) [17--37]. 
Such measurements are crucial for correct interpretations of any fu
ture measurement in satellite and balloon-borne experiments, such as 
AMS-02 [38], GAPS [39], or BESS-Polar [40]. An ultimate goal of the 
experimental programs at accelerators is to pin down the microscopic 
production process of antinuclei in hadronic collisions or DM decay. 
In fact, the production mechanism of light (anti)nuclei in high-energy 
hadronic collisions is still not clear and much debated in the scien
tific community. The plethora of experimental data collected in the 
last decade is typically described using two different phenomenologi
cal models: the statistical hadronization model (SHM) and the baryon 
coalescence approach. In the SHM [41--47], light (anti)nuclei, as well 
as other hadron species, are assumed to be emitted by a source in local 
thermal and hadrochemical equilibrium with their abundances being 
fixed at the moment of the chemical freeze-out of the system created in 
the collision, at a temperature of 𝑇chem ∼ 156 MeV [48]. This model pro
vides an excellent description of the measured hadron yields in central 
nucleus–nucleus collisions [45]. However, SHM struggles to reproduce 
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the evolution with the charged-particle multiplicity of the ratios be
tween integrated yields of nuclei and those of protons, especially for 
nuclei with masses A≥3 [34,35,49]. In the coalescence model [50--56], 
multi-baryon states are assumed to be formed by coalescence of baryons 
that are close in phase space at kinetic freeze-out, which occurs at a later 
time than the chemical freeze-out. In the simplest implementations of 
coalescence, only the momentum correlations are considered and the 
bound states are formed if the difference in momentum among the nu
cleons lies below a given threshold, namely the coalescence momentum 
𝑝0. In the state-of-the-art implementations of the coalescence approach, 
the quantum-mechanical properties of the constituent baryons and of 
the final bound states are taken into account and the coalescence prob
ability is calculated from the overlap between the wave functions of 
individual (point-like) baryons and the Wigner density of the final-state 
cluster [57].

From the experimental point of view, the coalescence probability is 
related to the coalescence parameter 𝐵𝐴 , which is obtained from the 
ratio of the invariant yield of the nuclei with mass number 𝐴 and that 
of the protons raised to the power of 𝐴, assuming protons and neutrons 
to have the same transverse momentum distributions as they are isospin 
partners, and 𝑝pT = 𝑝𝐴T /𝐴

𝐵𝐴 =
(

1 
2𝜋𝑝𝐴T

(
d2N
dydpT

)
𝐴

)/(
1 

2𝜋𝑝pT

(
d2N
dydpT

)
p

)𝐴

. (1)

The production of (anti)nuclei at the LHC was so far measured in the 
midrapidity region |𝑦| < 0.5, and then, combined with several coales
cence models, employed to predict the flux of antinuclei from CR inter
actions at forward rapidity. However, the possible impact of a rapidity 
dependence of the production yield and of the coalescence probability 
of antinuclei was suggested in Ref. [58]. Previous measurements of the 
production of (anti)protons and (anti)deuterons in different rapidity in
tervals have been carried out in heavy-ion collisions at RHIC energies by 
the BRAHMS Collaboration [13]. In this Letter we report the first mea
surements of the rapidity dependence of the production yield of p and d
and of the coalescence parameter 𝐵2 (obtained from Eq. (1) with 𝐴 = 2) 
carried out in pp collisions at LHC energies.

The results presented in this Letter contribute to the understanding 
of the impact that the extrapolation of the production yield and coa
lescence probability at forward rapidity, constrained to experimental 
information, has on the flux of antinuclei from cosmic rays, which can 
be obtained using hadronic production mechanisms based on coales
cence. By measuring the production of antideuterons and antiprotons as 
a function of rapidity in pp collisions at 

√
𝑠 =13 TeV up to |𝑦| = 0.7, 

the extrapolation at forward rapidity and high 𝑝T ∕𝐴 of the coalescence 
parameter 𝐵2 is performed using several coalescence models. Given the 
sensitivity of the cosmic-ray experiments discussed above, i.e., AMS
02, GAPS, and BESS-Polar, and the current experimental uncertainties 
on the production measurements, the direct impact of these results on 
cosmological DM research is related to a better understanding of the an
tideuteron background flux [59], which needs to be precisely modeled 
to interpret future measurements of antideuteron CR flux correctly.

2. Experimental apparatus

ALICE is one of the four large experiments at the LHC and is dedi
cated to the study of hadronic collisions at ultra-relativistic energies. A 
detailed description of the ALICE apparatus and its performance can be 
found in Refs. [60,61]. In the following, only the sub-detector systems 
used for this analysis are described.

Trajectories of charged particles are reconstructed in the ALICE cen
tral barrel, which covers the pseudorapidity interval of |𝜂| < 0.9, with 
the Inner Tracking System (ITS) [60], the Time Projection Chamber 
(TPC) [62], and the Time-Of-Flight (TOF) detector [63]. These detec
tors are located inside a solenoidal magnet, which generates a highly 
homogeneous magnetic field of 0.5 T, parallel to the beam line.

The ITS consists of six cylindrical layers of silicon detectors and is 
used for the determination of primary and secondary vertices, and for 
charged-particle tracking. The TPC is a gas detector used for charged
particle track reconstruction and momentum determination, and par
ticle identfication via the measurement of the specific energy loss 
(d𝐸/d𝑥) of particles in the detector gas. The d𝐸∕d𝑥 resolution depends 
on the event multiplicity and is about 5%--6.5% for minimum-ionizing 
particles crossing the full volume of the TPC [61]. The particle identfi
cation is extended at high 𝑝T using the TOF detector, which is located 
at a radial distance of 3.7 m from the nominal interaction point. It mea
sures the arrival time of particles relative to the event collision time 
provided by the TOF detector itself or by the T0 detectors. The T0 
consists of two arrays of Cherenkov counters, T0A and T0C, located 
on opposite sides of the interaction point, covering the pseudorapid
ity regions 4.6 < 𝜂 < 4.9 and −3.3 < 𝜂 < −3.0. A weighted average is 
performed when both T0 and TOF detectors have measured the start 
time [64]. The TOF time resolution is 56 ps [63].

Collision events are triggered by two plastic scintillator arrays, V0A 
and V0C [65], located at asymmetric positions, one on each side of the 
interaction point, covering the pseudorapidity regions −3.7 < 𝜂 < −1.7
and 2.8 < 𝜂 < 5.1. Each V0 array consists of four rings in the radial di
rection, with each ring comprising eight cells with the same azimuthal 
size. The V0 detector is used to dfine the minimum-bias (MB) trig
ger (requiring coincident signals in the V0 detectors to be synchronous 
with the bunch-crossing time dfined by the LHC clock). The V0 is also 
used to reject background events like beam–gas interactions, collisions 
with de-bunched protons, or with mechanical structures of the beam 
line [65].

3. Data analysis

The analyzed data sample was collected in 2016, 2017, and 2018 
during the LHC pp run at 

√
𝑠 = 13 TeV. Events with multiple vertices 

identfied from track segments in the two innermost layers of the ITS 
are tagged as pile-up and removed from the analysis [61]. In order to 
ensure full geometrical acceptance in the ITS for |𝜂| < 0.9 and reject 
background collisions, the coordinate of the primary vertex along the 
beam axis is required to be within 10 cm from the nominal interaction 
point. A total number of approximately 1.7 billion MB pp events were 
analyzed, with a total integrated luminosity of about 22 nb−1 [66].

The reconstructed tracks are required to fufill the same set of quality 
criteria of the corresponding analyses of antiprotons and antideuteron 
production at midrapidity [28,67], with the only difference that in the 
case of the present analysis no selections in pseudorapidity are ap
plied, besides the ones enforced by the detector acceptance (|𝜂| <0.9 
in the ALICE central barrel). The antiproton (antideuteron) identfica
tion is done at 𝑝T < 0.7 GeV/𝑐 (𝑝T < 1.2 GeV∕c) by requiring that its 
energy loss per unit of track length measured by the TPC is within 
3𝜎d𝐸∕d𝑥 from the expected average for antiprotons (antideuterons), 
where 𝜎d𝐸∕d𝑥 is the d𝐸∕d𝑥 resolution. For 𝑝T > 0.7 GeV/𝑐 for antipro
tons and 𝑝T > 1.2 GeV∕c for antideuterons, the d𝐸∕d𝑥 signal of the 
TPC is complemented by the time-o-flight measured by the TOF de
tector. The antiproton (antideuteron) signal is extracted from a fit to 
the n(𝜎TOF) = (𝑡TOF − 𝑡TOFexp )∕𝜎𝑡 distribution, where 𝑡TOF is the measured 
time-o-flight, 𝑡TOFexp its expected value for protons (deuterons), divided 
by the resolution on the time-o-flight measurement (𝜎𝑡). The fit func
tion consists of a Gaussian with an exponential tail for the signal and the 
sum of two exponential functions for the background. The raw signal 
yield is extracted by integrating the signal function in the asymmetric 
interval [−3𝜎TOF +𝜇0,3.5𝜎TOF +𝜇0], where 𝜇0 is the mean of the Gaus
sian. The acceptance of the ITS, TPC, and TOF detectors (|𝜂| <0.9) limits 
the rapidity coverage of the measurement. Hence, the analysis is per
formed in seven rapidity intervals, 0.2 units wide, from −0.7 to 0.7. At |𝑦| larger than 0.7, the acceptance of the TPC and TOF detectors allows 
for the reconstruction of deuterons only at high 𝑝T (for |𝑦| = 0.8, the 
minimum 𝑝T of deuterons that can be reconstructed is ∼ 3.5 GeV/𝑐). 
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However, in the high 𝑝T region (𝑝T > 3.5 GeV/𝑐) deuterons cannot 
be identfied any longer because the background due to mismatched 
tracks in the TOF is dominant with respect to the actual signal. The 
amount of observed raw antiprotons is about 2 ×105 in each of the first 
five rapidity classes (|𝑦| < 0.1 to 0.4 < |𝑦| < 0.5), and decreasing to 1.5 
×105 and 1 ×105 in the two highest rapidity classes (0.5 < |𝑦| < 0.6 and 
0.6 < |𝑦| < 0.7, respectively). For antideuterons, the amount of observed 
raw counts is about 4 ×104 in each of the first four rapidity classes 
(|𝑦| < 0.1 to 0.3 < |𝑦| < 0.4), and decreasing to 2 ×104, 1 ×104 and 
5 ×103 in the higher rapidity classes (0.4 < |𝑦| < 0.5, 0.5 < |𝑦| < 0.6
and 0.6 < |𝑦| < 0.7, respectively). In both cases, the lower amount of 
observed antinuclei at high rapidity is due to the smaller transverse mo
mentum coverage and lower acceptance and reconstruction efficiency.

The raw antiproton and antideuteron 𝑝T spectra are corrected for the 
acceptance and reconstruction efficiency and, only for antiprotons, for 
the fraction of secondary antiprotons produced by feed-down of weak 
decays of Λ hyperons. Both corrections are calculated with Monte Carlo 
(MC) simulations in which antinuclei are embedded into pp collision 
events generated using Pythia 8.1 with the Monash 2013 tune [68]. 
Antinuclei are generated with uniform 𝑝T and rapidity distributions in 
(0 < 𝑝T < 10) GeV∕c and −1 < 𝑦 < 1. The particle interactions in the 
experimental apparatus are simulated using Geant 4 as transport pack
age [69]. The acceptance × efficiency, in each 𝑝T and rapidity interval, 
is calculated as the ratio of reconstructed and generated antiprotons and 
antinuclei in the simulation, where the same track selection and PID cri
teria as those used in the data are applied to the reconstructed sample in 
MC. The resulting acceptance × efficiency depends on 𝑝T, rapidity, and 
PID technique (either TPC only at low 𝑝T, or TPC and TOF for 𝑝T > 0.7 
GeV/𝑐 for antiprotons, and for 𝑝T > 1.2 GeV/𝑐 for antideuterons). For 
the class |𝑦| < 0.1, it varies from ∼50% at low 𝑝T to about 25% at high 
𝑝T, for antiprotons, and from ∼80% at low 𝑝T to about 40% at high 𝑝T, 
for antideuterons. For the class 0.6 < |𝑦| < 0.7, instead, the PID is done 
only with the TOF, and the acceptance × efficiency varies from ∼10% 
at low 𝑝T to about 30% at high 𝑝T, for antiprotons, and from ∼20% at 
low 𝑝T to about 45% at high 𝑝T, for antideuterons.

In order to limit the contamination from secondary antiprotons from 
feed-down of weak decays, the measured distance of closest approach 
to the primary vertex in the transverse plane (DCA𝑥𝑦) and along the 
beam direction (DCA𝑧) is requested to be less than 0.1 cm and 1 cm, re
spectively. To remove any remaining contamination of antiprotons from 
weak decays, the secondary fraction is estimated in each 𝑝T and rapid
ity interval by fitting the distributions of the DCA𝑥𝑦, using the template 
method [18]. The DCA𝑥𝑦 template distributions of primary (produced 
in the collision at the primary vertex) and secondary antiprotons from 
feed-down are taken from MC simulations. The resulting primary frac
tion of antiprotons has a mild 𝑝T dependence, ranging from ∼80% at 
low 𝑝T to ∼90% at high 𝑝T.

The sources of systematic uncertainties on the transverse momentum 
distributions considered for this analysis are related to (i) track selection 
and particle identfication, (ii) detector material budget, (iii) TPC–ITS 
and TPC–TOF track matching efficiencies, (iv) hadronic interaction of 
antiparticles with the detector material, and (v) signal loss (to account 
for antiparticles lost in rejected events). The uncertainties related to (i) 
are estimated for the present analysis and discussed below, while the 
other ones are inherited, as relative uncertainties, from previous similar 
analyses. The uncertainties due to (ii) and (v) are estimated as described 
in Ref. [28], and those due to (iii) and (iv) are assessed as illustrated in 
Ref. [31].

In order to assess the systematic uncertainties related to the track se
lection, the analysis is repeated using 50 settings with different criteria. 
These criteria are dfined by randomly sampling the analysis parameters 
from uniform probability distributions, such that their variations pro
duce a raw yield variation of a maximum factor of two, in order to uni
formly explore the full available phase-space. The e˙iciency-corrected 
yields are distributed according to a Gaussian and the standard deviation 
of this distribution is taken as systematic uncertainty. The uncertainties 

Table 1
Summary of the systematic uncertainties on the transverse momen
tum distributions. The values reported in the table correspond to the 
uncertainties of the rapidity class |𝑦| < 0.1. For such class, low 𝑝T
corresponds to 0.375 GeV/𝑐 for antiprotons and to 0.75 GeV/𝑐 for 
antideuterons, whereas high 𝑝T corresponds to 1.95 GeV/𝑐 for antipro
tons and to 3.2 GeV/𝑐 for antideuterons.

Source of uncertainty p low 𝑝T p high 𝑝T d low 𝑝T d high 𝑝T
Tracking and PID 4.5% 6% 1.5% 3%
Material budget <1% <1% <1% <1%
Matching efficiencies 3% 3% 1% 2.5%
Hadronic interaction 2% 2% 3% 4%
Signal loss -- -- 1% <1%

Total 6% 7% 4% 6%

connected to the particle identfication are given by two contributions. 
One is estimated by extending or narrowing the integration intervals by 
±1𝜎 and it is determined by calculating the standard deviation of the 
distribution of the fully corrected yields, in each 𝑝T and rapidity inter
val, similarly to what was done in Ref. [28]. In addition, it is included 
the small contribution (∼ 1%) due to the difference between the yield 
extracted by the integral of the fit function which describes the signal 
and that of the histogram after the subtraction of the background. In 
the case of antiprotons, also the contribution related to the secondary 
fraction of antiprotons from weak decays is included in (i), hence the 
uncertainty is larger for antiprotons than for antideuterons. For this un
certainty, the DCA selection criteria (both in the perpendicular plane 
DCA𝑥𝑦, and along the beam axis DCA𝑧) are also changed 50 times, and 
each time the corresponding primary fraction is used for correction. The 
total systematic uncertainties are obtained by summing in quadrature all 
the individual contributions, which are summarized in Table 1. Within 
the studied rapidity range, the systematic uncertainties have been found 
to be independent of the analyzed rapidity interval.

4. Results

The 𝑝T-differential yields per unit of rapidity (d2𝑁∕d𝑝Td𝑦) of an
tiprotons and antideuterons in MB events and analyzed rapidity inter
vals are shown in Fig. 1. The results are consistent with those measured 
in |𝑦| < 0.5 [28,67]. The final transverse-momentum distributions are 
fitted using the Lévy–Tsallis function [70] to extrapolate the yields to 
the unmeasured regions. The Lévy–Tsallis fits of the spectra in the high
rapidity intervals (|𝑦| ≥ 0.5) are constrained to the spectrum in the 
lowest rapidity interval (|𝑦| < 0.1), such that the normalization is always 
adjusted during the fit while the shape is constrained to the spectrum at 
low rapidity, which covers a broader 𝑝T range. This procedure assumes 
that the shape of the 𝑝T spectra is independent of rapidity, and this as
sumption was validated by the rather stable 𝜒2∕NDF values of the fits 
across the studied rapidity interval. In order to obtain the integrated 
yields, the integrals of the data points of the transverse momentum 
spectra in the measured regions are summed to the integrals of the fit 
functions at low (down to 0) and high (up to 10 GeV/𝑐) 𝑝T . The result
ing 𝑝T-integrated yields (d𝑁/d𝑦) of antiprotons and antideuterons are 
shown in Fig. 2. The measured integrated yields of both species show a 
flat trend with rapidity, up to |𝑦|= 0.7. The antiproton integrated yields 
as a function of rapidity are compared with the predictions of two event 
generators, namely Pythia 8 [68], with two different tunes (described 
in the following), and Epos 3 [71,72]. The measured antideuteron yields 
are compared with the predictions of three models, based on different 
assumptions and making use of different event generators. Two of these 
models use Pythia 8 [68] as event generator, the third Epos 3 [71,72]. 
While for antiprotons the event generators produce the desired particles 
directly, there are no antideuterons natively in the MC and their produc
tion is included as an afterburner with the coalescence model, on top of 
the events generated using the two event generators. All models shown 

Physics Letters B 860 (2025) 139191 

3 



ALICE Collaboration 

Fig. 1. Antiproton (left panel) and antideuteron (right panel) 𝑝T-differential yields for different rapidity intervals, in MB events. Statistical and systematic uncertainties 
are represented by vertical bars and boxes, respectively. The statistical uncertainties are smaller than the size of the markers in the reported scale and, hence, not 
visible. The dash-dotted lines represent the fit of the spectra executed with a Lévy–Tsallis function.

Fig. 2. Integrated yields of antiprotons (left) and antideuterons (right) as a function of rapidity, compared with the corresponding predictions of three models (see 
text for details). Statistical and systematic uncertainties are represented by vertical bars and boxes, respectively. The statistical uncertainties are smaller than the 
size of the markers in the reported scale and, hence, not visible. In the insets of the figures, a zoom in the low-rapidity region is displayed. The integrated yields 
estimated by models are normalized to the measured ones, see text for details.

in Fig. 2 are normalized to data, by dividing the yields obtained with the 
simulations by a factor corresponding to the ratio between the measured 
yield and the simulated one in the lowest rapidity interval (|𝑦| < 0.1), 
since the natural abundances of particles are not well reproduced by the 
event generators.

In the first approach, already used in Ref. [36] and described in 
detail in the corresponding Supplemental Material [73], the phase 
space distributions of antinucleons are generated with Pythia 8 with 
the Monash 2013 tune [68], and their 𝑝T spectra are re-weighted to 
match the measured antiproton 𝑝T spectra. In this simple model, all 
spatial correlations are ignored and the antideuteron is formed if an 
antiproton and an antineutron have a momentum difference below a 
given coalescence momentum Δ𝑝 < 𝑝0 in the antideuteron rest frame. 
The best estimate of the coalescence momentum for this model is 
𝑝0 = (285 ± 1) MeV/𝑐 [36]. The second approach is a reaction-based 
model [74], where antideuterons are generated by ordinary nuclear 
reactions between antinucleons produced in the collision with parame
terized energy-dependent cross sections tuned on available experimental 
data [75], as implemented in the MC event generator Pythia 8.3. Both, 
the simple coalescence and the reaction-based model, are based on the 
simplistic assumption that coalescence can happen only if antiprotons 
and antineutrons are close in momentum space, while all spatial cor
relations are neglected, and the nucleus wave function does not come 
into play. The third approach is a state-of-the-art coalescence model [57] 
based on the Wigner function formalism, applied as an afterburner to the 
nucleons generated with the Epos 3 event generator. In such a model, 
the quantum-mechanical properties of the nucleus are taken into ac
count through its Wigner function. Antideuterons are formed following 
a probability calculated on an event-by-event basis, by folding the spa
tial distribution of nucleons with the Wigner function of the final bound 

state. The coalescence model is very sensitive to the source size, i.e., 
the size of the particle-emitting source that can be measured using fem
toscopy with two-particle correlations [76]. Since the one implemented 
in Epos 3 does not reproduce the measurements [57], a parameteriza
tion of the transverse-mass (𝑚T) dependence of the measured source 
size for high-multiplicity events (𝑟0 = 1.249 fm [77]) scaled to the min
imum bias value (𝑟0 = 1.18 fm [78]) was used. It has to be noted that 
the average values of transverse mass, ⟨𝑚T⟩, of the high multiplicity 
sample (corresponding to the interval of 0--0.17% in multiplicity) and 
of the minimum bias one (full multiplicity 0--100%) differ by ∼ 10%. 
Nonetheless, the source size is assumed to be independent of rapidity. 
Note also that the integrated yields predicted by the models are scaled 
to the data, while the shapes of the 𝑝T distributions are not modfied. 
Therefore, the models are no longer sensitive to the magnitude of the 
source size used for the calculations, but only to its 𝑚T trend. Addition
ally, the predictions are obtained using the Argonne 𝑣18 wavefunction 
which was shown to give the best predictions for the antideuteron mo
mentum distribution [57]. In this way, one obtains predictions using a 
realistic coalescence model, which considers not only the momentum 
distributions of nucleons but also their spatial correlations, as well as 
the quantum-mechanical nature of the coalescence process. The inte
grated yields of antiprotons and antideuterons as a function of rapidity 
obtained with the event generators and with the three models previ
ously described show a similar trend, rather flat at low rapidities (|𝑦| <
1.5) and decreasing starting from rapidity about 1.5, up to the kinematic 
limit of |𝑦| ∼ 9.5, related to the collision system and energy. However, 
while the predictions of the models based on Pythia 8 and simple co
alescence are roughly equal in the full rapidity interval (0--9.5), a large 
difference, for rapidity larger than 1.5, is observed between these mod
els and the third one in which the distributions of the antinucleons are 
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Fig. 3. Coalescence parameter 𝐵2 as a function of the transverse momentum per nucleon for different rapidity intervals. Data are compared to model predictions from
Pythia 8.3 (left panel) and from a coalescence model [57] used as afterburner of Epos 3 (right panel), shown as colored lines. Statistical and systematic uncertainties 
on the data points are represented by vertical bars and boxes, respectively. The statistical uncertainties of the data points are smaller than the size of the markers in 
the reported scale and, hence, not visible.

obtained using Epos 3 and a state-of-the-art model for deuteron forma
tion via coalescence.

Using Eq. (1), the coalescence parameters 𝐵2 in the different rapidity 
classes are calculated and shown in Fig. 3, in comparison with predic
tions from Pythia 8.3 (left panel) and from Epos 3 with the coalescence 
model of Ref. [57] used as afterburner (right panel). For the computa
tion of the uncertainties on the 𝐵2 parameter, the invariant yields of 
antiprotons and antideuterons are considered uncorrelated and their un
certainties are propagated accordingly. The predictions obtained with
Pythia 8 with the Monash 2013 tune have a negligible difference with 
respect to the predictions obtained with Pythia 8.3, and therefore not 
shown in the following. In the models, the antiproton 𝑝T distributions 
are reweighted to the measured ones, while the antideuterons are only 
scaled to the integrated measured yields, and their 𝑝T shapes are not 
changed. The rising trend of the coalescence parameters with 𝑝T/𝐴 is 
well reproduced by the two models. Since larger coalescence parame
ters correspond to smaller source sizes (at higher 𝑝T), this result rflects 
the observed decreasing trend of the source size with ⟨𝑚T⟩ [76].

Finally, selecting intervals of 𝑝T/𝐴, it is interesting to look at the 
trend of the coalescence parameter as a function of rapidity. The rapid
ity dependence of 𝐵2 is shown in Fig. 4 and compared with predictions 
from Pythia 8.3 (left panel) and from a coalescence model [57] used as 
afterburner of Epos 3 (right panel). As for the yields, the coalescence pa
rameter is flat in the rapidity region investigated by the measurements. 
The models reproduce the measured trend, mostly with an agreement 
within 2𝜎. Some deviations beyond the 2𝜎 level are present at high 
𝑝T/𝐴 (> 1.5 GeV/𝑐) for the model based on Pythia 8.3. A similar trend 
of 𝐵2, flat as a function of rapidity, was also observed by the BRAHMS 
Collaboration in central Au–Au collisions at 

√
𝑠NN = 200 GeV [13].

The models shown in Figs. 3 and 4 have similar statistical uncer
tainties, of about 10%, which are rflected in the width of the colored 
bands.

The flux of antideuterons from cosmic rays as a function of rigidity, 
reported in Fig. 1 of Ref. [79], is predicted with the model of Ref. [4] 
using the coalescence parameter 𝐵2 measured at midrapidity in pp colli
sions at 

√
𝑠 = 7 TeV with ALICE [80]. The rapidity and 𝑝T dependencies 

of the coalescence parameters predicted by Pythia 8.3 and Epos 3, 
scaled to match the experimental measurements in the first 𝑝T interval 
reported here, are extrapolated at high 𝑝T (𝑝T > 1.7 GeV/𝑐) and forward 
rapidity (|𝑦| > 0.7) and provided to the authors of Refs. [4,79]. In these 
models, the 𝐵2 distributions are substantially flat as a function of rapid
ity and increase monotonically as a function of 𝑝T ∕𝐴. No difference is 
found in the shape of the antideuteron flux shown in Fig. 1 of Ref. [79], 
either using the different models presented in this Letter or using the 
𝐵2 measured at midrapidity in pp collisions at 

√
𝑠 = 7 TeV [80]. A con

stant 𝐵2 as a function of rapidity is a common assumption in several CR 
models. However, in the coalescence models presented in this work, the 
trend with rapidity of 𝐵2 is investigated for the first time. Additionally, 

in Ref. [79], the author investigates the role of the rapidity extrapo
lation in predicting the cosmic ray flux of antinuclei (i.e., antiprotons, 
antideuterons, and antihelium-3), by setting the production cross section 
to zero in different kinematical regions. The results for the antideuteron 
flux from CR, presented in Fig. 1 of Ref. [79], show that at low kinetic 
energies, corresponding to rigidity 𝑅 ≤ 5 GV (being the rigidity dfined 
as 𝑅 = 𝑝𝑐

𝑍𝑒
, where 𝑝 is the momentum, 𝑐 is the speed of light, and 𝑍𝑒 is 

the charge of the cosmic-ray particle), about 90% of the flux is due to an
tideuterons with rapidity larger than 0.5. This kinematical region is also 
the one where the CR flux is expected to be dominated by the DM signal, 
according to many cosmological models [5], and hence of high impact 
for astrophysics. Therefore, it is important to measure the coalescence 
parameter in the rapidity region |𝑦| > 0.5, in order to use experimen
tal measurements as input for the astrophysical models. Moreover, the 
results of the antideuteron flux show that LHC experiments (such as 
LHCb [81--83] in its fixed-target cofiguration, and the future ALICE 
3 facility [84]) are expected to fill the rapidity gap (0.5 < |𝑦| < 1.5)
providing measurements of production yields of antinuclei. These mea
surements would be of important use to the astrophysics community 
for the calculation of the flux of antinuclei from cosmic rays, to avoid 
relying on the model extrapolation at forward rapidities.

5. Summary

In this Letter, the 𝑝T-differential yields of antideuterons and an
tiprotons as a function of rapidity are measured in pp collisions at √
𝑠 = 13 TeV, for the first time rapidity-differentially up to |𝑦| = 0.7. 

Using the measured spectra, the 𝑝T and rapidity dependence of the coa
lescence parameter 𝐵2 is explored. Both the antiproton and antideuteron 
integrated yields, and the 𝐵2 are found to be independent of rapidity in 
the measured range. The rapidity dependence of the obtained yields and 
𝐵2 is extrapolated for |𝑦| > 0.7 using phenomenological antideuteron 
production models based on coalescence, making use of Pythia and
Epos 3 as event generators. The resulting predictions of 𝐵2 as a func
tion of 𝑝T and rapidity are used as input for the model of Ref. [4], to 
investigate the role of the rapidity dependence of the coalescence param
eter in the predictions of the flux of antinuclei from cosmic rays [79]. 
No impact on the predictions of the flux of antideuterons from CRs is 
seen when including the flat rapidity dependence of 𝐵2 predicted with 
the models presented in this Letter, with respect to the predictions that 
use the 𝐵2 measured at midrapidity in pp collisions at 

√
𝑠 = 7 TeV [80]. 

However, as pointed out in Ref. [79], at low kinetic energies (𝐸kin <1 
GeV/nucleon) about 90% of the flux is due to antideuterons with rapid
ity between 0.5 and 1.5. Hence, the rapidity-dependent measurements 
of the production yields and coalescence probability of antinuclei in 
the region 0.5 < |𝑦| < 1.5 are a crucial input for CR models. These mea
surements have a fundamental impact on astrophysical indirect searches 
for dark matter, as the antinuclei produced from CR interactions are 
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Fig. 4. Coalescence parameter 𝐵2 as a function of rapidity, for fixed transverse momentum per nucleon values. Statistical and systematic uncertainties on the data 
points are represented by vertical bars and boxes, respectively. The statistical uncertainties are smaller than the size of the markers in the reported scale and, hence, 
not visible. Bands show the model predictions from Pythia 8.3 (left panel) and from a coalescence model [57] used as afterburner of Epos 3 (right panel), the width 
rflecting the statistical uncertainties.

the dominant background source in the region of low kinetic energies. 
This measurement can be extended in the rapidity interval of interest 
by other facilities, present or future, such as LHCb [81,83] and ALICE 
3 [84].
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