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The production yields of antideuterons and antiprotons are measured in pp collisions at a center-of-mass energy of

\/E =13 TeV, as a function of transverse momentum (p;) and rapidity (), for the first time rapidity-differentially
up to |y| =0.7. The measured spectra are used to study the p; and rapidity dependence of the coalescence
parameter B,, which quantifies the coalescence probability of antideuterons. The p; and rapidity dependence
of the obtained B, is extrapolated for p; > 1.7 GeV/c and |y| > 0.7 using the phenomenological antideuteron
production model implemented in PYTHIA 8.3 as well as a baryon coalescence afterburner model based on EPOS
3. Such measurements are of interest to the astrophysics community, since they can be used for the calculation
of the flux of antinuclei from cosmic rays, in combination with coalescence models.

1. Introduction

Antinuclei such as antideuterons and antihelium still elude detection
in space and, if discovered, would likely open the door to the indirect de-
tection of weakly interacting dark-matter (DM) candidates [1,2]. Other
scenarios speculate about the existence of anticlouds or antistars as
another possible explanation of antinuclei in space [3]. Indeed, the pos-
sible presence of antinuclei in our Galaxy could be explained either by
reactions of high-energy cosmic rays (CRs) with the interstellar medium
(ISM) or by more exotic sources such as decays/annihilations of DM
candidates. Proton—proton (pp) and proton-nucleus (p—A) collisions are
notably interesting in such a context, since the collisions between CRs
and the ISM are the most relevant sources for the formation of nuclei in
the Galaxy, because both, CRs and the ISM, consist mostly of hydrogen
(~ 90%) and helium (~ 9%), and only in small percentage of heavier
nuclei. The observation of a significant antimatter excess with respect
to the expected background of antimatter produced in ordinary cosmic-
ray interactions would represent a signal for dark-matter annihilation
in the galactic halo or for the existence of antimatter islands in our Uni-
verse [3,4].

Information on the production of antinuclei from accelerator exper-
iments, particularly in small collision systems (i.e., pp and p-A col-
lisions), is essential for the theoretical description of the background
constituted by antinuclei from cosmic-ray collisions with ISM. Since the
ISM is almost at rest and the CRs have kinetic energies peaked at around
300 GeV, the values of relevant center-of-mass energies per nucleon—
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nucleon collision for the antideuteron production range from \/@ ~17
GeV to several TeV [5].

The goal of the existing experimental programs at different accelera-
tor facilities is to obtain antinucleus production cross sections for pp and
P-A reactions over a broad range of kinetic energies, to cover as much
as possible the energy range spanned by the cosmic rays. To this end,
several experiments have measured the production of (anti)nuclei in dif-
ferent collision systems and center-of-mass energies. These include the
low collision energies of the AGS [6-9], SPS [10], and RHIC [11-16],
and the TeV scale energies of the Large Hadron Collider (LHC) [17-37].
Such measurements are crucial for correct interpretations of any fu-
ture measurement in satellite and balloon-borne experiments, such as
AMS-02 [38], GAPS [39], or BESS-Polar [40]. An ultimate goal of the
experimental programs at accelerators is to pin down the microscopic
production process of antinuclei in hadronic collisions or DM decay.
In fact, the production mechanism of light (anti)nuclei in high-energy
hadronic collisions is still not clear and much debated in the scien-
tific community. The plethora of experimental data collected in the
last decade is typically described using two different phenomenologi-
cal models: the statistical hadronization model (SHM) and the baryon
coalescence approach. In the SHM [41-47], light (anti)nuclei, as well
as other hadron species, are assumed to be emitted by a source in local
thermal and hadrochemical equilibrium with their abundances being
fixed at the moment of the chemical freeze-out of the system created in
the collision, at a temperature of T, ~ 156 MeV [48]. This model pro-
vides an excellent description of the measured hadron yields in central
nucleus—nucleus collisions [45]. However, SHM struggles to reproduce
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the evolution with the charged-particle multiplicity of the ratios be-
tween integrated yields of nuclei and those of protons, especially for
nuclei with masses A>3 [34,35,49]. In the coalescence model [50-56],
multi-baryon states are assumed to be formed by coalescence of baryons
that are close in phase space at kinetic freeze-out, which occurs at a later
time than the chemical freeze-out. In the simplest implementations of
coalescence, only the momentum correlations are considered and the
bound states are formed if the difference in momentum among the nu-
cleons lies below a given threshold, namely the coalescence momentum
po- In the state-of-the-art implementations of the coalescence approach,
the quantum-mechanical properties of the constituent baryons and of
the final bound states are taken into account and the coalescence prob-
ability is calculated from the overlap between the wave functions of
individual (point-like) baryons and the Wigner density of the final-state
cluster [57].

From the experimental point of view, the coalescence probability is
related to the coalescence parameter B4, which is obtained from the
ratio of the invariant yield of the nuclei with mass number A and that
of the protons raised to the power of A, assuming protons and neutrons
to have the same transverse momentum distributions as they are isospin
partners, and pE = p?/A

5= (g (o) )/ (g (550),) ®
A 27:[1]“3 dydpt / 4 2zrp$ dydpr p '

The production of (anti)nuclei at the LHC was so far measured in the
midrapidity region |y| < 0.5, and then, combined with several coales-
cence models, employed to predict the flux of antinuclei from CR inter-
actions at forward rapidity. However, the possible impact of a rapidity
dependence of the production yield and of the coalescence probability
of antinuclei was suggested in Ref. [58]. Previous measurements of the
production of (anti)protons and (anti)deuterons in different rapidity in-
tervals have been carried out in heavy-ion collisions at RHIC energies by
the BRAHMS Collaboration [13]. In this Letter we report the first mea-
surements of the rapidity dependence of the production yield of p and d
and of the coalescence parameter B, (obtained from Eq. (1) with A =2)
carried out in pp collisions at LHC energies.

The results presented in this Letter contribute to the understanding
of the impact that the extrapolation of the production yield and coa-
lescence probability at forward rapidity, constrained to experimental
information, has on the flux of antinuclei from cosmic rays, which can
be obtained using hadronic production mechanisms based on coales-
cence. By measuring the production of antideuterons and antiprotons as
a function of rapidity in pp collisions at \/; =13 TeV up to |y| =0.7,
the extrapolation at forward rapidity and high p; /A of the coalescence
parameter B, is performed using several coalescence models. Given the
sensitivity of the cosmic-ray experiments discussed above, i.e., AMS-
02, GAPS, and BESS-Polar, and the current experimental uncertainties
on the production measurements, the direct impact of these results on
cosmological DM research is related to a better understanding of the an-
tideuteron background flux [59], which needs to be precisely modeled
to interpret future measurements of antideuteron CR flux correctly.

2. Experimental apparatus

ALICE is one of the four large experiments at the LHC and is dedi-
cated to the study of hadronic collisions at ultra-relativistic energies. A
detailed description of the ALICE apparatus and its performance can be
found in Refs. [60,61]. In the following, only the sub-detector systems
used for this analysis are described.

Trajectories of charged particles are reconstructed in the ALICE cen-
tral barrel, which covers the pseudorapidity interval of |5| < 0.9, with
the Inner Tracking System (ITS) [60], the Time Projection Chamber
(TPC) [62], and the Time-Of-Flight (TOF) detector [63]. These detec-
tors are located inside a solenoidal magnet, which generates a highly
homogeneous magnetic field of 0.5 T, parallel to the beam line.

Physics Letters B 860 (2025) 139191

The ITS consists of six cylindrical layers of silicon detectors and is
used for the determination of primary and secondary vertices, and for
charged-particle tracking. The TPC is a gas detector used for charged-
particle track reconstruction and momentum determination, and par-
ticle identification via the measurement of the specific energy loss
(dE/dx) of particles in the detector gas. The d E /dx resolution depends
on the event multiplicity and is about 5%-6.5% for minimum-ionizing
particles crossing the full volume of the TPC [61]. The particle identifi-
cation is extended at high pr using the TOF detector, which is located
at a radial distance of 3.7 m from the nominal interaction point. It mea-
sures the arrival time of particles relative to the event collision time
provided by the TOF detector itself or by the TO detectors. The TO
consists of two arrays of Cherenkov counters, TOA and TOC, located
on opposite sides of the interaction point, covering the pseudorapid-
ity regions 4.6 <5 <4.9 and —-3.3 <5 < —3.0. A weighted average is
performed when both TO and TOF detectors have measured the start
time [64]. The TOF time resolution is 56 ps [63].

Collision events are triggered by two plastic scintillator arrays, VOA
and VOC [65], located at asymmetric positions, one on each side of the
interaction point, covering the pseudorapidity regions —3.7 <y < —1.7
and 2.8 < < 5.1. Each VO array consists of four rings in the radial di-
rection, with each ring comprising eight cells with the same azimuthal
size. The VO detector is used to define the minimum-bias (MB) trig-
ger (requiring coincident signals in the VO detectors to be synchronous
with the bunch-crossing time defined by the LHC clock). The VO is also
used to reject background events like beam—gas interactions, collisions
with de-bunched protons, or with mechanical structures of the beam
line [65].

3. Data analysis

The analyzed data sample was collected in 2016, 2017, and 2018
during the LHC pp run at \/E = 13 TeV. Events with multiple vertices
identified from track segments in the two innermost layers of the ITS
are tagged as pile-up and removed from the analysis [61]. In order to
ensure full geometrical acceptance in the ITS for |5| < 0.9 and reject
background collisions, the coordinate of the primary vertex along the
beam axis is required to be within 10 cm from the nominal interaction
point. A total number of approximately 1.7 billion MB pp events were
analyzed, with a total integrated luminosity of about 22 nb™! [66].

The reconstructed tracks are required to fulfill the same set of quality
criteria of the corresponding analyses of antiprotons and antideuteron
production at midrapidity [28,67], with the only difference that in the
case of the present analysis no selections in pseudorapidity are ap-
plied, besides the ones enforced by the detector acceptance (|5| <0.9
in the ALICE central barrel). The antiproton (antideuteron) identifica-
tion is done at pr < 0.7 GeV/c (pr < 1.2 GeV/c) by requiring that its
energy loss per unit of track length measured by the TPC is within
304g/4¢ from the expected average for antiprotons (antideuterons),
where o4 /4y is the dE/dx resolution. For pr > 0.7 GeV/c for antipro-
tons and pr > 1.2 GeV/c for antideuterons, the dE/dx signal of the
TPC is complemented by the time-of-flight measured by the TOF de-
tector. The antiproton (antideuteron) signal is extracted from a fit to
the n(cTOF) = (fTOF — teTgF )/o, distribution, where ¢TF is the measured

time-of-flight, t;r)gF its expected value for protons (deuterons), divided
by the resolution on the time-of-flight measurement (o). The fit func-
tion consists of a Gaussian with an exponential tail for the signal and the
sum of two exponential functions for the background. The raw signal
yield is extracted by integrating the signal function in the asymmetric
interval [-36TOF + 45,3.56TOF + 4,1, where yj, is the mean of the Gaus-
sian. The acceptance of the ITS, TPC, and TOF detectors (|#| <0.9) limits
the rapidity coverage of the measurement. Hence, the analysis is per-
formed in seven rapidity intervals, 0.2 units wide, from —0.7 to 0.7. At
|y| larger than 0.7, the acceptance of the TPC and TOF detectors allows
for the reconstruction of deuterons only at high py (for |y| = 0.8, the
minimum pr of deuterons that can be reconstructed is ~ 3.5 GeV/c).
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However, in the high pr region (p > 3.5 GeV/c) deuterons cannot
be identified any longer because the background due to mismatched
tracks in the TOF is dominant with respect to the actual signal. The
amount of observed raw antiprotons is about 2 x10° in each of the first
five rapidity classes (]y| < 0.1 to 0.4 < |y| < 0.5), and decreasing to 1.5
x10° and 1 X103 in the two highest rapidity classes (0.5 < |y| < 0.6 and
0.6 < |y| < 0.7, respectively). For antideuterons, the amount of observed
raw counts is about 4 x10* in each of the first four rapidity classes
(Iy] <0.1 to 0.3 < |y| < 0.4), and decreasing to 2 x10%, 1 x10* and
5 x10% in the higher rapidity classes (0.4 < |y| < 0.5, 0.5 < |y| < 0.6
and 0.6 < |y| < 0.7, respectively). In both cases, the lower amount of
observed antinuclei at high rapidity is due to the smaller transverse mo-
mentum coverage and lower acceptance and reconstruction efficiency.

The raw antiproton and antideuteron py spectra are corrected for the
acceptance and reconstruction efficiency and, only for antiprotons, for
the fraction of secondary antiprotons produced by feed-down of weak
decays of A hyperons. Both corrections are calculated with Monte Carlo
(MC) simulations in which antinuclei are embedded into pp collision
events generated using PYTHIA 8.1 with the Monash 2013 tune [68].
Antinuclei are generated with uniform p and rapidity distributions in
(0 < pr <10) GeV/c and —1 < y < 1. The particle interactions in the
experimental apparatus are simulated using GEANT 4 as transport pack-
age [69]. The acceptance X efficiency, in each py and rapidity interval,
is calculated as the ratio of reconstructed and generated antiprotons and
antinuclei in the simulation, where the same track selection and PID cri-
teria as those used in the data are applied to the reconstructed sample in
MC. The resulting acceptance X efficiency depends on pr, rapidity, and
PID technique (either TPC only at low p, or TPC and TOF for p; > 0.7
GeV/c for antiprotons, and for pr > 1.2 GeV/c for antideuterons). For
the class |y| < 0.1, it varies from ~50% at low py to about 25% at high
pr, for antiprotons, and from ~80% at low py to about 40% at high pr,
for antideuterons. For the class 0.6 < |y| < 0.7, instead, the PID is done
only with the TOF, and the acceptance X efficiency varies from ~10%
at low py to about 30% at high pr, for antiprotons, and from ~20% at
low pr to about 45% at high py, for antideuterons.

In order to limit the contamination from secondary antiprotons from
feed-down of weak decays, the measured distance of closest approach
to the primary vertex in the transverse plane (DCA,,) and along the
beam direction (DCA,) is requested to be less than 0.1 cm and 1 cm, re-
spectively. To remove any remaining contamination of antiprotons from
weak decays, the secondary fraction is estimated in each py and rapid-
ity interval by fitting the distributions of the DCA,, using the template
method [18]. The DCA,, template distributions of primary (produced
in the collision at the primary vertex) and secondary antiprotons from
feed-down are taken from MC simulations. The resulting primary frac-
tion of antiprotons has a mild p; dependence, ranging from ~80% at
low pr to ~90% at high py.

The sources of systematic uncertainties on the transverse momentum
distributions considered for this analysis are related to (i) track selection
and particle identification, (ii) detector material budget, (iii) TPC-ITS
and TPC-TOF track matching efficiencies, (iv) hadronic interaction of
antiparticles with the detector material, and (v) signal loss (to account
for antiparticles lost in rejected events). The uncertainties related to (i)
are estimated for the present analysis and discussed below, while the
other ones are inherited, as relative uncertainties, from previous similar
analyses. The uncertainties due to (ii) and (v) are estimated as described
in Ref. [28], and those due to (iii) and (iv) are assessed as illustrated in
Ref. [31].

In order to assess the systematic uncertainties related to the track se-
lection, the analysis is repeated using 50 settings with different criteria.
These criteria are defined by randomly sampling the analysis parameters
from uniform probability distributions, such that their variations pro-
duce a raw yield variation of a maximum factor of two, in order to uni-
formly explore the full available phase-space. The efficiency-corrected
yields are distributed according to a Gaussian and the standard deviation
of this distribution is taken as systematic uncertainty. The uncertainties
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Table 1

Summary of the systematic uncertainties on the transverse momen-
tum distributions. The values reported in the table correspond to the
uncertainties of the rapidity class |y| < 0.1. For such class, low pp
corresponds to 0.375 GeV/c for antiprotons and to 0.75 GeV/c for
antideuterons, whereas high p;. corresponds to 1.95 GeV/c for antipro-
tons and to 3.2 GeV/c for antideuterons.

Source of uncertainty ~ plow p;  p high pp d low Pr d high Pr
Tracking and PID 4.5% 6% 1.5% 3%
Material budget <1% <1% <1% <1%
Matching efficiencies 3% 3% 1% 2.5%
Hadronic interaction 2% 2% 3% 4%
Signal loss - - 1% <1%
Total 6% 7% 4% 6%

connected to the particle identification are given by two contributions.
One is estimated by extending or narrowing the integration intervals by
+1o and it is determined by calculating the standard deviation of the
distribution of the fully corrected yields, in each pr and rapidity inter-
val, similarly to what was done in Ref. [28]. In addition, it is included
the small contribution (~ 1%) due to the difference between the yield
extracted by the integral of the fit function which describes the signal
and that of the histogram after the subtraction of the background. In
the case of antiprotons, also the contribution related to the secondary
fraction of antiprotons from weak decays is included in (i), hence the
uncertainty is larger for antiprotons than for antideuterons. For this un-
certainty, the DCA selection criteria (both in the perpendicular plane
DCA,,, and along the beam axis DCA) are also changed 50 times, and
each time the corresponding primary fraction is used for correction. The
total systematic uncertainties are obtained by summing in quadrature all
the individual contributions, which are summarized in Table 1. Within
the studied rapidity range, the systematic uncertainties have been found
to be independent of the analyzed rapidity interval.

4. Results

The pr-differential yields per unit of rapidity (d>N /dprdy) of an-
tiprotons and antideuterons in MB events and analyzed rapidity inter-
vals are shown in Fig. 1. The results are consistent with those measured
in |y| < 0.5 [28,67]. The final transverse-momentum distributions are
fitted using the Lévy-Tsallis function [70] to extrapolate the yields to
the unmeasured regions. The Lévy-Tsallis fits of the spectra in the high-
rapidity intervals (|y| > 0.5) are constrained to the spectrum in the
lowest rapidity interval (|y| < 0.1), such that the normalization is always
adjusted during the fit while the shape is constrained to the spectrum at
low rapidity, which covers a broader pr range. This procedure assumes
that the shape of the py spectra is independent of rapidity, and this as-
sumption was validated by the rather stable y?/NDF values of the fits
across the studied rapidity interval. In order to obtain the integrated
yields, the integrals of the data points of the transverse momentum
spectra in the measured regions are summed to the integrals of the fit
functions at low (down to 0) and high (up to 10 GeV/c) py. The result-
ing pr-integrated yields (d N /dy) of antiprotons and antideuterons are
shown in Fig. 2. The measured integrated yields of both species show a
flat trend with rapidity, up to |y| = 0.7. The antiproton integrated yields
as a function of rapidity are compared with the predictions of two event
generators, namely PYTHIA 8 [68], with two different tunes (described
in the following), and EPOS 3 [71,72]. The measured antideuteron yields
are compared with the predictions of three models, based on different
assumptions and making use of different event generators. Two of these
models use PYTHIA 8 [68] as event generator, the third EPos 3 [71,72].
While for antiprotons the event generators produce the desired particles
directly, there are no antideuterons natively in the MC and their produc-
tion is included as an afterburner with the coalescence model, on top of
the events generated using the two event generators. All models shown
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in Fig. 2 are normalized to data, by dividing the yields obtained with the
simulations by a factor corresponding to the ratio between the measured
yield and the simulated one in the lowest rapidity interval (|y| < 0.1),
since the natural abundances of particles are not well reproduced by the
event generators.

In the first approach, already used in Ref. [36] and described in
detail in the corresponding Supplemental Material [73], the phase
space distributions of antinucleons are generated with PYTHIA 8 with
the Monash 2013 tune [68], and their pr spectra are re-weighted to
match the measured antiproton p; spectra. In this simple model, all
spatial correlations are ignored and the antideuteron is formed if an
antiproton and an antineutron have a momentum difference below a
given coalescence momentum Ap < p, in the antideuteron rest frame.
The best estimate of the coalescence momentum for this model is
Py =(285+1) MeV/c [36]. The second approach is a reaction-based
model [74], where antideuterons are generated by ordinary nuclear
reactions between antinucleons produced in the collision with parame-
terized energy-dependent cross sections tuned on available experimental
data [75], as implemented in the MC event generator PYTHIA 8.3. Both,
the simple coalescence and the reaction-based model, are based on the
simplistic assumption that coalescence can happen only if antiprotons
and antineutrons are close in momentum space, while all spatial cor-
relations are neglected, and the nucleus wave function does not come
into play. The third approach is a state-of-the-art coalescence model [57]
based on the Wigner function formalism, applied as an afterburner to the
nucleons generated with the EPOS 3 event generator. In such a model,
the quantum-mechanical properties of the nucleus are taken into ac-
count through its Wigner function. Antideuterons are formed following
a probability calculated on an event-by-event basis, by folding the spa-
tial distribution of nucleons with the Wigner function of the final bound

state. The coalescence model is very sensitive to the source size, i.e.,
the size of the particle-emitting source that can be measured using fem-
toscopy with two-particle correlations [76]. Since the one implemented
in EPOS 3 does not reproduce the measurements [57], a parameteriza-
tion of the transverse-mass (my) dependence of the measured source
size for high-multiplicity events (ry = 1.249 fm [77]) scaled to the min-
imum bias value (ry = 1.18 fm [78]) was used. It has to be noted that
the average values of transverse mass, (my), of the high multiplicity
sample (corresponding to the interval of 0-0.17% in multiplicity) and
of the minimum bias one (full multiplicity 0-100%) differ by ~ 10%.
Nonetheless, the source size is assumed to be independent of rapidity.
Note also that the integrated yields predicted by the models are scaled
to the data, while the shapes of the pr distributions are not modified.
Therefore, the models are no longer sensitive to the magnitude of the
source size used for the calculations, but only to its m trend. Addition-
ally, the predictions are obtained using the Argonne v;3 wavefunction
which was shown to give the best predictions for the antideuteron mo-
mentum distribution [57]. In this way, one obtains predictions using a
realistic coalescence model, which considers not only the momentum
distributions of nucleons but also their spatial correlations, as well as
the quantum-mechanical nature of the coalescence process. The inte-
grated yields of antiprotons and antideuterons as a function of rapidity
obtained with the event generators and with the three models previ-
ously described show a similar trend, rather flat at low rapidities (|y| <
1.5) and decreasing starting from rapidity about 1.5, up to the kinematic
limit of |y| ~ 9.5, related to the collision system and energy. However,
while the predictions of the models based on PYTHIA 8 and simple co-
alescence are roughly equal in the full rapidity interval (0-9.5), a large
difference, for rapidity larger than 1.5, is observed between these mod-
els and the third one in which the distributions of the antinucleons are
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the reported scale and, hence, not visible.

obtained using EPOS 3 and a state-of-the-art model for deuteron forma-
tion via coalescence.

Using Eq. (1), the coalescence parameters B, in the different rapidity
classes are calculated and shown in Fig. 3, in comparison with predic-
tions from PYTHIA 8.3 (left panel) and from EPOS 3 with the coalescence
model of Ref. [57] used as afterburner (right panel). For the computa-
tion of the uncertainties on the B, parameter, the invariant yields of
antiprotons and antideuterons are considered uncorrelated and their un-
certainties are propagated accordingly. The predictions obtained with
PyYTHIA 8 with the Monash 2013 tune have a negligible difference with
respect to the predictions obtained with PYTHIA 8.3, and therefore not
shown in the following. In the models, the antiproton p; distributions
are reweighted to the measured ones, while the antideuterons are only
scaled to the integrated measured yields, and their p; shapes are not
changed. The rising trend of the coalescence parameters with pyp/A is
well reproduced by the two models. Since larger coalescence parame-
ters correspond to smaller source sizes (at higher pr), this result reflects
the observed decreasing trend of the source size with (my) [76].

Finally, selecting intervals of py/A, it is interesting to look at the
trend of the coalescence parameter as a function of rapidity. The rapid-
ity dependence of B, is shown in Fig. 4 and compared with predictions
from PYTHIA 8.3 (left panel) and from a coalescence model [57] used as
afterburner of EPOS 3 (right panel). As for the yields, the coalescence pa-
rameter is flat in the rapidity region investigated by the measurements.
The models reproduce the measured trend, mostly with an agreement
within 2¢. Some deviations beyond the 2¢ level are present at high
pr/A (> 1.5 GeV/c) for the model based on PYTHIA 8.3. A similar trend
of B,, flat as a function of rapidity, was also observed by the BRAHMS
Collaboration in central Au-Au collisions at m =200 GeV [13].

The models shown in Figs. 3 and 4 have similar statistical uncer-
tainties, of about 10%, which are reflected in the width of the colored
bands.

The flux of antideuterons from cosmic rays as a function of rigidity,
reported in Fig. 1 of Ref. [79], is predicted with the model of Ref. [4]
using the coalescence parameter B, measured at midrapidity in pp colli-
sions at \/_ = 7 TeV with ALICE [80]. The rapidity and p; dependencies
of the coalescence parameters predicted by PYTHIA 8.3 and EPOS 3,
scaled to match the experimental measurements in the first py interval
reported here, are extrapolated at high p; (p1 > 1.7 GeV/c) and forward
rapidity (]y| > 0.7) and provided to the authors of Refs. [4,79]. In these
models, the B, distributions are substantially flat as a function of rapid-
ity and increase monotonically as a function of pr /A. No difference is
found in the shape of the antideuteron flux shown in Fig. 1 of Ref. [79],
either using the different models presented in this Letter or using the
B, measured at midrapidity in pp collisions at \/— =7 TeV [80]. A con-
stant B, as a function of rapidity is a common assumption in several CR
models. However, in the coalescence models presented in this work, the
trend with rapidity of B, is investigated for the first time. Additionally,

in Ref. [79], the author investigates the role of the rapidity extrapo-
lation in predicting the cosmic ray flux of antinuclei (i.e., antiprotons,
antideuterons, and antihelium-3), by setting the production cross section
to zero in different kinematical regions. The results for the antideuteron
flux from CR, presented in Fig. 1 of Ref. [79], show that at low kinetic
energies, corresponding to rigidity R <5 GV (being the rigidity defined
as R= %, where p is the momentum, c is the speed of light, and Ze is
the charge of the cosmic-ray particle), about 90% of the flux is due to an-
tideuterons with rapidity larger than 0.5. This kinematical region is also
the one where the CR flux is expected to be dominated by the DM signal,
according to many cosmological models [5], and hence of high impact
for astrophysics. Therefore, it is important to measure the coalescence
parameter in the rapidity region |y| > 0.5, in order to use experimen-
tal measurements as input for the astrophysical models. Moreover, the
results of the antideuteron flux show that LHC experiments (such as
LHCb [81-83] in its fixed-target configuration, and the future ALICE
3 facility [84]) are expected to fill the rapidity gap (0.5 < |y| < 1.5)
providing measurements of production yields of antinuclei. These mea-
surements would be of important use to the astrophysics community
for the calculation of the flux of antinuclei from cosmic rays, to avoid
relying on the model extrapolation at forward rapidities.

5. Summary

In this Letter, the pp-differential yields of antideuterons and an-
tiprotons as a function of rapidity are measured in pp collisions at
\/E =13 TeV, for the first time rapidity-differentially up to |y| = 0.7.
Using the measured spectra, the pr and rapidity dependence of the coa-
lescence parameter B, is explored. Both the antiproton and antideuteron
integrated yields, and the B, are found to be independent of rapidity in
the measured range. The rapidity dependence of the obtained yields and
B, is extrapolated for |y| > 0.7 using phenomenological antideuteron
production models based on coalescence, making use of PYTHIA and
EPOs 3 as event generators. The resulting predictions of B, as a func-
tion of py and rapidity are used as input for the model of Ref. [4], to
investigate the role of the rapidity dependence of the coalescence param-
eter in the predictions of the flux of antinuclei from cosmic rays [79].
No impact on the predictions of the flux of antideuterons from CRs is
seen when including the flat rapidity dependence of B, predicted with
the models presented in this Letter, with respect to the predictions that
use the B, measured at midrapidity in pp collisions at \/— =7 TeV [80].
However, as pointed out in Ref. [79], at low kinetic energies (E,;, <1
GeV/nucleon) about 90% of the flux is due to antideuterons with rapid-
ity between 0.5 and 1.5. Hence, the rapidity-dependent measurements
of the production yields and coalescence probability of antinuclei in
the region 0.5 < |y| < 1.5 are a crucial input for CR models. These mea-
surements have a fundamental impact on astrophysical indirect searches
for dark matter, as the antinuclei produced from CR interactions are
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the dominant background source in the region of low kinetic energies.
This measurement can be extended in the rapidity interval of interest
by other facilities, present or future, such as LHCb [81,83] and ALICE
3 [84].
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