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Deuterons are atomic nuclei composed of a neutron and a proton held together by the strong interaction.
Unbound ensembles composed of a deuteron and a third nucleon have been investigated in the past using
scattering experiments, and they constitute a fundamental reference in nuclear physics to constrain nuclear
interactions and the properties of nuclei. In this work, Kþ-d and p-d femtoscopic correlations measured by
the ALICE Collaboration in proton-proton (pp) collisions at
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p ¼ 13 TeV at the Large Hadron Collider
(LHC) are presented. It is demonstrated that correlations in momentum space between deuterons and kaons
or protons allow us to study three-hadron systems at distances comparable with the proton radius. The
analysis of the Kþ-d correlation shows that the relative distances at which deuterons and protons or kaons
are produced are around 2 fm. The analysis of the p-d correlation shows that only a full three-body
calculation that accounts for the internal structure of the deuteron can explain the data. In particular, the
sensitivity of the observable to the short-range part of the interaction is demonstrated. These results indicate
that correlations involving light nuclei in pp collisions at the LHC will also provide access to any three-
body system in the strange and charm sectors.
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I. INTRODUCTION

The study of multibody systems is a key aspect of
modern nuclear physics because of its relevance for the
structure of nuclear bound states [1–3] and for the equation
of state of dense nuclear matter [4,5]. Effects that go
beyond the simple addition of the strong interaction
between pairs of nucleons emerge already in the description
of the most basic properties of light nuclei. Realistic
potentials describing nucleon-nucleon interactions [6,7]
have therefore been complemented with phenomenological
models of three-nucleon forces [8,9]. In calculations using
potentials derived from chiral effective field theories
(EFTs) [2,10], the multibody forces appear naturally as
subleading terms in the chiral expansion. They find con-
tributions of the order of 10% to the ground-state energies
of A ≤ 12 nuclei from genuine three-body nucleon forces
[11,12], and deliver predictions for heavier and neutron-
rich nuclear structures.
In this context, two-nucleon scattering data and proper-

ties of the A ¼ 3 systems are still the most important
ingredients to constrain the parameters of nuclear inter-
actions derived from EFT [13–15]. In particular, differential

scattering observables for the p-d system have allowed for
the computation of a full-fledged three-body wave function
that accounts for all the relevant two- and three-body
interactions at work in the p-(pn) system for the short
and the asymptotic ranges, providing an excellent descrip-
tion of the p-d scattering data [16–18]. In this work, it is
demonstrated that such a standard candle of the three-body
nuclear interaction can also be investigated by means of
p-d correlations in momentum space measured at the LHC.
Momentum correlations of the deuteron with other

hadron species have already been considered as a tool to
study both the deuteron production mechanism [19] and the
final-state interactions for multibody systems. Different
experimental correlations such as p-d and d-d have been
measured [20–23] in O-Au reactions at E=A ¼ 25, 35, and
60 MeV and in 40Ar-58Ni reactions at 77 MeV/u. The data
showed a clear signature of the strong final-state interaction
among light nuclei and nucleons, but the specific descrip-
tion of the process from a multibody perspective, as well as
the tools to precisely measure the relative distances
between particles, were not available at the time of those
analyses.
Deuteron-hadron momentum correlations can also be

investigated at the LHC, since light (anti)nuclei can be
abundantly produced and accurately measured in ultra-
relativistic nucleus-nucleus collisions [24–32]. Recent
femtoscopy analyses carried out by ALICE in pp, p-Pb,
and Pb-Pb collisions have demonstrated that it is possible to
study the strong interaction among several hadron pairs
[33–39] given the short distances at which hadrons can be
produced in such colliding systems [40].
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In this work, by means of a comprehensive study of the
Kþ-d and p-d correlation functions measured in pp
collisions at center-of-mass energy

ffiffiffi
s

p ¼ 13 TeV with
the ALICE detector at the LHC, evidence is provided that
deuterons are formed at average distances of the order of
2 fm from other hadrons. The measurement of the p-d
correlation at such short distances constitutes an innovative
method to study three-body systems at the LHC, with the
potential of extending such studies to the strangeness and
charm sectors. Indeed, in the strangeness sector, a similar
approach to the one adopted for standard nuclear physics is
envisaged for the future by improving the database of
hypernuclei [41–43], scattering experiments [44], and
femtoscopy measurements in hadron-hadron collisions
[45,46]. Direct measurements of the hyperon-deuteron
systems at short distances would provide complementary
information to these standard methods.

II. CORRELATION FUNCTION FROM
SCATTERING PARAMETERS

Final-state interactions involving light nuclei such as
deuterons have been studied in the past via scattering
experiments [47–51]. In scattering theory, the nuclear
interaction in the asymptotic regime can be investigated
by associating a plane wave with the incoming particle and
building the outgoing wave as a superposition of spherical
waves with phase shifts δl, with l denoting the relative
angular momentum between the projectile and the target.
The interaction determines the values of δl, and for l ¼ 0,
referred to as s-wave scattering, a scattering length a0 is
commonly used to characterize the interaction at zero
energy and can be related to the differential cross section
measured in scattering experiments. These measurements
also enable the determination of the effective range of the
interaction d0.
Scattering experiments have been already performed for

the Kþ-d and p-d systems allowing for the extraction of the

corresponding scattering parameters, as reported in Table I.
In the case ofKþ-d, such parameters are spin averaged, and
they are calculated with two different methods: (i) via an
effective range fit (ER) to the cross-section predictions at
threshold anchored to the available scattering data [52] and
(ii) from the well-known K-N interactions [53] using the
fixed-center approximation (FCA) [54]. The negative
values of theKþ-d scattering length (a0) refer to a repulsive
strong interaction. In the case of the p-d system, the
parameters for the spin doublet (S ¼ 1=2) and quartet
(S ¼ 3=2) channels were obtained by using theoretical
calculations [55–59] and a vast collection of scattering data
[47–51]. The positive sign of the p-d scattering parameters
reported in Table I corresponds to a repulsive interaction for
the quartet state (S ¼ 3=2), but for the doublet state
(S ¼ 1=2), the 3He bound state emerges, and the standard
effective range expansion has to be modified [see Eq. (2)
in Ref. [58] ].
An alternative method to test the accuracy of the relative

wave function in a two-hadron system is the measurement
of the correlation function among the pairs of interest
produced in hadron-hadron collisions [36]. The theoretical
correlation function can be expressed [60,61] as
Cðk�Þ ¼ R

d3r�Sðr�Þjψðk�; r�Þj2, where Sðr�Þ is the dis-
tribution of the distance r� between the emitted particles in
a hadron-hadron collision defining the particle source,
ψðk�; r�Þ represents the wave function of the relative
motion for the pair of interest, and k� is the reduced
relative momentum of the pair (k� ¼ jp�

2 − p�
1j=2). The

asterisk indicates that the quantities are evaluated in the pair
rest frame, where p�

1 ¼ −p�
2. The Lednický-Lyuboshitz

(LL) formalism [62,63] provides a simplified analytical
treatment of the wave function (see the Appendix for
details) that can relate the correlation function to its
asymptotic behavior where the core nuclear strong inter-
action is not considered. The analytical formula for the
correlation function is obtained assuming a Gaussian
source distribution in r� and a single set of scattering

TABLE I. Scattering lengths a0 and effective ranges d0 for the p-d and Kþ-d s-wave states. For the p-d, the two
spin states (doublet and quartet) are reported. For the meson-baryon system, the negative values of scattering length
refer to a repulsive interaction. For the baryon-baryon system, negative and positive values of a0 refer to attractive
and repulsive interactions (for cases where the potential does not support two-body bound states), respectively.

Spin averaged S ¼ 1=2 S ¼ 3=2

System a0 (fm) d0 (fm) a0 (fm) d0 (fm) a0 (fm) d0 (fm) References

Kþ-d −0.470 1.75 � � � � � � � � � � � � ER [52]
−0.540 0.0 � � � � � � � � � � � � FCA [53,54]

p-d 2.73þ0.10
−0.10 2.27þ0.12−0.12 11.88−0.10þ0.40 2.63þ0.01−0.02 Arvieux [55]

1.30þ0.20
−0.20 � � � 11.40þ1.80

−1.20 2.05þ0.25−0.25 Van Oers [56]
4.0 � � � 11.1 � � � Huttel et al. [57]

0.024 � � � 13.8 � � � Kievsky et al. [58]
−0.13þ0.04

−0.04 � � � 14.70þ2.30
−2.30 � � � Black et al. [59]
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parameters. The formula is averaged over spin and isospin
and considers only s wave in the scattering process.
Experimentally, the correlation function is defined as

Cðk�Þ ¼ ξðk�Þ ⊗ ½Nsameðk�Þ=Nmixedðk�Þ�, where ξðk�Þ
denotes the corrections for experimental effects (see the
Appendix for details), Nsameðk�Þ is the number of detected
particle pairs in a given k� interval obtained by combining
particles produced in the same collision (event), which
constitute a sample of correlated pairs, andNmixedðk�Þ is the
number of uncorrelated pairs in the same k� interval
obtained by combining particles produced in different
collisions (mixed events). In this work, the interest resides
in studying the final-state interaction for Kþ-d and p-d
pairs produced in pp collisions at

ffiffiffi
s

p ¼ 13 TeV. The
analyzed dataset is collected using an online trigger to
select high-multiplicity pp collisions to enhance the pair
sample size. Kaon (Kþ), antikaon (K−), proton (p),
antiproton (p), deuteron (d), and antideuteron (d̄) tracks
are reconstructed with the ALICE detector, and their
momentum in the laboratory frame p is measured in the
range p∈ ½0.2; 4.1� GeV=c. The particle identification is
carried out using measurements of the specific energy loss
in a time-projection chamber (TPC) and time-of-flight
(TOF) detector, resulting in samples of Kþ (K−), p (p̄),
d (d̄) with a purity of 99.8% (99.8%), 98.2% (97.9%), and
100% (100%), respectively, as estimated via Monte Carlo
simulations. Details on the experimental methods and the
evaluation of the systematic uncertainties are described in
the Appendix. Once the kaons, protons, and deuterons (and
charge conjugates) are selected and their three-momenta
measured, the correlation functions can be built. Since it is
assumed that the same interaction governs hadron-

hadron and antihadron-antihadron pairs [33], in the follow-
ing, the sum of particles and antiparticles is considered
(Kþ-d≡ Kþ-d ⊕ K−-d̄ and p-d≡ p-d ⊕ p̄ − d̄).
Figure 1 shows the Kþ-d (left panel) and p-d (right

panel) correlation functions as a function of k� measured in
pp collisions at

ffiffiffi
s

p ¼ 13 TeV with ALICE. Both corre-
lation functions are below unity for values of k� smaller
than 200 MeV=c, indicating an overall repulsive interac-
tion. The measured correlation functions are compared to
calculations performed using the LL approximation con-
sidering either only the Coulomb interaction or, in addition,
the strong interaction part determined by the scattering
parameters reported in Table I for the Kþ-d and p-d
systems. In order to compare the experimental data to
the LL calculations, the source term included in the formula
of the correlation function and the feed-down corrections
due to particle decays and residual background contribu-
tions are needed to match the experimental measurements.
The source term has been approximated as a Gaussian

distribution, whose width defining the source size needs to
be evaluated. The values of the p-d and Kþ-d source sizes
have been obtained from the results of independent
analyses of p-p, Kþ-p, and π-π correlations, which have
demonstrated the existence of a universal source for any
hadron-hadron pair in pp collisions at the LHC [40,64] and
have indicated that the source size decreases with an
increasing value of the pair transverse mass mT (see the
Appendix). In addition, further modifications of the source
distribution due to strong decays of short-lived resonances
decaying into protons and kaons have been taken into
account. For p-d pairs, an effective source size of
rp-deff ¼ 1.08� 0.06 fm has been obtained. For the Kþ-d
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FIG. 1. Measured Kþ-d (left) and p-d (right) correlation functions. The data are shown by the black symbols; the bars and the colored
boxes represent the statistical and systematic uncertainties, respectively. The square brackets show the bin width of the measurement,
while the horizontal black lines represent the statistical uncertainty in the determination of the mean k� for each bin. Data are compared
with theoretical correlation functions shown by colored bands obtained using the LL approximation. The bandwidths represent the
uncertainties in the determination of the radius and the residual contributions. See text for details.
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pairs, the contribution of broad resonances with very
different decay times has been taken into account, and
the effective source has resulted in rK

þ-d
eff ¼ 1.35þ0.04

−0.05 fm.
Note that such small source sizes imply that the most
probable distance between particles is around 2 fm [65].
The calculated correlation functions using the LL

method shown by the colored bands in Fig. 1 have been
corrected for feed-down from weak and strong decays and
residual background contributions, using the data-driven
methods described in Refs. [33,66], respectively. The
relative contributions from primarily produced Kþ-d and
p-d pairs to the corresponding inclusive sample have been
obtained experimentally and are 0.92 and 0.82, respec-
tively. The residual background contribution is shown as
the gray-colored band close to unity. The width of the
theoretical bands stems from the uncertainty propagation of
the experimental determination of the source size, feed-
down, and residual background. Additional information on
the source size and the different contributions to the
correlation function is provided in the Appendix.
The measured Kþ-d correlation function is lower than

the Coulomb-only prediction showing the presence of a
repulsive strong interaction. The calculations with the LL
approximation using both sets of scattering parameters (ER
and FCA) provide an excellent description of the exper-
imental correlation function within uncertainties. Indeed,
since both the Coulomb and the strong Kþ-d interactions
are repulsive at any distance and there is no feature of the
strong interaction that manifests only at very short dis-
tances, an asymptotic description is sufficient to reproduce
the data. Additionally, kaons are bosons, and the proton and
neutron that constitute the deuteron are fermions; hence,
the LL approximation of pointlike and distinguishable
particles is pertinent, and the properties of the deuteron
are mapped in the Kþ-d scattering parameters. Hence,
given a known interaction and the precise ALICE data,
from the expression Cðk�Þ ¼ R

d3r�Sðr�Þjψðk�; r�Þj2, one
can estimate the source function, even when deuterons are
at play. The agreement between the model and the data
obtained for the small radius (rK

þ-d
eff ¼ 1.35þ0.04

−0.05 fm) that
follows the samemT scaling as all other hadron pairs shows
that deuterons are produced at small distances with respect
to other hadrons in pp collisions at the LHC, and this result
provides an excellent reference for the source term of
correlations involving deuterons.
Instead, a huge discrepancy is observed when comparing

the p-d data to analogous calculations which consider
protons and deuterons as distinguishable pointlike particles
and employing the small source size obtained from the mT
scaling. This discrepancy can be seen by comparing the
measured p-d correlation in the right panel of Fig. 1 to the
five different blue shaded curves which are obtained using
the five sets of scattering lengths reported in Table I.
The limitations of the LL approximation in describing in

detail the p-d interaction are several. The existence of the

3He bound state introduces a particular short-range behav-
ior in the doublet state due to orthogonality requirements.
Moreover, the spin structure of the quartet state is com-
pletely symmetric, implying as well a specific short-range
behavior of the corresponding spatial part to fulfill the
requirements of the Pauli principle. In addition, the correct
antisymmetrization of the wave function is not considered
in the LL approximation, and such short-range features of
the interactions are not taken into account. On the other
hand, the correlation function obtained with the Coulomb-
only assumption (green curve in the right panel of Fig. 1)
catches the correct amplitude of the experimental p-d
correlation function despite the sizable scattering param-
eters reported in Table I. This apparent mismatch is due to
the fact that in this case, the Coulomb repulsion between
the proton and the deuteron reduces the impact of the short-
range part of the wave function in the correlation function,
and the three-fermion system is not correctly treated within
the LL approximation even if only the Coulomb interaction
is considered.

III. CORRELATION FUNCTION
OF A THREE-BODY SYSTEM

In order to correctly describe the three-body system p-
(pn), the microscopic p-dwave function must be employed
in the calculation of the p-d correlation function. The latter
has been obtained by projecting the p-d wave functions on
the initial three-nucleon state created after the pp colli-
sions. The relevant source term in this calculation depends
on an effective nucleon-nucleon source radius rNN

eff [67,68],
since the single nucleons are the relevant degrees of
freedom. Details of the calculation are presented in the
Appendix and in Ref. [69].
Three different versions of the p-d wave function have

been investigated to study the microscopic behavior of the
p-d system. First, a Born approximation of the p-d wave
function that contains the correct antisymmetrization for
the p-(pn) system but where the short-range contribution of
the wave function has been omitted. Hence, this calculation
accounts only for the asymptotic part of the wave function
similar to the LL model but considers the microscopic
structure of the p-d system.
The left panel of Fig. 2 shows how the Born approxi-

mation compares to the experimental data, including nσ
values that quantify the data-model deviation. It can be seen
that this calculation is not sufficiently accurate to reproduce
the data, although the antisymmetrization is correctly
accounted for. For k� below 60 MeV=c, this calculation
predicts nonphysical values, and therefore they are
excluded from the figure. In the same panel, the compari-
son to the full-fledged Coulomb-only calculation consid-
ering the dynamics of three nucleons in the p-d system is
shown as well, indicating also a clear disagreement with
the data.
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The second wave function that has been tested has been
obtained employing the hyperspherical harmonics (HH)
method [16]. It accounts for all the relevant two- and three-
body interactions at work in the p-(pn) system for the short
and the asymptotic range, it accurately describes the three-
body dynamics, and it is calculated using p-d scattering
observables [16–18]. The nuclear interaction includes the
AV18 two-nucleon (NN) [6] plus the Urbana IX (UIX)
three-nucleon (NNN) [8] and the Coulomb potentials. The
blue curve in the right panel of Fig. 2 has been obtained by
including the NN and NNN interactions only in the Jπ ¼
1
2
þ; 3

2
þ partial waves relative to the p-d system, which are

dominated by the s-wave contributions [69]. The nσ
distribution in the lower panel shows that this calculation
describes the data moderately well but fails in the small
relative momentum part. The agreement improves when
more partial waves up to Jπ ¼ 7

2
− are included in the

calculation, where the p wave contribute predominantly, as
it is shown by the red curve of the right panel of Fig. 2. The
correlation function from the full calculation is multiplied
by a baseline (gray curve in Fig. 2) that describes the
residual background. The parameters of the baseline are
obtained by fitting the data and driven by the large-k� region;
see the Appendix for details. The same background is used

for the comparison of the other calculations, and the curves’
widths represent the propagated uncertainty of the source
parameter and baseline. The full calculation describes the
experimental data very accurately, as indicated by the nσ
values for the red band remaining consistently close to or
below 1 across the entire range of k�.
As an additional check, the light red band in the right

panel of Fig. 2 shows the p-d correlation function calcu-
lated in pionless effective field theory [70] (pionless EFT)
calculation at next-to-leading order (NLO). The nuclear
interaction within this approach is much simpler than the
AV18þ UIX potential [69]; the NN interaction is deter-
mined by only the s-wave NN scattering lengths and
effective ranges up to NLO, while the NNN interaction
is fixed by either the 3H binding energy or the n-d s-wave
scattering length. For the pionless EFT calculation, the
additional uncertainty from truncating the EFTexpansion at
NLO can be estimated as 10%. Taking this into account, in
the regime where the theory is applicable (k� below the
pion mass of approximately 140 MeV=c), the pionless EFT
results are largely compatible with the HH calculation using
the AV18þ UIX force.
The fact that the experimental p-d correlation function

can be described only by a full-fledged calculation of a
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FIG. 2. Measured p-d correlation function plotted as a function of the p-d relative momentum k� alongside theoretical calculations.
The experimental data are represented by circular symbols. The black vertical bars and orange boxes correspond to the statistical and
systematic uncertainties, respectively. The square brackets indicate the measurement bin width, and the horizontal black lines represent
the statistical uncertainty in the determination of the mean k� for each bin. The nonfemtoscopic background contributions are
represented by the gray band of the cubic baseline. Left panel: the orange and turquoise bands depict calculations obtained using an
optimized Born approximation and Coulomb þ antisymmetrization of the three-particle wave function, respectively. Right panel: The
dark red band represents a fit of the modeled correlation calculated considering p-d as a three-body system with all relevant partial
waves (see text). The blue-colored band corresponds to a calculation that includes only Jπ ¼ 1

2
þ; 3
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þ partial waves relative to the p-d

system, which are dominated by the s-wave contributions [69] and thus labeled with s�. The light red band represents a calculation of the
correlation function using pionless EFT at next-to-leading order (see text). All calculations are multiplied by the cubic baseline, and the
bandwidths of all calculations account for uncertainties in the determination of the radius and residual contributions. The lower panels
present the difference between the measured and calculated correlation function expressed as the number of standard deviations nσ
taking into account the statistical uncertainties of the data and the model uncertainties.
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three-body system that considers the single nucleons as
active degrees of freedom and that the shape of the
correlation function is also sensitive to the inclusion of
different partial waves in the interaction demonstrates for
the first time that deuteron-proton correlations measured in
pp collisions at the LHC access the three-nucleon system at
short distances. Indeed, past measurements of correlations
involving deuterons [20–23] have been interpreted by
means of the LL calculation combined with a value of
the source radius larger than the one found for other
hadron-hadron pairs in the same colliding system. This
misinterpretation of the data was caused by the lack of
correct microscopic calculations of the p-d system. It has to
be observed that the current formulation of the correlation
function does not guarantee invariance under unitarity
transformations for distances below 1 fm, and hence, the
sensitivity of the observable is limited to the range
r� > 1 fm. For the specific dataset analyzed in this work,
the distances obtained for the pair of interest are mostly
above 1.5 fm.
In order to test the sensitivity of the p-d correlation

function to genuine three-baryon interactions, the full-
fledged p-d calculation has been carried out excluding such
interactions [69]. Figure 3 shows the ratio of the calculated
p-d correlation with the AV18þ UIX interactions to the
calculation including only the AV18 NN interactions
evaluated for different values of the two-nucleon source
size rNN

eff . The current precision of the data does not allow for
testing such effects. However, this will be possible on the
larger data samples that will be collected during the LHC
Run 3 (2022–2025) with the ALICE upgraded apparatus

[71]. The integrated luminosity will be increased by 1 order
of magnitude with respect to the dataset used in the current
work [72]; such an enhancement not only allows us to
achieve precision below 1%, similar to the case of the two-
body correlation p-Λ [66], but also the differential study of
the interaction at small distances by triggering on p-d pairs
with large-mT values. Such studies can also be extended to
systems such Λ=Σ-d or Λþ

c -d to investigate three-baryon
systems in the strange and charm sectors which are other-
wise inaccessible. A combined analysis of p-Λ and Λ-d
systems will enable new experimental access to the isospin-
dependent hyperon-nucleon interaction.

ACKNOWLEDGMENTS

The ALICE Collaboration is grateful to Professor Johann
Haidenbauer and Professor Tetsuo Hyodo for providing the
derivation of the Kþ-d scattering parameters, and to
Stanisław Mrówczyński and Urs Wiedemann for fruitful
discussions. The ALICE Collaboration would like to thank
all its engineers and technicians for their invaluable con-
tributions to the construction of the experiment and the
CERN accelerator teams for the outstanding performance
of the LHC complex. The ALICE Collaboration gratefully
acknowledges the resources and support provided by all Grid
centers and the Worldwide LHC Computing Grid
Collaboration. The ALICE Collaboration acknowledges
the following funding agencies for their support in building
and running the ALICE detector: A. I. Alikhanyan National
Science Laboratory (Yerevan Physics Institute) Foundation,
State Committee of Science and World Federation of
Scientists, Armenia; Austrian Academy of Sciences,
Austrian Science Fund Grant No. M 2467-N36, and
Nationalstiftung für Forschung, Technologie und
Entwicklung, Austria; Ministry of Communications and
High Technologies, National Nuclear Research Center,
Azerbaijan; Conselho Nacional de Desenvolvimento
Científico e Tecnológico, Financiadora de Estudos e
Projetos, Fundação de Amparo à Pesquisa do Estado de
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APPENDIX: METHODS

1. Event selection

A data sample of inelastic pp collisions at
ffiffiffi
s

p ¼ 13 TeV
was recorded with ALICE [73,74] at the LHC. General
details on the event selection, pile-up rejection, and the
primary vertex reconstruction can be found in Ref. [75]. A
trigger that requires the total signal amplitude measured in
the V0 detector [76] to exceed a certain threshold was
employed to select high-multiplicity (HM) events. The V0
detector comprises two plastic scintillator arrays placed on
both sides of the interaction point at pseudorapidities 2.8 <
η < 5.1 and −3.7 < η < −1.7. The pseudorapidity is
defined as η ¼ − ln ½tan ðθ=2Þ�, where θ is the polar angle
of the particle with respect to the proton beam axis.
At

ffiffiffi
s

p ¼ 13 TeV, the average number of charged
particles produced in HM events in the range jηj < 0.5
is 30. This η range corresponds to the region within (26°) of
the transverse plane perpendicular to the beam axis. The
HM events constitute only 0.17% of the pp collisions that
produce at least one charged particle in the pseudorapidity
range jηj < 1.0. A total of 1 × 109 HM events were
analyzed. Additional details on the HM event selection
can be found in Ref. [75].

2. Particle tracking and identification

For the identification and momentum measurement of
charged particles, the Inner Tracking System (ITS) [77],
TPC [78], and TOF [79] detectors of ALICE are employed.
All three detectors are located inside a uniform magnetic
field generated by the L3 solenoid (0.5 T), leading to a
bending of the trajectories of charged particles. The
measurement of the curvature is used to reconstruct the
particle momenta. Typical transverse-momentum (pT) res-
olutions for kaons, protons, and deuterons vary from about
2% for tracks with pT ¼ 10 GeV=c to below 1% for
pT < 1 GeV=c. The particle identity is determined by
the energy lost per unit of track length inside the TPC
detector and by the particle velocity measured in the TOF
detector. For additional experimental details, see Ref. [74].
Basic details on the selection criteria of the proton, kaon,
and deuteron tracks used in this work can be found
in Ref. [80].
Kaons are identified via the measurement of the specific

energy loss in TPC within a momentum range p∈ ½0.2;
2.0� GeV=c. This information is combined with the time-
of-flight measurement for momentum p > 0.4 GeV=c. In
the kaon sample, the contamination from electrons pro-
duced via photon conversion in the detector material is
removed by excluding kaon candidates in the momentum
range 0.5 < p < 0.65 GeV=c. The selected candidates that
simultaneously fulfill the selection criteria of the pion
(using TPC and TOF information) or proton (using TPC
information) are also excluded from the sample.
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Protons are selected within a transverse-momentum
range of 0.5< pT < 4.05 GeV=c. They are identified by
requiring TPC information for candidate tracks with momen-
tum p < 0.75 GeV=c, while TPC and TOF information are
both required for candidates with p > 0.75 GeV=c. The
identification of deuterons is performed with the TPC in the
momentum range 0.4 < p < 1.4 GeV=c. For the analysis of
Kþ-d pairs, the deuteron acceptance is extended by using
TOF identification in the region 1.4 < p < 2.3 GeV=c.
The selection of kaons, protons, and deuterons constitute

the main source of systematic uncertainties associated with
the measured correlation function. All particle selection
criteria are varied with respect to their default values. In
order to account for the effect of possible correlations, the
analysis of Kþ-d (p-d) pairs is repeated 40 (44) times using
random combinations of such selection criteria. The asso-
ciated systematic uncertainty of the measured correlation
function for each k� point is given by the root-mean-square
of all 40 (44) resulting correlation functions. The total
systematic uncertainties are maximal at low k�, reaching a
value of 3% and 7% for Kþ-d and p-d, correspondingly.

3. Characterization of the source of particles

The distribution Sðr�Þ of the distance r� at which
particles are emitted is described by a Gaussian function
whose width characterizes the source size. In Ref. [40], the
baryon-baryon source sizes are determined as a function
of the transverse mass of the baryon-baryon pair
mT ¼ ðkT2 þm2Þ1=2, where m is the average mass, and
kT ¼ jpT;1 þ pT;2j=2 is the transverse momentum of the
pair. For p-d andKþ-d pairs, it is assumed that the common
source for all baryons still holds for any hadron-hadron pair
[40]. The measured hmTi for p-d and Kþ-d pairs are 1.64
and 1.50 GeV=c, respectively, implying source sizes of
rK

þ-d
core ¼ 1.04� 0.04 fm and rp-dcore ¼ 0.99� 0.05 fm, where
rcore denotes the width of the Gaussian distribution defining

the source before taking into account the effect produced by
short-lived resonances.
In pp collisions at

ffiffiffi
s

p ¼ 13 TeV, about 2=3 of the
protons and 1=3 of the kaons originate from the decay of
short-lived resonances with a lifetime ðcτÞ of a few fm.
Table II shows the major relative contributions to the proton
and kaon samples by several resonances, according to
statistical hadronization [81]. The effect of such resonances
on the source size is evaluated by folding theGaussian source
with an exponential distribution containing the resonance
decay constant, following Ref. [40]. The resulting source
distribution for p-d can be parametrized with an effective
Gaussian source radius equal to rp-deff ¼ 1.08� 0.06 fm. For
Kþ-d pairs, the resulting source distribution is described
using a sumof twoGaussian functionswith radii1.10� 0.04
and 2.14þ0.03

−0.07 fmwithweights of 0.76 and 0.24, respectively.
The effective source size quoted in the text rK

þ-d
eff ¼

1.35þ0.04
−0.05 fm results from the weighted sum of the two

Gaussians. Note that a description with a single Gaussian
(1G) for theKþ-d source distribution, including the effects of
resonances is not satisfactory, but it is nevertheless illus-
trative to compare the resulting radius of rK

þ-d
eff1G ¼ 1.22�

0.04 fm with the p-d radius rp-deff ¼ 1.08� 0.06 fm.
In the case of the three-body calculation for the p-d

system, the formalism requires as input the two-particle
source size for each pairwise source of the p-(pn) system.
For nucleon pairs, an average core source size of rNN

core ¼
1.35� 0.14 fm is estimated using the measured hmTi for
p-d and the measured hpTi of deuteron and protons below
k� < 400 MeV=c. The source size rNN

core is enhanced by the
strongly decaying resonances that feed to protons and
neutrons. Similar to the case of p-d and Kþ-d pairs, this
effect in the source size is taken into account by folding the
Gaussian source with an exponential distribution. The
resulting source distribution for NN pairs can be charac-
terized by an effective Gaussian source radius equal to

TABLE II. Fractions of protons and kaons feeding from the strongly decaying short-lived decays of resonances.
The contribution of kaons from the ϕð1020Þ decays are considered as feed-down to the correlation functions.

Protons Kaons

Resonances cτ (fm) Fractions (%) Resonances cτ (fm) Fractions (%)

Δþþ 1.64 21.87 K�ð892Þ0 3.89 21
Δþ 1.64 14.60 K�ð892Þþ 3.88 11
Δ0 1.64 7.20 a0ð980Þþ 2.63 1
Nð1440Þ0 0.56 0.91 K�

2ð1430Þ0 1.81 1
Nð1520Þ0 1.64 1.75 K�

1ð1270Þ0 2.19 1
Nð1680Þ0 1.52 1.15 ϕð1020Þ 46.32 (6)
Nð1535Þþ 1.31 1.02 � � � � � � � � �
Nð1440Þþ 0.56 0.91 � � � � � � � � �

S. ACHARYA et al. PHYS. REV. X 14, 031051 (2024)

031051-8



rNN
eff ¼ 1.43þ0.16

−0.16 fm. This source size is an average of
distances between the p-p and p-n pairs that form the
p-d system.

4. Corrections of the correlation function

The experimental correlation function defined as
Cðk�Þ ¼ ξðk�Þ ⊗ ½Nsameðk�Þ=Nmixedðk�Þ� is corrected via
ξðk�Þ for normalization and the unfolding of momentum
resolution effects. A normalization factor N is used to
correct for the different yields in same- and mixed-event
distributions. The value of the normalization factor is
chosen such that the mean value of the correlation
function is equal to unity. It is obtained by dividing the
integral of the Nsameðk�Þ and Nmixedðk�Þ in a region where
the effect of final-state interactions is negligible (for p-d,
200 < k� < 500 MeV=c and in the case of Kþ-d,
300 < k� < 600 MeV=c).
The shape of the measured correlation function is

affected by the finite resolution in the determination of
the momentum of particles. The measured same- and
mixed-event distributions are unfolded for the momentum
smearing using Monte Carlo (MC) simulations. The cor-
rection for the measured correlation function due to the
momentum resolution effect with the MC event generator is
found to be at most 3% for p-d and 9% for Kþ-d at low k�.
Moreover, the resolution effects due to the merging of
trajectories, which cross the detector at a distance compa-
rable with the spatial resolution of the detector (ITS or
TPC), are evaluated and found to be negligible.
While the measured p-d and Kþ-d correlation functions

are dominated by the interaction between p-d and Kþ-d
pairs consisting of primary particles produced in the
collision, they are also influenced by the effects caused
by the misidentification of particles and by the contribution
of secondary particles produced in weak decays. Because
of the large decay times of weakly decaying particles, the
final-state interaction between their decay products and the
primary particle of interest is absent, thus leading to either a
flat contribution or a residual signature of the interaction
with the parent hadron. The contributions to Cðk�Þ from the
genuine correlation of primary particles, the misidentified
hadrons, and the secondary particles are quantified by the
so-called λ parameters, which are computed from the purity
and the primary fraction of each particle species as
described in Ref. [33]. The λ parameters for the genuine
correlation function of p-d and Kþ-d are listed in Table III.
All residual correlations not stemming from genuine
primary pairs in the p-d and Kþ-d correlation functions
are assumed to be equal to unity regardless of the values of
k�, and the theoretical correlation functions shown in
Figs. 1 and 2 are corrected using the corresponding λ
parameters.
In addition to the residual correlation, the theoretical

correlation function is also corrected for the rising tail effect
of the experimental correlation in the region where the final-

state interaction is negligible and that can be originated from
effects such as energy conservation. A multiplicative cubic
baseline BLðk�Þ ¼ aþ bk�2 þ ck�3 is used to describe the
data at large k�. For Kþ-d correlations, the baseline is
prefitted in the region of 300 < k� < 1800 MeV=c. In the
case of the p-d correlation function, the parameters a, b, and
c are obtained from a fit to the data in the region 0 < k� <
700 MeV=c including the theoretical correlation function
and the multiplicative baseline. The baseline is represented
by the gray bands in Figs. 1 and 2.
The uncertainties on the determination of the residual

contributions, the baseline, and the source size are propa-
gated to the theoretical correlation functions and contribute,
together with the intrinsic theoretical uncertainties of each
model, to the width of the bands shown in Figs. 1 and 2.
The main contributions to the total uncertainty are those
derived from the baseline fit and the radius determination.
The former are evaluated by variations in the limits of the fit
range of �50 MeV=c for the upper and lower limits in the
case of Kþ-d, and �40 MeV=c in the upper limit for p-d.
The uncertainty of the radius is propagated from the
uncertainties in the parametrization of the mT scaling
according to Ref. [40], and it is of 6.2% (0.1%) and 2%
(2%) at k� ¼ 50 ð100Þ MeV=c for the p-d and Kþ-d pairs,
respectively.

5. The Lednický-Lyuboshitz model

The final-state interaction for two charged pointlike
particles has been modeled in Ref. [63]. The definition
of the relative s-wave function for a system of two charged
pointlike distinguishable particles is given as

ψðk�; r�Þ ¼ eiδc
ffiffiffiffiffiffiffiffiffiffiffi
AcðηÞ

p �
e−ik

�·r�Fð−iη; 1; iξÞ

þ fCðk�Þ
G̃ðρ; ηÞ
r�

�
; ðA1Þ

where η ¼ ðk�aCÞ−1, aC is the Bohr radius including the
sign of the interaction between the pair of particles,
ξ ¼ ρ(1þ cosðθ�Þ), and ρ ¼ k�r�, where θ� is the angle
between k� and r�. The term ACðηÞ ¼ 2πη½expð2πηÞ − 1�−1
is a Coulomb-barrier penetration factor, also known as the
Gamow factor. The Coulomb interaction (asymptotic
form) in the wave function is described by the term

TABLE III. λ parameters of the genuine particle pairs for p-d
and Kþ-d.

λ parameter Value

λpd 79.7%
λp̄ d̄ 84.1%
λKþd 90.1%
λK−d̄ 94.1%
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e−ik
�·r�Fðα; 1; zÞ together with G̃ðρ; ηÞ, where Fðα; 1; zÞ ¼

1þ ðαz=!2Þ þ þ½αðαþ 1Þz2=!22� þ � � � is a confluent
hypergeometric function and G̃ðρ; ηÞ ¼ ffiffiffiffiffiffi

Ac
p ðG0 þ iF0Þ is

a combination of the regular (F0) and singular (G0) s-wave
Coulomb functions. The strong nuclear interaction is com-
puted using the Coulomb-corrected scattering amplitude fC
defined as

fCðk�Þ ¼
�

1

−a0
þ d0k�2

2
− ik�ACðk�Þ −

2

aC
hðk�Þ

�−1
:

ðA2Þ

The function hðk�Þ is written as hðk�Þ ¼
½1=ðk�aCÞ2�

P∞
n¼1 ½nðn2 þ ðk�aCÞ−2Þ�−1 − γ þ ln jk�aCj,

where the constant γ ¼ 0.5772 is the Euler constant.

6. Three-body formalism for
the p-d correlation function

In order to account for the internal structure of the
deuteron, a calculation of the proton-deuteron correlation
function that includes a microscopic p-d wave function
Ψm2;m1

ðx; yÞ is carried out. This wave function accounts for
all the relevant two- and three-body interactions at work in
the p-(pn) system for the short and asymptotic ranges. It
accurately describes the three-body dynamics [16–18]
since it is tuned on p-d scattering observables. The
variables x and y are the Jacobi vectors of the system,
and they asymptotically denote the distance of the p-n
system within the deuteron and the p-d distance, respec-
tively. The indices m2 and m1 are quantum numbers of the
spin operators for the deuteron and the proton when they
are very well apart. The three-body correlation is calculated
using the formalism discussed in Refs. [67,68]. More
details about the employed wave functions and the com-
putation of the p-d correlation function can be found in
Ref. [69]. In general, the formalism is based on the
following expressions:

CpdðkÞ ¼
1

Ad

1

6

X
m2;m1

Z
d3r1d3r2d3r3S1ðr1ÞS1ðr2Þ

× S1ðr3ÞjΨm2;m1
j2; ðA3Þ

Ad ¼
1

3

X
m2

Z
d3r1d3r2S1ðr1ÞS1ðr2Þjϕm2

j2; ðA4Þ

S1ðrÞ ¼
1

ð2πR2
MÞ

3
2

e−r
2=2R2

M ; ðA5Þ

where ϕm2
is the deuteron wave function, and S1ðrÞ

represents the single particle source term of radius RM,
while the factor 6 in the denominator of Eq. (A3) takes into
account the possible spin configurations. The quantity Ad
can be related to the probability of deuteron formation in

the reaction. Note that in this calculation, the accurate p-d
wave function is different from the approximated form
employed in Refs. [67,68]. By considering a suitable
choice of coordinates, one can demonstrate [19] that the
parameter RM corresponds to the effective radius for the
two-nucleon system. For the p-d system, RM is estimated
considering the measured hmTi of the p-d pairs and the
average transverse momentum hpTi of the deuterons and
protons used for the correlation. The value RM ¼ rNN

eff ¼
1.43þ0.16

−0.16 fm is obtained and used in the calculation.
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