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Abstract— Online convex optimization (OCO) is a powerful
tool for learning sequential data, making it ideal for high
precision control applications where the disturbances are arbi-
trary and unknown in advance. However, the ability of OCO-
based controllers to accurately learn the disturbance while
maintaining closed-loop stability relies on having an accurate
model of the plant. This paper studies the performance of OCO-
based controllers for linear time-invariant (LTI) systems subject
to disturbance and model uncertainty. The model uncertainty
can cause the closed-loop to become unstable. We provide a
sufficient condition for robust stability based on the small
gain theorem. This condition is easily incorporated as an
on-line constraint in the OCO controller. Finally, we verify
via numerical simulations that imposing the robust stability
condition on the OCO controller ensures closed-loop stability.

I. INTRODUCTION

This paper considers a class of controllers recently de-

veloped using online convex optimization (OCO). Online

machine learning and convex optimization methods are pow-

erful tools for learning sequential data. This makes these

techniques ideal for high precision control applications like

satellite pointing and photolithography. These systems have

reliable physics-based models with small error (within the

control bandwidth) but are subject to unknown arbitrary

disturbances.

This has motivated a large body of recent work using

online learning and convex optimization for control [1]–

[9]. The most closely related work is the class of OCO

controllers defined in [10]. Here, OCO with memory is

introduced to the discrete-time control setting as an ideal

cost minimization problem (which we describe in detail in

Section IV-B) to handle arbitrary disturbances and general

time-varying convex cost functions. The OCO controller

has promising regret guarantees and makes less restrictive

assumptions about the disturbance characteristics (e.g., white

noise or worst-case) than that of H2 and H∞ optimal

control techniques [11], [12]. This makes OCO methods well

suited for high precision control applications with unknown,

arbitrary disturbances that degrade the system performance.

The OCO framework in [10] aims to learn the disturbance

characteristics in real time. However, small model errors

can cause instability and thus must be explicitly considered

in the design. There are additional works that attempt to

learn the model from data [13]–[19]. However, dynamic

uncertainties in many high precision applications arise due

to high frequency, time-varying, and/or nonlinear effects. It
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is difficult to learn such unmodeled effects from real-time

data. In these cases, it is useful to design a robust OCO-

based controller that can learn the disturbance features and

tolerate model uncertainty, thus motivating our work.

There are three main contributions of our work. First,

we provide a robust stability condition for OCO control of

a discrete linear time-invariant (LTI) plant (Theorem 1 in

Section III-B) and show how it can be used to compute the

stability bound (Section V). The robust stability condition is

a scaled version of the small gain condition which holds for

an arbitrary induced system norm. Second, we show how the

robust stability condition can be imposed as a pointwise in

time constraint on the OCO controller to ensure robustness

to nonparametric uncertainties. This implementation of the

robust stability condition is specific to using the induced ℓ∞-

norm (Section III-C and Section IV-C), resulting in an easy

extension of [10]. Lastly, we present numerical results that

illustrate the effect of the robust stability constraint on the

OCO controller (Section V).

II. PROBLEM FORMULATION

This section formulates the OCO control problem for

discrete-time LTI plants subject to both model uncertainty

and unknown disturbances.

A. Notation

Let v ∈ R
n be a vector. The p-norm of this vector is

defined as ∥v∥p :=
[
∑n

i=1 |vi|
p
]

1
p . Next, N denotes the set

of non-negative integers. Let d : N → R
n denote a vector-

valued sequence {d0, d1, . . .}. The ℓp-norm of d is defined

as:

∥d∥p =

[

∞
∑

t=0

∥dt∥
p
p

]
1
p

. (1)

Note that ∥dt∥p is the p-norm of the vector dt ∈ R
n at time

t while ∥d∥p is the ℓp-norm of the sequence. The set ℓp
consists of sequences that have finite ℓp-norm. The subset

ℓpe ¢ ℓp is the extended space of sequences that have finite

ℓp-norm on all finite intervals, i.e.
∑T

t=0 ∥dt∥
p
p < ∞ for all

T g 0. Finally, let G : ℓpe → ℓpe denote systems that map

an input signal u ∈ ℓpe to an output signal y ∈ ℓpe. The

induced ℓp-norm for this system is defined as:

∥G∥p→p = sup
0 ̸=u∈ℓp

∥y∥p
∥u∥p

. (2)

To simplify notation, we’ll often use ∥d∥ and ∥G∥ for the

signal norm and system induced norm when the specific p-

norm is not important.
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B. Model Uncertainty

In this section, we consider the feedback system in Fig-

ure 1 and discuss the model uncertainty ∆(z) in more detail.
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Fig. 1. Discrete-time feedback system with unknown disturbance d and
uncertainty ∆(z). OCO control is used to reject the disturbance d without
knowledge of the uncertainty ∆(z).

Consider the nominal discrete-time, LTI plant G(z) with

dynamics:

xt+1 = Axt +B vt, (3)

where xt ∈ R
nx and vt ∈ R

nu are the nominal plant state

and input at time t, respectively. We assume x0 = 0 for

simplicity.

Model uncertainty for systems with physics-based models

often shows up as unmodeled actuator dynamics affecting

the plant input [11], [12], [20]. We can account for these

unmodeled dynamics by defining an input-multiplicative

uncertainty set G¶ as:

G¶ =
{

G̃(z) = G(z)
(

I +∆(z)
)

: ∥∆∥ f ¶
}

, (4)

where ¶ ∈ [0,∞). Note that the induced 2-norm is common

choice to bound the uncertainty. However, our main result in

Section III holds for any induced p-norm.

Let G̃0(z) denote the true plant dynamics. We assume that

the true plant is within the uncertainty set, i.e. G̃0(z) ∈ G¶ . In

other words, there exists a specific ∆0(z) such that ∥∆0∥ f ¶
and G̃0(z) = G(z)(I + ∆0(z)) ∈ G¶ . More generally, we

refer to G̃(z) = G(z)(I+∆(z)) as the uncertain plant. Here,

we assume the uncertainty ∆(z) is LTI. However, our main

result in Section III can be extended to the case where ∆ is

a possibly nonlinear time-varying (NLTV) system.

C. OCO Control

Unknown disturbances are often caused by environmental

factors and moving physical components which degrade

system performance. However, these disturbances often also

have learnable characteristics. It is typical to model such

disturbances as entering at the plant input as shown in

Figures 1 and 2.

OCO control can be used to learn and reject the distur-

bance without a priori knowledge of the disturbance [1]–

[9]. Here, we describe a class of OCO controllers closely

related to [10] which considers the case without uncertainty

∆(z) = 0. The OCO controller has the block diagram

representation shown in Figure 2. This corresponds to the

class of disturbance action controllers defined as:

ut = −Kxt +
H−1
∑

i=0

M
[i]
t ŵt−i, (5)

-
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?
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Fig. 2. Block diagram representation of the OCO controller in a discrete-
time feedback system with unknown disturbance dt and uncertain plant

G̃(z). The OCO controller is composed of a state-feedback gain K, an
estimator E(z), and an LTV system MLTV.

where K ∈ R
nu×nx , M

[i]
t ∈ R

nu×nx , and ŵt ∈ R
nx are

the state-feedback gain, learned coefficients, and disturbance

estimate, at time t, respectively. The state-feedback gain K
is user-selected while the learned coefficients {Mt}

H−1
i=0 are

typically updated via some online optimization method. For

example, [10] uses online projected gradient descent (OPGD)

with memory (see Section IV-B).

The online optimization often uses an estimate of the

disturbance to learn the coefficients. When there is no

uncertainty ∆(z) = 0, the disturbance estimate ŵt can be

perfectly estimated from xt and ut using the nominal plant

dynamics [10]. We discuss this in more detail in Section IV-

A. Thus, we assume the disturbance estimate ŵt to be the

output of an LTI estimator E(z) of the following form:

xe
t+1 = Aex

e
t +Be1xt +Be2ut

ŵt = Cex
e
t +De1xt +De2ut,

(6)

where xe
t ∈ R

ne and ŵt ∈ R
nx are the estimator state and

output at time t, respectively. Note that xt and ut are inputs

to the estimator.

The first term in (5) is considered the baseline controller

which we denote by:

ubase
t = −Kxt. (7)

The main results in Section III can be generalized to the

case when the baseline control ubase
t is the output of an

LTI controller K(z) with input xt. We assume the baseline

controller is a static, state-feedback gain for simplicity.

The second term in (5) is the output of an finite impulse

response (FIR) filter with time-varying coefficients. We de-

note the FIR filter as a linear time-varying (LTV) system

MLTV with input-output dynamics defined as:

uoco
t =

H−1
∑

i=0

M
[i]
t ŵt−i. (8)

where ŵt ∈ R
nx and uoco

t ∈ R
nu are the input and output at

time t, respectively. The FIR filter order H is also referred

to as the learning horizon since the coefficients are often

updated via OCO using the past H disturbance estimates.

We provide an example of online optimization in Sections IV

and V, but the main results in Section III assume only that

the coefficients are time-varying.
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The OCO controller (5) can be interpreted as a baseline

controller ubase
t plus an adapting term uoco

t which corrects for

the unknown disturbance dt based on disturbance estimates.

D. Model Uncertainty Effects on OCO Control

The uncertainty ∆(z) and disturbance dt have different

effects on closed-loop stability. Suppose the state-feedback

gain K is stabilizing, i.e., all eigenvalues of (A−BK) are

strictly inside the unit disk. Without uncertainty ∆(z) = 0,

OCO control can be designed to achieve disturbance rejection

with provable guarantees [10]. In this case, a bounded

disturbance d cannot cause signals x, u, ŵ, etc. to grow

unbounded. However, small amounts of model uncertainty

can cause the system to become unstable.

As shown in Figures 1 and 2, the uncertain plant input is

the control input perturbed by an unknown disturbance:

pt = ut + dt, (9)

where ut, dt, pt ∈ R
nu are the control input, disturbance,

and perturbed uncertain plant input at time t, respectively.

The perturbed input pt is further distorted by the uncertainty

∆(z). The resulting input to the nominal plant G(z) is:

vt = (I +∆) pt = ut + dt + qt, (10)

where qt = ∆pt ∈ R
nu . Again, vt is the nominal plant input

at time t. Not only is there an unknown disturbance dt, but

also a distorted signal qt due to the uncertainty ∆(z).

The additional perturbation qt can lead to unexpected

behaviors that affect the disturbance estimate and FIR filter

coefficient update when left unaccounted for in the OCO

design. This can occur even when the state-feedback gain K
is stabilizing for the uncertain plant G̃(z). Thus, the OCO

controller is required to: i) learn and compensate for the

disturbance, and ii) stabilize the system in the presence of un-

certainty. The OCO controller must achieve these objectives

without a priori knowledge of the disturbance or uncertainty.

III. MAIN RESULT

This section provides a condition on MLTV that ensures

the feedback system with OCO control remains stable even

in the presence of the model uncertainty.

A. Linear Fractional Transformation

As a first step, we transform the feedback system of the

uncertain plant and OCO controller (Figures 1 and 2) to a

standard form as shown in Figure 3. This diagram separates

the LTI dynamics P from the uncertainty ∆ and time-varying

OCO dynamics MLTV. Here P includes the dynamics due to

the plant, estimator, and state-feedback gain. This diagram is

called a linear fractional transformation (LFT) in the robust

control literature [11], [12]. We use the notation FU (P,Γ)
for this interconnection with Γ =

[

∆ 0
0 MLTV

]

closed around

the upper channels of P .

P d
�

x
�

∆ 0

0 MLTV

Γ

[

p
ŵ

]

-
[

q
uoco

]

�

Fig. 3. Equivalent LFT FU (P,Γ) of original system separating LTI
dynamics P from uncertainty ∆ and time-varying learning dynamics
MLTV.

An explicit state-space model for P can be determined

from the various components of the feedback system de-

scribed in Section II. The dynamics of P are given by:

[

xt+1

xe
t+1

]

=

[

A−BK 0
Be1 −Be2K Ae

] [

xt

xe
t

]

+

[

B B B
0 Be2 0

]





qt
uoco
t

dt









pt
ŵt

xt



 =





−K 0
De1 −De2K Ce

I 0





[

xt

xe
t

]

+





0 I I
0 De2 0
0 0 0









qt
uoco
t

dt



.

Next, we use the LFT representation FU (P,Γ) to formulate

and state our robust stability condition.

B. Scaled Small Gain Theorem

Our first stability result is a variation of the standard

small gain theorem (see Section 5.4 of [21]). This provides

a sufficient condition for the dynamics FU (P,Γ) to have a

bounded gain from disturbance d to state x. Note stability

here is in the sense of bounded gain in some induced norm.

Lemma 1. Consider the interconnection FU (P,Γ) where P :
ℓpe → ℓpe and Γ : ℓpe → ℓpe are linear systems with finite

induced ℓp-norm. Partition P as:
[

p̄
x

]

=

[

P11 P12

P21 P21

] [

q̄
d

]

, (11)

where p̄ := [ pŵ ] and q̄ := [
q

uoco ] are the inputs and outputs

of Γ. The interconnection has finite induced ℓp-norm, i.e.

∥FU (P,Γ)∥ < ∞, if ∥P11∥ ∥Γ∥ < 1.

Proof: The system P is LTI so by the principle of

superposition (assuming zero initial conditions):

p̄ = P11q̄ + P12d. (12)

We can bound p̄ using the triangle inequality and the

definition of the induced norm:

∥p̄∥ f ∥P11∥ ∥q̄∥+ ∥P12∥ ∥d∥. (13)

Next, q̄ = Γp̄ so that ∥q̄∥ f ∥Γ∥ ∥p̄∥. Substitute this bound

into (13) and re-arrange to obtain:

∥p̄∥ f
∥P12∥

1− ∥P11∥∥Γ∥
∥d∥. (14)

This last step requires the small gain condition

∥P11∥ ∥Γ∥ < 1 to obtain the bound on ∥p̄∥.
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Finally, the state is x = P21q̄ + P22d. We can use similar

steps and the bound on p̄ to obtain:

∥x∥ f

[

∥P22∥+
∥P21∥ ∥P12∥ ∥Γ∥

1− ∥P11∥ ∥Γ∥

]

∥d∥. (15)

Hence, FU (P,Γ) has finite induced ℓp-norm.

The small gain condition in the previous lemma can be

conservative as it does not exploit the block structure Γ =
[

∆ 0
0 MLTV

]

. We can reduce the conservatism by normalizing

the blocks and introducing scalings. Specifically, assume

∥∆∥ f ¶ and ∥MLTV∥ f ´. Define the normalized

uncertainty and learning dynamics as: ∆̃ = 1
¶
∆ and M̃LTV =

1
´
MLTV. Stacking these together yields

Γ̃ :=

[ 1
¶
I 0
0 1

´
I

]

Γ =

[ 1
¶
∆ 0
0 1

´
MLTV

]

. (16)

The scaling normalizes each block so that ∥Γ̃∥ f 1.

Next, the uncertainty is LTI and hence d1∆ = ∆d1 for

any scalar d1 > 0. (In fact, this relation holds even if d1 is

also an LTI system but we do not pursue this generalization

here.) Similarly, the learning dynamics are also linear and

hence d2MLTV = MLTVd2 for any scalar d2 > 0. It follows

that the normalized systems can be equivalently written, for

any d1, d2 > 0, as:

Γ̃ :=

[ 1
d1¶

I 0

0 1
d2´

I

]

Γ

[

d1 0
0 d2

]

. (17)

This leads to the following scaled small gain result.

Theorem 1. Consider the interconnection FU (P,Γ) where

P : ℓpe → ℓpe and Γ : ℓpe → ℓpe are linear systems

with finite induced ℓp-norm. Assume Γ :=
[

∆ 0
0 MLTV

]

where

∥∆∥ f ¶ and ∥MLTV∥ f ´. Partition P as:
[

p̄
x

]

=

[

P11 P12

P21 P21

] [

q̄
d

]

, (18)

where p̄ := [ pŵ ] and q̄ := [
q

uoco ] are the inputs and outputs

of Γ. The interconnection has finite induced ℓp-norm, i.e.,

∥FU (P,Γ)∥ < ∞, if there exists scalars d1, d2 > 0 such

that

P̃11 :=

[ 1
d1

I 0

0 1
d2

I

]

P11

[

d1¶ I 0
0 d2´ I

]

(19)

satisfies ∥P̃11∥ < 1.

Proof: Define a scaled version of the nominal dynamics

P as:

P̃ =





1
d1
I 0 0

0 1
d2
I 0

0 0 I





[

P11 P12

P21 P22

]





d1¶ I 0 0
0 d2´ I 0
0 0 I



 .

The constants introduced in the scaled plant P̃ cancel those

introduced for Γ̃ in (16). In other words, FU (P,Γ) and

FU (P̃ , Γ̃) define the same dynamics from d to x. Moreover,

∥P̃11∥ < 1 and ∥Γ̃∥ f 1 by assumption. It follows from the

small gain result (Lemma 1) that FU (P̃ , Γ̃) = FU (P,Γ) has

finite induced ℓp-norm.

The scalings d1 and d2 in the robust stability condition

(Theorem 1) can be used to reduce the conservatism of the

small gain condition (Lemma 1). They are known as D-

scales in the robust control literature (see [22] and Chapter

11 in [11]) and are used in structured singular value robust

stability tests. Note that without loss of generality, we can

set d2 = 1 and express (19) in terms of only d1. This will

be useful in Section V when we use Theorem 1 to compute

the stability bound.

C. Bounding the LTV Dynamics

In this section, we provide a result specific to the induced

ℓ∞-norm for the OCO control implementation. The induced

ℓ∞-norm is useful as it allows us to relate ∥MLTV∥∞→∞

to ∥Mt∥∞→∞. The robust stability constraint can then be

imposed as a point-wise in time constraint ´ on the coeffi-

cients ∥Mt∥∞→∞ f ´ in the projection step of OPGD. We

discuss this further in Section IV-B and IV-C.

The dynamics MLTV in (8) can be expressed as:

uoco
t = MtŴt, (20)

where

Mt :=
[

M
[0]
t · · · M

[H−1]
t

]

∈ R
nu×nxH , and (21)

Ŵt :=

[

ŵt

...
ŵt−H+1

]

∈ R
nxH (22)

are the stacked FIR coefficients and estimated disturbance

history. The following lemma relates the induced ℓ∞-norm of

the system MLTV to the matrix induced ∞-norm of Mt. The

proof is based on standard norm properties but is included

for completeness.

Lemma 2. Let MLTV be the LTV system defined in (20) and

Mt be the stacked gains defined in (21). Then

∥MLTV∥∞→∞ = sup
t

∥Mt∥∞→∞. (23)

Proof: The equality in (23) is shown in two

steps: (A) ∥MLTV∥∞→∞ f supt ∥Mt∥∞→∞ and (B)

∥MLTV∥∞→∞ g supt ∥Mt∥∞→∞.

First, we show direction (A). Let ŵ and uoco be any input-

output pair of MLTV. By definition of the induced matrix

norm and equation (20), we can show that

∥uoco∥∞ = sup
t

∥MtŴt∥∞

f sup
t

∥Mt∥∞→∞ · ∥ŵ∥∞. (24)

It follows that
∥uoco∥∞

∥ŵ∥∞

f supt ∥Mt∥∞→∞, and thus we have

that ∥MLTV∥∞→∞ f supt ∥Mt∥∞→∞ by definition of the

induced ℓ∞-norm. Hence, claim (A) holds.

Next, we show direction (B). Suppose supt ∥Mt∥∞→∞

achieves its maximum at some finite time t0. (The proof can

be modified if the supremum occurs as t → ∞.) Then there

exists a vector Ŵ ∗ such that ∥Ŵ ∗∥ = 1 and

∥Mt0Ŵ
∗∥∞ = sup

t
∥Mt∥∞→∞.
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We can use the vector Ŵ ∗ to construct a signal ŵ∗ for which:

(a) ∥ŵ∗∥∞ = 1, and (b) the corresponding Ŵ ∗ constructed

from ŵ∗ satisfies Ŵ ∗
t0

= Ŵ ∗. Since ∥uoco∥∞ g ∥uoco
t0

∥∞ =

∥Mt0Ŵ
∗
t0
∥∞, we have that

∥uoco∥∞ g sup
t

∥Mt∥∞→∞ · ∥ŵ∗∥∞.

It follows that
∥uoco∥∞

∥ŵ∗∥∞

g supt ∥Mt∥∞→∞, and thus we have

that ∥MLTV∥∞→∞ g supt ∥Mt∥∞→∞ by definition of the

induced ℓ∞-norm. Hence, claim (B) holds.

IV. APPLICATION TO OCO

In this section, we demonstrate how the main results

can be applied to ensure robust stability of existing OCO

controllers. We focus on the OCO controllers in [7], [10]

where the coefficients of MLTV are updated via OPGD.

A. Estimator Design

The class of OCO controllers defined by [10] considers

the feedback system with OCO control (Figure 2) and no

uncertainty (Figure 1) when ∆(z) = 0. In this case, a perfect

plant model is assumed G̃(z) = G(z). Thus, the nominal

plant dynamics can be used to design an estimator E(z)
and OPGD to update the coefficients in MLTV. Later, we

will show how the OPGD projection step can be modified to

ensure robust stability for the case that there is uncertainty

∆(z) ̸= 0.

Without uncertainty, the plant dynamics with unknown

disturbance reduce to:

xt+1 = Axt +But +Bdt.

Note that Bdt is the effective disturbance on the state

at time t. Assuming the state xt is measurable, we can

perfectly reconstruct this effective disturbance at the previous

time step. Use the measured state and rearranging the plant

dynamics:

ŵt = xt −Axt−1 −But−1. (25)

With no uncertainty, this estimator perfectly reconstructs the

effective disturbance with a one-step delay: ŵt = Bdt−1.

However, perfect reconstruction is no longer guaranteed with

uncertainty, i.e. if ∆(z) ̸= 0 then ŵt ̸= Bdt−1. In this case,

ŵt is considered an estimate of Bdt−1.

The disturbance reconstruction (25) can be expressed in

state-space form as:

xe
t+1 = 0xe

t −Axt −But

ŵt = xe
t + xt,

where xe
t = −Axt−1 − But−1 is the estimator state. This

has the form of the general LTI estimator E(z) in (6). The

estimates ŵt of past disturbances are used to update the FIR

coefficients Mt defined in (21) by minimizing an “ideal” cost

which we describe next.

B. OPGD on an Ideal Cost

The coefficients Mt are updated at each time step via

OPGD in the direction of an “ideal” (per-step) cost. This

cost is associated with the nominal plant dynamics (3) and a

per-step cost function. Here, we consider quadratic per-step

costs:

c(xt, ut) = x¦
t Qxt + u¦

t Rut, (26)

where Q = Q¦ ° 0 ∈ R
nx×nx and R = R¦ { 0 ∈

R
nu×nu . Note that the finite-horizon cost is defined as:

JT (x, u) =

T
∑

t=0

c(xt, ut), (27)

where T is the total time horizon. The ideal cost g(M) is

defined for any static gain M ¢ R
nu×nxH based on this per-

step cost (26) which is computed and defined as follows.

Let x̃Ä ∈ R
nx and ũÄ ∈ R

nu denote the ideal state and

control input at time Ä , respectively. The ideal state and input

are initialized at Ä = t−H by:

x̃t−H = 0 and ũt−H =
H−1
∑

i=0

M [i−1] wt−H−i. (28)

where t is the current time. The ideal state and control input

are then computed for Ä = t−H+1, . . . , t by iterating over

the plant dynamics with the static gains M :

x̃Ä = A x̃Ä−1 +B ũÄ−1 + ŵÄ−1 (29)

ũÄ = −K x̃Ä +

H−1
∑

i=0

M [i] ŵÄ−i. (30)

The ideal cost is then defined as g(M) := c(x̃t, ũt). In other

words, the ideal cost g(M) is the cost of the plant dynamics

evolving with static gain M over the learning horizon H ,

neglecting dynamics beyond time t − H . The coefficients

Mt are updated via OPGD on this ideal cost:

Mt+1 = ΠM (Mt − ¸∇Mg(Mt)) , (31)

where ¸ is the learning rate, and ΠM is the projection of

the gradient step of Mt onto a constraint set M. Additional

details are given in [7], [10]. Next, we show how the

constraint set M can be modified to ensure the robust

stability of the OCO feedback system (Figures 1 and 2) when

∆(z) ̸= 0.

C. Robust OCO Control

Theorem 1 states that the closed-loop system (Figures 1

and 2) will be stable for bounded uncertainties ∥∆∥∞→∞ f
¶ and bounded LTV learning dynamics ∥MLTV∥∞→∞ f
´ if the robust stability condition ∥P̃11∥∞→∞ < 1 holds.

Larger values of ´ risk stability, yet can improve disturbance

rejection as they allow the OCO more freedom to adapt the

coefficients Mt. Thus, it is important to determine the largest

possible value of ´ such that the robust stability condition
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holds. We refer to this value of ´ as the robust stability bound

´∗ which is the solution to:

sup
´

´

subject to ∥P̃11∥∞→∞ < 1,
(32)

where P̃11 is defined in (19). Once the stability bound ´∗ is

known, we can select the constraint ´ to be within [0, ´∗) to

ensure stability. Selecting ´ as close as possible to ´∗ gives

the full benefit of OCO.

Next, it follows from Lemma 2 that if ∥Mt∥∞→∞ f ´,

then ∥MLTV∥∞→∞ f ´ (and vice versa). This means we

can simply impose a constraint on the coefficients Mt as they

are updated via OPGD by defining the constraint set M as:

M :=
{

M ∈ R
nu×nxH : ∥M∥∞→∞ f ´

}

. (33)

However, instead of computing the exact projection ΠM

in (31), we can scale down the coefficients until they are

within the constraint set M for simpler online implementa-

tion. The projection step (see Algorithm 1 from [10]) can

easily be modified to update the coefficients as:

Mt+1 =

{

Mstep, ∥Mstep∥∞→∞ f ´

´
(

Mstep

∥Mstep∥∞→∞

)

, ∥Mstep∥∞→∞ > ´,
(34)

where Mstep := Mt − ¸∇Mg(Mt) is the gradient step of

the coefficients Mt at time t. The results in the following

section are based on the coefficient update described in (34).

V. NUMERICAL RESULTS

In this section, we perform numerical studies to illustrate

the effect of ´ and explicitly use the robust stability condition

(Theorem 1) to compute the stability bound ´∗. Note that

we recover state-feedback when ´ = 0 and unconstrained

OCO (U-OCO) when ´ = ∞. We refer to the case when

0 < ´ < ∞ as constrained OCO (C-OCO).

Our example considers the following nominal plant model

G(z) and uncertainty ∆(z):

G(z) =
0.1

z − 0.9
and ∆(z) =

−z2 + 1.79z − 0.7903

z2 − 1.672z + 0.9048
,

where ∆(z) is small in magnitude at low frequencies and

larger at higher frequencies. For the baseline controller, we

use a state-feedback gain of K = 0.15. Note that K = 0.15
is stabilizing for both the nominal and uncertain plant. For

the OCO, we use the quadratic per-step cost c(xt, ut) in (26)

with Q = 1 and R = 10−1, learning rate ¸ = 5× 10−4, and

learning horizon H = 1. Lastly, we use a step disturbance:

dt = 100 for 0 f t f 500 and dt = −100 for 500 < t f T .

All simulations were run with a time horizon of T = 1000.

Figure 4 shows the per-step cost c(xt, dt) and estimated

disturbance ŵt of U-OCO at each time t. We compare the

performance of the nominal (red dashed) and uncertain (blue

solid) plant. The disturbance is perfectly reconstructed ŵt =
Bdt−1(see Section IV-A) with the nominal plant. However,

with the uncertain plant, this is not the case ŵt ̸= Bdt−1.

The ideal cost g(M) computation assumes the nominal plant

Fig. 4. Per-step cost (top) and disturbance estimate (bottom) of running
U-OCO on the nominal (red dashed) and uncertain (blue solid) plant. U-
OCO is stable for the nominal plant and unstable for the uncertain plant.

Fig. 5. Per-step cost (top) and disturbance estimate (bottom) of running
C-OCO with β = 1.5 on the nominal (red dashed) and uncertain (blue
solid) plant. C-OCO is stable for the nominal and uncertain plants.

model and perfect disturbance estimation. This mismatch

introduces an error in the coefficient update Mt+1 which

causes instability. The instability is illustrated by the per-

step cost and estimated disturbance growing unbounded.

On the other hand, U-OCO performance is stable without

uncertainty because the disturbance is estimated perfectly.

Thus, the constraint ´ is needed for the coefficient update to

ensure stability for the uncertain plant.

Figure 5 shows the per-step cost c(xt, dt) and estimated

disturbance ŵt of C-OCO for ´ = 1.5 at each time t. Again,

we compare the performance of the nominal (red dashed)

and uncertain (blue solid) plant. As mentioned before, an

error in the disturbance estimate introduces an error in the

ideal cost gradient. The ideal cost gradient error can cause

the gradient step Mstep = Mt−∇Mg(Mt) to grow too large

in the wrong direction. When the constraint ´ is chosen such

that the robust stability condition (Theorem 1) is satisfied, the

effect of uncertainty induced error on the gradient step of the

coefficient update is limited. This is illustrated in Figure 5 as

the performance of C-OCO on the uncertain plant eventually

recovers the performance on the nominal model with ´ =
1.5. Thus, imposing the constraint ´ can ensure that OCO

is robust to uncertainty.
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As mentioned in Section IV-C, the choice of ´ is critical.

In order to compute the stability bound ´∗, we first make

an additional assumption about the uncertainty. We assume

the uncertainty ∆(z) can be decomposed into a normalized

uncertainty ∆̃(z) and a frequency-dependent uncertainty

weight Wu(z) in the form:

∆(z) = ∆̃(z)Wu(z), (35)

where ∥∆̃∥ f 1 and Wu(z) is stable. Roughly, Wu(z) rep-

resents the amount of uncertainty present at each frequency.

The set of uncertain plants G¶ can then be expressed as:

G¶ =
{

G̃(z) = G(z)
(

I + ∆̃(z)Wu(z)
)

: ∥∆̃∥ f 1
}

. (36)

We use the following uncertainty weight Wu(z):

Wu(z) =
−z2 + 1.79z − 0.7903

z2 − 1.672z + 0.9048
.

Wu(z) is small in magnitude at low frequencies and larger

at higher frequencies. Note that we now consider the uncer-

tainty ∆(z) from the previous example as our uncertainty

weight Wu(z). The previous example is thus a special case

where the normalized uncertainty is a static gain ∆̃(z) = 1.

Given the uncertainty weight Wu, we compute the stability

bound ´∗ by first modifying the block diagram (Figure 1)

and LFT (Figure 3) to reflect the uncertainty decomposition

described here. Likewise, the LFT equations can be derived

by separating the normalized uncertainty ∆̃ and LTV learn-

ing dynamics MLTV apart from the remaining LTI dynamics

P . The key point is that P now includes the uncertainty

weight Wu which will reduce the conservativeness of the

stability bound ´∗.

As mentioned in Section III-B, we can set d2 = 1
without loss of generality. Additionally, we know that ¶ = 1
since we assume ∥∆̃∥∞→∞ f 1. Note again that we have

chosen to use the induced ℓ∞-norm for reasons discussed

in Section III-C. Next, we select any ´ > 0 as our initial

guess for the robust stability bound ´∗. Finally, we partition

the dynamics P according (18), construct the P̃11 dynamics

according to (19), and compute ∥P̃11∥∞→∞ for a range of

d1 values. If the minimum ∥P̃11∥∞→∞ over the range of d1
values is greater than 1, we decrease ´ until we obtain the

largest ´ such that ∥P̃11∥∞→∞ < 1. Note that the induced

ℓ∞-norm of an LTI system is equal to the ℓ1-norm of its

impulse response. We compute an upper bound on the ℓ1-

norm based on bounding the tail end of the impulse response

(see Section 4.3 of [23]). For our example, the robust stability

bound is ´∗ = 1.063.

Figure 6 shows the averaged per-step cost JT (x, u)/T
of C-OCO with H = 1 as a function of ´. Again, we

compare the performance with the nominal (red dashed) and

uncertain (blue solid) plants. The uncertainty was constructed

by randomly generating normalized uncertainties ∆̃(z) with

∥∆̃∥∞→∞ = 1 and multiplying by Wu(z) according to (35).

When ´ = 0, the OCO has no freedom to learn the

disturbance, and pure state-feedback (SF) is recovered for

both the nominal (red square) and uncertain plants. As ´

Fig. 6. Average per-step cost of running C-OCO for H = 1 and varying β

on the nominal (red dashed) and 100 uncertain (blue solid) plants. C-OCO
improves performance for the nominal and uncertain plants until β is too
large, causing some uncertain plants to become unstable.

Fig. 7. Average per-step cost of running C-OCO for H = 5 and varying β

on the nominal (red dashed) and 100 uncertain (blue solid) plants. C-OCO
improves performance for the nominal and uncertain plants until β is too
large, causing some uncertain plants to become unstable.

is increased, the OCO is allowed more freedom to learn

the disturbance, and we see similar improved performance

in both the nominal and uncertain plants. However, when

´ is ”too large” such that the robust stability condition

(Theorem 1) no longer holds, C-OCO on the uncertain plant

may become unstable. Figure 6 shows the stability bound

at ´∗ = 1.063 which appears somewhat conservative. Once

the constraint ´ becomes inactive, C-OCO recovers U-OCO

performance for the nominal and uncertain plants. For the

nominal plant, this indicates a limit as to how much the OCO

can improve upon the baseline controller. For the uncertain

plants, this indicates a limit as to how much the OCO

performance can be degraded by uncertainty. Hence, there

is a trade off between OCO performance and robustness to

uncertainty.

Again, Figure 7 shows the averaged per-step cost

JT (x, u)/T of C-OCO as a function of ´, this time with

H = 5. The results are similar to the case when H = 1, but

the nominal plants appear to go unstable at larger values of

´. This illustrates that increasing the learning horizon H may

increase robustness, however the stability bound ´∗ = 1.063
is more conservative. This suggests that the true stability
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bound also depends on the learning horizon H which is

not taken advantage of in the robust stability condition in

Theorem 1.

VI. CONCLUSION

In this paper, we establish a robust stability condition

using the small gain theorem for a class of OCO controllers

with memory and use the result to compute the robust

stability bound. In particular, we impose the stability bound

as a constraint on the controller point-wise in time. We

provide numerical results to illustrate that imposing the

robust stability constraint will ensure stability in the presence

of bounded uncertainties. Future work will focus on reducing

the conservatism of the robust stability bound ´∗, computing

the exact projection, and developing an OCO controller for

the output-feedback case.
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