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This Letter presents the most precise measurement to date of the matter-antimatter imbalance at
midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair

ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV. Using the

Statistical Hadronization framework, it is possible to obtain the value of the electric charge and baryon
chemical potentials, μQ ¼ −0.18� 0.90 MeV and μB ¼ 0.71� 0.45 MeV, with unprecedented precision.
A centrality-differential study of the antiparticle-to-particle yield ratios of charged pions, protons,
Ω baryons, and light (hyper)nuclei is performed. These results indicate that the system created in
Pb-Pb collisions at the LHC is on average baryon-free and electrically neutral at midrapidity.

DOI: 10.1103/PhysRevLett.133.092301

Introduction.—Nuclear matter at extremely high energy
densities can be generated in the laboratory through
relativistic heavy-ion collisions [1–3]. At the LHC, the
beam remnants from the collision are located at rapidities
y ≈�6 and a fraction of the collision energy is deposited at
midrapidity [4]. In this region, particles are formed from a
nearly baryon number and electric charge free medium.
This process can be described in the color glass condensate
model via gluon radiation by static quarks, frozen by
time dilation [5]. Conversely, string-fragmentation models
explain it through the breaking of color flux tubes. Part of
the initial baryon number can be transported to midrapidity
via either baryon junction formation [6] or diquark break-
ing [7]. This phenomenon, known as nuclear stopping,
influences the net-baryon density of the system formed at
midrapidity [8–10]. The baryon number transport is min-
imal at the LHC, and the nuclear transparency regime [11]
is reached. In this regime, conditions akin to those of
the early Universe are replicated, where nearly equal
abundances of matter and antimatter were present, as
described by the standard cosmological model [12].
Experimentally, one can gauge the extent to which
heavy-ion collisions approach the early Universe condi-
tions by measuring the antimatter-to-matter yield ratios
across various hadron species.
A comprehensive framework for interpreting these

ratios is provided by the Statistical Hadronization Model
(SHM) [13–18]. Among the several models that can be
used to describe a heavy-ion collision, the SHM is the most

successful in describing the yields of all light-flavor
hadronic species, which are determined starting from the
partition function of the fireball at the freeze-out of inelastic
scatterings. This fireball is an equilibrated gas composed of
hadrons and resonances. Because of the substantial particle
multiplicity and the finite kinematical acceptance, a grand
canonical (GC) ensemble description is employed for
heavy-ion collisions. In this approach, the conservation
of charges, namely the baryon number (B), the electric
charge (Q), and strangeness (S), is regulated by the
corresponding chemical potentials μB, μQ, and μS, respec-
tively [19,20]. The baryon chemical potential μB represents
the net-baryon density of the system, with μB ¼ 0 corre-
sponding to an equilibrated gas composed of hadrons
and resonances with same amount of baryons and anti-
baryons. The electric charge potential μQ encodes the
positive-negative charge imbalance of the gas; it is con-
nected to μB by the atomic-to-mass-number ratio Z=A of
the colliding ions [21,22]. The requirement of strangeness
neutrality constrains μS throughout the entire volume of the
fireball [21,22]. Chemical potentials determine the abun-
dance of hadrons through the fugacity, λi ¼ exp½ðBiμB þ
QiμQ þ SiμSÞ=Tch�, where Bi, Qi, and Si denote the
quantum numbers of the considered species i, and Tch is
the chemical freeze-out temperature, at which hadron yields
are determined.
Over the last three decades, the asymmetry between

antimatter and matter of the fireball has been systematically
studied at different experimental facilities [23–38].
The decreasing trend of μB, from about 400 MeV at the
SPS to 20 MeV at the top RHIC energy of 200 GeV, and
μB ¼ 0.7� 3.8 MeV at the LHC is consistent with the
decrease of baryon number transport to midrapidity with
increasing beam rapidity [36,37,39–79]. The formation of
baryon number free matter at midrapidity was first reported
in pp collisions by ALICE, which observed that the p̄=p
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yield ratio is compatible with unity [80]. At fixed
collision energy, it is also possible to explore nuclear
transparency as a function of centrality, i.e., the trans-
verse displacement between the centers of the colliding
nuclei, as it affects the dynamics of the colliding
nucleons. In particular, a slight increase in μB from
peripheral to central (head-on) collisions was observed
at low energies by STAR at the RHIC beam energy
scan [79]. These results were obtained by either compar-
ing the SHM predictions with the measured yields of
hadrons and their antimatter counterparts [81] or by
directly fitting antiparticle-to-particle yield ratios [76,79].
In this Letter, we report the most precise estimation to

date of μB and μQ obtained from a set of antiparticle-to-
particle yield ratios. Compared to previous estimations,
the precision of the current results has improved by about
an order of magnitude. This improvement in precision
is attributed to the proper treatment of the cancelation
of particle-antiparticle correlated uncertainties and the
reduced dependence on model parameters, such as the
system volume, V, which is eliminated in the antiparticle-
to-particle yield ratios. The analyzed species are charged
pions, protons, Ω− baryons, and light (hyper)nuclei.
(Anti)protons are the most abundantly produced (anti)
baryons at midrapidity (≈35 and ≈2 protons on average
in central and peripheral Pb-Pb collisions, respectively
[83]). Consequently, the antiproton-to-proton yield ratio
can probe the antibaryon-to-baryon imbalance [80,84] with
high precision. On the other hand, the sensitivity to baryon
asymmetry is enhanced when light (hyper)nuclei are
included because of their larger baryon content. In this
work, 3He, its isobar 3H, and hypertriton 3

ΛH, which is a
bound state of a proton, a neutron, and a Λ, along with their
antimatter counterparts, are considered. [(Anti)deuterons,
dðd̄Þ are not considered in this Letter since the efficiency
correction for d̄ is based on the d̄ absorption cross section
extracted by the ALICE Collaboration from the measured
d̄=d yield ratio itself [85] ]. The ratio of oppositely charged
pions provides a precise constraint on the imbalance of
electric charge, as the yield ratio depends predominantly
on μQ. Finally, the dependence of antimatter-to-matter
ratios on strangeness is probed with ðantiÞΩ− baryons,
which, unlike ðantiÞΛ and ðantiÞΞ−, have negligible con-
tamination coming from heavier hadron decays.
The ALICE detector and data analysis.—The results

reported in this analysis are obtained from a sample of
Pb-Pb collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV collected in 2018 by

ALICE at the LHC. The ALICE apparatus and its perfor-
mance are described in detail in Refs. [86,87]. The
minimum-bias collision and centrality triggers are provided
by the V0 system [88], which is composed of two arrays of
plastic scintillators covering the forward (2.8 < η < 5.1)
and backward (−3.7 < η < −1.7) regions of pseudorapid-
ity. The coincidence of signals in both detectors determines
the minimum bias trigger. The amplitude of the V0 signal is

proportional to the charge deposited in the detectors,
which is related to the produced charged-particle multi-
plicity that, in turn, is controlled by the collision centrality.
The V0 amplitude is then used to trigger specific categories
of central and semicentral events, and to estimate centrality
[89]. Five centrality intervals are considered in this Letter,
namely 0%–5%, 5%–10%, 10%–30%, 30%–50%, and
50%–90%, expressed as percentiles of the total hadronic
cross section for Pb-Pb collisions. The position of the
primary interaction vertex is required to be within a 10 cm
wide region centered at the nominal interaction point to
profit from the full acceptance of the ALICE central barrel
detectors. Events with multiple interaction vertices are
rejected to ensure the correct association of reconstructed
tracks and primary vertices. The number of events passing
these selections is approximately 300 × 106.
Charged pions, protons, 3He, and tritons produced at

midrapidity, jyj < 0.5, are tracked in the ALICE central
barrel: hereafter, charge conjugates are implied unless
stated otherwise. The tracks are reconstructed within
jηj < 0.8 and in the full azimuth using the Inner
Tracking System (ITS) [90] and the Time Projection
Chamber (TPC) [91]. These detectors are placed in a
solenoid that provides a uniform magnetic field of 0.5 T
parallel to the beam axis. The antiparticle-to-particle
yield ratios are measured as a function of the transverse
momentum pT in the ranges 0.7 ≤ pT < 1.6 GeV=c
for π−=πþ, 0.5 ≤ pT < 3 GeV=c for p̄=p, 1.6 ≤ pT <
3 GeV=c for 3H̄=3H, and 2 ≤ pT < 8 GeV=c for 3He=3He
to select the bulk of the production and ensure good
identification performance.
The analysis procedure for extracting particle yields is

similar to the one adopted in previous analyses [83,92,93].
Standard selections on the χ2 of the track fit, on the number
of reconstructed track points in the ITS and the TPC, and
on the distance of closest approach of the extrapolation of
the track to the primary interaction vertex ensure a good
reconstruction of tracks originating from the collisions.
Particle identification is performed on a statistical basis
by measuring the specific energy loss (dE=dx) in both
the TPC and the ITS, and particle velocity depending on
the transverse momentum of the measured particles
with the time-of-flight detector. Further details about the
particle identification are provided in the Supplemental
Material [94].
The residual contamination due to hyperon weak decays

and spallation reactions of primary particles in the appa-
ratus is evaluated by fitting the measured distance of
closest approach distribution in the plane transverse to
the beam axis with templates computed via Monte Carlo
(MC) simulations for the various processes involved
[83,92,93]. The extracted yields are corrected for the
detector acceptance and candidate selection efficiency,
computed using MC simulations, as the fraction of particles
reconstructed out of all MC-generated primary particles.
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The Pb-Pb event is generated with HIJING [96], while the
particles are transported through a realistic model of
the ALICE apparatus with GEANT4 [97]. To increase the
simulated sample size protons, 3He nuclei, and tritons are
injected on top of each HIJING event. The available
measurements of hadron inelastic cross sections are used
to correct the GEANT4 parametrizations of the correspond-
ing reactions [98–112].
The 3

ΛH candidates are reconstructed from their
two-body charged mesonic decay 3

ΛH → 3Heþ π−. The
reconstruction algorithm is the same as the one applied in
previous measurements [113–116]. The Ω− is recon-
structed with a similar procedure from the decay into a
charged kaon and a Λ baryon, that, in turn, is reconstructed
from its charged two-body decay, Ω−→K−þΛð→π−þpÞ
[117–119]. The ratios are extracted in intervals of proper
decay length ct ¼ cML=p, with M, L, and p being
the mass, trajectory length, and candidate momentum,
respectively. In particular, 2 ≤ ct < 35 cm for 3

ΛH and
1 ≤ ct < 10 cm for Ω− are used. The 3

ΛH and Ω− candi-
dates are selected with boosted decision tree algorithms
[120], which are applied on top of preliminary kinematic
and topological selections to enhance the background
rejection. The boosted decision tree internal parameters
and selections are optimized using samples of correctly
classified signal and background candidates, as explained
in detail in the Supplemental Material [94].
The invariant mass distribution of the selected candidates

is fitted with a probability density function built with a
kernel density estimation [121,122] in the MC for 3

ΛH,
whereas an extended crystal-ball function is used for theΩ−

signal [123]. An exponential function is used to model the
residual background in both cases. The yields extracted as
the integral of the signal functions obtained from the fits are
corrected by the overall selection efficiency and acceptance
computed in the MC simulations. As in previous 3

ΛH
analyses [116], an absorption correction factor is included
to account for undetected candidates absorbed in the
detector material before their decay.
The following systematic uncertainty contributions are

estimated for the antiparticle-to-particle yield ratios: can-
didate selection and signal extraction, MC data sample size,
material budget uncertainty, absorption cross section uncer-
tainties, and magnetic field polarity. The details about the
estimation and values of such contributions are reported in
the Supplemental Material [94].

Results.—The fully corrected antiparticle-to-particle
yield ratios do not exhibit any significant dependence
on pT and ct (see the Supplemental Material [94]). This
observation, which is consistent across particle species
and centrality intervals, implies that the production spectra
of charge-conjugate species only differ by normalization
factors proportional to their yields. The antiparticle-to-
particle yield ratios of each species are obtained as the
averages weighted with the total uncorrelated uncertainties

of the pT- and ct-differential ratios in each centrality
interval. For 3

ΛH, no statistically significant signal is
observed in the 50%–90% centrality range.
The chemical potentials μB and μQ are extracted by

fitting the antiparticle-to-particle yield ratios with the
predictions of the GC statistical hadronization model using
the Thermal-FIST code [22]. The measured ratios and the
SHM fit results are reported in Fig. 1. The chemical freeze-
out temperature is set to Tch ¼ 155� 2 MeV, as obtained
from a fit to the ALICE data [124,125]: its value is
compatible with the pseudocritical temperature extracted
with lattice QCD calculations [126]. This value is fixed for
all centralities, since in heavy-ion collisions only a mild
dependence of Tch on centrality is observed (less than 3%
[35,79,124,127]); additionally, antiparticle-to-particle
yield ratios show a negligible dependence on Tch for μB ≈
1 MeV [81]. The uncertainty on Tch, which is compatible
with the range of variations of Tch observed as a function
of centrality, is considered as a centrality-correlated
source of systematic uncertainty. The strangeness chemi-
cal potential μS is constrained in the fit from strangeness
conservation. The contribution of strongly decaying
resonances is accounted in the model predictions as it
cannot be directly disentangled in the data. For the χ2

minimization, the quadratic sum of statistical and uncor-
related systematic uncertainty is considered. The effect of
the centrality-correlated sources is evaluated by repeating
the fit to ratios coherently increased or decreased by their
uncertainties. The uncertainty assigned to μB and μQ is
half of the difference between the results obtained in the
two cases.
In this Letter, yield ratios are analyzed within the GC

statistical model also in the most peripheral events, where
canonical ensemble formulation is needed for an accurate
description of hadron yields by requiring exact conserva-
tion of charges over a finite volume [128,129]. It is known,
however, that effects connected to the canonical conserva-
tion of charges cancel out when considering antiparticle-to-
particle yield ratios, and their values are well described
by the GC ensemble [15,130]. Indeed, good fit quality is
obtained across the 0%–90% centrality range using the GC
model to quantify these ratios. In addition, the yield ratio
Ω̄þ=Ω− is compatible with unity as expected in the SHM,
where it is weakly dependent of μB and μS for μB ∼ 0 [16].
The chemical potentials obtained in different centrality

intervals are shown in the left panel of Fig. 2. The contours
show a negative correlation between μB and μQ, which is
connected to the approximate exponential dependence of
antiparticle-to-particle yield ratios on the linear combina-
tion of the chemical potentials. The centrality dependence
of μB and μQ is studied by fitting independently the
centrality-differential μB and μQ results with a constant
function, taking into account the full correlation matrix
of the measurements. Both the correlation matrices and the
χ2 profiles of the fits are reported in the Supplemental
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Material [94]. The fit probability is P ¼ 0.97 for μB and
P ¼ 0.64 for μQ: therefore, no evidence of centrality
dependence is found, even if a larger μB would be
expected in more central collisions due to a potentially
larger baryon stopping [4]. The fit of the centrality-
differential values yields chemical potentials μB ¼ 0.71�
0.45 MeV and μQ ¼ −0.18� 0.90 MeV, which are

compatible with zero within 1.6σ and 0.2σ, respectively.
The comparison with the previous data point of μB at the
LHC [35–38] shows a significant improvement in the
precision by a factor larger than 8 (no direct value of μQ
was provided in that study, see below). These results
imply that the system created at midrapidity in Pb-Pb
collisions is baryon and electrically neutral on average.

FIG. 1. Upper panels: SHM fits to the measured antiparticle-to-particle yield ratios in different centrality intervals. Error bars show the
sum in quadrature of statistical and centrality-uncorrelated systematic uncertainties. When not visible, error bars are hidden by the
marker. Lower panels: pull distribution, defined as the difference between data and fit values, normalized to the uncertainty in the data.
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FIG. 2. Left panel: μB and μQ obtained with Thermal-FIST [22] in different centrality intervals. The centrality-correlated and centrality-
uncorrelated uncertainties are represented with error bars and ellipses, respectively. Right panel: μB extracted from data collected in
Au-Au and Pb-Pb collisions at the AGS (E802, E866, E877, E895, E896, E917 Collaborations), SPS (NA44, NA49, NA47
Collaborations), RHIC (BRAHMS, PHENIX, STAR Collaboration), and LHC (ALICE Collaboration) as a function of the center-of-
mass energy per nucleon-nucleon pair [76,78,79], and phenomenological parametrization of μBð ffiffiffiffiffiffiffiffi

sNN
p Þ [36]. The inset shows more in

detail the results obtained at the LHC [36].
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As a consequence, this observation shows that the nuclear
transparency regime is reached, i.e., baryon transport from
the colliding ions to the interaction region is negligible.
Because of the absence of any centrality dependence, it is
also concluded that nuclear transparency is achieved even
in central Pb-Pb collisions, where a larger-than-zero μB
could be expected from a more significant baryon number
transport at midrapidity.
As a cross check, the SHM fits described above are

repeated by also constraining μQ from initial conditions via
conservation laws, as it was done also in past measurements
[36,76,79]. Specifically, the μQ=μB ratio is fixed by
requiring that the average charge-to-baryon density ratio
of the created hadron system, hnQi=hnBi, is equivalent to
the Z=A ratio of colliding nuclei, i.e., hnQi=hnBi ¼ Z=A ≈
0.4 for 208Pb [21]. The μB values extracted from the fits
in each centrality interval are successfully fitted with a
constant function (fit probability P ¼ 0.09). The resulting
μB value is compatible with the one reported above
within uncertainties. Similar results are obtained by fitting
the antiparticle-to-particle yield ratios using the GSI-
Heidelberg model [15,37,76], with Tch ¼ 156.6�
1.7 MeV [38] and μQ is fixed to initial conditions: the
average value across centrality is μB ¼ 0.90� 0.43 MeV.
The χ2 profile of the fit is reported in the Supplemental
Material [94]. Using the values of μB and μQ extracted in
the 5% most central collisions, the inclusive net-proton
density at midrapidity, 2=hNpartidNp−p̄=dy, can be com-
puted in the SHM framework. The value extracted with
Thermal-FIST is ð3.4� 1.4Þ × 10−3, while using the GSI-
Heidelberg model, a value of 5.9þ2.2

−2.8 × 10−3 is obtained. In
both cases, the obtained results agree with the exponential
trend as a function of beam rapidity predicted by the
baryon-junction mechanism [131].

The right panel of Fig. 2 shows the comparison of the
current with past estimations of μB as a function of the
center-of-mass energy of the collision [36,76,78,79].
The comparison with the previous LHC data point is
highlighted in the inset of the figure. The result reported
in this Letter is compatible with the extrapolation of the
phenomenological parametrization based on previous data
and reported in Ref. [36].
Conclusions.—In summary, the most precise measure-

ment of the asymmetry between matter and antimatter at
the LHC is reported in this Letter. The asymmetry is
quantified through antiparticle-to-particle yield ratios of
different hadrons, which are analyzed within the Statistical
Hadronization framework to extract the chemical potentials
μB and μQ. The GC version of the model accurately
describes the antiparticle-to-particle yield ratios across
centrality, indicating the elimination of effects from canoni-
cal charge conservation in peripheral events. The cancela-
tion of correlated uncertainties in these ratios leads to a
significant improvement in the μB precision: the uncertainty

on the obtained value is about 1 order of magnitude smaller
than the previously published one [36]. In addition, a direct
estimation of μQ is provided. Furthermore, the first central-
ity-differential study of chemical potentials at the LHC is
reported in this Letter. The obtained chemical potentials are
consistent with zero, i.e., with the nuclear transparency
regime being reached across the full centrality range, thus
indicating that baryon transport to midrapidity is negligible
even in the most central events at the LHC.
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134Università del Piemonte Orientale, Vercelli, Italy
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