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Deep learning techniques are increasingly applied to scientific problems, where the precision of 
networks is crucial. Despite being deemed as universal function approximators, neural networks, 
in practice, struggle to reduce the prediction errors below ÿ(10−5) even with large network size 
and extended training iterations. To address this issue, we developed the multi-stage neural 
networks that divides the training process into different stages, with each stage using a new 
network that is optimized to fit the residue from the previous stage. Across successive stages, the 
residue magnitudes decreases substantially and follows an inverse power-law relationship with 
the residue frequencies. The multi-stage neural networks effectively mitigate the spectral biases 
associated with regular neural networks, enabling them to capture the high frequency feature 
of target functions. We demonstrate that the prediction error from the multi-stage training for 
both regression problems and physics-informed neural networks can nearly reach the machine-
precision ÿ(10−16) of double-floating point within a finite number of iterations. Such levels of 
accuracy are rarely attainable using single neural networks alone.

1. Introduction

Deep learning techniques [1] have been well developed in the fields of computer vision [2,3] and natural language processing 
[4–6]. More recently, neural networks have been increasingly applied to the mathematical and physical sciences [7–9], where the 
demand for precision is high. In particular, physics-informed neural networks (PINNs) [10,11] have emerged as a new class of 
numerical solver for partial differential equations, where computing high-precision solutions becomes an intrinsic requirement of the 
method.

Neural networks have been proven to be universal function approximators [12,13]. However, in practice, neural network training 
often falls into local minima [14,15], causing the training loss to plateau after a certain number of iterations ÿÿýÿÿý. This issue cause 
the failure modes of PINNs [15]. Advanced methods focusing on different aspects, such as activation function selection [16–19], 
network configuration [20–23], optimization methods [24–26], trainable weights [27], physical causality [28], weighting of terms 
in the loss function [29–31], and hierarchical training strategy [32,33], have been developed to effectively enhance the convergence 
rate of the loss function for various problems. However, few of these methods manage to reduce the training error less than ÿ(10−5), 
or operate effectively in restrictive settings [23]. In contrast, classical numerical methods (e.g., finite difference) can systematically 
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enhance solution’s accuracy by simply reducing the grid size [34]. This is a major shortcoming of neural networks for solving many 
problems within mathematical and physical sciences.

In this work, we propose the multi-stage neural networks (MSNN) that effectively addresses this limitation. Our novel method 
involves dividing the network training into multiple stages, where each stage incorporates a separate neural network. The settings 
of each network in a given stage are optimized based on the residues from the preceding stage. By executing training stage by 
stage, we significantly enhance the convergence rate, ensuring that it remains consistently high throughout the iterations. As a 
result, the combined neural networks from different stages can approximate the target function with remarkable accuracy, with the 
error approaching the machine precision ÿ(10−16) for double-floating point numbers. Furthermore, the multistage training scheme 
addresses the challenges faced by regular PINNs in solving multi-scale problems. This is because the stage-by-stage training is capable 
of capturing the spectrum of the target function, from low to sufficiently high frequencies, across a suitable number of stages.

We begin with the introduction of the multi-stage neural network for regression problems in Section 2. By exploring the limita-
tions of classical neural network training, we highlight the benefits of the multi-stage training in overcoming these constraints. We 
then propose and substantiate the optimal settings for each training stage. In Section 3, we extend the method to physics-informed 
neural networks (PINNs) for solving differential equations. Unlike regression problems, the optimal settings for PINNs in each stage 
are implicitly tied to the equation residues of previous stages. Both theoretical investigation and practical algorithmic solutions are 
presented to address this challenge. Additional techniques that can expedite the multi-stage training for PINNs are also discussed. In 
Section 4, we generalize the multi-stage training scheme to solve combined-forward-and-inverse problems, which are of great impor-
tance in mathematical and physical sciences. Lastly, we provide further discussions on the challenges and potential development of 
the MSNN method in Section 5 and conclude the paper in Section 6.

2. Multi-stage training scheme for regression problems

We first illustrate the multistage idea with regression problems that involve predicting a continuous output variable ÿ as a function 
of the input variable ý. We train a neural network that represents ÿ(ý) to fit ýý data points, denoted (ýÿ, ÿÿ). The loss function for a 
regression problem is typically the mean squared error (MSE), defined as

 =
1

ýý

ýý∑
ÿ=1

[ÿ(ýÿ) − ÿÿ]
2 . (2.1)

In this study, we consider all training data with no noise.

2.1. Limitation of regular neural network training

To illustrate the limitation of neural network’s function approximation capacity, we consider a target function,

ÿý(ý) = sin(2ý+ 1) + 0.2ÿ1.3ý , (2.2)

we created training data by sampling 300 data points from it with no noise, uniformly distributed within the domain ý ∈ [−1, 1]. 
To fit the training data, we create a fully-connected neural network made of three hidden layers with 20 units in each layer and 
use hyperbolic tangent as the activation function for each unit. Using Adam [35] optimizer, Fig. 1(ÿ) shows that the trained neural 
network ÿ0(ý) captures the target function ÿý(ý) well. During the iterations, the training loss  based on mean squared error (MSE) 
between the data and network, decreases significantly at the early stage (Fig. 1ÿ). However, after 5000 iterations, it reaches a plateau 
around ÿ(10−7) with very small convergence rate. The error function ÿ1(ý) between ÿý and ÿ0 across the training domain is, thus, 
trapped around 10−4 (inset of Fig. 1ÿ). Further experiments, elucidated in Appendix A, affirm that this plateau value of the error 
remains consistent even with larger networks and additional data, and not optimizer-specific.

Neural networks are known for their spectral biases [36], also referred to as the frequency principle [37]. Utilizing the tool of 
neural tangent kernels [38], prior studies [39,40] demonstrated that a standard multi-layer neural network struggles to learn the 
high frequencies of target functions in both theory and practice. The plateau of training loss corresponds to a mismatch between the 
trained network ÿ0(ý) and target function ÿý(ý) at high frequencies. Fig. 1(ÿ) demonstrates that the error function ÿ1(ý) = ÿý(ý) −ÿ0(ý)

within the domain is indeed a high-frequency function.

2.2. Key settings of multi-stage training scheme

Since training a single neural network struggles with learning the high frequencies of the target function, an intuitive approach 
is to train a second neural network to capture the error function ÿ1(ý), or the residue, between the training data and the first trained 
network [41]. The original training data from (2.2) is denoted with (ý(ÿ), ÿ(ÿ)ý ). The training data for the second neural network would 
be (ý(ÿ), ÿ1(ý

(ÿ))), where ÿ1(ý
(ÿ)) denotes the error of network at ý(ÿ). At this point, extra care should be taken when setting up the 

second neural network, particularly concerning two key aspects.

2.2.1. Magnitude of the second neural network
Considering that the original training data has a magnitude of ÿ(1), then the training data for the second neural network, which is 

the residue ÿ1(ý), would be much smaller than 1 (Fig. 1ÿ). We observe that a neural network employing regular weight initialization 
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Fig. 1. Comparison of single-stage with multi-stage training. (ÿ) Fitting of a neural network ÿ0(ý) with tanh activation function to the data from (2.2). (ÿ) Fitting 
of second-stage neural network to the error ÿ1(ý) between the data from (2.2) and the first-stage trained network ÿ0(ý) as shown in (ÿ). (ý) The error ÿ2(ý) between the 
data and the sum of two-stage networks, which reaches the machine precision of a single float (32-bit). (ý) Comparison of the loss convergence between a single-stage 
training (pink and red) and a two-stage training (black). For a single-stage training, the convergence rate of loss suddenly reduces (for Adam) after the loss reaches 
ÿ(10−6) or terminates (for L-BFGS). For a two-stage training, even with less number of weights and biases, the convergence rate is significantly faster than that for 
the single-stage training. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

methods, such as Xavier [42], often struggles to capture training data whose magnitude is significantly larger or smaller than 1 (see 
Appendix B). A straightforward solution to this issue is to normalize the training data by its root mean square value ÿ1 , defined as

ÿ1 = RMS(ÿ1(ý)) =

√√√√ 1

ýý

ýý∑
ÿ=1

[ÿ1(ý
(ÿ))]2 =

√√√√ 1

ýý

ýý∑
ÿ=1

[ÿ
(ÿ)
ý − ÿ0(ý

(ÿ))]2 . (2.3)

Then, the normalized training data for the second neural network becomes (ý(ÿ), ÿ1(ý
(ÿ))∕ÿ1). Denoting the second trained network as 

ÿ1(ý), the combined networks for the original data become

ÿ(1)ý (ý) = ÿ0(ý) + ÿ1ÿ1(ý) . (2.4)

Subsequently, we can continue training the third or even further neural networks to reach higher accuracy for our model. The training 
data for the (ÿ + 1)-th neural network ÿÿ is the residue ÿÿ between the original training data ÿý and the output of the previously 

combined ÿ neural networks, ÿ(ÿ−1)ý (ý(ÿ)), normalized by its own magnitude (root mean square value) ÿÿ, namely (ý
(ÿ), ÿÿ(ý

(ÿ))∕ÿÿ). 
Then, the final model that combines all the (ÿ + 1) neural networks reads,

ÿ(ÿ)ý (ý) =

ÿ∑
ÿ=0

ÿÿÿÿ (ý) , (2.5)

where ÿÿ stands for the magnitude for the ÿ-th neural network. When the original training data ÿý is normalized, ÿ0 is set to be 1.

2.2.2. Frequency of the second neural network
Even with normalization, the second neural network, if initialized with regular weights, could still struggle to fit the high-

frequency data due to the inherent spectral biases of neural networks. To illustrate this, we consider a target function

ÿ(ý) =

(
1 −

ý2

2

)
cos

[
ÿ
(
ý+ 0.5ý3

)]
, (2.6)

with ÿ the free parameter related to the frequency of the function. Fig. 2 shows the function (2.6) for ÿ = 3, 15, and 30, respectively. 
For each ÿ, we generate 300 sample points (ýÿ, ÿÿ) that satisfy (2.6) as our training data, with ýÿ uniformly distributed in the domain 
[−1, 1]. Fig. 2 shows that the neural network, using regular weight initialization, fits the data well for ÿ = 3, partially misses the data 
for ÿ = 15, and completely fails to fit the data for ÿ = 30.

To understand the challenge in fitting high-frequency data, let’s consider a shallow neural network with a single input, single 
output, and one hidden layer that uses the hyperbolic tangent as its activation function:

ÿ(ý) =

ý∑
ÿ=1

ý
(1)
ÿ

tanh
(
ý

(0)
ÿ
ý+ ÿ

(0)
ÿ

)
+ ÿ0 , (2.7)
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Fig. 2. Spectral biases of neural networks. (ÿ) Fitting of neural networks with tanh activation function to the data from (2.6) for different ÿ. Under regular settings, 
neural networks have difficulty fitting high-frequency functions. (ÿ) Frequency domain of the function (2.6) for ÿ = 30 with the dominant frequency ÿý = 5.5. (ý) 
Derivative of the function (2.6) ýÿ∕ýý for ÿ = 30, which scale as ÿ(2ÿÿý ). (ý) Schematic diagram of a single-hidden layer neural network. (ÿ) Comparison between 
single-neuron outputs for different weights ý(0) within the tanh activation function and the function (2.6) for ÿ = 30. To capture high-frequency functions, it shows 
that the weight within the activation function needs to increase from ÿ(1) to ÿ(2ÿÿý ).

Fig. 3. Neural network settings for high-frequency functions. (ÿ) Fitting of a neural network to the data from (2.6) with ÿ = 30, by either changing the activation 
function for the first hidden layer to sin(ý), or multiplying the weight ý(0)

ÿ
before the first hidden layer by a scale factor ÿ. None of them captures the data. (ÿ) 

Comparison of training loss for the neural networks with different settings. (ý) Neural network using sin(ý) activation function and modified scale factor ÿ̂ = 35 fits 
well the high-frequency data (2.6) with ÿ = 30, reaching the same accuracy as (ý) Fourier Let network [39].

where ý(0)
ÿ
denote the weights between the input and hidden layers, and ý(1)

ÿ
are the ones between the hidden and output layers. 

ÿ
(0)
ÿ
is the bias for the hidden units and ÿ0 is the bias for the output unit. The magnitude of the output function is determined by 

ý
(1)
ÿ
, while ý(0)

ÿ
, within the activation function, influence the local gradient of the function (Fig. 2ÿ). Common practice involves 

initializing the weights of the network to follow a Gaussian distribution with zero mean and a specified variance. For example, 
Xavier initialization uses a specified variance ýÿÿ = 2∕(ýý−1 +ýý), where ýý−1 and ýý are the number of units in the preceding 
and succeeding layers, respectively. This initialization ensures that the variance of the sum of all unit outputs in each hidden layer 
remains ÿ(1), which prevents gradient vanishing or explosion during the training. However, a side effect of this approach is that the 
neural network becomes a slowly varying function with respect to normalized inputs.
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Fig. 4. Importance of the modified scale factor ÿ̂. (ÿ) Fitting of neural networks to the data from (2.6) for ÿ = 30 using different modified scale factor ÿ̂. The 
networks start overfitting the data when ÿ̂ ≥ 60. (ÿ) Training loss for the neural networks with different modified scale factors ÿ̂. When ÿ̂ ≥ 60, the training loss 
decreases significantly fast due to over-fitting. (ý) Relation of the root mean square value ÿ of the error ÿ(ý) between the trained network ÿ(ý) and target function 
ÿý (ý) with the modified scale factor ÿ̂. The minimal error is reached when ÿÿý < ÿ̂ < ýý∕6, where ÿý denotes the dominant frequency and ýý the total number of 
training data points.

For a high-frequency function with normalized input and output, and a dominant frequency ÿý , the magnitude of its gradient 
scales as ÿ(2ÿÿý ) (Fig. 2ý). To capture these large gradients, considering a one-hidden layer network with single input and output 
(2.7), the weights ý(0)

ÿ
within the activation function need to increase from their initialized value of ÿ(

√
ýÿÿ) to ÿ(2ÿÿý ) during 

training. This large shift in weight values, particularly for large ÿý , leads to slower convergence during training or an inaccurate 
approximation of the data.

To address this issue, we multiply weights within the activation function by a large scale factor ÿ [18] to expedite the convergence 
of weights towards their optimal high value when fitting high-frequency data. We only multiply the scale factor ÿ to the weights 
between the input and the first hidden layer, rather than all weights, to prevent gradient explosion [43] during the training.

Besides large gradient, high-frequency functions also have a large amount of inflection points. In contrast, the hyperbolic tangent 
function, being a monotonic function, struggles to capture this feature. Periodic functions, such as the sine or cosine function, are 
more suitable choices for activation functions in this case [16]. In our approach, we use the sine function solely for the first hidden 
layer while retaining the hyperbolic tangent function for the remaining layers. This combination allows us to capture both low and 
high-frequency data effectively.

Fig. 3 illustrates the impact of the scale factor ÿ and the choice of activation function on improving the fit for high-frequency data. 
Using a combination of the scale factor ÿ and sine function for the first hidden layer yields the best training result. This combination 
equates to applying a Fourier feature mapping (i.e. Fourier let network) [39] to the input before it is passed through the multi-layer 
network. Fig. 3(ý& ý) compares the convergence rate and final error of both methods when fitting the same high-frequency data. 
The results are consistently good, verifying the efficacy of both methods in fitting high-frequency data.

To expedite the convergence of weights from their initialized value ÿ(
√
ýÿÿ) to the high gradient value ÿ(2ÿÿý ) of a high 

frequency function, the optimal value of ÿ is expected to depend on the variance ýÿÿ, which is related to the weight initialization 
approaches, and the size of neural network. To isolate the impact of ýÿÿ on determining the optimal value of the scale factor, we 
introduce a modified scale factor ÿ̂ as,

ÿ = ÿ̂∕
√
ýÿÿ ⟹ ÿ̂ = ÿ

√
ýÿÿ . (2.8)

Fig. 4(ý) shows that the minimal fitting error is achieved when the modified scale factor is

ÿ̂ > ÿÿý , namely ÿ > ÿÿý∕
√
ýÿÿ , (2.9)

where ÿý denotes the dominant frequency of the data. This finding is intuitive, as a scale factor ÿ̂ that meets the criterion (2.9)
allows the neural network to directly capture the large gradient ÿ(2ÿÿý ) of the high-frequency data.
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However, setting ÿ̂ too high, close to the number of data points ýý , results in overfitting of the neural network. Fig. 4(ÿ) shows 
that a neural network trained with a scale factor ÿ̂ = 300 to fit the training data (ýý = 300) sampled from the high-frequency function 
(2.6) with ÿ = 30 overfits the data. While the training loss is significantly small (Fig. 4ÿ), the validation error is extremely large. 
To mitigate overfitting, Fig. 4(ý) suggests that the modified scale factor ÿ̂ should be less than one-sixth of the total number of data 
points ýý . As a rule of thumb, for the optimal fitting of high-frequency data, besides satisfying (2.9), the number of training data 
points ýý should also meet the criterion

ýý∕6 > ÿÿý ⟹ ýý > 6ÿÿý . (2.10)

Given that the training domain is often normalized within [−1, 1], which contains 2ÿý dominant periods, the criterion (2.10) es-
sentially requires a minimum of 3ÿ ≈ 10 data points within each dominant period 1∕(2ÿý ), to ensure optimal fitting of the neural 
network to the high-frequency data. Without specific clarification, the criterion (2.10) is applied to all the example problems in this 
section.

2.3. Algorithm of multi-stage training scheme for regression problems

Incorporating these key settings for higher-stage neural network training, we summarize a complete procedure of multi-stage 
training scheme for regression problems as shown in Algorithm 1.

Algorithm 1 Multi-stage training scheme for regression problems.
1: Normalize both the input and output data.
2: Build the first-stage neural network with regular weight initialization.
3: Train the neural network to fit the normalized data.
4: Obtain the output of the trained neural network ÿ0(ý).
5: Calculate the error ÿ1(ý) = ÿý − ÿ0 between the data ÿý and the trained network ÿ0(ý).
6: Normalize the error ÿ1(ý) by its root mean square value ÿ1
7: Build the second neural network with the scale factor ÿ obtained from the dominant frequency ÿý of the error ÿ1(ý).
8: Train the neural network to fit the normalized error ÿ1(ý)∕ÿ1 .
9: Repeat Step 4-9 for certain times until ÿÿ+1 = ÿÿ − ÿÿÿÿ is smaller enough.
10: Generate the final model, ÿ(ý) =∑ÿ

ÿ=0
ÿÿÿÿ(ý), by combining all trained neural networks at different stages ÿÿ. This final model can approximate the original data 

ÿý with exceptionally high accuracy.

Following Algorithm 1, Fig. 1(ÿ) shows the result of the second-stage training, which fits the residue ÿ(ý) between the first-
trained network ÿ0(ý) (Fig. 1ÿ) and the original training data ÿý(ý) from (2.2). In comparison to the single-stage training where 
the loss plateaued ÿ(10−8), the two-stage training dramatically reduced loss to ÿ(10−14) (Fig. 1ý), resulting in the fitting error ÿ(ý)
between the two-stage trained networks and the data reaches the machine precision ÿ(10−7) for a 32-bit single float (Fig. 1ý). Unless 
double-precision (64-bit) is employed, further reduction of loss is unattainable. Moreover, we note that the total number of weights 
used (Fig. 1ý) in the two-stage neural networks (around 2 × 3 × 202 ≈ 2400) is less than that in the single-stage network (around 
3 × 302 ≈ 2700). This underscores that a larger neural network is not inherently advantageous; an appropriate training scheme is 
more vital and efficient for the reduction of training loss.

In fact, the power of multi-stage training scheme lies not only in boosting the convergence of training, but also fundamentally 
enabling neural networks to approximate a target function with arbitrary accuracy as required. We now convert the weights, biases 
and training data from single-float precision to double precision, and create the third and fourth-stage neural networks in accordance 
with Algorithm 1. Fig. 5(ý) shows that the error ÿ4(ý) between the sum of four-staged networks and the data successfully approaches 
the machine precision of a 64-bit double float. As long as higher-precision floating-point is used, the error can be further reduced 
with additional stages of training.

Fig. 5(ý) shows that the overall convergence rate of the root mean square value ÿ of the error ÿ(ý) between the network and data 
using multi-stage training scheme follows ÿ ∼ exp(−

√
ÿÿýÿÿý∕25), closely approximating exponential decay. In contrast, the regular 

single-stage training only exhibits a linear decay, ÿ ∼ 1∕ÿÿýÿÿý. That is to say, without considering the risk of being trapped in local 
minima, it would take at least ÿ(1010) iterations for a single-stage training to reach an error of ÿ(10−10). With the multi-stage 
training scheme, it only requires 2502 ≈ 6 × 105 iterations to reach the same error, which is four orders of magnitude faster.

Moreover, we note that the number of data points required for higher-stage training also needs to increase following the criterion 
(2.10). Fig. 5(ý) shows that the dominant frequency of residue after three-stage training can reach ÿý = 150. This implies that the 
minimal number of training data to guarantee the success of the fourth-stage training needs to be ýý > 6ÿÿý = 2830. Fig. 5(ý) shows 
that the relation between the dominant frequency ÿý and magnitude ÿ of the residue after different stages of training empirically 
follows a power law

ÿý ≈ ÿ0ÿ
−ÿ , with the exponent ÿ = 1∕6 , (2.11)

where ÿ0 denotes the dominant frequency of the original training data. In practice, we anticipate a gradual increase in the frequency 
of the residue ÿ(ý) corresponding to the decrease in its magnitude, namely the exponent ÿ should be close to 0. Considering the error 
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Fig. 5. Multi-stage neural networks. (ÿ) Fitting of the first-stage neural network (red dashed curve) to the data from a given target function (blue curve). (ÿ) Training 
loss  over the iterations based on multi-stage training scheme. (ý) Evolution of the root mean square value ÿ of the error ÿÿ(ý) over the iterations, which follows 
ÿ ∼ exp(−

√
ÿÿýÿÿý∕25), close to an exponential decay. However, for single-stage training (ý-inset), the error convergence only follows a linear decay, ÿ ∼ 1∕ÿÿýÿÿý . (ý) 

Fitting of higher-stage networks to the error of lower-stage training. Frequency domain of the error ÿÿ(ý) for different stages are shown in the right column. After 
four stages of training, the error between the data and combined networks is close to the machine precision of a double float (64-bit) (ÿ) Relation of the dominant 
frequency ÿý and the root mean square value ÿ of the error ÿÿ(ý) after different stages of training follows a power law (2.11) with an exponent ÿ independent of (i) 
target functions, (ii) neural network size, (iii) and the number of data points.

between a neural network ÿ(ý) and target function ÿý(ý) of magnitude ÿ0 and dominant frequency ÿý , the error between the ÿ-th 
derivative of ÿ̂(ý) and ÿý(ý) becomes,

ýÿ

ýýÿ
ÿ(ý) −

ýÿ

ýýÿ
ÿý(ý) =

ýÿ

ýýÿ
ÿ(ý) ∼ (2ÿÿý )

ÿÿ0 ∼ ÿ1−ÿÿ
0

, (2.12)

where we derive the last expression using (2.11). We find that when 1 − ÿÿ > 0, even if the magnitude of error ÿ0 is small, the error 
at high derivatives ÿ > 1∕ÿ can still exceed 1. This indicates that the trained neural network with high-frequency error tends to miss 
the high-derivative (ÿ > 1∕ÿ) information of the target function underlying the training data. Hence, our goal is to achieve a smaller 
ÿ value during training, which enables the neural network to learn the high-derivative information from the data more accurately.

However, Fig. 5(ÿ) shows that, for regression problems, the exponent ÿ from multi-stage training scheme appears to be universal, 
independent of both target functions and neural network settings. To further reduce ÿ, high-derivative information about the target 
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Fig. 6. Multi-stage neural networks for a 2D target function. (ÿ) Fitting of first-stage neural network ÿ0(ý, ÿ) to the data from a 2D target function ÿý (ý, ÿ). (ÿ-ý) 
Fitting of higher-stage networks ÿÿ(ý, ÿ) to the error ÿÿ(ý, ÿ) of lower-stage training. Frequency domain of the error at each stage is given. (ÿ) Relation of the dominant 
frequency ÿý with the root mean square value ÿ of the error ÿÿ(ý, ÿ) after different stages of training follows the same power law with the 1D problem, of which the 
exponent ÿ = 1∕6. (ÿ ) Training loss  over iterations of the multi-stage neural networks. The inset shows that the evolution of the root mean square error ÿ over 
iterations for the 2D regression problem follows ÿ ∼ exp(− 3

√
ÿÿýÿÿý∕7), which is slightly slower than that for the 1D problem (see inset of (ÿ).

function would be required for the training. However, this information is often absent in regression problems, while it is readily 
available for physics-informed neural networks. The methodology of reducing the exponent ÿ for PINNs will be addressed in a later 
section (§3.4).

Fig. 6(ÿ-ý) shows that the multi-stage training scheme is equally applicable for 2D regression problems. The convergence rate of 
the loss function for the 2D problem roughly follows ÿ ∼ exp(− 3

√
ÿÿýÿÿý∕7) (Fig. 6ÿ ), slower than that for the 1D problem, but still 

much faster than the linear decay seen with regular single-stage training. Fig. 6(ÿ) shows that the relation between the dominant 
frequency ÿý and the root mean square value ÿ of the 2D residue ÿ(ý, ÿ) follows the same power law (2.11) with the exponent 
ÿ ≈ 1∕6.

3. Multi-stage training for physics-informed neural network

The multi-stage training scheme is particularly critical when we use neural network to approximate solutions governed by equa-
tions, where the demand for precision is high and essential for the usefulness of the solution. Here we apply the multistage idea to the 
physics-informed neural networks (PINNs) to improve their accuracy to machine precision. Unlike classical numerical method (i.e. 
finite difference) which can steadily enhance the accuracy of solution by reducing the grid size, PINNs cannot efficiently reduce so-
lution errors merely by adding more collocation points or enlarging the neural network size, similar to the issue seen with regression 
problems (see Appendix A). This has made PINNs a less favored method for many scientific research that demands high-precision 
prediction. In this section, we show that the multi-stage training scheme can be extended to address this limitation of PINNs.

The general procedure of multi-stage training scheme for physics-informed neural networks (PINNs) mirrors that for regression 
problems (Algorithm 1). However, two new challenges emerge when applying multi-stage training to PINNs. First, for regression 
problems, we can directly determine the magnitude ÿ and dominant frequency ÿý of the target function for each stage of training 
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Fig. 7. Comparison of prediction error with equation residue of PINNs. (ÿ) Exact solution ÿý(ý) and neural network prediction ÿ0(ý) to equation (3.3). (ÿ) 
Comparison of the equation residue ÿ1(ý, ÿ0) associated with the neural network prediction ÿ0(ý) with the prediction error ÿ1(ý) between ÿ0(ý) and the exact solution 
ÿý (ý), which has different magnitude. (ý) The frequency domain of the equation residue ÿ1(ý, ÿ0) and the prediction error ÿ1(ý), which has the same dominant 
frequency.

from the residue of lower-stage training. However, for PINNs, these two quantities are not readily obtainable because we lack the 
exact solution required to estimate the error of lower-stage training.

In addition, the loss function of PINNs involves both data loss and equation loss, defined as

 = (1 − ÿ)ý + ÿÿ with (3.1)

ý =
1

ýý

ýý∑
ÿ=1

[ÿ(ýÿ) − ÿÿ]
2 and ÿ =

1

ýÿ

ýÿ∑
ÿ=1

[ÿ(ýÿ , ÿ(ýÿ ))]
2, (3.2)

where ýý represents the number of data points, commonly employed as the boundary condition, and ýÿ is the number of collocation 
points, which are utilized to examine the equation residue ÿ(ý, ÿ) at various positions within the domain. In comparison to regression 
problems, ÿ , known as the equation weight, is the additional hyper-parameter that balances the significance of the two losses during 
training. How to determine an appropriate value of ÿ for higher stages of training becomes the second challenge. Using a simple 
example, we will demonstrate new algorithms to address these challenges and develop a modified multi-stage training scheme for 
PINNs.

3.1. First challenge: magnitude and frequency of higher-stage network

As discussed in Section 2.2, the effectiveness of multi-stage training scheme depends largely on the optimal setting of the higher-
stage neural networks ÿÿ, which is based on the magnitude and frequency of the residue ÿÿ between the combined lower-stage 
networks and the ground truth ÿý . However, these pieces of information are not directly accessible for PINNs because we don’t have 
the exact solution ÿý(ý) to the equation that is required to estimate the error ÿ(ý) = ÿý − ÿ0 of the lower-stage trained networks. 
Instead, the only information we have is the equation residue ÿ(ý, ÿ0) associated with the trained first-stage network ÿ0. Thus, 
understanding the relation between the equation residue ÿ(ý, ÿ0) and the error ÿ(ý) of the lower-stage networks with the exact 
solution is crucial for determining the settings for the higher-stage training of PINNs.

3.1.1. A simple example
We consider a first-order ordinary differential equation with the boundary condition

ýÿ

ýý
= ÿ+ ý with ÿ(0) = 0 , (3.3)

which has the exact solution ÿý(ý) = ÿý − ý −1. Fig. 7(ÿ) shows the single-stage trained network ÿ0(ý) to solve the equation (3.3) via 
PINN, which matches the exact solution ÿý(ý) well. The equation residue ÿ1(ý, ÿ0) associated with the network ÿ0(ý) gives

ÿ1(ý, ÿ0) =
ýÿ0

ýý
− (ÿ0 + ý) , (3.4)

which has the same dominant frequency with the error ÿ1(ý) = ÿý(ý) −ÿ0(ý) between the trained network ÿ0(ý) and the exact solution 
ÿý(ý). However, the magnitude of equation residue ÿ1(ý, ÿ0) is one-order of magnitude larger than that of the error ÿ1(ý). To elucidate 
their relations, we introduce the ansatz,

ÿý(ý) = ÿ0(ý) + ÿ1ÿ1(ý) with ÿ1(ý) = ÿ1ÿ1(ý) , (3.5)

where ÿ1 denotes the magnitude of the error ÿ1(ý), and ÿ1(ý) becomes the normalized function within the domain. Substituting the 
ansatz (3.5) into (3.3) and re-arranging the equation gives

−ÿ1

(
ýÿ1
ýý

− ÿ1

)
=

ýÿ0

ýý
− (ÿ0 + ý) . (3.6)
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Recalling (3.4), the right-hand side of (3.6) is the equation residue. Thus, the relation between the prediction error ÿ1(ý) and the 
equation residue ÿ1(ý, ÿ0) gives

−ÿ1

(
ýÿ1
ýý

− ÿ1

)
= ÿ1(ý, ÿ0) , (3.7)

which also becomes the governing equation for the second-stage training with ÿ1(ý) the second-stage neural network. The boundary 
condition of ÿ1, based on (3.3) and (3.5), gives

ÿ1ÿ1(0) = 1 − ÿ0(0) ⟹ ÿ1(0) =
1 − ÿ0(0)

ÿ1
. (3.8)

With the appropriate setting of the equation weight ÿ (as discussed in a later section §3.2), the data loss of the first-stage training 
should be much smaller than that of the equation loss. This indicates that the error ÿ1(ý), as well as ÿ1(ý), has much smaller value at 
the boundary than within the domain. Namely, the boundary condition of ÿ1(0) can be considered as 0.

With zero boundary conditions, the magnitude and frequency of the solution ÿ1(ý) are governed by the source function. For a 
linear equation, the dominant frequency of ÿ1(ý) must be equal to that of the source function, namely the equation residue ÿ1(ý, ÿ0). 
Otherwise, the equation cannot be balanced in the frequency domain.

The magnitude of the term ýÿ1(ý)∕ýý in (3.7) scales as ÿ(2ÿÿý ), as discussed in Section 2.2, where ÿý is the dominant frequency 
of the function. Given that ÿ1(ý) shares the same dominant frequency with the equation residue ÿ1(ý, ÿ0), the magnitude ÿ1 of the 
error ÿ1(ý) between the network ÿ0(ý) and exact solution ÿý(ý) can be determined by equating the magnitudes of the leading-order 
terms on both sides of the equation (3.7), which gives,

2ÿÿýÿ1 ∼ ÿÿ1 ⟹ ÿ1 =
ÿÿ1
2ÿÿý

with ÿÿ1 = RMS(ÿ1(ý, ÿ0)) (3.9)

where we use the root mean square (RMS) value ÿÿ1 to represent the magnitude of ÿ1(ý, ÿ0). Fig. 7(ý) shows that the dominant 
frequency for the equation residue ÿ1(ý, ÿ0) and prediction error ÿ1(ý) are the same, around ÿý ≈ 1.5. Based on (3.9), the magnitude 
ÿ1 of the error should be 2ÿÿý ≈ 10 times less than that of the equation residue, consistent with the result shown in Fig. 7(ÿ).

3.1.2. Magnitude and frequency estimation for general differential equations
To extend the relations between the properties of equation residue ÿ1(ý, ÿ0) and prediction error ÿ1(ý) for general equations, we 

now consider a general form of ordinary differential equations


(
ý, ÿ, ÿ(1), ...ÿ(ÿ)

)
= ý (ý) with ÿ(ÿ) =

ýÿÿ

ýýÿ
for ÿ = 1,2, ...,ÿ (3.10)

where  is a nonlinear differential operator that involves ý, ÿ and its derivative ÿ(ÿ) at different orders. ÿ represents the highest 
order of derivative of ÿ in the equation. ý (ý) is a source function with known expression. We denote ÿý(ý) as the exact solution to 
the equation and ÿ0 the first-stage neural network prediction. Substituting the ansatz (3.5) into (3.10) gives


(
ý, (ÿ0 + ÿ1ÿ1), [ÿ0 + ÿ1ÿ1]

(1), ..., [ÿ0 + ÿ1ÿ1]
(ÿ)

)
= ý (ý) (3.11)

Considering that the first-stage trained network ÿ0 captures the main variation of the exact solution ÿý , the magnitude ÿ1 of the error 
ÿ1(ý) between ÿý and ÿ0 would be much smaller than one, namely ÿ1 ≪ 1. In that case, the equation (3.11) can be rewritten in terms 
of a Taylor expansion of the nonlinear function  . After re-arrangement, it gives

−ÿ1

(
ÿ

ÿÿ

||||ÿ=ÿ0
ÿ1 +

ÿ

ÿÿ(1)

||||ÿ=ÿ0
ÿ
(1)

1
+ ...+

ÿ

ÿÿ(ÿ)

||||ÿ=ÿ0
ÿ
(ÿ)

1

)
+ÿ(ÿ2

1
) =

(
ý, ..., ÿ

(ÿ)

0

)
− ý (ý) (3.12)

where ÿ and its derivative ÿ(ÿ) at different orders are considered as separate independent variables of the function  (ý, ÿ, ..., ÿ(ÿ)). 
Because ÿ1 ≪ 1, all the nonlinear terms of ÿ1 fall into the high-order ÿ(ÿ2

1
) term, and can generally be disregarded. This suggests 

that regardless of the nonlinearity of original equations, the governing equations for higher-stage networks essentially become linear
equations. This is a key factor that ensures the success of multi-stage training scheme for PINNs.

Given that the right-hand side of (3.12) is the equation residue ÿ1(ý, ÿ0) of the first-stage training, the final equation for ÿ1 reads

ÿ1

(
ÿ

ÿÿ

||||ÿ=ÿ0
ÿ1 +

ÿ

ÿÿ(1)

||||ÿ(1)=ÿ(1)
0

ÿ
(1)

1
+ ...+

ÿ

ÿÿ(ÿ)

||||ÿ(ÿ)=ÿ(ÿ)
0

ÿ
(ÿ)

1

)
= ÿ1(ý, ÿ0) (3.13)

or, in a short form,

−ÿ1

ÿ∑
ý=0

ÿýÿ
(ý)

1
= ÿ1(ý, ÿ0) with ÿý =

ÿ

ÿÿ(ý)

||||ÿ=ÿ0
and ÿ

(ý)

1
=

ýýÿ1

ýýý
(3.14)

As mentioned earlier, if ÿ0 is correctly trained, the boundary condition for ÿ1 should be close to 0. Given that (3.14) is linear, the 
magnitude and frequency of ÿ1 should be determined from the equation residue ÿ1(ý, ÿ0) by matching the magnitude and frequency 
of the dominant term (the term with the largest magnitude) on the left-hand side of (3.14) with that of ÿ1(ý, ÿ0).
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Considering a physical equation with coefficients of similar scale before each term, and assuming ÿ1 to be a high-frequency 
function with a dominant frequency far exceeding that of ÿ0, the dominant term on the left-hand side of (3.14) is expected to be the 
one involving the highest-order derivative of ÿ1, namely ÿ1ÿÿÿ

(ÿ)

1
. We denote the dominant frequency of ÿÿ and ÿ1(ý, ÿ0) as ÿ

(ÿ)

ý
and 

ÿ
(ÿ)

ý
, respectively. Then, the dominant frequency ÿ (1)

ý
of ÿ1 gives

ÿ
(ÿ)

ý
+ ÿ

(1)

ý
= ÿ

(ÿ)

ý
⟹ ÿ

(1)

ý
= ÿ

(ÿ)

ý
− ÿ

(ÿ)

ý
. (3.15)

Given that ÿÿ is a function only with respect to the lower-order network ÿ0 , and the dominant frequency ÿ
(1)

ý
of the higher-stage 

network ÿ1 is much larger than that of ÿ0. Thus, even if ÿÿ is a highly-nonlinear function, we have ÿ (1)

ý
≫ ÿ

(ÿ)

ý
. Combined with 

(3.15), we have

ÿ
(1)

ý
= ÿ

(ÿ)

ý
− ÿ

(ÿ)

ý
≈ ÿ

(ÿ)

ý
(3.16)

where the dominant frequency of ÿ1 is mainly governed by that of equation residue. With the dominant frequency determined, the 
magnitude ÿ1 of the error between ÿý and ÿ0 can be derived by matching the magnitude of the term ÿ1ÿÿÿ

(ÿ)

1
and ÿ1(ý, ÿ0), which 

gives

ÿ1 ⋅ ÿÿ

[
2ÿÿ

(ÿ)

ý

]ÿ
= ÿÿ1 ⟹ ÿ1 =

ÿÿ1[
2ÿÿ

(ÿ)

ý

]ÿ
ÿÿ

(3.17)

with ÿÿ = RMS(ÿÿ) and ÿÿ1 = RMS(ÿ1(ý, ÿ0))

where we use the root mean square (RMS) value ÿÿ and ÿÿ1 to represent the magnitude of ÿÿ and equation residue ÿ1(ý, ÿ0), 
respectively.

The relations (3.16) and (3.17) can also be generalized to partial differential equations, for which we need to calculate the 
dominant frequency of ÿ1 with respect to each independent variable ýÿ, namely

ÿ
(1,ýÿ)

ý
≈ ÿ

(ÿ,ýÿ)

ý
for ÿ = 1,2, ...,ý (3.18)

where ý is the total number of independent variables of the equation. Then, the magnitude ÿ1 of the error between the first-stage 
network ÿ0 and the exact solution ÿý would be

ÿ1 =
ÿÿ1

ÿÿ

[
2ÿÿ

(ÿ,ý1)

ý

]ÿ1
⋅

[
2ÿÿ

(ÿ,ý2)

ý

]ÿ2
...
[
2ÿÿ

(ÿ,ýý )

ý

]ÿý
(3.19)

where ÿ1 + ÿ2 + ... + ÿý represents the highest order of partial derivative of ÿ1 in the equation. For most equations, the relations 
(3.16)-(3.19) are sufficiently accurate to estimate the magnitude and frequency of the network for higher-stage PINN training. 
However, there are two types of nonlinear equations where these relations may not hold exactly. They are discussed in Appendix C.

3.1.3. Importance of magnitude and frequency for higher-stage PINN training
The proper setting of the magnitude and frequency of a neural network, as shown to be essential for regression problems in 

Section 2.2, is critical for physics-informed neural networks, especially during higher-stage training. To illustrate this, we use a 
Poisson equation with a high-frequency source function to represent the equation residue, and zero boundary conditions. This setup 
effectively mimics the governing equation for higher-stage PINN training. The equation reads

ÿýý + ÿÿÿ = −sin(6ÿý) sin(6ÿÿ) with ÿ(ý,±1) = ÿ(±1, ÿ) = 0 (3.20)

At first glance, one might assume that the solution ÿ has the same order of magnitude with the source function, which is ÿ(1). 
However, based on the analysis (3.18) in Section 3.1.2, the solution should have a dominant frequency ÿý = 3 with respect to both 
independent variables ý and ÿ. Given that the highest order of derivative in (3.20) is ÿ = 2, the magnitude of the solution ÿ can, 
then, be derived from (3.19), as 1∕[2ÿÿý ]

2 ∼ÿ(10−3), as shown in the exact solution,

ÿý(ý, ÿ) =
1

2(6ÿ)2
sin(6ÿý) sin(6ÿÿ) . (3.21)

Fig. 8 shows the neural network predicted solution ÿ0 to (3.20) via PINNs under different setting of magnitude (via magnitude 
prefactor ÿ0) and frequency (via modified scale factor ÿ̂0). In these cases, we assume that the correct value of the equation weight ÿ
is used. As shown in Fig. 8(ÿ), only when both magnitude and frequency are correctly set in accordance with (3.18) and (3.19) does 
the neural network successfully converge to the exact solution at a rapid convergence rate.

3.1.4. Algorithm for determining the solution magnitude for higher-stage PINN training
Besides the theoretical relations (3.16)-(3.19) derived in Section 3.1.2, we also develop a general algorithm to determine the 

magnitude of the solution to linear differential equations with high-frequency source functions and zero boundary conditions to 
mimic the higher-stage training of PINN. The algorithm can subsequently be combined with Algorithm 1 to extend the multi-stage 
training scheme for PINNs. The specific steps of the algorithm are given in Algorithm 2.
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Fig. 8. Importance of rescaling PINN magnitude and frequency. (ÿ) Exact solution ÿý (ý, ÿ) to equation (3.20) and the general setting of PINNs for 4 cases. (ÿ) 
Evolution of the data loss and equation loss over the training of solving (3.20) via PINNs for different magnitude prefactor ÿ0 and modified scale factors ÿ̂0 . (ý) 
Trained network ÿ0(ý, ÿ) of the solution to (3.20), the associated equation residue ÿ1(ý, ÿ, ÿ0) and prediction error ÿ1(ý, ÿ) under different magnitude prefactor ÿ0 and 
modified scale factor ÿ̂0 (Case 1-4). The trained network with ÿ0 and ÿ̂0 from (3.18) and (3.19) gives the prediction with the lowest relative error ÿÿÿ.

The principle underlying the algorithm is based on the fact that the dominant frequency of the solution ÿ(ý) mirrors that of the 
source function ý(ý). Therefore, the amplification effect of the derivative, attributable to the high-frequency property of the solution, 
can be well-estimated by taking ý(ý) as the guess solution. We define the ratio ý as the magnitude of the differential operator ý

relative to that of the source function ý(ý).
If ý is larger than 10, the magnitude of the differential operator ý associated with the guess solution (3.23) much larger than the 

source function ý(ý). In that case, the magnitude of the guess solution should be reduced by decreasing ÿ. Conversely, when ý is less 
than 0.1, it suggests that differential operator ý associated with the guess solution (3.23) is too small. Hence, we should increase 
the magnitude of the solution by increasing ÿ. The recursive relation (3.27) in Algorithm 2 is designed to achieve this objective. 
Here, the learning rate ÿ is a user-defined positive hyper-parameter, which determines the rate at which ÿ and ý(ÿ) converges to 
satisfy the criterion (3.26). Finally, the magnitude of the solution ÿ can be estimated using (3.28).

Applying Algorithm 2 to equation (3.20), we obtain that ÿ = 1.41 × 10−3, which is very close to the magnitude of the exact 
solution, ÿ = 1∕[2(6ÿ)2] = 1.43 × 10−3. Here, we note that Algorithm 2 is mainly applicable to linear differential equations with a 
single dependent variable. For nonlinear equations or a group of differential equations with multiple dependent variables, a more 
advanced algorithm may be required to determine the magnitude for each variable, which is beyond the scope of this paper.
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Algorithm 2 Determine the magnitude ÿ of solution to a linear equation with high-frequency source function and zero boundary 
condition.
1: Write a linear equation in terms of the source function ý(ý) (function without dependent variable) as

 [ý, ÿ(ý)] = ý(ý), (3.22)

where  [ ⋅ ] indicates the differential operator involved in a given equation and ý = (ý1, ý2, ...) represents the independent variables.
2: Define a guess solution based on source function ý(ý) as

ÿý(ý, ÿ) = ÿý(ý), (3.23)

where the coefficient ÿ can be initially set to be 1.
3: Substitute the guess solution ÿý (3.23) and calculate the associated differential operator ý

ý(ý, ÿ) = [ý, ÿý(ý, ÿ)] (3.24)

In practice, for complicated equations, the differential operator ý can be more easily calculated by adding the equation residue ÿý(ý, ÿý) associated with the 
guess solution with the source term ý(ý), namely

ý(ý, ÿ) = ÿý[ý, ÿý(ý)] + ý(ý) (3.25)

4: Introduce an iteration process and define the criterion for the coefficient ÿ

0.1 <ý(ÿ) =
||ýý(ý, ÿ)||
||ý(ý)|| < 10 (3.26)

where || ⋅ || represents the ý2-norm. If the ratio ý falls outside the criterion (3.26), update ÿ with learning rate ÿ by

ÿ ← ÿ∕ýÿ (3.27)

and re-calculate ý(ÿ) based on the updated value of ÿ until ý meets the criterion (3.26).
5: Compute the solution magnitude ÿ by multiplying ÿ from Step 4 by the root mean square ÿý of the source function ý(ý), namely

ÿ = ÿ ⋅ ÿý where ÿý = RMS(ý(ý, ÿ)) (3.28)

3.2. Second challenge: equation weight for higher-stage network

Equation weight ÿ , as shown in (3.1), is a hyper-parameter to balance the contribution of data loss and equation loss in the loss 
function for physics-informed neural networks (PINNs). In the context of PINNs as a differential equation solver, boundary condi-
tions are often implemented as data loss and the governing equations constitute the equation loss. Given that boundary conditions 
determine the uniqueness of the solution, a general rule of thumb is weighting the data loss more than the equation loss in the loss 
function [27]. This ensures that the boundary conditions are prioritized and satisfied during the training. Several previous papers 
had proposed optimal ways to weigh different terms in the loss function [28–31]. For example, Wang et al. (2022) [30] demonstrated 
large discrepancies in the convergence rates between different terms of the loss function and developed algorithms to determine the 
optimal value of ÿ using the neural tangent kernel of PINNs.

The relative contribution of data loss and equation loss in the loss function (3.1) is the ratio of the first term, ý1 = (1 − ÿ)ý , to 
the second term, ý2 = ÿÿ in (3.1), i.e. ý1∕ý2. For normalized linear differential equations that have low-frequency solutions, such 
as (3.3), the equation loss, ÿ, remains the same order of magnitude with the data loss ý , around ÿ(1). In that case, by setting 
0.1 < ÿ < 0.5, we can ensure that the contribution of data loss ý1 > ý2 in the loss function (3.1). However, this setting of ÿ does 
not hold for differential equations with high-frequency solutions. A systematic mathematical justification was provided by a prior 
study [31], showing that the magnitude of the equation loss increases with the frequency of the solution. When considering the same 
Poisson equation (3.20) with zero boundary conditions and a high-frequency source function, similar to the equation we solve during 
higher-stage training, the magnitude of equation loss at the beginning of the training can be estimated as

ÿ =
1

ýÿ

ýÿ∑
ÿ=0

[
ÿýý + ÿÿÿ + sin(6ÿýÿ) sin(6ÿÿÿ)

]2
∼ÿ(1), (3.29)

which is determined by the magnitude of the source function sin(6ÿý) sin(6ÿÿ). The magnitude of data loss at the beginning of 
training reads

ý =
1

ý1

ý1∑
ÿ=0

[ÿ(ýÿ,±1)]
2 +

1

ý2

ý2∑
ÿ=0

[ÿ(±1, ÿÿ )]
2 ∼ÿ(ÿ2) (3.30)

which is determined by the initial magnitude of the solution. Considering that the magnitude ÿ0 of the solution has been estimated 
from the relation (3.19) or Algorithm 2, which gives ÿ0 ≈ 1∕(6ÿ)2 for the solution to (3.20), the magnitude of the data loss thus 
becomes
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Fig. 9. Importance of the equation weight ÿ of PINNs. (ÿ) Equation residue ÿ1(ý, ÿ) and prediction error ÿ1(ý, ÿ) of solving (3.20) via PINN for different ÿ . (ÿ) 
Evolution of data loss and equation loss over the training for different ÿ shown in (ÿ). The inset shows the loss evolution for different ÿ that satisfy the criterion 
(3.37), which are close to each other. (ý) The root mean square value ÿ1 of the prediction error ÿ1(ý, ÿ) (lower panel), and the corresponding ratio ýý of the data loss 
convergence rate over that of equation loss (upper panel) as a function of ÿ . The optimal range of ÿ with minimal prediction error corresponds to 0.1 <ýý < 5. Error 
bars show the standard deviation of five repetitive experiments with different random initialization.

ý ∼ÿ(ÿ2
0
) ∼ÿ(10−6) (3.31)

which is six orders of magnitude smaller than the equation loss. If we still use ÿ ∼ ÿ(0.1), as ý2 ≫ ý1, the optimization process 
will primarily focus on minimizing the ý2 during the training, largely neglecting the contribution from the data loss. Utilizing the 
appropriate values of the magnitude prefactor ÿ0 and the modified scale factor ÿ̂0 from Section 3, Fig. 9(ÿ) shows the evolution of the 
data loss and equation loss over iterations by setting ÿ = 0.5. Compared with the equation loss, which was reduced by seven orders 
of magnitude in total, the data loss decays at a much slower rate, significantly limiting the errors of the trained neural network 9(ý) 
to be round 5%.

3.2.1. Theoretical approach of determining equation weight
To improve the accuracy of trained network via PINN, we need to minimize the data loss prior to the equation loss. Therefore, 

the optimal value of ÿ should yield a larger contribution from the data loss larger than from the equation loss, namely,

ý1 = (1 − ÿ)ý ≥ ÿÿ = ý2 ⟹ ÿ ≤
ý

ÿ +ý

, (3.32)

which is consistent with the expression proposed in a prior study [31]. For equation (3.20), with the magnitude of the equation loss 
and data loss determined from (3.29) and (3.30) respectively, equation (3.32) yields ÿ = 2 × 10−6. With this ÿ , Fig. 9(ÿ) shows that 
both data loss and equation loss rapidly decrease over the training by more than five orders of magnitude. This suggests that both 
the equation and boundary condition are progressively satisfied by the network throughout the training. Although the reduction in 
equation loss is slightly less than in the case with ÿ = 0.5, the relative error ÿÿÿ between the trained neural network and the exact 
solution is reduced by more than one hundred times (Fig. 9ÿ). However, generally without prior knowledge of the solution we do not 
know its corresponding ý and ÿ, so estimating ÿ theoretically is difficult. Therefore below we develop an alternative approach.
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3.2.2. Algorithm for determining equation weight for general equations
Besides the theoretical expression (3.32), we also develop a more general algorithm to determine ÿ through a pre-training process. 

This approach provides higher accuracy and adaptability for a broad range of problems. As mentioned previously, the optimal value 
of ÿ should result in similar convergence rates for the data loss and equation loss over the course of training. We propose a heuristic 
approach for determining the optimal ÿ , which is outlined in Algorithm 3.

Algorithm 3 Determine the optimal equation weight ÿ for general PINN training.
Prerequisite: normalize the equation with the magnitude of the largest term around ÿ(1) and apply the scale factor and the magnitude prefactor estimated from 
Algorithm 2 to the neural network.

1: Set the initial value of ÿ and calculate the initial data loss and equation loss


(0)

ý
= ý (ÿ = 0) and (0)

ÿ
=ÿ(ÿ = 0) (3.33)

where (ÿ)

ý
and (ÿ)

ÿ
represent the data and equation loss at the ÿ-th iteration, respectively.

2: Pre-train the neural network for ý0 iterations and calculate the minimal data loss and equation loss within the last ý1 = 0.1ý0 iterations as


(ÿ)

ý
=

ý1−1

min
ÿ=0

ý (ý0 − ÿ) and (ÿ)
ÿ

=
ý1−1

min
ÿ=0

ÿ(ý0 − ÿ) (3.34)

3: Quantify the convergence rate of the data loss and equation loss with

ÿý =

(0)

ý


(ÿ)

ý

and ÿÿ =
(0)

ÿ


(ÿ)
ÿ

(3.35)

4: Introduce an iteration process and define the criterion for the coefficient ÿ

ÿ(0.1)<ýý (ÿ) =
ÿý

ÿÿ

<ÿ(10) (3.36)

5: If the ratio ýý of the two convergence falls outside the criterion (3.36) , update ÿ with learning rate ÿ by

ÿ ← ÿ ⋅ýÿ
ý

(3.37)

and rerun Step 3 - 6 with the new updated ÿ until the criterion (3.36) is satisfied.

The principle underlying the algorithm lies in estimating the convergence rates of both data loss ÿý and equation loss ÿÿ. This 
estimation involves calculating the ratio of the initial loss 0

ý
and 0

ÿ , to the respective losses 
ÿ
ý
and ÿ

ÿ after a short period of 
pre-training. Here, we use the minimal value during the last 10% of the pre-training iterations to calculate ÿ

ý
and ÿ

ÿ to counteract 
any potential spikes in the loss evolution.

If the convergence rate of the data loss ÿý is substantially lower than that of the equation loss ÿÿ, it indicates that the ÿ used 
in training is too large and needs to be reduced. Vice versa. The recursive relation (3.37) is designed to reach this goal. ÿ can be 
considered as the learning rate, a hyper-parameter that determines how fast ýý(ÿ) meets the criterion (3.36). We note that, when 
ÿ is updated, one should re-train the neural network from the beginning to compute the updated ýý(ÿ), instead of continuing the 
previous training.

Apply Algorithm 3 to the equation (3.20) with ý0 set to be 500, one gives ÿ ≈ 10−4. Fig. 9(ÿ) shows the trained network using 
this ÿ , which reaches further higher accuracy than that using ÿ = 2 × 10−6 from (3.32). Compared with the case of ÿ = 0.5 and 
ÿ = 2 × 10−6, the convergence rate of both data loss and equation loss when using ÿ from Algorithm 3 are maximized (Fig. 9ÿ), 
leading to the smallest errors of the neural network prediction.

The criterion range in (3.36) suggests that the training accuracy is not overly sensitive to the value of ÿ , provided that the 
convergence rate of data loss ÿý and equation loss ÿý remains within the same order of magnitude. Fig. 9(ý) shows the optimal 
range of ÿ that yields the minimal root mean square value ÿ1 of the error ÿ1(ý) between the trained network and the exact solution to 
(3.20). The corresponding range of ýý is found to be 0.1 <ýý < 5, aligning with the range in criterion (3.37). The inset of Fig. 9(ÿ) 
shows that the evolution of both data loss ý and equation loss ÿ for different ýý (ÿ) with this range (3.36) are closely matched. 
For ÿ = 0.5, the ratio ýý , based on Algorithm 3, is found to be ýý(ÿ = 0.5) = 10−4, which largely deviates from the criterion, thus, 
resulting in large prediction error.

3.3. Additional setting of PINN training for higher-stage network

Besides the most critical settings, i.e. magnitude prefactor ÿ, scale factor ÿ of frequency, and the equation weight ÿ , there are 
other settings and advanced algorithm developed in the literature that can ensure the success of PINN training for the high-stage 
networks.

3.3.1. Optimization method and re-sampling collocation points
Two other critical settings in the training of high-frequency function includes the selection of optimization method and the number 

of collocation point. Common choices for PINN training optimizer include Adam and L-BFGS, a second-order quasi Newton method. 
For general equations with low-frequency solution, L-BFGS is often the preferred optimization method. However, for equations with 
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Fig. 10. Importance of re-sampling collocation points of PINNs. (ÿ) Comparison of prediction error ÿ1(ý, ÿ) of solving (3.26) via PINNs for different number of 
collocation points ýý and using different optimizer, including L-BFGS, Adam with gradient descend (GD) (fixed collocation points) and Adam with stochastic gradient 
descent (re-sample collocation points over the iterations). (ÿ) The evolution of data loss and equation loss over the iterations for different optimizer using the number 
of collocation points ýý below or above (inset) the critical value ýýÿÿý. (ý) The relation of the root mean square value ÿ1 of the prediction error ÿ1(ý, ÿ) with the 
number of collocation points ýý for Adam (GD) and Adam (SGD). When the number of collocation points ýý is less than the critical value ýýÿÿý ≈ 3100, stochastic 
gradient descend can reach better performance for predicting high-frequency solutions. Error bars show the standard deviation of five repetitive experiments with 
different random initialization.

high-frequency solutions, this is not always the case. Fig. 10(ÿ) presents a comparison of the loss evolution and final prediction error 
of trained network between using Adam and L-BFGS for solving the equation (3.20), where Adam shows a better overall convergence 
rate. Furthermore, Adam has the added advantage of utilizing stochastic gradient descent (SGD) by re-sampling the collocation points 
every few iterations [44,45], which shows a even higher convergence rate.

Collocation points in PINN training is as important as data points in regression problems. As discussed in Section 2.2.2, when 
training the neural network to fit high-frequency data, a sufficient number of data points (3ÿ ≈ 10 per dominant period) are needed 
to ensure accurate predictions. This principle remains valid for PINN training. Unlike regression problems, which are limited by the 
availability of finite data points, PINN could potentially utilize as many collocation points as computationally feasible. For equation 
(3.20), the dominant frequency ÿý = 3 in each dimension. Given that the domain is defined in (ý, ÿ) ∈ [−1, 1], there are 6 dominant 
periods in each dimension. Thus approximately ýýÿÿý = (3ÿ × 6)2 ≈ 3100 collocation points are required. Fig. 10(ÿ) compares the 
accuracy of the trained network for different number of collocation points. For L-BFGS and Adam (GD) with fixed and small number 
of collocation points, the neural network predictions significantly deviate from the exact solution. When the number of collocation 
points reach the criterion ýýÿÿý, the prediction error drops sharply and only improves marginally with the addition of more collocation 
points.

Compared with using fixed collocation points, predictions using Adam with stochastic gradient descent (SGD) are less sensitive 
to the number of collocation points. Fig. 10(ÿ) shows that the prediction error using Adam (SGD) can attain optimal precision even 
when the number ýý of collocation points falls below the critical value ýýÿÿý. Fig. 10(ý) further compare the root mean square error 
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(RMSE) ÿ of the trained network between utilizing Adam (GD) and Adam (SGD) for different number of collocation points ýý . It 
confirms that SGD is an essential tool in PINN training for predicting high-frequency solution.

3.3.2. Advanced methods from the literature: RAR and gPINNs
Having discussed the essential settings, we note that many advanced algorithms developed in the literature can also largely im-

prove the PINN training of higher-stage networks. Two of most useful methods we found are the adaptive residual-based collocation 
refinement (RAR) method [46,47] and the gradient-enhanced physics-informed networks (gPINNs) [48].

A common practice in PINN training is the uniform distribution of collocation points across the domain. However, this approach 
proves inadequate for equations whose solutions present steep gradients [49]. As discussed in Section 2.2, high-frequency solutions 
exhibit large gradients throughout the domain. Despite applying a large scale factor to match the gradient, there are still areas where 
the local gradient exceeds the averaged gradient ÿ(2ÿÿý ), with ÿý the dominant frequency of the solution. This makes it difficult 
to minimize the equation residue in those areas. To address this issue, we employ the residual-based refinement (RAR [46]) of 
collocation points. By continuing adding collocation points in areas of high equation residue throughout the training, the equation 
residue across the entire domain can be efficiently reduced. This technique thus becomes a vital tool for optimizing PINN training.

An additional method to boost the training performance of PINNs involves incorporating the gradient of the equation residue 
function ÿ(ý, ÿ) into the loss function , known as the gradient-enhanced physics-informed network (gPINN) [48]. Thus, the loss 
function can be expressed as,

 = (1 − ÿ)ý + ÿ(ÿ + ÿýý) with ý =
1

ýý

ýý∑
ÿ=1

|∇ÿ(ýÿ , ÿ(ýÿ ))|2, (3.38)

where ýý is the number of collocation points used to examine the gradient of the equation residue ÿ(ý, ÿ) within the domain. ÿý
is an additional hyper-parameter, akin to ÿ , to control the balance between the equation loss ÿ and gradient loss ý during the 
training. By incorporating the gradient loss ý , we obligate the neural networks to learn the high-derivative information of the 
solution involved in the gradient of the equation. This can significantly improve the convergence rate of the training loss, provided 
we choose the appropriate value of the weight ÿý for the gradient loss ý . Analogous to (3.32), the value of ÿý can be estimated by

ÿ ≥ ÿýý ⟹ ÿý ≤
ÿ

ý

∼
||ÿ||2
||∇ÿ||2 (3.39)

where || ⋅ ||2 represents the ý2-norm. As discussed in Section 3.2.2, for the equation with high-frequency solutions, the equation 
residue has roughly the same frequency with the solution. Thus, the magnitude ratio of the equation residue ||ÿ|| with its gradient 
should scale as ||ÿ||∕||∇ÿ|| ∼ ÿ(2ÿÿý )

−1, where ÿý is the dominant frequency of the solution. Thus, the optimal value of ÿý can be 
selected as

ÿý =
||ÿ||2
||∇ÿ||2 ∼ÿ(2ÿÿý )

−2 (3.40)

The effect of the gPINN on the higher-stage training is shown and discussed in Section 3.4.

3.4. Algorithm of multi-stage training for PINNs

Leveraging the multi-stage training algorithm for regression problems and incorporating the results discussed in the previous 
sections, we have extended the multistage training scheme to physics informed neural networks (PINNs). The details of the algorithm 
are provided in Algorithm 4.

Here, we note that the primary distinction between the multistage training scheme for PINNs and that for regression problems 
lies in the fact that we lack training data for the solution itself for PINNs. Contrasting with the multistage framework for regression 
problems, where the second network is trained directly using the error ÿ1 = ÿý −ÿ0 between the first trained network ÿ0 with the data 
ÿý , we don’t necessarily have access to the error of the first trained network in the context of PINNs. Thus, the method of training 

the second network ÿ1 for PINNs involves creating a combined network ÿ
(ý)

ý
(3.41) that involves the previously trained network ÿ(ý)

ý−1
and a new network ÿý(ý, ÿý), with an appropriately-estimated magnitude prefactor ÿý and scale factor ÿý. A key advantage of this 
approach is that it circumvents the need to derive a new equation, as shown in (3.13), for each higher-stage network. By fixing the 
trained weights and biases in the previous networks, the training process for solving the original equation becomes mathematically 
equivalent to solving the higher-stage governing equation (3.13) with the high-frequency source function from the equation residue 
of the lower-stage training.

Using Algorithm 4, Fig. 11 shows the three-staged PINN training for solving the ordinary differential equation (2.2). For the first 
two stages, we employ a combination of Adam and L-BFGS for training, which maximizes the convergence rate. However, given the 
high-frequency residue from the second stage of training, it indicates a high-frequency solution for the third stage of training. Thus, 
we only use Adam with stochastic gradient descent (SGD) to optimize the performance of the third-stage training, in accordance with 
the suggestions made in Section 3.3.1. By combining all the optimal settings as discussed in the previous sections (§3.1-§3.3), the 
prediction error at each stage can be reduced by 3-5 orders of magnitude within 105 iterations.

Compared with single-stage training, Fig. 12(ÿ&ÿ) shows that multi-stage training can reduce both the data loss and equation loss 
by more than 20 orders of magnitude within the same number of iterations. In this instance, the number of weights in the single-stage 
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Fig. 11. Multi-stage gPINNs for 1D equations. (ÿ) Comparison of the first-stage trained neural network (red dashed curve) with the exact solution ÿý(ý) (blue curve) 
to equation (3.20). (ÿ) Data loss and (ý) equation loss over iterations of three-stage training. The inset of (ÿ) shows the evolution of the total loss  over iterations. 
The inset of (ý) shows that the evolution of the root mean square value ÿÿ of the equation residue ÿ(ý, ÿ) of the multi-stage neural networks follows ÿÿ ∼ exp(−

√
ÿÿýÿÿý), 

which is consistent with that for regression problems (Fig. 5ý). (ý & ÿ) Comparison of the higher-stage trained network with the error of lower-stage training is shown 
in the left column. The equation residue ÿÿ(ý) for different stages of training is in the middle. Frequency domain of the equation residue ÿÿ(ý) at each stage is shown 
in the right column. (ÿ ) Prediction error ÿ3(ý) and the equation residue ÿ3(ý) after the third-stage of the training. The zoom-in figure (on the right) shows fluctuations 
in the prediction error ÿ3(ý), which is caused by the round-off error of the machine-precision of double-floating points.

Fig. 12. Comparison of single-stage with multi-stage PINN training. (ÿ & ÿ) Comparison of the data loss (ÿ) and equation loss (ÿ) evolution over iterations between 
the single-stage training, multistage training of PINN, and multi-stage training of gPINN. (ý) Relation of the dominant frequency ÿý with the root mean square value 
ÿ of the error ÿÿ(ý) after different stages of training for regression problems (blue), PINNs (red) and gPINNs (black).
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Algorithm 4 Multi-stage training scheme for PINNs.
Prerequisite: normalize the equation with the magnitude of the largest term around ÿ(1).

1: Build the first neural network ÿ0(ý) using regular weight initialization.
2: Sample collocation points or data points e(i.e. boundary conditions) and training the neural network.
3: Calculate the output of the trained neural network ÿ0(ý) and corresponding equation residue ÿ1(ý, ÿ0).
4: Estimate the scale factor ÿ1, and magnitude prefactor ÿ1 of the prediction error ÿ1 for the first trained network ÿ0 , based on the dominant frequency ÿ

(ÿ)

ý
and 

magnitude ÿÿ1 of the equation residue ÿ1(ý, ÿ0), using the relations (3.18) and (3.19) or Algorithm 2.

5: Generate the ansatz of the solution for the second stage of training as

ÿ
(ý)

1
= ÿ0(ý) + ÿ1ÿ1(ý,ÿ1) , (3.41)

where ÿ1(ý, ÿ1) represents the second neural network utilizing the ýÿÿ(ý) activation function in the first hidden layers and multiplying the scale factor ÿ1 from 
Step 4 to the weight between the input layer and first hidden layer, we note that ÿ1 has normalized output value.

6: Substitute the ansatz (3.41) into the original equation. We note that, in the second stage, only the weight and biases in the network ÿ1 are trainable. The first 
trained network ÿ0 in the second stage is considered as a known function with fixed parameters.

7: Determine the optimal value of the equation weight ÿ using the relation (3.32) or Algorithm 3. Determine the optimal value of the weight ÿý for gradient constraint 
if the gradient-enhanced PINN is used.

8: Conduct the second stage of training and calculate the corresponding equation residue ÿ2(ý, ÿ(ý)1
).

9: Repeat Step 3 - 8 for higher stages of training until the equation residue ÿÿ(ý, ÿ(ý)ÿ−1
) is small enough. For each higher stage of training, the ansatz of the solution 

can be expressed in a recursive relation based on the previous trained network as

ÿ
(ý)

ý
= ÿ

(ý)

ý−1
(ý) + ÿýÿý(ý,ÿý) , (3.42)

where ÿý is the new network added at the stage ý and ÿ(ý)
ý−1

(ý) is the combined network from the previous stage of training. ÿý and ÿý are the magnitude prefactor 
and scale factor, respectively, estimated from the equation residue for the previous stage of training in Step 4.

10: Combine the neural networks from all ÿ-stages of training to generate the final solution

ÿ(ý) = ÿ
(ý)

ÿ−1
= ÿ0 +

ÿ−1∑
ý=1

ÿýÿý(ý,ÿý) . (3.43)

The magnitude of error of the final solution ÿ(ý) can be estimated from the equation residue ÿÿ(ý, ÿ(ý)ÿ−1
) for the last stage of training by the relation (3.19) or 

Algorithm 2.

network has been selected to be approximately equivalent to the total number across all three-stage networks. These results suggest 
that employing appropriate network settings and an effective training scheme plays a more essential role in successful training than 
simply increasing the size of neural network and the number of collocation points. Additionally, when combined with gPINN, the 
multistage training demonstrates an accelerated convergence rate. Fig. 11(ÿ ) shows that, after the three stages of gradient-enhanced 
PINN training, the prediction error of the final trained network with the exact solution reaches the machine precision of double 
floating points The observed oscillation in ÿ3 is primary attributable to round-off error.

The right panel of Fig. 11(ý-ÿ ) displays the spectrum and dominant frequency of the equation residue after each stage of 
training. Fig. 12(ý) further shows the relation of the dominant frequency ÿý with the root mean square value ÿ of the prediction 
error ÿÿ(ý) over the stages, which follows a power law ÿý ∼ ÿ−ÿ for both regression problems and PINNs. We recall that the power 
law exponent ÿ for regression problems is around 1/6. Compared with that, the power law exponent ÿ for PINNs becomes noticeably 
smaller, around 1/7 for multi-stage training with regular PINNs and reduced further to 1/8 when using gradient-enhanced PINNs. 
As discussed in Section 2.2, this indicates that trained neural networks in PINNs achieve higher accuracy in capturing higher-order 
derivatives compared to regression problems. This is reasonable as PINNs involve differential equations that contain the derivatives 
of the solution. By minimizing the equation loss, PINNs constrain both the neural network and its derivatives to approach the exact 
solution, enhancing the capture of the high derivative information of the solution. The same reasoning applies to the gradient-
enhanced PINNs, which result in an even lower exponent ÿ since the gradient of equation residue involved further higher derivatives 
of the solution.

3.5. Application to 2D partial differential equations

Multi-stage training scheme for PINNs can also be applied to solve partial different equations (PDE). Fig. 13(ÿ) shows the three-
stage training to solve the diffusion equation

ÿÿ

ÿý
=

1

2

ÿ2ÿ

ÿý2
+ (1 − ý2 + ý) with ÿ(ý,0) = ÿ(±1, ý) = 0 , (3.44)

which has the exact solution,

ÿý(ý, ý) = ý(1 − ý2) . (3.45)

Consistent with regression problems, the convergence rate of multistage PINN method for solving 2D problem is slightly slower 
than that for 1D problem (inset of Fig. 13ÿ). After three stage of training using RAR method and gradient-enhanced PINN, the predic-
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Fig. 13. Multi-stage gPINNs for 2D equations. (ÿ) Comparison of the first-stage trained neural network with the exact solution ÿý(ý, ý) to the equation (3.44). (ÿ-ý) 
The error ÿÿ(ý, ý) of higher-stage trained network ÿÿ(ý, ý) with the exact solution ÿý (ý, ý) is shown in the left panel. The equation residue ÿÿ(ý, ý) for different stages of 
training and their frequency domains are shown in the right panel. (ÿ) Relation of the dominant frequency ÿý with the root mean square value ÿ of the error ÿÿ(ý, ý)
after different stages of training follows the same power law as 1D problems, of which the exponent ÿ = 1∕8. The inset shows that the number of iterations required 
for 2D problems to reach the same accuracy ÿ is more than that for 1D problems.

tion error ÿ3(ý, ý) of the combined trained networks with the exact solution ÿý(ý, ý) is around ÿ(10−11). The accuracy of multistage 
training is still seven order-of-magnitude higher than that of the single-stage training. Fig. 13(ÿ) shows that, when employing the 
multi-stage training scheme with gPINNs, the relation of the dominant frequency ÿý with the root mean square value ÿ of the pre-
diction error ÿ(ý, ÿ) for solving both 1D and 2D equations, follows the same power law (2.11) with an exponent of ÿ ≈ 1∕8. This 
observation is consistent with the results observed in regression problems (Fig. 6ÿ).

We note that achieving a low prediction error of ÿ(10−11) for solving 2D partial differential equations via classical numerical 
method, such as finite difference, would require an extensive number of grid points. For instance, considering the central difference 

method along the ý-direction, to reach 10−11, we would need a grid size in the x-direction of ℎ(ý) ∼ ÿ(
√
10−11) ∼ ÿ(10−5), namely 

106 grid points for each time step. Even with a 4th-order Runge-Kutta method along the ý direction, the step size in ý-direction 
would need to be ℎ(ý) ∼ÿ(

√
(10−11)1∕4 ∼ÿ(10−3), requiring 103 time steps. Consequently, the total number of grid points needed to 

achieve this accuracy across the entire domain would be on the order of ÿ(109).
In contrast, our approach utilizes fully connected neural network with 4-hidden layers consisting of 30 units for each stage of the 

training. Thus, the total number of weights and biases used to express the solution is only around 3 ×4 ×302 ≈ 104, which is five order 
of magnitude less than the number of grid points used in a discretized solution. This demonstrates the efficiency and effectiveness of 
the multi-stage PINN in achieving accurate solution with significantly fewer parameters compared to classical numerical methods.

4. Generalization of multistage PINN to a combined forward-and-inverse problem

Here we investigate a specific class of problems in mathematics that requires solving equations (forward problem) and simul-
taneously inferring unknown parameters in the equation (inverse problem) with a high demand for accuracy, for example, finding 
self-similar blow-up solutions for nonlinear fluid equations [9]. The physical significance of the problem was explained in Eggers 
(2015) [50], and a prior study [9] has developed the implementation of PINNs to solve it. In these problems, the multistage PINN 
method can play a critical role in achieving accurate results.
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Here we focus on the 1D inviscid Burgers’ equation for which we know the exact solutions. In Appendix D, we provide a summary 
of the background knowledge and PINN implementation. The task for the PINN involves discovering the smooth solution to the 
nonlinear self-similar Burgers’ equation,

−ÿý + [(1 + ÿ)ÿ+ý ]ÿÿý = 0, with ý (−2) = 1 , (4.1)

where the solution ý should be an odd function with respect to the independent variable ÿ, and ÿ is the unknown parameter to be 
predicted by PINNs. Smooth solutions to (4.1) exist when ÿ = 1∕(2 +2ÿ) for ÿ = 1, 2, 3.... For other ÿ values, the solution is non-smooth, 
exhibiting discontinuity at certain order of its derivatives at the origin ÿ = 0. Finding the smooth solution with the correct value of ÿ
numerically is challenging.

To address the issue, a prior study [9] leveraged PINNs and introduced an additional smoothness constraint into the loss function, 
which penalizes the higher-order derivative of the equation residue around the non-smooth position. We note that the minimal order 
of derivative needed for the smoothness constraint depends on specific problems. In general, it should be larger than the order of 
smoothness for the non-smooth solution (see Appendix D). Any higher derivatives with the order larger than the minimal value can 
be involved in the smoothness constraint as long as it remains computationally feasible. Here we focus on the first smooth solution 
of the self-similar Burgers’ equation (4.1). The loss function can be expressed as

 = (1 − ÿ)ý + ÿ(ÿ + ÿýý) + ÿýý with (4.2)

ý = (ý (ÿ = −2) − 1)2 and ÿ =
1

ýý

ýý∑
ÿ=1

|||ÿ
(
ÿÿ,ý (ÿÿ)

)|||
2

(4.3)

ý =
1

ýý

ýý∑
ÿ=1

||||
ÿÿ

ÿÿ

(
ÿÿ,ý (ÿÿ)

)||||
2

and ý =
1

ýý

ýý∑
ÿ=1

||||
ÿ3ÿ

ÿÿ3

(
ÿÿ ,ý (ÿÿ )

)||||
2

(4.4)

with ÿ(ÿ,ý ) = −ÿý + [(1 + ÿ)ÿ+ý ]ÿÿý (4.5)

where ý and ÿ are the data loss and equation loss, respectively. ý is the gPINNs implementation, which involves the first-
order gradient of the equation residue ÿ(ÿ, ý ). ý is the smoothness constraint that incorporates the third derivative of the equation 
residue. While the equation loss ÿ and gradient loss ý are examined at ýý random collocation points ÿÿ across the entire domain, 
the smoothness constraint ý is calculated at ÿÿ close to the origin (e.g. |ÿÿ | < 0.1) with number ýý ≪ýý . Although the smoothness 
constraint depends on the equation residue, it can be viewed as an additional boundary condition for the solution to determine the 
value of ÿ.

Following Algorithm 4, Fig. 14(ÿ-ý) shows the first two stages of training for solving the self-similar Burgers’ equation (4.1). We 
observe that the second-stage training successfully improves both the prediction error ÿ2(ÿ) of the trained network and the inferred 
lambda ÿ2 by four orders of magnitude. However, in addition to the high-frequency error as previously seen for the higher-stages, we 
observed that the prediction error ÿ2(ÿ) from the second-stage training contains a low-frequency profile, which dominates over the 
high-frequency error. This disparity hinders the further reduction of the error by adding more stages of training based on Algorithm 4.

To understand the issue, we first study the occurrence of the high-frequency error in ÿ2(ÿ). The middle panel in Fig. 14(ÿ) reveals 
that the equation residue ÿ2(ÿ) after the second stage of training exhibits a similar dominant frequency ÿý to the high-frequency error 
in the prediction error ÿ2(ÿ). Using (3.9), we estimate the magnitude ÿ2 of the prediction error ÿ2(ÿ) based on the magnitude ÿÿ2 of 
the equation residue ÿ2(ÿ) as ÿ2 = ÿÿ2∕(2ÿÿý ) ∼ÿ(10−13). This is consistent with the magnitude of the high-frequency error in ÿ2(ÿ). 
Then, following Algorithm 4, we create a new network ý2(ÿ) multiplied by the magnitude of ÿ(10−13) for the third-stage training. 
Fig. 14(ÿ ) shows that the high-frequency error in ÿ2(ÿ) after the third-stage training does vanish in ÿ3(ÿ). However, the magnitude 
of the prediction error ÿ3(ÿ) and the inferred ÿ3 after the third-stage of training (Fig. 14ÿ ) remains nearly the same as those of the 
second-stage training (Fig. 14ÿ).

The issue appears to be related to the existence of the low-frequency profile in ÿ2(ÿ). We recall that the prediction error of the 
training is estimated by comparing the trained networks at the inferred ÿ2 with the exact smooth solution at ÿý = 0.5. Therefore, the 
error of the trained network is influenced not only by the equation residue, but also by the error ÿÿ of the inferred ÿ. To assess the 
impact of the inference error ÿÿ on the prediction error ÿ2(ÿ), we perform a similar analysis as discussed in Section 3.1.1, introducing 
the ansatz of the exact solution ýý and exact value of ÿý as

ýý(ÿ) =ý0(ÿ) + ÿýÿ(ÿ) and ÿý = ÿ0 + ÿÿ (4.6)

where ý0 represents the lower-stage trained network and ÿ0 is the inferred ÿ from the lower-stage training. ÿýÿ(ÿ) represents the 
prediction error of the trained network and ÿÿ is the error of inferred ÿ. Both ÿ and ÿÿ are much smaller than 1. Substituting (4.6)
into (4.1) and removing higher-order small terms ÿ(ÿ2), we have

ÿ
{
(ÿÿý0 − ÿ0)ýÿ + [(1 + ÿ0)ÿ+ý0]ÿÿýÿ

}
= (ÿý0 − [(1 + ÿ0)ÿ+ý0]ÿÿý0)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

equation residue: −ÿ0

+ ÿÿ(ý0 − ÿÿÿý0)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
term from ÿÿ∶ ÿÿ

(4.7)

which can be viewed as the governing equation for the higher-stage network. In addition to the equation residue ÿ0(ÿ) from the 
lower-stage training, the higher-stage equation (4.7) involves a new source function ÿÿ(ÿ) that is associated with the error ÿÿ of the 
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Fig. 14. Multi-stage gPINNs for a combined forward and inverse problem. (ÿ) Comparison of the first-stage trained network ý0(ÿ) at the inferred ÿ1 (red dashed 
curve) with the exact profile of the first smooth solution ýý(ÿ) with ÿý = 0.5 to the self-similar Burgers’ equation (4.1). (ÿ) Data loss and (ý) equation loss over 
iterations of three-stage training. The inset of (ÿ) shows the relation of the error ÿÿ of inferred ÿ with the loss of the smoothness constraint ý after different stages 
of training. The dash line indicates the relation ÿ =

√
ý . The inset of (ý) shows that the evolution of the root mean square value ÿÿ of the equation residue ÿ(ÿ, ÿ)

over iterations of the multi-stage neural networks follows ÿÿ ∼ exp(−
√
ÿÿýÿÿý), consistent with that of regular forward problem (Fig. 11ý). (ý & ÿ) The prediction error 

ÿÿ(ÿ) (left), equation residue ÿÿ(ÿ) (right) and its frequency domain (right) for the first (ý) and second (ÿ) stages of training. Comparison of higher-stage trained 
networks with the lower-stage prediction error is shown in the left panel. (ÿ ) Prediction error ÿ3(ÿ) and equation residue ÿ3(ÿ) for the third-stage training using only 
one additional neural network ý3(ÿ). It successfully reduce the high-frequency error from the second stage but fails to reduce its low-frequency error. (ý) Prediction 
error ÿ̂3(ÿ) and equation residue ÿ̂3(ÿ) for the third-stage training using two neural networks ý3(ÿ) and ýÿ(ÿ), which successfully reduces both the high-frequency 
error associated with the lower-stage equation residue ÿ2(ÿ) and the low-frequency error associated with the error ÿÿ of the inferred ÿ2 . The zoom-in figure shows 
that the prediction after three stages of training approaches the machine precision of double-floating points.

inferred ÿ. While the equation residue ÿ0(ÿ) exhibits high-frequency behavior, the source function ÿÿ(ÿ) is influenced by the profile 
of the trained network ý0(ÿ), exhibiting the low-frequency profile in the prediction error ÿ2(ÿ) (Fig. 14ÿ).

Considering the low frequency nature of the source function ÿÿ(ÿ), the magnitude of prediction error ÿ in (4.7) associated with 
ÿÿ(ÿ) is expected to be similar to the error ÿÿ of the inferred ÿ, which is approximately ÿ(10−12), consistent with our results (Fig. 14ÿ). 
In contrast, the prediction error associated with the high-frequency equation residue ÿ0, as discussed earlier, is only around ÿ(10−13). 
This explains why the low-frequency profile dominates the prediction error ÿ2(ÿ).

Here, we note that the error ÿÿ of inferred ÿ is calculated using the known exact value ÿý = 0.5. However, in many other problems, 
the exact value of ÿý is unknown. Thus, an alternative way to quantify the inference error ÿÿ is from the loss ý of the smoothness 
constraint. The inset of Fig. 14(ÿ) shows that the inference error ÿÿ after different stages of training is proportional to 

√
ÿý, i.e. 

ÿÿ =
√
ÿý (dashed line). This suggests that we can use 

√
ÿý to estimate the inference error ÿÿ, as well as the magnitude prefactor for 

the higher-stage network ýÿ associated with ÿÿ(ÿ).
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Since the prediction error is dominated by the low-frequency source function ÿÿ(ÿ), one might intuitively consider creating a 
single low-frequency network multiplied by the error ÿÿ of the inferred ÿ for the third-stage training. However, this approach is not 
effective because the smoothness constraint (4.4) depends on the higher-order derivative of the equation residue. By using only a 
low-frequency network, it would be challenging to reduce the high-frequency equation residue. Therefore, our proposed solution is 
to create two networks for both source functions in (4.7) at the third-stage training, namely

ÿ2ý2(ÿ) + ÿÿýÿ(ÿ), (4.8)

where the magnitude prefactor ÿ2 and modified scale factor ÿ̂ (for frequency) for the high-frequency network ý2(ÿ) associated 
with the equation residue ÿ2 can be determined by the relations (3.17) and (3.16) or Algorithm 2. The low-frequency network ýÿ

associated with the error ÿÿ of the inferred ÿ2 can be directly multiplied by the inference error ÿÿ. Fig. 14(ý) shows that, using 
combined two networks for the third-stage training, the prediction error ÿ̂3(ÿ) is successfully reduced by another three orders of 
magnitude, eventually approaching the machine precision of double-floating points.

5. Discussion

We note that the principle of multi-stage neural networks is similar to that of Fourier series, which combines a series of sine 
or cosine functions, ranging from low to high frequencies, to approximate functions. Provided that the series converge, the error 
between the Fourier series expansion of a given order and the target function possesses lower magnitudes but higher frequency than 
any terms in the series. To further minimize the error, higher-order sine or cosine functions need to be incorporated into the series, 
leading to additional higher-frequency error.

The introduction of new neural networks in multi-stage neural networks (MSNNs) is analogous to the inclusion of higher-order 
trigonometric functions in the Fourier series expansions. However, in contrast to sines and cosines, deep neural networks with 
appropriate settings offer stronger function representation capacity. Our finding indicates that the magnitude ÿ of error after each 
stage of training follows a inverse power law relation with the dominant frequency ÿý of the error, i.e. ÿ ∼ ÿ−ÿ

ý
, with the exponent 

ÿ ≈ 1∕6 for regression problems, ÿ ≈ 1∕7 for regular PINNs, and ÿ ≈ 1∕8 for gradient-enhanced PINNs (gPINNs).
In comparison, the power law exponent ÿ for Fourier series is roughly around ÿ ≈ 0.5 [51], much larger than that of MSNNs. This 

indicates that, to achieve the same error magnitude, the error frequency generated by MSNNs could be several orders of magnitude 
lower than that by Fourier series. This observation confirms that MSNNs serve as a superior tool capable of accurately approximating 
target functions, as well as their high derivative information.

The multi-stage neural networks (MSNNs) developed in this work remains in their early stage, and mainly serve as a proof of 
concept to demonstrate that neural networks can practically achieve high accuracy. It is crucial to recognize that MSNNs should not 
be regarded as a substitute for classical numerical methods, but rather as a complementary approach. In fact, there remains several 
challenges that need to be addressed in the MSNN method. One of the primary challenges pertains to high-dimension problems. As 
shown in Fig. 6 and 13, the convergence rate of MSNNs for both 2D regression problems and PINNs are consistently slower than that 
for 1D problems. It is expected that this challenges will become more pronounced in higher-dimensional problems.

The second major challenge pertains to approximating functions or predict solutions with steep gradients. Near the regions where 
the target function exhibits steep gradients, neural networks often encounter local peaks in the error or the equation residue during 
training. The presence of these peaks hinder the reduction of error in successive stages, necessitating their removal before proceeding 
to the next stage of training. We note that functions with steep gradients are commonly encountered in differential equations, such 
as stiff equations, nonlinear equations, or singularly-perturbed equations (see Appendix C). How to effectively solve these types of 
equations via PINNs is critical but beyond the scope of this paper.

Additional investigations can be conducted to further improve the MSNN method, particularly regarding the optimal timing 
for transitioning between training stages. As training progresses, the rate of convergence for loss typically diminishes. Determining 
whether to advance to the next stage for improved convergence rates, or to extend the current stage until loss plateaus for maximal 
error reduction, requires careful analysis and additional research. Moreover, the multi-stage training reduces the necessity for overly 
large networks to achieve high accuracy within a single stage of training. Identifying the most efficient neural network size for each 
stage that can minimize the total number of training parameters (weights and biases) and, consequently, the computational cost of 
MSNN training presents another valuable avenue for future investigation.

6. Conclusion

We introduced the multi-stage neural networks (MSNNs) for both regression problems and physics-informed neural networks. 
Inspired by perturbation theory, we sequentially introduced new stages of training with new neural networks to capture the residue 
from the previous stage of training. This enable MSNNs to reach unprecedentedly high accuracy over stages. We showed that three 
stages of MSNN training can reach machine precision, making neural networks truly universal function approximators in practice. 
This new method can be widely applied to many scientific domains, such as mathematical and nonlinear physical science where the 
precision matters.

The success of MSNNs lies in two aspects. The first is the idea of staged training itself. Deep neural networks often suffer from 
spectral biases, making it challenging to capture the full spectrum of the target function in a single stage of training, even when 
employing large-sized networks with an increased number of data or collocation points. As a result, the training loss tends to plateau 
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after a certain number of iterations. However, by employing multi-stage training, the previously plateaued error can be substantially 
reduced in each successive stage, which enables MSNNs to progressively capture finer details of the target function.

The second aspect for the success of MSNNs is the specific design of each new-stage network based on the training error from 
the previous stage. The neural-network predictions in successive stages exhibits significantly small magnitude and high frequency 
compared to the previous stages. We showed that, by employing optimal magnitude prefactor ÿ and scale factor ÿ with sin activation 
function, accurate predictions of functions with small magnitudes and high frequencies can be achieved. This enables the effective 
capture of intricate features in each successive stage.

To maximize the performance of each stage of training, we also studied the optimal value of ÿÿ and ÿÿ for each stage. For 
regression problems, the ÿÿ is equal to the magnitude (root mean square value) of the error ÿÿ(ý) between the trained networks in 
the previous stage and the ground truth ÿý(ý), and ÿÿ is proportional to the dominant frequency ÿý of the error ÿÿ(ý).

However, for physics-informed neural networks (PINNs), the prediction error ÿÿ(ý) is not directly available and needs to be 
inferred from the equation residue ÿÿ(ý) from the previous stage of training. Considering the fact that the governing equations for 
higher-stage training are essentially linear, regardless of the nonlinearity of original equations, the theoretical relations between the 
magnitude and frequency of the prediction error ÿÿ(ý) and the equation residue ÿÿ(ý) were derived in Section 3. We also presented 
an algorithm that can effectively estimate the magnitude of the prediction error from the equation residue. The linear property for 
the higher-stage training ensures the effectiveness and generality of multi-stage training scheme for PINNs.

Moreover, we discussed several other optimal settings that can enhance the efficiency of multi-stage PINN training. These include 
the equation weight ÿ , number of collocation points ýý , choice of optimizer, and advanced PINN techniques in the literature, such 
as RAR method and gPINNs.

Leveraging all the optimal settings discussed in this work, we showed that multi-stage neural networks (MSNNs) can significantly 
reduce the prediction error for both regression problems and PINNs, approaching machine precision. Furthermore, MSNNs showcases 
their capability in solving combined-forward-and-inverse problems to machine precision, a task typically challenging for classical 
numerical methods, but of great importance in mathematical and physical sciences. However, there remains many questions and 
challenges to be addressed for further enhancing the MSNN method.
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Appendix A. Neural network error under different settings

Systematic experiments (Fig. 15) show that the root mean square value (RMS) ÿ of the error ÿ(ý) between the trained network 
ÿ0(ý) and the data from the target function ÿý(ý) remains unchanged even when the number of either layers (Fig. 15ÿ) or units 
(Fig. 15ÿ) is increased. Although the RMS error ÿ does slightly decrease with an increase in training data (Fig. 15ý), this reduction 
is smaller than the standard deviation of eight repetitive experiments conducted with different random initializations, and thus is 
negligible. These results suggest that the plateau in training loss is not due to insufficient neural network size or lack of training 
data, but instead arises from inherent limitations of the training process itself. Fig. 15(ý) presents the training loss for two different 
optimization methods. Compared to Adam [35], a first-order gradient descent method, L-BFGS [52], a quasi-Newton method, exhibits 
a higher convergence rate. However, training with L-BFGS quickly falls into a local minimum after reaching the same plateau as 
Adam. This suggests that the loss plateau is not optimizer-specific.
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Fig. 15. Root mean square (RMS) value ÿ of the error between the target function and trained network using different number of (ÿ) hidden units, (ÿ) layers, and 
(ý) training data, and (ý) different types of optimizers, which show no big difference. Error bars show the standard deviation of eight repetitive experiments with 
different random initialization.

Appendix B. Effect of data magnitude on neural network training

Fig. 16 shows that a neural network using regular weight initialization methods has difficulty capturing training data either much 
larger or smaller than 1.

Fig. 16. Fitting of neural networks to the data with different magnitudes without normalization. It shows that the network is hard to fit data with magnitude either 
too much larger or smaller than 1.

Appendix C. Two extreme types of equations

There are two extreme types of equation where the general settings of networks derived in (3.19) and (3.18) for the high-stage 
training do not strictly hold. The first case is when the equation involves nonlinear term with high-order of derivatives, for example,

(
ý8ÿ

ýý8

)2

− ÿ = ý (ý). (C.1)

Substituting the ansatz (3.5) into (C.1) gives

−ÿ

(
2
ý8ÿ0

ýý8

ý8ÿ1

ýý8
− ÿ1

)
− ÿ2

(
ý8ÿ1

ýý8

)2

= ÿ(ý, ÿ0) =

(
ý8ÿ

ýý8

)2

− ÿ0 − ý (ý) (C.2)

where ÿ(ý, ÿ0) is the equation residue of ÿ0. When ÿ1 is a high-frequency function with dominant frequency ÿý satisfying the criterion,

(2ÿÿý )
8ÿ > 1 ⟹ ÿý > ÿ−1∕8, (C.3)

the nonlinear term of ÿ1 on the left-hand side of (C.2) is no longer negligible and becomes the dominant term in the equation. The 
magnitude and frequency of ÿ1(ý), thus, need to be reassessed by balancing the nonlinear term with the equation residue ÿ(ý, ÿ0). 
This results in the dominant frequency ÿ (1)

ý
of ÿ1(ý) to be ÿ

(1)

ý
= ÿ

(ÿ)

ý
∕2, rather than ÿ (1)

ý
= ÿ

(ÿ)

ý
from (3.16), where ÿ (ÿ)

ý
represents the 

dominant frequency of the equation residue ÿ(ý, ÿ0).
However, we note that, although the dominant frequency ÿ (ÿ)

ý
of equation residue is larger, it still captures the order of magnitude 

of the actual frequency of ÿ1(ý). We recall from Fig. 4(ý) that neural networks with modified scale factor ÿ̂ larger than the criterion 
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ÿ̂ > ÿÿý can reach the same high-accuracy when fitting high-frequency functions. This indicates that setting the scale factor ÿ based 
on a larger dominant frequency ÿ (ÿ)

ý
for the network of ÿ1 remains a good option to solve (C.2).

The second case is when the equation involves singular perturbation terms, for example

ÿ
ý4ÿ

ýý4
+

ý2ÿ

ýý2
− ÿ = ý (ý) with ÿ ≪ 1, (C.4)

where the coefficient before the highest-order derivative term is much smaller than the others. This type of equation is very common 
in physical sciences, such as boundary-layer problems. Substituting the ansatz (3.5) into (C.4) gives

−ÿ

(
ÿ
ý4ÿ1

ýý4
+

ý2ÿ1

ýý2
− ÿ1

)
= ÿ(ý, ÿ0) = ÿ

ý4ÿ0

ýý4
+

ý2ÿ0

ýý2
− ÿ0 − ý (ý) (C.5)

where ÿ(ý, ÿ0) is the equation residue of ÿ0. Based on (C.5), the dominant frequency ÿ
(1)

ý
of ÿ1(ý) remains equal to that of the equation 

residue ÿ(ý, ÿ0). However, when ÿ < (2ÿÿý )
−2, the dominant term on the right-hand side of (C.5) is not the one with the highest-order 

derivative of ÿ1, but the term with the second-order derivative. The magnitude ÿ of the error is, then, determined by

ÿ =
ÿÿ[

2ÿÿ
(1)

ý

]2 , rather than
ÿÿ[

2ÿÿ
(1)

ý

]4
ÿ

based on (3.17). (C.6)

In fact, the actual challenges of solving singular perturbation equation via PINNs is more than the violation of the expression (3.17)
for setting the higher-stage neural network. According to asymptotic analysis, the existence of singular perturbation term in the 
equation indicates that the solution to the equation has a narrow inner region where local gradient is very large. This property 
makes both the first-stage and higher-stage training of networks difficult. More discussion of the challenge is given in the Discussion 
(Section 6) of the paper. However, the solution to this challenge is beyond the scope of this paper.

Appendix D. 1D inviscid Burgers’ equation

This section summarizes the exact self-similar blow-up solutions to the 1D inviscid Burgers’ equation [50] and the PINN imple-
mentation developed in Wang et al. [9] to find it numerically.

Without viscous dissipation, the 1D inviscid Burgers’ equation is given as

ÿÿ

ÿý
+ ÿ

ÿÿ

ÿý
= 0, (D.1)

which has a shock wave solution where the velocity becomes discontinuous at a finite time, exhibiting a singularity where the 
solution blow up. However, right before the time when the shock/singularity is formed, the velocity profile remains smooth and 
continuous, and follow a self-similar structure near the singularity formation. We suppose the singularity occurs at ý = ý0 and ý = ý0. 
The self-similar coordinates can be written as

ý = −log(ý0 − ý), ÿ =
ý− ý0

(ý0 − ý)1+ÿ
, (D.2)

where ý and ÿ are the local time and spatial coordinates, respectively. When ý goes to infinity, time ý approaches to the blow-up time 
ý0, but can never go beyond that. In the meantime, the new self similar coordinate ÿ allow us to zoom into and examine the solution 
profile around the singularity as time approaches ý0. The solution ÿ follows the ansatz [9]

ÿ(ý, ý) = (ý− ý0)
ÿý (ÿ, ý) (D.3)

where ý (ÿ, ý) indicates the self-similar profile near the singularity with ÿ to be determined. Substituting the ansatz (D.3) into the 
equation (D.1) gives ÿ = ÿ. Thus, the self-similar form of the Burgers’ equation becomes

(ÿý − 1)ÿý + [(1 + ÿ)ÿ+ý ]ÿÿý = 0. (D.4)

We assume that when approaching the blow-up time ý0, namely ý goes to infinity, time derivative term in (D.4) vanishes, and the 
self-similar profile ý (ÿ, ý) reaches steady state. Then, the steady state profile ý̃ (ÿ) is governed by

−ÿý̃ + [(1 + ÿ)ÿ+ ý̃ ]ÿÿý̃ = 0. (D.5)

For simplicity, we consistently use ý to represent the steady state solution in the rest of the section. The parameter ÿ (D.2), the rate 
at which singularity forms, remains unknown and is the key parameter to be inferred via the multi-stage neural networks.

To guarantee the equation (D.5) is well-posed globally in the local coordinates, the self-similar solution ý must be an odd 
function. Theoretically, there exist solutions to (D.5) for each value of ÿ. The analytic solutions to the self-similar Burgers’ equation 
(D.5) are
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Fig. 17. Exact solutions to the Burgers’ equation. (ÿ) Exact first smooth and nearby non-smooth solutions to the self-similar Burgers’ equation (D.5). (ÿ) the third 
derivative of the non-smooth solution (ÿ = 0.4) forms cusps at the origin which indicates its fourth derivative (ý) at the origin become discontinuous. In comparison, 
the smooth solution (ÿ = 0.5) is continuous at all orders of derivative everywhere in the domain.

ÿ =

⎧⎪«⎪¬

−ý −ÿý
1+

1
ÿ for ý ≥ 0

−ý +ÿ(−ý )
1+

1
ÿ for ý < 0

(D.6)

where ÿ is a constant determined by the boundary condition. Here, we use ý (ÿ = 2) = −1, which gives ÿ = 1. From the analytic 
expression (D.6), we can see that ÿ, in fact, determines the smoothness of the solution. Here, the smoothness indicates the solution 
is continuous at all its derivative. When ÿ = 1∕(2 +2ÿ) with ÿ = 0, 1, 2, ..., the solution is smooth everywhere in the domain. However, 
when ÿ ≠ 1∕(2 +2ÿ), the expression (D.6) involves fractional power, causing the solution to be non-smooth at the origin. For example, 
Fig. 17(ý) shows that the fourth derivative of the solution for ÿ = 0.4 is discontinuous at the origin. Here, we note that the non-smooth 
solutions have no physical meaning. Thus, finding the smooth solutions to (4.1) is the goal.

Prior study by Wang et al. [9], leveraged the continuous property of neural networks, showing that PINN can discover the smooth 
solution with associated ÿ by imposing the high-order derivative constraint at the non-smooth position, known as the smoothness
constraint. Additionally, we impose odd symmetry of the solution ý by constructing the function form ý = ÿ[NNÿ(ÿ) + NNÿ(−ÿ)], 
where NNÿ indicates a fully-connected neural network created for ý . The data loss and equation loss for solving the Burgers’ equation 
(D.5) are given as

ý = (ý (ÿ = −2) − 1)2 and ÿ =
1

ýý

ýý∑
ÿ=1

|||ÿ
(
ÿÿ,ý (ÿÿ)

)|||
2

(D.7)

with ÿ(ÿ,ý ) = −ÿý + ((1 + ÿ)ÿ+ý )ÿÿý (D.8)

where ÿÿ indicates the random collocation points in the training domain ÿ ∈ [−2, 2] and ýý is their total number. Here we focus 
on finding the first smooth solution with known ÿý = 1∕2. Utilizing the fact that the non-smooth solutions in the neighborhood of 
ÿ = 0.5 has unbounded fourth-order derivative, which appears in the third order of derivative of equation residue, the smoothness 
constraint is given as

ý =
1

ýý

ýý∑
ÿ=1

||||
ý3ÿ

ýÿ3

(
ÿÿ, ý (ÿÿ)

)||||
2

, (D.9)

where ÿÿ indicates the random collocation points close to the origin (e.g. |ÿÿ| < 0.1) and ýý is their total number. Although the 
smoothness constraint depends on the equation residue, it can be simply considered as a boundary condition for the solution that 
help determine the value of ÿ.
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