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Studying the interaction between charm and light-flavor mesons
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The two-particle momentum correlation functions between charm mesons (D** and D*) and charged

light-flavor mesons (z* and K*) in all charge combinations are measured for the first time by the ALICE
Collaboration in high-multiplicity proton—proton collisions at a center-of-mass energy of /s = 13 TeV.
For DK and D*K pairs, the experimental results are in agreement with theoretical predictions of the residual
strong interaction based on quantum chromodynamics calculations on the lattice and chiral effective field
theory. In the case of Dz and D* 7 pairs, tension between the calculations including strong interactions and
the measurement is observed. For all particle pairs, the data can be adequately described by Coulomb
interaction only, indicating a shallow interaction between charm and light-flavor mesons. Finally, the
scattering lengths governing the residual strong interaction of the Dz and D*z systems are determined by
fitting the experimental correlation functions with a model that employs a Gaussian potential. The extracted

values are small and compatible with zero.
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I. INTRODUCTION

The exploration of the strong interaction within hadrons
remains a pivotal question in particle physics. Quantum
chromodynamics (QCD) has been well tested at distances
significantly shorter than the nucleon’s size, and many
high-energy phenomena can be effectively explained
through perturbative QCD at the quark level. However,
when the distance between quarks reaches the nucleon size,
the QCD becomes a strongly coupled theory and the low-
energy processes between hadrons are not yet well
described. From the experimental point of view, the
residual strong interaction between hadrons has been
studied in the past using scattering experiments at low
energies with both stable and unstable beams. Numerous
results have been achieved for nucleon—nucleon inter-
actions with this method [1,2], however, due to the
experimental challenge in realizing scattering experiments
with unstable particles, only a reduced set of measurements
could have been performed in the strange sector and none
in the charm sector. In order to overcome these exper-
imental limitations, the femtoscopy technique has emerged
as an interesting tool to study reactions among hadrons [3].
This method is based on the measurement of the correlation
function of pairs of hadrons in momentum space, which
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encodes the information of the interaction between the two
hadrons convoluted with the emitting source distribution.
The ALICE Collaboration measured the residual strong
interaction between several light and strange hadrons using
the femtoscopy technique in high-multiplicity proton—
proton (pp) collisions, including pp, pK*, pA, pA, pZ’,
AA, AA, pPE~, pQ~, pp, and AK interactions [4—14].
The study of hadronic interactions involving charm
mesons (D, D*) has gained significant interest after the
observation of the charm-strange meson D},(2317) [15-17],
whose mass lies significantly below the quark model [18]
predictions (mexperiment — Mguark model ~ 100 MSV/ 62)» pre-
venting its accommodation in simple constituent quark
models [19]. The puzzle of the D},(2317) low mass has
led to a range of theories, such as those based on the concepts
of conventional charm-strange mesons with coupled-channel
impacts [20-26], or of D®K molecule [27-31], or of a
tetraquark state composed of cqSq (anti)quarks [32-34].
Models based on a mixture of tetraquark and molecular states
were also proposed [35,36]. In recent years, several exotic
hadrons with charm-quark content have been discovered,
such as the y.1(3872) [37], T{; [38,39], P.(4312), P_(4440),
and P.(4457) [21,40,41] states. Similarly to the D},(2317),
these states can be interpreted as DD*, DD*, or £.D, X .D*
molecular states, or compact multiquark states [42—45]. The
observation of potential molecular states is, however, not the
only measurement that challenges the charm-hadron spec-
trum in terms of the conventional quark model. In fact, the
masses of the nonstrange D((2300) and D;(2430) charm
mesons [46—48] are very similar to the corresponding states
in the charm-strange spectrum, D},(2317) and Dy;(2460)
[15,17,21], while they are expected to be smaller. When
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combining chiral effective field theory with quantum
chromodynamics calculations on the lattice, all low-energy
open heavy-flavor mesonic states with positive parity can be
classified as hadronic molecules. In this framework, pions,
kaons, and # mesons arise as Goldstone bosons and, by
computing the Dz, Dy, and DK coupled-channel scatter-
ings, a bound state with a large coupling to the Dz channel is
obtained at a mass that corresponds to the Djj(2300) state
[49-53]. Nevertheless, their structures remain uncertain
owing to the lack of direct experimental information on
the residual strong interaction between charm and light
hadrons. These measurements are particularly challenging
because conventional scattering experiments with charm
hadrons are restricted by their short lifetime. Only recently,
the residual strong final state interaction involving charm
hadrons became experimentally accessible thanks to the
femtoscopy technique. The first study of the strong inter-
action between charm mesons and nucleons (pD~) was
published by the ALICE Collaboration in Ref. [54], proving
the feasibility of applying the femtoscopy technique to the
charm sector.

The knowledge of interactions between charm particles
and light-flavor hadrons is also essential for the study of
ultrarelativistic heavy-ion collisions. In these collisions, a
color-deconfined state of matter, called quark-gluon plasma
(QGP), is formed [55-59]. Due to the early production,
charm quarks are recognized as ideal probes of the QGP,
and measurements of the yields and angular anisotropies of
charm hadrons can be used to infer information about the
QGP properties [60,61]. However, during the hadronic
phase following the deconfined state of the system, the
charm hadrons can interact with the other particles pro-
duced in the collision, which are mainly light-flavor
hadrons, via elastic and inelastic processes. These inter-
actions modify the momentum and angular distributions of
heavy-flavor hadrons in heavy-ion collisions. Therefore,
the scattering parameters of the charm hadrons with light-
flavor hadrons, in particular, pions and kaons, must be
determined to disentangle this effect from those related to
the QGP formation [62].

In this article, the first measurement of the residual
strong interaction between nonstrange charm and light-
flavor mesons via the femtoscopy technique is presented.
This method relies on the fact that particles with similar
momentum, hence small relative momentum, can interact
with each other strongly, if they are emitted at small relative
distance. The momentum correlation functions of the
charm mesons DT and D** with charged pions and kaons,
also simply referred to as light-flavor mesons in the
following, are measured for all charge combinations in
pp collisions at /s = 13 TeV. Section II contains the
description of the experimental apparatus, the selection of
charm and light-flavor mesons, as well as the single-
particle properties (e.g., purity), which are later needed
to extract the final results from the raw experimental data.

The measurement of the correlation functions is described
in Sec. III, while the evaluation of the systematic uncer-
tainties is discussed in Sec. IV. Finally, the results are
presented and compared to model calculations in Sec. V.

II. EVENT AND PARTICLE SELECTION

This analysis is performed on a data sample of pp
collisions at /s = 13 TeV collected with the ALICE [13]
experiment during the LHC Run 2 data-taking period. The
events are selected employing a high-multiplicity (HM)
trigger. The multiplicity is estimated using the VO detector,
which consists of an array of scintillators located at forward
(2.8 < n < 5.1)and backward (3.7 < n < —1.7) pseudor-
apidity [63]. The multiplicity estimator is the VO amplitude,
which is related to the energy deposited by ionizing
particles in the VO detector. The triggered events corre-
spond to the 0—0.17% percentile of the inelastic events with
the highest VO amplitude and with at least one charged
track in the range || < 1 (INEL > 0). The resulting HM
dataset consists of approximately 1.0 x 10° inelastic pp
collisions with, on average, 30 charged particles per event
in the pseudorapidity interval || < 0.5 [10]. Charged-
particle tracks are reconstructed using both the inner
tracking system (ITS) [64] and the time projection chamber
(TPC) [65], which are embedded in a uniform magnetic
field of 0.5 T along the beam direction. They cover the full
azimuthal angle and the pseudorapidity interval || < 0.9.
The position of the primary vertex is obtained from the
reconstructed tracks, and the particle identification (PID) is
performed employing both the TPC and the time-of-flight
(TOF) [66] detectors.

The PYTHIA 8243 event generator [67] is used in the
Monte Carlo (MC) simulations. The generated particles are
transported through a simulation of the ALICE apparatus
using Geant 3 [68]. Events and tracks are reconstructed
employing the same algorithms as used for real collision
data [69], and a selection on large charged-particle mul-
tiplicities is applied to mimic the effect of the HM trigger.

A. Light-meson selection

The K* and z" candidates are identified using PID
information provided by the TPC and TOF, via the specific
energy loss dE/dx and time-of-flight, respectively. For each
track, the deviation of the measured quantity with respect to
the expected value for a particular particle-species hypoth-

esis in terms of units of the detector resolution is computed

TPC/TOF 1. . .
and denoted as n, /TOF Pion candidates with transverse

momentum pr < 0.5 GeV/c are identified using only the
TPC dE/dx signal via a selection of |nl"C(x)| < 3. For
larger pt the PID information of TPC and TOF is combined
into n&™ = \/(nIP¢)2 + (nI°F)> and a selection of
nemb < 3 is applied. Tracks with pp > 0.5 GeV/c which
do not have a TOF signal are discarded. The PID selection of
the kaon candidates is performed similarly with an
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additional more complex set of selections on 71FC and nS°™®,
not only for kaons but also for electrons and pions, in order to
suppress possible contamination to the kaon sample in
specific momentum regions [14].

The pion and kaon candidates are selected in the pr
ranges [0.14, 4.0] and [0.15,2.15] GeV/c, respectively.
The lower limit is imposed to suppress the light-meson
candidates stemming from interactions with the detector
material. The tracks are required to be reconstructed from
more than 80 clusters in the TPC to assure a good quality of
the track, good pt resolution at large momenta, as well as
to remove fake tracks from the sample. In addition, the
candidates are selected within a pseudorapidity range of
|| < 0.8. To suppress the contribution of particles coming
from weak decays or interactions with the detector material,
a selection on the distance of closest approach (DCA) to the
primary vertex in the transverse plane xy and along the
beam axis direction z is applied. For kaons, DCA}fy <
0.1 cm and DCAX < 0.2 cm are required, while for
pions DCAY, . < 0.3 cm.

The purity of the pion and kaon samples, defined as the
ratio of the correctly identified particles over the total
number of candidates, is computed as a function of pg
using MC simulations and is reweighted by the pr
distribution of the pion or kaon candidates that form a
pair with D)+ mesons at low relative momentum. It is
found to be 99% for pions and 98% for kaons.

The particles can be classified according to their origin:
the ones that do not come from interactions with the
material of the detector are classified as primary or
secondary, according to the ALICE definition [70]. The
fraction of each contribution is estimated with a template fit
to the DCA distribution. The templates for the DCA
distributions of primary particles, secondaries from weak
decays, and secondaries from interactions in the material
are obtained from MC simulations. The primary fractions
are found to be 99.5% and 99.8% for pions and kaons,
respectively. A portion of identified primary light-flavor
mesons comes, however, from the strong decay of long-
lived resonances (¢t > 5 fm). As the fractions of this
contribution cannot be determined via DCA template fits,
they are estimated with the ThermalFist statistical hadroniza-
tion model [71]. The resonances that contribute the most to
the pion yield are the # and @ mesons, while in the case of
kaons it is the ¢ meson. The resulting primary fractions of
pions and kaons, subtracted of the contribution of such
long-lived resonances, are found to be about 88% and 94 %,
respectively. These values are used in the following
analysis as primary fractions.

B. Charm-meson selection

The Dt, D*t, and D° candidates are reconstructed via
the hadronic decay channels D* — K~z*z+, D** — Dz,
followed by D — K-z, and their charge conjugates. The

branching ratios (BR) of the considered D, D**, and D°
decays are BR = (9.38 £0.16)%, BR = (67.7 + 0.5)%,
and BR = (3.947 £ 0.030)%, respectively [72]. The tracks
fulfilling a set of standard quality selections [54] are
combined with the correct charge signs to build D*- and
D** -meson candidates. The obtained sample of charm-
meson candidates consists of three different classes: can-
didates that result from the combination of uncorrelated
pions and kaons form the combinatorial background,
charm mesons that come from the hadronization of a
charm quark or the decay of excited open-charm or
charmonium states, which are referred to as prompt, and
D™+ mesons that come from the decay of beauty hadrons,
which are referred to as nonprompt.

To separate the prompt, nonprompt, and combinatorial
background contributions, the decay-vertex topology, in
combination with the PID information is used. The mean
proper decay length of D* and D° mesons is about 312 pm
and 123 pm, respectively, while for beauty hadrons it is
close to 500 pm [72]. Topological variables, such as the
DCA of the charm meson candidate, the Dt (D°) decay
length, and the cosine of the pointing angle, namely the
angle between the D* (D”) momentum and the line that
passes through the primary and secondary vertices, are
exploited by a multiclass machine learning (ML) algorithm
based on boosted decision trees (BDT). The ML model,
provided by the XGBoost library [73,74], is trained using
labeled examples of candidates of each class. The samples
of prompt and nonprompt D and D** mesons are obtained
from a PYTHIA 8 simulation with enhanced production of
heavy-flavor hadrons, where only events that contain a cC
or bb pair are selected, and the charm mesons are forced to
decay in the hadronic decay channels of interest for the
analysis. The background sample for D' is obtained
from the data by selecting the sidebands of the candidate
invariant-mass distribution. For D** mesons, the right
sideband of the invariant-mass difference AM =
M(Kzrz) — M(Kr) is used. To prepare the sample for
the training, loose selections on the PID and decay-vertex
topology are applied. The training is performed in several
pr intervals. Then, the model is applied to the data,
assigning scores to each candidate, which are related to
the probabilities that the candidate belongs to each of the
three classes. To suppress the combinatorial background
and enhance the prompt contribution in the sample,
candidates with a low background-score and high
prompt-score are selected; the selections are chosen such
that they maximize the expected significance and purity.

The fraction of nonprompt candidates present in the
sample is estimated with a data-driven procedure that relies
on the fact that the prompt selection efficiencies change
differently to the nonprompt ones when the selection on the
ML scores is changed. For each selection i on the ML
scores, the raw yield Y; of charm-meson candidates is
extracted via a fit to the invariant-mass distribution of the
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charm-meson candidates. The fit function is the sum of a
Gaussian, for the description of the signal, and an expo-
nential or an exponential multiplied by a power law for the
description of the background in the case of D* and D**
mesons, respectively. The left panel of Fig. 1 shows an
example of fit to the AM distribution of D** candidates
with 2.2 < pr < 2.4 GeV/c. The raw yield is related to
the corrected yields of prompt (Npromp) and nonprompt
(N nonprompt) MESONS Via

5 =Y;— (Accxe)

prompt,i X N prompt

- (ACC X e)nonprompt,i X Nnonprompt’ (1)

where (ACC X €) yrompt/nonprompt 1S the product of acceptance
and efficiency for each selection, and §; are the residuals
that account for the equation not holding exactly because of
the uncertainties. The definition of multiple sets of selec-
tions leads to an overdetermined system of equations, out of
which the corrected yields can be extracted via a y?
minimization. Further details are provided in Ref. [75].
An example of a raw-yield distribution as a function of the
BDT-based selection used in the minimization procedure
for D** mesons with 2.2 < pp < 2.4 GeV/c is shown in
the right panel of Fig. 1. The leftmost data point of the
distribution represents the raw yield corresponding to the
loosest selection on the BDT output related to the candidate
probability of being a nonprompt D** meson, while the
rightmost one corresponds to the strictest selection, which
is expected to preferentially select nonprompt D* mesons.
The prompt and nonprompt components obtained from the
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FIG. 1.

minimization procedure are represented by the red and blue
filled histograms, respectively. The nonprompt fraction
extracted in pr intervals is reweighted with the pr
distribution of the D*)* mesons that form pairs at low
k*. The extracted nonprompt fractions are (7.2 + 0.2)% for
Dz and DK, and (7.7 + 1.3)% for D*xz and D*K.

The prompt component of the D -meson sample also
includes mesons that come from the decay of excited charm
states. The main contribution comes from the decay of the
D** mesons, via the D** — D* + 7% and D** — D* +y¢
decays, that have a branching ratio of (30.7 +0.5)% and
(1.6 + 0.4)%, respectively [72]. Since the strong final-state
interaction (FSI) is only accessible via the study of the
primary particles, the D™ mesons that result from the decay
of charm resonances represent a source of background.
Unlike the contribution of D mesons from beauty-hadron
decays, it is not possible to experimentally separate it with
the procedure described above, due to the short lifetime of
the D** resonances (ct =~ 2400 fm) [72]. The fraction of
D' mesons originating from D** decays is estimated in
Ref. [54], employing the production cross sections of Dt
and D** mesons in pp collisions at /s = 5.02 TeV [75,76]
and a simulation with PYTHIA 8.2 for the description of the
D** —» D* + X decay kinematics. It is estimated to
be (27.6 £ 1.3(stat) & 2.4(syst))%.

To obtain a high-purity sample of D)+ -meson candi-
dates, the following procedure is used. The distribution of
the invariant mass of the D*-meson candidates and
invariant-mass difference of the D**-meson candidates is
fitted in several pr intervals, from 1 to 10 GeV/c.

x10°
2.4:\\|\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\I\\
2.2 ALICE pp, (s =13 Tev
" High-mult. (0-0.17% INEL > 0)

22< p, < 2.4 GeVl/c
e Data

Nc - D

@b — D'

— Total signal

%//////

2 4 6 8 10 12 14 16 18 20 22
BDT-based selection

Left: distribution of invariant-mass difference for D** candidates in the 2.2 < pp < 2.4 GeV/c interval. The green solid line

shows the total fit function and the gray dotted line the combinatorial background. The contributions of D** mesons originating from
charm hadronization and beauty-hadron decays are obtained with the method relying on the definition of different selection criteria, as
explained in the text. Right: example of raw-yield distribution as a function of the BDT-based selection for the 2.2 < pp < 2.4 GeV/c
interval, employed in the procedure adopted for the determination of the fraction of D** originating from beauty-hadron decays.
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The sample of D*)* mesons used for the analysis is
obtained by applying a selection to the invariant mass of
the candidates, which is defined by a 26 window around
the nominal mass, Mp: = 1869.66 + 0.05 MeV/c? and
Mp+ = 2010.26 £ 0.05 MeV/c? [72], where o is the
width of the fitted Gaussian. This selection range is
represented by the vertical dashed lines in Fig. 1. The
purity is computed as the ratio of the signal candidates over
the total number of candidates in this invariant-mass range,
where the number of signal candidates is extracted with a fit
to the invariant-mass distribution. This results in a pr -
integrated purity of around 71% for D" mesons and 67%
for D** mesons.

III. THE CORRELATION FUNCTION

In this analysis, the interaction between the charm
mesons D*) and the light-flavor mesons z and K is
investigated employing the correlation function [77],
defined as

Nsame (k* )

(2)

where k* = 1 x |p} —p3| is the relative momentum of two
particles with momentum p; and p, in the pair rest frame,
denoted by the asterisk, N\ is a normalization constant, and
N game (mixed) (k) is the k* distribution of the pairs measured
in the same (mixed) events. The mixed-event distribution,
which does not contain any effect of the strong FSI, reflects
the phase space of the underlying event. Therefore, it serves
as a reference to which the same-event distribution can be
compared in order to extract information on the strong FSI
of a specific system. To ensure a good quality of the
reference sample, N4, the mixing is performed only
between events with similar multiplicity and primary-
vertex position [5,7,10]. As the same (mixed) event dis-
tributions of the pairs are found to be compatible with the
ones of the respective charge conjugates, they are combined

TABLE L.

in order to enhance the statistical precision. In the follow-
ing, same-charge D)X refers to D®*X* @ D)X~
pairs, while opposite-charge DX refers to D*)*X~ @
D™=X* pairs, where X is either K or 7. The normalization
constant A is chosen such that the mean value of the
correlation function equals unity in a given range at large
k*, where the particles are not close enough in momentum
space to experience FSI. The number of pairs and the
normalization range for the different channels are reported
in Table I. The latter are chosen according to the shape of
the same (mixed) event distributions, which decreases and
flattens out at different k* regions depending on the
involved light-flavor meson. The experimental correlation
functions are computed in £* intervals of 50 MeV/c, and
the horizontal position of each data point is the average of
the k* distribution of the mixed event in the corresponding
k* interval. The effect of the finite momentum resolution of
the ALICE detector on data is found to be negligible.

The experimental correlation functions involving D and
light-flavor mesons, obtained from Eq. (2), are shown in the
left panels of Figs. 2 and 3. They are raw quantities, which
can be decomposed as

Craw<k*) = Cfemto(k*) X Cnonfemto(k*)’ (3)

where Crepo (k) = > ;5 4ij x Cij(k*), with C;(k*) arising
from the FSI between the ith and jth components of the two
particle species involved in the analysis, namely primary,
secondary, and misidentified particles. Each of these
contributions is weighted according to so-called A param-
eters, which are computed as 4;; = p;p;fif; where p;; and
fi; are, respectively, the purities and primary (secondary)
fractions of the ith and jth contributions to the particle
samples, discussed in Sec. I A. The contribution to
Cremio(K*), that only includes primary signal particles, is
also referred to as genuine correlation function Cge, (k")
and is used to extract the relevant physics information about
the strong FSI for the pair of interest. A detailed discussion

Number of pairs with small relative momenta, where final-state effects become relevant and in the full

k* range, as well as the normalization range for the individual particle pair combinations under investigation.

Number of pairs in Ny (k")

Pair Total k* <200 MeV/c Normalization range
Dfzt @ D 7~ 3.0 x 10° 2.0 x 10° k*€[1.0,1.5] GeV/c
Dz~ @Dzt 2.9 x 10° 2.1 x10°

D*K* @ DK~ 1.7 x 10° 1.9 x 103 k*€[1.5,2.0] GeV/c
D*K~ @ D"K* 1.6 x 10° 22x10°

D"zt @ D* 7~ 4.7 x 10° 3.3 x 10* k*€[1.5,2.0] GeV/c
D**z~ @ D z" 4.8 x 10° 3.4 % 10*

D**K* @ D*"K~ 4.9 x 10* 479 k*€[1.5,2.0] GeV/c
D**K~ @ D**K~ 4.8 x 10* 477
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FIG. 2. Experimental Dz raw correlation functions [C.,,, (k*)] with statistical (bars) and systematic uncertainties (boxes) (left column)
and background contributions to the experimental correlation functions (right column). The width of the bands corresponds to the total

uncertainty o,y = /062 + afyst. The violet band describes the total background, fitted to the data, and used to extract the genuine

correlation function from the raw signal. This band consists of several contributions, which are also shown individually in the figure,
scaled by the appropriate A parameter. The results are shown for opposite-charge (first row) and same-charge (second row) pairs.

on the different contributions to C. (k*) can be found in
Sec. IIT A. The remaining residual backgrounds, not related
to FSI, are included in the term Cgpeme(k*), Which is
discussed in Sec. III B.

A. Contributions related to FSI

There are several contributions to Cy, (k*) in Eq. (3) in
the case of D+ and light-flavor mesons. When it is
not possible to constrain them experimentally, these
contributions can be modeled using the Koonin-Pratt
equation [77],

Ck) = / Sy K2, (4)

where the so-called source function S(r*) contains the
distribution of the relative distance in the pair rest frame,
and w(r*,k*) denotes the two-particle wave function,
which contains the interaction. Together they determine
the shape of the correlation function, which is sensitive to
the strong FSI at small £* < 200 MeV/c, also denoted as
femtoscopic region.

The source is constrained from the core-resonance model
[78], which is based on the hypothesis of a common

032004-6



STUDYING THE INTERACTION BETWEEN CHARM AND LIGHT- ...

PHYS. REV. D 110, 032004 (2024)

T T T I T T T I T T T I T T T I T T T
- ALICE pp Vs = 13 TeV 1
- High-mult. (0—0.17% INEL >0) .
i o D'K" @ DK* )
2.0 =
*X -4, _
s I -
o L i
1.5 ‘W’ -
L e 4
- (.¢, _
L [{}‘0,:-0-: 4
- "O'"O":-o-: -
1.07 (0;-0-!-0401‘_0{.0‘0,[5-

1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1

0 200 400 600 800
k* (MeV/c)

T T T I T T T I T T T I T T T I T T T
- ALICE pp Vs = 13 TeV 1
- High-mult. (0-0.17% INEL >0) .
i o D’K"®@ DK™ T
20 -
\% L ]
o L |
1.5F -
L l+%+:¢q¢,, i
- [¢‘¢,"¢"‘_O_, 4
I Q1010 T
1.0 | | ;O.OXO‘O}ofoio;@“

0 200 400 600 800
k* (MeV/c)

FIG. 3.

— T T T T T T
- ALICE pp Vs =13 TeV T
i High-mult. (0—-0.17% INEL >0) ]
3L 0 Cop(k*), DK ® DK |
Total background
L A, =0.18, Agg = 0.29) J
L Cop k™) g e =1) i
r (% Copk™) Mg =1) 7

D«D*

C(k*)

N _ﬁ]>_ Cnon—fem!o(k*) N
i R R 7
£-0-1 b

400
k* (MeV/c)

— T T — —
- ALICE pp Vs =13 TeV 1
i High-mult. (0-0.17% INEL >0) 1
o Cu(k*), D'K' ® DK™
Total background
L (App- = 0.18, Ay = 0.29) J
L Coplk®) Ay p-=1) 4
r Ceplk™) (hgg=1) b
2r Crontemolk”) N

C(k*)

“0=1-0-} o -
e s,

I%:**r”ﬁ“*****’ '

400
k* (MeV/c)
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uncertainty oy = /62 + afyst. The violet band describes the total background, fitted to the data, and used to extract the genuine

correlation function from the raw signal. This band consists of several contributions, which are also shown individually in the figure,
scaled by the appropriate A parameter. The results are shown for opposite-charge (first row) and same-charge (second row) pairs.

emission source of all hadrons [79] and is anchored to
p — p correlation data in pp collisions. The model is
characterized by a my-dependent Gaussian core of width
Tcore» from which all primordial particles, which are created
directly during the hadronization process, and do not stem
from an intermediate decay, are emitted. Therefore, by
measuring the mp of the reconstructed particle pairs
with small k* it is possible to obtain the respective core
radius from a parametrization of the p—p data used in the
model, following several previous femtoscopic analyses
[6,7,10-12,54,80]. The mean my of D™z pairs with k* <
200 MeV/c is about 2.55 GeV/c?, while it is approxi-
mately 2.66 GeV/c? for D®K pairs. This leads to core

radii of 72 = 0.82007 fm and /2K = 0.8109% fm for
D™x and D®K pairs, respectively. However, also short-
lived resonances feeding into the yields of the particles of
interest have to be considered, as they lead to an effective
enlargement of the source. This is accounted for in the core-
resonance model by fixing the yields of the resonances and
employing an event generator to model their propagation
and relative spatial orientation. At large r* these resonances
lead to an exponential tail in the Gaussian-shaped source
distributions obtained from the model for both D*)K and
D™ z. Therefore, the effective source employed in this
analysis is obtained by parametrizing the distributions with
two Gaussian sources of width réff, which are combined
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TABLE II.  Parameters of the effective source S.(r*), which is
given by the weighted sum of two Gaussian distributions of width
ri and used in the modeling of the correlation functions. The
difference between the D*)z and DK systems is due to the
different transverse mass of the systems as well as resonances
feeding into the light-flavor mesons.

Pair w rly [fm] r [fm]
D®K 0.785902 0.867007 2.035013
Dz 0.661 00 0.9710% 2.521958

with the weight w, leading to S (r*) = wS,(r*) +
(I =w)S,(r*). The values of the source parameters can
be found in Table II. Employing S (7*) as source function
in Eq. (4) ultimately leads to two properly weighted
correlation functions with the respective Gaussian sources,
Si(r*) and S,(r*). The two-particle wave function
w(r*,k*) can be obtained by numerically solving the
Schrodinger equation for a given interaction potential,
for example by employing CATS [81], a correlation
analysis tool using the Schrodinger equation.

The relevant contribution to C. (k*), needed to extract
information of the strong FSI between D*)z and DK, is
the genuine correlation function Cge,(k*), which is asso-

ciated to primary light-flavor mesons and signal D)+
candidates.

As the D)* -meson samples are not pure, the correlation
between combinatorial background candidates and light-
flavor mesons has to be taken into account, which arises
from the interaction between the light-flavor mesons and
the particles from which the background D®*)*-meson
candidate is built from [82]. It is estimated using a data-
driven approach, where pions or kaons are paired with a
pure sample of background D*)* mesons, obtained from
the sidebands of the invariant-mass intervals outside the
D)+ -meson signal region. The resulting correlation func-
tion is referred to as Csp(k*).

For the D" mesons, the sideband intervals start at 5 o
away from the nominal mass and extend for 200 MeV/c?.
The op corresponds to the width of the Gaussian function
describing the signal peak and is determined via a fit to the
invariant-mass distribution, considering its pp dependence.
For the D** mesons, the selection is analogous except that,
instead of the invariant mass, the invariant-mass difference
M(Kzz) — M(Knr) is used, and only the right sideband is
considered.

Since a contamination from D** -meson is expected in the
D*-meson sideband sample, due to D** — D%z" and
subsequent D — K~z decays, the invariant-mass interval
[1.992,2.028] MeV/c? is excluded. This corresponds to
2.56p: around the D*T mass. The correlation functions
obtained from the left and right sidebands are compat-
ible within the uncertainties and combined as a weighted
average, considering the relative abundances of background

in the left and right half of the D™ -meson signal region. The
correction of the combinatorial D*z correlation function
requires a different approach with respect to the traditional
sideband method. This is due to the presence of an additional
source of correlated background that arises from the corre-
lation of a soft pion of a real D** decay with a background
D** candidate formed by the D° meson coming from the
same D** decay of the soft pion and an unrelated pion. Such a
correlation results in a peak in the correlation function at
k* ~ 40 MeV/c, which cannot be removed via pair- or
particle-level selections since the particle’s origin is not
known in data. For this reason, the correction for the
combinatorial background cannot be carried out via a side-
band analysis. Instead, the background-corrected correlation
function is directly computed as

:N psame(k*)Nsame(k*)
pmixed(k*)Nmixed(k*) 7

Claw (K*) (5)

where pgyme /mixed (K*) is the purity of the D** -meson sample,
calculated in the same- and mixed-events, as a function of k£*.
Since the peak in the correlation function comes from the
combinatorial background of the D** -meson candidates, a
reweighting by the purity removes by construction the
artifact at k* ~ 40 MeV/c. The opposite-charge D*K corre-
lation function is affected by a similar issue since the D°
meson decays into K~ via D® — K~z*. However, in this
case, the peak associated with the correlated background is
found to be at k* =~ 600 MeV/c, outside the femtoscopic
region. As the correlation function above 200 MeV /¢ does
not carry information about the strong FSI, the traditional
sideband method is used to correct for the combinatorial
background.

As already discussed in Sec. II B, a significant fraction of
the D™ mesons is produced from the decays of charm-
hadron resonances. As this contribution cannot be sepa-
rated experimentally, it is modeled using the Koonin-Pratt
formalism with Coulomb potential, which is found to
adequately describe the experimental correlation functions
involving D** mesons, presented in Sec. V. Subsequently,
the so obtained correlation functions are mapped into the
ones of (D* « D*")z and (DT « D*")K pairs, respec-
tively. The transformation of the momentum basis is
performed using GENBOD phase-space simulations [83]
of the D** — D*x° decay, as in this case the kinematics are
most stringently constrained. Contributions to the D" -
meson yield from decays of other excited charm resonances
are considered to be negligible [72].

A flat correlation function is assumed for sources of
background that are not expected to lead to correlations, or
that can be assumed negligible due to their small 4 scaling
parameter. They include contributions from particle pairs
involving nonprimary light-flavor mesons and contamina-
tion of the samples, as well as nonprompt D)+ mesons.
Especially, the correlation of primary light-flavor mesons
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with nonprompt D* mesons is studied in analogy to D*
mesons from D* decays, assuming Coulomb-only inter-
action, as it is associated to a non-negligible A parameter of
~5%. The decay kinematics for Bt — Dt + X decay is
simulated, and the correlation function of B mesons and
light-flavor meson pairs is mapped into one of the daughter
D™ and light-flavor mesons. As the phase space available
for the decay is much larger compared to the D*t — D™
case, the information on the interaction between beauty and
light-flavor hadrons is lost, leading to a flat correlation.

In total, four(three) contributions to Cppo(k*) of the
DK and D™z systems can be identified. The individual
Aij parameters are combined, based on how the correspond-
ing correlation functions are obtained: Ag, is associated
with the correlation function obtained from primary signal
particles only, Agg to the one from D+ -meson back-
ground candidates, Ap_p- to the one obtained using D
mesons from D** -meson decays, and g, contains all other
femtoscopic contributions. The combined A parameters for
each system can be found in Table III.

B. Residual contributions

Energy-momentum conservation effects and the produc-
tion of particles within jetlike structures introduce an
enhancement of the correlation function and represent a
residual background C,opfemio (k*) not related to FSI and
already introduced in Eq. (3), which has to be taken into
account. The contribution of jetlike structures was observed
in several meson—meson [4,84—87], meson—baryon [5,11],
and baryon—antibaryon [12] femtoscopic analyses. They
are related to initial hard processes at the parton level [88]
and not to femtoscopic FSI. The correlation function used
to model the residual background, Copfemio (k*), i obtained
from MC simulations, where the FSI is absent. It is further
multiplied by a constant N, which is a free parameter and
accounts for a possible bias due to the chosen normalization
region of the raw data. In the case of the Dz and D*K
systems, an additional polynomial of the form p(k*) =
ak*? and p(k*) = ak*, respectively, are added to the MC
correlation function Cyc(k*) to better fit the background
model to Cy,,(k*) at intermediate k*. This introduces an
additional free parameter a and leads to the following
expression for the residual background Cpopemeo(k™) =
N x [Cyic(k) + p(k*)].

TABLE III.  List of A parameters, which quantify the individual
contributions to the different raw correlation functions inves-
tigated in this paper.

Dz DK D*z D*"K*@D*"K~ D*'K-@®D*'K-
Agen 040 0.43 0.80 0.55 0.59
AsB 029 029 - 0.32 0.28
Aflat 0.14 0.10 0.20 0.13 0.13

Ap,_,. 017 0.18 — - -

C. Modeling of the correlation function

In order to extract the unknown Ci,(k*) from the raw
data, which is needed to study the residual strong inter-
action between the different particle pairs of interest, a
model is built according to Eq. (3), taking into account all
the relevant background contributions discussed in the
previous sections.

In the case of Dz and DK pairs, all the sources of
background, mentioned and explained in detail in
Secs. IIT A and III B, are present. Therefore, the model
takes the form

Craw (k* ) = )'SB Csp (k* ) + Chronfemto (k*) Mgen Cgen (k* )
+ Apep Cpep: (K*) + Agads (6)

where Cgg(k*) is the correlation function arising from the
D*-meson combinatorial background, Cponfemio (kK*) is the
correlation function that describes the residual correlation
not associated to FSI and mainly coming from jetlike
contributions, and Cp, « D*(k*) is the correlation function
associated to the D™ mesons from D** decays. Finally, Ag,
accounts for all femtoscopic background contributions,
assumed to be flat. Notably, as Cgg(k*) is obtained in a
data-driven approach, it already includes possible residual
jetlike contributions and thus does not have to be multiplied
by Cnonfemto(k*)'

The model for the D*K correlation functions is similar to
the one used for Dz and DK correlations, with the differ-
ence that the contribution from excited charm states is
assumed to be negligible, hence Ap_p- = 0. The same
assumption holds for D*z correlation functions. In this
case, however, the combinatorial background is already
subtracted using the sidebandless approach described by
Eq. (5) in Sec. IIT A. Therefore, the final model is given by
Eq. (6), with Ap_p» = 0 and Agg = 0.

To determine the free parameters related to Coptemio (K*)»
a background model is defined by imposing Cye, (k") = 1
in Eq. (6) for all pair combinations. The resulting
expressions are fitted directly to the raw data in the range
of k*€[100,600] MeV/c for Dz correlations and
k* €]200,400] MeV/c for DK. The chosen fit range for
correlations involving D*z is k* € [300, 1000] MeV/c,
while it is k* €[250, 500] MeV /¢ for D*K. The fit ranges
are tuned to select a k* region in which the femtoscopic
correlations are expected to be negligible. The different
sources of background, together with the total background
model (violet band) and the raw data, are reported in the
right panels of Figs. 2 and 3 for both the Dz and DK
correlation functions, respectively. The blue band repre-
sents the residual Copfemio(k*), the orange band the
combinatorial background Cgg(k*), and the red band the
contribution arising from the feed down of D** to D,
Cpp- (k). Once the parameters are fixed from the fit, the
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genuine correlation function Cy,(k*) is extracted from the
raw data via Eq. (6), adapted to the pair of interest.

IV. SYSTEMATIC UNCERTAINTIES

The genuine correlation functions, which are the observ-
ables used to extract information on the residual strong final
state interaction, are affected by several sources of sys-
tematic uncertainty related to the selection criteria or the
background corrections to the raw data. Such uncertainty
contributes to the systematic uncertainty of the scattering
parameters, together with the systematic uncertainties
associated with the source parameters and the choice of
the fit range. The details on how the systematic uncertain-
ties are estimated are provided in the following paragraphs.

A. Genuine correlation function

The choice of the selection criteria of the light-flavor and
D(*)-meson candidates determines the single-particle prop-
erties of the sample and hence the distributions of the pairs
in the same (mixed) events. Therefore, an impact on the raw
correlation function is expected, which is then propagated
to the genuine correlation function. To estimate the sys-
tematic uncertainty associated with this contribution, the
selection criteria mentioned in Sec. II are varied, and the
raw correlation functions are recomputed for each set of
variations. On the raw correlation function, the relative
systematic uncertainty is below 3% in the case of D*)K
pairs and below 1% in the case of D)z pairs.

The uncertainties on the A parameters, which affect the
modeling of the background, are dominated by the uncer-
tainty on the fraction of nonprompt charm mesons, D"
mesons from D** decays, and light-flavor mesons from the
decay of long-lived resonances as well as the purity of
the D)+ meson candidates. It is estimated by varying the
fractions of charm mesons according to the uncertainties
stated in Sec. II. The fractions of strongly-decaying long-
lived resonances feeding into the light-flavor mesons,
which are estimated using ThermalFist, are varied by 10%
[79] and the purity of D™+ mesons by 2% [54]. This leads
to a variation of ~10% of the A-parameter values.

The systematic uncertainty on the background model is
estimated by propagating the systematic uncertainties of the
raw correlation functions and by varying the fractions
according to the uncertainties stated above. Additionally,
the fit range of the background model is varied in order to
account for possible systematic effects related to the fit
procedure. For particle pairs involving D™ mesons, where
the feed-down contribution from D** decays is modeled
assuming Coulomb-only interaction, the uncertainty on the
effective source parametrization, reported in Table II,
represents an additional source of systematic uncertainty
of the background model.

The total systematic uncertainty of the genuine correla-
tion functions, computed taking into account all the

contributions mentioned above, is found to be below 1%
for opposite-charge Dz, below 2% for same-charge Dz,
below 10% for same-charge DK, below 15% for opposite-
charge DK, below 2.5% for D*z, below 7% for same-charge
D*K, and below 25% for opposite-charge D*K. In the low k*
region, the correlation functions are the most affected by the
systematic uncertainties. The larger relative systematic
uncertainty of the D*)K correlation functions with respect
to the ones of D) z arises from the propagated uncertainty of
the raw correlation functions, which is related to the light-
flavor meson selections. Overall, this represents the main
source of systematic uncertainty of the genuine correlation
functions, followed by the uncertainty on the 1 parameters.

B. Scattering lengths

The systematic uncertainty associated to the extraction of
the scattering lengths, discussed in the next section, besides
the one related to the genuine correlation functions, is
obtained by taking into account the choice of the fit range
and the lack of precise knowledge of the source function.
The first is estimated by varying the fit range by 50 MeV/c
and the second one by performing the fit with different
effective source parameters, determined according to the
uncertainties reported in Table II. The latter represents
the largest contribution to the systematic uncertainties on
the scattering lengths, besides the propagated systematic
uncertainties of the genuine correlation functions.

V. RESULTS

The measured genuine correlation functions, extracted
from the raw data as described in Sec. III, are shown in
Figs. 4 and 5 for correlations involving light-flavor and D™
or D*" mesons, respectively. In the femtoscopic region
k* <200 MeV/c the genuine correlation functions are
sensitive to the Coulomb and strong nuclear forces and can
be compared to the corresponding calculations.

The strong interactions between the mesons depend on
the quantum numbers of the systems and can therefore
be separated into different isospin and strangeness con-
figurations. These are namely: D)z (I = 3/2,1/2,5 = 0),
D®K(I=1,0,S=-1), and DWK(I=0,S=+1). Several
theoretical predictions are available for the Dz and DK
scattering lengths [89-93], while only two are present for
the D*z and D*K systems [93,94]. The models are listed
below, together with a brief description of the calculation
method. The corresponding scattering lengths are summa-
rized in Tables IV and V.

(1) Liu et al. [89]: The S-wave scattering lengths
adn(I =3/2), af®(I=0), and af®(I=1) are
calculated on the lattice using Liischers finite vol-
ume technique. Extrapolation to the physical point is
performed wusing unitarized chiral perturbation
theory (ChPT) up to next-to-leading order (NLO),
where the low-energy constants (LECs) are deter-
mined by a fit to the lattice data. The latter are
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FIG. 4. Genuine correlation functions with statistical (bars) and systematic uncertainties (boxes) compared to theoretical model
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(i)

(iif)

exploited to predict the scattering lengths in the
other isospin channels.

Guo et al. [90]: N*LO ChPT is employed and the
LECs are determined by a global fit to lattice QCD
data, including the S-wave scattering length from
[89]. A chiral expansion scheme is applied to obtain
the scattering lengths at physical pion mass.

Guo et al. [91]: The scattering length between the
light-flavor and charmed mesons is obtained from
unitarized ChPT up to NLO. The free parameters of
the theory are constrained to lattice QCD calcula-
tions of the scattering length, including [89], and the
finite-volume spectra. The fit is performed on differ-
ent sets of the data, denoted as Fit-1B and Fit-2B.

(iv)

)
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Finally, the scattering lengths are obtained using a
chiral extrapolation to the physical point.

Huang et al. [92]: Lattice QCD calculations of the
finite-volume spectra and scattering lengths, includ-
ing [89] are used to determine the LECs of the
Lagrangian formulated within unitarized heavy-
meson ChPT at N>LO. The scattering lengths used
in this paper are obtained from the iterated method.
Torres-Rincon et al. [93]: The model employs
unitarized ChPT with heavy-quark symmetry con-
siderations at NLO, in a coupled-channel basis. The
LECs at NLO are taken from [91]. Prediction for the
D*z and D*K scattering lengths are provided,
exploiting heavy-quark spin symmetry.
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TABLE IV. Scattering lengths of the available theoretical
models for the Dz interactions. The values are reported separately
for the different isospin states.

Model ag (fm)
Dz(I =3/2) Dz(I =1/2)
Liu ef al. [89] -0.100+£0.002 037199
Guo et al. [90] —-0.11 0.33
Guo et al. [91] Fit-1B —0. 101jg‘-gg§ 0. 31+ggll
] 0.003 0.00
Fit:2B - —0.09975 0, 0.34403
Huang et al. [92] —0.06 + 0.02 0.61 £0.11
Torres-Rincon et al. [93] -0.101 0.423
D'z(I =3/2) D*z(l=1/2)
Liu et al. [94] —0.13 — 0.00036i 0.27 — 0.00036i

(vi) Liu et al. [94]: The S-wave scattering lengths of
interactions involving the heavy vector meson D*
are derived within the framework of heavy-meson
ChPT at N?LO. The LECs at NLO are obtained from
the mass splitting between heavy mesons and the
resonance saturation model, while most of the N2LO
LECs are assumed to be negligible.

The theoretical curves of the Torres-Rincon et al. model
were provided in a private communication with the authors
and use the effective source parametrization S (r*)
described in Sec. III A, with values listed in Table II.
In the other cases, the scattering lengths predicted by
the models are converted into correlation functions by
employing Eq. (4) with the effective source parametrization
Seir(r*). The wave function is obtained by taking into

032004-12



STUDYING THE INTERACTION BETWEEN CHARM AND LIGHT- ...

PHYS. REV. D 110, 032004 (2024)

TABLE V. Scattering lengths of the available theoretical models for the DK interactions. The values are reported
separately for the different strangeness and isospin states. The real and imaginary components are associated with
elastic and inelastic processes, respectively.

Model ag (fm)
DK(I = 1) DK(I =1) DK(I = 0)
Liu et al. [89] 0.07 4 0.03 + 0175092 —0.20 +0.01 0.841017
Guo et al. [90] —4.87 x 1072 -0.22 0.46
Guo et al. [91] Fit-1B 0.0670¢3 + 0.3070 05 i —0.181901 0.961 544
Fit-2B 0.057 00 +0.177502i -0.1910%2 0.681017
Huang ez al. [92] —-0.01 +0.03 —0.24 £ 0.02 1.81 4 0.48
Torres-Rincon ef al. [93] —0.027 + 0.083i -0.233 0.399
D'K(I =1) D'R(I=1) D*K(I = 0)
Liu et al. [94] —0.022 + 0.18i —0.19 — 1.7 x 1074} 0.29 +5.2 x 107%

account both the Coulomb and strong interaction. The
former is modeled using the well-understood Coulomb
potential, while the latter is parametrized with a Gaussian
potential of the form

V(r) = Voexp (—mpr?). (7)

where V), is the potential strength, and m,, is the mass of the
lightest exchangeable meson, the p meson, which is the
parameter that controls the potential range. The strength V) is
tuned to reproduce the scattering lengths of the model [44].

The theoretical models provide the scattering parameters
in the (strangeness, isospin) basis, but in the experiment,
the interactions are accessible only in the charge basis. The
same-charge pairs consist of a pure isospin state. The
opposite-charge pairs are a mixture of two isospin states,
which can be addressed by solving the coupled-channel
Schrodinger equation with two isospin interaction compo-
nents. In the case of D)z pairs, the isospin channel

= 3/2 is shared between the same- and opposite-charge
configurations, as both have no net strangeness.

The theoretical correlation functions obtained from the
different models of the strong interaction between charm
and light-flavors mesons are compared to the measured
genuine correlation functions in Figs. 4 and 5 for D" and
D*T, respectively. The predictions for the Coulomb-only
hypothesis (gray curves) are shown as a reference, as any
deviation of the experimental data from it indicates the
presence of strong FSI. Additionally, the difference
between the data and the calculations is quantified by
the number of standard deviations n, and is reported in the
figure legends. Each n, value is directly obtained from the
p-value and reflects how well the specific model describes
the data in the range of k* < 200 MeV/c by considering
the total uncertainty of the data as well as the predictions.

Even though the current statistical precision is not
sufficient to distinguish between the individual model
predictions of the residual strong interaction involving
kaons, no tension with theory is observed in most cases.

The exceptionis KD~ @ K™D, where the larger n,; values
are likely due to the fluctuation of the fourth data point. This
is different for correlation functions involving pions. In the
case of opposite-charge D*) 7t pairs the data are significantly
lower than any of the model predictions and clearly favor the
Coulomb-only hypothesis. For same-charge pairs, the
deviation between data and models is much smaller, how-
ever, the Coulomb-only hypothesis is still favored.

In general, the correlation functions for all the analyzed
particle systems can be adequately described by only
considering the Coulomb interaction, indicating a shallow
residual strong interaction between the D™ and D** mesons
and light-flavor hadrons. A slight tension of n, = 2.62 is
observed for the D**zt @ D*~z~ system, where the data
points scatter around unity in the low k* region. However,
as mentioned above, the Coulomb-only hypothesis is still
favored over the calculations with residual strong inter-
actions. In the case of DK™ @ D™K™ the n, =2.72
between the data, and Coulomb-only hypotheses could
be related to the fluctuating data point at k* ~ 180 MeV/c.
By only considering smaller k* values, the n,, value reduces
to 1.76, indicating that the Coulomb interaction sufficiently
describes the measurement in the sensitive relative-momen-
tum region.

The most precise correlation functions of this analysis,
namely D*z" @ Dz~ andD**z* @ D*~x~, are employed
to extract the scattering length a, of the strong interaction.
This is done by parametrizing the data using the same
approach as for the theory predictions, which involves a
Gaussian potential given by Eq. (7) with variable potential
strength V,, to model the strong interaction. As the isospin
I = 3/2 state is shared among both charge combinations, the
. 1=3/2 .
corresponding V|, ~'~ parameter is a common fit parameter
of the two correlation functions. The potential strengths
V32 and ViT'? are determined by a simultaneous y>
minimization within k* < 250 MeV/c. Finally, the I = 1/2
and 3/2 scattering lengths are calculated by solving the
Schrodinger equation in the isospin basis.
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The scattering lengths extracted by the minimization are
summarized in Table VI. Figure 6 shows the corresponding
model correlation functions (red bands) as well as the fitted
data. The width of the bands represents the total uncertainty
obtained from the y? minimization. The y?/ndf of the
combined fit of the Dz correlation functions is 0.7 within
k* < 250 MeV/c, while it is 1.0 in the case of D*z. The
correlation between the scattering lengths for the isospin
channels / = 1/2 and I = 3/2 extracted from the simulta-
neous fits are shown in Fig. 7. The red (orange) areas
represent the confidence intervals for a 68% (95%) prob-
ability. Notably, the scattering lengths governing the
residual strong interaction between D' and D** mesons
with light-flavor mesons are found to be compatible with
each other within the uncertainties. This is understood in
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o2 -
1L_ E——r ) . ;
[ ag™(1=3/2) = 0.01+ 0.02 (stat.) + 0.01 (syst.) fm ]
0.8 ag’"(l=1/2) =0.02 £ 0.03 (stat.) £ 0.01 (syst.) fm |
L I - ‘ I - ‘ I - ‘ I - ‘ I - I I - ]
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L I - l I - l I - l I - l I - I I - ]
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terms of heavy-quark spin symmetry, which states that, at
leading order, the interaction of light-flavor mesons with
pseudoscalar or vector charm mesons is the same. The
measured scattering lengths for the isospin I = 1/2 chan-
nels are vanishing for both D™ and D** mesons. In the case
of I =3/2, they are compatible with zero within uncer-
tainties for the Dz interaction, while they are positive with a
significance of about 1.1¢ for the D*z interaction. The
scattering lengths extracted from the data are further
compared with the theoretical predictions reported in
Tables IV and V. For the I = 1/2 channel, the measure-
ments are significantly different from the values predicted
by theoretical models, which cover the range between
about 0.3 and 0.6 fm. Depending on the model, 5—13¢ are
obtained for Dz and 6-8¢ for D*x, taking into account the

1 8_‘ L ‘ L ‘ L ‘ L ‘ L I L \_
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60 4 breon |
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FIG. 6. Comparison of the Dz (first row) and D*z (second row) genuine correlation functions of same- (left column) and opposite-
charge (right column) combinations with the results of the y*> minimization using a Gaussian potential to parametrize the strong
interaction (red band). The width of the band corresponds to the total uncertainty. The gray curve represents the correlation functions

assuming only interaction via the Coulomb force.
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Scattering length of the Dz (left) and D*x (right) interaction, for the two isospin channels that characterize the systems. They

are extracted from a simultaneous y> minimization to the experimental correlation functions. The red (orange) areas represent the
resulting confidence intervals for a 68% (95%) probability. The dashed lines correspond to Coulomb interaction only, as the scattering
lengths of the strong interaction vanish. As comparison, the available theoretical predictions [89-94], listed in Tables IV and V, are

shown as well.

uncertainty of the data as well as the predictions. In the case
of the I =3/2 channel, the measurements also show a
tension with the theoretical predictions, it is, however,
smaller than in the 7 = 1/2 channel. In the Dx case, a
deviation of 2—5¢ is found, depending on the model, while
it is around 3—4¢ for D*z. A much larger source size could
diminish this discrepancy, as it leads to a less pronounced
correlation signal for a given interaction strength. However,
there is no obvious motivation for assuming a breaking of
the universal my scaling of the core radius [78,79] in the
case of correlation functions involving charm mesons.
Especially, it is successfully used in the analysis of the
experimental pD~ correlation function [54]. In Ref. [95]
the hidden gauge formalism, implementing unitarization in
coupled channels, is used to study the molecular nature of
the lowest-lying D; states [D;(2420) and D,(2430)], as
well as the scattering amplitudes of some of the members of
the meson-baryon basis considered (D*z, Dp) and the
corresponding correlation functions. In order to better
accommodate the D;(2430) within the experimental

TABLE VI. The scattering lengths g, of the D)z interaction,
extracted from a y? minimization to the experimental genuine
correlation function, using a Gaussian potential to parametrize the
strong interaction.

Pair 1 ag [fm]

Dz 3/2 0.01 % 0.02(stat) % 0.01(syst)
1/2 0.02 £ 0.03(stat) = 0.01(syst)

D*x 3/2 0.05 £ 0.04(stat) £ 0.02(syst)
1/2 —0.03 = 0.05(stat) £ 0.02(syst)

observations [46,96], a bare quark-model pole structure
is added explicitly, whose parameters dependence allows
the authors to consider two plausible scenarios. The one
denoted as Model B in their publication provides as a result
a scattering length of af):*}/ 2= 0.1 fm, which is a value
much closer to the one obtained in the present work.
Alternatively, other complex structures, for example, in
higher partial waves, not taken into account by the theory
models, could modify the predictions.

In summary, the measured correlation functions between
charm mesons and light-flavor mesons are compatible with
the predictions obtained with only Coulomb interaction,
suggesting that the residual strong interaction between
these pairs of particles is shallow. A significant discrepancy
in the 7 =1/2 channel is found with respect to the
predictions for the D)z scattering lengths, which is much
less pronounced in the I = 3/2 channel. This discrepancy
could be reconciled with the theory only in the case of a
sizeable emitting source, which is not well motivated. The
current precision of the DK correlation functions does
not allow for the discrimination between the available
models and for a firm conclusion on the possible formation
of bound states. Finally, the measured interactions suggest
that the rescattering probability of charm mesons with light
hadrons in the hadronic phase of the system produced in
ultrarelativistic collisions is small. Even with values of
scattering lengths predicted by theory calculations, which
are larger than the measured ones reported in this article, a
small impact on the D-meson final momenta is expected
[62], given the duration of the hadronic phase of the system
created in ultrarelativistic heavy-ion collisions of about
Aty = 5-10 fm/c [13,62,97].
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VI. CONCLUSION

The study of the residual strong interactions of D(*)*
mesons with charged pions and kaons is performed for the
first time, using high-multiplicity proton—proton collision
data at /s = 13 TeV collected with the ALICE detector at
the LHC. The femtoscopy technique is used to test various
theoretical models of the strong interaction by comparing
the experimental correlation functions for the different
particle pairs with the predictions by theory. As comparison
also the Coulomb-only assumption is tested and, within the
current uncertainties, all the measured correlation functions
can be well described by it. For the same charge D*z
system, a slight tension with the Coulomb-only assumption
of n, = 2.62 is observed. Still, it describes the data better
than the model including the strong interaction. A com-
parison of the DK and D*K data to theoretical predictions
does not lead to a clear result, as no preference among the
different models of the strong interaction or Coulomb-only
hypothesis is observed due to the limited statistical
precision. In the case of Dz interaction instead, the
experimental data indicates that the theoretical models
overestimate the scattering lengths, especially in the oppo-
site-charge Dz correlation function, where a strong
discrepancy is found. In comparison, Coulomb-only pre-
dictions yield a better description of the data. The same can
be observed for the correlation functions involving D**
mesons.

Among the experimental correlation functions studied in
this work, the ones of the Dz and D*x systems are the most
precise. Therefore, they are used to determine the scattering
lengths of the strong interaction, which is modeled using a
Gaussian potential. The scattering parameters are found to
be small and compatible with zero. Especially, the disagree-
ment between the scattering length of the isospin channel
I =1/2, extracted from the data, and the theoretical
predictions is found to be larger than 5o, challenging the
current understanding of the residual strong interaction
between D mesons and pions.

These findings also provide important information for
the interpretation of the measurements of D-meson pro-
duction and angular anisotropy in heavy-ion collisions
[60,61] since they suggest that the effect of the rescattering
of D*)* mesons with light hadrons during the hadronic
phase of the system produced in such collisions is small.

The precision of these measurements will improve with
the data taken during the LHC Run 3 data-taking period. In
fact, the dataset collected by the ALICE Collaboration will
benefit from various detector upgrades, which include an
improved spatial resolution crucial for the reconstruction of
heavy-flavor decay vertices, and a larger luminosity thanks
to the higher readout rate achievable [98]. Furthermore,
with such improvements, the momentum correlation func-
tions of other particle pairs involving charm hadrons will
also become accessible.
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