Journal Pre-proof
. Journal of
Computational

Multiscale Preconditioning of Stokes Flow in Complex Porous Geometries thsics

Yashar Mehmani and Kangan Li

PII: S0021-9991(24)00789-7

DOIL: https://doi.org/10.1016/j.jcp.2024.113541
Reference: YJCPH 113541

To appear in: Journal of Computational Physics

Received date: 7 December 2023
Revised date: 23 August 2024
Accepted date: 25 October 2024

Please cite this article as: Y. Mehmani and K. Li, Multiscale Preconditioning of Stokes Flow in Complex Porous Geometries, Journal of Computational Physics,
113541, doi: https://doi.org/10.1016/j.jcp.2024.113541.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for
readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its
final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier.

https://doi.org/10.1016/j.jcp.2024.113541
https://doi.org/10.1016/j.jcp.2024.113541

Highlights

* Multiscale preconditioners formulated for Stokes flow in porous microstructures.

» Performance is superior to algebraic multigrid variants in complex 2D/3D geometries.
* Monolithic PLMM preconditioner algebraizes the pore-level multiscale method.

¢ Monolithic PNM preconditioner algebraizes the established pore network model.

« All preconditioners are scalable in parallel and can be implemented non-intrusively.

Multiscale Preconditioning of Stokes Flow in Complex Porous Geometries

Yashar Mehmani?®, Kangan Li*

“Energy and Mineral Engineering Department, The Pennsylvania State University, University Park, Pennsylvania 16802

Abstract

Fluid flow through porous media is central to many subsurface (e.g., CO, storage) and industrial (e.g., fuel cell)
applications. The optimization of design and operational protocols, and quantifying the associated uncertainties, re-
quires fluid-dynamics simulations inside the microscale void space of porous samples. This often results in large and
ill-conditioned linear(ized) systems that require iterative solvers, for which preconditioning is key to ensure rapid con-
vergence. We present robust and efficient preconditioners for the accelerated solution of saddle-point systems arising
from the discretization of the Stokes equation on geometrically complex porous microstructures. They are based on
the recently proposed pore-level multiscale method (PLMM) and the more established reduced-order method called
the pore network model (PNM). The four preconditioners presented are the monolithic PLMM, monolithic PNM,
block PLMM, and block PNM. Compared to existing block preconditioners, accelerated by the algebraic multigrid
method, we show our preconditioners are far more robust and efficient. The monolithic PLMM is an algebraic refor-
mulation of the original PLMM, which renders it portable and amenable to non-intrusive implementation in existing
software. Similarly, the monolithic PNM is an algebraization of PNM, allowing it to be used as an accelerator of direct
numerical simulations (DNS). This bestows PNM with the, heretofore absent, ability to estimate and control predic-
tion errors. The monolithic PLMM/PNM can also be used as approximate solvers that yield globally flux-conservative
solutions, usable in many practical settings. We systematically test all preconditioners on 2D/3D geometries and show
the monolithic PLMM outperforms all others. All preconditioners can be built and applied on parallel machines.

Keywords: Stokes equation, Porous media, Multiscale method, Preconditioning, Pore network, Krylov solver

1. Introduction

We concern ourselves with the flow of a single-phase, incompressible, Newtonian fluid governed by the Stokes
equation inside a porous microstructure. This is relevant to several subsurface and manufacturing applications includ-
ing the geologic sequestration of CO, [[1], seasonal storage of H, underground [2]], extraction of geothermal heat [3]],
and designing new porous transport layers for fuel cells and electrolyzers [4} |5]. To optimize design and operational
protocols in these applications, and to quantify their associated uncertainties, rapid simulations of fluid flow inside the
microscopic void space of porous samples is required. The latter is often captured in great detail by a pore-scale image
using, e.g., an X-ray uCT scanner [6]. The computational domains so obtained tend to be rather large, to represent
spatial and statistical variabilities, and they exhibit extreme geometric complexity. The images are then used as direct
inputs to pore-scale computations using various direct numerical simulation (DNS) methods (e.g., FVM, MFEM).

In DNS, the Stokes equation is discretized and solved over a fine grid that often coincides with an integer fraction
of the pixels in the pore-scale image. Because conservation of flux is a desired property for subsequent solute transport
(and two-phase flow) simulations [7]], the staggered finite volume (FVM) [8]], marker and cell (MAC) finite difference
[9], and mixed finite element (MFEM) [10, [11] methods are popular DNS approaches. Their disretization results in a
large, sparse, linear system in terms of pressure, p, and velocity, #, unknowns that exhibits a saddle-point structure;
wherein the (2,2)-block is zero (except when stabilization is used in MFEM). Solving such systems requires iterative

*Corresponding author: Yashar Mehmani. Email: yzm5192@psu.edu
Email addresses: yzm5192@psu. edu (Yashar Mehmani), kb15610@psu. edu (Kangan Li)

Preprint submitted to Journal of Computational Physics October 28, 2024

(e.g., Krylov) solvers, for which preconditioning is a must to ensure rapid convergence. Our goal is to develop robust
and efficient preconditioners for the Stokes equation defined on geometrically complex porous domains.

Existing preconditioners for the (Navier-)Stokes equation are based on splitting the saddle-point system, Af=b
where 2£=[u, p]”, into two sub-systems: one in terms of # with a coefficient matrix F, and another in terms of p with
a coefficient matrix equal to the Schur complement S=—GF~!G" [12]]. Here, G is the discrete divergence operator.
Preconditioning involves solving each sub-system approximately. Since F is the velocity Laplacian, its approximate
solution is obtained efficiently via algebraic multigrid (AMG) methods [13]. However, S poses challenges because of
the F~! term sandwiched in between G and G™. Therefore, existing preconditioners differ primarily in the way S or
S~ is approximated [11} [14-18], for example by replacing F~! with its diagonal or commuting F~! and G [12]]. In
the well-known BFBt preconditioner [14]], the sub-system associated with S is replaced by two others that involve the
pressure Laplacian GG, hence allowing their efficient solution via AMG. Here, we refer to all such preconditioners
based on approximating S as block AMG, since they are often formulated as block-triangular matrices. Almost all are
tested exclusively on very simple geometries in the literature (e.g., lid-driven cavity flow, flow past an obstacle/step),
which are not representative of the complex porous domains, with poorly conditioned A, that interest us here. We note
ill-conditioning amplifies due to poorly connected void spaces and/or very fine grids to capture geometric details.

Our main contribution is the formulation of two monolithic preconditioners that outperform the block AMG vari-
ants above: monolithic PLMM and monolithic PNM. The term “monolithic” means that the # and p unknowns are
not split but solved together. This preserves certain coupling terms that leads to the faster convergence of iterative
solvers. The monolithic PLMM preconditioner is based on an algebraic reformulation of the pore-level multiscale
method (PLMM), originally proposed by the authors in [19]. PLMM yields highly accurate approximate solutions to
the Stokes equation by executing three steps: (1) Decompose the void space, Q, into primary grids, Q;" ; (2) Solve local
basis/correction problems on each Q{’ ; (3) Couple the local problems with a global, coarse-scale, interface problem.
The approximate, or first-pass, solution is obtained by interpolating the coarse-scale solution on the fine grid via the
basis/correction functions. Its errors tend to concentrate near the interfaces between adjacent primary grids, and can
be reduced by solving a second set of local problems over so-called dual grids, Qf.’ , which cover a thin region around
each interface. Despite its accuracy and parallel scalability, the geometric variant of PLMM in [19] suffers from two
drawbacks: (1) To implement it in existing codes requires significant development time and effort; (2) In high-porosity
domains, very large dual grids can form (due to the merger of overlapping dual grids), which makes the cost of local
problems solved on them prohibitive. The monolithic PLMM preconditioner herein removes both drawbacks.

The monolithic PNM preconditioner is based on an algebraic reformulation of a popular (and old) reduced-order
method in the porous-media literature known as the pore network model (PNM) [20]. In PNM, the complex void
space geometry is simplified by a computational graph, whose nodes approximate the pore shapes (via, e.g., sphere,
cubes) and edges approximate the throat shapes (via, e.g., cylinders, prisms). The terms “pore” and “throat” refer to
geometric enlargements and constrictions of the void, respectively. PNM is widely used due to its low computational
cost, but its major drawback lies in its inability to estimate and control prediction errors [21]. The latter renders
PNM unreliable when applied to new microstructures. This trade-off between cost and accuracy has served as a major
deciding factor when using PNM versus DNS in different applications [22] 23]]. Moreover, PNM requires the explicit
extraction of a network from a pore-scale image, which can be computationally costly [6l 24]. The monolithic PNM
preconditioner not only removes these drawbacks, but offers a different perspective altogether: instead of having to
choose between PNM and DNS, use PNM to accelerate DNS. Thereby, error estimation and control come for free.

Aside from faster convergence in Krylov solvers, the monolithic PLMM/PNM have two other advantages over the
block AMG preconditioners: (1) They can be used as approximate solvers if applied inside a Richardson-type loop.
Each iteration is globally flux-conservative, and can be made locally (or pointwise) so by solving a special (inexpen-
sive) dual-grid problem outlined in [7] (not pursued). The first iterate, in particular, is the first-pass solution given by
the geometric PLMM/PNM; (2) At no extra cost, the monolithic PLMM/PNM can be recast as block preconditioners
that perform much more robustly and efficiently within Krylov solvers than block AMG preconditioners. Concretely,
instead of using AMG to solve the sub-systems associated with F and S, we formulate prolongation matrices derived
directly from their monolithic counterparts. We call the resulting preconditioners block PLMM and block PNM.

We systematically test the monolithic/block PLMM/PNM preconditioners proposed herein against block AMG for
different 2D/3D porous microstructures. The Schur complement matrix S in all block preconditioners is approximated
with the scaled-BFBt method [15]], but other approaches are also possible and discussed. Our main findings are: (1)
Monolithic preconditioners perform better than block preconditioners in Krylov solvers; (2) Both as a monolithic and

2

block preconditioner, PLMM is superior to PNM; (3) As approximate solvers, the first-pass solution of monolithic
PLMM is an order of magnitude more accurate than monolithic PNM, consistent with previous comparisons involving
the geometric formulations of PLMM and PNM in [[19]; (4) Block PLMM/PNM are superior preconditioners to block
AMG, as the latter diverges in over half of the domains tested; (5) The algebraic reformulations of PLMM and PNM
herein enable their non-intrusive use in existing codes; And (6) the monolithic/block PLMM/PNM preconditioners
can be built and applied on parallel machines. A rigorous parallel scalability analysis is not performed but discussed.

The algorithmic details of the monolithic PLMM and PNM, and by extension block PLMM and PNM, are almost
identical, implying the same code can be used to build both. The difference lies in the way PLMM and PNM de-
compose a given void geometry. In PLMM, primary grids coincide with physical pores and dual grids with physical
throats. The interfaces between the primary grids occur at geometric constrictions. By contrast, in PNM, primary
grids coincide with throats and dual grids with pores, and interfaces occur at geometric enlargements. The reason why
PLMM outperforms PNM both as a monolithic/block preconditioner and an approximate solver here, and geometric
model in [19], is because of this decomposition and associated local (closure) BCs used to build the basis/correction
functions. PNM assumes that the pressure field inside each pore is approximately constant, whereas PLMM makes
this assumption only along each interface. The optimality of the latter is analyzed in [19] and discussed later.

We conclude by noting that the first-pass solution from the monolithic PNM is more accurate than approximate
solutions produced by current PNM schemes in the literature [22]. This is because, unlike classical PNM, the first-pass
solution here: (1) does not simplify the geometry of the void space; and (2) allows reconstructing a pointwise velocity
field over the entire fine grid, instead of just yielding integrated flowrates through the throats. Finally, our monolithic
PLMM preconditioner extends the variants in [25} 26] for linear-elastic fracture mechanics to fluid dynamics.

The paper’s outline is as follows: Section [2] describes the governing equations and linear system to be solved.
Section 3] presents the monolithic PLMM/PNM preconditioners. We begin with PLMM and discuss its overall struc-
ture, its domain decomposition, followed by the formulations of its global preconditioner and local smoother. Since
the mathematics of the monolithic PNM are very similar, we only highlight substantive differences versus the mono-
lithic PLMM. Section 4] presents the block PLMM/PNM preconditioners including an existing block AMG used as a
benchmark. Section [5] describes the validation set considered for testing the proposed preconditioners in Section [6]
We discuss the implications of the results in Section[7]and conclude with a summary of our findings in Section §]

2. Problem statement
We consider the Stokes equation governed by:

uAu—-Vp =0 (1a)
V-u=0 (1b)

Eq[Talimposes momentum conservation, and Eq[Tb|mass conservation on a single-phase, incompressible, Newtonian
fluid. We are interested in solving Eq[T]on a complex, porous geometry, Q, like the white region shown in Fig[Th.
No-slip boundary conditions (BCs) are imposed on the fluid-solid interface, I',,, and inlet/outlet BCs are imposed on
the left/right sides of Q (i.e., flow is from left to right). The no-slip BCs involve setting # =0 and dp/dn=0on T,
where n is the unit normal on the fluid-solid interface. The inlet/outlet BCs involve imposing constant pressure and
zero normal gradient of velocity, du/0n=0, where n is again the unit normal on the inlet or outlet boundary.

Several approaches for discretizing Eq[T|on a fine grid exist. Among those that are flux-conservative up to machine
precision, the finite volume method (FVM), marker and cell (MAC) finite difference method, and mixed finite element
method (MFEM) are popular. Here, we adopt the MAC scheme [9] applied to a Cartesian fine grid, like the one shown
in Figlk. Pressure unknowns are defined at the cell centers, and velocity unknowns at the cell faces. We note the
proposed preconditioners are not limited to Cartesian grids or the MAC scheme. Any discretization of Eq[I| where the
p and u unknowns are arranged in a spatially staggered configuration [8} [10] will benefit from this work.

The MAC scheme yields the following linear, saddle-point system:

F G7|[x] _[bu Aot
o Sl - e

Image Primary grid Dual grid Distance map
, ;

%

Figure 1: (a) Schematic of a binary image with white representing void and black representing solid. (b, €) Primary grids (or subdomains) obtained
from the PLMM (b) and PNM (e) decompositions. (c, f) Corresponding dual grids that cover the interfaces between the primary grids. (d, g)
Distance maps used in marker-based watershed segmentation to obtain the primary grids in (b) and (e). (h, i) Each basis function is associated with
an interface (yellow). In PLMM, interfaces are shared between two primary grids only, but in PNM, they are shared among multiple primary grids.

where the blocks F, GT, G are the discretized forms of the Laplacian (uA), gradient (—V), and divergence (V-) op-
erators. The unknowns %, and %, cAorresp(;)nd to face velocities and cell pressures, respectively, as shown in Fig@.
The right-hand side (RHS) vectors b, and b, encode the inlet/outlet BCs mentioned above. When Q is large, so is the
discretized matrix A, and iterative or Krylov solvers become necessary. However, such solvers converge very slowly
without preconditioning. Our goal is to develop highly efficient preconditioners for solving Eq[2] In the following,
we present two such preconditioners: monolithic and block variants. We discuss these in that order.

3. Monolithic preconditioning

3.1. Overall structure

We present two monolithic preconditioners for Eq[2] One is based on an algebraic reformulation of the pore-
level multiscale method (PLMM) [19]], and the other based on the pore network model (PNM) used in the reduced-
order simulation of single-phase, creeping flow in porous media. For short, we shall refer to them as the monolithic
PLMM and monolithic PNM preconditioners. Their overall structures are identical and consists of two parts: a global
preconditioner, Mg, and a local smoother, My . The role of Mg is to find an approximate solution in a low-dimensional
coarse space, and thus attenuate low-frequency error modes. In contrast, the role of My is to seek approximations on
the fine grid and attenuate high-frequency errors. We combine Mg and My, into a monolithic preconditioner M via:

M =Mg + M (T - AMG) (3a)

4

NINd

INNd

Cell & face partition (b)

Cell & face unknowns

’ (c)

Figure 2: (a) Two primary grids, Qf and Q’Z’ , separated by a contact interface, I'1,. (b) Partitioning of the cells and faces of the fine grid among the
two primary grids and the contact interface. Light/dark blue cells/faces belong to Qll’ , light/dark green cells/faces belong to Q7 and light/dark red
cells/faces belong to I'13. (c) Cell unknowns correspond to pressure, p, and face unknowns correspond to velocity, u.

M = Z M (- AM; ! (3b)

i=1

where M is expressed as an n,-stage application of a base smoother, M;. The base smoother can either be a black-box
preconditioner, like block Gauss-Seidel, or a customized variant, like the additive-Schwarz smoothers presented later.
Applying the combined M to the linear system in Eq[2] attenuates low- and high-frequency errors simultaneously.

In the following, we first formulate Mg and My, for the monolithic PLMM. This involves discussing the specific
domain decomposition used, and various permutation, reduction, and coarsening operations performed. After these
details are established, the monolithic PNM preconditioner is presented, which follows an identical formulation as the
monolithic PLMM, except for a few key differences regarding the decomposition and permutation operations.

3.2. Preconditioner based on the pore-level multiscale method (PLMM)

3.2.1. Domain decomposition

The first step in formulating Mg and My, for the monolithic PLMM preconditioner is to partition into a set of
non-overlapping subdomains, or primary grids, denoted by Q7. For the Q in Fig, the primary grids correspond to
the randomly colored regions in Fig. We refer to the interface shared between two adjacent primary grids QF and
QOF as a contact interface and denote it by T';;. This is shown by the thick yellow line in Fig{lh. The decomposition is
used later to build numerical basis functions, each associated with a single contact interface and whose support spans
the two neighboring primary grids that share the interface (see Fig[Th and Fig[3).

The decomposition of Q into QF is performed using the marker-based watershed segmentation algorithm 27, 28],
as discussed in [19] for PLMM. The idea is to first compute a distance map like the one in Fig[Id, where each white
pixel is assigned a real number inversely proportional to that pixel’s distance from the nearest solid surface (black
pixel). Hence, pixels furthest from the solid appear dark in Fig[Td (low value), and pixels closest to the solid appear
bright (high value). In watershed segmentation, this distance map is treated as a topographical surface that is gradually
flooded with water. Initially, isolated puddles form that eventually grow into the primary grids. The growth of a puddle
is terminated as soon as it comes into contact with another puddle. The interfaces that adjacent puddles share are the
contact interfaces defined above. The “marker-based” aspect of this segmentation means that the initial “seed” of each
puddle is provided as input, which here are the local minima of the distance map in Fig[Id (see[Appendix A). No new
puddles beyond these seeds are allowed to form. For more details on marker-based watershed transform see [28]].

In addition to primary grids, we also define so-called dual grids that are comprised of thin regions covering the
interfaces between the primary grids, as shown in Fig. We denote dual grids by Qf and note their union is much
smaller in size than Q. Dual grids are used later to formulate My , and they are key to eliminating high-frequency errors
that tend to accumulate near contact interfaces after each application of Mg. To create Qf’ , we perform successive
morphological dilations (an operation in image analysis) of the pixels that comprise each contact interface. Unlike
the geometric variant of PLMM in [19], here, we allow dual grids to overlap. In [19]], overlapping dual grids were
merged, which can lead to large sample-spanning regions in high-porosity domains. Local problems defined on such

5

Pressure basis Velocity basis

PLMM

Z !
o

Figure 3: Schematic of a pressure basis and its corresponding velocity basis in the PLMM and PNM preconditioners. These bases correspond to
the primary grids shown in Figs[Th-i. The support of each basis is delineated by the thick red/gray lines. Red lines are shared interfaces with other
primary grids, where p =0 and du/0n =0 BCs are imposed. Yellow lines are where p=1 and du/dn=0 are imposed. Gray lines are the void-solid
interface where no-slip BCs are imposed. The pressure and velocity bases together form one column in the B matrix given by Eq@

regions are as costly to solve as the original system in Eq[2} This drawback is eliminated by the algebraic formulation
herein. Finally, we shall refer to primary and dual grids as coarse grids if the distinction is not important.

3.2.2. Global preconditioner

We now formulate Mg, which is equivalent to outlining a series of steps for solving Eq[2]approximately. We begin
with a permutation operation based on the decomposition described in Section [3.2.1] Consider the simple Q depicted
in Fig[2p, which is decomposed into two primary grids Q‘f and Qg , sharing the contact interface I'j;. With reference
to Fig , the fine-grid cells comprising) can be partitioned into those that belong to: (1) Qll' (light blue); (2) Q’z’
(light green); and (3) I'1, (light red). Here, I'j, is defined by the thinnest 4-connected collection of pixels in 2D (and
6-connected in 3D) that topologically separate the two primary grids. Other definitions and/or assignments of cells
may be used without loss of generality. A similar partitioning of the fine-grid faces is performed as follows: (1) faces
flanked by at least one cell from Q’l’ belong to Qfl’ (dark blue); (2) faces flanked by at least one cell from Qg belong to
Q’; (dark green); and (3) faces flanked by cells neither in Q’l’ nor Qg belong to I'j; (dark red). Given this labeling of
cells and faces, we can construct a permutation matrix W such that when it is applied to Eq[2] yields:

WTAW W% = WTh = Ax=b (4a)
—— S~
A X b

with the following block structure for A, b, and x:

A, AL A} bP xP
A=|A; AL AS =|b° x=|x (4b)
A, Al A b x

Note the matrix W is unitary and satisfies WWT =1.
The super/subscript p in each block denotes that the corresponding cell and face unknowns/residuals (i.e., columns/
rows) belong to the primary grids. The super/subscript ¢ denotes the corresponding cell only unknowns/residuals be-

6

long to the contact interfaces. And the super/subscript f denotes the corresponding face only unknowns/residuals
belong to the contact interfaces. Recall that cell unknowns correspond to pressure, and their residuals to the continu-
ity Eq[Ib] Similarly, face unknowns correspond to velocity, and their residuals to the momentum balance Eq[Ta]

The next step in formulating Mg is to introduce a number of closure or localization assumptions to simplify, and
effectively decouple, the permuted system in Eq[] We call this operation a reduction, and it imposes the following
BCs on each contact interface: p =const and du/0n =0. The physical justification for the optimality of these BCs in
PLMM was argued in [19]]. Briefly, contact interfaces coincide with geometric bottlenecks of 2 where streamlines
exhibit a converging-diverging pattern. The closure BCs follow from a local analysis of Eq[I]at such bottlenecks [19].
The reduction operation proceeds in three stages. The first is to approximate A as follows:

AP A O
A= A; A; of
A, Al Af

Aﬁ = A + diag (csum(A?))

B 5
A; = A¢ + diag (csum(A%)))

where the operation csum(-) sums all the columns of its input matrix and yields a single column vector. The operation
diag(-) takes an input vector and creates a diagonal matrix whose diagonal entries coincide with those of the vector.
Later, we also use diag(-) in a different way: If the input is a matrix (instead of a vector here), then the output of diag(-)
is the diagonal of the matrix expressed as a column vector. Eql5|imposes du/dn =0 at contact interfaces, and thereby
decouples the x/ unknowns in Eq@ In other words, given Eq we can now focus on solving A%=b, where:

- [A? AP = lor R P
sly &Ll

after which x/ can be computed rapidly as follows (notice A; is a very small matrix):
1
x = (A-;.) (6" - Apx? — Alx°) (7

Let us denote the total number of primary grids by N”, and the number of contact interfaces by N¢. By construc-
tion, N¢ equals the number of dual grids N¢. The expanded form of the reduced system in Eq@ has the block structure:

APV L. AP At L. AY P Pi aLL. ‘1
A P1 A Pn Acl Ac,,, ACl AC m API APn
AP . . A€
Ap=| 1 o Ac=| 0 0 A=l Ap =1 : (8a)
X P X Pn A Cm Cm P .. APn e ... ACm
Apl e Ap,, Aq) Cm ACl ACm API APn
bﬂ] bL'l xm xc'l
bP = . b¢ = . xP = . X = . (Sb)
Pn Cm -Pn Cm
X X

where n = N” and m = N¢. Each block corresponds to unknowns associated with either a primary grid, a contact
interface, or a coupling between the two. The second stage of the reduction involves approximating A} as follows:

N4
A, (0]
AP =~ AP = . Al = Al + diag [Z csum(Ai’/_)] 9
O AZ” Vj#i
which decouples the unknowns of each primary grid from those of all other primary grids. Similar to Eq[5] off-diagonal

blocks of each block-row are column-summed and added to the diagonal entries. This completes the enforcement of
the Ou/0n=0 BC at all contact interfaces. Given Eq@ we can now solve the even simpler system A%=b, where:

_ [A? AP
=% e
A= [A; A] (10)

c

The third and final stage of the reduction aims to enforce p =const at all contact interfaces. This is done as follows:

Ai=b, #=Qxy = QAQxy=Q"0 = Awxy=by (11a)
N—— N——
AM bM
where

. o 1 ¢} 1
Q= | NP Q° = - 19 = | (11b)

o T)

0 16 M 1 N

In Eq[TTB] Np NC and NC’ denote the number of fine-scale unknowns belonging to all primary grids, all contact
interfaces, and the contact 1nterface ¢;, respectively. Recall N” includes both velocity and pressure unknowns, whereas
N‘f and N include only pressure unknowns. The reduction matrix, Q, is block-diagonal and consists of 0 and 1 entries.
Left-multiplying a matrix/vector by QT performs a row-sum of all fine-scale entries associated with each interface ;.
Because the rows belonging to ¢; in A correspond to the discretized continuity Eq. performing a row-sum is
equivalent to imposing an overall (or integrated) mass balance over the whole interface. This is a weak, as opposed to
a strong or pointwise, imposition of continuity. Conversely, right-multiplying A by Q performs a column-sum of all
fine-scale entries associated with ¢;. Because the columns belonging to c; in A correspond to the pressure unknowns,
the column-sum is equivalent to imposing the closure BC p =const over c;.

With the above three-stage reduction of Ax = b in Eq[4al complete, we can focus on solving the reduced system
Amxy=by in Eq instead. The latter has the following block structure:

(AL A b [
seli & el o] a

X

where x° contains the coarse-scale pressure unknowns associated with the contact interfaces (one per interface). Its
length is N“x 1. Our next step is to decouple x° from the fine-scale pressure/velocity unknowns in x” that belong
to the primary grids. We proceed by introducing a prolongation matrix, P, and a restriction matrix, R, whereby the
following coarse-scale problem can be formulated and solved for x°, and for the auxiliary coarse-scale unknown y’:

Ay = by, X = P[XU] = RAwP [x] = Rby (13)
y ——— y ——

be

The length of y° is NP x 1, one entry per primary grid. Before presenting P and R, we need the definition below:

Definition 1. Let Eg" and RZ’ denote the extension and contraction matrices of the primary grid p;, and e{ and
r’ the extension and contraction vectors of the contact interface c;, respectively. They are defined as follows:

EP: _ [Azll , AZ;’ .. Ag;]Np N”l Rﬁi = (Egi)'l' (14a)
T . s
e?‘ = [(51[,52[, e ’6mi]NL’><l rcc" = (ec‘)T (]4b)
where

Ly i 0= I oifi=j
Azlj — f f » . . . 611 = . X i (140)

Oynyyri fi#) 0 ifi#]

f f

Similar to N¢ defined earlier, N;” is the number of fine-scale unknowns belonging to the primary grid p;. Multiplying
a Np ‘X 1 vector by E yields a N”x 1 vector defined over all primary grids (excluding the contact interfaces) with the
same entries inside Qp but zero outside. Similarly, multiplying a scalar defined on the interface c; by e extends it to a
N°x1 vector defined over all contact interfaces. Multiplication of a vector by R}’ or r¢' maps it in the opposite direction.

The prolongation matrix, P, in Eq[T3]can now be defined as follows:

pgll p;zl e p?}i Cpl O

2 2 . 2 P2

B C Dey D D, c

P:[I o] B=| . C= . (15a)
pf]” pfzn T pfrt N;XN" O Cpn N;XNP

where pc; and ' are referred to as shape and correction vectors, respectively, defined as follows:
_[-(Ap) T REALE, cjecm (i
P = pj e tieten e = (AN) b (15b)

0] P Cj ¢ CPi

In Eq[T5B] C”' is the index set of all contact interfaces intersecting the boundary of the primary grid p;. Eq[I5b]implies

that only two entries in each column of B are non-zero. Given p; is defined over the primary grid p; and associated

with the interface c;, the two non-zero entries are the only two shape vectors sharing c;. We call each column of B a

basis vector, an example of which is shown in Fig[3] Each basis vector consists of two shape vectors, and is comprised

of a velocity field and a pressure field defined over two adjacent primary grids. By contrast, ¢”' is defined on only p;.
To formulate the coarse system in Eq[I3] we also need a restriction matrix, R. We propose two options:

FEM restriction: R=P" (16a)
) I]

FVM restriction: R = ECcTH o

(16b)

where [is an N°<N°¢ identity matrix, and II(C") is a matrix with 0 and 1 entries that reflects the sparsity pattern of C" in
Eq(i.e., its entries are 1 where C" is non-zero, and 0 elsewhere). Left-multiplying a vector by the FEM restriction
performs a Galerkin projection onto the subspace spanned by the columns of P. In contrast, left-multiplying by the
FVM restriction performs a row-sum over each primary grid, p;, while leaving the rows corresponding to each contact
interface, c¢;, unchanged. The latter is because a similar row-sum over each interface was already performed during
the reduction step that led to the system in Eq[ITa] upon which R acts in Eq[I3] Together, the two row-sums enforce
mass conservation on each interface and each primary grid in a weak (or integrated) sense. For brevity, we denote the
two restrictions matrices by Rpgyv and Rpyy hereafter. We note Rggy is popular in preconditioning solid mechanics
problems [23] 29], where A in Eq[2] is symmetric and positive definite. But in Stokes flow, A has a saddle-point
structure, for which Ry is more appropriate and exhibits superior performance as shown later in Section 6}

Given P and R from Eqs[T3}{I6] we can now formulate and solve Eq[I3] for the coarse-scale unknowns x° and
y°. To obtain the approximate solution X, which was our ultimate goal from the start, we must simply undo all of the
transformations introduced above. This is done by executing the following steps in order: (1) Compute x; =P [x?, y°]"
from Eq (2) Compute %¥=Qx,, from Eq (3) Use x=[x7, x°]" from Eq@to obtain x/ from Eq (4) Assemble
x=[x”, x°, x/17 from Eq@ and undo the permutation via x=Wx in Eq This completes the formulation of Mg.

In a Krylov solver, preconditioning means solving systems like Ay = for W approximately for a given RHS vector
. The above formulation of Mg defines a set of steps (or recipe) for computing this approximate solution rapidly and
with a parallel machine. The latter is because the most computationally expensive step is in computing the shape and
correction vectors in Eq[I5b] which is decoupled and parallelizable across all primary grids. While Mg is in principle
a matrix, its closed-form expression is difficult to write down given some of the special operators introduced above,
e.g., csum(-). We consider the “recipe” way of presenting Mg more clear and less prone to confusion. We remark the
formulation of Mg for PNM is almost identical to PLMM, save for a few modifications discussed in Section @

3.2.3. Local smoother

Here, we present a compatible smoother, My, for the global preconditioner, Mg, in the previous section. We follow
the idea in [26]] for linear-elastic deformation. Namely, we build My, from the combination of two additive-Schwarz
(or block-Jacobi) [30] smoothers: one that acts on primary grids denoted by M,,, and another that acts on dual grids
denoted by My. The former attenuates high-frequency errors on the primary grids, and the latter on the dual grids. We

9

note that most of the errors that remain after applying Mg tend to concentrate at contact interfaces, which are covered
by the dual grids (FigEF). Hence, My specifically targets these errors. To formulate M, and My, we need a definition:

Definition 2. Let Ejﬁ" and R?f denote the extension and contraction matrices of the dual grid d;, defined as follows:

E?—[‘f,ug,n-,uﬂwxw Rd' [nlul,ngu;{,u-,n‘fuf] (17a)
where .
= [mI(1), m(2), -, mI (NI (17b)

We have denoted the total number of ﬁne scale unknowns by Ny (i.e., length of % in Eq[2)), and the number of fine-
scale unknowns in the dual grid d; by N ". In Eq[T74] we have used v= N for brevity. In Eq[T7b} m; % (k) is a function
that returns 1 if the global index k corresponds to the same unknown as the local index j contamed within the dual
grid d;. Otherwise, it returns 0. The length of u is Nyx1, and it contains only one entry that is equal to 1, with the rest
equal to 0. Multiplying a N 'x1 vector defined on d; by E‘ y: extends it to a Nyx1 vector defined over the entire domain.
Multiplication by R”f{ maps in the opposite direction, restricting a globally deﬁned vector to one defined on d;. The
scalars 77;{ serve as weights that ensure the following partition of unity: , E f f = Iﬂ These weights essentially
average the contributions from multiple overlapping dual grids. Wherever no overlap occurs, the weight is 1.
We can similarly define extension and contraction matrices for the primary grid p; as follows:

pi _ |, Pi ,Pi Pi pi _ pi\"
Ef [b, e u]foNj?" R = (Ef) (18a)
where
W = [l (1), mf(2), - m(ND]T (18b)

J

and u=N?”". Notice E” and R”' are different from the extension/contraction matrices in Definition 1, which act on the
permuted and reduced system Aypxy =by in Eq. In contrast, Ep " and R;‘ act on the original system A% = bin qu
Given that primary grids do not overlap, no weights are needed in deﬁnlng the contraction matrix in Eq[T84d]

We can now formulate M;, and My, through their inverses, as follows:

o e
-1 _ Pi (pPi A BPiN-1 pPi -1 _ di mdi A RdiN-1 pdi
_ZEf RPAE)TTRY M; _ZEf RYAES) R (19)
i=1 _-\,--_/ l=l H,_——/
i, A,

i

which we combine into a single smoother in the following multiplicative fashion:
My =Mg'+ M (- AMy') (20)

Applying My !'to an Nyx1 vector 1nvolves solving N” decoupled local problems on the primary grids, whose coefficient
matrices are A . Similarly, applying M_! 5 involves solving N° decoupled problems on the dual grlds whose coefficient
matrices are Ad Both are amenable to parallelism. We note that in Eq[20 we first apply M , then M‘ This order
was found to perform better for the monolithic (but not block, as discussed later) precondmoners proposed. To arrive
at the final expression for the smoother My, we substitute M; =My, into Eq@ as the base smoother.

3.3. Preconditioner based on the pore network model (PNM)

The formulation of the monolithic PNM preconditioner is almost identical to that of the monolithic PLMM, except
for the very important distinction of what we mean by “primary grids” and “dual grids.” In other words, the domain
decomposition is very different, which has implications on some of the details outlined in Sections [3.2.2}3.2.3] for Mg
and My.. These are discussed below. The PNM preconditioner is the first repurposing of PNM to accelerate DNS.

'In [26], this criterion was stated incorrectly as R¢ Ei? =1, where the superscript {; was used instead of d; herein.

!
10

3.3.1. Domain decomposition

In PNM, the domain € is decomposed into primary grids Qf as shown in Fig. Notice the Qf correspond to the
local constrictions of Q, or throats as they are called in the PNM literature. This is very different from PLMM, where
primary grids correspond to the local enlargements of €, or pores. Moreover, contact interfaces here may be shared
by more than two primary grids, unlike PLMM. Fig[I} shows one such interface (yellow line) denoted by I'j234, which
is shared by the primary grids Q, QF, QF, and Qf. Notice I'1234 is located inside a pore, whereas in PLMM, a contact
interface is always located inside a throat. The above constitute the main differences between PNM and PLMM, and
below we detail how the Qf are obtained in PNM from decomposing Q. Note that the dual grids, Qf , here serve the
same purpose as in PLMM: cover the contact interfaces as shown in Fig[Tf. Constructing the dual grids follows the
exact same procedure as outlined in Section[3.2.1] i.e., by dilating the pixels belonging to each interface (e.g., T'1234).

To decompose € into non-overlapping le , we first compute a distance map like the one shown in Fig. However
this time, the distance map is computed with respect to the contact interfaces identified from PLMM. Concretely, two
steps are executed: (1) Perform the domain decomposition described in Section [3.2.1] for PLMM and identify the
pixels associated with the contact interfaces (yellow line in Fig[Th); (2) Assign a value to each pixel (white in Fig[Th)
that is proportional to its distance from the nearest contact-interface pixel identified in Step 1. This yields the distance
map in Fig[Tg. We then input this map into the same marker-based watershed segmentation algorithm described in

Section|3.2.1] The “seeds” (or markers) passed as inputs to this segmentation are the interface pixels from Step 1 (see
Appendix A). The result is the partitioning of Q into Qf as depicted by the randomly colored regions in Figme.

3.3.2. Global preconditioner

Given the domain decomposition of Section [3.3.1] we can now proceed to formulate Mg in exactly the same way
as we did for PLMM in Section[3.2.2] Namely, we label the cell/face unknowns to built the permutation matrix W in
Eqf] followed by the reduction steps performed in Eqs[SHTT] and lastly formulating and solving the coarse problem
in Eq@] Even the expressions for the prolongation matrix, P, and restriction matrix, R, remain the same. The only
difference to be noted here is with regards to the number of non-zero shape vectors, pf/’f, in each column of the matrix
B in Eq[T5a] Recall we referred to these columns as basis vectors. In PLMM, only two entries per column are non-
zero because each interface c; is shared by only two primary grids. This is seen from the contact interface in Figml
(yellow), whose corresponding basis vector is plotted in Fig[3|(top row). In PNM, more than two entries per column of
B can be non-zero, because each interface c; may be shared by more than two primary grids. For example, the contact
interface in Fig[T] (yellow) is shared by 4 primary grids, and corresponds to the basis vector in Fig[3] (bottom row);
consisting of a pressure and a velocity field. The expressions in Eq[T5a)for calculating B and p¢; remain unaltered.
3.3.3. Local smoother

The construction of the smoother My, for the monolithic PNM preconditioner follows the exact same steps as those
in Section [3.2.3] for PLMM. The only distinction is that the primary and dual grids correspond to the subdomains
obtained from the domain decomposition of Section[3.3.1] All equations in Section [3.2.3|remain unaltered.

4. Block preconditioning

Block preconditioners are one of the most popular for saddle-point systems like Eq[2]arising from discretizing the
Stokes Eq[T] The general structure, in block upper-triangular form Mg, and applied as a right-preconditioner is:

T -1 _p-lgTyx-1 R .
MB=[g c};(} = Mg' = FO F X(LX = AMp's =0 1)

We note that similar block lower-triangular or block diagonal preconditioners can be formulated. The preconditioned
matrix AM; will have an ideal condition number of 1 if the matrix X is equal to the Schur complement S=-GF~'G™.
However, forming S explicitly is not feasible because it requires inverting F. Hence, the crux of all block precondi-
tioners is to approximate S or S™! and substitute it for X in Eq[ZT} Multiple approximations have been proposed [12]],
among which X; = (h¢/u)1 and X, =-G Dgl GT are the simplest; where £ is the grid size, u is viscosity, d the problem
dimension, I the identity matrix, and Dg =diag(diag(F)) a diagonal matrix with the diagonal entries of F. Preliminary

11

tests found that neither performs well on the complex geometries considered in Section[5] We thus opted for the more
sophisticated “BFBt” approximation [[14] below, which performed better and whose construction is fully algebraic:

X !'= ~(GGT)'GFGT(GGT)™! (22)
To improve on Eq[22] further, we use the scaled-BFBt variant proposed by [15] in all our simulations:
X! =—(GD;'G")"'GD;'FD;'G™(GDE'GT) ™! (23)

Like Eq[22] Eq[23]involves only algebraic operations that require no knowledge of the problem parameters.

‘We can now summarize the main steps involved in applying the block preconditioner My to a system like w= Mgl Y
inside an iterative solver. Notice the solution vector w=[W,, w,]T and RHS vector ¥=[?,,,]" consist of pressure and
velocity components as specified by the subscripts p and u, respectively. These steps are:

Step 1. Solve i, = X~'9, using Eq[23]

Step 2. Compute ¥; = 9, —G"Ww,

Step 3. Solve w, = F~!97
Step 1 itself consists of three steps:

Step 1a. Solve W)’ = Y~'9, where Y=GD;'G"

Step 1b. Compute w7 = Zi!)” where Z=GD;'FD;'GT

Step 1c. Solve w, = ~Y~'%!”
The most costly steps are 1a, lc, and 3, since they require solving linear systems with respect to the coefficient ma-
trices Y and F. These correspond to the discretized weighted-pressure Laplacian and velocity Laplacian, respectively.
To ensure efficiency, it is crucial to develop preconditioners for Y and F and solve their corresponding systems ap-
proximately. The most attractive existing option, which we adopt here as a benchmark, is AMG. Following [18], we
apply a single multigrid V-cycle accompanied by one pre- and one post-smoothing operation with Gauss Seidel per
level. We found this to perform well with little to no improvement from increasing the number of cycles.

Our goal now is to formulate block PLMM and block PNM preconditioners for F and Y that surpass the AMG
benchmark discussed above in performance. Crucially, we get these for free (i.e., without any additional computations)
from the permutation, reduction, and prolongation matrices calculated in Sections [3.2.2] and [3.3.2] for the monolithic
PLMM and PNM preconditioners. Specifically, we proceed by defining the following global prolongation matrix:

D _ QP _ ISu
s[5

using W from EqMa] Q from Eq[TTB] and P from Eq[T5] The block P, can be used as a prolongation matrix for F,
and the block 13[, as a prolongation matrix for Y. The columns of P, and 13p are the velocity and pressure components,
respectively, of the same basis vectors as in the monolithic preconditioners shown in Fig[3] We use Eq[24]to formulate
the following global preconditioners for F and Y, which allow attenuating their low-frequency errors:

Mg = P (PTFR,) " B] Mgy = Py (B] Y B,) " B (25)

Smoothers that are compatible with Eq[25]|can be formulated in a similar fashion to Section [3.2.3] Namely:

Mk = Mg+ Mg (1- AM,) Mp = Mo+ M (T- AMGL) (26a)
where
NP Ne
-l = i (RP FEP)" RV -1 _ & (pd pRd V-1 Rd
M= Y EY REEEV)TIRY Mgh= > EY RYFES)TRY, (26b)
i=1 T P N - ’
Pi 4;

12

<

T R R
sty

;
e
.‘.
i

3
[] :.=

t
..

D: ° :.QOQ". .'...:i
RN G
2'5'.'..:. L £ 1) :”'0‘0. 3

T o'gq
Tt
TR
sstdcesgeanisits

Figure 4: Schematic of the 2D and 3D porous geometries used to test the proposed preconditioners. In 2D, the void space is depicted in white and
the solid phase in black. In 3D, the void space and solid phase are shown separately. We solve the Stokes EqE]over the void space in each case.

sno.qi4

GL-D4
Jejnuein

NP Ne
-1 _ Di DPi Pi \—1 pPi -1 _ d; d; di -1 pd;
MP»Y - Z Ef,p (Rf,pY Ef,p) Rf,p Mde - Z Ef,p (Rf,PY Ef,p) Rf’P (26¢)
i=1 — i=1 ————
Y Ya,

Pi i

Notice M]:"F is the smoother for F, and M[,ly is the smoother for Y. Similar to Eq[20] each is made up of two
additive-Schwarz preconditioners: one acting on the primary grids (M;F and M;’IY) and another acting on the dual
grids (Mg,}: and ME’IY). Eqs[26b}26¢| parallel Eq[T9] except the extension/contraction matrices E’;.fu, R’;.!"u, E‘;."u, and R[:)f'iu
are understood to act only on the velocity unknowns of Eq[2} Similarly, the extension/contraction matrices Ejfp ffp,
Ej’,’;p, and R? , act upon the pressure unknowns. We remark that the order of applying the primary- versus dual-grid
additive-Schwarz preconditioners in Eq[26a]is opposite to that of Eq[20] for the monolithic preconditioners (i.e., here
primary is applied first, then dual). This was found to work best for the problems in Section 5] Finally, the global and
local preconditioners in Eqs[25][26] are combined in multiplicative fashion via Eq[3a] The resulting preconditioners

are called block PLMM and block PNM depending on the method used to obtain the above matrices (e.g., W, Q, P).

5. Validation set

To test the performance of the proposed monolithic and block PLMM and PNM preconditioners, we consider
the porous geometries depicted in Figl] They consist of: (1) a polydisperse but spatially ordered disk pack (P-D1);
(2) a polydisperse and spatially disordered disk pack (P-D4); (3) a monodisperse and spatially disordered disk pack
(GL-D4); (4) a 2D representation of a Berea sandstone taken from [31] (Berea); (5) a 3D fibrous foam generated
stochastically using the porous microstructure generator (PMG) software [|32]] (Fibrous)ﬂ and (6) a 3D dense packing

2Software settings were: bubble fraction = 0.65, max. particle radius = 0.1, fiber radius = 0.02, reduction factor = 0.25, smoothing factor = 3.

13

of non-spherical grains generated using PMG (Granular)E] The P-D1, P-D4, GL-D4, and Berea domains were origi-
nally analyzed by [19] using the geometric formulation of PLMM. We have chosen them to allow comparison against
the algebraic formulation herein. Note the disk positions in P-D4 and GL-D4 are identical and only the disk sizes
differ. Also, the disk sizes in P-D1 and P-D4 are identical, and only the disk positions differ. For the 2D domains in
FigH] the void space is depicted in white and the solid phase in black. For the 3D domains, the void space and solid
phase are shown separately. We solve the Stokes Eq[T] over the void space in each case. In the 2D domains, p =1
and 0,u =0 are imposed on the left boundary and p =0 and 9,u =0 on the right boundary. All lateral boundaries are
sealed (no-slip). Similarly in the 3D domains, a unit pressure drop is imposed across two opposing boundaries while
all lateral boundaries are sealed. Table [I|summarizes the domain sizes, number of fine-scale unknowns N in Eq@,
the number of cell pressures 7., and the number of face velocities ny, for all the domains. Note Nyp=n, + ny.

Each domain is decomposed into primary grids and dual grids using the PLMM and PNM algorithms described in
Sections[3.2.T]and[3.3.1] These are depicted by the randomly colored regions in Figs[5}j6] Table[I|includes the number
of primary grids, N”, and dual grids, N¢, obtained from each decomposition. Recall N¢ equals the number of contact
interfaces N¢ by construction. In Table[I] notice the N” obtained from PLMM are roughly equal to the N° from PNM,
and the N¢ from PLMM are roughly equal to the N” from PNM. These are also consequences of the decomposition
algorithms in Sections [3.2.1] and [3.3.1] which guarantee that pores coincide with primary grids in PLMM but dual
grids (or contact interfaces) in PNM, and throats coincide with dual grids in PLMM but primary grids in PNM.

Table 1: Summary of domain size, number of fine-scale unknowns (Ny), number of cell pressures (n.), number of face velocities (ny) for the
domains in Fi g@ The number of primary (N?) and dual grids (N¢) obtained from the PLMM and PNM decompositions in Figsﬁ]-@ are included.

Domain size Ny ne ny N?,PLMM | N¢,PLMM | N?,PNM N¢, PNM
P-D1 1x2 6,682,606 | 2,211,787 | 4,470,819 202 351 370 201
P-D4 1x2 6,810,716 | 2,255,498 | 4,555,218 205 323 343 202
GL-D4 1x2 5,493,617 1,815,809 | 3,677,808 211 283 308 203
Berea 142 x 1.77 | 6,642,951 2,198,652 | 4,444,299 241 281 344 230
Fibrous Ix1x1 2,370,727 554,712 1,816,015 153 1150 891 152
Granular | 1x1x1 1,712,721 385,763 1,326,958 156 885 871 150

6. Results

Below, we probe the accuracy and performance of the monolithic and block preconditioners for PLMM and PNM.
In Section @ we use the global preconditioners, Mg, associated with the monolithic PLMM and PNM precondi-
tioners proposed in Sections [3.2.2] and [3.3.2) as approximate solvers and compare their accuracy. In Section 6.2} we
pair Mg with the smoothers, My, proposed in Sections [3.2.3]and [3.3.3]and compare their performance in accelerating
the convergence of Krylov solvers. Section [6.3] compares the monolithic PLMM/PNM preconditioners to the block
PLMM/PNM preconditioners proposed in Section4] Section [6.4] benchmarks the latter against block AMG.

6.1. Monolithic PLMM versus monolithic PNM as approximate solvers

Figs[7) and [§] show the pressure and velocity-magnitude fields, respectively, obtained from a single application of
the global preconditioner, Mg, associated with the monolithic PLMM and PNM preconditioners. These approximate
(or first-pass) solutions are compared against the exact solution of Eq[2 obtained from a direct solver, labeled here as
DNS. The pressure fields of PLMM and PNM are in excellent agreement with those of DNS. However, the velocity
magnitudes of PLMM are visibly much more accurate than those of PNM. Specifically, PNM’s velocity appears more
discontinuous at the pores, where multiple throats intersect. That said, PNM captures the global velocity field well.

Table 2] summarizes the L, errors of the pressure and velocity-magnitude fields in Figs[7}[8 for all domains. They
are calculated using the following formulae, to ensure consistency with and allow comparison against [19]ﬂ

£ Lf(E.fde P e bl @7
2N Jo V7 P supg) &s|

3Software settings were: porosity = 0.25, particle size = 0.05, particle rotation = [1,1,1], option = random isotropic, correlation weight = 1.
4The factor 1/]Q] in thad been mistakenly omitted from Eq.27 in [19]], but accounted for in the numerical results reported therein.

14

P-D4 P-D1

GL-D4

Berea

PLMM PNM

4 \ 4 \
Primary Primary

Figure 5: Decomposition of the 2D void-space geometries in Fig into primary grids and dual grids using the PLMM and PNM algorithms
described in Sections3:2.T]and[3.3.1] Each primary or dual grid is highlighted as a randomly colored region. Primary grids form a non-overlapping
partition of the void space. Dual grids cover the contact interfaces shared between the primary grids, but do not cover the entire void space.

¢ is a placeholder for either pressure, p, or velocity magnitude, |u|. The subscripts M and S refer to the approximate
solution obtained from the monolithic PLMM/PNM and the exact solution of Eq[2] respectively. Ei and Ei represent
the L, and pointwise errors of £ over Q, respectively. The values in Table 2] denote Ei Fig[9]shows the corresponding
pointwise errors for the P-D4 and Granular domains. All other domains exhibit similar spatial error distributions and
are thus omitted. Notice from Table 2]and Fig[J]that the errors from PLMM are nearly an order of magnitude smaller
than those from PNM. This is the result of the more accurate closure BCs imposed during the reduction step outlined
in Section[3.2.2] The physical justification of this was briefly stated there and detailed in [19]]. Fig[9]shows that errors
tend to concentrate near the contact interfaces, which coincide with throats in PLMM but with pores in PNM. The
latter is clearly the worse option. Hence, the Mg of the monolithic PLMM is a superior approximate solver than that
of PNM, which is consistent with the geometric analysis of [19]. Both yield approximate solutions that are globally
flux conservative (i.e., V - u =0 is honored pointwise inside primary grids and in integrated sense across interfaces),
thus usable in many practical settings due to their low absolute error: Eg < 1% for PLMM and Ei <5% for PNM.

In Figs[7}j9] and Table [2] the FVM restriction matrix, Rpym, in Eq[I6b] was used to build Mg. Figl[I0]shows the
pressure and velocity magnitudes for the P-D4 domain when the FEM restriction matrix, Rggm, in Eq[I6a) is used
instead. The approximations are very poor compared to those of Figs[7][§] The inaccuracy is mainly due to the fact
that Rpyy ensures (integrated) flux conservation across contact interfaces, whereas Rggy does not. Similar plots were
obtained for all other domains (not shown). Thus, we abandon Rpgym hereafter and use Rpyy in all later analyses.

15

PLMM PNM

r N\ r \
Primary Primary

Granular

Fibrous

Figure 6: The caption here is the same as Figexcept that it applies to the 3D void-space geometries shown in FigE

6.2. Monolithic PLMM versus monolithic PNM in accelerating Krylov solvers

We next compare the performance of the monolithic PLMM preconditioner to that of the monolithic PNM pre-
conditioner in accelerating the convergence of a GMRES solver. As discussed, these preconditioners are obtained by
pairing the Mg from Section [3.2.2] (3:3:2) with the local smoother My, from Section [3.2.3] (3.33) for PLMM (PNM).
The pairing is done via Eq[3a] We note that applying the smoother in more than one stage, via Eq[3b| with n,,> 1 and
the base smoother M; set to Mg, in Eq did not improve the convergence rate enough to compensate for the added
cost. Hence, we set ny =1 herein. The monolithic PLMM and PNM preconditioners are used to solve the discretized
Stokes system in Eq[2] for all of the domains in Figl] via a right-preconditioned GMRES solver. The GMRES restart
value is set to 20 and a direct solver is used to solve all local problems on Q7 and Q¢. Table 3] summarizes the
wall-clock times (WCTs) required to construct the preconditioners, which are broken down into the costs of building
the global preconditioner, Mg, and the local smoother, M. The smoother’s cost is due to LU factorizing the local
matrices A p; and Ad,- in Eq to speedup its repeated application. TableEIlists the number of iterations and WCTs re-
quired by GMRES to converge to a normalized residual of A% = B|I/11bl < 1078. If this criterion could not be satisfied
in under 300 iterations, the solver is said to have “diverged.” All computations are performed in series.

Table 2: L, errors (%) of the pressure and velocity-magnitude fields shown in Figs obtained from a single application of the global precon-
ditioner, Mg, associated with the monolithic PLMM and PNM preconditioners. The FVM restriction matrix in Eq@is used to build Mg for
both.

PLMM PNM

Domain Pressure Velocity Pressure Velocity
P-D1 0.085 0.11 3.80 2.73
P-D4 0.31 0.58 5.01 3.58
GL-D4 0.14 0.39 1.79 1.76
Berea 0.24 0.56 0.55 4.12
Granular 0.72 1.70 4.35 5.66
Fibrous 0.89 1.48 3.31 5.31

16

PLMM + FVM PNM + FVM

P-D1

P-D4

GL-D4

Berea

Granular

Fibrous

Figure 7: Comparison of pressure fields obtained from a single application of the global preconditioner, Mg, associated with the monolithic PLMM
and PNM preconditioners against DNS. The FVM restriction in Eq[T6B]is used to build Mg. The corresponding velocity fields are shown in Fig[8]
The pressure fields in each row have been normalized by the maximum DNS value so that they fall between 0 and 1.

Three observations can be made: (1) The build-times of PLMM and PNM are comparable. The only exception
is the Fibrous domain, where PLMM is more costly with its build-time dominated by the cost of M. This is due
to the presence of a few large pores (primary grids in PLMM; see Figl6)) combined with the use of a direct solver to
build shape functions (Eq[I5b). Refining the decomposition [33]] and/or using an iterative solver to build the shape
functions, would remove the discrepancy; (2) The GMRES run-times of PLMM are 1.5-2.3 times smaller than PNM
in all cases, except Fibrous for reasons similar to those just stated; (3) PLMM requires 1.3-2.2 times fewer iterations
to converge than PNM in all domains. This is made clearer by Fig[TT] where the normalized residual is plotted against
the number of GMRES iterations. In all domains, the monolithic PLMM preconditioner converges faster than the
monolithic PNM. These observations are not surprising in light of the more accurate approximate (first-pass) solutions

17

DNS PLMM + FVM PNM + FVM

-
L
3
c
m©
=
O

Figure 8: This plot contains the velocity-magnitude fields associated with the pressure fields in Fig The caption is otherwise the same. The
velocity magnitudes in each row have been normalized by the maximum DNS value so that they fall between 0 and 1.

obtained in Section[6.1by the Mg of PLMM versus the Mg of PNM. Hence, the monolithic PLMM preconditioner is
the preferred choice in iterative solvers for the Stokes Eq[I]on large and geometrically complex, porous domains.

6.3. Monolithic versus block preconditioners in accelerating Krylov solvers

Table [3|also includes the WCTs associated with constructing the block PLMM and block PNM preconditioners of
Sectionf]for all the domains in Fig[d] The WCTs are broken down into the costs of building the global preconditioners
Mgrand Mgy in Eq@](denoted by Mg) and the local smoothers My g and My y in Eq@(denoted by My). Similar to
the previous section, the My, costs are largely due to LU factorizing the local matrices in Eq26((i.e., F),, Fy, Y, Yg).
Table E] lists the number of GMRES iterations until convergence (i.e., ||Afc - 13|| / ||l3||< 107°) and the corresponding

18

Pressure error Velocity error

- 5
0

30

PLMM + FVM

P-D4

#%*

Figure 9: Pointwise errors (%) of pressure (E,’;) and velocity magnitude (E7) from a single application of the global preconditioner, Mg, associated
with the monolithic PLMM and PNM preconditioners with the FVM restriction (Eq@. Results shown only for the P-D4 and Granular domains.

PNM + FVM

10

PLMM + FVM

Granular

130

r
PNM + FVM

0

run-times accelerated by the block PLMM and block PNM . Fig[TT] shows the convergence patterns of the block
PLMM/PNM in terms of the normalized residual versus GMRES iterations. Tables [3}{4] and Fig[TT]also include the
results for the block AMG preconditioner, which we described in Section[d]and adopted as our benchmark.

The block AMG involves solving linear sub-systems associated with the matrices Y and F (i.e., in steps la, lc,
and 3 of Section) approximately. To do this, a single multigrid V-cycle is accompanied by one pre- and one post-
smoothing operation per level using Gauss Seidel. To apply and build the data structures for the V-cycle, we adapted
the amg .m code from the iFEM GitHub repository [34]], wherein a modified Ruge-Stuben [13]] coarsening and a two-
point interpolation was used; other settings led to similar or inferior results. Given the algorithmic differences and
multilevel structure of the block AMG, we only report its total build-time in Table[3]

Focusing here on a comparison between the monolithic PLMM/PNM and block PLMM/PNM, we make the fol-
lowing observations: (1) The total build-times (Mg + My) associated with the block and monolithic preconditioners
are comparable. The costs of Mg are nearly identical because the prolongation matrices of the block PLMM/PNM
are extracted directly from their monolithic counterparts via Eq[24] In other words, to build the block PLMM/PNM,
we must construct the monolithic PLMM/PNM first. The costs associated with M; are lower for the block than the
monolithic preconditioners by a factor of 2—3, because LU factorization scales nonlinearly with matrix size. In block
PLMM/PNM, local matrices are smaller because velocity and pressure unknowns are decoupled; (2) In all domains,

19

Pressure Velocity

DNS

PLMM + FEM

PNM + FEM

Figure 10: Comparison of the pressure and velocity-magnitude fields obtained from a single application of the global preconditioner, Mg, associated
with the monolithic PLMM and PNM preconditioners against DNS. Here, the FEM restriction in Eq[T6alis used to build Mg, which results in poor
approximations compared to the same preconditioners built via the FVM restriction in Eq[T6b] (see Figsm-@. Plots correspond to the P-D4 domain.
The pressure and velocity-magnitude fields have been normalized by the maximum DNS values so that they fall between 0 and 1.

Table 3: Wall-clock times (WCTs; “min”) associated with constructing the monolithic (PLMM, PNM) and block (PLMM, PNM, AMG) precon-
ditioners in each domain. The WCTs of monolithic/block PLMM/PNM are broken down into the costs of building the global preconditioner, Mg,
and the local smoother, My. Building the smoother consists of performing LU factorization of the local systems (Ap; and Ad,. in Eq and F,,
Fa., Yp,, Yg; in Eq@. Because of its multilevel structure, only the total cost is reported for building the block AMG preconditioner.

Monolithic Block
Domain PLMM PNM PLMM PNM AMG
P-DI Mg: 2.28 Mg: 2.06 Mg: 1.93 Mg: 2.01 tot: 0.27
MLI 2.05 MLZ 1.71 MLZ 0.60 MLZ 0.65
P-DA4 Mg: 2.44 Mg: 2.29 Mg: 2.24 Mg: 2.09 tot: 0.25
M;: 2.07 M;: 1.99 M; : 0.65 M; : 0.66
GL-DA Mg: 1.74 Mg: 1.72 Mg: 1.71 Mg: 1.50 tot: 0.19
MLI 1.29 ML: 1.41 MLZ 0.50 MLZ 0.52
Berea Mg: 2.26 Mg: 1.98 Mg: 2.32 Mg: 2.14 tot: 0.29
MLI 1.83 ML: 1.75 MLZ 0.68 MLZ 0.70
Mg: 1.01 Mg: 0.38 Mg: 1.07 Mg: 0.42 tot: 0.03
Granular |\ 017 | Mz 0.9 | M:009 | M:o0.11
Fibrous Mg: 6.31 Mg: 0.79 Mg: 6.07 Mg: 0.74 tot: 0.05
M;: 0.82 M;: 0.82 M;: 0.27 M;: 0.26

the monolithic preconditioners converge in far fewer GMRES iterations, by a factor of 3.5-5.5, than the block pre-
conditioners; (3) The corresponding run-times of monolithic PLMM/PNM are also smaller than block PLMM/PNM.
Concretely, monolithic PLMM is faster than block PLMM by a factor of 2-3.3 in WCTs, with the exception of the
Fibrous domain where the block PLMM preconditioner outperforms by a factor of 2. Similarly, the monolithic PNM
is faster than the block PNM by a factor of 1.2-5.6 in WCTs for all the domains. Hence, the monolithic PLMM/PNM
preconditioners are clearly the preferred choice over the block PLMM/PNM preconditioners.

6.4. Block PLMM and block PNM versus block algebraic multigrid

Focusing next on an intercomparison between the block PLMM, block PNM, and block AMG preconditioners,
the following observations stand out from Tables [3}f4] and Fig[TT} (1) In nearly all cases, block PLMM converges in
the fewest number of GMRES iterations, followed by block PNM, then block AMG; (2) This order is preserved in the

20

Table 4: The number of iterations (“iter”) and wall-clock times (“min”) required by the right-preconditioned GMRES to converge (i.e., satisfy
A% - b||/115]| < 10~8) in each domain. Results for the monolithic (PLMM, PNM) and block (PLMM, PNM, AMG) preconditioners are listed. “NA”
means the solver did not converge within 300 iterations. All simulations are run on a serial machine. Rgyy in Eq@]is used in PLMM and PNM.

Monolithic Block
Domain PLMM PNM PLMM PNM AMG
P-DI 19 iter 35 iter 93 iter 117 iter 206 iter
2.4 min 3.8 min 8.0 min 11.3 min 32.1 min
P-D4 31 iter 43 iter 111 iter 180 iter NA
) 3.8 min 5.0 min 10.9 min 21.6 min NA
22 iter 33 iter 92 iter 118 iter NA
GL-D4 1.8 min 2.7 min 6.0 min 8.5 min NA
Berea 25 iter 44 iter 138 iter 206 iter 181 iter
3.1 min 5.4 min 14.4 min 30.5 min 27.8 min
Granul 12 iter 27 iter 35 iter 113 iter NA
anwiart 0.6 min 1.4 min 1.2 min 6.2 min NA
Fibr 11 iter 13 iter 36 iter 55 iter NA
ous 2.5 min 1.5 min 1.3 min 1.8 min NA
P-D1 P-D4 GL-D4
1004- 100. 1004-
—e— Mono, PLMM AAAAAAAANADAADAAAADLAAAA A AAAMNANANNNMNANAAAAAAAAAA
—@— Mono, PNM
—=— Block, PLMM
T —a— Block, PNM
g 10° —A— Block, AMG 10°
P
o
10-10 10-10
0 " 100 200 300 0 50 100 150 200 250 0 50 100 150
Berea Granular Fibrous
10%% 10%% 10°
Q@
% 10° 10°° 10°°
¢
<
10710 10710 10710
0 100 200 300 0 50 100 150 0 20 40 60 80
iteration iteration iteration

Figure 11: Normalized residual versus the number of GMRES iterations for the monolithic PLMM, monolithic PNM, block PLMM, block PNM,
and block AMG preconditioners applied to all the domains in Fig[f] Monolithic PLMM/PNM use the FVM restriction matrix (Eq[T6b).

corresponding GMRES run-times, with the block PLMM preconditioner being 1.4-5 times faster than block PNM;
Moreover, (3) in four out of six of the domains (i.e., P-D4, GL-D4, Granular, and Fibrous), block AMG diverges,
whereas block PLMM and block PNM converge in all cases (and so do the monolithic PLMM/PNM preconditioners).
We think this is because the void space of these four domains is more poorly connected (with many choke points) than
P-D1 and Berea; Finally, (4) while block AMG is an order of magnitude cheaper to build than block PLMM/PNM, its
GMRES run-time is much larger. This is especially the case for the four divergent simulations that were terminated
after 300 iterations, or roughly 30 mins (see Fig[TT). Hence, the combined cost of building and applying the block
AMG preconditioner is much higher than that of the block PLMM or block PNM. The main implication of these ob-

21

servations is that repurposing the monolithic PLMM/PNM to build the block PLMM/PNM preconditioners in Section
[] at no additional cost, results in more robust and efficient performance than simply using off-the-shelf block AMG
preconditioners to approximately solve the sub-systems involving matrices Y and F in Section[4]

7. Discussion

7.1. PLMM versus PNM as a model and a preconditioner

In [19], a geometric formulation of PLMM for the Stokes Eq [T was presented and compared to a geometric formu-
lation of PNM [35]]. The term “geometric” here means that both PLMM and PNM were formulated as computational
models, wherein a domain is explicitly decomposed, the governing equations are discretized, and geometric and ma-
terial parameters of the domain/grid are used explicitly as input. This work presents a first translation of these two
models into fully algebraic, monolithic preconditioners, in which no knowledge of the problem parameters is required.
Their starting point is the linear system in Eq[2] which can be assembled via any existing code. This renders the pre-
conditioner formulations of PLMM/PNM portable and amenable to non-intrusive implementation. When used as
approximate solvers (i.e., without smoothers as described in Section [6.1), monolithic PLMM/PNM are equivalent to
the PLMM/PNM modelsﬂ In [19], the authors found that the PLMM model yields more accurate approximate solu-
tions than the PNM model (i.e., permeability errors were five times lower). We see the same trend here: the monolithic
PLMM solver is more accurate than the monolithic PNM solver by nearly an order of magnitude in L, and pointwise
errors (Table[2]and Fig[9). The higher accuracy of the PLMM solver has led, in turn, to the faster convergence of GM-
RES when preconditioned by the monolithic PLMM preconditioner over the monolithic PNM preconditioner. Since
the block PLMM/PNM preconditioners are derived from their monolithic counterparts, a similarly better performance
of GMRES was observed for the block PLMM over the block PNM preconditioner. The superiority of PLMM over
PNM as a model, approximate algebraic solver, and monolithic/block preconditioners is no coincidence. The reason
lies in PLMM’s decomposition of the void space at geometric constrictions (not enlargements as in PNM), or throats
(not pores), and imposing the closure BCs p = const and d,u = 0. The optimality of this decomposition paird with
these BCs was detailed in [19]. Put differently, PLMM is simply better at decoupling Eq[I] spatially than PNM.

7.2. Algebraic versus geometric PLMM

Aside from increased portability and non-intrusive implementation in existing codes, the algebraic form of PLMM
as a monolithic preconditioner has one more advantage over its geometric counterpart in [19]. In high-porosity
domains (e.g., Fibrous in Fig[), the geometric PLMM model would result in sample-spanning dual grids due to the
requirement that overlapping dual grids be merged [19]]. Such large dual grids result in local problems that are very
expensive to solve, defeating the purpose of accelerating calculations via PLMM in the first place. The algebraic
formulation of PLMM removes this drawback because the dual grids are allowed to overlap, and their sub-problems
are commensurately smaller. Recall that dual grids here are used to apply the additive-Schwarz smoother Mg, in
Eq[20} In theory, it is possible to adapt the geometric PLMM of [19] so that overlapping dual grids are not merged,
and used much like subdomains in a geometric additive Schwarz method [30]. But for the (image-based) Cartesian
grids herein, we encountered significant challenges in [[19] to implement the various mappings involved.

7.3. PNM as an accelerator of DNS

In modeling fluid flow through porous media, the pore space is often captured by an X-ray uCT image that is rather
large. It is, thus, customary to make a choice about whether to use direct numerical simulation (DNS) or pore network
modeling (PNM) to solve the Stokes Eq[T} In DNS, the governing equations are discretized with a preferred method
(e.g., FVM, FEM) to yield a linear system like Eq[2] which is then solved exactly with an iterative or direct solver.
In existing PNM, the geometry of the void space is simplified by a computational graph, whose nodes approximate
the pore shapes (e.g., sphere, cubes) and edges approximate the throat shapes (e.g., cylinders, prisms). The arguments
used to justify either choice are often presented as a dichotomy [22] 23] [36]]: PNM is fast but less accurate and DNS is
slow but more accurate. The real drawback of PNM is that it lacks the ability to estimate and control approximation

SThe first-pass solution of monolithic PLMM is equivalent to the M approximation (no corrective iterations) of the geometric PLMM in [19].

22

errors, unlike DNS, rendering its predictions unreliable [21]]. In this paper, we provided a different perspective that
removes this dichotomy, and associated drawbacks of PNM, altogether: use PNM as a preconditioner to accelerate
DNS. The monolithic PNM preconditioner herein can be used to yield approximate solutions (see Section [6.1), like
existing PNM models, or called from within DNS to accelerate its convergence. The latter bestows PNM with error
control and estimation capabilities that have thus far been lacking. The dichotomy is removed because a DNS method
equipped with this preconditioner can sfop at any point before convergence to yield an approximate solution (with
error bars) that is guaranteed to be globally flux-conservative. Concretely, this can be done by applying M in Eq[34]
within a Richardson loop [29} [37]. The solution can even be made locally (or pointwise) conservative by solving
a special (and inexpensive) dual-grid problem described in [7]. These statements apply equally to the monolithic
PLMM. We note the monolithic PNM’s first-pass solution is different from and more accurate than existing PNM.
Unlike classical PNM [20], the void geometry here is not approximated by simplified shapes, and a pointwise velocity
field can be reconstructed over the entire fine grid. Existing PNM only yields integrated flowrates through throats.
Moreover, unlike classical PNM, the need to extract an explicit network, a potentially costly task [24], is obviated
here. While watershed segmentation, an O(N) operation [33]], is still a key step in monolithic PNM, all downstream
operations (e.g., graph pruning, node merger, shape approximation) are made redundant (see Appendix A of [33l]).

7.4. Monolithic versus block preconditioning

In Section [6] we saw that the monolithic PLMM/PNM preconditioners significantly outperform all block precon-
ditioners in nearly all domains (except Fibrous, where block PLMM was faster than monolithic PLMM), both in terms
of number of GMRES iterations and wall-clock times (WCTs). Moreover, monolithic PLMM was 1.5-2.3 times faster
in WCTs than monolithic PNM, making it the most successful preconditioner in solving the Stokes Eq[I] We also saw
that the block PLMM/PNM preconditioners, derived from their monolithic counterparts, handily outperformed exist-
ing block AMG. The latter even diverged in four out of six domains. We note the build-times of the preconditioners
were not a factor in our takeaways because the costs of constructing all monolithic/block PLMM/PNM precondition-
ers are comparable, and the total cost of block AMG is dominated by its run-(not build-)-time. The block AMG here
was based on the scaled-BFBt approximation of the Schur complement matrix, S=—GF~'GT, via Eq23|[15]. As
discussed in Section] other approximations of S were also tested but all performed worse than Eq[23] Even though
the BFBt approximation is considered more suitable for the Oseen equation in the literature, where the inertial term is
included in Eq[T] and that cheaper alternatives (e.g., the diagonal mass matrix X; in Section[d) are said to be preferred
for the Stokes Eq[I] we think the geometric complexity of the domains here offer the BFBt approximation a clear
advantage. Even so, any approximation of S, by definition, neglects some coupling terms between p and u in Eq[2]
which are largely preserved by the monolithic PLMM/PNM. This is likely why the latter performs more efficiently.

7.5. Parallel scalability

While all simulations in Section [§] were conducted on a serial machine, the building and application of the mono-
lithic PLMM/PNM and block PLMM/PNM preconditioners within iterative solvers is fully parallelizable. Hence, the
WCTs reported in Tables [B}4] would be even less if the simulations were run on a parallel machine. In building any
of the proposed preconditioners, the most computationally expensive step is constructing the prolongation matrix, P,
in Eq[T5] However, this involves computing a set of shape vectors, pfj’f, and correction vectors, c”, that are spatially
decoupled over the primary grids. Hence, if #C? denotes the average number of contact interfaces per primary grid,
and N7 is the total number of primary grids, then a maximum of #C?”N” parallel processors can be employed to re-
duce the cost of building P to that of solving a single linear sub-system on one primary grid. Notice, the prolongation
matrix P (Eq[T3), the restriction matrix R (Eq[T6), the reduction matrix Q (Eq[TTD), and the permutation matrix W
(EqHa) need to be computed only once. They are reused across all iterations of a Krylov solver. In applying any of
the proposed preconditioners, the most computationally costly step is applying the additive-Schwarz smoothers corre-
sponding to My, in Eq[20|for the monolithic PLMM/PNM, and My ¢ and My y in Eq[26a for the block PLMM/PNM
preconditioners. However, notice again that applying these smoothers entails solving a set of spatially decoupled
linear sub-systems on the primary and dual grids, which is an embarrassingly parallel task. While a rigorous parallel
scalability study falls outside the scope of this work, future work should quantify and demonstrate its magnitude.

23

7.6. Future extensions

The proposed monolithic/block PLMM/PNM preconditioners are designed for Stokes flow, resulting in a sym-
metric saddle-point system with F=FT in Eq For the Navier-Stokes or Oseen equations where inertial forces are
present, F#FT and the system is non-symmetric. We expect our preconditioners to still perform well under these cir-
cumstances, as long as the non-symmetric F is used to build the prolongation matrix P in Eq[T3] For low to moderate
Reynolds numbers, even preconditioners built for Stokes flow (F=FT) may be adequate in accelerating solver conver-
gence, but performance is expected to degrade as Reynolds number grows. Another extension pertains to flow through
domains with unresolved porosity. Such problems are described by the Darcy-Brinkman-Stokes (DBS) equation [38]],
where an extra Darcy term (linear in velocity) is added to Eq[Ta] This term modifies the diagonal entries of F, thus
preserving symmetry. Again, our preconditioners are expected to apply to such problems, but the watershed-based
decompositions described in Sections[3.2.Tand[3:3.T|may need modification to prevent performance degradation [39].
In flow problems where the pore-space geometry evolves with time, for example due to dissolution or precipitation
of solids, the preconditioners may need to be periodically updated or rebuilt entirely. Since the latter can be costly,
adaptive strategies similar to [26] are likely required to update only select columns of P during each time step. Finally,
immiscible two-phase flow, or solute transport that significantly alters the fluid’s rheology, would likely benefit from
a similar treatment. These problems consist of a flow (mass plus momentum balance) and a transport (phase/solute-
indicator balance) equation that are often solved sequentially. The flow equation, which is generally more expensive,
could benefit from our preconditioners with periodic/adaptive update of P’s columns. Update criteria may be devised
based on the geometric PLMM for two-phase flow in [7]]. Future research should test the above hypotheses.

8. Conclusions

In this work, we have developed monolithic and block preconditioners to robustly and efficiently solve saddle-
point systems that arise from discretizing the Stokes Eq[] via iterative solvers. They include the monolithic PLMM,
monolithic PNM, block PLMM, and block PNM preconditioners. We compared their performances against each other
and benchmarked them against a standard block AMG preconditioner on multiple 2D/3D, geometrically complex,
porous domains. The following summarizes our key contributions and findings:

e The monolithic PLMM preconditioner is a fully algebraic reformulation of the geometric PLMM model in [19].
The preconditioner form renders PLMM portable and allows its non-intrusive implementation in existing codes.
It also removes certain drawbacks of the geometric variant regarding sample-spanning dual grids (Section[7.2).

e The monolithic PNM preconditioner is a first, fully algebraic reformulation of the widely used PNM model in
the literature [20]]. This enables using PNM as a means to accelerate DNS, instead of the commonly held view
that one must trade off accuracy for speed when using PNM over DNS to solve Eq[I} The preconditioner form
also allows estimating and controlling the errors of PNM, which has thus far proven to be elusive.

e The monolithic PLMM/PNM preconditioners can also be used as approximate solvers. This involves apply-
ing the global preconditioner Mg associated with the monolithic PLMM/PNM to the RHS vector of Eq[2} i.e.,
Rapre= Malﬁ. This is equivalent to the approximate solutions produced by existing geometric PNM and PLMM
models (without corrective iterations). Moreover, the accuracy of %, can be progressively improved by com-
bining Mg with the smoother M =My, in Eq@ and applying the combined M in Eq@within a Richardson-type
iteration. Each iteration would be globally flux-conservative, thus usable as an intermediate solution.

e The first-pass solution £, =M61f7 of the monolithic PNM is more accurate than classical PNM models in the
literature. This is because, here, the pore-space geometry is not simplified and a pointwise velocity field can be
constructed on the fine grid. There is also no need to extract an explicit network, which may be costly [24]].

e The monolithic PLMM/PNM can be repurposed to build the block PLMM/PNM preconditioners at no added
cost. The latter is more robust/efficient than existing block AMG, which can diverge in complex domains.

e Interms of WCTs, the performance of all preconditioners herein are ranked from best to worst as follows: mono-
lithic PLMM, monolithic PNM, block PLMM, block PNM, and block AMG. The monolithic/block PLMM/PNM
preconditioners are amenable to parallel computing in building and applying them within iterative solvers. The
monolithic preconditioners must utilize the FVM (not FEM) restriction matrix in Ec@ to be fast/accurate.

24

Markers

Watershed

Figure A.1: Markers (or “seeds”) used to perform the watershed transform in the PLMM and PNM domain decompositions.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. CMMI-2145222.
We acknowledge the Institute for Computational and Data Sciences (ICDS) at Penn State University for access to
computational resources.

Appendix A. Markers used in the watershed decompositions of PLMM and PNM

To perform the marker-based watershed transforms described in Sections and @ “seeds” (or markers)
must be provided as input. Fig[A.T|shows these markers for the domain decompositions used in the PLMM and PNM
preconditioners for the pore space shown in Fig[Th. The PLMM markers correspond to the local minima of the distance
map in Fig[T{d, and the PNM markers to the minima of the distance map in Fig[Tlg. Notice from Fig[A.T|that the PNM
markers also correspond to the contact interfaces shared between the primary grids of the PLMM decompositionE]

References

[1] Stefan Bachu. Co2 storage in geological media: Role, means, status and barriers to deployment. Progress in energy and combustion science,
34(2):254-273, 2008.

[2] Angela Goodman Hanson, Barbara Kutchko, Greg Lackey, Djuna Gulliver, Brian R Strazisar, Kara A Tinker, Foad Haeri, Ruishu Wright,
Nicolas Huerta, Seunghwan Baek, et al. Subsurface hydrogen and natural gas storage: State of knowledge and research recommendations
report. 2022.

[3] Enrico Barbier. Geothermal energy technology and current status: an overview. Renewable and sustainable energy reviews, 6(1-2):3-65,
2002.

[4] Martin Andersson, SB Beale, M Espinoza, Z Wu, and W Lehnert. A review of cell-scale multiphase flow modeling, including water manage-
ment, in polymer electrolyte fuel cells. Applied Energy, 180:757-778, 2016.

5The PNM markers in Fig are slightly more numerous than the PLMM interfaces because a finer PLMM decomposition was used as input
for the latter. The refinement is controlled by the size of a “structuring element” used to identify local minimal in the PLMM distance map [33].

25

[5]

[6]
[7]

[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
(17]
[18]
[19]

[20]
[21]

[22]
[23]
[24]
[25]
(26]
(27]
(28]
[29]
[30]
[31]

(32]
[33]

[34]
[35]

[36]

[37]

[38]

Jason K Lee, ChungHyuk Lee, Kieran F Fahy, Pascal J Kim, Kevin Krause, Jacob M LaManna, Elias Baltic, David L Jacobson, Daniel S
Hussey, and Aimy Bazylak. Accelerating bubble detachment in porous transport layers with patterned through-pores. ACS Applied Energy
Materials, 3(10):9676-9684, 2020.

Dorthe Wildenschild and Adrian P Sheppard. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in
subsurface porous medium systems. Advances in Water Resources, 51:217-246, 2013.

Yashar Mehmani and Hamdi A Tchelepi. Multiscale formulation of two-phase flow at the pore scale. Journal of Computational Physics, 389:
164-188, 2019.

Blair Perot. Conservation properties of unstructured staggered mesh schemes. Journal of Computational Physics, 159(1):58-89, 2000.
Francis H Harlow and J Eddie Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The
physics of fluids, 8(12):2182-2189, 1965.

Pavel B Bochev, Clark R Dohrmann, and Max D Gunzburger. Stabilization of low-order mixed finite elements for the stokes equations. SIAM
Journal on Numerical Analysis, 44(1):82-101, 2006.

Daniel Loghin and AJ Wathen. Schur complement preconditioners for the navier—stokes equations. International journal for numerical
methods in fluids, 40(3-4):403-412, 2002.

Michele Benzi, Gene H Golub, and Jorg Liesen. Numerical solution of saddle point problems. Acta numerica, 14:1-137, 2005.

John W Ruge and Klaus Stiiben. Algebraic multigrid. In Multigrid methods, pages 73-130. SIAM, 1987.

Howard C Elman. Preconditioning for the steady-state navier-stokes equations with low viscosity. SIAM Journal on Scientific Computing,
20(4):1299-1316, 1999.

Howard Elman, Victoria E Howle, John Shadid, Robert Shuttleworth, and Ray Tuminaro. Block preconditioners based on approximate
commutators. SIAM Journal on Scientific Computing, 27(5):1651-1668, 2006.

David Kay, Daniel Loghin, and Andrew Wathen. A preconditioner for the steady-state navier-stokes equations. SIAM Journal on Scientific
Computing, 24(1):237-256, 2002.

Howard Elman and David Silvester. Fast nonsymmetric iterations and preconditioning for navier—stokes equations. SIAM Journal on
Scientific Computing, 17(1):33-46, 1996.

David Silvester, Howard Elman, David Kay, and Andrew Wathen. Efficient preconditioning of the linearized navier—stokes equations for
incompressible flow. Journal of Computational and Applied Mathematics, 128(1-2):261-279, 2001.

Yashar Mehmani and Hamdi A Tchelepi. Multiscale computation of pore-scale fluid dynamics: Single-phase flow. Journal of Computational
Physics, 375:1469-1487, 2018.

Irving Fatt. The network model of porous media. Trans. AIME, 207:144-159, 1956.

Yashar Mehmani, Timothy Anderson, Yuhang Wang, Saman A Aryana, Ilenia Battiato, Hamdi A Tchelepi, and Anthony R Kovscek. Striving
to translate shale physics across ten orders of magnitude: What have we learned? Earth-Science Reviews, 223:103848, 2021.

Yashar Mehmani and Matthew T Balhoff. Mesoscale and hybrid models of fluid flow and solute transport. Reviews in Mineralogy and
Geochemistry, 80(1):433-459, 2015.

Paul Meakin and Alexandre M Tartakovsky. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured
and porous media. Reviews of Geophysics, 47(3), 2009.

Arash Rabbani, Peyman Mostaghimi, and Ryan T Armstrong. Pore network extraction using geometrical domain decomposition. Advances
in water resources, 123:70-83, 2019.

Yashar Mehmani and Kangan Li. A multiscale preconditioner for microscale deformation of fractured porous media. Journal of Computational
Physics, 482:112061, 2023.

Kangan Li and Yashar Mehmani. A multiscale preconditioner for crack evolution in porous microstructures: Accelerating phase-field meth-
ods. International Journal for Numerical Methods in Engineering, 125(11):e7463, 2024.

Serge Beucher and Christian Lantuéjoul. Use of watersheds in contour detection. In International Workshop on Image Processing: Real-time
Edge and Motion Detection/Estimation, Rennes, France, 1979.

Jeff T Gostick. Versatile and efficient pore network extraction method using marker-based watershed segmentation. Physical Review E, 96
(2):023307, 2017.

Nicola Castelletto, Hadi Hajibeygi, and Hamdi A Tchelepi. Multiscale finite-element method for linear elastic geomechanics. Journal of
Computational Physics, 331:337-356, 2017.

Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. An introduction to domain decomposition methods: algorithms, theory, and parallel
implementation. SIAM, 2015.

Edo S Boek and Maddalena Venturoli. Lattice-boltzmann studies of fluid flow in porous media with realistic rock geometries. Computers &
Mathematics with Applications, 59(7):2305-2314, 2010.

Daniel Niblett, Mohamed Mamlouk, Omar Emmanuel Godinez Brizuela, and Senyou An. Porous microstructure generator (software), 2022.
Sabit Mahmood Khan, Kangan Li, and Yashar Mehmani. Order reduction of fracture mechanics in porous microstructures: A multiscale
computing framework. Computer Methods in Applied Mechanics and Engineering, 420:116706, 2024.

Long Chen. (FEM: an integrated finite element methods package in MATLAB. Technical report, 2009. URL https://github.com/
lyc102/ifem.

Yashar Mehmani and Hamdi A Tchelepi. Minimum requirements for predictive pore-network modeling of solute transport in micromodels.
Advances in water resources, 108:83-98, 2017.

Xiaofan Yang, Yashar Mehmani, William A Perkins, Andrea Pasquali, Martin Schonherr, Kyungjoo Kim, Mauro Perego, Michael L Parks,
Nathaniel Trask, Matthew T Balhoff, et al. Intercomparison of 3d pore-scale flow and solute transport simulation methods. Advances in water
resources, 95:176-189, 2016.

Yashar Mehmani, Nicola Castelletto, and Hamdi A Tchelepi. Multiscale formulation of frictional contact mechanics at the pore scale. Journal
of Computational Physics, 430:110092, 2021.

Hendrik C Brinkman. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbulence and
Combustion, 1(1):27-34, 1949.

26

https://github.com/lyc102/ifem
https://github.com/lyc102/ifem

Journal Pre-proof

[39] Bo Guo, Yashar Mehmani, and Hamdi A Tchelepi. Multiscale formulation of pore-scale compressible darcy-stokes flow. Journal of
Computational Physics, 397:108849, 2019.

27

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

(1 The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

	Introduction
	Problem statement
	Monolithic preconditioning
	Overall structure
	Preconditioner based on the pore-level multiscale method (PLMM)
	Domain decomposition
	Global preconditioner
	Local smoother

	Preconditioner based on the pore network model (PNM)
	Domain decomposition
	Global preconditioner
	Local smoother

	Block preconditioning
	Validation set
	Results
	Monolithic PLMM versus monolithic PNM as approximate solvers
	Monolithic PLMM versus monolithic PNM in accelerating Krylov solvers
	Monolithic versus block preconditioners in accelerating Krylov solvers
	Block PLMM and block PNM versus block algebraic multigrid

	Discussion
	PLMM versus PNM as a model and a preconditioner
	Algebraic versus geometric PLMM
	PNM as an accelerator of DNS
	Monolithic versus block preconditioning
	Parallel scalability
	Future extensions

	Conclusions
	Markers used in the watershed decompositions of PLMM and PNM

