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Abstract—Direct-attached accelerators, where application ac-
celerators are directly connected to the datacenter network via
a hardware network stack, offer substantial benefits in terms of
reduced latency, CPU overhead, and energy use. However, a key
challenge is that modern datacenter network stacks are complex,
with interleaved protocol layers, network management functions,
and virtualization support. To operators, network feature agility,
diagnostics, and manageability are often considered just as
important as raw performance. By contrast, existing hardware
network stacks only support basic protocols and are often difficult
to extend since they use fixed processing pipelines.

We propose Beehive, a new, open-source FPGA network
stack for direct-attached accelerators designed to enable flexible
and adaptive construction of complex network functionality in
hardware. Application and network protocol elements are modu-
larized as tiles over a network-on-chip substrate. Elements can be
added or scaled up/down to match workload characteristics with
minimal effort or changes to other elements. Flexible diagnostics
and control are integral, with tooling to ensure deadlock safety.
Our implementation interoperates with standard Linux TCP and
UDP clients, with a 4x improvement in end-to-end RPC tail
latency for Linux UDP clients versus a CPU-attached accelerator.
Beehive is available at https://github.com/beehive-fpga/beehive

Index Terms—hardware acceleration, networking, network
stack, FPGA

I. INTRODUCTION

Hardware accelerators are becoming increasingly common

in datacenters to reduce cost, improve performance, and reduce

energy consumption relative to server CPUs. Typically, accel-

erators are hosted over the PCIe I/O bus, with the server CPU

mediating all communication with the accelerator, illustrated

in Figure 1(c). An alternative model directly attaches the

accelerator to the network, with its own network functionality

implemented in hardware, illustrated in Figure 1(b). Bypassing

the CPU potentially reduces end-to-end latency, latency vari-

ability, and overhead, freeing up the CPU for other purposes.

A barrier to any hardware network implementation is the

difficulty of meeting the full set of datacenter network oper-

ational requirements [6], [53]. Network manageability, diag-

nostic visibility, and interoperability are often non-negotiable

requirements, made more complex by the rapid evolution in

host network stacks to meet application and operational needs.

Beyond core protocols, such as TCP/IP, modern applications

require higher-level functionality like remote procedure call

(RPC) processing, quality-of-service (QoS) management [17],
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Fig. 1: (a) represents a standard CPU server node; (b) a direct-

attached accelerator using the Beehive network stack; (c) an

accelerator using a CPU network stack.

[80], encryption [19], [50], application-specific load balanc-

ing [18], [36], and information flow control [28]. Deployment

flexibility necessitates management features like virtual net-

working [23], [29], [44], access control lists [54], congestion

control [45], [48], traffic prioritization [33], [57], and load

balancing [26], [61], [70], [75]. Deployment maintainability

requires dynamic support for network monitoring [8], [81],

reconfiguration [11], [43], and debugging [72].

An example of a highly-flexible software network stack is

Google’s Snap networking system [53]. It is designed around

composable message-passing engines, with modules for load

balancing, network virtualization, network management, and

custom transport protocols. New modules can be easily in-

serted anywhere in the stack, without re-engineering the rest of

the stack. Our question is whether we can do something similar

in hardware. Existing hardware network stacks are typically

designed to support only a single application with minimal

protocol complexity. Although some recent work has focused

on flexible packet-level processing in hardware [47], [49], our

aim is to support flexibility across the entire network stack,

including transport and application protocols. Other work has

looked at hardware offload of transport protocols, but these

systems lack a range of essential network functions [4], [16],

[66], or in the case of RDMA, require extensive engineering

to make work in practice [6], [65].

This paper explores the design of an FPGA network stack

that can realize the benefits of direct-attached accelerators

while supporting the extensibility, incremental scalability, and
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manageability needed for production use. Flexibility is needed

at multiple points in the network stack: in packet processing

(layer 3), transport and congestion control (layer 4), the

application layer (layer 7), and in control/diagnostics operating

alongside, and using, the data plane. Adding new functionality,

differentially scaling protocol elements to meet application

throughput needs, or inserting a new load balancing policy

should be simple, as it is in software, without the need to

disrupt or re-engineer other layers.

We propose and implement Beehive, an open-source hard-

ware network stack architected as a collection of protocol

functions that communicate via message-passing over a scal-

able network-on-chip (NoC). We provide automated tooling

for managing differential scaling and load balancing of pro-

tocol elements, a control plane for diagnostics monitoring,

and compile-time deadlock analysis. To make our design

concrete, we implement Ethernet, IP, UDP, TCP, network

address translation (NAT), IP-in-IP encapsulation, and addi-

tional support for control and debugging of network functions.

Our implementation interoperates with Linux TCP and UDP

clients, allowing unmodified remote procedure call (RPC)

clients to use our accelerator.

For our evaluation, we implement Beehive and evaluate it

on FPGA. We show that it offers a 4×/1.5× improvement

in end-to-end client RPC tail latency over Linux/user-level

TCP relative to mediating accelerator traffic through the server

CPU, and up to 31× higher per-core throughput than a state-

of-the-art CPU kernel-bypass stack on small messages.

We implement two example applications using Beehive:

erasure coding as a bandwidth-oriented application and dis-

tributed consensus as a latency-sensitive application. First,

modern datacenter storage systems often use erasure coding

for better storage efficiency than replication with comparable

fault tolerance. We implement an erasure coding accelerator

in Beehive and show that, compared to a CPU-only version,

the accelerator scales out to 62 Gbps using 20× less energy.

Second, we show that accelerating a key piece of distributed

consensus in hardware can reduce end-to-end median opera-

tion latency by 1.13×, with 1.14× better per-core throughput

and 2× less energy than the CPU-only version.

In summary, we contribute:

• Beehive, a design framework to build efficient and com-

plex hardware network stacks for direct-attached acceler-

ator deployments in modern datacenters.

• An open-source FPGA implementation of Beehive that

includes tools and reusable components to build network

stacks for accelerators that use different transport proto-

cols, network virtualization, and layer 7 functionality.

• A demonstration of Beehive’s ability to support scalabil-

ity, flexibility, low latency, high throughput, and energy

efficiency by integrating and evaluating an erasure coding

accelerator and a consensus accelerator.

II. MOTIVATION

We motivate direct-attached accelerators by investigating

their latency benefits over CPU-attached accelerators. Prior
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Fig. 2: A high-level diagram of the type of network stack

Beehive targets. Along with multiple transport protocols, this

stack has IP-in-IP and VXLAN for network virtualization

and a component for an L4 load balancer. The downward

arrows represent control-plane communication, which poten-

tially needs access any module internal to the network stack.

TABLE I: Comparison of median and p99 round-trip time of a

UDP echo across different configurations. Client machines use

software networking. Beehive represents the configuration in

Figure 1(b); Linux and DPDK to Accel. represent Figure 1(c).

Client Linux Client DPDK Client

Server Beehive
Linux

to Accel.
Beehive

DPDK
to Accel.

Median Latency (µs) 11.6 17.6 4.08 6.22
p99 Latency (µs) 15.3 61.2 4.43 6.79

work has shown benefits over the Linux network stack [13],

[74]. However, cutting-edge systems aiming for the lowest

possible latency typically use a DPDK network stack, which

can achieve single digit microsecond latencies [39], [73], [79].

Our experiment compares the direct-attached configuration

in Figure 1(b) and the software-hosted configuration in Fig-

ure 1(c). We evaluate the performance of UDP echo, where

the client sends a UDP packet to a server and waits for the

response packet before sending another. We use Linux and

F-Stack [73], a DPDK network stack, as software network

stacks. We run 1,000,000 requests and measure the round-trip

time (RTT) for each request.

For the direct-attached configuration, we use Beehive im-

plementing a UDP echo server. We try both Linux and F-

Stack as the clients. For the software-hosted configuration,

we use either the Linux network stack or F-Stack as the

software network stack and Ensō [67] as the FPGA accelerator.

Ensō is an FPGA-based NIC designed for efficient NIC-CPU

communication over PCIe. Internally, we tie Ensō’s network

output to its input, so it operates as a loopback. For software-

hosted configurations, the client and server machines run the

same software stack (Linux or F-Stack).

We report median and 99th percentile (p99) RTTs in Table I.

As expected, trampolining every RPC through the CPU on the

way to the FPGA is both slower, and more variable, than when

the FPGA is directly attached to the network using Beehive.

When the network stack is provided by Linux, message latency
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can be affected by CPU scheduling contention, so that Beehive

has 4× better p99 tail latency than redirection through the CPU

on this benchmark, and 1.5× better median latency. When the

network stack is at user level on both the client and server,

scheduling variance is reduced as the server CPU busy-waits

for incoming requests, at the cost of higher CPU overhead.

However, the relative benefit of Beehive is similar, with 1.5×
better median and p99 tail latency relative to redirection

through the CPU.

This shows that even with a DPDK stack, direct-attached

accelerators can still provide a latency improvement, and the

relative improvement is larger for tail latency compared to the

Linux network stack. With this in mind, direct-attached accel-

erators are an appealing option. Realizing this benefit requires

a hardware network stack that can be flexibly reconfigured to

meet the needs of datacenter network management.

III. DESIGN GOALS

Our overarching goal for Beehive is to build an open-source

FPGA hardware design to support emerging applications for

direct network-attached accelerators in a production environ-

ment. Figure 2 shows a high-level diagram of the type of

network stack architecture we want to be able to support.

Applications may only use some subset of these protocols and

network functions. We now discuss our specific design goals.

A. Beehive Goals

Standard client protocols. The vast majority of distributed

applications that might benefit from the availability of hard-

ware acceleration are designed to communicate using standard

protocols such as IP, TCP, and remote procedure call (RPC).

Our framework needs to be able to support unmodified client

application and client host software communicating with the

accelerator using these standard protocols.

Modularity. However, network stacks are not fixed. Require-

ments are constantly changing with new custom protocols

(e.g. Google’s Pony Express [53] or 1RMA [2]) and net-

work functions. In order to facilitate rapid development and

customization of the network stack, our framework must be

modular, so we can compose or integrate new components

with minimal to no modifications to existing components.

Scalability. Building a complex network stack potentially

means supporting a variety of different components in the

same design. Different components may be a bottleneck de-

pending on the application workload. Thus, the architecture

should be able to duplicate and scale out individual compo-

nents, whether application or protocol logic, as needed.

Performance overhead and predictability. Since perfor-

mance and performance predictability are key motivations to

offload the network stack, the stack should be able to deliver

end-to-end application bandwidth at 100 Gbps with minimal

jitter if the accelerators have the capacity to support it.

Management flexibility. Components in a network stack need

to be able to interact beyond just passing packet data. For

example, components need to be able to expose interfaces

to the control plane for telemetry and debugging [27]. The

Std.
Protocols

Modular Scalable Performant
Mgmt.

Features
Open

Source

Limago [66] 3 S 7 3 7 3

PANIC [49] S 3 7 3 7 S

ClickNP [47] S 3 S 3 3 7

LTL [13] 7 7 S 3 S 7

Beehive 3 3 3 3 3 3

TABLE II: Beehive and prior work versus the goals in Sec-

tion III-A. The stars indicate partially meeting the goal.

RouterProcessing
Logic

NoC message handler

Fig. 3: Architecture of a tile.

control plane may also need to update state used by a protocol

or network function, such as configuring the load balancer

used to parcel work across application accelerator instances.

Such configurability should be possible even in large designs

without extensive manual optimization.

B. Comparing versus related work

As shown in Table II, other related work does not meet all

these goals. In terms of complexity, the Limago, a TCP engine

written in Vitis HLS, is the closest to Beehive. However, it is

not designed to allow for addition or replication of components

within the stack, so it is limited in scalability and modularity.

We discuss FPGA utilization comparisons further in Section

VII-G. Unfortunately, we were unable to run Limago on FPGA

using their code [32] to evaluate its performance, because the

QSFPs did not come up on the FPGA board.

PANIC and ClickNP are the most similar architecturally to

Beehive as they are both based on message-passing over an

interconnect, leading to similar performance and modularity

benefits as Beehive. Their implementations do not provide

standard protocol support directly, but they could be extended

to support the logic needed for these protocols. Additionally,

their interconnects can limit their scalability. While working on

the experiment in Section VII-C, we found PANIC’s crossbar

was unable to support more than 8 endpoints, 4 of which are

always used by its infrastructure. In ClickNP, components are

directly connected using FIFOs, potentially causing fan-out

issues when duplicating components. Because ClickNP is not

open-source, we were unable to compare to it directly.

IV. DESIGN

A. Beehive’s architecture

The basic component in Beehive is the tile, shown in

Figure 3. Each tile has a network-on-chip (NoC) router, some

logic that handles NoC message construction and deconstruc-

tion, and some processing logic, such as a protocol layer,

network function, or application. Tile routers are connected

together to form the NoC topology. We do not require a
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Fig. 4: The flow through which a packet is processed or

constructed in Beehive.

particular topology, although our prototype uses a 2D mesh.

We require that the NoC is reliable, point-to-point ordered,

and uses deterministic, deadlock-free routing.

A network packet is processed or constructed by passing

NoC messages through a chain of tiles. A NoC message con-

sists of one header flit followed by some number of body flits.

The header flit typically contains data only relevant to NoC-

level routing, such as source and destination tile coordinates or

number of body flits. The body flits typically consist of both

metadata flits containing packet header fields and a number of

data flits carrying unprocessed packet payload.

Each tile hop is responsible for determining the next tile

that a message should be sent to. This design is in contrast to

earlier work which assumes that routes can be fully determined

on packet arrival [49]. We discuss this decision in more detail

in Section IV-D. This component may vary in complexity from

a static CAM to more complex logic, such as content-based

routing. The set of possible message chains is known ahead

of time for deadlock analysis, described in Section IV-E.

B. Processing a packet

Figure 4 shows an example of a basic UDP stack in Beehive,

with a UDP packet moving through the receive and send paths.

On the receive side, an Ethernet frame enters the Ethernet tile,

which has ports for the I/O from the transceivers in addition to

the ports connecting to other tiles. The processing logic within

the tile parses and removes the Ethernet header, realigning the

data. This is then turned into a NoC message consisting of

a header flit, a metadata flit with the parsed Ethernet header,

and some number of data flits containing the remaining packet

data. The routing component in the Ethernet tile uses the type

field in the Ethernet header to determine that the message

should be passed to the IP tile. The IP tile similarly parses the

IP header, validates the header’s checksum, and then creates

a NoC message to be sent to the UDP layer. Finally, the UDP

tile parses the UDP header, validates the packet’s checksum,

and generates a NoC message to be sent to the application

based on the port in the UDP header. The transmit path runs

similarly, except instead of parsing headers from the data flits,

headers are added by each protocol tile. After the Ethernet tile

adds on the Ethernet header, it is sent out the ports for I/O

with the transceivers. This incremental composability is good

for our goal of modularity as it makes it easier to insert new

functionality between stages.

While there is only one possible destination for the tiles in

this design, there can potentially be multiple endpoints, such

as other protocols (e.g. TCP connected to IP), network services

(e.g. network virtualization), or replicated tiles for higher

bandwidth. With replicated tiles, there are multiple ways to

decide on which tile should receive an incoming packet. The

simplest method is to distribute packets between them in a

round-robin fashion. However, more complex scheduling may

be necessary if a tile holds state for particular flow. In this

case, it is important that packets from the same flow always

go to the same tile. This distribution can either be integrated

within a tile or placed in a dedicated tile. We discuss how we

distribute packets to duplicated tiles in Section VI.

C. Message-passing interconnect

Being able to compose elements is essential for facilitating

customization. We opt for a message passing model. This is

beneficial for modularity, because defining a message-passing

format allows us to standardize the physical interconnection

between components, a recognized benefit in SoC design [22],

and makes it easier to chain offloads together. ClickNP [47]

and PANIC [49], two modular packet processing frameworks,

have also used a message-based approach. The message pass-

ing can be done over dedicated connections, which is the

approach used by ClickNP, or a NoC which is used by PANIC.

We prefer a NoC interconnect for two main reasons related

to our goal of scalability. First, we can take advantage of the

multiplexing provided by the NoC routers. Certain tiles may

interact with many other tiles, e.g. if we instantiate multiple

copies of the same component or common services such as

memory buffer storage. Direct connections can lead to large

multiplexers and wires with significant fan-out. Although we

could create specialized pipelined multiplexers and arbiters,

these essentially look like NoC routers.

Second, we would like the interconnect wiring to remain

stable whenever possible. In the ClickNP model, top-level

wires are determined by the computational graph. If we wish

to form a chain that links together two components that did

not communicate before, we must add new interconnect wires,

which are typically the longest wires. A NoC allows us to reuse

physical wiring to chain any elements that exist in the design,

as long as we are careful with deadlock.

These scalability benefits apply both to the data plane and

control plane. We discuss the benefits further for the control

plane specifically in Section IV-F.

D. Tile chain routing

In addition to NoC-level routing, Beehive routes at the net-

work packet level to determine the sequence of tiles that need

to be chained together. We considered two routing methods:

node-table routing, where each tile determines the correct next
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(a) This tile assignment deadlocks due to the order that the packet
needs to be processed in versus the order of the NoC links it traverses.
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(b) This tile assignment is able to avoid deadlock since the packet
acquires NoC resources in order.

Fig. 5: An example of how tile assignment affects deadlock.

Beehive takes advantage of protocol layer ordering, so a packet

always acquires NoC resources in the same order.

tile, and source routing, where the chain of tiles is completely

determined when the first NoC message in the chain is created,

such as when a packet is first received from the network. We

use node-table routing, because certain classes of traffic we

want to support for interoperability require per-flow state or

non-trivial protocol processing to fully determine the chain of

tiles.

Specifically, we consider routing for traffic that is either

encrypted or is for layer 7. Encryption may obfuscate parts

of packet payloads that are needed to fully route a packet,

which would require the ingress tile to handle the decryption.

An application request can span multiple packets. Which

application tile should receive an RPC may depend on the

RPC header or even the contents of the request. Further,

the packets of one request, which may not fit in the first

packet, could be reordered or interleaved with other requests.

To properly route such requests, an ingress tile would need

to assemble or reorder the stream, further complicating the

implementation. In both cases, the ingress tile would need

to implement significant, high-level protocol logic which is

detrimental for modularity.

E. Deadlock

As with any NoC-based design, avoiding message-based

deadlock must be a consideration. We note that NoC deadlock

detection, avoidance, and recovery is a complex problem with

a whole body of research behind it [3], [21], [46], [58], [68].

NoCs can deadlock in two ways: at the routing level and at

the message passing level. To prevent routing-level deadlocks,

we employ dimension-ordered routing [21]. Message passing

deadlocks are a bigger concern in Beehive, because any tile

can route to any other tile at runtime. This means that our

routing resources can get exhausted. The deadlock in Figure 5a

is an example of this, in which the UDP RX tile must route

east twice in one chain, and it cannot route east a second time.

We apply resource acquisition ordering to solve this prob-

lem. Resource ordering can be imposed by taking advantage

of the fact that protocol layers and services are composed

in certain orders. Although packet routing is dynamic, we

assume that all possible paths through the network stack for

supported packet types are known when the network stack

is compiled. As a simple example, Figure 5 shows different

topologies for the receive path of a UDP stack. Beehive’s NoC

uses wormhole, dimension-ordered routing. The packet should

be processed by Ethernet, IP, UDP, and then the application.

With the tile layout in Figure 5a, the route from the Ethernet

to IP tile passes through the UDP tile’s router (2). As the

UDP tile attempts to pass the packet along to the application

(4), it must reacquire a NoC link that is still in use (5)

and is thus deadlocked. If tiles are laid out as in Figure 5b,

no resources need to be reacquired, and the packet can be

processed successfully.

We statically analyze all message paths in our prototypes

at compile-time to avoid deadlock by creating a resource

dependency graph that takes into account every possible path

through the network stack. If a message path is found that

could cause deadlock, the designer should modify the tile

layout to one that does not.

Repeated protocol headers (e.g. two IP headers in the IP-in-

IP protocol) break resource ordering. In Beehive, we choose to

duplicate tiles (e.g. two IP RX tiles). If tiles are too expensive

to duplicate, a potential solution is adding buffers to break

dependencies [46], [71]. These buffers give space for the NoC

to drain into, freeing routing resources.

F. Control plane interfaces

For manageability, network operators need to be able to

reconfigure protocol components from an external controller

over a transport-layer connection. In Beehive, we choose to

use an additional separate message-based, routed NoC for

the control plane rather than a dedicated control bus. This

is because control plane management also benefits from a

structured interconnect for scalability reasons.

First, for complex designs with a large number of com-

ponents, it becomes costly to run dedicated, ad-hoc wires to

every tile. Second, we want configuration to be over a reliable

transport. This requires the control plane to use the transport

layer, and a NoC enables this without physically coupling the

component to the transport layer. This also enables us to add

specific control plane management tiles to orchestrate state

modifications. We describe a specific example in Section V-E.

Because the control plane has lower performance require-

ments, in Beehive we use a separate, lower-width NoC. This

also prevents control plane traffic from contending for the

same resources as long dataplane chains in the deadlock

dependency graph, so there is more flexibility in placement.

G. Application interfaces

Many application accelerators process requests at a coarser

granularity than a packet, so they need the ability to com-

municate with the transport protocol layer and request data

from a particular flow rather than being pushed packets in the

order they arrive. While we could use dedicated wires for this

communication, it can also benefit from the use of the NoC.
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The NoC provides a convenient structure to multiplex

between duplicated application tiles connected to the same

transport layer in a scalable manner. The modularity provided

by message passing on the NoC also allows an application

to easily interface with any protocol in the network stack

while reusing existing wires if, for example, we want to switch

from TCP to a custom reliable transport protocol. Finally, the

standardized NoC interface enables easy insertion of filters

on the application’s NoC messages, so network operators

can enforce policies, such as dropping network traffic to or

from non-whitelisted nodes. We describe the application NoC

interface to our TCP layer in Section V-D.

V. IMPLEMENTATION

To demonstrate the Beehive approach, we built a set of

core protocol tiles, network functions, and applications. For

protocols, we implement tiles for Ethernet, IPv4, UDP, and

TCP. For network functions, we implement an IPinIP encap-

sulation layer and a NAT layer for network virtualization.

For applications, we implement a Reed-Solomon encoder and

an accelerator for a viewstamped replication node. These

applications are described in more detail in Section VI.

We also describe our tooling that we developed to lower

the effort required to maintain multiple designs and inte-

grate new components. All of Beehive is implemented in

standard SystemVerilog and was tested on an Alveo U200

communicating with standard CPU clients using a Linux or

kernel-bypass network stack. We embed our Beehive prototype

within Corundum [31], an open-source 100 Gbps NIC, in the

application slot to provide FPGA-specific infrastructure, such

as the Ethernet MAC. Corundum does not provide any higher-

level packet processing logic for Beehive.

A. Network-on-chip (NoC)

We use the 2D mesh NoC from OpenPiton [7] with some

modifications. The NoC is wormhole-routed, uses dimension-

ordered routing, and is full-duplex. We widen the NoC from 64

bits to 512 bits to match the width of the Xilinx MAC IP core,

so it has a maximum throughput of 128 Gbps when running

at 250 MHz and increase the flit width to 512 bits. Because

the NoC only relies on the top 64 bits of the first flit to do

NoC routing, we are able to reuse the NoC without further

modification by making the top 64 bits of our first header flit

the same as the original NoC header. The maximum payload

size for a NoC message is 256 MiB.

B. Protocol tiles

Protocols are implemented as streaming components, so

they begin to transmit the next NoC message as soon as

possible rather than storing the entire NoC message before

forwarding. This is done to reduce latency as header parsing

can be overlapped with payload copying. This is especially

important when chaining, because each layer of header adds

an extra layer of parsing.

The Ethernet, IP, and UDP tiles construct or remove the

appropriate headers and calculate checksums, as shown in

Figure 4. The Ethernet receive processor can handle VLAN

tagged packets. Our IP layer does not support IP fragmentation

as our intended use case is for internal datacenter services.

One of the more difficult aspects of removing the headers

from network packets is that certain protocols (e.g. IP or TCP)

allow headers to have options, so the headers are not a fixed

width. This means removing a packet header often requires

removing a variable number of bytes from the stream. We

implement this by appending two lines of data and then using

a shifter to remove the required amounts of bytes.

For a protocol, we place the receive and transmit engines

in separate tiles. This is because they are streaming and

each router has one input and one output interface, so one

engine will utilize an entire router’s bandwidth if running

at 100 Gbps. Since the packet-level protocol layers do not

share state between their transmit and receive sides, this is a

straightforward split. The exception to this is the TCP engine

which we discuss further in Section V-D.

Protocol tiles also have optional hash tables that use the 4

tuple as the key for load balancing to downstream replicated

tiles. We set up initial packet-level routing within the tiles at

compile time when we build the FPGA image. The hash table

can be rewritten during runtime via the control plane described

in Section IV-F. Any packet that does not have an entry for a

next hop (e.g. traffic with an unsupported protocol) is dropped

to filter out unwanted traffic.

C. Buffer tiles

In Beehive, we also have buffer tiles that hold large blocks

of memory. In our current prototype, these buffers are large

BRAMs, but the backing buffer can also be DRAM. These

buffer tiles are accessible to any other tile in the system via

NoC messages. This allows us to have shared buffers between

tiles, so that multiple tiles can share state when needed.

D. TCP engine

To evaluate how Beehive can support reliable transport,

we prototype a TCP engine that implements server-side TCP.

It can receive connection setup requests, generate sequence

and ACK numbers, and support fast retransmit and window-

based flow control [10]. Currently, it does not support selective

acknowledgments, initiating connections, or congestion con-

trol. Full TCP offload functionality has been demonstrated by

previous work [66] and could be integrated into Beehive.

We split the TCP logic into receive and transmit engines.

The receive engine is responsible for determining if received

data is in order, calculating the next ACK, and processing

ACKs for the transmitted data. The transmit engine is respon-

sible for separating out buffers for sending and updating the

sequence number for the transmitted stream.

We use two optimizations to handle state shared between

the receive and transmit engines when they are both processing

the same flow. We handle this in two ways. First, we divide

flow state into two BRAMs by which engine writes the data

to prevent write conflicts. Second, we take advantage of the

asynchronous nature of the transmit and receive streams in

TCP to tolerate slightly stale state and avoid bypassing state
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when the two engines are processing the same flow. For

example, the transmit engine reads the current flow state with

the ACK number for the received stream as ACK RECV1 in

cycle n. Meanwhile, the receive engine has processed a packet

and updated the ACK number to ACK RECV2 in cycle n+1.

The transmit engine can still use ACK RECV1 as long as

it still uses all the other state it read in cycle n. Functionally,

this is the same as if the received packet had been received

slightly later and processed after the transmit engine had sent

its packet, which is allowed due to the assumptions of TCP.

While the TCP engine has an RX router and a TX router like

the other protocol tiles, the send and receive paths in TCP must

share state. For example, the transmit path needs to know for

which packets it has received acknowledgments. We choose to

support sharing by running dedicated wires between the tiles.

Every receive path only has one corresponding transmit path,

so wires do not fan out. We could implement state sharing over

NoC messages, but the state is read and updated frequently,

so the frequent NoC messages needed for state updates would

encourage these tiles to be placed close to each other on the

NoC anyway.

On the completion of the 3-way handshake, the TCP engine

sends a NoC message to notify an application tile based on

the destination port for the connection. On the receive side,

the TCP engine lets an application specify the size of the

request it should be notified for with a NoC message. When

enough data has arrived to satisfy that request, the TCP engine

sends a notification message back to the application with

the buffer address where the data requested has been stored.

The application then retrieves the data from the buffer for

processing before sending another message to the TCP stack

when it has finished using the data.

The TCP engine implements a similar interface for the

transmit engine where the application can request space in

its transmit buffer of a certain size. The TCP engine sends a

notification when there is room in that buffer with the address

where the data should be stored. The application then copies

the data into the buffer and notifies the TCP engine.

E. Network function tiles

We implement both IPinIP encapsulation and an IP NAT.

For both tiles, the control plane can dynamically update the

table mapping virtual IPs to physical IPs, which occurs when

the a client machine migrates. To change this mapping, we

implement an internal controller as a separate tile that receives

an RPC over TCP from an external controller. The internal

controller utilizes the control NoC to send NoC messages to

the IP encapsulation or NAT tiles with the information needed

to update their tables. Finally, the internal controller sends a

confirmation response to the external controller.

F. Debugging and logging

In Beehive, tiles may keep logs, and we provide UDP and

TCP-based protocols to externally fetch logs. Each log is

associated with a particular port and exposes an interface on

the NoC to the network stack for readback. The layer 4 receive

tiles are responsible for directing packets to the appropriate

log interfaces. The log read interface keeps a small buffer for

requests and drops requests when it is full. The client program

reads out the log an entry at a time and resend requests for

any entries for which it does not receive a response.

This logging ability was invaluable for debugging TCP

when running on an FPGA. TCP is underspecified and the

main verification is running against a common implemen-

tation, such as the Linux kernel [9], so we needed to run

it on an FPGA to verify that it behaves as expected. The

reduced visibility in this setting increases the difficulty of

the already hard task of debugging a TCP implementation,

due to the asynchronous and non-deterministic setting where

certain bugs are dependent on the available bandwidth and loss

events. As a result of the asynchrony, we need a cycle accurate

trace for proper replay, because the TCP engine may behave

differently depending on the timing of events (e.g. it may drop

different packets). As a result of the bandwidth-dependence,

we cannot rely on tcpdump to collect traces, because of the

possibility different packets might be dropped by the engine

versus tcpdump.

We inserted tiles that log information about TCP packet

headers into the processing between the TCP and IP layers.

These tiles have two NoC interfaces: one is used to forward

packets to and from the TCP engine and logs the header

information with a cycle timestamp, the other interface allows

the logs to be read out over the network in response to a

request sent over UDP. Because the logging tiles are embed-

ded within the fabric, they can record the exact timing and

sequence of packets that entered and exited the TCP engine.

Once this log is collected, we are able to replay the log in

a cycle-accurate manner using the recorded timestamps by

replacing the logging tiles with an interface to our trace replay

framework.

G. Tooling

We developed a set of tools to lower the engineering effort to

create new designs, such as generating portions of the Verilog

(e.g. top-level wiring for NoCs) or performing compile-time

deadlock analysis. The design configuration is passed to these

tools via an XML file, which contains the design dimensions as

well as an element for each NoC tile endpoint. At minimum,

this element contains tags specifying a name to use for the

endpoint as well as its X and Y coordinates. It may also

contain fields with information for generating the tables used

for determining the correct next hops.

Given the dimensions in the XML file, we generate declara-

tions of all the top-level wires between tiles. We also generate

the subset of the port connections for each tile that correspond

to wires between NoC routers and connect the appropriate

wires for the tile configuration. We choose not to generate the

whole tile instantiation, because certain tiles need to maintain

additional ports for I/O, such as the Ethernet MAC.

The XML file also enables us to check whether the high-

level topology of the NoC is sound. For example, we check

if two tiles have the same X and Y coordinates, and all NoC
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Fig. 6: Beehive tile layout for Viewstamped Replication.

coordinates are within the expected dimensions of the design.

Because a 2D mesh must be a rectangle, this also gives us

the opportunity to automatically generate empty tiles that just

contain a router, as in the bottom rightmost tile in the UDP

stack shown in Figure 8a. We also use information about the

NoC topology and next hops in the XML file to generate

a resource dependency graph that we analyze for cycles to

ensure a deadlock-free design. Figure 6 is a visualization of

the layout generated by the XML file for the consensus witness

design in Section VI-B.

VI. INTEGRATING WITH BEEHIVE

A. Erasure coding

To demonstrate the benefits of Beehive for a throughput-

oriented application, we integrate an accelerator for Reed-

Solomon encoding. Erasure codes such as Reed-Solomon

(RS) are commonly used in distributed storage systems to

achieve high resilience to disk failures with modest storage

overhead [34], [41], [64]. An RS encoder adds redundancy bits

to input data at a pre-set ratio, striped across storage servers.

If some storage elements fail, the remaining blocks from the

stripe can be combined with these extra blocks to regenerate

the missing blocks.

We configure our system to use an (8,2) code (8 data

blocks and 2 redundancy blocks) to emulate a storage system

that could tolerate up to two disk failures. We integrate

an RS encoding accelerator operating on 4KB requests into

Beehive as a UDP application, instantiating four copies of the

application to scale out. The accelerator is stateless, so any

request can go to any copy. We introduce a front-end round-

robin scheduler tile to distribute work among the RS tiles.

Each RS tile also logs metadata to calculate bandwidth.

B. Consensus witness

To demonstrate how Beehive performs in a latency-

sensitive, communication-intensive application, we construct a

consensus system that uses FPGA-accelerated witness nodes.

Consensus algorithms are an essential part of many deployed

distributed systems as they enable a strictly consistent order for

stateful client operations even in the face of failures and mes-

sage delays/retransmissions. Most consensus algorithms [14],

[51], [60] follow a common pattern: an elected leader proposes

an order for arriving client requests, verifies with a set of

replicas that it is still leader, and commits the request. It then

performs any necessary application logic (e.g., to update state),

replies back to the client, and informs the other replicas, so

that they can also perform the application logic in the same

order. Because there are multiple round-trips between nodes to

complete one round of consensus, message-handling latency

and tail latency are especially important [82].

A common type of application built on top of consensus is

a key-value (KV) store. To achieve higher throughput, the key

space is often sharded with a leader and replica set for each

slice. However, even with sharding, consistent reads can be

expensive, because the leader must validate, each time, that it

is still the leader before replying with the value stored with

the key. As a result, it is common in practice to configure

the system to return stale reads, allowing the leader to reply

immediately [20], [35], [37]. This places a burden on the client

developer to handle the (rare) case where a failover can lead

to inconsistent client data.

In our evaluation, we show that a consensus accelerator can

help reduce the cost of consistency [38], especially in a multi-

shard setting. Our accelerator operates as a witness, that is,

it only validates the leader and tracks the operation order; it

does not execute client operations. Single node fault tolerance

can be achieved with one leader, one witness, and one replica.

To add further fault tolerance, we add additional witnesses

and replicas. For example, two-node fault tolerance can be

achieved with one leader, two witnesses, and two replicas. To

validate a read or write operation, the leader only needs to

receive a verification from the witnesses before replying to

the client. The witness can be designed in hardware to reply

with low and reliable latency.

Prior work [37], [38] has demonstrated full offload of con-

sensus and application logic to an FPGA. We target a use case

where application logic remains on CPUs and only a portion

of the consensus protocol is run on Beehive. Importantly, this

requires no change to the CPU-based application running on

top of the consensus engine. This is advantageous as consensus

algorithms are commonly used as a building block in larger

distributed systems, so this allows accelerated consensus to be

used without requiring the whole application to be ported to

hardware. We also demonstrate how Beehive can be used to

scale a consensus system to support multiple shards, which

previous work did not explore.

Our witness protocol is based on a modified version of the

Viewstamped Replication (VR) used in previous studies of

high-performance consensus [63]. VR witnesses are integrated

into Beehive as UDP applications. To handle multiple shards,

we use one VR witness tile per shard. Unlike the RS encoder,

the VR witness is not stateless and requests for a shard must

always go to the same tile. We distribute work to the VR tiles
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by matching on the destination port number.

VII. EVALUATION

Our evaluation tests Beehive’s ability to support scalability,

low latency, and flexibility in a range of network stack

configurations. We begin by evaluating Beehive with UDP

and TCP microbenchmarks designed to test RPC performance

and then evaluate two case studies: Reed-Solomon encoding

acceleration and Viewstamped Replication acceleration.

A. Setup

We use Vivado 2021.2 for building our FPGA images.

Beehive is configured on an Alveo U200 at 250 MHz. The

FPGA and the clients are connected to an Arista DCS-

7060CX-32S-R 100G switch with jumbo frames enabled. We

use five machines during evaluation with Turboboost disabled.

All of them have Mellanox ConnectX-5 100G NICs and are

running Ubuntu 20.04. Two machines have Intel Xeon Gold

6226R CPUs; the other three machines have Intel Xeon Gold

5218 CPUs.

In experiments where energy is measured, we use the RAPL

counters on the CPUs and the Alveo CMS registers on the

FPGA. For CPU energy experiments we use a two-socket

machine, so we run all the application and network processing

code on one socket and poll the counters from the other socket.

We only use RAPL’s CPU counters, which is an underestimate

as we do not include DRAM energy or network interface

energy. On the FPGA, we use the Corundum framework to

read the CMS registers that report instantaneous power and

current usage [76]. We poll these counters every second to

calculate energy over the benchmarking period.

B. Baselines

Hardware Network Stacks (PANIC and Limago): We

compare against PANIC, an FPGA-based smartNIC frame-

work, for our UDP echo microbenchmark. We are unable

to compare against PANIC for our other applications using

UDP, because they require scaling to more tiles than PANIC

supports, and PANIC’s memory allocation makes it unwieldy

to generate responses of a different size than the request. We

also cannot compare against PANIC for our TCP microbench-

mark, because it cannot support reliable transport applications.

We also evaluate in PANIC’s original simulation evaluation

infrastructure, because their released code does not include an

FPGA flow. We integrated it into Corundum as suggested in

the documentation, but we were unable to get it to meet timing

for the Alveo U200. While they used an ADM-PCIE-9V3 [24],

both our board and theirs have 16nm FPGA parts. The Alveo’s

FPGA part is also comparable in resources available to the

ADM-PCIE-9V3. For these reasons, we think the comparison

is fair.

We compare against Limago, an HLS TCP stack, for our

hardware utilization. We were unable to run benchmarks on

it, because the QSFP links did not come up when the image

was put on the board.

Software Network Stacks (Demikernel and Linux): We

also compare against Demikernel [79], an optimized DPDK
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Beehive and CALM perform almost identically across all

packet sizes and outperform Demikernel.
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network stack, in cases where it is faster than Linux. This

is only the case in the UDP echo benchmark. Otherwise, we

compare against Linux’s network stack.

C. UDP echo

Throughput: We compare UDP echo goodput for Beehive

(shown in Figure 8a) and Demikernel on different packet sizes.

We also evaluate these against an FPGA with a pipelined

UDP network stack design where the protocol engines are

connected directly (shown in Figure 8b), and a UDP network

stack implemented within the PANIC framework which we

will refer to as CALM.

In our experiments, the Demikernel server runs on an Intel

Gold 6226R machine, and we use three Intel Gold 5128

machines as clients using the standard Linux network stack.

We spawn the number of client threads that yields the highest

server bandwidth for that packet size, and they send in an

open-loop manner. We give the server a single core to compare

against Beehive’s single application tile.

For Beehive, we run a packet generator on another U200

FPGA. This is because the client machines used for the CPU
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TABLE III: Energy consumption and goodput for Reed-

Solomon encoding using Beehive versus CPU for 1, 2, 3 and

4 application instances.

Apps 1 2 3 4

CPU Energy (mJ/op) 1.1 0.59 0.41 0.32
Beehive Energy (mJ/op) 0.05 0.03 0.02 0.02

Energy efficiency 22× 20× 20× 16×

CPU Goodput (Gbps) 2.0 4.0 6.0 8.0
Beehive Goodput (Gbps) 15 31 45 62

Speedup 7.5× 7.8× 7.5× 7.8×

experiments cannot generate enough traffic to saturate the

FPGA. We use 7 tiles in total: we separate the Ethernet, IP, and

UDP layers, and then we separate their receive and transmit

paths for 6 tiles and then one tile for the application.

For CALM, we implement a UDP echo server within its

framework starting from their publicly available code [59].

We use 3 tiles to implement the echo server: one providing

a fixed UDP receive path, one providing the application, and

one providing a fixed UDP send path. We were unable to

modify PANIC to support more than 8 tiles, only 4 of which

are available for user functionality, so we could not make every

layer into a tile as we do in Beehive. We note that this means it

is less flexible than Beehive’s network stack, because we lose

the opportunity to easily insert network functions or alternate

protocols alongside the UDP paths.

Figure 7 shows our throughput benchmark results. Bee-

hive and CALM provide similar performance despite Bee-

hive having more tiles. Both achieve line rate at 1024 byte

packets. Beehive on FPGA levels out at this point, because

the actual Ethernet link has a maximum bandwidth of 100

Gbps. However, in simulation, both Beehive and CALM

continue to scale to the theoretical maximum of 128 Gbps.

The pipelined implementation is slightly better than Beehive,

due to the overhead of constructing and deconstructing NoC

messages. However, this difference decreases as payload sizes

increase since the extra header flits are amortized over a

larger payload. The optimized CPU stack remains far below

maximum bandwidth even with jumbo frames. The perfor-

mance difference is especially pronounced at small packet

sizes where Beehive is able to sustain echoing 9 Gbps of 64-

byte packets (18392 KReq/s) whereas single core Demikernel

provides 0.3 Gbps (584 KReq/s), a 31× speedup.

Latency: For our latency experiment, we use Beehive and a

single client thread to ping-pong a single 1-byte UDP packet.

We record the latency by tagging the packet with a timestamp

when it enters the network stack at the Ethernet parsing layer,

taking another timestamp when it finally exits the Ethernet

layer on transmit, and recording both timestamps into a log

which we read back over the network. The latency through

Beehive is 368 ns (92 cycles). Similarly, CALM UDP latency

is 362 ns, although their system is less flexible than Beehive.
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send. The (CPU send/FPGA receive) is omitted, as it is

approximately the same as (CPU send/CPU receive) due to

the CPU send path being the bottleneck.

D. TCP throughput

To characterize the throughput performance of our TCP

engine, we run a single-connection experiment and measure

unidirectional send and receive performance across a range of

packet payload sizes. Because Demikernel’s TCP implemen-

tation is optimized for latency, it performs worse than Linux

on this experiment, so we configure Demikernel to use Linux

TCP as its backend. The sending application sits in a tight

loop, submitting data into the network stack as fast as possible;

the receiver pulls data out of the network stack without doing

further processing on it.

We vary whether the sender or the receiver is the FPGA

or the CPU. The results are shown in Figure 9. We omit the

(CPU send/FPGA receive) results, because they are almost

the same as the all-CPU configuration; in both situations, the

CPU sender is the bottleneck. The CPU is more efficient at

streaming TCP data than UDP data because it allows batching

data into jumbo frames. By contrast, Beehive’s TCP stack

is slower than its UDP stack, because of the complexity of

stateful packet handling in hardware. In particular, our TCP

engine is designed to only achieve full bandwidth across mul-

tiple simultaneous connections. Even so, Beehive outperforms

Linux TCP across all request sizes. The speedup is most

pronounced at small packet sizes, where Beehive achieves

2666 KReq/s versus the CPU’s 843 KReq/s, a 3.2× speedup.

E. Reed-Solomon encoding acceleration

To evaluate Beehive’s scaling architecture, we evaluate a

duplicated Reed-Solomon (RS) encoding accelerator on Bee-

hive versus a CPU implementation of the same algorithm in

Table III. The client sends blocks of 4 KB to the encoder

using UDP; the accelerator replies with 1K of erasure data.

This could be organized into an (8,2) stripe for double fault

tolerance. We measured that one instance of the Reed-Solomon

encoder can consume data at 15 Gbps; our FPGA has room

for four encoder instances, which consume data at 62 Gbps as

shown in Table III. For comparison, we use the open-source

Reed-Solomon encoding implementation from BackBlaze [5]

running on CPUs which we then duplicate across cores.
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We also compare the energy efficiency of the two ap-

proaches in Table III. The FPGA is about 20× more efficient

per operation than the CPU implementation.

F. Viewstamped replication witness acceleration

We next turn to a latency-sensitive application, evaluating

Beehive hosting a viewstamped replication (VR) witness ap-

pliance. We first evaluate the witness on a single shard. We

then take advantage of Beehive’s ability to duplicate both

internal components and applications to host a 4-shard witness

appliance. We also duplicate protocol tiles to prevent them

from becoming a bottleneck.

Setup: For all experiments, we evaluate a three-node VR

configuration as shown in Figure 10, with either the FPGA

or CPU serving as a witness. Other nodes are run on CPUs.

The CPU VR replicas run on Intel Xeon Gold 5218 CPUs.

Client threads run on Intel Xeon Gold 6226R CPUs and are

closed loop, i.e., only have one outstanding request at a time.

The shard leaders are distributed evenly between two CPU

machines. Each shard may handle more than one request at a

time. The CPU witness(es) run on a separate server to allow

us to measure the energy used by a CPU witness appliance.

We use UDP as our transport protocol, because VR does not

assume reliable message delivery.

Workload and Metrics: We evaluate our VR accelerator with

a replicated key-value store application with 64-byte keys and

64-byte values. The workload uses a read-write mix of 90%

reads and 10% writes and a uniform key distribution. Input

load is increased by increasing the number of clients. Latency

is measured at the clients as the time between the initial

request and the eventual response. Peak throughput numbers

are chosen at the points before the latency begins to spike,

an indication that the system is overloading and queues in the

system are growing. These points correspond to operational

setups where increased latency might be considered acceptable

in exchange for better throughput [15], [52], [55].

Results: We plot latency versus throughput for differing

numbers of shards in Figure 11. We increase offered load by

increasing the number of client threads sending requests to the

leader. The results are shown in Figure 11. The system using

the FPGA witness can provide up to 1.14× more per-core

throughput and up to 1.13× lower median latency.

For each shard, we take the median energy measurement,

throughput, median latency, and 99th-percentile (p99) latency

at each circled point in Figure 11. These results are shown in
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Fig. 11: Latency vs. throughput for the VR key-value store

workload varying the number of shards and client threads. The

FPGA witness consistently outperforms the equivalent CPU

cores in both latency and throughput.

TABLE IV: Energy per operation (measured at the witness)

and performance metrics (measured at the clients) at the

circled points in Figure 11.

Shards 1 2 3 4

CPU Energy (mJ/op) 1.51 1.03 0.90 0.70
Beehive Energy (mJ/op) 0.73 0.48 0.39 0.31

Energy efficiency 2.07× 2.16× 2.32× 2.27×

CPU Throughput (kOps/s) 31 48 58 77
Beehive Throughput (kOps/s) 35 54 66 83

Speedup 1.12× 1.12× 1.14× 1.08×

CPU Median Latency (µs) 112 142 115 128
Beehive Median Latency (µs) 99 130 102 118

Improvement 1.13× 1.09× 1.13× 1.08×

CPU p99 Latency (µs) 273 372 339 412
Beehive p99 Latency (µs) 281 334 304 394

Improvement 0.97× 1.11× 1.12× 1.05×

Table IV. The FPGA is between 2.07× and 2.32× more energy

efficient per operation compared to the CPU while providing

better overall throughput and latency to key-value store clients.

G. Hardware resource utilization

The hardware utilization of the Beehive infrastructure is

shown in Table V. For the UDP stack used in Section VII-C,

Beehive components use 4% of the LUTs available on the

Alveo U200 and 2% of the BRAMs. In a tile, a router uses

around 6000 LUTs, twice the size of the UDP processing.

For comparison with a more complex module, we include the

utilization of the TCP receive path.

We also compare our resource utilization to that of Limago.

We find that our design is larger in terms of LUT usage, but

smaller in terms of BRAM usage. Most of our usage comes

from the routers rather than the protocol logic, indicating that

there is a cost to our increased flexibility. However, in the

context of total resources available on the FPGA, the extra

logic cost is relatively small.

H. Flexibility

As a quantitative proxy for flexibility, we count the lines

of code (LoC) required to insert an additional instance of an

403

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 10,2025 at 16:51:51 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V: FPGA resource utilization of selected modules in

Beehive and Limago.

LUTs (# / % total) BRAM (# / % total)

Beehive UDP full 58540 / 4.95 41 / 1.90
UDP RX Tile 10054 / 0.85 9.5 / 0.44

Router 5946 / 0.50 0 / 0
NoC Message Parsing 897 / 0.07 0 / 0
UDP RX Processing 2912 / 0.25 9.5 / 0.44

UDP TX Tile 10128 / 0.86 9.5 / 0.44
Router 5955 / 0.50 0 / 0
NoC Message Parsing 658 / 0.06 0 / 0
UDP TX Processing 3105 / 0.26 9.5 / 0.44

Beehive TCP/UDP stack 144491 / 12 84.5 / 4
Beehive TCP Layer 41677 / 3.5 25 / 1.1

TCP RX Processing 10304 / 0.87 9 / 0.4
TCP RX Router 8847 / 0.74 0 / 0

Limago TCP/UDP stack 116948 / 9.9 155 / 7.2
Limago TCP Layer 52134 / 4.4 99 / 4.6

TABLE VI: Lines of code per new tile instantiation in Beehive

for end-to-end applications. XML configuration numbers are

given as LoC for declaring the tile plus the LoC to add it as

a destination.

Lines of Code

XML Config. Verilog Top Level

Reed-Solomon 25 + 6 13
Viewstamped Replication 18 + (6×# of UDP tiles) 17

implemented service (network function or application) into the

design for our three designs. Results are shown in Table VI.

I. Scalability

We did two experiments to evaluate the scalability of

Beehive: one bandwidth-oriented and one hardware resource

oriented. For the bandwidth-oriented experiment we repeated

the UDP echo experiment in cycle-accurate simulation, dupli-

cating the UDP stack and adding a simple load-balancing tile

at the front that splits flows evenly between the stacks. The

maximum goodput the load balancer can achieve is 32Gbps

for 64-byte UDP packet since each takes 4 cycles to process at

the load balancer: 3 for the NoC message and 1 recovery cycle.

We hit the maximum possible goodput of the load-balancer of

32Gbps for 64-byte packets. With two stacks, at small packet

sizes, we also roughly double the bandwidth as with one stack.

This performance difference decreases at larger payload sizes

and both stacks converge to the maximum possible goodput

of the network link.

To evaluate hardware resource usage scability, we duplicate

echo application tiles connected to a UDP stack. On the Alveo

U200, we can place 22 application tiles and 28 tiles total.

We are limited by timing rather than resource utilization; the

critical path is between NoC routers. Each router is fairly

expensive, because the 512-bit width of the bus results in a

number of high-fanout wires. This is exacerbated by the fact

that the FPGA part in the Alveo U200 is made up of several

chiplets, and chiplet crossings add significant delay. Several

FPGAs [1], [78] now support hardened NoC resources and

could improve the quality of results.
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Fig. 12: Packet size vs. goodput for a UDP echo application,

running on Beehive with multiple network stacks instantiated.

2 network stacks maxes out the load balancer’s throughput.

VIII. RELATED WORK

A. Packet processing

PANIC [49] is a smartNIC framework that supports integra-

tion of arbitrary packet processing elements, including general

purpose cores. Unlike Beehive, PANIC targets packet process-

ing rather than full-stack support for application accelerators.

PANIC uses a similar model to Beehive of chaining message-

passing elements over a NoC, but it relies on a crossbar,

limiting scalability. While PANIC does not directly address

deadlocks, its central scheduler drops packets when it runs

out of buffer space, preventing deadlock. However, this makes

integrating RPC/TCP applications into PANIC is challenging,

since it assumes that operations occur on a packet level and the

scheduler may drop an acknowledged packet, violating TCP

semantics.

ClickNP [47] is an FPGA-accelerated packet processing

framework that also supports the integration of arbitrary pro-

cessing elements. However, it does not use a NoC. Instead,

components are directly connected via FIFOs, which makes it

harder to replicate elements. Since ClickNP aims to accelerate

software network functions, it lacks support for higher-level

network protocols and direct-attached accelerators. It further

assumes a PCIe connection to a CPU, which it relies on for

control-plane configuration.

Rosebud [42] is an FPGA framework for middleboxes. It

uses an interconnect to connect custom processing elements

they call reconfigurable processing units (RPUs) that can

include accelerators. Because it targets middleboxes, they

do not evaluate a network stack with full reliable transport

protocol support. While it does provide support to chain RPUs,

they acknowledge it was not designed to do so, and inter-RPU

traffic has a fairly significant latency penalty.

A more restrictive approach leverages reconfigurable match-

action tables. An action (e.g. strip a header, rewrite a field,

drop a packet) is taken based on some header fields in the

header of the packet. Typically, there is a pipeline of these

processing elements [11], [30], [40]. However, match-action

style processing is not well-suited for highly stateful process-

ing [62] typical of application-level offloads. Other models

have been proposed for stateful packet processing. Flowblaze

uses an FSM-based model [62]. However, they specifically
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say that workloads above the transport layer are out of scope.

hXDP proposed a processor for eBPF bytecode [12] designed

for offloading kernel-level eBPF programs. Because of its

sequential execution model, hXDP performs best on small

programs and is a poor fit for more complex processing such

as Reed-Solomon encoding.

B. Transport protocol offloads

Another related vein of work are transport protocol offloads.

Most of these are TCP offload engines available as custom

chips [16] or encrypted IP cores for FPGAs [25], [56], [77].

They generally do not support the full range of functions found

in datacenter network stacks.

Some TCP offload engines could potentially support mod-

ification. Limago [66] is an open-source TCP and RoCEv2

offload engine written in Vivado HLS. However, it does not

provide any specific APIs or hooks for adding other proto-

cols, so introducing a new network function or new protocol

would require fairly extensive modifications to the stack itself.

Tonic [4] is an open-source implementation of the TCP send

path and supports customization of the transport protocol, but

does not address any lower-level packet processing layers;

it also lacks a complete receive path implementation. Flex-

TOE [69] is a software implementation of TCP offload engine

using the Netronome DPU, a processor designed specifically

for network processing that is programmable using C or eBPF.

While they do support network functions, their work targets

TCP offload for CPUs while our work shows that a direct-

attached hardware accelerator does not need a CPU core to

support software stack functionality.

Microsoft Catapult’s FPGAs use a custom transport protocol

called LTL [13], which is a reliable transport protocol over

UDP. Similar to most TCP engines, it is presented as a fixed

IP core with no interface for extension. Catapult also supports

a single-layer RMT, used for network virtualization [30].

However, it is unknown if these are ever combined and if

so, how it would support new protocols or network functions.

IX. CONCLUSION

Modern datacenter networking relies on a variety of network

functions and protocols, but current hardware network stacks

fall short on these features. As datacenters continue to of-

fload computation to accelerators, it is becoming increasingly

important to enable direct-attached accelerators to reduce

network overhead. In this paper, we presented the design and

implementation of Beehive, a NoC-based network stack for

direct-attached accelerators that is customizable and supports

the variety of protocols and management functions needed

for datacenter networking. We demonstrated that Beehive can

combine replicated protocol elements and replicated applica-

tions for higher bandwidth, provide consistent low latency,

with minimal overhead. We have open-sourced Beehive for

reuse at https://github.com/beehive-fpga/beehive.
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ARTIFACT APPENDIX

A. Abstract

Beehive is a NoC-based network stack for direct attached

accelerators designed to enable flexible construction of com-

plex network functionality in hardware. This appendix outlines

the steps to access Beehive. All files necessary to build the

various artifacts for the experiments in the paper are available

in the Beehive repository.

Full evaluation and reproduction of evaluation results re-

quires testbed access to a 100 Gb switch, at least 4 100

Gb NICs, and an Alveo U200 FPGA. It also requires access

to Vivado 2021.2 to build the hardware designs. Simulation

requires access to Python and ModelSim 2019.2.

B. Artifact check-list (meta-information)

• Program: Vivado 2021.2, ModelSim 2019.2
• Compilation: Follow the directions inside
beehive/README.md

• Hardware: Alveo U200/U250
• How much disk space required (approximately)?: 200 MB
• Publicly available?: Yes, see below
• Code licenses (if publicly available)?: BSD 3-Clause
• Data licenses (if publicly available)?: BSD 3-Clause
• Archived (provide DOI)?: https://doi.org/10.5281/

zenodo.13308868

C. Description

1) How to access: Beehive is accessible at https://

github.com/beehive-fpga/beehive

D. Installation

Please refer to the instructions inside beehive/README.md

E. Evaluation and expected results

Each hardware build needs some sort of input data to run

on. You are expected to connect to the hardware via TCP or

UDP and send the appropriate packets to drive the device and

to fetch evaluation information from the device. If simulating,

the simulation driver will drive the design. In this case, you

should see outputs relating to that run.

F. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-

review-and-badging-current

• https://cTuning.org/ae
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