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Emergent modified gravity: Polarized Gowdy model on a torus
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New covariant theories of emergent modified gravity exist not only in spherically symmetric models, as
previously found, but also in polarized Gowdy systems that have a local propagating degree of freedom.
Several explicit versions are derived here, depending on various modification functions. These models do
not have instabilities from higher time derivatives, and a large subset is compatible with gravitational waves
and minimally coupled massless matter fields traveling at the same speed. Interpreted as models of loop
quantum gravity, covariant Hamiltonian constraints derived from the covariance conditions found in
polarized Gowdy systems are more restricted than those in spherical symmetry, requiring new forms of
holonomy modifications with an anisotropy dependence that has not been considered before. Assuming
homogeneous space, the models provide access to the full anisotropy parameters of modified Bianchi I
dynamics, in which case different fates of the classical singularity are realized depending on the specific

class of modifications.
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I. INTRODUCTION

The canonical formulation of spherically symmetric
general relativity has recently been shown [1,2] to allow
a larger class of modifications than is suggested by the
more common setting of covariant action principles. In this
framework of emergent modified gravity, it is possible to
couple perfect fluids [3], electromagnetism [4,5], and scalar
matter [6,7] to the new spacetime geometries, including
local degrees of freedom in the latter case. Here, we show
that it is also possible to extend spherical symmetry to a
polarized Gowdy symmetry that includes local gravita-
tional degrees of freedom. This extension makes it possible
to study properties of gravitational waves in this new set of
covariant spacetime theories.

Building on previous canonical developments, starting
with the classic [8] and using more recent contributions [9],
emergent modified gravity constructs consistent gravita-
tional dynamics and corresponding spacetime geometries
by modifying the Hamiltonian constraint of general rela-
tivity and implementing all covariance conditions. A
candidate for the spatial metric of a spacetime geometry
is provided by the structure function in the Poisson bracket
of two Hamiltonian constraints, which is required to be
proportional to the diffeomorphism constraint as one of the
consistency conditions. Canonical gauge transformations
of the candidate spatial metric must then agree with
coordinate transformations in a compatible spacetime
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geometry, forming the second consistency condition that
had been formulated for the general case and analyzed for
the first time in [2]. These constructions allow for the
possibility that the spatial metric (or a triad) is not one of
the fundamental fields of a phase-space formulation. It is
derived from Hamilton’s equations generated by the con-
straints and not presupposed, giving it the status of an
emergent geometrical object. This feature is the main
difference with standard action principles in metric or other
formulations and makes this approach to modified gravity
more general than previous constructions. Examples of new
physical implications include the possibility of nonsingular
black-hole solutions [10,11], covariant modified newtonian
dynamics (MOND)-like effects [12], and new types of
signature change [13].

There is a large variety of potential physical effects that
depend on choices of modification functions. The physical
origin of an implication such as nonsingular behavior or
MOND-like effects is then related to the underlying moti-
vation for such a choice, for instance in properties of
canonical quantum gravity that could impose curvature
bounds and therefore imply nonsingular behavior, or renorm-
alization of quantum gravity in canonical form, which could
imply logarithmic terms in quantum modifications relevant
on intermediate distance scales where MOND would be
relevant. Scalar quasinormal modes on a background space-
time of spherically symmetric emergent modified gravity
have been computed in [14], showing new characteristic
features that could be used in the future to subject this
framework to observational tests. However, all these prom-
ising results were obtained for spherically symmetric models
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of gravity. For a testable and phenomenologically viable
framework, it is important to relax this symmetry condition.
Here we present the first step toward a more general
framework.

The constructions of the present paper lead to the first
model of emergent modified gravity that does not obey
spherical symmetry. Nevertheless, spherical symmetry can
be realized as a special case, allowing us to draw con-
clusions about how generic specific features seen in the
more symmetric context are within a broader setting. An
example of interest is the form of holonomy-type mod-
ifications that are often used in order to model potential
effects from loop quantum gravity. The specific form of
these modifications within a consistent and covariant set of
equations is restricted compared with what had been
assumed previously in loop constructions. The extension
to polarized Gowdy models performed here shows that
compatible modifications require significant deviations
from what might be suggested by loop quantum gravity.
In particular, the holonomy length for strictly periodic
modifications of the extrinsic-curvature dependence does
not directly depend on the volume or area of a symmetry
orbit (all of space in a homogeneous cosmological model or
a sphere at constant radius in black-hole models), but rather
on its anisotropy parameters. General covariance therefore
rules out the possibility that the holonomy length decreases
as space or a spherical orbit expands, which would be a
prerequisite to a nearly constant discreteness scale that does
not increase to macroscopic sizes as the universe expands.
Nevertheless, additional modification functions can be used
in order to implement a dynamical suppression of holon-
omy modifications on classical scales, as discussed in detail
in [15] for spherically symmetric models. The traditional
picture of models of loop quantum gravity therefore has to
be corrected in order to be compatible with a consistent
spacetime geometry. Emergent modified gravity guides the
way to a new understanding by a systematic classification
of possible spacetime modifications in canonical form.

In addition, the new gravitational models found here are
important in their own right because they have covariant
equations with modifications that do not require higher-
derivative terms and corresponding instabilities [16]. They
are therefore potential alternatives to general relativity that
could be used in comparisons with observations, provided
the symmetry assumptions can be relaxed further. Polarized
Gowdy symmetries constitute a first step in this direction,
giving access to some properties of gravitational waves. In
particular, we show that there is a class of modifications that
implies the same propagation speed for gravitational waves
and massless scalar matter traveling on the same background.

Unlike spherically symmetric models, which have a
spatially homogeneous subset of Kantowski-Sachs models
with a single anisotropy parameter, polarized Gowdy
models give full access to the Bianchi I model with two
anisotropy parameters. It is therefore possible to perform a
more complete analysis of the big-bang singularity, which

may be avoided depending on the type of modifications
used. As a characteristic property, the classical Kasner
exponents are preserved at large volume, and a nonsingular
transition from collapse to expansion happens at the same
time for all three spatial directions. We will present a
detailed analysis of these questions in Sec. VI, after a brief
review of canonical and emergent modified gravity in
Sec. II and their application to polarized Gowdy models
in Secs. III and IV with a summary of different classes of
modifications in Sec. V. Implications for covariant holon-
omy modifications in models of loop quantum gravity can
be found in Secs. III B 2-III B 4.

II. CLASSICAL THEORY

The classical polarized Gowdy system [17] is defined by
spacetime line elements of the form

ds? = —=N?dr* + qgo(d6 + N%d1)* + q,,dx* + q,,dy* (1)

with functions N, N?, and ¢, depending only on ¢ and 6.
All three spatial coordinates x, y, and € take values in the
range [0,27) for the torus model with spatial slices
T T3 = 8" xS xS Solutions with periodic boundary
conditions in @ can be interpreted as standing planar
gravitational waves with transversal area element
\/%xxqyy> moving in the O-direction in which the length
measure is given by ggy. Alternatively, solutions may be
used as cosmological models with one direction of spatial
inhomogeneity. (The periodicity condition in # may be
dropped, but it is part of the traditional Gowdy model.)

Equivalently, the spatial metric components ¢,, can be
parametrized by

EYEY EY E*

oo = P qxxzﬁg’ ny255 (2)

using the components E*, EY, and ¢ of a densitized triad

d 3} d 3}
E?Giaxazgtf:;%—i-EXGla—FEsz@ (3)

with Pauli matrices o;. In these variables, the transversal
area element is given by | /q.q,, = &

For some purposes, it is conventional to write the metric
in the diagonal case (N? = 0) in the form

ds? = e*(=dT? + d6?) + T(*Vdx* 4+ e?Vdy?)  (4)

with a new time coordinate 7". This conventional metric is
associated with the canonical metric in a gauge defined by
e=T and N = ,/qg, identifying N? = ggy=:€** and
W =In./E’/E".

If E*=EY or W =0, the geometry has an additional
rotational symmetry in the transversal planes. This con-
dition eliminates the local propagating degree of freedom
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present in the original model. If we replace dx> + dy? with
dd? + sin? 9d¢? in the line element, we obtain the general
form of spherically symmetric models. In this case, it is
more common to choose a gauge fixing in which gy,
analogous to & in the polarized Gowdy model with
E¥ = E”, is related to the radial coordinate instead of time.
Moreover, from standard solutions in this case it follows
that the static gauge choice in spherical symmetry, given by
vanishing extrinsic curvature, implies an inverse relation-
ship between the lapse function and the radial metric
component.

Specific solutions of spherically symmetric models and
the polarized Gowdy model, even for W =0, therefore
appear quite different, but formally we will see that the
models are closely related in their canonical properties. The
main difference implied by using spherical symmetry orbits
instead of planes is the presence of additional intrinsic-
curvature terms in the Hamiltonian constraint that depend
on spatial derivatives of ggy in a spherically symmetric
model. It is less obvious that even the general polarized

Gowdy model with W # 0 can be related to a spherically
symmetric model, provided the gravitational variables in
the latter case are coupled to a spherically symmetric scalar
field. Seeing this relationship will require a suitable
canonical transformation of the Gowdy variables.

A. Canonical formulation

The densitized-triad components are canonically con-
jugate to components of extrinsic curvature, implying
canonical pairs (K., E*), (K,,E”), and (A, &) and the
symplectic structure

1
Q= :/ do(dK, A dE* +-dK, A dE” +-de AdA)  (5)
K

with ® = x/(47%) = 2G/x in terms of Newton’s constant
G. We will work in units such that & = 1.

The classical Hamiltonian and diffeomorphism con-
straints with a cosmological constant are [18]

1 , 1 & Loy Le L, le
H=- T ~eEE'A+ K E'K B + (K E* + K E)eA+ 5 s (B (EY) 4 5 1 (BY)'e 4 5 (EY)'e
1 ¢ 1 & 1
— 2y (E))? = (EY))? = (¢) —ee”
4(E)? 4(E*)? 4

1

=— (—eE*E'A + E*K 'K, + (E*K, + E'K,)eA) -~

VE'EYe

and
Hy :EXK;+E-VK§,—A5’, (7)

where the primes are 0 derivatives. The smeared constraints
have Poisson brackets

{Ho[N°], HolM?]} = —Ho[M°(N?) = N°(M°)']. (8)
{H|N]. Hy[M°]} = —H[M°N'], ©)
{H[N]. H[M]} = —H[q"(MN' = NM")]  (10)

of hypersurface-deformation form, with structure function
q” = e/(E*E”) directly given by the inverse metric
component in the inhomogeneous direction. From general
properties of canonical gauge systems [19,20] it then
follows that the gauge transformations for the lapse
function N and shift vector N¥ are given by

/

(e - 4(en VE/E))?) + < \/%>I

(6)

1 1

4EEe

5.N =& + e?N' — N?(e) (11)
and
5N =& +e?(N?)' = N?(e?) + ¢ (’N' = N(°)'). (12)

In the classical theory it is clear that the inverse of the
structure function, ggy = 1/¢%, obeys a covariance con-
dition as a component of the spacetime metric. More
generally [2], covariance conditions can be directly for-
mulated for phase-space functions such as a structure
function in a modified theory. They implement the general
condition that gauge transformations of any candidate
spacetime metric component, generated by the canonical
constraints, must be of the form of a Lie derivative by a
spacetime vector field. Using explicit expressions for gauge
transformations generated by the constraints on a given
phase space, this general condition can be written as a set of
partial differential equations that the constraints have
to obey.
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These covariance conditions, derived in [2] for spherical
symmetry, are more complicated for polarized Gowdy
models because the phase space is larger and the line
element is a more complicated function of the phase-space
variables. For the homogeneous component ¢,, we obtain
the conditions

1 (oH oH \' 1 (oH oH \'
S (B, ¥ il S (Pl ¥ [t
EY \ 0K}, oKy E* \ 0K, oK'/

1 /oH o0H \’
== o 22 =0 13
- € <0-A/ <0~A//> ) 0.. (13)
and
1 oH 1 oH 10H
e Bt =0, 14
EY aK;’ E* 0K" * edA" |5 (14)

where “O.S.” indicates that the equations are required to
hold on-shell, when constraints and equations of motion are
satisfied. For our modified constraints, we assume spatial
derivatives up to second order; otherwise, there would be
additional terms in these equations. The x <> y exchange
symmetry of the constraint allows us to simplify these
on-shell conditions to

OH o0H 1 0H 1 0H
oA 0A”  E'OK, E*0K,
1 0H 1 0H
T P oK] EOK]

(15)

which is clearly satisfied by the classical constraint even
off-shell. The same condition is obtained from the other
homogeneous component, g, .

For the inhomogeneous component, the covariance
condition reads

o({q”. H[e"]})

_a({¢™. HI"Y)
a(e())/

a<€0)// 0.. B

07
0s.

(16)

which is also satisfied by the classical constraint because it
does not contain any derivatives of K, K, or A that would
introduce a dependence of the Poisson brackets on spatial

Hy = E'K + E'K), — A¢’
L (Pat KVE'E®
2 E*

=aK' + PV‘VV_V/ — A€,

while the Hamiltonian constraint (6) reads

'
+5E

2

derivatives of €” upon integrating by parts. For this result, it
is important to use the classical property that the structure
function g% is independent of the canonical variables
conjugate to the triad components. This property is no
longer required in emergent modified gravity.

The gauge transformations of lapse and shift, Eqs. (11)
and (12), and the realization of the covariance conditions,
Egs. (15) and (16), ensure that the spacetime line element
(1) is invariant, or the spacetime metric g, iS covariant in
the sense that the canonical gauge transformations of the
metric reproduce spacetime diffeomorphisms on-shell: We
have

5eg;w|0.s. = 'cf:g;w|0.s.7 (17)
where the gauge functions, (e°, €?), on the left-hand side are
related to the 2-component vector generator, & = (&', £9), of
the diffeomorphism on the right-hand side by

&= Ot 4 st = Ept 4 g0 (18)
with components
0 0
r_ € 0_ 0_C€ no
=—, =" ——N" 19
g=5. P=d- (19)

B. New variables

It is convenient to perform the canonical transformation

Py = K,E* — K E’, W =1In IS
K.E*+ K EY
C_l:\/EXEy, K:ﬁ, (20)

with W and K as the configuration variables, and Py, and @
their respective conjugate momenta. The canonical pair
(A, ¢) is left unchanged by this transformation.

The diffeomorphism constraint in these variables is form
invariant,

EY

y (—PW + KJW)’ .

(21)
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= \/E%E)S (—eE*E’A + E*K 'K, + (E'K, + E'K, )e.A)
-7 (@2 - stetn VETEYY) + (J£5)
= —\/e {a (—A + f—z + Ké) - i <€22 % - %ﬁ] + ;]ea (% + Ze(W’)2> (22)
|
in these new variables. The first parenthesis resembles the Py — —Py, W—-W, x<y,  (206)

Hamiltonian constraint of a spherically symmetric model,
while the last term expresses W in the form of a scalar field.
This relationship will be discussed in more detail in
Sec. 11 D.

The spacetime metric

ds? = —N2dr* + ggp(d0 + Nd1)? 4 ¢, dx* + q,,dy*  (23)
now has the spatial components
a 20 20
9o0 = ;7 Gxx = € We’ qyy = e We' (24)

The new variables therefore closely resemble the conven-
tional choice used in (4).

C. Symmetries and observables

Given a potentially large class of modifications, it is
useful to impose guiding principles such as the preservation
of important symmetries of the classical system. For the
models considered here, there are discrete as well as
continuous symmetries.

1. Discrete symmetry

The constraints (6) are symmetric under the exchange
E* < E’, K, < K, while the full line element (1) has the
same symmetry provided the coordinates are exchanged
too, x <> y. The complete discrete transformation is then
given by

EY < E7,

K, < K

e X < y.

(25)
This important symmetry implies the existence of an x-y
plane of wave fronts, in which the two independent
directions are interchangeable (while we do not have
isotropy in this plane unless E* = E”). The modified theory
should therefore retain this symmetry as an important
characterization of the polarized Gowdy system. In the
new variables, the discrete transformation takes the form

which is a symmetry of the system (21)—(24).

2. Continuous symmetries and related observables

Field observable. Another advantage of the new varia-
bles is that the constraint (22) is manifestly invariant under
the transformation W — W + @ where o is a constant.
Therefore, the phase-space functional

Glw] :/dePW (27)
is a symmetry generator:
{Glw]. HIN]} = {Glo]. Hy[N’]} =0, (28)

where we neglect boundary terms.

This property in turn implies that G[w] is a conserved
global charge because G|w] = {G[w], H[N] + Hy[N]} =0.
Furthermore, as discussed in [6], the boundary terms
that survive under the transformation of the local charge
take the form G = —9,J%, which takes the form 9,J* =
V,J# =0 of a covariant conservation law for a spacetime
densitized 4-current with components

oH \’
- N2
(v3)

Mass observable: In the limit of Py =W =0, the

expression
e g \?2 N Ae
2a 3

I'=G="Py,

V‘V/
2632 — (29)

M= Ve

. (30)

is a Dirac observable.
D. Analogy with spherical symmetry

In the new variables, the constraint (22) is close to the
spherically symmetric constraint coupled to a scalar field.
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In this subsection we will point out in detail how the two
models are related.

In a spherically symmetric model, the spacetime line
element can always be written as

ds? = —N2d2 + g2 (dx + N*dr)? + ¢2'dQ?,  (31)
where dQ? = dd? + sin> 9d¢p? in spherical coordinates.

(We use the conventional notation of calling the radial
coordinate in a spherically symmetric model x when a
coordinate choice has not been made yet. The notation as a
radius r would then be reserved for the area radius in which
case gg9 = r*. We use the same letter x for one of the planar
coordinates of polarized Gowdy models, but the context of
a given model will make it clear which coordinate x refers
to.) As initially developed for models of loop quantum
gravity [21-23], it is convenient to parametrize the metric

sph h
components gyvx and gy as

h (E¢)2 h
q)SCI))C - Ex ) q,?g% - EX’

(32)

where E* and E? are the radial and angular densitized-triad
components, respectively. We assume E* > 0, fixing the
orientation of space.

Hsph

A K; ik K
Ex+Ex+ </’Ego

1
2

with a scalar potential V(¢) [or 5V(¢), depending on
conventions], and

HP = E?K!, — K (E*) + Py (35)
is the diffeomorphism constraint. The primes denote
derivatives with respect to the radial coordinate x, which
is unrelated to the coordinates of the Gowdy model. These
constraints are first class and have Poisson brackets of
hypersurface-deformation form,

{HIINY, B M)} = HP'[N*MY = N¥M¥),  (36a)
{H"N[N], HP[M*)} = —HP [M*N'), (36b)

{HP[N], H[M]} = H¥ (g5, (NM' = N'M)]  (36c)

with the structure function gg;, = E¥/ (E?)? equal to the
inverse radial component of the spacetime metric.

q I
SPhP 2+Ex quh(¢/)2+

The canonical pairs for spherically symmetric classical
gravity are given by (K, E?) and (K, E*) where 2K, and
K, are components of extrinsic curvature. We have a
further canonical pair (¢, P,) if scalar matter is coupled to
the gravitational system. The basic Poisson brackets are
given by

{K(x), E*(y)} = {K,(x), E”(y)}

={9(x). Py(y)} = 6(x—y).  (33)

(Compared with other conventions, our scalar phase-space
variables are divided by /47, absorbing the remnant of a
spherical integration. We use units in which Newton’s
constant, G, equals one. This convention is formally
different from what we are using in Gowdy models, where
2G/r equals one. The discrepancy is necessary in order to
take into account the difference in coordinate areas for the
symmetry orbits, given by 477 in the toroidal Gowdy model
and 4z in spherical symmetry, as well as the varying
multiplicity of independent degrees of freedom in the
homogeneous directions.)
The Hamiltonian constraint is given by

LB EYE) (B
AE" EY (E"? E”
q;aha)), (34)

The off-shell gauge transformations for lapse and shift

5N =&+ e'N -
5.N* = & + €*(N*) —

Nx( 60)/,

NY (€)' + g5 (€N = N ("))
(37)

together with the realization of covariance conditions for

spacetime,

aHsph aHSPh
: - =...=0 (38)
oK' |os JK% |os
and
g AT _olagn BTN
0(60)/ 0s. 0(60)// 05, s
(39)

which have been derived in [2] and are clearly satisfied,
ensures that the line element (31) is invariant. Its
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coefficients then form a covariant metric tensor in the sense
that its canonical gauge transformations reproduce space-
time diffeomorphisms on-shell:
569}!1/‘0.5. = ‘cfg/w- (40)
The gauge functions (e° ¢") on the left-hand side are

related to the 2-component vector generator & = (&', &") of
the diffeomorphism on the right-hand side by

&= Ont 4 ¥t = Ei 4 EsH (41)
with
e €0
1 = —, X == X — *Nx. 42
SN SEC-y (42)

In addition, the realization of the covariance conditions
for matter [6],

5e¢|0.s. = £5¢~ (44)

Finally, we note that the spherically symmetric system in

the absence of a scalar potential permits the global
symmetry generator

G*a] = / dxaP,, (45)

with constant a. The gravitational mass observable is

Mseh :€<1+K§,— <(2EE2I>2—§EX), (46)

which is a Dirac observable in the vacuum limit,

We are now ready to identify the analog relationship
between the Gowdy and the spherically symmetric models.
By inspection, we find that relabeling the canonical pairs

QH™  QHPh according to
e 3)
’ ’ (A.e) = (K. EY),  (K.a) = (K, E?),
ensures that the matter field transforms as a spacetime (W.Py) = (¢, Py) (47)
scalar in the sense that its canonical gauge transformations
reproduce spacetime diffeomorphisms on-shell: turns the Gowdy constraints (21) and (22) into
K2 K 1 ((Ex)/)z (E(/;)/(Ex)/ (Ex)// qea
H = —/E* E?® 4L g X)) _ P24+ EX 00 ( 4\2 48
{ (4E"+ *”E¢> i B (e | Taw P TEVETES 48
|
and gravity.) We thus conclude that the modified Gowdy
constraint is equivalent to the spherically symmetric one
Hy = E’K,, — K.(E*) + P,¢', (49)  up to the choice of modification functions. In arriving at

respectively, and the Gowdy metric components (24)
become

(BY

qae = T’ qxx — 62¢Ex, qu — e—2¢Ex.

) (50)

Up to a few numerical factors, all the terms in the Gowdy
constraint (48) match those of the spherically symmetric
constraint (34) except for the first and last terms of the
latter: The inverse triad 1/E* and the scalar potential V do
not appear in the former. In the general modified constraints
of the spherically symmetric system [6] these two terms are
just the classical limits of modification functions that are in
principle allowed to be different from what the classical
dynamics requires. (The scalar potential may always be set
equal to zero in order to define a specific model, while the
1/E*-term is a special case of the dilaton potential that
would be a free function of E* if the spherically symmetric
model were generalized to two-dimensional dilaton

this conclusion, we have implicitly assumed that all of the
conditions imposed in [6] to obtain the general constraints
apply to the Gowdy system as well. We now show that this
is indeed the case.

The conditions for the modified theory considered in [6]
are the following ones. (1) Anomaly freedom, (2) covari-
ance conditions, (3) existence of a conserved matter
current, and (4) existence of a vacuum mass observable.
Anomaly freedom of the Gowdy model takes exactly the
same form as in spherical symmetry because the structure
function of the former, Eq. (50), is equivalent to that of the
latter, Eq. (32). The covariance conditions of the Gowdy
system, Egs. (15) and (16), are also equivalent to the
spherically symmetric ones, Egs. (39) and (43), upon using
the analog identification (47). Finally, the Gowdy sym-
metry generator (27) is identical to the spherically sym-
metric one (45) under the same identification, while the
Dirac observables (30) and (46) are identical up to one term
that in the modified theory is given by the classical limit of
a modification function. Therefore, all the classes of
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general modified constraints obtained in [6] are also the
results of applying these conditions to the Gowdy system, if
we only invert the correspondence.

In fact, there is one additional condition of the Gowdy
system that the spherically symmetric one does not have:
The discrete symmetry discussed in Sec. IIC 1. In this
sense the Gowdy system is more restricted than the
spherically symmetric one. Therefore, we can simply take
the final results of [6] and impose the discrete symmetry
on them.

ITI. LINEAR COMBINATION OF THE
CONSTRAINTS

Before discussing general modifications, an interesting
restricted case is given by linear combinations of the
classical constraints with suitable phase-space dependent
coefficients. By construction, this class of theories pre-
serves the classical constraint surface but modifies gauge
transformations and the dynamics, implying a nonclassical
emergent spacetime metric if the covariance conditions are
fulfilled.

A. Anomaly-free linear combination

We define a new candidate for the Hamiltonian con-
straint as

H™Y) = BHCY) 1 AH, (51)

with suitable phase-space functions A and B, using the
original constraints H©Y and H, of the classical theory
and keeping the latter unchanged. We consider the phase-
space dependence B = B(K, e, W). (For more details about
the individual steps, see [6].)

The Leibniz rule allows us to reduce the new bracket
{H®")[¢,], H"V)[¢,]} to Poisson brackets of the old
constraints with the functions A and B. Using the derivative
terms of the classical constraints, Poisson brackets relevant
for the anomaly freedom and covariance conditions can be
expanded by finitely many terms with different orders of 8-
derivatives of the gauge functions. For instance, we can
write

{B.HOWE} o = Be® + B0y’ .- (52)

with

= e (53)

Anomaly freedom of the new constraints, using hypersur-
face-deformation brackets for the old constraints, then
requires

¢ OB
A=-B=—\/e—— 54
‘77 0K (54)
because any term in {H®W[e,], H"V)[e,]} that is not
proportional to the diffeomorphism constraint must can-
cel out.
Similarly, we can write

{A, HOW[E]} = A% + A%9,e° (55)

in which anomaly freedom together with (54) implies
€ 0B (¢)? B

-S| K—=+—=—]). 56
a’ < oK (56)

A? =
a* o0K?
Using this new function, the bracket

{A?, HEW[E0]} = A% + A%9,e° (57)
requires
&2%¢ (0B B ()2 0B
A = — ——.
a* (6K+3 FTCA 6K3) (58)

The new structure function,
) = B+ BA (59

follows from collecting all terms in the Poisson bracket of
two Hamiltonian constraints that can contribute to the
diffeomorphism constraint.

B. Covariant modified theory

Using the new structure function as an inverse spatial
metric, the covariance condition is given by

C =A 9 - _IBHA9|O_

3/2 ' /OB aZB /\2 aSB
(s s
a 0K oK a” oK
%' 0B [ 0B (¢) B
B' — (K— — | =0. 60
a aK< K@ 61{2) (60)

We separate this condition into derivative terms,
C = Cé'g/ + C€8€(€/)3’ (61)

which must vanish individually. The equation C, =0

implies
0B\ 2 *B 0B
K(— B|K——-—]=0 62
() +s(x5m-%) -0 @

and is solved by
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B:CIN/Cz:th. (63)
The equation C,,.. = 0 implies
B 0B J’B
— ——=0 64
oK? * 0K 0K? (64)
and is solved by
B = \/¢ + K* + &K. (65)

In these solutions, ¢; and &; are free functions of W and e.
Their mutual consistency requires

e sA’K
A, = dgV/E— ————— 67
@Ik (©7
such that
sA2 (&) e
q?r?ew) = /1(2)<1 + 1 —si2K2 &2 ? (68)

There are two remaining free functions, 1, = Ay(W, €) and
A= A(W,e), and we have separated the sign s = &1 from
the original solution, Eq. (63). Reality requires that
1 — sA>K? > 0, which may place an upper bound on K
depending on s and A. Finally, the discrete symmetry
requires that both modification functions are even in W:

B,(K,W.,e) = V1 - s2°K>, (66)  Ay(W,e) = Ag(—W,¢) and A(W, ) = A(-W, ).
Since we now have complete solutions for A and B, we
which then implies can derive the modified Hamiltonian constraint from (51):
|

K2 1 p2_ W/ 2 1 N2 =1/ "

H(new):—ﬂo\/g\/l—sﬂsz a ———_—‘;V éK —EQ——@—Fa_;‘ —ET

4e 4dea a a 4e a a a

e  sPK _

The case s = 1, together with a reality condition for the constraint, implies a curvature bound K < 1/4. The case s = —1

implies a possibility of signature change where q“(‘;fem
absolute value of (51).]

changes sign. [The inverse spatial metric is then determined by the

1. Canonical transformations

For the case s = 1, a natural canonical transformation is

sin(AK) _ a
K — s a— ,
A cos(4K)
- - a 0 (sin(AK)
W W, P‘ P' - f—— N
~ W cos(1K) oW ( A >
a 0 (sin(AK)
, — , 70
eTe A_)/H—cos(/IK)as A > (70)
under which the modified Hamiltonian constraint becomes
1 sin?(AK) 1 Py 0lnd tan(AK)dInA\?2
H© =} i ———— — —cos?(AK) [ X -2k =
0*/5{“ (4e 7 2. )( a ow T aw
sin(2AK) (A 0lnA tan(AK)oln A
+ M —+ K — ( )
24 a Oe A Oe
W')? ) ae sin(2AK) [Py dlni wW'e
- K) +—cos2(AK) — 22 W_Z Tk
g——"-cos (AK) + 52 Cos (AK) — A 52 2 oW p
cos?(AK) sin(2AK) (A  0lnA () &
- -2 = K — —cos?(AK)]|. 71
( 4e 22 <a+ e >> a et )} 70
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A second canonical transformation,

y) A
K —--K, a—=a,
A A
oW, Py Pytia®Biy
- W, v — Py -a———K,
W VT ow
A_0lnA
, -2z K, 72
e—>e¢ A- A 1975, (72)

with constant A, renders the modified Hamiltonian constraint periodic in K:

Y asin’(AK) a Py
e = gt e 2UK) A ok (P B0l
Oi\/ELe 7 2 )( a 7

tan(1K) 0ln/1>2 sin(2_/_1K) (

A—-a——=

ow A Oe

_tan(AK)odIn2
24

- (W2 [cos*(IK) oA
— ecos? (1K ( b
ecos’(4K) =2 +< 1 oW 27

_ a/gl E//
‘I’ COS2(AK) <? — T):| .

a

[The term (d1nA/0e)K in (71) then disappears.] Unlike
the phase-space coordinates in (69), the holonomylike
coordinates of (71) imply a finite constraint at the curvature
bound, implying a dynamics that can cross such a hyper-
surface of maximum curvature.

The expression

sin(AK) = sin (A(E*K, + E°K,)/VE'E")  (74)
in the periodic version of the constraint always requires a
nontrivial dependence on the densitized triads, in contrast
to what appears in the corresponding K-dependent terms of
spherically symmetric models, or of a restricted Gowdy
system in which E* = E” and K, = K, and the argument
of periodic functions is a single K-component. In the full
polarized Gowdy model, some densitized-triad dependence
always remains even if the initial function A, which may
depend on ¢ as well as W, has been replaced by a constant 1
using a canonical transformation. The specific phase-space
function in (74) can be related to the (x, y)-contribution to
the trace of the momentum tensor K', canonically conjugate
to E¢, given by KiE¢/\/|detE| = e¢K'. In general,
however, the expression in emergent modified Gowdy
models is not equal to the trace of extrinsic curvature in
the resulting emergent spacetime for two reasons. First, the
phase-space expressions E¢ and K, have modified geo-
metrical meanings compared with the classical densitized
triad and extrinsic curvature of spatial slices because the
geometry is determined by the emergent metric. Second,
the momentum tensor K, with components that appear in
(74) has been altered by several canonical transformations
applied in our derivations.

» sin(24K) P_W> W' <cos2(/_1K) <1 _48M> 2 sin(24K) A) (¢')?

a

de Oe 21 a a

(73)

2. Interpretation as holonomy modifications

Periodic K-dependent functions in modified constraints
are often interpreted as potential effective descriptions of
loop quantum gravity. This canonical approach to quantum
gravity defines a Hilbert space of wave functions that
depend on a gravitational connection A/, (the Ashtekar-
Barbero connection) through matrix elements of SU(2)
holonomies, P exp(i [ Alo;dx*) with SU(2)-generators o;.
Since SU(2) is compact, it is possible to use a well-defined
measure on the state space and represent holonomies as
bounded operators. The Hamiltonian constraint should then
also be expressed in terms of holonomy functions in order
to act on the state space. This step requires modifications of
the polynomial dependence of the classical constraint on
Al for instance by instead using periodic functions as
obtained from certain matrix elements of SU(2) holono-
mies. As a motivation, it is argued that the fundamental
Hamiltonian constraint, for instance for the dynamics of
some discrete quantum geometry, is expected to equal the
classical constraint only at low curvature, while its general
properties should be determined by consistency conditions
within a framework of quantum gravity, such as represent-
ability on a given state space and anomaly freedom.

In models of loop quantum gravity, it is common to
forego using operators and instead analyze the dynamics
implied by modified constraints on a classical phase space.
Periodic modifications of the connection or extrinsic-cur-
vature dependence are still referred to as holonomy modi-
fications in this context. However, relating the K-terms
in (73) or (71) to traditional holonomy modifications in
models of loop quantum gravity therefore requires some
care because the additional dependence on E-components
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differs from what has usually been assumed. Compared
with the traditional approach, there are two crucial new
ingredients in our treatment: A strict imposition of covari-
ance, and a detailed discussion of how canonical trans-
formations can be used to relate different types of
holonomy modifications (or in some cases to relate a
supposed holonomy modification to the unmodified
classical theory).

Any appearance of triad components in holonomylike
terms in models of loop quantum gravity is usually
motivated as a volume or area dependence of the coordinate
length of a holonomy used to construct the Hamiltonian
constraint. This property is not derived from fundamental
operators but rather imposed phenomenologically, mainly
in order to achieve certain desired properties in cosmo-
logical models such as classical behavior at large volume.
In particular, dynamical solutions lead to large symmetry
orbits, such as all of space in homogeneous models of an
expanding universe or spherical orbits in nonrotating black-
hole models. As a consequence, extrinsic-curvature com-
ponents, given by linear combinations of time derivatives of
the metric or triad components, can be large even in
classical regimes. Their appearance in holonomies is then
in danger of violating the classical limit on large length
scales. This problem can be solved in an ad hoc manner by
using a length parameter for holonomies that decreases
with the size of increasing symmetry orbits, such that
holonomy modifications are negligible even when some
extrinsic-curvature or connection components become
large. Heuristically, such a dependence can be motivated
by lattice refinement [24], relating the holonomy length to a
lattice structure in space that is being subdivided as the
symmetry orbit expands, maintaining sufficiently short
geometrical lengths of its edges.

Comparing with this motivation, the specific version of
holonomylike terms of the form (74) found here, required
for covariance, is crucially different: The coefficient func-
tions of K, and K, can both be expressed in terms of
E*/E’ = \/q,,/q.. = ¢”*V, which describes the geomet-
rical anisotropy in the x-y plane but is independent of its
area , /q,.q,, = ¢. Analyzing the general form of potential
physical implications of this difference requires us to
perform a detailed analysis of canonical transformations
used here to arrive at the expression (74).

3. Phenomenology of holonomy modifications

In this context, it is useful to consider possible forms and
interpretations of holonomy modifications for models of
loop quantum gravity in the strictly isotropic context
[25,26], in which spatial homogeneity eliminates the
non-trivial covariance conditions. (See also [15] for a
related discussion in spherical symmetry.) Extrinsic curva-
ture (or a connection with its associated holonomies)
reduced to isotropy has a single independent component,
k, canonically conjugate to the independent densitized-triad

component p. (We assume p > 0, fixing the orientation of
space.) Classically, using the scale factor a, we have k « a
and p « a®. Holonomies for U(1), or suitable components
of holonomies for SU(2), are then of the form exp(iZk)
with the coordinate length # of a spatial curve, derived from
the general Pexp(i [ Alo,dx*) for an isotropic A} « &,
with generators o; of the gauge group. The geometrical
length of this curve in an expanding universe increases like
Za and may therefore reach macroscopic values after a
suitable amount of time. Similarly, k x @ = aH with the
Hubble parameter H is an approximately linear function of a
in a universe dominated by dark energy or during inflation.
The exponent £k is then large in a macroscopic universe,
such that modifications would be noticeable on low curvature
scales and contradict cosmological observations.

This problem can be solved phenomenologically by using
a coordinate length or holonomy parameter # «<a~' o p~'/2,
such that the geometrical length is constant in an expanding
universe. The relevant phase-space function exp(iZk/ VD)

with a constant 7, then depends on extrinsic-curvature and
densitized-triad components. It is easier to quantize this
expression if one first applies a canonical transformation that
turns k//p into a basic canonical variable. Classically, this
ratio is proportional to the Hubble parameter H, and the map
from (k, p) to H can be completed to a canonical trans-
formation by using the volume V « a® of some region in
space, whose precise form does not matter thanks to
homogeneity and isotropy. It is then possible to quantize
exp(iZH) to a simple translation operator in V.

Different versions of holonomy modifications are
obtained by introducing periodic functions depending on
different variables, such as k or H. The classical contribu-
tion to the isotropic Hamiltonian constraint can be written
as /pk?> = p¥?(k/,/p)* x VH?. Holonomy modifications
may then be introduced for k or H (or any function
of the form p%k with some exponent ¢), leading to
dynamically inequivalent modifications of the form H; =
VP sin?(¢k)/€* and H, = Vsin?(FH)/£?, respectively.
The latter can be transformed back to k-variables, implying
a term proportional to p*?sin®(¢k/,/p)/¢* in which the
decreasing length scale £ = 7/ /P appears. Independently
of canonical transformations, the different types of hol-
onomy modifications can also be identified by analyzing
equations of motion for small Z. From H,, we obtain p
Pk or ko p/\/p e« a, while H, implies V « VH or
H x V/V «a/a. Therefore, we do not have to know
which canonical transformations may have been applied
in order to determine how a given classical or modified
constraint implies small or large values of holonomy
modifications in classical regimes.

In isotropic models, the appearance of a scale-dependent
holonomy length can be seen in two alternative ways: A
dependence on the scale factor may directly appear in
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periodic functions, as in sin(£k//p), or it may be implied by
equations of motion that tell us whether an expression such as
H in exp(iZH) equals the classical basic phase-space
variable k in the limit of small Z, or a different function
such as H in which the potential growth of k as a function of a
in some dynamical solutions is reduced.

More generally, the different status of a modification
with scale-factor dependent # can be seen in coefficients of
the Hamiltonian constraint. In isotropic models, a holon-
omy modification can be implemented by directly replacing
the classical k& in the Hamiltonian constraint with
¢~ sin(¢k). For constant £ = ¢, the k-independent coef-
ficient of this term retains its classical dependence on p. If
¢ depends on p, or if H is used instead of k, the
p-dependence of the coefficient is modified along with
the k-dependence. From the point of view of canonical
structures, there is no difference between (k, p) and (H, V)
if the relationship between k or H and classical extrinsic
curvature is ignored (or unknown if one considers a generic
modified theory). A modification of the form

sin(¢k;)  sin(Zky)
¢

(75)

with triad-dependent #/7, such that the map from k; to k,
is part of a canonical transformation with £k, = Zk,, can
therefore be interpreted in two different ways, depending
on whether k; or k, is closely related to classically reduced
extrinsic curvature. If k; is extrinsic curvature, we have a
triad-dependent holonomy length #, and the small-k; limit
reproduces the classical dependence of the coefficients
because £~ sin(Zk,) = k(1 + O(£%k?)). If k, is extrinsic
curvature, we have constant holonomy length 7, and the
classical triad-dependent coefficients of k, are modified
because

) L1+ 0@8) = k(1 + 0@HR)). (76)

Instead of reducing the growing holonomy length in an
expanding universe, the model is made compatible with the
classical limit, producing the same k; to leading order, by
modifying the triad-dependent coefficients of k,-holonomy
terms in the Hamiltonian constraint by factors of 7/7.
However, this classical limit, assuming small L_”kz, is in
general only formal because it may not be guaranteed that
this product is indeed small in expected classical regimes,
such as a large isotropic universe. The limit is suitable as a
classical one if k, = H, but not if k, = k. In isotropic
models, the H-variable is therefore preferred. Therefore, k;
rather than k, can be identified with extrinsic curvature in
the classical limit, necessitating the application of a non-
constant holonomy function 4. Whether a canonical var-
iable behaves like k or like H (or possibly a different

version) follows from equations of motion generated by the
modified Hamiltonian constraint.

4. Holonomy modifications in polarized Gowdy models

The possibility of applying canonical transformations in
isotropic models is comparable to some of the steps in our
derivation of covariant modifications of polarized Gowdy
models. We have constant holonomy parameters 1 or £ in
one form, and triad-dependent functions A or £ in another
one. In each case, both versions, if they are related by (70)
or the canonical transformation that includes the mapping
between H and k, are dynamically equivalent. But the two
versions are not equivalent if the holonomy function,
constant or nonconstant, multiplies the same phase-space
function without applying a canonical transformation.
Since the general form of a modified theory is defined
only by its Hamiltonian constraint and does not contain an
independent specification of what canonical transforma-
tions may have been used compared with the standard
classical phase space, we should consider equations of
motion in order to determine whether holonomy modifi-
cations depending on K in a polarized Gowdy model can
include an area-dependent holonomy length.

For nonconstant A/4, the e-dependence of the coeffi-
cients in (73) differs from the classical one in the limit of
4 = 0. As in (76), these terms signal deviations of K from
the original component of extrinsic curvature: The equation
of motion for & (which is canonically conjugate to A) is
given by

1 -sin(2iK),. -
o= {1} = 4o o ) ( ey ()
and implies
Kol (78)

ARG

for small 1 if we assume A = Ah(e) with a 2-independent
holonomy function h(e). (In some classes of modified
theories, 7 may also depend on the anisotropy parameter
W.) The formal classical limit requires small 1K, but a
specific regime in which classical behavior is expected may
well imply large AK if the area & of symmetry orbits is large.
If one chooses a A that decreases with € sufficiently quickly,
Eq. (78) implies that the corresponding K of the modified
theory increases less strongly than in a model with constant
A = . Itis easier to study the classical limit if the inverse of
the canonical transformation (70) is applied, such that all
holonomy terms now depend on AK with an explicit
decreasing coefficient 4 as a function of &. As shown in
the transition from a Hamiltonian constraint of the form
(73) to an expression (71), e-dependent modifications 1/4
of coefficients in the Hamiltonian constraint are then
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replaced with holonomylike terms with an e-dependent
function A.

In isotropic models, these two versions, given by triad-
dependent coefficients and triad-dependent holonomy
length, respectively, are equivalent. In polarized Gowdy
models, in which modifications are strongly restricted by
covariance conditions, only the first viewpoint is available
if a strict definition of holonomy modifications as periodic
functions is used: Only (73), in which the coefficient
functions are modified in their e-dependence, is periodic
in K, while (71), in which the function A(¢) appears in some
of the holonomy terms, also contains nonperiodic contri-
butions linear in K such as Kdlnl/de. Effects of an
e-dependent holonomy length can therefore be inferred
only indirectly when equations of motion are used, turning
it into an on-shell property. Assigning an e-dependent
holonomy length directly to off-shell properties of the
Hamiltonian constraint, as in isotropic models, is not
possible unless one weakens the strict periodicity condition
on holonomy modifications.

Another difference between isotropic and polarized
Gowdy models appears in the specific form (74) interpreted
in terms of components K, and K, of the momentum that
appear in the phase-space function K. The only triad
dependence allowed in this combination refers to
anisotropy in the (x,y)-plane rather than its area. This
specific dependence, just as properties of how an
e-dependent A may appear in holonomy modifications, is
implied by general covariance. The anisotropy dependence
of holonomy modifications is therefore unavoidable, and
unlike A(¢) it cannot be moved to coefficient functions.
Moreover, holonomy modifications can only be imple-
mented for the specific combination of K, and K, given by
(74), but not separately for the two components K, and K
because all modified constraints allowed by covariance
depend polynomially on the second phase-space variable,
Py, that together with K represents K, and K| after our
first canonical transformation.

Therefore, unlike in spherically symmetric models, the
Hamiltonian constraint is not built out of basic holonomy
operators that depend only on momentum components
canonically conjugate to the densitized triad. There is
always a necessary triad dependence given by the specific
form of K that may appear in periodic terms as a linear
combination of K, and K, with triad-dependent coeffi-
cients, derived from the covariance conditions. In loop
quantum gravity, curvature (or connection) components
and the triad are instead separated into basic holonomy and
flux operators, which were used as building blocks of the
first proposed operators for the Hamiltonian constraint [27].
More recent versions [28-30] use triad-dependent shift
vectors in order to construct detailed properties of hyper-
surface deformations from operators, which is somewhat
reminiscent of but conceptually unrelated to the triad
dependence of holonomy-type expressions found here.

IV. GENERAL MODIFIED THEORY

Linear combinations of the classical constraints with
phase-space dependent coefficients have revealed interest-
ing properties of possible modifications of polarized
Gowdy models. More generally, one may expect that
individual terms in the Hamiltonian constraint can receive
independent modifications. We now analyze this possibility
within a setting of effective field theory in which we expand
a generic Hamiltonian constraint in derivatives up to second
order. The resulting expressions then determine gravita-
tional theories of polarized Gowdy models compatible with
the symmetry of general covariance, taking into account the
possibility that the spacetime metric is not fundamental but
rather emergent. New modifications are then possible even
at the classical order of derivatives.

A. Constraint ansatz and the emergent
spacetime metric

We consider modifications to the Gowdy system with
phase-space variables (W, Py), (K,a), and (A, ¢). If we
modify the Hamiltonian constraint, then the constraint
brackets (8)—(10) determine the inhomogeneous compo-
nent of the spatial metric via Gy = 1/§%, while the
homogeneous components of the metric cannot be obtained
in this way because they do not appear in the structure
functions. The emergent spacetime line element is then
given by

ds? = —N2dP? + Ggp(d6 + NOd1)? + a, () ¥/ w(eW) dy?
+ aE(E)e_sz(E‘W>dy2, (79)

with §yp to be determined by anomaly freedom of the
hypersurface deformation brackets, while we have partially
chosen the form of the homogeneous components g, and
dyy based on their classical forms. We will discuss the free
functions «, and f in due course. (If the structure function
is negative in some regions, the inhomogeneous metric
component is determined by the inverse of its absolute
value, while —N2d#? is replaced by —oN>d¢> where o is the
sign of the structure function relative to the classical
function, making the four-dimensional line element
Euclidean in regions where ¢ = —1. For more details,
see [2].)

We consider the following ansatz for the Hamiltonian
constraint:

I:I = dy + e‘/_VV_V(‘/T//)2 + eéﬁ(a,)z + ess(gl)z

+eyWa + ey We + ez de + pgK'e

+ raa@' K + 350" + poK" + er.e”, (80)
where ay, e;;, e2;, pjj» and p,; are all functions of the phase-

space variables, but not of their derivatives. For the sake of
tractability, we have omitted some terms that would be
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possible at second order in derivatives, such as terms
containing W”. Spatial derivatives of .4 and Py, have been
omitted in anticipation of covariance condition (88), to be
discussed shortly, which requires the constraint to be
independent of them. Because of the discrete symmetry
H(W,Py) = H(-W,-Py), we see that all the functions
obey this even symmetry, except for ey, which should
be odd.

Starting from this constraint ansatz we will obtain the
conditions for it to satisfy the hypersurface-deformation
brackets, Egs. (8)—(10), with a possibly modified structure
function, §%°. We will then apply the covariance conditions
in order to make sure that the new structure function can
play the role of an inverse metric component in spacetime.

1. Canonical transformations 1

To obtain distinct classes of Hamiltonian constraints for
possible modified theories, it is crucial that we factor out
canonical transformations that preserve the diffeomorphism
constraint. If we do not take this extra care, we risk
obtaining equivalent versions of the same theory that differ
only in a choice of the phase-space coordinates. Two
constraints differing only by a canonical transformation
will look different and even the spacetime metric will do so
too kinematically, but they in fact describe the same
physical system.

We will therefore consider the following set of canonical
transformations that preserves the diffeomorphism con-
straint:

B - B 9 W -1 _ofK 7oFKN\ -1
(81a)

KN\ -1
(%),
ok

~0(aZe) 5, Of K (offN\t o ofV fof\7!
A== ATES, (ak + P ’

(81c¢)

where the new phase-space variables are written with a
tilde. A transformation with X = K, % (e, V:V), and a.(¢)
can always be used to transform the homogeneous com-
ponents of the metric in (79) from potentially modified
expressions to their classical ones g, = éee®V and
dyy = ee 2" 1f we fix the classical form for these compo-

nents, the residual canonical transformations are given by

_ - 5 0 K 0 K\ -1
W=Ww, Py =Py —a f:C ff s (8221)
oW \ 0K

~ 5 J K\ -1
K = fKe W, K), E’=E¥ feNT (82b)
oK

21 70 OFE (OFENT! -
= (4 =

(82c¢)

where the new phase-space variables are again written with
a tilde.

Under the previous canonical transformation, the emer-
gent spacetime metric simplifies to

ds? = —N2dr® + Gpo(dO + NOdr)? + ee2Vdx? + ee 2V dy?,
(83)

while the constraint ansatz (80) does not acquire any new
derivative terms.

2. Anomaly freedom and covariance conditions

Starting with a Hamiltonian constraint of the form (80)
we impose anomaly freedom by requiring that, together
with the unmodified diffeomorphism constraint, it repro-
duces the hypersurface-deformation brackets (8)—(10) up to
a potentially modified structure function:

{H[N]. Ho[M?]} = —Hy[MO(N°) = N°(M7Y].  (84)
(HN). Hy[M]} = ~AMON', (85)
{AN). HM]} = —Hy[g" (MN' = NM')].  (86)

Doing so restricts the functions in (80) by a set of partial
differential equations for the modification functions. The
same procedure reveals the dependence of the structure
function g% on the phase-space variables. Furthermore, the
modified brackets (84)—(86) imply gauge transformation of
the shift vector (12) according to

8 N? =0+ e?(N°) = NO(e?) + g% ("N' = N(°)), (87)

which now involves the modified structure function as it
should if it were to play the role of a component of the
emergent spacetime metric.

Once the structure function has been obtained from the
imposition of anomaly freedom, we have the full expres-
sion of a candidate spacetime metric as in (79). Because the
homogeneous metric components retain their classical
forms, the covariance conditions (15) remain unchanged.
In the new phase-space variables they are given by
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o oH oH  oH

- = = = =0. (88)
0A"  0A"  oPy  OPy

The inhomogeneous component (16) turns into highly
nontrivial conditions,

o{g”. Hle'H)| _a({g” H[e"]})
0(60)/ 0.S. 0(60)// 0.S.

In addition to general covariance, we will require that the
modified system retains the types of conserved quantities of
the classical theory. We therefore impose the preservation
of the symmetry generator G[w]| in (27), such that it
commutes with the modified constraint,

=...=0. (89)

{Glo]. HIN]} = 0. (90)

We will also demand that for Py, W — 0 a gravitational
Dirac observable exists with (30) as its classical limit.

3. Canonical transformations 11
and additional guiding conditions

The imposition of anomaly freedom, covariance, and the
gravitational symmetries all restrict the generic Hamiltonian
constraint (80) by providing a large set of partial differential
equations. These equations can be considerably simplified by
a choice of phase-space coordinates, fixing the residual
canonical transformations (82).

So far, all of the conditions we impose in the new
variables are identical to those we chose when coupling
scalar matter in spherical symmetry [6]. While these
conditions are quite restrictive, they still do not allow a
complete exact solution of the partial differential equations
for modification functions. We therefore refer to additional
conditions, most of which have also been used in the
scalar case.

Classical W limit. One such condition applied in [6] was
the compatibility of the constraint with a limit in
which the corresponding class of modifications con-
tains models with the classical equations of motion for
the scalar matter, corresponding to the Klein-Gordon
equation on a curved emergent spacetime. We can
apply the same condition to the Gowdy model, thanks
to its correspondence with the spherically symmetric
system, by imposing compatibility of the constraint
with a limit in which the class of modifications
contains models with the classical equations of motion
for W on an emergent background .

Classical constraint surface as a limit. Another addi-
tional condition considered in [6] was the compati-
bility of the constraint with a nontrivial limit in which
the constraint surface took its classical form. This is
the case if there is a limit in which the constraint

contains the modifications from linear combinations
of the classical constraints, as derived in the previous
section.

Classes of constraints. With these conditions, we are
in the position to obtain explicit expressions for
the modified Hamiltonian constraint. The conditions
of anomaly freedom, covariance, implementation
of symmetries, and the factoring out of canonical
transformations imply a set of differential equations
that can be solved exactly if the additional conditions
just described are considered.

However, if we implement the essential conditions we
are left with some ambiguities. If one is not interested in the
classical W limit, several of these ambiguities are removed,
but one modification function remains unresolved. The
vanishing of this function then leads to the compatibility of
the classical constraint surface as a limit, thus describing
our first class of constraints.

On the other hand, using a nontrivial choice for this
modification function leads us to another class of con-
straints that is no longer compatible with the classical
constraint surface as a limit, nor with the classical W limit.
Lacking a positive characterization of these models, we
simply call this set of modified theories the class of the
second kind.

Finally, a third class of constraints can be obtained by
imposing compatibility with the classical W limit.

These are precisely the three classes of constraints
obtained in [6] for the spherically symmetric system
coupled to scalar matter. We can then simply import the
results and reinterpret the Hamiltonian constraint by its
correspondence with the Gowdy system. The modified
theory allows for modification functions that can be
redefined and adapted to the Gowdy system.

Discrete symmetry. The Gowdy system has one further
symmetry that is not obvious in the spherically
symmetric system coupled to scalar matter. This is
the discrete symmetry Py — —Py, W — —W. We
will implement this symmetry in the classes of
constraints imported from [6] and, therefore, obtain
slightly simpler expressions.

B. Emergent modified gravity
as a basis for quantization

Our generic Hamiltonian constraint contains only up to
second-order spatial derivatives and uses the classical phase
space, which implies that the equations of motion do not
have higher time derivatives. Theories of this form, even
though they are modified compared with general relativity,
may therefore be considered classical gravitational systems
that can be used as a basis for canonical quantization.
Several additional conditions are then useful for different
procedures of finding suitable constraint operators.
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1. Partial Abelianization

Gravitational theories with a description as spacetime
geometry require constraints that generate hypersurface
deformations. The presence of structure functions is then a
well-known obstacle toward quantization because an oper-
ator-valued structure function implies severe ordering
problems in commutators of the constraints. This problem
can be simplified if the original constraints can be replaced
by linear combinations that replace the structure function
by a constant, and perhaps setting it equal to zero in a
partial Abelianization. In spherical symmetry, such a
procedure has been proposed in [31], and then generalized
in [2] by making it fully local.

For a systematic derivation of partial Abelianizations we
make use of the procedure described in Sec. III, introducing
a new phase-space function as a linear combination of the
(now already modified) Hamiltonian constraint and the
classical diffeomorphism constraint that replaces the
Hamiltonian constraint of hypersurface-deformation brack-
ets. The new constraints therefore have brackets that differ
from the classical gravitational ones, and their gauge
transformations do not correspond to hypersurface defor-
mations. However, they have the same constraint surface as
the original system, which can therefore be turned into a
quantum description by this procedure.

We will make use of definition (51) for the constraint
function

H"™ = BH + AH,. (91)

Poisson brackets of B and A with the old Hamiltonian
constraint are given by (52) and (55), and the latter is
related to the former by

A =—B%(B) (92)

as in (54). The only difference with the procedure in Sec. I1I
is that we are not seeking a new covariant modified theory,
but rather a partial Abelianization of the brackets of HA)
and H,. Therefore, we impose the condition that the new
structure function (59) vanishes:

é?i) = B%3% + BA? = 0. (93)

We will apply this condition to the three classes of
constraints derived below.

2. Point holonomies

In [6], it was possible to include point holonomies of the
scalar field ¢, given by periodic modification functions

depending on this variable. Like partial Abelianizations,
this property may be useful for quantizations because some
of the basic fields can be represented by bounded operators,
akin to a loop quantization.

Invoking the correspondence between spherical sym-
metry and the polarized Gowdy model, this result can be
translated to point holonomies of W in the latter case.
Recall that the relation between this variable and the
original phase-space degrees of freedom is given by

W =In/E’/E*. This function depends on densitized-
triad components rather than their momenta, classically
related to extrinsic curvature or a connection, and the
dependence is logarithmic.

Given the logarithmic dependence on triad components
instead of linear combinations of extrinsic curvature,
periodic modification functions of W, or polymerizations
of this variable, are rather different from what is usually
assumed in models of loop quantum gravity, even com-
pared with a polymerization of K in (74) which already
showed several deviating features. But while a polymeri-
zation of W may not be directly motivated by traditional
loop quantum gravity, we include this possibility here for
completeness of the correspondence with spherical sym-
metry. New canonical quantizations could still be con-
structed in this way by exploiting the boundedness of
operators quantizing a periodic function of W.

V. CLASSES OF CONSTRAINTS

As derived in detail in [6], we consider different classes
of constraints and the modified structure functions they
imply, depending on which conditions are chosen in order
to make the consistency equations explicitly solvable.

A. Constraints compatible with the
classical constraint surface

Modified constraints that are compatible with the
classical constraint surface in a suitable limit are direct
generalizations of the models constructed in Sec. III from
linear combinations of the classical constraints.

1. General constraint

As always, the expression for Hamiltonian constraints
compatible with certain symmetry conditions may depend
on modification functions that distinguish different cases of
consistent constraints, but also on free functions that
represent the freedom to apply canonical transformations.
Here, we fix the latter choice by working with partially
periodic modification functions in the phase-space variable
K. In this class, the general expression of the Hamiltonian
constraint is given by
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_ ] . 2 ay  10c;\sin?(AK) (A Pytan(W)dlny tan(AK)dInd\ sin(21K)
H: - 2(p a ———A -_— il Bee— - - = =
7 ocos (”WNE{“( 7 °+<4 13 ae> pe +<a a o oe 1 o) 2
Py tan(AK) (¥ olnA\ \2a;1? 5= (¢')? (-, Asin(2]K)
= . (e aar) ) 25 K e _
(acos(DW L (yc”3+ aw)) 4oz Cre0s AK) |+ a 21

)

dlnl «a, sin(W)odlnv (T dlni sin(tW)adlnv e da ¢

T A T (e + i+ + _
ow 1% de a3

+cos? (iK) _é sin(_DV_V) ! 2i+£‘T’ sin(i‘/W) ! 28sin(i7W)alnu+§Ch3 +dlr}/1_ _ Pﬁi ] zztan(_/_lK)
a v ay a v a U de v oW  acos(W) y)
(94)
|
with the structure function limit can be taken in different ways, the simplest one given

by A=l and v— 1 followed by Ao, cp a3 = 1,

A€\ 2 N _ & A0 —0,and Ay — A.
=00 _ 2 20054 (5 W ’ ’
9 = <Cf + ( (—l> >COS (AK) z Apeos* (W) 2 (95) The inhomogeneous-field observable in this class is

given by
All the nonclassical parameters are undetermined func-
tions of € only, except for 4 and v, which are constants, and P tan(1K) o1n A
Glw] —/dew§< W an(4K) oln ) (96)

Ao and A, which can depend on both & and W. (This is the —=ta—— =
, - cos(z W) A oW
only class of constraints that allows A to depend on W.)
The constraint (94) and its structure function (95) are
symmetric under the discrete transformation W — —W, where w is a constant. The associated conserved current J#
Py — —Py, only if the Ay and A dependence on W is  has the components
restricted by the discrete symmetry (26) to be of the form
Ao(e, W) = A9(e,—W), and only if ¢35 =0 because it is -
independent of W. (Alternatively, the discrete transforma- Jt = v < P LA C_ltan(/_qu,) 011} ’1>, (97)
tion could be redefined as W — —W, Py — —Py, and v \cos(v W) A ow
¢z = —Cj3, in which case the constraint and structure
function are symmetric even for nonzero c,;3.) The classical

y _ . 2 (sin(@ W)\’
J? = —g/—l/lo\/gcosz(ﬂ W)cos? (1K) <—; <M> £
v a

(98)

+5’(§sin(pﬁ/)alny v dln Py - tan(lK)))
- :

Z = 12—
a U e T oW acos(vW) A

When Py, W — 0, the homogeneous mass observable associated with (94) is given by

d, a, 0lni? sin” (1K) 5= "\ 2
= = —=_ e /. K
M=d,+ 3 <exp / de(zé3 > )) (cf V2 cos*(AK)
d2 /12 [¢5) alnlz
e ZA 2
+ 2 / de (/12 0 €Xp / de <2€ = , (99)

where d, and d, are constants with classical limits given by dy, — 0 and d, — 1.

3]

N
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2. Partial Abelianization
Following Sec. IV B 1 and using the constraint (94) with
the structure function (95) we obtain
g™ = Qo+ Qu(¢)* =0 (100)
for the Abelianization condition (93), where Q, and Q, are
functions of B, as it appears in H*) = BH + AH,, and of
the phase-space variables, but not of their derivatives.

Therefore, these two coefficients must vanish independ-
ently. The condition Q, = 0 implies the equation

sin(2AK) 0B

= 101

24 0K ’ (101)

|
AW an(iK) 1 2 a
B~ ( )/lllocos (I/W)\/_|: ( e =N + <4z

with the general solution

tan(AK
B, 2 )

(102)

for an undetermined function By(e, W). The condition
Q. = 0 implies the equation

2

- - - 0B N
2)?B + Asin(2AK) K 2 cos*(AK) e 0. (103)

By direct substitution we find that (102) solves this
equation too. The Abelianized constraint is then given by

1 0&) sin?(AK)

2 0e 2

de

Py tan(1K) v alnﬂ lozv
acos(v W) A P 4e

_|._

cfcos (lK))

+(A Py tan(@W)dlnv tan(AK )dln/l) sin(2ZK)
S _wH ¢

( )2 < , Asin(24K)
a a 2

- (0lnl a, sin(v W) dolnv (U dlnl sin(pW)adlnv e ga & -
23K =2 0 2 = == —Z )eos?(AK
+ cos*(2K) de  4e 7 e 0T oW T e a3 + FIEY (1K)
N cosz(/_lK)( 1 <<sin(1_? W)>’>2 € +eT’ (sin(t:/ W))’(% sin(z:/ W)olnv
a 1% a3y a 1% a3 v de
U dln A Py -, tan(1K) y
- — — — 1 — -2 w K + PyW' — 104
oot ZoosZ W) z 7 Aocos 2(vW)yee (@K' + Py, A¢') (104)
|
The first line in (104) has a kinematical divergence at laﬁ C2A =0 (106)
K = 7/(2) due to the overall tangent factor. This diver- 2 Oe 0=

gence can be removed if

dc
e N

1
48'+20 (105)

is satisfied because the relevant terms then combine to
produce a cos’-factor and hence cancel the divergence of
the tangent. If we interpret this condition as an equation for
cy, we must restrict 4 to be a function of ¢ only. However,
the solution to this equation is not compatible with the
classical limit ¢, — 1. (For instance, for Aj = 0 we have
Cp e~*/2)) Therefore, we have to weaken the condition
by neglecting the first term, and hence leave it as a
divergent term of the Abelian constraint. The resulting
equation for the partial resolution of the divergence,

can now be directly integrated, yielding the modification

function
Cf = 2 / /12A0d8.

If we choose the classical value of the cosmological
constant Ay = A, and 1> = A/e with a constant A (some-
times used in models of loop quantum gravity), we obtain

cp=1 +2AAln< )
Co

where ¢, is an integration constant. The correct classical
limit is obtained for A — 0. The logarithmic dependence on
€ is relevant on intermediate scales far from black-hole or

(107)

(108)
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cosmological horizons. It may then be related to MOND-
like effects as shown in [12].

B. Constraints of the second kind

A second class of explicit modified constraints is
obtained from a specific choice for one of the modification
functions, so far without a detailed physical motivation.

avs sin?(AK) [ [a,
(=g (&

H = -~ )ycos>(DW)y/e

dlnl

Nevertheless, this case is interesting because it can be used
to show the variety of possible covariant theories.

1. General constraint

Again referring to more detailed derivations for a scalar
field in spherical symmetry [6], we now have the modified
Hamiltonian constraint

+1acf +_sin(2,'11() a 0\ +§a_q
T2 0 T 2 oe )19 0e

U” acos

3
P2 alcos?(DW) " 4de

with structure function

i 72 26\ 2 A sin (21K) _ = €
g% —/1—2/1(2)<<Cf+ <€> >cos (/1]() 2/121 2—/_1> COs‘%VW)g.

All the nonclassical parameters are undetermined functions
of & only, except for the parameters A and 7 which are
constants, and A, which can depend on both £ and W. The
constraint (109) and its structure function (110) are sym-
metric under the discrete transformation W — —W, Py, —
—Py, only if the 4, dependence on W is restricted by the
discrete symmetry (26) to the form Ay(e, W) = 4o(e, —=W),
and only if c¢,; =0 because it is independent of W.
(Alternatively, the discrete transformation can be redefined
as W — —W, Py — —Py, and ¢;3 — —cy3, in which case
the constraint and structure function are symmetric even for
nonzero cy3.) The classical limit can be taken in different
ways, the simplest one given by 4 — 1 and v — 7, followed
by Ao, cp 0,03 = 1, q,A,0— 0,and Ay — A.
The inhomogeneous-field observable is

Glo] = /dewaiw, (111)

vcos(o W)

where w is a constant. The associated conserved current J#
has the components

(@250 - (5 sy
2

a
v Py 2@ cosz(/_lK)> _117_2< sin(o W)

|
+<A+$G%_sm(ﬂ )ag;))(Cfsin(z_JlK)Jr%qCOS(z;lK))

S - A -, sin(21K) da & -
——ZW“-— <CfCOSz(/‘LK)—ZEQ/127 —+ ?—T COSZ(/IK)
A

a
sin(z W) olnv\ ) 5, sin(24K)
—Cpz — — A =
v oe 24
! 1
> +€,(§Ch3_sm(_ W)o nu)) i]’ (109)
v v de o
(110)
|
A (112)
vcos(W)
- _ 232 ATAN
J? ===}y cos?(D W) 8_ ((sm(g )>
ad v
in(z W) al
+€,<gCh3_31n(z_/W)6 nu>>. (113)
v v o€

When Py, W — 0, the homogeneous mass observable
associated with (115) is given by

. d2 ar alnlz
M—d0+§(exp/d€(2—8— E >>
sin?(AK) A sin(2AK) - "\ 2
X (Cf /12 +2Zqz—0052(/1K)( ) )

d 2 dln 22
+42/d8</_12/\oexp/de<gi— ;18 >) (114)

where d, and d, are constants with classical limits given by
dy — 0 and d, — 1. Most of these properties are similar to
those in the first class, but explicit solutions in solvable

8]

Q|
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cases, such as spatially homogeneous ones, can reveal
crucial differences, as we will see in Sec. VI.

A key difference between the first and second classes can
be seen easily in the structure functions (95) and (110),
respectively. The first one is even in the curvature component
K, while the second one contains an odd term, multiplied by
the modification function ¢. The same behavior was possible
in spherical symmetry [2] where it may have far-reaching
implications for various particle effects [32]. In the
Hamiltonian constraint, the g-terms show that there may
be modifications linear in K (if a Taylor expansion is used for
the trigonometric functions). Such terms can be more
relevant than the classical quadratic terms as the curvature
scale is increased. The second class of modified constraints
for polarized Gowdy models shows that these interesting
features are not restricted to spherical symmetry.

2. Partial Abelianization

The partial Abelianization of this constraint follows the
same procedure as the last one. It requires exactly the same
B-factor (102) and the associated A. However, a partial
Abelianization is subject to the additional condition that the
modification function ¢ vanishes.

C. Constraints compatible with the classical-W limit

The third class has modified constraints that have a limit
in which the field W behaves like a classical scalar field on
the emergent (and nonclassical) spacetime. This case is
useful because it allows us to make comparisons between
the propagation speed of W as a polarized gravitational
wave and the speed of a massless scalar field that may be
coupled minimally.

1. General constraint

The modified Hamiltonian constraint is given by

. yi - 2 ay dlnA\ 10c;\ sin’(1K) qg{a _0lnl\ A9q\ sin(21K)
H=—-=)ycos>(t W A —=— )= al=|=-2 S =
70008"(7 )*[[ <32 °+< <4€ Oe >+2 g ) 2 “’(2 e "o ) Tioe)
tan(v W) dlnv sin(2AK) 4 (8’)2 olni a, .
- Py = 2AK -—= 2(AK
+ (A W % )(cf > +/1qcos( JK) p e 1) (AK)
P vW)ol in(2AK 'a'
(A A Wtan(? W)olnv) sin( _/1 ) n 8_(21 cos?
a a v oe 24 a
/g% Py 2 in(v W W) 01 2
+1/_2 g ui ) + e sm(l_/ N’ s1n(u ny (115)
v 2 o2 (D W) 2¢ v
with the structure function
N A A, sin (2AK)\ 22 I
qﬂﬂ = <<Cf+ (E) ) COS (ﬂK) 1/1227/—1> /1—21(2)COS4(1/W)? (116)
|
appearing explicitly in the last line. All the nonclassical The W-field observable is given by
parameters are undetermined functions of € only, except for
the parameters A and o which are constants, and 4, which . v Py
can depend on both £ and W. The constraint (115) and its Glo) = / dawﬂcos(f/ W) ’ (117)

structure function (116) are symmetric under the discrete
transformation W — —W, Py — —Py only if the A,
dependence on W is restricted by the discrete symmetry
(26) to the form Ay(e, W) = Ay(e, —W). The classical limit
can be taken in different ways, the simplest one given by
A—>1 and v-—1p, followed by Ao, cpmp,a3 = 1,
q, 1.0 — 0, and Ag = A. The classical-W limit is obtained
for v=0— 0 and a3 — 1. The last parenthesis in the
Hamiltonian constraint then approaches the form of a
classical scalar field propagating on the emergent spacetime
with inhomogeneous spatial component G-

where w is a constant. The associated conserved current J#
has the components

P_
= tw__ (118)
Dcos(o W)
0 U [ p2e((sin(@W)\'  sin(bW)dlnv
== — —¢
v a3 v 7 o€
(119)
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When Py, W — 0, the homogeneous mass observable
associated with (115) is given by

o d2 25 0ln/12
M—d0+§<exp/ds<£ % >>
sin?(AK) A sin(2AK) SEINTAY
X <CfT+zqu_COSZ(/1K) <?> >

a

2 1 2
+% de<%A0exp/dg<%—agj>>, (120)

where d, and d, are constants with classical limits given by
dy — 0 and d, — 1.

2. Partial Abelianization

The partial Abelianization of this constraint follows the
same procedure as outlined in the first class of modified
constraints. It implies the B-factor (102) and the associated
A-factor, but in addition requires that the modification
function ¢ vanishes, as in the second class.

VI. DYNAMICAL SOLUTIONS WITH
HOMOGENEOUS SPATIAL SLICES

First indications of possible physical effects of our
modifications can be obtained by looking at properties
of spatially homogeneous solutions. In this case, partial
differential equations are replaced by ordinary ones that can
often be solved more easily.

A. Classical constraint

For the sake of comparison, we first present useful gauge
conditions and solutions in the classical case with a
vanishing cosmological constant. Strict homogeneity then
implies Kasner solutions, while an inhomogeneous solution
for W can also be allowed.

1. Conformal gauge

In generally covariant theories, the form of solutions for
the spacetime geometry depends on the coordinate choice
used to express them. In canonical formulations, a coor-
dinate system is presented as a gauge choice that prescribes
the dependence of a suitable subset of metric components
on the coordinates. Gowdy models as well as spherically
symmetric systems have two constraints, given by the
diffeomorphism constraint and the Hamiltonian constraint.
In general, one should therefore choose two conditions in
order to determine the gauge. These two conditions may
not always be mutually consistent, in which case there is no
coordinate system in which they can both be met. However,
if all the constraints and equations of motion generated by
them can be solved consistently, a valid solution is
obtained. Solutions for metric components in terms of
the coordinates introduced by the gauge choice then

determine the line element in the corresponding coordinate
system.

The coordinates of the conventional Gowdy metric (4)
are associated with the gauge choice
e=T (121)
with the time coordinate 7. We impose this gauge and for
now work with the classical constraint (22). The remaining

metric components can be expressed in terms of the lapse
function and the two fields

W =In\/E'/E* =W,
1
a=In\/EE/e = ln&—zlns.

The on-shell conditions Hy = 0 and H = 0 in this gauge
become

(122)

Hy = PyW' +ak' =0, (123)

P2 —ATaK A — @K + 4T (W')?
W = ATaKA = &K +4T°(WI7 1y
4/Ta

Using the latter expression, we obtain an equation of
motion

H =

or(akK) = {akK,H[N]} = —NH, (125)
which vanishes on-shell, such that aK = y where u is a
constant. The consistency equation ¢ = de/dT = 1 can be
solved for the lapse function

1 ula

N:—: = -1 .
K\/T \/E K /oo

(126)

The equations of motion for @ and W, respectively, imply

a 1
Py =2 uTW. (127)

Using these results, the on-shell conditions H,y = 0 and
H = 0 can be rewritten as

a =2TWW', (128a)
= =Wt wy (128b)
= 4T u )’

where we have used the identification (122).

The equation of motion W = {{W,H[N]}, H|N|}
requires some care because the lapse function (126) is
phase-space dependent. In a first-order equation of motion,

124001-21



MARTIN BOJOWALD and ERICK 1. DUQUE

PHYS. REV. D 110, 124001 (2024)

using a single Poisson bracket with H[N], any term
resulting from a nonzero Poisson bracket with N would
be multiplied by H and therefore vanish on-shell. However,
this argument does not apply to iterated Poisson brackets of
some phase-space function with H[N], where nonzero on-
shell terms may contribute. Duly taking into account the
phase-space dependence of N, such that the second
{-,H[N]} acts on this function contained in the first
H[N], we obtain the second-order equation of motion

(129)

It can be checked that this equation is equivalent to what
would be obtained in standard general relativity. [If N were
treated as phase-space independent, we would instead
obtain the bracket {{W,H[N|},H[N]} =—W/T+W" >+
W(1/(4T)=TW—TW" /u?), using the lapse function (126)
only after computing the brackets. This expression has
extra terms compared with the correct equation (129).]

These are the equations of motion for the polarized
Gowdy system in conventional variables, which have the
general solution [33]

W=a+pInT + Z[anjo(nT) sin(nu=20 +y,)
n=1

+ b,No(nT) sin(nu=26 + 5,)], (130)

where a, $, a,, b,, v,, and §, are real constants, and J, and
N, are Bessel and Neumann functions of the zeroth order,
respectively. Given the solution for W, direct integration of
(128) gives the expression for a. The spacetime line
element in this gauge becomes

ds? = p2e?(—dT? + p*d6?)

+ T(e72Vdx? + 2Vdy?). (131)

The square of the lapse function, N> = a*/(u*T), exactly
equals qgy = @*/T only if u = +1. Thus, setting u = 1,
imposing positivity of the lapse function in the region
T > 0, we obtain a conformally flat metric for the 7 — 6
components. With this choice, the equation of motion (129)
implies that W-excitations travel at the speed of light.

Finally, note that using (127) and (130) and inserting this
solution in the symmetry generator (27) with @ = 1 we find
that it corresponds to

G[l] = 4nup, (132)

where we used the periodicity conditions in 6. This is
clearly a conserved quantity.

2. Homogeneous solution

For a spatially homogenous background, we consider the
special case W' =0. From (130), this implies that
a, = b, = 0. The equations of motion (128) now have
the solution

457 -1 T
a2 ln<—>, (133)
4 T,
a =TV P i (134)
with a constant Ty, and hence
K = 1l ~VAr-p-1a, (135)
The spacetime metric (131) becomes
T\ 26°-1/2
ds? = pu? <—> (—=dT? + ude?)
T
+ e2aT1+2ﬂdx2 + e—ZaTl—Z[;’dy2‘ (136)

The constants u, Ty, and @ can be absorbed in the definition

of coordinates. In proper time, defined by 7(T) o T/ +3/4,
we then have the line element

ds> = —de® + 121d0? 4+ 21dn® + 22ady? (137)

with exponents
p—1/4 _p+1)2 _p-12
=g T gias BT g
(138)

that satisfy the Kasner relations p;+p,+p3=1=
P+ p3 + p3. The background Kasner behavior is there-
fore determined by the observable G[1]. If the periodic
terms from a nonhomogeneous W in (130) are included,
they describe a polarized gravitational wave traveling on a
Kasner background.

3. The flat Kasner solution

As a special case, a flat solution within the Kasner class
is defined by further takinga =0, f = 1/2,and p = 1. We
obtain
a=T, K=u/ VT,

a=0, (139)

1
W==InT,
5

and the spacetime metric (131) becomes
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ds? = —dT? + d6” + T?dx?* + dy?. (141)

The Ricci scalar vanishes, which means that this
expression may be considered a vacuum solution. (The 7' —
x part is a two-dimensional Milne model.) Upon applying
the coordinate transformation

tm = T cosh x, xy = T'sinhx (142)
with inverse
T° =8, — x, x = arctanthM (143)
such that
—dB3; + dxgy = —dT? + T?dx?, (144)

the Kasner-like line element (141) becomes Minkowskian,

ds? = —di3; + d6? + dx}; + dy*. (145)

While this result shows that the specific Kasner solution
(141) is a locally flat spacetime, hypersurfaces of constant
time 7 define a three-dimensional space with nonvanishing
extrinsic curvature

1
Kapdxde = 2 {qup. H[1]}dx"da® = T, (146)

4. Homogeneous solution: Internal-time gauge

To compare the results of the different classes of
constraints, we will evaluate them in the homogeneous
case, P, = W =a =¢ =K =A =N =0, with van-
ishing cosmological constant, A = 0. It will be convenient
to work with coordinates adapted to the full range of the
curvature variable K, used as an internal time coordinate.
We define this internal-time gauge by

NY =0, K =Tk, (147)
with a new time coordinate 7.
In the homogeneous case, as before, we obtain
6TK(ELK) = {aK,H[N|} = —HN, (148)

which vanishes on-shell and implies

- 4
ds? = o1 T2 i
1+4p

(149)

for some constant u. Because of homogeneity, the
local version of the observable (27) is conserved,
G = 2zPy, = 0. Therefore, any Py, in the constraints
and equations of motion is time-independent and can be
set equal to Py = 2up, defining the constant § in the
internal-time gauge. Using this expression and the chain
rule, we obtain the equations

de

de ¢
— == 150
dKk K (1 +4p1K (150)
aw W 4
w_w___ ¥ (151)
d K (1 +4p°)K
with solutions
e = c, T 1) (152)
- 4
W=c¢, - p ——InTg
144p
= In (e TP/ 1+, (153)
The integration constants may be redefined as
4 2_1)/4\4/(4B%+1)
2

The on-shell condition H,y = 0 is trivial in the homo-
geneous case, while H = 0 greatly simplifies and can be
solved for

_ 4p7 - 1 4ﬁ -1 T4ﬂ2/u+4ﬂ)
A=wu 4e 4c,

(155)

Finally, the lapse function is obtained by solving the
consistency equation K = 0K/0Tx = 1,

—2/ 1-+44%)—
N = VeTy 156
1 +4 1+ 48> (156)

The negative value of the lapse function means that
evolution runs from higher to lower values of T, similar
to what happens in Schwarzschild coordinates in a black
hole’s interior. The spacetime metric (24) is then given by

2
> TS N gpa ﬂzd92>

e (2T g2 | mda, ACB-D/GF+D g )

(157)
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The conventional time coordinate 7 and our curvature
time T are related by

Ty = uT? ~VAT=P=1/4, (158)

This coordinate transformation turns the metric (157) into
(136). The flat Kasner solution defined by a = 0, f = 1/2,
and ¢ = 1, in the present gauge implies

=Tz,

(159)
W = —1InTk. (160)

The coordinate transformation relating the two gauges is
then simplified to

Ty =1/VT (161)
and the spacetime metric is given by
ds? = —4T5dT% + d6* + Tg*dx? + dy*  (162)
with extrinsic curvature
K pdxtdxt = TE2dx? (163)

of constant-T' g slices. The coordinate singularity of (141) at
T — 0, is here given by Tx — oo, while the coordinate
singularity of (162) at Ty — 0, corresponds to T — co.

B. Singularity-free solutions

We now consider the first two classes of modified
theories, given by constraints compatible with the limit
of reaching the classical constraint surface and constraints
of the second kind. In both cases, the classical singularity of
homogeneous solutions is removed.

1. New variables

We first use the modified constraint (69) with constant
A =4 and 1, choosing the gauge

e=T. (164)

The on-shell conditions do not change under a linear
combination of the constraints, and thus we have the
classical constraint surface given by (124).

The consistency equation ¢ = 1 can be solved for the
lapse function

A1
VeERVT = 2K?

Using this, we obtain

(165)

or(akK) = {aK,H[N]} x H, (166)

which vanishes on-shell. Thus, aK = u with a constant .

The T — @ part of the line element is no longer con-
formally flat because we have the emergent metric com-
ponent

C_l2

Go0 :/1627:}“52‘32‘1 (167)
while
N2 _ (/’4&0)_2 a_z _ /’l_z é
1-2K*e 1-12K*"%
= uB2qy). (168)

where qé‘;) = a*/e is the classical expression and B =

AoV'1 = 22K? is the factor in the linear combination (66).
Because ¢ = 0 in this gauge, the coefficient A in the linear
combination vanishes. Thus, in this gauge the full
Hamiltonian generator is identical to the classical one:

HWMJ@W%=HF* wwﬁ]

H|\hral) | = VL 169)

This means that all of the equations of motion are identical
to the classical ones, Eqs. (128) and (129), obtaining the
same classical solutions (130).

However, even though all the phase-space solutions
retain their classical forms, the resulting spacetime geom-
etry is nonclassical because the structure function differs by
a constant factor of A3 from the classical one and the lapse
function differs from its classical expression more signifi-
cantly. The resulting emergent spacetime line element is
given by

42 e <_ dr?

= W22 1= 2p2e 2T
FT(Vdx? + e 2Vdy?),

+ u2d92>
(170)

where a and W are related to the phase-space variables
by (122). In the limit 41— 0, Ay = 1 we recover the
classical solution whose curvature invariant Raﬂm,R“/’””
diverges as T — 0. Seen from positive 7, this singularity
lies in the past where the x-y plane had collapsed to zero
area e =T.

In the modified case, the T — @ part of the metric is no
longer conformally flat. There is a new singularity at
T = 2>¢7%%=:T;, a time later than the classical singularity
at T = 0,. This new singularity is therefore the relevant
one in the positive-T branch, but it is not a physical
singularity. To see this in detail, we will use a new gauge in
the next subsection.
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For now, the special case of a (modified) flat Kasner
solution can be analyzed more easily. It is given by y = 1,
p=1/2, a =a, = b, =0, which implies W = %lnT and
a = 0. The line element is then equal to

dr?

ds?2 = -4
SR EYT

+do? 4+ T2dx* + dy?,  (171)

where we have chosen 4, = 1 so as to recover the classical
Kasner metric for large 7 > A%. In the classical case 1 — 0
this is the flat Kasner solution whose curvature invariants
are finite. The solutions can be analytically extended across
T = 0, but they are causally ill-behaved as they form closed
timelike curves. However, for 1 # 0, the singularity 7 = 0.
is hidden inside a region bounded by the new singularity at
T = ?> > 0. Curvature invariants can be used to support the
expectation that this is only a coordinate singularity.

We first note that the Kasner solution (171) of the
modified theory is not flat: It has the Ricci scalar

/_12

R:F

(172)

and the Kretschmann invariant

1/_14 . /‘12 2
’CERﬂyaﬂRﬂyaﬁ:—Eﬁ <1+T (1—7) > (173)

At T = 2, both are finite. Moving across this value, a new
gauge must be chosen, in which, as we will see in what
follows, the physical singularity at 7=0 no longer
appears. (This construction is similar to the nonsingular
black-hole models in [10,11].) Any hypersurface of con-
stant time 7 of the modified Kasner spacetime (171)
defines a three-dimensional space with nonvanishing
extrinsic curvature

| /'12
Kabdx“dxb - T 1 - ?dxz

unless 7 = A. This specific value implies a hypersurface of
time-reflection symmetry, which can be used to glue a time
reverse of our solution at T = 1. The classical singularity at
T =0 is then replaced by a transition from collapse to
expansion.

If the interpretation of the classical flat solution as a
vacuum spacetime is extended to the modified theory, it
could suggest a vacuum different from the usual Minkowski
one, being approximately flat only for 7' > A%. However, in
Sec. VIB 5 we will show that drawing such a conclusion
based on only homogeneous models in a fixed gauge of
internal time would not be justified. For now, we continue our
analysis of homogeneous dynamics.

(174)

2. Periodic variables

We shall now use the modified constraint (71) with
constant A, and A =1, reproducing the above results
because this version will serve as a guide to obtaining
the dynamical solutions of the other two constraints.

We again choose the gauge

N =0, e=T. (175)
The on-shell conditions are
0— 1 sinz_(ZK) _ cos*(AK) Py’ N sin(2_/_1K) A
4e 2 4e  a* 20 a
—¢ (Vg;)2 cos? (1K), (176)
0=ak'+ PyW', (177)

and the consistency equation ¢ = 1 can be solved for the
lapse function

At 22

Vesin(2AK) (178)

Using this result, we obtain

or <atan(/1_’1K)> - {a%,ﬁm} «H, (179)

which vanishes on-shell. Thus, @ tan(1K)/A = u where y is
a constant. Because of the canonical transformation
involved, the identification (122) changes to

W=Ww,
a
=In\/EE"/e =1 = -1 . 180
a=In,/ /e n(cos(lK)) ne (180)
Therefore,
. ¥m A
/IK = = = . 181
sin(4K) a/cos(AK)  +/ee* (181)

The equations of motion for @ and W, respectively, give

A = oy (m(ﬁ) —In ﬁ) = ua, (182)

Py =2 uTW. (183)

Using these results, the constraints Hy = 0 and / = 0 can
be rewritten as
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. 1 . w2
a =2TWW', a:——+T(W2+%>, (184)
Y%

4T
where we have used the identification (180). The equation

of motion W = {{W, H[N]}, H[N]}, such that the brackets
do act on the lapse as discussed before, can be rewritten as

. W W//
0=W+—--—

. 185
T ”2 ( )

These equations are identical to the classical ones. The
emergent line element is then given by
ds? = A5%e% (- sec?(AK)dT? + d6?)
+ T(eVdx* + e72Vdy?)

dr?
:l—Z 2a | _ _ dez
0 < TR ren >

+ T(e2Vdx* + e72Vdy?). (186)

Modified Kasner models are obtained for W = InT,

which implies ¢2¢ o T%°~1/2 as in the classical case. The
line element then equals

dr?
1 = J2T-2-1/2
+ T dx? + T dy?

ds? = 42121/ (— + d92>

(187)

if we set u? equal to the proportionality factor in e>?. For
constant but nonzero 4, proper time is now given by a
hypergeometric function of 7, which complicates any
further analysis of general Kasner models. It is nevertheless
possible to understand the general behavior.

To do so, we first introduce a new time coordinate

t = TP+3/4 such that

TH-1/4

T dTr
‘/1—/12T 267—1/2

1 dr
P +3/4 V1 = 22 B+14)(P+3/4)

dr

(188)

according to the time component of (187). For large T, ¢
and 7 therefore proceed at almost the same rate, up to a
constant rescaling. With respect to proper time, we now
have the line element

ds? = —dr? + lazt(r)zl"dez + t(7)?P2dx? + t(7)?P3dy?
(189)
with Kasner exponents p; as in (138), obeying the classical

relations, and the inverse of a hypergeometric function
(times 7) for #(z). [For A=1, t(r) is the inverse of

LF(1/2,1/a;1 4+ 1/a;1%) if a==2(6*+1/4)/(F*+
3/4) # —1. If a = —1, t(z) is the inverse of \/(r—1)t—
sinh=!(z).]

For large 7(7) such that 1 < T/ +1/4 = ((F*+1/4)/(F*+3/4)
the behavior is close to the classical Kasner dynamics with
the same relationship between the Kasner exponents and
the conserved quantity . For smaller ¢, however, there is a
new effect because the relationship between ¢ and 7 is not
one-to-one, in contrast to the classical solutions. We have

% = Jo(B +3/AV1 = 2B +1/0/(PH3/4) — 0 (190)
T
at
t= 1 = APHNIFH1/4), (191)

At the same value of 7,
a2 B (—(367+5/4)/(5*+3/4) dt
— = A (B + 1/4 e
d2 70 % /4) V1 = 2120 +1/4)/(*+3/4) dT

= (B + 1/4) (B + 3/ ) PS03

= B8+ 1/4)( +3/4)5" > 0 (192)

such that 7(7) has a local minimum at the value #(z) = f;.
The full dynamics therefore describes nonsingular evolu-
tion of a collapsing Kasner model connected to an
expanding Kasner model with the same exponents. All
three spatial directions transition from collapse to expan-
sion at the same time 7(7;). The behavior of #(zr) is
illustrated in Figs. 1 and 2.

The special case of the modified flat Kasner model is
givenbyu =1,=1/2, a = a, = b, = 0, which implies
W =1InT and a = 0. We have A = 0 and

in(AK 1
sm(_ ) _ (193)
A VT
and the line element
ds? = A5%(— sec?(AK)dT? + d6?) + T?dx* + dy?.  (194)

Here, proper time 7(7') can be integrated more easily but its
inversion to T(z) remains complicated.

3. Homogeneous solution: Internal-time gauge
Let us now use the inhomogeneous curvature component
as an internal time, 7y = K. The two time coordinates are
related to each other by

sin(AT k) (195)

ol
Si-
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4.0

3.5,
3.0
2.5

~ 2.0

1.51

1.0 1

0.5 A

0.0

FIG. 1. The function of #(z) with A = I, obtained from the
inverse of a hyperbolic function, shows the transition from
collapse to expansion in Kasner models of emergent modified
gravity. Its dependence on different values of f is shown here by
the range of possible curves, with the upper bound given by large
B such that —2(8* + 1/4)/(p* + 3/4) ~ =2 and the lower bound
given by =0 such that —2(f> +1/4)/(p* +3/4) = -2/3
(dotted curves). The value f = 1/2 (solid line), such that
=2(f*+1/4)/(f* +3/4) = —1, is close to the midpoint of this
range.

such that

Fh -
———cos(ATg)dTx = dT.

- sin®(ATk) (196)

Substituting in the line element for the modified flat Kasner
model, we obtain

20.0

17.54

12.51

+ 10.0 A

7.5 1

5.01

2.5 1

0.0

FIG.2. The asymptotic behavior of the function of #(z) for large
risclose to #(7) = 47 + ¢, if 1 = 1. The value # = 1/4 has been
used for the solid curve.

26

ds? = 42 —4—2
* 0 ( sin®(ATk)

d7% + d02>
/‘14

b dR
sin*(ATk) Y

(197)

which is indeed regular at maximum curvature, Ty = 7/24,
defining a surface of reflection symmetry.

We now derive this result by directly solving the
equations of motion in the internal-time gauge (147), rather
than performing a coordinate transformation. For the
homogeneous model, we set P, = W' =a =& =K' =
A" = N'" =0 and assume a vanishing cosmological con-
stant, A = 0. We note that the modified constraints (94) and
(109) are identical in the homogeneous case if the classical
values for the functions ¢, a4y, a3 = 1, ¢ — 0, and Ay —
A — 0 are taken, with constant A = 4, v = 7, and Ag- The
results of the present and the following subsections then
apply to both cases.

We first see that because of homogeneity the local version
of the observable (27) is conserved, G = 2zPy, = 0, and we
will write the momentum as Py, = 2uf with constants ¢ and
p. The on-shell condition Hy, = 0 is trivially satisfied in this
case, while H = 0 is solved by

= 7 cot(d 23
Ao _a tan(_ﬁK) +/lcot(AK) 4;4_[)' '

" de A 4de

(198)

We then obtain

or <ata“(;K)) - {ata“(;K) ,H[N]} «H,  (199)

which vanishes on-shell, such that @ tan(AK)/1 = u where u
1s a constant. Hence,

A:(4/32—1)4ﬁ.

13

(200)

In combination with the chain rule we obtain the
equations

de & _ Y o
dK K (1+44%) tan(AK)
d [sin@W)\ _ 44 (202)
dK v (1 +4) an(JK)’
solved by
in(AK)\ 4/ (1+48)
e=c, (Sm(/_fK)> (203)

and
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sin(z W) i <gcw sin(flK))—4ﬂ/(1+4ﬂ2> (204)
v A '

For convenience, the integration constants may be rede-
fined as

2
eZCW — 62(1(/4T(()4ﬂ2_1)/4)8ﬂ/(4ﬂ +1)‘ (206)

Finally, the lapse function is obtained by solving the
consistency equation K = 1,

4 : _ in(K —2/(1+4p%)-2
=TT \f_secz(ﬂ W) <sm(z )) :
RN CasY +45° Ao
Ce = (ﬂTo ) (205) (207)
and The spacetime line element is then given by
_[sin(ATy )\ Y142 2¢, (sin(AT)\ ~8/(1+49)-2 2
ds? = sec* (D W K ——— ) (=== 2L dT% +~—do?
5% = sec*(v )( ; ) (74f) 2 3 K+c£
in(AT —4(2p+1)/(4p>+1) in(AT 4(2p-1)/(4p%+1)
ey (1)) o+ o () o (208)
where W is implicitly given by (204). 2% cos(AT
plicitly given by (204) K dvedxt = 29— OSPTK) 40 (213)

4. Modified flat Kasner solution

The Kasner solution y =1, f=1/2 is given by the
simpler metric

. 4 (sin(ATg)\ ™
ds? = sec*(v W) <— 2 (sm(/{f@) dr% + d92>
0

in(ATx)\ ™
+ (Sm(/li’()) dx? + dy?, (209)

where W can be obtained from inverting its relation with K,

Sin(Tw) _ o <_M) (210)

NS

Taking v — 0, the Kasner solution in this gauge (209)
has the Ricci scalar

R=1 (—Sin@TK))é,
A
and the Kretschmann invariant

> ¥ (sin(AT )\ %
= RyugpR == (T Q1)

(211)

Both expressions are finite at Tx = 7/(21). The model is
approximately flat only for Ty < 4, and both curvature
invariants vanish in the classical limit 4 — 0.

A hypersurface of constant time T of the modified
Kasner spacetime (209) defines a three-dimensional space
with extrinsic curvature

Sin2 (/_1 T K )
which vanishes only at the maximum-curvature hypersurface.

5. Flat solution: Nonunique vacuum

From the above example one might conclude that the
vacuum solution of this theory is different from Minkowski
spacetime, as suggested for a similar case for instance in
[34]. It is easy to see that such a statement is incorrect
because flat spacetime, described by

N =1, N? =0,
e=1, a=1, W =0,
A =0, K=0, Py =0, (214)

is a solution to the same theory if, to be specific, we take the
classical values for all the modification functions except for
A and v which we leave as arbitrary functions. This solution
is excluded from the case of Kasner-like line elements by
the assumption that € can be used as a time variable, such
that e = 1 can be obtained only on one spacelike hyper-
surface but not across an entire spacetime region.
Nevertheless, flat Minkowski spacetime is a solution of
the same modified theory in which we obtained our Kasner
spacetimes.

Minkowski spacetime is relevant because its local
behavior describes the background spacetime of vacuum
states in quantum field theory. According to the general
meaning of ‘“vacuum” in particle physics or general
relativity, all Kasner models are vacuum solutions because
they do not include matter. The case of f = 1/2 is special
only because, classically, it happens to be locally equivalent
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to Minkowski spacetime and just appears written in non-
Cartesian coordinates. The result that this correspondence
is not realized in a modified theory only means that there is
no longer a Kasner model related to flat Minkowski
spacetime. It does not mean that Minkowski spacetime
itself is modified or no longer appears as a solution, as
demonstrated by the explicit counterexample of (214).

A distinguishing feature of (214) compared with any
Kasner solution is that it is not only devoid of matter but
also has a vanishing local gravitational degrees of freedom
described by (W, Py,). We can formalize this property by
making use of the definition of an effective stress energy,
obtained from the Einstein tensor of the emergent space-
time metric. We find that the flat solution (214) has a
vanishing net stress-energy tensor, while the modified flat
Kasner solution has a nontrivial one, as shown by the
nonvanishing Ricci scalar (211). Therefore, the solutions
are distinguished from one another by their effective
gravitational energy content. From this perspective, the
standard Minkowski solution remains the preferred vacuum
spacetime also in a modified theory. For 1 — 0, the
effective stress-energy tensor vanishes, and the modified
flat Kasner solution approaches the strictly flat Minkowski
solution.

The correct identification of a candidate vacuum solution
therefore requires an extension of strict minisuperspace
models to some inhomogeneity, which tells us that the
nonzero W and Py, in Kasner models are homogeneous
remnants of a propagating gravitational degree of freedom,
and the correct identification of a covariant spacetime
structure that defines curvature and effective stress energy.
Itis also important to have a gauge-invariant treatment that is
not built on a fixed gauge choice such as an internal time, as

such a choice might restrict the accessible solution space.
None of these ingredients had been available in previous
models of quantum cosmology. With some choices of
modification functions, it might happen that strict
Minkowski spacetime is no longer a solution or that the
zero-mass limit of a black-hole solution differs from
Minkowski spacetime as seen explicitly in an example in
[15]. But such a conclusion cannot be drawn in a reliable
manner in theories based on restricted gauge choices or on
incomplete demonstrations of covariance properties.

C. Constraints compatible with the classical-W limit

We now use the constraint (115) in the internal time gauge
(147) for the homogeneous case where P, = W' =a' =
¢ = K' = A = N’ = 0. For simplicity we take the classical
values for the following modification functions and assume a
vanishing cosmological constant, ¢, ay, a3 = 1,4 — 0, and
Ay = A = 0.Wealsoset Ay, A = 4,andv = U constant. With
these values, the inhomogeneous component of the emergent
spatial metric is given by

6_12

Goo = M52 cosHOW) —5—=——. 21
960 }“0 cos (U W) C052 (/1K>8 ( 5)

As before, homogeneity implies that the local version of
the observable (27) is conserved, G = 0, and we shall write
it as G =4zupf such that Py = 2up, anticipating an
integration constant (x) that will be introduced in the
process of solving equations of motion. The value of
then parametrizes the momentum.

The relevant equations of motion for recovering the
emergent spacetime geometry are given by

dln (51.2/ c_os2 (/:1K)) _ /_1_ sinz_(jK) cos? (i) 2512_ L a2 cos (2_/_1K)
d(sin (1K) /2) sin (1K) cos” (AK) | cos (AK)|
sin?(AK) - a’ - =
X ( e cos? (1K) cos? (1K) + 4u*p?| cos (/1K)|> (216)
as well as
dlne sin (24K) ('sin? (AK) . cos?(AK)\ !
=4 = - AK)| + 4p*pr ———~ 217
o ) (P cos 0K+ i @17)
and
d [sin(z W) cos(AK) (sin?(AK) . cos?(AK)\ !
il — 4 _ K)| +4u?p> ———~ 21
e () — ) (D cos ) i ) 218
where we have chosen K as an evolution parameter. Equation (216) can be solved exactly,
22 2R . N 16/ 2
= - 1-4 1-4 —_— . 219
cos’(AK) 4 sinz(/lK)< TS |cos(/1K)|> (219)
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The integration constant x> and the sign of the square root
have been chosen for the solution to match the classical
one, Eq. (149), in the limit 1 — 0.

The ratio (219) appears directly as a factor in the
emergent metric component ¢gg, given by (215). Near
the maximum-curvature hypersurface, defined by
K — 7/(2]), this expression diverges as sec(AK), and its
internal-time derivative (216) diverges as sec?(1K). Using
this, we find that the right-hand side of (217) remains finite
at the maximum-curvature hypersurface,

=2

cos? (1K)

sec’(D W)
o

N = 4\/E< | cos(AK)|

which is finite at the maximum-curvature hypersurface
provided W # —z/(20).

Because of the divergence of (219) and its derivative
(216), the emergent line element has a singular 8-compo-
nent at the maximum-curvature hypersurface, and its time
derivatives are singular there too. Thus, neglecting the time
derivatives of the g, and g,, components, a homogeneous
line element of the form

ds? = —=N2dT% + Gged6* + g, dx* + q,,dy?

()
doo
which diverges as R ~sec’(ATx) near the maximum-

curvature hypersurface, while the Kretschmann scalar takes
the form

(222)

has the Ricci scalar

- 2@> . (223)
qe0

2

mo X (224)
2Ge0N

which diverges as K~ sec’(ATk) near the maximum-

curvature hypersurface This constraint, unlike the other

two versions considered in this paper, therefore implies a

singular geometry at the maximum-curvature hypersurface.

VII. DISCUSSION

We have extended emergent modified gravity from
spherically symmetric models to polarized Gowdy systems,
preserving most of the qualitative features observed in
previous publications. In particular, modification functions
of the same number and type remain in the classes of
modified constraints derived explicitly here, building on a
relationship with models of a scalar field coupled to
spherically symmetric gravity. Emergent modified gravity
therefore is not restricted to spherical symmetry, and it is

sin? (1K)

dmeN

i (220)

while that of (218) vanishes. We conclude that both & and
sin(z W) remain finite, and hence the homogeneous com-
ponents g, and g, are finite too.

We complete the gauge fixing by enforcing the consis-
tency equation K = 1 and solve it for the lapse function,

=2

m | COos (ZK)

=+ , (221)

-1
422
3 ﬂﬁ)

|
compatible with different kinds of local degrees of freedom
from matter or gravity.

One class of models, compatible with the classical limit
of the local gravitational degree of freedom, has a set of
modification functions such that polarized gravitational
waves travel on an emergent spacetime geometry just like a
minimally coupled scalar field. The existence of these
models shows that a nontrivial class of theories in emergent
modified gravity has gravitational waves and matter (a
minimally coupled massless scalar field propagating on the
same geometry) traveling at the same speed. Emergent
modified gravity is therefore compatible with strong
observational restrictions on the difference of the two
speeds [35-38]. Moreover, emergent modified gravity does
not require higher time derivatives for nontrivial modifi-
cations, and is therefore free of related instabilities [16].

Compared with spherically symmetric models, polarized
Gowdy systems have a large class of homogeneous
solutions that correspond to the full Kasner dynamics of
the Bianchi I model. We have derived consistent modifi-
cations of this dynamics with the correct classical limit at
large volume but different behaviors at small volume. Some
types of modifications lead to nonsingular evolution con-
necting collapsing and expanding Kasner dynamics, while
models compatible with the classical limit for the local
gravitational degree of freedom retain the classical big-bang
singularity. In the nonsingular case, all three spatial direc-
tions transition from collapse to expansion at the same time.
We demonstrated that the modified Kasner family may no
longer include Minkowski spacetime, but that a different
gauge choice not based on an internal time nevertheless
shows that this geometry remains a solution of the modified
theory. Discussions of possible vacuum states in a modified
theory therefore require access to different gauge choices and
cannot be made reliably in a deparametrized setting, as often
used in quantum cosmology.

The restrictions on inhomogeneous terms in the covar-
iant constraints, imposing the covariance requirement
on an emergent spacetime metric distinct from the basic
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phase-space variables, demonstrates the nontrivial nature of
modifications or quantizations of the polarized Gowdy
model. In particular, a separate modification or quantization
of a homogeneous Bianchi model coupled to linearized
classical-type inhomogeneity, as proposed for instance in
hybrid loop quantum cosmology [39—41], does not lead to
covariant spacetime solutions because it is not contained in
the general class of consistent models derived here.
Modifications of the background dynamics, one of the
key ingredients in cosmological models of loop quantum
gravity, instead have to be reflected in coefficients of the
inhomogeneous terms and in the corresponding emergent
line element, as determined by strong covariance condi-
tions. Midisuperspace quantizations of polarized Gowdy
and related models, as in [42—-49], would have to take into
account the new holonomy behavior found in Eq. (74) in
order to be compatible with a covariant semiclassical limit.
The dependence of the holonomies on anisotropies (rather
than areas or volumes as previously assumed in models of
loop quantum gravity) then implies new phenomenological
behaviors. These applications indicate that emergent modi-
fied gravity has important implications for classical as well
as quantum models of gravity.

Our successful extension of emergent modified gravity
from spherical symmetry to polarized Gowdy models is
nontrivial, as previous attempts to generalize anomaly-free

modifications of spherically symmetric models to Gowdy
symmetries had failed [46]. The constructions shown here
not only imply anomaly-free modified constraints, they
also implement full covariance conditions. Together with
the previous extension of vacuum spherically symmetric
models to scalar matter [6] and perfect fluids [3], also
within emergent modified gravity, these are the first non-
trivial canonical modifications of gravitational models with
local or matter degrees of freedom. Based on these
examples, it seems that each new degree of freedom allows
one additional modification function, without restricting
the modification freedom of the remaining degrees of
freedom. This success is encouraging, but the question
remains open as to whether nontrivial versions of emergent
modified gravity exist without any symmetry assumptions.
As shown recently, some of the crucial equations that
implement covariance for modified canonical theories hold
in general because they follow from intrinsic properties of
hypersurface deformations [50]. However, the solution
space of these equations so far remains unexplored.
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