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New covariant theories of emergent modified gravity exist not only in spherically symmetric models, as

previously found, but also in polarized Gowdy systems that have a local propagating degree of freedom.

Several explicit versions are derived here, depending on various modification functions. These models do

not have instabilities from higher time derivatives, and a large subset is compatible with gravitational waves

and minimally coupled massless matter fields traveling at the same speed. Interpreted as models of loop

quantum gravity, covariant Hamiltonian constraints derived from the covariance conditions found in

polarized Gowdy systems are more restricted than those in spherical symmetry, requiring new forms of

holonomy modifications with an anisotropy dependence that has not been considered before. Assuming

homogeneous space, the models provide access to the full anisotropy parameters of modified Bianchi I

dynamics, in which case different fates of the classical singularity are realized depending on the specific

class of modifications.
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I. INTRODUCTION

The canonical formulation of spherically symmetric

general relativity has recently been shown [1,2] to allow

a larger class of modifications than is suggested by the

more common setting of covariant action principles. In this

framework of emergent modified gravity, it is possible to

couple perfect fluids [3], electromagnetism [4,5], and scalar

matter [6,7] to the new spacetime geometries, including

local degrees of freedom in the latter case. Here, we show

that it is also possible to extend spherical symmetry to a

polarized Gowdy symmetry that includes local gravita-

tional degrees of freedom. This extension makes it possible

to study properties of gravitational waves in this new set of

covariant spacetime theories.

Building on previous canonical developments, starting

with the classic [8] and using more recent contributions [9],

emergent modified gravity constructs consistent gravita-

tional dynamics and corresponding spacetime geometries

by modifying the Hamiltonian constraint of general rela-

tivity and implementing all covariance conditions. A

candidate for the spatial metric of a spacetime geometry

is provided by the structure function in the Poisson bracket

of two Hamiltonian constraints, which is required to be

proportional to the diffeomorphism constraint as one of the

consistency conditions. Canonical gauge transformations

of the candidate spatial metric must then agree with

coordinate transformations in a compatible spacetime

geometry, forming the second consistency condition that

had been formulated for the general case and analyzed for

the first time in [2]. These constructions allow for the

possibility that the spatial metric (or a triad) is not one of

the fundamental fields of a phase-space formulation. It is

derived from Hamilton’s equations generated by the con-

straints and not presupposed, giving it the status of an

emergent geometrical object. This feature is the main

difference with standard action principles in metric or other

formulations and makes this approach to modified gravity

more general than previous constructions. Examples of new

physical implications include the possibility of nonsingular

black-hole solutions [10,11], covariant modified newtonian

dynamics (MOND)-like effects [12], and new types of

signature change [13].

There is a large variety of potential physical effects that

depend on choices of modification functions. The physical

origin of an implication such as nonsingular behavior or

MOND-like effects is then related to the underlying moti-

vation for such a choice, for instance in properties of

canonical quantum gravity that could impose curvature

bounds and therefore implynonsingular behavior, or renorm-

alization of quantum gravity in canonical form, which could

imply logarithmic terms in quantum modifications relevant

on intermediate distance scales where MOND would be

relevant. Scalar quasinormal modes on a background space-

time of spherically symmetric emergent modified gravity

have been computed in [14], showing new characteristic

features that could be used in the future to subject this

framework to observational tests. However, all these prom-

ising results were obtained for spherically symmetric models
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of gravity. For a testable and phenomenologically viable

framework, it is important to relax this symmetry condition.

Here we present the first step toward a more general

framework.

The constructions of the present paper lead to the first

model of emergent modified gravity that does not obey

spherical symmetry. Nevertheless, spherical symmetry can

be realized as a special case, allowing us to draw con-

clusions about how generic specific features seen in the

more symmetric context are within a broader setting. An

example of interest is the form of holonomy-type mod-

ifications that are often used in order to model potential

effects from loop quantum gravity. The specific form of

these modifications within a consistent and covariant set of

equations is restricted compared with what had been

assumed previously in loop constructions. The extension

to polarized Gowdy models performed here shows that

compatible modifications require significant deviations

from what might be suggested by loop quantum gravity.

In particular, the holonomy length for strictly periodic

modifications of the extrinsic-curvature dependence does

not directly depend on the volume or area of a symmetry

orbit (all of space in a homogeneous cosmological model or

a sphere at constant radius in black-hole models), but rather

on its anisotropy parameters. General covariance therefore

rules out the possibility that the holonomy length decreases

as space or a spherical orbit expands, which would be a

prerequisite to a nearly constant discreteness scale that does

not increase to macroscopic sizes as the universe expands.

Nevertheless, additional modification functions can be used

in order to implement a dynamical suppression of holon-

omy modifications on classical scales, as discussed in detail

in [15] for spherically symmetric models. The traditional

picture of models of loop quantum gravity therefore has to

be corrected in order to be compatible with a consistent

spacetime geometry. Emergent modified gravity guides the

way to a new understanding by a systematic classification

of possible spacetime modifications in canonical form.

In addition, the new gravitational models found here are

important in their own right because they have covariant

equations with modifications that do not require higher-

derivative terms and corresponding instabilities [16]. They

are therefore potential alternatives to general relativity that

could be used in comparisons with observations, provided

the symmetry assumptions can be relaxed further. Polarized

Gowdy symmetries constitute a first step in this direction,

giving access to some properties of gravitational waves. In

particular, we show that there is a class of modifications that

implies the same propagation speed for gravitational waves

andmassless scalarmatter travelingon the samebackground.

Unlike spherically symmetric models, which have a

spatially homogeneous subset of Kantowski-Sachs models

with a single anisotropy parameter, polarized Gowdy

models give full access to the Bianchi I model with two

anisotropy parameters. It is therefore possible to perform a

more complete analysis of the big-bang singularity, which

may be avoided depending on the type of modifications

used. As a characteristic property, the classical Kasner

exponents are preserved at large volume, and a nonsingular

transition from collapse to expansion happens at the same

time for all three spatial directions. We will present a

detailed analysis of these questions in Sec. VI, after a brief

review of canonical and emergent modified gravity in

Sec. II and their application to polarized Gowdy models

in Secs. III and IV with a summary of different classes of

modifications in Sec. V. Implications for covariant holon-

omy modifications in models of loop quantum gravity can

be found in Secs. III B 2–III B 4.

II. CLASSICAL THEORY

The classical polarized Gowdy system [17] is defined by

spacetime line elements of the form

ds2 ¼ −N2dt2 þ qθθðdθ þ NθdtÞ2 þ qxxdx
2 þ qyydy

2 ð1Þ

with functions N, Nθ, and qab depending only on t and θ.

All three spatial coordinates x, y, and θ take values in the

range ½0; 2πÞ for the torus model with spatial slices

Σ ≅ T3 ¼ S1 × S1 × S1. Solutions with periodic boundary

conditions in θ can be interpreted as standing planar

gravitational waves with transversal area element
ffiffiffiffiffiffiffiffiffiffiffiffiffi

qxxqyy
p

, moving in the θ-direction in which the length

measure is given by qθθ. Alternatively, solutions may be

used as cosmological models with one direction of spatial

inhomogeneity. (The periodicity condition in θ may be

dropped, but it is part of the traditional Gowdy model.)

Equivalently, the spatial metric components qab can be

parametrized by

qθθ ¼
ExEy

ε
; qxx ¼

Ey

Ex
ε; qyy ¼

Ex

Ey
ε ð2Þ

using the components Ex, Ey, and ε of a densitized triad

Ea
i σi

∂

∂xa
¼ εσ3

∂

∂θ
þ Exσ1

∂

∂x
þ Eyσ2

∂

∂y
ð3Þ

with Pauli matrices σi. In these variables, the transversal

area element is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffi

qxxqyy
p ¼ ε.

For some purposes, it is conventional to write the metric

in the diagonal case (Nθ ¼ 0) in the form

ds2 ¼ e2að−dT2 þ dθ2Þ þ Tðe2Wdx2 þ e−2Wdy2Þ ð4Þ

with a new time coordinate T. This conventional metric is

associated with the canonical metric in a gauge defined by

ε ¼ T and N ¼ ffiffiffiffiffiffiffi

qθθ
p

, identifying N2 ¼ qθθ ≕ e2a and

W ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ey=Ex
p

.

If Ex ¼ Ey or W ¼ 0, the geometry has an additional

rotational symmetry in the transversal planes. This con-

dition eliminates the local propagating degree of freedom
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present in the original model. If we replace dx2 þ dy2 with

dϑ2 þ sin2 ϑdφ2 in the line element, we obtain the general

form of spherically symmetric models. In this case, it is

more common to choose a gauge fixing in which qϑϑ,
analogous to ε in the polarized Gowdy model with

Ex ¼ Ey, is related to the radial coordinate instead of time.

Moreover, from standard solutions in this case it follows

that the static gauge choice in spherical symmetry, given by

vanishing extrinsic curvature, implies an inverse relation-

ship between the lapse function and the radial metric

component.

Specific solutions of spherically symmetric models and

the polarized Gowdy model, even for W ¼ 0, therefore

appear quite different, but formally we will see that the

models are closely related in their canonical properties. The

main difference implied by using spherical symmetry orbits

instead of planes is the presence of additional intrinsic-

curvature terms in the Hamiltonian constraint that depend

on spatial derivatives of qϑϑ in a spherically symmetric

model. It is less obvious that even the general polarized

Gowdy model with W ≠ 0 can be related to a spherically

symmetric model, provided the gravitational variables in

the latter case are coupled to a spherically symmetric scalar

field. Seeing this relationship will require a suitable

canonical transformation of the Gowdy variables.

A. Canonical formulation

The densitized-triad components are canonically con-

jugate to components of extrinsic curvature, implying

canonical pairs ðKx; E
xÞ, ðKy; E

yÞ, and ðA; εÞ and the

symplectic structure

Ω ¼ 1

κ̃

Z

dθðdKx ∧ dEx þ dKy ∧ dEy þ dε ∧ dAÞ ð5Þ

with κ̃ ¼ κ=ð4π2Þ ¼ 2G=π in terms of Newton’s constant

G. We will work in units such that κ̃ ¼ 1.

The classical Hamiltonian and diffeomorphism con-

straints with a cosmological constant are [18]

H ¼ −
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ExEyε
p

�

−εExEyΛþKxE
xKyE

y þ ðKxE
x þKyE

yÞεAþ 1

2

ε2

ExEy
ðExÞ0ðEyÞ0 þ 1

2

ε

Ex
ðExÞ0ε0 þ 1

2

ε

Ey
ðEyÞ0ε0

−
1

4

ε2

ðEyÞ2 ððE
yÞ0Þ2 − 1

4

ε2

ðExÞ2 ððE
xÞ0Þ2 − 1

4
ðε0Þ2 − εε00

�

¼ −
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ExEyε
p ð−εExEyΛþExKxE

yKy þ ðExKx þ EyKyÞεAÞ− 1

4

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ExEyε
p

�

ðε0Þ2 − 4ðεðln
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ey=Ex
p

Þ0Þ2
�

þ
� ffiffiffi

ε
p

ε0
ffiffiffiffiffiffiffiffiffiffiffi

ExEy
p

�0

ð6Þ

and

Hθ ¼ ExK0
x þ EyK0

y −Aε0; ð7Þ

where the primes are θ derivatives. The smeared constraints

have Poisson brackets

fHθ½Nθ�; Hθ½Mθ�g ¼ −Hθ½MθðNθÞ0 − NθðMθÞ0�; ð8Þ

fH½N�; Hθ½Mθ�g ¼ −H½MθN0�; ð9Þ

fH½N�; H½M�g ¼ −Hθ½qθθðMN0 − NM0Þ� ð10Þ

of hypersurface-deformation form, with structure function

qθθ ¼ ε=ðExEyÞ directly given by the inverse metric

component in the inhomogeneous direction. From general

properties of canonical gauge systems [19,20] it then

follows that the gauge transformations for the lapse

function N and shift vector Nϑ are given by

δϵN ¼ ϵ̇0 þ ϵθN0 − Nθðϵ0Þ0 ð11Þ

and

δϵN
θ ¼ ϵ̇θþ ϵθðNθÞ0−NθðϵθÞ0þqθθðϵ0N0−Nðϵ0Þ0Þ: ð12Þ

In the classical theory it is clear that the inverse of the

structure function, qθθ ¼ 1=qθθ, obeys a covariance con-

dition as a component of the spacetime metric. More

generally [2], covariance conditions can be directly for-

mulated for phase-space functions such as a structure

function in a modified theory. They implement the general

condition that gauge transformations of any candidate

spacetime metric component, generated by the canonical

constraints, must be of the form of a Lie derivative by a

spacetime vector field. Using explicit expressions for gauge

transformations generated by the constraints on a given

phase space, this general condition can be written as a set of

partial differential equations that the constraints have

to obey.
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These covariance conditions, derived in [2] for spherical

symmetry, are more complicated for polarized Gowdy

models because the phase space is larger and the line

element is a more complicated function of the phase-space

variables. For the homogeneous component qxx we obtain
the conditions

1

Ey

�

∂H

∂K0
y

− 2

�

∂H

∂K00
y

�0�

−
1

Ex

�

∂H

∂K0
x

− 2

�

∂H

∂K00
x

�0�

þ 1

ε

�

∂H

∂A0 − 2

�

∂H

∂A00

�0�	
	

	

	

O:S:

¼ 0 ð13Þ

and

1

Ey

∂H

∂K00
y

−
1

Ex

∂H

∂K00
x

þ 1

ε

∂H

∂A00

	

	

	

	

O:S:

¼ 0; ð14Þ

where “O.S.” indicates that the equations are required to

hold on-shell, when constraints and equations of motion are

satisfied. For our modified constraints, we assume spatial

derivatives up to second order; otherwise, there would be

additional terms in these equations. The x ↔ y exchange

symmetry of the constraint allows us to simplify these

on-shell conditions to

∂H

∂A0 ¼
∂H

∂A00 ¼
1

Ey

∂H

∂K0
y

−
1

Ex

∂H

∂K0
x

¼ 1

Ey

∂H

∂K00
y

−
1

Ex

∂H

∂K00
x

¼ 0; ð15Þ

which is clearly satisfied by the classical constraint even

off-shell. The same condition is obtained from the other

homogeneous component, qyy.

For the inhomogeneous component, the covariance

condition reads

∂ðfqθθ; H½ϵ0�gÞ
∂ðϵ0Þ0

	

	

	

	

O:S:

¼ ∂ðfqθθ; H½ϵ0�gÞ
∂ðϵ0Þ00

	

	

	

	

O:S:

¼ � � � ¼ 0;

ð16Þ

which is also satisfied by the classical constraint because it

does not contain any derivatives of Kx, Ky, orA that would

introduce a dependence of the Poisson brackets on spatial

derivatives of ϵ0 upon integrating by parts. For this result, it

is important to use the classical property that the structure

function qθθ is independent of the canonical variables

conjugate to the triad components. This property is no

longer required in emergent modified gravity.

The gauge transformations of lapse and shift, Eqs. (11)

and (12), and the realization of the covariance conditions,

Eqs. (15) and (16), ensure that the spacetime line element

(1) is invariant, or the spacetime metric gμν is covariant in
the sense that the canonical gauge transformations of the

metric reproduce spacetime diffeomorphisms on-shell: We

have

δϵgμνjO:S: ¼ LξgμνjO:S:; ð17Þ

where the gauge functions, ðϵ0; ϵθÞ, on the left-hand side are
related to the 2-component vector generator, ξμ ¼ ðξt; ξθÞ, of
the diffeomorphism on the right-hand side by

ξμ ¼ ϵ0nμ þ ϵθsμ ¼ ξttμ þ ξθsμ ð18Þ

with components

ξt ¼ ϵ0

N
; ξθ ¼ ϵθ −

ϵ0

N
Nθ: ð19Þ

B. New variables

It is convenient to perform the canonical transformation

PW̄ ¼ KxE
x − KyE

y; W̄ ¼ ln

ffiffiffiffiffiffi

Ey

Ex

r

;

ā ¼
ffiffiffiffiffiffiffiffiffiffiffi

ExEy
p

; K ¼ KxE
x þ KyE

y

ffiffiffiffiffiffiffiffiffiffiffi

ExEy
p ; ð20Þ

with W̄ and K as the configuration variables, and PW̄ and ā
their respective conjugate momenta. The canonical pair

ðA; εÞ is left unchanged by this transformation.

The diffeomorphism constraint in these variables is form

invariant,

Hθ ¼ ExK0
x þ EyK0

y −Aε0

¼ 1

2
Ex

�

PW̄ þ K
ffiffiffiffiffiffiffiffiffiffiffi

ExEy
p

Ex

�0
þ 1

2
Ey

�

−PW̄ þ K
ffiffiffiffiffiffiffiffiffiffiffi

ExEy
p

Ey

�0
−Aε0

¼ āK0 þ PW̄W̄
0 −Aε0; ð21Þ

while the Hamiltonian constraint (6) reads
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H ¼ −
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ExEyε
p ð−εExEyΛþ ExKxE

yKy þ ðExKx þ EyKyÞεAÞ

−
1

4

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ExEyε
p

�

ðε0Þ2 − 4ðεðln
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ey=Ex
p

Þ0Þ2
�

þ
� ffiffiffi

ε
p

ε0
ffiffiffiffiffiffiffiffiffiffiffi

ExEy
p

�0

¼ −
ffiffiffi

ε
p �

ā

�

−Λþ K2

4ε
−

1

4ε

P2

W̄

ā2
þ K

A

ā

�

− ε
ðW̄0Þ2
ā

−
1

4ε

ðε0Þ2
ā

þ ā0ε0

ā2
−
ε00

ā

�

¼ −
ffiffiffi

ε
p �

ā

�

−Λþ K2

4ε
þ K

A

ā

�

−
1

4ε

ðε0Þ2
ā

þ ā0ε0

ā2
−
ε00

ā

�

þ
ffiffiffiffiffiffiffi

qθθ
p

2

�

P2

W̄

2ε
þ 2εðW̄0Þ2

�

ð22Þ

in these new variables. The first parenthesis resembles the

Hamiltonian constraint of a spherically symmetric model,

while the last term expresses W̄ in the form of a scalar field.

This relationship will be discussed in more detail in

Sec. II D.

The spacetime metric

ds2¼−N2dt2þqθθðdθþNθdtÞ2þqxxdx
2þqyydy

2 ð23Þ

now has the spatial components

qθθ ¼
ā2

ε
; qxx ¼ e2W̄ε; qyy ¼ e−2W̄ε: ð24Þ

The new variables therefore closely resemble the conven-

tional choice used in (4).

C. Symmetries and observables

Given a potentially large class of modifications, it is

useful to impose guiding principles such as the preservation

of important symmetries of the classical system. For the

models considered here, there are discrete as well as

continuous symmetries.

1. Discrete symmetry

The constraints (6) are symmetric under the exchange

Ex
↔ Ey; Kx ↔ Ky, while the full line element (1) has the

same symmetry provided the coordinates are exchanged

too, x ↔ y. The complete discrete transformation is then

given by

Ex
↔ Ey; Kx ↔ Ky; x ↔ y: ð25Þ

This important symmetry implies the existence of an x-y
plane of wave fronts, in which the two independent

directions are interchangeable (while we do not have

isotropy in this plane unless Ex ¼ Ey). The modified theory

should therefore retain this symmetry as an important

characterization of the polarized Gowdy system. In the

new variables, the discrete transformation takes the form

PW̄ → −PW̄ ; W̄ → −W̄; x ↔ y; ð26Þ

which is a symmetry of the system (21)–(24).

2. Continuous symmetries and related observables

Field observable. Another advantage of the new varia-

bles is that the constraint (22) is manifestly invariant under

the transformation W̄ → W̄ þ ω where ω is a constant.

Therefore, the phase-space functional

G½ω� ¼
Z

dθ ωPW̄ ð27Þ

is a symmetry generator:

fG½ω�; H½N�g ¼ fG½ω�; Hθ½Nθ�g ¼ 0; ð28Þ

where we neglect boundary terms.

This property in turn implies that G½ω� is a conserved

global charge because Ġ½ω� ¼ fG½ω�;H½N�þHθ½Nθ�g¼ 0.

Furthermore, as discussed in [6], the boundary terms

that survive under the transformation of the local charge

take the form Ġ ¼ −∂aJ
a, which takes the form ∂μJ

μ ¼
∇μJ

μ ¼ 0 of a covariant conservation law for a spacetime

densitized 4-current with components

Jt ¼ G ¼ PW̄ ; Ja ¼ −

�

N
∂H

∂W̄0

�0
¼ −2ε3=2

W̄0

ā
: ð29Þ

Mass observable: In the limit of PW̄ ¼ W̄ ¼ 0, the

expression

M ¼
ffiffiffi

ε
p

2

�

K2 −

�

ε0

2ā

�

2

þ Λε

3

�

ð30Þ

is a Dirac observable.

D. Analogy with spherical symmetry

In the new variables, the constraint (22) is close to the

spherically symmetric constraint coupled to a scalar field.
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In this subsection we will point out in detail how the two

models are related.

In a spherically symmetric model, the spacetime line

element can always be written as

ds2 ¼ −N2dt2 þ q
sph
xx ðdxþ NxdtÞ2 þ q

sph
ϑϑ dΩ

2; ð31Þ

where dΩ2 ¼ dϑ2 þ sin2 ϑdφ2 in spherical coordinates.

(We use the conventional notation of calling the radial

coordinate in a spherically symmetric model x when a

coordinate choice has not been made yet. The notation as a

radius r would then be reserved for the area radius in which

case qϑϑ ¼ r2. We use the same letter x for one of the planar
coordinates of polarized Gowdy models, but the context of

a given model will make it clear which coordinate x refers

to.) As initially developed for models of loop quantum

gravity [21–23], it is convenient to parametrize the metric

components q
sph
xx and q

sph
ϑϑ as

q
sph
xx ¼ ðEφÞ2

Ex
; q

sph
ϑϑ ¼ Ex; ð32Þ

where Ex and Eφ are the radial and angular densitized-triad

components, respectively. We assume Ex > 0, fixing the

orientation of space.

The canonical pairs for spherically symmetric classical

gravity are given by ðKφ; E
φÞ and ðKx; E

xÞ where 2Kx and

Kφ are components of extrinsic curvature. We have a

further canonical pair ðϕ; PϕÞ if scalar matter is coupled to

the gravitational system. The basic Poisson brackets are

given by

fKxðxÞ; ExðyÞg ¼ fKφðxÞ; EφðyÞg
¼ fϕðxÞ; PϕðyÞg ¼ δðx − yÞ: ð33Þ

(Compared with other conventions, our scalar phase-space

variables are divided by
ffiffiffiffiffiffi

4π
p

, absorbing the remnant of a

spherical integration. We use units in which Newton’s

constant, G, equals one. This convention is formally

different from what we are using in Gowdy models, where

2G=π equals one. The discrepancy is necessary in order to

take into account the difference in coordinate areas for the

symmetry orbits, given by 4π2 in the toroidal Gowdy model

and 4π in spherical symmetry, as well as the varying

multiplicity of independent degrees of freedom in the

homogeneous directions.)

The Hamiltonian constraint is given by

Hsph ¼ −

ffiffiffiffiffiffi

Ex
p

2

�

Eφ

�

1

Ex
þ K2

φ

Ex
þ 4Kφ

Kx

Eφ

�

−
1

4Ex

ððExÞ0Þ2
Eφ

þ ðExÞ0ðEφÞ0
ðEφÞ2 −

ðExÞ00
Eφ

�

þ 1

2

�

ffiffiffiffiffiffiffiffi

qxxsph
p

Ex
Pϕ

2 þ Ex
ffiffiffiffiffiffiffiffi

qxxsph

q

ðϕ0Þ2 þ
ffiffiffiffiffiffiffiffi

q
sph
xx

q

ExVðϕÞ
�

; ð34Þ

with a scalar potential VðϕÞ [or 1
2
VðϕÞ, depending on

conventions], and

H
sph
x ¼ EφK0

φ − KxðExÞ0 þ Pϕϕ
0 ð35Þ

is the diffeomorphism constraint. The primes denote

derivatives with respect to the radial coordinate x, which
is unrelated to the coordinates of the Gowdy model. These

constraints are first class and have Poisson brackets of

hypersurface-deformation form,

fHsph
x ½Nx�; Hsph

x ½Mx�g ¼ H
sph
x ½NxMx0 − Nx0Mx�; ð36aÞ

fHsph½N�; Hsph
x ½Mx�g ¼ −Hsph½MxN0�; ð36bÞ

fHsph½N�; Hsph½M�g ¼ H
sph
x ½qxxsphðNM0 − N0MÞ� ð36cÞ

with the structure function qxxsph ¼ Ex=ðEφÞ2 equal to the

inverse radial component of the spacetime metric.

The off-shell gauge transformations for lapse and shift

δϵN ¼ ϵ̇0 þ ϵxN0 − Nxðϵ0Þ0;
δϵN

x ¼ ϵ̇x þ ϵxðNxÞ0 − NxðϵxÞ0 þ qxxsphðϵ0N0 − Nðϵ0Þ0Þ
ð37Þ

together with the realization of covariance conditions for

spacetime,

∂Hsph

∂K0
x

	

	

	

	

O:S:

¼ ∂Hsph

∂K00
x

	

	

	

	

O:S:

¼ � � � ¼ 0 ð38Þ

and

∂ðfqxxsph;Hsph½ϵ0�gÞ
∂ðϵ0Þ0

	

	

	

	

O:S:

¼
∂ðfqxxsph;Hsph½ϵ0�gÞ

∂ðϵ0Þ00
	

	

	

	

O:S:

¼ �� �¼ 0;

ð39Þ

which have been derived in [2] and are clearly satisfied,

ensures that the line element (31) is invariant. Its
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coefficients then form a covariant metric tensor in the sense

that its canonical gauge transformations reproduce space-

time diffeomorphisms on-shell:

δϵgμνjO:S: ¼ Lξgμν: ð40Þ

The gauge functions ðϵ0; ϵrÞ on the left-hand side are

related to the 2-component vector generator ξμ ¼ ðξt; ξrÞ of
the diffeomorphism on the right-hand side by

ξμ ¼ ϵ0nμ þ ϵxsμ ¼ ξttμ þ ξxsμ ð41Þ

with

ξt ¼ ϵ0

N
; ξx ¼ ϵx −

ϵ0

N
Nx: ð42Þ

In addition, the realization of the covariance conditions

for matter [6],

∂Hsph

∂P0
ϕ

¼ ∂Hsph

∂P00
ϕ

¼ � � � ¼ 0; ð43Þ

ensures that the matter field transforms as a spacetime

scalar in the sense that its canonical gauge transformations

reproduce spacetime diffeomorphisms on-shell:

δϵϕjO:S: ¼ Lξϕ: ð44Þ

Finally, we note that the spherically symmetric system in

the absence of a scalar potential permits the global

symmetry generator

Gsph½α� ¼
Z

dx αPϕ; ð45Þ

with constant α. The gravitational mass observable is

Msph ¼
ffiffiffiffiffiffi

Ex
p

2

�

1þ K2
φ −

�ðExÞ0
2Eφ

�

2

−
Λ

3
Ex

�

; ð46Þ

which is a Dirac observable in the vacuum limit,

ϕ ¼ Pϕ ¼ 0.

We are now ready to identify the analog relationship

between the Gowdy and the spherically symmetric models.

By inspection, we find that relabeling the canonical pairs

according to

ðA; εÞ → ðKx; E
xÞ; ðK; āÞ → ðKφ; E

φÞ;
ðW̄; PW̄Þ → ðϕ; PϕÞ ð47Þ

turns the Gowdy constraints (21) and (22) into

H ¼ −
ffiffiffiffiffiffi

Ex
p �

Eφ

�

K2
φ

4Ex
þ Kφ

Kx

Eφ

�

−
1

4Ex

ððExÞ0Þ2
Eφ

þ ðEφÞ0ðExÞ0
ðEφÞ2 −

ðExÞ00
Eφ

�

þ
ffiffiffiffiffiffiffi

qθθ
p

4Ex
Pϕ

2 þ Ex

ffiffiffiffiffiffiffi

qθθ
q

ðϕ0Þ2 ð48Þ

and

Hθ ¼ EφK0
φ − KxðExÞ0 þ Pϕϕ

0; ð49Þ

respectively, and the Gowdy metric components (24)

become

qθθ ¼
ðEφÞ2
Ex

; qxx ¼ e2ϕEx; qyy ¼ e−2ϕEx: ð50Þ

Up to a few numerical factors, all the terms in the Gowdy

constraint (48) match those of the spherically symmetric

constraint (34) except for the first and last terms of the

latter: The inverse triad 1=Ex and the scalar potential V do

not appear in the former. In the general modified constraints

of the spherically symmetric system [6] these two terms are

just the classical limits of modification functions that are in

principle allowed to be different from what the classical

dynamics requires. (The scalar potential may always be set

equal to zero in order to define a specific model, while the

1=Ex-term is a special case of the dilaton potential that

would be a free function of Ex if the spherically symmetric

model were generalized to two-dimensional dilaton

gravity.) We thus conclude that the modified Gowdy

constraint is equivalent to the spherically symmetric one

up to the choice of modification functions. In arriving at

this conclusion, we have implicitly assumed that all of the

conditions imposed in [6] to obtain the general constraints

apply to the Gowdy system as well. We now show that this

is indeed the case.

The conditions for the modified theory considered in [6]

are the following ones. (1) Anomaly freedom, (2) covari-

ance conditions, (3) existence of a conserved matter

current, and (4) existence of a vacuum mass observable.

Anomaly freedom of the Gowdy model takes exactly the

same form as in spherical symmetry because the structure

function of the former, Eq. (50), is equivalent to that of the

latter, Eq. (32). The covariance conditions of the Gowdy

system, Eqs. (15) and (16), are also equivalent to the

spherically symmetric ones, Eqs. (39) and (43), upon using

the analog identification (47). Finally, the Gowdy sym-

metry generator (27) is identical to the spherically sym-

metric one (45) under the same identification, while the

Dirac observables (30) and (46) are identical up to one term

that in the modified theory is given by the classical limit of

a modification function. Therefore, all the classes of
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general modified constraints obtained in [6] are also the

results of applying these conditions to the Gowdy system, if

we only invert the correspondence.

In fact, there is one additional condition of the Gowdy

system that the spherically symmetric one does not have:

The discrete symmetry discussed in Sec. II C 1. In this

sense the Gowdy system is more restricted than the

spherically symmetric one. Therefore, we can simply take

the final results of [6] and impose the discrete symmetry

on them.

III. LINEAR COMBINATION OF THE

CONSTRAINTS

Before discussing general modifications, an interesting

restricted case is given by linear combinations of the

classical constraints with suitable phase-space dependent

coefficients. By construction, this class of theories pre-

serves the classical constraint surface but modifies gauge

transformations and the dynamics, implying a nonclassical

emergent spacetime metric if the covariance conditions are

fulfilled.

A. Anomaly-free linear combination

We define a new candidate for the Hamiltonian con-

straint as

HðnewÞ ¼ BHðoldÞ þ AHθ ð51Þ

with suitable phase-space functions A and B, using the

original constraints HðoldÞ and Hθ of the classical theory

and keeping the latter unchanged. We consider the phase-

space dependence B ¼ BðK; ε; W̄Þ. (For more details about

the individual steps, see [6].)

The Leibniz rule allows us to reduce the new bracket

fHðnewÞ½ϵ1�; HðnewÞ½ϵ2�g to Poisson brackets of the old

constraints with the functions A and B. Using the derivative
terms of the classical constraints, Poisson brackets relevant

for the anomaly freedom and covariance conditions can be

expanded by finitely many terms with different orders of θ-

derivatives of the gauge functions. For instance, we can

write

fB;HðoldÞ½ϵ̄0�gjO:S: ¼ Bϵ̄0 þ Bθ
∂θϵ̄

0jO:S:: ð52Þ

with

Bθ ¼
ffiffiffi

ε
p ε0

ā2
∂B

∂K
: ð53Þ

Anomaly freedom of the new constraints, using hypersur-

face-deformation brackets for the old constraints, then

requires

A ¼ −Bθ ¼ −
ffiffiffi

ε
p ε0

ā2
∂B

∂K
ð54Þ

because any term in fHðnewÞ½ϵ1�; HðnewÞ½ϵ2�g that is not

proportional to the diffeomorphism constraint must can-

cel out.

Similarly, we can write

fA;HðoldÞ½ϵ̄0�g ¼ A0ϵ̄0 þAθ
∂θϵ̄

0 ð55Þ

in which anomaly freedom together with (54) implies

Aθ ¼ −
ε

ā2

�

K
∂B

∂K
þ ðε0Þ2

ā2
∂
2B

∂K2

�

: ð56Þ

Using this new function, the bracket

fAθ; HðoldÞ½ϵ̄0�g ¼ Λ0ϵ̄0 þ Λθ
∂θϵ̄

0 ð57Þ

requires

Λθ ¼ −
ε3=2ε0

ā4

�

∂B

∂K
þ 3K

∂
2B

∂K2
þ ðε0Þ2

ā2
∂
3B

∂K3

�

: ð58Þ

The new structure function,

qθθðnewÞ ¼ B2qθθ þ BAθ; ð59Þ

follows from collecting all terms in the Poisson bracket of

two Hamiltonian constraints that can contribute to the

diffeomorphism constraint.

B. Covariant modified theory

Using the new structure function as an inverse spatial

metric, the covariance condition is given by

C≡ Λθ − B−1BθAθjO:S:

¼ −
ε3=2ε0

ā4

�

∂B

∂K
þ 3K

∂
2B

∂K2
þ ðε0Þ2

ā2
∂
3B

∂K3

�

þ ε3=2ε0

ā4
B−1

∂B

∂K

�

K
∂B

∂K
þ ðε0Þ2

ā2
∂
2B

∂K2

�

¼ 0: ð60Þ

We separate this condition into derivative terms,

C ¼ Cεε
0 þ Cεεεðε0Þ3; ð61Þ

which must vanish individually. The equation Cε ¼ 0

implies

K

�

∂B

∂K

�

2

þ B

�

K
∂
2B

∂K2
−
∂B

∂K

�

¼ 0 ð62Þ

and is solved by
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B ¼ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � K2

q

: ð63Þ

The equation Cεεε ¼ 0 implies

B
∂
3B

∂K3
þ 3

∂B

∂K

∂
2B

∂K2
¼ 0 ð64Þ

and is solved by

B ¼ c̃1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c̃2 � K2 þ c̃3K

q

: ð65Þ

In these solutions, ci and c̃i are free functions of W̄ and ε.

Their mutual consistency requires

BsðK; W̄; εÞ ¼ λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − sλ2K2
p

; ð66Þ

which then implies

As ¼ λ0
ffiffiffi

ε
p ε0

ā2
sλ2K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − sλ2K2
p ð67Þ

such that

qθθðnewÞ ¼ λ20

�

1þ sλ2

1 − sλ2K2

ðε0Þ2
ā2

�

ε

ā2
: ð68Þ

There are two remaining free functions, λ0 ¼ λ0ðW̄; εÞ and
λ ¼ λðW̄; εÞ, and we have separated the sign s ¼ �1 from

the original solution, Eq. (63). Reality requires that

1 − sλ2K2 ≥ 0, which may place an upper bound on K
depending on s and λ. Finally, the discrete symmetry

requires that both modification functions are even in W̄:

λ0ðW̄; εÞ ¼ λ0ð−W̄; εÞ and λðW̄; εÞ ¼ λð−W̄; εÞ.
Since we now have complete solutions for A and B, we

can derive the modified Hamiltonian constraint from (51):

HðnewÞ ¼ −λ0
ffiffiffi

ε
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − sλ2K2
p

�

ā

�

K2

4ε
−

1

4ε

P2

W̄

ā2
þA

ā
K

�

− ε
ðW̄0Þ2
ā

−
1

4ε

ðε0Þ2
ā

þ ā0ε0

ā2
−
ε00

ā

−
ε0

ā2
sλ2K

1 − sλ2K2
ðāK0 þ PW̄W̄

0 −Aε0Þ
�

: ð69Þ

The case s ¼ 1, together with a reality condition for the constraint, implies a curvature bound K < 1=λ. The case s ¼ −1

implies a possibility of signature change where qxxðnewÞ changes sign. [The inverse spatial metric is then determined by the

absolute value of (51).]

1. Canonical transformations

For the case s ¼ 1, a natural canonical transformation is

K →

sinðλKÞ
λ

; ā →

ā

cosðλKÞ ;

W̄ → W̄; PW̄ → PW̄ −
ā

cosðλKÞ
∂

∂W̄

�

sinðλKÞ
λ

�

;

ε → ε; A → Aþ ā

cosðλKÞ
∂

∂ε

�

sinðλKÞ
λ

�

; ð70Þ

under which the modified Hamiltonian constraint becomes

HðcÞ ¼ −λ0
ffiffiffi

ε
p �

ā

�

1

4ε

sin2ðλKÞ
λ2

−
1

4ε
cos2ðλKÞ

�

PW̄

ā
−
∂ ln λ

∂W̄
K þ tanðλKÞ

λ

∂ ln λ

∂W̄

�

2

þ sinð2λKÞ
2λ

�

A

ā
þ ∂ ln λ

∂ε
K −

tanðλKÞ
λ

∂ ln λ

∂ε

��

− ε
ðW̄0Þ2
ā

cos2ðλKÞ þ ā0ε0

ā2
cos2ðλKÞ − λ2

sinð2λKÞ
2λ

�

PW̄

ā
−
∂ ln λ

∂W̄
K

�

W̄0ε0

ā

−

�

cos2ðλKÞ
4ε

− λ2
sinð2λKÞ

2λ

�

A

ā
þ ∂ ln λ

∂ε̄
K

�� ðε0Þ2
ā

−
ε00

ā
cos2ðλKÞ

�

: ð71Þ
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A second canonical transformation,

K →

λ̄

λ
K; ā →

λ

λ̄
ā;

W̄ → W̄; PW̄ → PW̄ þ λ̄

λ
ā
∂ ln λ

∂W̄
K;

ε → ε; A → A −
λ̄

λ
ā
∂ ln λ

∂ε
K; ð72Þ

with constant λ̄, renders the modified Hamiltonian constraint periodic in K:

HðccÞ ¼ −λ0
λ̄

λ

ffiffiffi

ε
p �

ā

4ε

sin2ðλ̄KÞ
λ̄2

−
ā

4ε
cos2ðλKÞ

�

PW̄

ā
þ tanðλ̄KÞ

λ̄

∂ lnλ

∂W̄

�

2

þ sinð2λ̄KÞ
2λ̄

�

A− ā
tanðλ̄KÞ

λ̄

∂ lnλ

∂ε

�

− εcos2ðλ̄KÞ ðW̄
0Þ2
ā

þ
�

cos2ðλ̄KÞ
λ̄

∂λ

∂W̄
− λ̄2

sinð2λ̄KÞ
2λ̄

PW̄

ā

�

W̄0ε0

ā
−

�

cos2ðλ̄KÞ
4ε

�

1− 4ε
∂ lnλ

∂ε

�

− λ̄2
sinð2λ̄KÞ

2λ̄

A

ā

� ðε0Þ2
ā

þ cos2ðλ̄KÞ
�

ā0ε0

ā2
−
ε00

ā

��

: ð73Þ

[The term ð∂ ln λ=∂ϵÞK in (71) then disappears.] Unlike

the phase-space coordinates in (69), the holonomylike

coordinates of (71) imply a finite constraint at the curvature

bound, implying a dynamics that can cross such a hyper-

surface of maximum curvature.

The expression

sinðλ̄KÞ ¼ sin ðλ̄ðExKx þ EyKyÞ=
ffiffiffiffiffiffiffiffiffiffiffi

ExEy
p

Þ ð74Þ

in the periodic version of the constraint always requires a

nontrivial dependence on the densitized triads, in contrast

to what appears in the corresponding K-dependent terms of

spherically symmetric models, or of a restricted Gowdy

system in which Ex ¼ Ey and Kx ¼ Ky and the argument

of periodic functions is a single K-component. In the full

polarized Gowdy model, some densitized-triad dependence

always remains even if the initial function λ, which may

depend on ε as well as W̄, has been replaced by a constant λ̄

using a canonical transformation. The specific phase-space

function in (74) can be related to the ðx; yÞ-contribution to

the trace of the momentum tensor Ki
a canonically conjugate

to Ea
i , given by Ki

aE
a
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j detEj
p

¼ eaiK
i
a. In general,

however, the expression in emergent modified Gowdy

models is not equal to the trace of extrinsic curvature in

the resulting emergent spacetime for two reasons. First, the

phase-space expressions Ea
i and Ki

a have modified geo-

metrical meanings compared with the classical densitized

triad and extrinsic curvature of spatial slices because the

geometry is determined by the emergent metric. Second,

the momentum tensor Ki
a with components that appear in

(74) has been altered by several canonical transformations

applied in our derivations.

2. Interpretation as holonomy modifications

Periodic K-dependent functions in modified constraints

are often interpreted as potential effective descriptions of

loop quantum gravity. This canonical approach to quantum

gravity defines a Hilbert space of wave functions that

depend on a gravitational connection Ai
a (the Ashtekar-

Barbero connection) through matrix elements of SUð2Þ
holonomies, P expði

R

Ai
aσidx

aÞ with SUð2Þ-generators σi.
Since SUð2Þ is compact, it is possible to use a well-defined

measure on the state space and represent holonomies as

bounded operators. The Hamiltonian constraint should then

also be expressed in terms of holonomy functions in order

to act on the state space. This step requires modifications of

the polynomial dependence of the classical constraint on

Ai
a, for instance by instead using periodic functions as

obtained from certain matrix elements of SUð2Þ holono-

mies. As a motivation, it is argued that the fundamental

Hamiltonian constraint, for instance for the dynamics of

some discrete quantum geometry, is expected to equal the

classical constraint only at low curvature, while its general

properties should be determined by consistency conditions

within a framework of quantum gravity, such as represent-

ability on a given state space and anomaly freedom.

In models of loop quantum gravity, it is common to

forego using operators and instead analyze the dynamics

implied by modified constraints on a classical phase space.

Periodic modifications of the connection or extrinsic-cur-

vature dependence are still referred to as holonomy modi-

fications in this context. However, relating the K-terms

in (73) or (71) to traditional holonomy modifications in

models of loop quantum gravity therefore requires some

care because the additional dependence on E-components
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differs from what has usually been assumed. Compared

with the traditional approach, there are two crucial new

ingredients in our treatment: A strict imposition of covari-

ance, and a detailed discussion of how canonical trans-

formations can be used to relate different types of

holonomy modifications (or in some cases to relate a

supposed holonomy modification to the unmodified

classical theory).

Any appearance of triad components in holonomylike

terms in models of loop quantum gravity is usually

motivated as a volume or area dependence of the coordinate

length of a holonomy used to construct the Hamiltonian

constraint. This property is not derived from fundamental

operators but rather imposed phenomenologically, mainly

in order to achieve certain desired properties in cosmo-

logical models such as classical behavior at large volume.

In particular, dynamical solutions lead to large symmetry

orbits, such as all of space in homogeneous models of an

expanding universe or spherical orbits in nonrotating black-

hole models. As a consequence, extrinsic-curvature com-

ponents, given by linear combinations of time derivatives of

the metric or triad components, can be large even in

classical regimes. Their appearance in holonomies is then

in danger of violating the classical limit on large length

scales. This problem can be solved in an ad hoc manner by

using a length parameter for holonomies that decreases

with the size of increasing symmetry orbits, such that

holonomy modifications are negligible even when some

extrinsic-curvature or connection components become

large. Heuristically, such a dependence can be motivated

by lattice refinement [24], relating the holonomy length to a

lattice structure in space that is being subdivided as the

symmetry orbit expands, maintaining sufficiently short

geometrical lengths of its edges.

Comparing with this motivation, the specific version of

holonomylike terms of the form (74) found here, required

for covariance, is crucially different: The coefficient func-

tions of Kx and Ky can both be expressed in terms of

Ex=Ey ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qyy=qxx
p

¼ e−2W̄ , which describes the geomet-

rical anisotropy in the x-y plane but is independent of its

area
ffiffiffiffiffiffiffiffiffiffiffiffiffi

qxxqyy
p ¼ ε. Analyzing the general form of potential

physical implications of this difference requires us to

perform a detailed analysis of canonical transformations

used here to arrive at the expression (74).

3. Phenomenology of holonomy modifications

In this context, it is useful to consider possible forms and

interpretations of holonomy modifications for models of

loop quantum gravity in the strictly isotropic context

[25,26], in which spatial homogeneity eliminates the

non-trivial covariance conditions. (See also [15] for a

related discussion in spherical symmetry.) Extrinsic curva-

ture (or a connection with its associated holonomies)

reduced to isotropy has a single independent component,

k, canonically conjugate to the independent densitized-triad

component p. (We assume p > 0, fixing the orientation of

space.) Classically, using the scale factor a, we have k ∝ ȧ

and p ∝ a2. Holonomies for U(1), or suitable components

of holonomies for SUð2Þ, are then of the form expðilkÞ
with the coordinate length l of a spatial curve, derived from

the general P expði
R

Ai
aσidx

aÞ for an isotropic Ai
a ∝ δia,

with generators σi of the gauge group. The geometrical

length of this curve in an expanding universe increases like

la and may therefore reach macroscopic values after a

suitable amount of time. Similarly, k ∝ ȧ ¼ aH with the

Hubble parameterH is an approximately linear function of a

in a universe dominated by dark energy or during inflation.

The exponent lk is then large in a macroscopic universe,

such thatmodificationswouldbenoticeable on lowcurvature

scales and contradict cosmological observations.

This problem can be solved phenomenologically by using

a coordinate length or holonomy parameter l∝ a−1 ∝p−1=2,

such that the geometrical length is constant in an expanding

universe. The relevant phase-space function expðilk= ffiffiffiffi

p
p Þ,

with a constant l, then depends on extrinsic-curvature and

densitized-triad components. It is easier to quantize this

expression if one first applies a canonical transformation that

turns k=
ffiffiffiffi

p
p

into a basic canonical variable. Classically, this

ratio is proportional to the Hubble parameterH, and the map

from ðk; pÞ to H can be completed to a canonical trans-

formation by using the volume V ∝ a3 of some region in

space, whose precise form does not matter thanks to

homogeneity and isotropy. It is then possible to quantize

expðilHÞ to a simple translation operator in V.
Different versions of holonomy modifications are

obtained by introducing periodic functions depending on

different variables, such as k or H. The classical contribu-

tion to the isotropic Hamiltonian constraint can be written

as
ffiffiffiffi

p
p

k2 ¼p3=2ðk= ffiffiffiffi

p
p Þ2 ∝VH2. Holonomy modifications

may then be introduced for k or H (or any function

of the form pqk with some exponent q), leading to

dynamically inequivalent modifications of the form H1 ¼
ffiffiffiffi

p
p

sin2ðlkÞ=l2 and H2 ¼ V sin2ðlHÞ=l2, respectively.

The latter can be transformed back to k-variables, implying

a term proportional to p3=2 sin2ðlk= ffiffiffiffi

p
p Þ=l2 in which the

decreasing length scale l ¼ l=
ffiffiffiffi

p
p

appears. Independently

of canonical transformations, the different types of hol-

onomy modifications can also be identified by analyzing

equations of motion for small l. From H1, we obtain ṗ ∝
ffiffiffiffi

p
p

k or k ∝ ṗ=
ffiffiffiffi

p
p

∝ ȧ, while H2 implies V̇ ∝ VH or

H ∝ V̇=V ∝ ȧ=a. Therefore, we do not have to know

which canonical transformations may have been applied

in order to determine how a given classical or modified

constraint implies small or large values of holonomy

modifications in classical regimes.

In isotropic models, the appearance of a scale-dependent

holonomy length can be seen in two alternative ways: A

dependence on the scale factor may directly appear in
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periodic functions, as in sinðlk= ffiffiffiffi

p
p Þ, or itmaybe implied by

equations ofmotion that tell uswhether an expression such as

H in expðilHÞ equals the classical basic phase-space

variable k in the limit of small l, or a different function

such asH inwhich the potential growth of k as a function ofa
in some dynamical solutions is reduced.

More generally, the different status of a modification

with scale-factor dependent l can be seen in coefficients of

the Hamiltonian constraint. In isotropic models, a holon-

omymodification can be implemented by directly replacing

the classical k in the Hamiltonian constraint with

l
−1 sinðlkÞ. For constant l ¼ l, the k-independent coef-

ficient of this term retains its classical dependence on p. If
l depends on p, or if H is used instead of k, the

p-dependence of the coefficient is modified along with

the k-dependence. From the point of view of canonical

structures, there is no difference between ðk; pÞ and ðH;VÞ
if the relationship between k or H and classical extrinsic

curvature is ignored (or unknown if one considers a generic

modified theory). A modification of the form

sinðlk1Þ
l

¼ sinðlk2Þ
l

¼ l

l

sinðlk2Þ
l

ð75Þ

with triad-dependent l=l, such that the map from k1 to k2
is part of a canonical transformation with lk1 ¼ lk2, can
therefore be interpreted in two different ways, depending

on whether k1 or k2 is closely related to classically reduced
extrinsic curvature. If k1 is extrinsic curvature, we have a

triad-dependent holonomy length l, and the small-k1 limit

reproduces the classical dependence of the coefficients

because l−1 sinðlk1Þ ¼ k1ð1þOðl2k21ÞÞ. If k2 is extrinsic
curvature, we have constant holonomy length l, and the

classical triad-dependent coefficients of k2 are modified

because

sinðlk2Þ
l

¼ l

l
k2ð1þOðl2k22ÞÞ ¼ k1ð1þOðl2k22ÞÞ: ð76Þ

Instead of reducing the growing holonomy length in an

expanding universe, the model is made compatible with the

classical limit, producing the same k1 to leading order, by

modifying the triad-dependent coefficients of k2-holonomy

terms in the Hamiltonian constraint by factors of l=l.
However, this classical limit, assuming small lk2, is in

general only formal because it may not be guaranteed that

this product is indeed small in expected classical regimes,

such as a large isotropic universe. The limit is suitable as a

classical one if k2 ¼ H, but not if k2 ¼ k. In isotropic

models, the H-variable is therefore preferred. Therefore, k1
rather than k2 can be identified with extrinsic curvature in

the classical limit, necessitating the application of a non-

constant holonomy function λ. Whether a canonical var-

iable behaves like k or like H (or possibly a different

version) follows from equations of motion generated by the

modified Hamiltonian constraint.

4. Holonomy modifications in polarized Gowdy models

The possibility of applying canonical transformations in

isotropic models is comparable to some of the steps in our

derivation of covariant modifications of polarized Gowdy

models. We have constant holonomy parameters λ̄ or l in

one form, and triad-dependent functions λ or l in another

one. In each case, both versions, if they are related by (70)

or the canonical transformation that includes the mapping

between H and k, are dynamically equivalent. But the two

versions are not equivalent if the holonomy function,

constant or nonconstant, multiplies the same phase-space

function without applying a canonical transformation.

Since the general form of a modified theory is defined

only by its Hamiltonian constraint and does not contain an

independent specification of what canonical transforma-

tions may have been used compared with the standard

classical phase space, we should consider equations of

motion in order to determine whether holonomy modifi-

cations depending on K in a polarized Gowdy model can

include an area-dependent holonomy length.

For nonconstant λ=λ̄, the ε-dependence of the coeffi-

cients in (73) differs from the classical one in the limit of

λ̄ → 0. As in (76), these terms signal deviations of K from

the original component of extrinsic curvature: The equation

of motion for ε (which is canonically conjugate to A) is

given by

ε̇¼fε;HðccÞg¼−λ0
λ̄

λ

ffiffiffi

ϵ
p sinð2λ̄KÞ

2λ̄
ð1þ λ̄2ðε0Þ2=ā2Þ ð77Þ

and implies

K ∼ −
λ

λ̄λ0

ε̇
ffiffiffi

ε
p ð78Þ

for small λ̄ if we assume λ ¼ λ̄hðεÞ with a λ̄-independent

holonomy function hðεÞ. (In some classes of modified

theories, h may also depend on the anisotropy parameter

W̄.) The formal classical limit requires small λ̄K, but a
specific regime in which classical behavior is expected may

well imply large λ̄K if the area ε of symmetry orbits is large.

If one chooses a λ that decreases with ε sufficiently quickly,

Eq. (78) implies that the corresponding K of the modified

theory increases less strongly than in a model with constant

λ ¼ λ̄. It is easier to study the classical limit if the inverse of

the canonical transformation (70) is applied, such that all

holonomy terms now depend on λK with an explicit

decreasing coefficient λ as a function of ε. As shown in

the transition from a Hamiltonian constraint of the form

(73) to an expression (71), ε-dependent modifications λ=λ̄
of coefficients in the Hamiltonian constraint are then
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replaced with holonomylike terms with an ε-dependent

function λ.

In isotropic models, these two versions, given by triad-

dependent coefficients and triad-dependent holonomy

length, respectively, are equivalent. In polarized Gowdy

models, in which modifications are strongly restricted by

covariance conditions, only the first viewpoint is available

if a strict definition of holonomy modifications as periodic

functions is used: Only (73), in which the coefficient

functions are modified in their ε-dependence, is periodic

inK, while (71), in which the function λðεÞ appears in some

of the holonomy terms, also contains nonperiodic contri-

butions linear in K such as K∂ ln λ=∂ε. Effects of an

ε-dependent holonomy length can therefore be inferred

only indirectly when equations of motion are used, turning

it into an on-shell property. Assigning an ε-dependent

holonomy length directly to off-shell properties of the

Hamiltonian constraint, as in isotropic models, is not

possible unless one weakens the strict periodicity condition

on holonomy modifications.

Another difference between isotropic and polarized

Gowdy models appears in the specific form (74) interpreted

in terms of components Kx and Ky of the momentum that

appear in the phase-space function K. The only triad

dependence allowed in this combination refers to

anisotropy in the ðx; yÞ-plane rather than its area. This

specific dependence, just as properties of how an

ε-dependent λ may appear in holonomy modifications, is

implied by general covariance. The anisotropy dependence

of holonomy modifications is therefore unavoidable, and

unlike λðεÞ it cannot be moved to coefficient functions.

Moreover, holonomy modifications can only be imple-

mented for the specific combination of Kx and Ky given by

(74), but not separately for the two components Kx and Ky

because all modified constraints allowed by covariance

depend polynomially on the second phase-space variable,

PW̄ , that together with K represents Kx and Ky after our

first canonical transformation.

Therefore, unlike in spherically symmetric models, the

Hamiltonian constraint is not built out of basic holonomy

operators that depend only on momentum components

canonically conjugate to the densitized triad. There is

always a necessary triad dependence given by the specific

form of K that may appear in periodic terms as a linear

combination of Kx and Ky with triad-dependent coeffi-

cients, derived from the covariance conditions. In loop

quantum gravity, curvature (or connection) components

and the triad are instead separated into basic holonomy and

flux operators, which were used as building blocks of the

first proposed operators for the Hamiltonian constraint [27].

More recent versions [28–30] use triad-dependent shift

vectors in order to construct detailed properties of hyper-

surface deformations from operators, which is somewhat

reminiscent of but conceptually unrelated to the triad

dependence of holonomy-type expressions found here.

IV. GENERAL MODIFIED THEORY

Linear combinations of the classical constraints with

phase-space dependent coefficients have revealed interest-

ing properties of possible modifications of polarized

Gowdy models. More generally, one may expect that

individual terms in the Hamiltonian constraint can receive

independent modifications. We now analyze this possibility

within a setting of effective field theory in which we expand

a generic Hamiltonian constraint in derivatives up to second

order. The resulting expressions then determine gravita-

tional theories of polarized Gowdy models compatible with

the symmetry of general covariance, taking into account the

possibility that the spacetime metric is not fundamental but

rather emergent. New modifications are then possible even

at the classical order of derivatives.

A. Constraint ansatz and the emergent

spacetime metric

We consider modifications to the Gowdy system with

phase-space variables ðW̄; PW̄Þ, ðK; āÞ, and ðA; εÞ. If we
modify the Hamiltonian constraint, then the constraint

brackets (8)–(10) determine the inhomogeneous compo-

nent of the spatial metric via q̃θθ ¼ 1=q̃θθ, while the

homogeneous components of the metric cannot be obtained

in this way because they do not appear in the structure

functions. The emergent spacetime line element is then

given by

ds2 ¼ −N2dt2 þ q̃θθðdθ þ NθdtÞ2 þ αεðεÞe2fWðε;W̄Þdx2

þ αεðεÞe−2fWðε;W̄Þdy2; ð79Þ

with q̃θθ to be determined by anomaly freedom of the

hypersurface deformation brackets, while we have partially

chosen the form of the homogeneous components q̃xx and
q̃yy based on their classical forms. We will discuss the free

functions αε and fW in due course. (If the structure function

is negative in some regions, the inhomogeneous metric

component is determined by the inverse of its absolute

value, while −N2dt2 is replaced by −σN2dt2 where σ is the

sign of the structure function relative to the classical

function, making the four-dimensional line element

Euclidean in regions where σ ¼ −1. For more details,

see [2].)

We consider the following ansatz for the Hamiltonian

constraint:

H̃ ¼ a0 þ eW̄ W̄ðW̄0Þ2 þ eā āðā0Þ2 þ eεεðε0Þ2

þ eW̄ āW̄
0ā0 þ eW̄εW̄

0ε0 þ eāεā
0ε0 þ pāεK

0ε0

þ rā āā
0K0 þ e2āā

00 þ p2āK
00 þ e2εε

00; ð80Þ

where a0, eij, e2i, pij, and p2i are all functions of the phase-

space variables, but not of their derivatives. For the sake of

tractability, we have omitted some terms that would be
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possible at second order in derivatives, such as terms

containing W̄00. Spatial derivatives of A and PW̄ have been

omitted in anticipation of covariance condition (88), to be

discussed shortly, which requires the constraint to be

independent of them. Because of the discrete symmetry

H̃ðW̄; PW̄Þ ¼ H̃ð−W̄;−PW̄Þ, we see that all the functions

obey this even symmetry, except for eW̄ε which should

be odd.

Starting from this constraint ansatz we will obtain the

conditions for it to satisfy the hypersurface-deformation

brackets, Eqs. (8)–(10), with a possibly modified structure

function, q̃θθ. We will then apply the covariance conditions

in order to make sure that the new structure function can

play the role of an inverse metric component in spacetime.

1. Canonical transformations I

To obtain distinct classes of Hamiltonian constraints for

possible modified theories, it is crucial that we factor out

canonical transformations that preserve the diffeomorphism

constraint. If we do not take this extra care, we risk

obtaining equivalent versions of the same theory that differ

only in a choice of the phase-space coordinates. Two

constraints differing only by a canonical transformation

will look different and even the spacetime metric will do so

too kinematically, but they in fact describe the same

physical system.

We will therefore consider the following set of canonical

transformations that preserves the diffeomorphism con-

straint:

W̄¼ fW̄c ðε; ˜̄WÞ; PW̄ ¼ P̃W̄

�

∂fW̄c

∂
˜̄W

�

−1

− ˜̄a
∂fKc

∂
˜̄W

�

∂fKc

∂K̃

�

−1

;

ð81aÞ

K ¼ fKc ðε; ˜̄W; K̃Þ; Eφ ¼ Ẽφ

�

∂fKc

∂K̃

�

−1

; ð81bÞ

A ¼ ∂ðα2cεÞ
∂ε

Ãþ Ẽφ
∂fKc

∂ε

�

∂fKc

∂K̃

�

−1

þ P̃W̄

∂fW̄c

∂ε

�

∂fW̄c

∂
˜̄W

�

−1

;

ε̃ ¼ α2cðεÞε; ð81cÞ

where the new phase-space variables are written with a

tilde. A transformation with fKc ¼ K̃, fW̄c ðε; ˜̄WÞ, and αcðεÞ
can always be used to transform the homogeneous com-

ponents of the metric in (79) from potentially modified

expressions to their classical ones q̃xx ¼ εe2W̄ and

q̃yy ¼ εe−2W̄ . If we fix the classical form for these compo-

nents, the residual canonical transformations are given by

W̄ ¼ ˜̄W; PW̄ ¼ P̃W̄ − ˜̄a
∂fKc

∂
˜̄W

�

∂fKc

∂K̃

�

−1

; ð82aÞ

K ¼ fKc ðε; ˜̄W; K̃Þ; Eφ ¼ Ẽφ

�

∂fKc

∂K̃

�

−1

; ð82bÞ

A ¼ Ãþ Ẽφ
∂fKc

∂ε

�

∂fKc

∂K̃

�

−1

; ε̃ ¼ ε; ð82cÞ

where the new phase-space variables are again written with

a tilde.

Under the previous canonical transformation, the emer-

gent spacetime metric simplifies to

ds2 ¼ −N2dt2 þ q̃θθðdθ þ NθdtÞ2 þ εe2W̄dx2 þ εe−2W̄dy2;

ð83Þ

while the constraint ansatz (80) does not acquire any new

derivative terms.

2. Anomaly freedom and covariance conditions

Starting with a Hamiltonian constraint of the form (80)

we impose anomaly freedom by requiring that, together

with the unmodified diffeomorphism constraint, it repro-

duces the hypersurface-deformation brackets (8)–(10) up to

a potentially modified structure function:

fHθ½Nθ�; Hθ½Mθ�g ¼ −Hθ½MθðNθÞ0 − NθðMθÞ0�; ð84Þ

fH̃½N�; Hθ½Mθ�g ¼ −H̃½MθN0�; ð85Þ

fH̃½N�; H̃½M�g ¼ −Hθ½q̃θθðMN0 − NM0Þ�: ð86Þ

Doing so restricts the functions in (80) by a set of partial

differential equations for the modification functions. The

same procedure reveals the dependence of the structure

function q̃θθ on the phase-space variables. Furthermore, the

modified brackets (84)–(86) imply gauge transformation of

the shift vector (12) according to

δϵN
θ ¼ ϵ̇θþ ϵθðNθÞ0−NθðϵθÞ0þ q̃θθðϵ0N0−Nðϵ0Þ0Þ; ð87Þ

which now involves the modified structure function as it

should if it were to play the role of a component of the

emergent spacetime metric.

Once the structure function has been obtained from the

imposition of anomaly freedom, we have the full expres-

sion of a candidate spacetime metric as in (79). Because the

homogeneous metric components retain their classical

forms, the covariance conditions (15) remain unchanged.

In the new phase-space variables they are given by
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∂H̃

∂A0 ¼
∂H̃

∂A00 ¼
∂H̃

∂P0
W̄

¼ ∂H̃

∂P00
W̄

¼ 0: ð88Þ

The inhomogeneous component (16) turns into highly

nontrivial conditions,

∂ðfq̃θθ; H̃½ϵ0�gÞ
∂ðϵ0Þ0

	

	

	

	

O:S:

¼ ∂ðfq̃θθ;H̃½ϵ0�gÞ
∂ðϵ0Þ00

	

	

	

	

O:S:

¼ �� � ¼ 0: ð89Þ

In addition to general covariance, we will require that the

modified system retains the types of conserved quantities of

the classical theory. We therefore impose the preservation

of the symmetry generator G½ω� in (27), such that it

commutes with the modified constraint,

fG½ω�; H̃½N�g ¼ 0: ð90Þ

We will also demand that for PW̄ ; W̄ → 0 a gravitational

Dirac observable exists with (30) as its classical limit.

3. Canonical transformations II

and additional guiding conditions

The imposition of anomaly freedom, covariance, and the

gravitational symmetries all restrict the generic Hamiltonian

constraint (80) by providing a large set of partial differential

equations.These equations canbe considerably simplified by

a choice of phase-space coordinates, fixing the residual

canonical transformations (82).

So far, all of the conditions we impose in the new

variables are identical to those we chose when coupling

scalar matter in spherical symmetry [6]. While these

conditions are quite restrictive, they still do not allow a

complete exact solution of the partial differential equations

for modification functions. We therefore refer to additional

conditions, most of which have also been used in the

scalar case.

Classical W̄ limit. One such condition applied in [6] was

the compatibility of the constraint with a limit in

which the corresponding class of modifications con-

tains models with the classical equations of motion for

the scalar matter, corresponding to the Klein-Gordon

equation on a curved emergent spacetime. We can

apply the same condition to the Gowdy model, thanks

to its correspondence with the spherically symmetric

system, by imposing compatibility of the constraint

with a limit in which the class of modifications

contains models with the classical equations of motion

for W̄ on an emergent background q̃θθ.
Classical constraint surface as a limit. Another addi-

tional condition considered in [6] was the compati-

bility of the constraint with a nontrivial limit in which

the constraint surface took its classical form. This is

the case if there is a limit in which the constraint

contains the modifications from linear combinations

of the classical constraints, as derived in the previous

section.

Classes of constraints. With these conditions, we are

in the position to obtain explicit expressions for

the modified Hamiltonian constraint. The conditions

of anomaly freedom, covariance, implementation

of symmetries, and the factoring out of canonical

transformations imply a set of differential equations

that can be solved exactly if the additional conditions

just described are considered.

However, if we implement the essential conditions we

are left with some ambiguities. If one is not interested in the

classical W̄ limit, several of these ambiguities are removed,

but one modification function remains unresolved. The

vanishing of this function then leads to the compatibility of

the classical constraint surface as a limit, thus describing

our first class of constraints.

On the other hand, using a nontrivial choice for this

modification function leads us to another class of con-

straints that is no longer compatible with the classical

constraint surface as a limit, nor with the classical W̄ limit.

Lacking a positive characterization of these models, we

simply call this set of modified theories the class of the

second kind.

Finally, a third class of constraints can be obtained by

imposing compatibility with the classical W̄ limit.

These are precisely the three classes of constraints

obtained in [6] for the spherically symmetric system

coupled to scalar matter. We can then simply import the

results and reinterpret the Hamiltonian constraint by its

correspondence with the Gowdy system. The modified

theory allows for modification functions that can be

redefined and adapted to the Gowdy system.

Discrete symmetry. The Gowdy system has one further

symmetry that is not obvious in the spherically

symmetric system coupled to scalar matter. This is

the discrete symmetry PW̄ → −PW̄ ; W̄ → −W̄. We

will implement this symmetry in the classes of

constraints imported from [6] and, therefore, obtain

slightly simpler expressions.

B. Emergent modified gravity

as a basis for quantization

Our generic Hamiltonian constraint contains only up to

second-order spatial derivatives and uses the classical phase

space, which implies that the equations of motion do not

have higher time derivatives. Theories of this form, even

though they are modified compared with general relativity,

may therefore be considered classical gravitational systems

that can be used as a basis for canonical quantization.

Several additional conditions are then useful for different

procedures of finding suitable constraint operators.
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1. Partial Abelianization

Gravitational theories with a description as spacetime

geometry require constraints that generate hypersurface

deformations. The presence of structure functions is then a

well-known obstacle toward quantization because an oper-

ator-valued structure function implies severe ordering

problems in commutators of the constraints. This problem

can be simplified if the original constraints can be replaced

by linear combinations that replace the structure function

by a constant, and perhaps setting it equal to zero in a

partial Abelianization. In spherical symmetry, such a

procedure has been proposed in [31], and then generalized

in [2] by making it fully local.

For a systematic derivation of partial Abelianizations we

make use of the procedure described in Sec. III, introducing

a new phase-space function as a linear combination of the

(now already modified) Hamiltonian constraint and the

classical diffeomorphism constraint that replaces the

Hamiltonian constraint of hypersurface-deformation brack-

ets. The new constraints therefore have brackets that differ

from the classical gravitational ones, and their gauge

transformations do not correspond to hypersurface defor-

mations. However, they have the same constraint surface as

the original system, which can therefore be turned into a

quantum description by this procedure.

We will make use of definition (51) for the constraint

function

H̃ðAÞ ¼ BH̃ þ AHθ: ð91Þ

Poisson brackets of B and A with the old Hamiltonian

constraint are given by (52) and (55), and the latter is

related to the former by

A ¼ −BθðBÞ ð92Þ

as in (54). The only difference with the procedure in Sec. III

is that we are not seeking a new covariant modified theory,

but rather a partial Abelianization of the brackets of HðAÞ

and Hθ. Therefore, we impose the condition that the new

structure function (59) vanishes:

q̃θθðAÞ ¼ B2q̃θθ þ BAθ ¼ 0: ð93Þ

We will apply this condition to the three classes of

constraints derived below.

2. Point holonomies

In [6], it was possible to include point holonomies of the

scalar field ϕ, given by periodic modification functions

depending on this variable. Like partial Abelianizations,

this property may be useful for quantizations because some

of the basic fields can be represented by bounded operators,

akin to a loop quantization.

Invoking the correspondence between spherical sym-

metry and the polarized Gowdy model, this result can be

translated to point holonomies of W̄ in the latter case.

Recall that the relation between this variable and the

original phase-space degrees of freedom is given by

W̄ ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ey=Ex
p

. This function depends on densitized-

triad components rather than their momenta, classically

related to extrinsic curvature or a connection, and the

dependence is logarithmic.

Given the logarithmic dependence on triad components

instead of linear combinations of extrinsic curvature,

periodic modification functions of W̄, or polymerizations

of this variable, are rather different from what is usually

assumed in models of loop quantum gravity, even com-

pared with a polymerization of K in (74) which already

showed several deviating features. But while a polymeri-

zation of W̄ may not be directly motivated by traditional

loop quantum gravity, we include this possibility here for

completeness of the correspondence with spherical sym-

metry. New canonical quantizations could still be con-

structed in this way by exploiting the boundedness of

operators quantizing a periodic function of W̄.

V. CLASSES OF CONSTRAINTS

As derived in detail in [6], we consider different classes

of constraints and the modified structure functions they

imply, depending on which conditions are chosen in order

to make the consistency equations explicitly solvable.

A. Constraints compatible with the

classical constraint surface

Modified constraints that are compatible with the

classical constraint surface in a suitable limit are direct

generalizations of the models constructed in Sec. III from

linear combinations of the classical constraints.

1. General constraint

As always, the expression for Hamiltonian constraints

compatible with certain symmetry conditions may depend

on modification functions that distinguish different cases of

consistent constraints, but also on free functions that

represent the freedom to apply canonical transformations.

Here, we fix the latter choice by working with partially

periodic modification functions in the phase-space variable

K. In this class, the general expression of the Hamiltonian

constraint is given by
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H̃¼−
λ̄

λ
λ0cos

2ðν̄W̄Þ
ffiffiffi

ε
p �

ā

�

−
λ2

λ̄2
Λ0þ

�

α2

4ε
cfþ

1

2

∂cf

∂ε

�

sin2ðλ̄KÞ
λ2

þ
�

A

ā
−
PW̄

ā

tanðν̄W̄Þ
ν̄

∂ lnν

∂ε
−
tanðλ̄KÞ

λ̄

∂ lnλ

∂ε

�

cf
sinð2λ̄KÞ

2λ̄

−

�

PW̄

ācosðν̄W̄Þþ
tanðλ̄KÞ

λ̄

�

ν̄

ν
ch3þ

∂ lnλ

∂W̄

��

2α3

4ε

ν2

ν̄2
cfcos

2ðλ̄KÞ
�

þðε0Þ2
ā

�

λ̄2
A

ā

sinð2λ̄KÞ
2λ̄

þ cos2ðλ̄KÞ
�

∂ lnλ

∂ε
−
α2

4ε
−
sinðν̄W̄Þ

ν̄

∂ lnν

∂ε

�

ν̄

ν
ch3þ

∂ lnλ

∂W̄
þ sinðν̄W̄Þ

ν̄

∂ lnν

∂ε

ε

α3

���

þ
�

ε0ā0

ā2
−
ε00

ā

�

cos2ðλ̄KÞ

þ cos2ðλ̄KÞ
�

−
1

ā

��

sinðν̄W̄Þ
ν̄

�0�2 ε

α3
þ ε0

ā

�

sinðν̄W̄Þ
ν̄

�0�2ε

α3

sinðν̄W̄Þ
ν̄

∂ lnν

∂ε
þ ν̄

ν
ch3þ

∂ lnλ

∂W̄
−

PW̄

ācosðν̄W̄Þ λ̄
2
tanðλ̄KÞ

λ̄

���

ð94Þ

with the structure function

q̃θθ ¼
�

cf þ
�

λ̄ε0

ā

�

2
�

cos2ðλ̄KÞ λ̄
2

λ2
λ20cos

4ðν̄ W̄Þ ε

ā2
: ð95Þ

All the nonclassical parameters are undetermined func-

tions of ε only, except for λ̄ and ν̄, which are constants, and

λ0 and λ, which can depend on both ε and W̄. (This is the

only class of constraints that allows λ to depend on W̄.)

The constraint (94) and its structure function (95) are

symmetric under the discrete transformation W̄ → −W̄,

PW̄ → −PW̄ only if the λ0 and λ dependence on W̄ is

restricted by the discrete symmetry (26) to be of the form

λ0ðε; W̄Þ ¼ λ0ðε;−W̄Þ, and only if ch3 ¼ 0 because it is

independent of W̄. (Alternatively, the discrete transforma-

tion could be redefined as W̄ → −W̄, PW̄ → −PW̄ , and

ch3 → −ch3, in which case the constraint and structure

function are symmetric even for nonzero ch3.) The classical

limit can be taken in different ways, the simplest one given

by λ → λ̄ and ν → ν̄ followed by λ0; cf; α2; α3 → 1,

λ̄; ν̄ → 0, and Λ0 → Λ.

The inhomogeneous-field observable in this class is

given by

G½ω� ¼
Z

dθ ω
ν

ν̄

�

PW̄

cosðν̄ W̄Þ þ ā
tanðλ̄KÞ

λ̄

∂ ln λ

∂W̄

�

; ð96Þ

where ω is a constant. The associated conserved current Jμ

has the components

Jt ¼ ν

ν̄

�

PW̄

cosðν̄ W̄Þ þ ā
tanðλ̄KφÞ

λ̄

∂ ln λ

∂W̄

�

; ð97Þ

Jθ ¼ −
ν

ν̄

λ̄

λ
λ0

ffiffiffi

ε
p

cos2ðν̄ W̄Þcos2ðλ̄KÞ
�

−
2

ā

�

sinðν̄ W̄Þ
ν̄

�0 ε

α3

þ ε0

ā

�

2ε

α3

sinðν̄ W̄Þ
ν̄

∂ ln ν

∂ε
þ ν̄

ν
ch3 þ

∂ ln λ

∂W̄
−

PW̄

ā cosðν̄ W̄Þ λ̄
2
tanðλ̄KÞ

λ̄

��

: ð98Þ

When PW̄ ; W̄ → 0, the homogeneous mass observable associated with (94) is given by

M ¼ d0 þ
d2

8

�

exp

Z

dε

�

α2

2ε
−
∂ ln λ2

∂ε

���

cf
sin2 ðλ̄KÞ

λ̄2
− cos2ðλ̄KÞ

�

ε0

ā

�

2
�

þ d2
4

Z

dε

�

λ2

λ̄2
Λ0 exp

Z

dε

�

α2

2ε
−
∂ ln λ2

∂ε

��

; ð99Þ

where d0 and d2 are constants with classical limits given by d0 → 0 and d2 → 1.
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2. Partial Abelianization

Following Sec. IV B 1 and using the constraint (94) with

the structure function (95) we obtain

q̃ðAÞ ¼ Q0 þQεðε0Þ2 ¼ 0 ð100Þ

for the Abelianization condition (93), where Q0 and Qε are

functions of B, as it appears in H̃ðAÞ ¼ BH̃ þ AHθ, and of

the phase-space variables, but not of their derivatives.

Therefore, these two coefficients must vanish independ-

ently. The condition Q0 ¼ 0 implies the equation

B −
sinð2λ̄KÞ

2λ̄

∂B

∂K
¼ 0; ð101Þ

with the general solution

B ¼ B0

tanðλ̄KÞ
λ̄

ð102Þ

for an undetermined function B0ðε; W̄Þ. The condition

Qε ¼ 0 implies the equation

2λ̄2Bþ λ̄ sinð2λ̄KÞ ∂B
∂K

− 2 cos2ðλ̄KÞ ∂
2B

∂K2
¼ 0: ð103Þ

By direct substitution we find that (102) solves this

equation too. The Abelianized constraint is then given by

H̃ðAÞ

B0

¼ −
tanðλ̄KÞ

λ̄

λ̄

λ
λ0cos

2ðν̄ W̄Þ
ffiffiffi

ε
p �

ā

�

−
λ2

λ̄2
Λ0 þ

�

α2

4ε
cf þ

1

2

∂cf

∂ε

�

sin2ðλ̄KÞ
λ2

þ
�

A

ā
−
PW̄

ā

tanðν̄ W̄Þ
ν̄

∂ ln ν

∂ε
−
tanðλ̄KÞ

λ̄

∂ ln λ

∂ε

�

cf
sinð2λ̄KÞ

2λ̄

−

�

PW̄

ā cosðν̄ W̄Þ þ
tanðλ̄KÞ

λ̄

�

ν̄

ν
ch3 þ

∂ ln λ

∂W̄

��

2 α3

4ε

ν2

ν̄2
cfcos

2ðλ̄KÞ
�

þ ðε0Þ2
ā

�

λ̄2
A

ā

sinð2λ̄KÞ
2λ̄

þ cos2ðλ̄KÞ
�

∂ ln λ

∂ε
−
α2

4ε
−
sinðν̄ W̄Þ

ν̄

∂ ln ν

∂ε

�

ν̄

ν
ch3 þ

∂ ln λ

∂W̄
þ sinðν̄ W̄Þ

ν̄

∂ ln ν

∂ε

ε

α3

���

þ
�

ε0ā0

ā2
−
ε00

ā

�

cos2ðλ̄KÞ

þ cos2ðλ̄KÞ
�

−
1

ā

��

sinðν̄ W̄Þ
ν̄

�0�2 ε

α3
þ ε0

ā

�

sinðν̄ W̄Þ
ν̄

�0�2ε

α3

sinðν̄ W̄Þ
ν̄

∂ ln ν

∂ε

þ ν̄

ν
ch3 þ

∂ ln λ

∂W̄
−

PW̄

ā cosðν̄ W̄Þ λ̄
2
tanðλ̄KÞ

λ̄

���

−
λ̄

λ
λ0cos

2ðν̄ W̄Þ
ffiffiffi

ε
p

ε0ðāK0 þ PW̄W̄
0 −Aε0Þ: ð104Þ

The first line in (104) has a kinematical divergence at

K ¼ π=ð2λ̄Þ due to the overall tangent factor. This diver-

gence can be removed if

α2

4ε
cf þ

1

2

∂cf

∂ε
− λ2Λ0 ¼ 0 ð105Þ

is satisfied because the relevant terms then combine to

produce a cos2-factor and hence cancel the divergence of

the tangent. If we interpret this condition as an equation for

cf, we must restrict λ to be a function of ε only. However,

the solution to this equation is not compatible with the

classical limit cf → 1. (For instance, for Λ0 ¼ 0 we have

cf ∝ ε−α2=2.) Therefore, we have to weaken the condition

by neglecting the first term, and hence leave it as a

divergent term of the Abelian constraint. The resulting

equation for the partial resolution of the divergence,

1

2

∂cf

∂ε
− λ2Λ0 ¼ 0; ð106Þ

can now be directly integrated, yielding the modification

function

cf ¼ 2

Z

λ2Λ0dε: ð107Þ

If we choose the classical value of the cosmological

constant Λ0 ¼ Λ, and λ2 ¼ Δ=ε with a constant Δ (some-

times used in models of loop quantum gravity), we obtain

cf ¼ 1þ 2ΛΔ ln

�

ε

c0

�

; ð108Þ

where c0 is an integration constant. The correct classical

limit is obtained forΔ → 0. The logarithmic dependence on

ϵ is relevant on intermediate scales far from black-hole or
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cosmological horizons. It may then be related to MOND-

like effects as shown in [12].

B. Constraints of the second kind

A second class of explicit modified constraints is

obtained from a specific choice for one of the modification

functions, so far without a detailed physical motivation.

Nevertheless, this case is interesting because it can be used

to show the variety of possible covariant theories.

1. General constraint

Again referring to more detailed derivations for a scalar

field in spherical symmetry [6], we now have the modified

Hamiltonian constraint

H̃ ¼ −
λ̄

λ
λ0cos

2ðν̄ W̄Þ
ffiffiffi

ε
p �

ā

�

−
λ2

λ̄2
Λ0 þ

sin2ðλ̄KÞ
λ̄2

��

α2

4ε
−
∂ ln λ

∂ε

�

cf þ
1

2

∂cf

∂ε

��

þ ā
sinð2λ̄KÞ

2λ̄

��

α2

2ε
−
∂ ln λ

∂ε

�

λ

λ̄
qþ λ

λ̄

∂q

∂ε

�

þ
�

Aþ PW̄

cosðν̄ W̄Þ

�

ν

ν̄
ch3 −

sinðν̄ W̄Þ
ν̄

∂ ln ν

∂ε

���

cf
sinð2λ̄KÞ

2λ̄
þ λ

λ̄
q cosð2λ̄KÞ

�

−
ν2

ν̄2
PW̄

2

ācos2ðν̄ W̄Þ
α3

4ε

�

cfcos
2ðλ̄KÞ − 2

λ

λ̄
qλ̄2

sinð2λ̄KÞ
2λ̄

�

þ
�

ε0ā0

ā2
−
ε00

ā

�

cos2ðλ̄KÞ

−
ðε0Þ2
ā

��

α2

4ε
−
∂ ln λ

∂ε

�

cos2ðλ̄KÞ −
�

A

ā
þ PW̄

ā cosðν̄ W̄Þ

�

ν

ν̄
ch3 −

sinðν̄ W̄Þ
ν̄

∂ ln ν

∂ε

��

λ̄2
sinð2λ̄KÞ

2λ̄

þ ν2

ν̄2
PW̄

2

ā2cos2ðν̄ W̄Þ λ̄
2
α3

4ε
cos2ðλ̄KÞ

�

−
1

ā

ν̄2

ν2

��

sinðν̄ W̄Þ
ν̄

�0
þ ε0

�

ν

ν̄
ch3 −

sinðν̄ W̄Þ
ν̄

∂ ln ν

∂ε

��

2 ε

α3

�

; ð109Þ

with structure function

q̃θθ ¼ λ̄2

λ2
λ20

��

cf þ
�

λ̄ε0

ā

�

2
�

cos2 ðλ̄KÞ − 2λ̄2
λ

λ̄
q
sin ð2λ̄KÞ

2λ̄

�

cos4ðν̄ W̄Þ ε

ā2
: ð110Þ

All the nonclassical parameters are undetermined functions

of ε only, except for the parameters λ̄ and ν̄ which are

constants, and λ0 which can depend on both ε and W̄. The

constraint (109) and its structure function (110) are sym-

metric under the discrete transformation W̄ → −W̄, PW̄ →

−PW̄ only if the λ0 dependence on W̄ is restricted by the

discrete symmetry (26) to the form λ0ðε; W̄Þ ¼ λ0ðε;−W̄Þ,
and only if ch3 ¼ 0 because it is independent of W̄.

(Alternatively, the discrete transformation can be redefined

as W̄ → −W̄, PW̄ → −PW̄ , and ch3 → −ch3, in which case

the constraint and structure function are symmetric even for

nonzero ch3.) The classical limit can be taken in different

ways, the simplest one given by λ → λ̄ and ν → ν̄, followed

by λ0; cf; α2; α3 → 1, q; λ̄; ν̄ → 0, and Λ0 → Λ.

The inhomogeneous-field observable is

G½ω� ¼
Z

dθω
ν

ν̄

PW̄

cosðν̄ W̄Þ ; ð111Þ

where ω is a constant. The associated conserved current Jμ

has the components

Jt ¼ ν

ν̄

PW̄

cosðν̄ W̄Þ ; ð112Þ

Jθ ¼ ν̄

ν

λ̄

λ
λ0 cos

2ðν̄ W̄Þ 2ε
3=2

α3ā

��

sinðν̄ W̄Þ
ν̄

�0

þ ε0
�

ν

ν̄
ch3 −

sinðν̄ W̄Þ
ν̄

∂ ln ν

∂ε

��

: ð113Þ

When PW̄ ; W̄ → 0, the homogeneous mass observable

associated with (115) is given by

M¼ d0 þ
d2

8

�

exp

Z

dε

�

α2

2ε
−
∂ lnλ2

∂ε

��

×

�

cf
sin2ðλ̄KÞ

λ̄2
þ 2

λ

λ̄
q
sin ð2λ̄KÞ

λ̄
− cos2ðλ̄KÞ

�

ε0

ā

�

2
�

þ d2

4

Z

dε

�

λ2

λ̄2
Λ0 exp

Z

dε

�

α2

2ε
−
∂ lnλ2

∂ε

��

; ð114Þ

where d0 and d2 are constants with classical limits given by

d0 → 0 and d2 → 1. Most of these properties are similar to

those in the first class, but explicit solutions in solvable
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cases, such as spatially homogeneous ones, can reveal

crucial differences, as we will see in Sec. VI.

A key difference between the first and second classes can

be seen easily in the structure functions (95) and (110),

respectively. The first one is even in the curvature component

K, while the second one contains an odd term, multiplied by

themodification function q. The same behavior was possible

in spherical symmetry [2] where it may have far-reaching

implications for various particle effects [32]. In the

Hamiltonian constraint, the q-terms show that there may

bemodifications linear inK (if a Taylor expansion is used for

the trigonometric functions). Such terms can be more

relevant than the classical quadratic terms as the curvature

scale is increased. The second class of modified constraints

for polarized Gowdy models shows that these interesting

features are not restricted to spherical symmetry.

2. Partial Abelianization

The partial Abelianization of this constraint follows the

same procedure as the last one. It requires exactly the same

B-factor (102) and the associated A. However, a partial

Abelianization is subject to the additional condition that the

modification function q vanishes.

C. Constraints compatible with the classical-W̄ limit

The third class has modified constraints that have a limit

in which the field W̄ behaves like a classical scalar field on

the emergent (and nonclassical) spacetime. This case is

useful because it allows us to make comparisons between

the propagation speed of W̄ as a polarized gravitational

wave and the speed of a massless scalar field that may be

coupled minimally.

1. General constraint

The modified Hamiltonian constraint is given by

H̃ ¼ −
λ̄

λ
λ0cos

2ðν̄ W̄Þ
ffiffiffi

ε
p �

ā

�

λ2

λ̄2
Λ0 þ

�

cf

�

α2

4ε
−
∂ ln λ

∂ε

�

þ 1

2

∂cf

∂ε

�

sin2ðλ̄KÞ
λ̄2

�

þ ā

�

q

2

�

α2

ε
− 2

∂ ln λ

∂ε

�

þ λ

λ̄

∂q

∂ε

�

sin ð2λ̄KÞ
2λ̄

þ
�

A − PW̄

tanðν̄ W̄Þ
ν̄

∂ ln ν

∂ε

��

cf
sinð2λ̄KÞ

2λ̄
þ λ

λ̄
q cosð2λ̄KÞ

�

þ ðε0Þ2
ā

��

∂ ln λ

∂ε
−
α2

4ε

�

cos2ðλ̄KÞ

þλ̄2
�

A

ā
−
PW̄

ā

tanðν̄ W̄Þ
ν̄

∂ ln ν

∂ε

�

sinð2λ̄KÞ
2λ̄

�

þ
�

ε0ā0

ā2
−
ε00

ā

�

cos2ðλ̄KÞ
�

þ ν̄2

ν2

ffiffiffiffiffiffiffi

q̃θθ
p

2

�

PW̄
2

cos2ðν̄ W̄Þ
α3

2ε
þ 2ε

α3

��

sinðν̄ W̄Þ
ν̄

�0
−
sinðν̄ W̄Þ

ν̄

∂ ln ν

∂ε
ε0
�

2
�

; ð115Þ

with the structure function

q̃θθ ¼
��

cf þ
�

λ̄ε0

ā

�

2
�

cos2 ðλ̄KÞ − 2q
λ

λ̄
λ̄2

sin ð2λ̄KÞ
2λ̄

�

λ̄2

λ2
λ20 cos

4ðν̄ W̄Þ ε

ā2
ð116Þ

appearing explicitly in the last line. All the nonclassical

parameters are undetermined functions of ε only, except for

the parameters λ̄ and ν̄ which are constants, and λ0 which

can depend on both ε and W̄. The constraint (115) and its

structure function (116) are symmetric under the discrete

transformation W̄ → −W̄, PW̄ → −PW̄ only if the λ0
dependence on W̄ is restricted by the discrete symmetry

(26) to the form λ0ðε; W̄Þ ¼ λ0ðε;−W̄Þ. The classical limit

can be taken in different ways, the simplest one given by

λ → λ̄ and ν → ν̄, followed by λ0; cf; α2; α3 → 1,

q; λ̄; ν̄ → 0, and Λ0 → Λ. The classical-W̄ limit is obtained

for ν ¼ ν̄ → 0 and α3 → 1. The last parenthesis in the

Hamiltonian constraint then approaches the form of a

classical scalar field propagating on the emergent spacetime

with inhomogeneous spatial component q̃θθ.

The W̄-field observable is given by

G½ω� ¼
Z

dθω
ν

ν̄

PW̄

cosðν̄ W̄Þ ; ð117Þ

where ω is a constant. The associated conserved current Jμ

has the components

Jt ¼ ν

ν̄

PW̄

cosðν̄ W̄Þ ; ð118Þ

Jθ ¼¼ ν̄

ν

ffiffiffiffiffiffiffi

qθθ
q

2ε

α3

��

sinðν̄ W̄Þ
ν̄

�0
− ε0

sinðν̄ W̄Þ
ν̄

∂ ln ν

∂ε

�

:

ð119Þ
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When PW̄ ; W̄ → 0, the homogeneous mass observable

associated with (115) is given by

M ¼ d0 þ
d2

8

�

exp

Z

dε

�

α2

2ε
−
∂ ln λ2

∂ε

��

×

�

cf
sin2ðλ̄KÞ

λ̄2
þ 2

λ

λ̄
q
sin ð2λ̄KÞ

2λ̄
− cos2ðλ̄KÞ

�

ε0

ā

�

2
�

þ d2

4

Z

dε

�

λ2

λ̄2
Λ0 exp

Z

dε

�

α2

2ε
−
∂ ln λ2

∂ε

��

; ð120Þ

where d0 and d2 are constants with classical limits given by

d0 → 0 and d2 → 1.

2. Partial Abelianization

The partial Abelianization of this constraint follows the

same procedure as outlined in the first class of modified

constraints. It implies the B-factor (102) and the associated

A-factor, but in addition requires that the modification

function q vanishes, as in the second class.

VI. DYNAMICAL SOLUTIONS WITH

HOMOGENEOUS SPATIAL SLICES

First indications of possible physical effects of our

modifications can be obtained by looking at properties

of spatially homogeneous solutions. In this case, partial

differential equations are replaced by ordinary ones that can

often be solved more easily.

A. Classical constraint

For the sake of comparison, we first present useful gauge

conditions and solutions in the classical case with a

vanishing cosmological constant. Strict homogeneity then

implies Kasner solutions, while an inhomogeneous solution

for W̄ can also be allowed.

1. Conformal gauge

In generally covariant theories, the form of solutions for

the spacetime geometry depends on the coordinate choice

used to express them. In canonical formulations, a coor-

dinate system is presented as a gauge choice that prescribes

the dependence of a suitable subset of metric components

on the coordinates. Gowdy models as well as spherically

symmetric systems have two constraints, given by the

diffeomorphism constraint and the Hamiltonian constraint.

In general, one should therefore choose two conditions in

order to determine the gauge. These two conditions may

not always be mutually consistent, in which case there is no

coordinate system in which they can both be met. However,

if all the constraints and equations of motion generated by

them can be solved consistently, a valid solution is

obtained. Solutions for metric components in terms of

the coordinates introduced by the gauge choice then

determine the line element in the corresponding coordinate

system.

The coordinates of the conventional Gowdy metric (4)

are associated with the gauge choice

Nθ ¼ 0; ε ¼ T ð121Þ

with the time coordinate T. We impose this gauge and for

now work with the classical constraint (22). The remaining

metric components can be expressed in terms of the lapse

function and the two fields

W ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ey=Ex
p

¼ W̄;

a ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ExEy=ε
p

¼ ln ā −
1

2
ln ε: ð122Þ

The on-shell conditionsHθ ¼ 0 andH ¼ 0 in this gauge

become

Hθ ¼ PW̄W̄
0 þ āK0 ¼ 0; ð123Þ

H ¼ PW̄
2 − 4TāKA − ā2K2 þ 4T2ðW̄0Þ2

4
ffiffiffiffi

T
p

ā
¼ 0: ð124Þ

Using the latter expression, we obtain an equation of

motion

∂TðāKÞ ¼ fāK;H½N�g ¼ −NH; ð125Þ

which vanishes on-shell, such that āK ¼ μ where μ is a

constant. The consistency equation ε̇ ¼ ∂ε=∂T ¼ 1 can be

solved for the lapse function

N ¼ 1

K
ffiffiffiffi

T
p ¼ μ−1ā

ffiffiffi

ε
p ¼ μ−1

ffiffiffiffiffiffiffi

qθθ
p

: ð126Þ

The equations of motion for ā and W̄, respectively, imply

A ¼ μ

�

˙̄a

ā
−

1

2T

�

;

PW̄ ¼ 2 μT ˙̄W: ð127Þ

Using these results, the on-shell conditions Hθ ¼ 0 and

H ¼ 0 can be rewritten as

a0 ¼ 2TẆW0; ð128aÞ

ȧ ¼ −
1

4T
þ T

�

Ẇ2 þ ðW0Þ2
μ2

�

; ð128bÞ

where we have used the identification (122).

The equation of motion Ẅ ¼ ffW;H½N�g; H½N�g
requires some care because the lapse function (126) is

phase-space dependent. In a first-order equation of motion,
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using a single Poisson bracket with H½N�, any term

resulting from a nonzero Poisson bracket with N would

be multiplied byH and therefore vanish on-shell. However,

this argument does not apply to iterated Poisson brackets of

some phase-space function with H½N�, where nonzero on-

shell terms may contribute. Duly taking into account the

phase-space dependence of N, such that the second

f·; H½N�g acts on this function contained in the first

H½N�, we obtain the second-order equation of motion

0 ¼ Ẅ þ Ẇ

T
−
W00

μ2
: ð129Þ

It can be checked that this equation is equivalent to what

would be obtained in standard general relativity. [If N were

treated as phase-space independent, we would instead

obtain the bracket ffW;H½N�g;H½N�g¼−Ẇ=TþW00=μ2þ
Ẇð1=ð4TÞ−TẆ−TW00=μ2Þ, using the lapse function (126)
only after computing the brackets. This expression has

extra terms compared with the correct equation (129).]

These are the equations of motion for the polarized

Gowdy system in conventional variables, which have the

general solution [33]

W ¼ αþ β lnT þ
X

∞

n¼1

½anJ0ðnTÞ sinðnμ−2θ þ γnÞ

þ bnN0ðnTÞ sinðnμ−2θ þ δnÞ�; ð130Þ

where α, β, an, bn, γn, and δn are real constants, and J0 and
N0 are Bessel and Neumann functions of the zeroth order,

respectively. Given the solution for W, direct integration of

(128) gives the expression for a. The spacetime line

element in this gauge becomes

ds2 ¼ μ−2e2að−dT2 þ μ2dθ2Þ
þ Tðe−2Wdx2 þ e2Wdy2Þ: ð131Þ

The square of the lapse function, N2 ¼ ā2=ðμ2TÞ, exactly
equals qθθ ¼ ā2=T only if μ ¼ �1. Thus, setting μ ¼ 1,

imposing positivity of the lapse function in the region

T > 0, we obtain a conformally flat metric for the T − θ

components. With this choice, the equation of motion (129)

implies that W-excitations travel at the speed of light.

Finally, note that using (127) and (130) and inserting this

solution in the symmetry generator (27) withω ¼ 1we find

that it corresponds to

G½1� ¼ 4πμβ; ð132Þ

where we used the periodicity conditions in θ. This is

clearly a conserved quantity.

2. Homogeneous solution

For a spatially homogenous background, we consider the

special case W0 ¼ 0. From (130), this implies that

an ¼ bn ¼ 0. The equations of motion (128) now have

the solution

a ¼ 4β2 − 1

4
ln

�

T

T0

�

; ð133Þ

ā ¼ T
1=4−β2

0 Tβ2þ1=4; ð134Þ

with a constant T0, and hence

K ¼ μT
β2−1=4
0 T−β2−1=4: ð135Þ

The spacetime metric (131) becomes

ds2 ¼ μ−2
�

T

T0

�

2β2−1=2

ð−dT2 þ μ2dθ2Þ

þ e2αT1þ2βdx2 þ e−2αT1−2βdy2: ð136Þ

The constants μ, T0, and α can be absorbed in the definition

of coordinates. In proper time, defined by τðTÞ ∝ Tβ2þ3=4,

we then have the line element

ds2 ¼ −dτ2 þ τ2p1dθ2 þ τ2p2dx2 þ τ2p3dy2 ð137Þ

with exponents

p1 ¼
β2 − 1=4

β2 þ 3=4
; p2 ¼

β þ 1=2

β2 þ 3=4
; p3 ¼

β − 1=2

β2 þ 3=4

ð138Þ

that satisfy the Kasner relations p1 þ p2 þ p3 ¼ 1 ¼
p2
1 þ p2

2 þ p2
3. The background Kasner behavior is there-

fore determined by the observable G½1�. If the periodic

terms from a nonhomogeneous W in (130) are included,

they describe a polarized gravitational wave traveling on a

Kasner background.

3. The flat Kasner solution

As a special case, a flat solution within the Kasner class

is defined by further taking α ¼ 0, β ¼ 1=2, and μ ¼ 1. We

obtain

a ¼ 0; ā ¼
ffiffiffiffi

T
p

; K ¼ μ=
ffiffiffiffi

T
p

; ð139Þ

W̄ ¼ 1

2
lnT; PW̄ ¼ 1; A ¼ 0; ð140Þ

and the spacetime metric (131) becomes
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ds2 ¼ −dT2 þ dθ2 þ T2dx2 þ dy2: ð141Þ

The Ricci scalar vanishes, which means that this

expression may be considered a vacuum solution. (The T −

x part is a two-dimensional Milne model.) Upon applying

the coordinate transformation

tM ¼ T cosh x; xM ¼ T sinh x ð142Þ

with inverse

T2 ¼ t2M − x2M; x ¼ arctanh
xM

t
ð143Þ

such that

−dt2M þ dx2M ¼ −dT2 þ T2dx2; ð144Þ

the Kasner-like line element (141) becomes Minkowskian,

ds2 ¼ −dt2M þ dθ2 þ dx2M þ dy2: ð145Þ

While this result shows that the specific Kasner solution

(141) is a locally flat spacetime, hypersurfaces of constant

time T define a three-dimensional space with nonvanishing

extrinsic curvature

Kabdx
adxb ¼ 1

2
fqab; H½1�gdxadxb ¼ Tdx2: ð146Þ

4. Homogeneous solution: Internal-time gauge

To compare the results of the different classes of

constraints, we will evaluate them in the homogeneous

case, P0
W̄
¼ W̄0 ¼ ā0 ¼ ε0 ¼ K0 ¼ A0 ¼ N0 ¼ 0, with van-

ishing cosmological constant, Λ ¼ 0. It will be convenient

to work with coordinates adapted to the full range of the

curvature variable K, used as an internal time coordinate.

We define this internal-time gauge by

Nθ ¼ 0; K ¼ TK; ð147Þ

with a new time coordinate TK .

In the homogeneous case, as before, we obtain

∂TK
ðāKÞ ¼ fāK;H½N�g ¼ −HN; ð148Þ

which vanishes on-shell and implies

ā ¼ μ

TK

¼ μ

K
; ð149Þ

for some constant μ. Because of homogeneity, the

local version of the observable (27) is conserved,

Ġ ¼ 2πṖW ¼ 0. Therefore, any PW in the constraints

and equations of motion is time-independent and can be

set equal to PW ¼ 2μβ, defining the constant β in the

internal-time gauge. Using this expression and the chain

rule, we obtain the equations

dε

dK
¼ ε̇

K̇
¼ −

4ε

ð1þ 4β2ÞK ; ð150Þ

dW̄

dK
¼

˙̄W

K̇
¼ −

4β

ð1þ 4β2ÞK ; ð151Þ

with solutions

ε ¼ cεT
−4=ð1þ4β2Þ
K ; ð152Þ

W̄ ¼ cw −
4β

1þ 4β2
lnTK

¼ ln ðecwT−4β=ð1þ4β2Þ
K Þ: ð153Þ

The integration constants may be redefined as

cε ¼ ðμTð4β2−1Þ=4
0 Þ4=ð4β

2þ1Þ
;

e2cw ¼ e2αðμTð4β2−1Þ=4
0 Þ8β=ð4β

2þ1Þ
: ð154Þ

The on-shell condition Hθ ¼ 0 is trivial in the homo-

geneous case, while H ¼ 0 greatly simplifies and can be

solved for

A ¼ μ
4β2 − 1

4ε
¼ 4β2 − 1

4cε
μT

4μ2=ðμ2þ4β2Þ
K : ð155Þ

Finally, the lapse function is obtained by solving the

consistency equation K̇ ¼ ∂K=∂TK ¼ 1,

N ¼ −
4

1þ 4β2
ffiffiffiffiffi

cε
p

T
−2=ð1þ4β2Þ−2
K : ð156Þ

The negative value of the lapse function means that

evolution runs from higher to lower values of TK, similar

to what happens in Schwarzschild coordinates in a black

hole’s interior. The spacetime metric (24) is then given by

ds2 ¼ c−1ε T
2ð1−4β2Þ=ð4β2þ1Þ
K

�

−

�

4

1þ 4β2

�

2

c2εT
−2ð5þ4β2Þ=ð4β2þ1Þ
K dT2

K þ μ2dθ2
�

þ cεðe2cwT−4ð2βþ1Þ=ð4β2þ1Þ
K dx2 þ e−2cwT

4ð2β−1Þ=ð4β2þ1Þ
K dy2Þ: ð157Þ
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The conventional time coordinate T and our curvature

time TK are related by

TK ¼ μT
β2−1=4
0 T−β2−1=4: ð158Þ

This coordinate transformation turns the metric (157) into

(136). The flat Kasner solution defined by α ¼ 0, β ¼ 1=2,
and μ ¼ 1, in the present gauge implies

ε ¼ T−2
K ; ð159Þ

W̄ ¼ − lnTK: ð160Þ

The coordinate transformation relating the two gauges is

then simplified to

TK ¼ 1=
ffiffiffiffi

T
p

ð161Þ

and the spacetime metric is given by

ds2 ¼ −4T−6
K dT2

K þ dθ2 þ T−4
K dx2 þ dy2 ð162Þ

with extrinsic curvature

Kabdx
adxb ¼ T−2

K dx2 ð163Þ

of constant-TK slices. The coordinate singularity of (141) at

T → 0þ is here given by TK → ∞, while the coordinate

singularity of (162) at TK → 0þ corresponds to T → ∞.

B. Singularity-free solutions

We now consider the first two classes of modified

theories, given by constraints compatible with the limit

of reaching the classical constraint surface and constraints

of the second kind. In both cases, the classical singularity of

homogeneous solutions is removed.

1. New variables

We first use the modified constraint (69) with constant

λ ¼ λ̄ and λ0, choosing the gauge

Nθ ¼ 0; ε ¼ T: ð164Þ

The on-shell conditions do not change under a linear

combination of the constraints, and thus we have the

classical constraint surface given by (124).

The consistency equation ε̇ ¼ 1 can be solved for the

lapse function

N ¼ λ−10
ffiffiffi

ε
p 1

K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ̄2K2
p : ð165Þ

Using this, we obtain

∂TðāKÞ ¼ fāK; H̃½N�g ∝ H̃; ð166Þ

which vanishes on-shell. Thus, āK ¼ μ with a constant μ.

The T − θ part of the line element is no longer con-

formally flat because we have the emergent metric com-

ponent

q̃θθ ¼ λ−20
ā2

T
¼ λ−20 e2a ð167Þ

while

N2 ¼ ðμλ0Þ−2
1 − λ̄2K2

ā2

ε
¼ μ−2

1 − λ̄2K2
q̃θθ

¼ μ−2B−2q
ðclÞ
θθ ; ð168Þ

where q
ðclÞ
θθ ¼ ā2=ε is the classical expression and B ¼

λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ̄2K2
p

is the factor in the linear combination (66).

Because ε0 ¼ 0 in this gauge, the coefficient A in the linear

combination vanishes. Thus, in this gauge the full

Hamiltonian generator is identical to the classical one:

H̃½N� þHθ½Nθ� ¼ H̃

�

B−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ−1q
ðclÞ
θθ

q
�

¼ H

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ−1q
ðclÞ
θθ

q
�

¼ H½NðclÞ�: ð169Þ

This means that all of the equations of motion are identical

to the classical ones, Eqs. (128) and (129), obtaining the

same classical solutions (130).

However, even though all the phase-space solutions

retain their classical forms, the resulting spacetime geom-

etry is nonclassical because the structure function differs by

a constant factor of λ20 from the classical one and the lapse

function differs from its classical expression more signifi-

cantly. The resulting emergent spacetime line element is

given by

ds2 ¼ e2a

μ2λ20

�

−
dT2

1 − λ̄2μ2e−2a=T
þ μ2dθ2

�

þ Tðe2Wdx2 þ e−2Wdy2Þ; ð170Þ

where a and W are related to the phase-space variables

by (122). In the limit λ̄ → 0, λ0 → 1 we recover the

classical solution whose curvature invariant RαβμνR
αβμν

diverges as T → 0þ. Seen from positive T, this singularity
lies in the past where the x-y plane had collapsed to zero

area ε ¼ T.
In the modified case, the T − θ part of the metric is no

longer conformally flat. There is a new singularity at

T ¼ λ̄2e−2a≕T λ̄, a time later than the classical singularity

at T ¼ 0þ. This new singularity is therefore the relevant

one in the positive-T branch, but it is not a physical

singularity. To see this in detail, we will use a new gauge in

the next subsection.
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For now, the special case of a (modified) flat Kasner

solution can be analyzed more easily. It is given by μ ¼ 1,

β ¼ 1=2, α ¼ an ¼ bn ¼ 0, which implies W ¼ 1
2
lnT and

a ¼ 0. The line element is then equal to

ds2 ¼ −
dT2

1 − λ̄2=T
þ dθ2 þ T2dx2 þ dy2; ð171Þ

where we have chosen λ0 ¼ 1 so as to recover the classical

Kasner metric for large T ≫ λ̄2. In the classical case λ̄ → 0

this is the flat Kasner solution whose curvature invariants

are finite. The solutions can be analytically extended across

T ¼ 0, but they are causally ill-behaved as they form closed

timelike curves. However, for λ̄ ≠ 0, the singularity T ¼ 0þ
is hidden inside a region bounded by the new singularity at

T ¼ λ̄2 > 0. Curvature invariants can be used to support the

expectation that this is only a coordinate singularity.

We first note that the Kasner solution (171) of the

modified theory is not flat: It has the Ricci scalar

R ¼ λ̄2

T3
ð172Þ

and the Kretschmann invariant

K≡ RμναβR
μναβ ¼ −

1

2

λ̄4

T10

�

1þ T4

�

1 −
λ̄2

T

�

2
�

: ð173Þ

At T ¼ λ̄2, both are finite. Moving across this value, a new

gauge must be chosen, in which, as we will see in what

follows, the physical singularity at T ¼ 0 no longer

appears. (This construction is similar to the nonsingular

black-hole models in [10,11].) Any hypersurface of con-

stant time T of the modified Kasner spacetime (171)

defines a three-dimensional space with nonvanishing

extrinsic curvature

Kabdx
adxb ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffi

1 −
λ̄2

T

s

dx2 ð174Þ

unless T ¼ λ̄. This specific value implies a hypersurface of

time-reflection symmetry, which can be used to glue a time

reverse of our solution at T ¼ λ̄. The classical singularity at

T ¼ 0 is then replaced by a transition from collapse to

expansion.

If the interpretation of the classical flat solution as a

vacuum spacetime is extended to the modified theory, it

could suggest a vacuum different from the usual Minkowski

one, being approximately flat only for T ≫ λ̄2. However, in

Sec. VI B 5 we will show that drawing such a conclusion

based on only homogeneous models in a fixed gauge of

internal timewould not be justified. For now,we continue our

analysis of homogeneous dynamics.

2. Periodic variables

We shall now use the modified constraint (71) with

constant λ0 and λ ¼ λ̄, reproducing the above results

because this version will serve as a guide to obtaining

the dynamical solutions of the other two constraints.

We again choose the gauge

Nθ ¼ 0; ε ¼ T: ð175Þ

The on-shell conditions are

0 ¼ 1

4ε

sin2ðλ̄KÞ
λ̄2

−
cos2ðλ̄KÞ

4ε

PW̄
2

ā2
þ sinð2λ̄KÞ

2λ̄

A

ā

− ε
ðW̄0Þ2
ā2

cos2ðλ̄KÞ; ð176Þ

0 ¼ āK0 þ PW̄W̄
0; ð177Þ

and the consistency equation ε̇ ¼ 1 can be solved for the

lapse function

N ¼ λ−10
ffiffiffi

ε
p 2λ̄

sinð2λ̄KÞ : ð178Þ

Using this result, we obtain

∂T

�

ā
tanðλ̄KÞ

λ̄

�

¼



ā
tanðλ̄KÞ

λ̄
; H̃½N�

�

∝ H̃; ð179Þ

which vanishes on-shell. Thus, ā tanðλ̄KÞ=λ̄ ¼ μ where μ is

a constant. Because of the canonical transformation

involved, the identification (122) changes to

W̄ ¼ W;

a ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ExEy=ε
p

¼ ln

�

ā

cosðλ̄KÞ

�

− ln
ffiffiffi

ε
p

: ð180Þ

Therefore,

sinðλ̄KÞ ¼ λ̄μ

ā= cosðλ̄KÞ ¼
λ̄μ
ffiffiffi

ε
p

ea
: ð181Þ

The equations of motion for ā and W̄, respectively, give

A ¼ μ∂T

�

ln

�

ā

cosðλ̄KÞ

�

− ln
ffiffiffiffi

T
p �

¼ μȧ; ð182Þ

PW̄ ¼ 2 μT ˙̄W: ð183Þ

Using these results, the constraints Hθ ¼ 0 and H̃ ¼ 0 can

be rewritten as
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a0 ¼ 2TẆW0; ȧ ¼ −
1

4T
þ T

�

Ẇ2 þ ðW0Þ2
μ2

�

; ð184Þ

where we have used the identification (180). The equation

of motion ̈W̄ ¼ ffW̄; H̃½N�g; H̃½N�g, such that the brackets
do act on the lapse as discussed before, can be rewritten as

0 ¼ Ẅ þ Ẇ

T
−
W00

μ2
: ð185Þ

These equations are identical to the classical ones. The

emergent line element is then given by

ds2 ¼ λ−20 e2að− sec2ðλ̄KÞdT2 þ dθ2Þ
þ Tðe2Wdx2 þ e−2Wdy2Þ

¼ λ−20 e2a
�

−
dT2

1 − λ̄2μ2=ðTe2aÞ þ dθ2
�

þ Tðe2Wdx2 þ e−2Wdy2Þ: ð186Þ

Modified Kasner models are obtained for W ¼ β lnT,

which implies e2a ∝ T2β2−1=2 as in the classical case. The

line element then equals

ds2 ¼ λ−20 T2β2−1=2

�

−
dT2

1 − λ̄2T−2β2−1=2
þ dθ2

�

þ T1þ2βdx2 þ T1−2βdy2 ð187Þ

if we set μ2 equal to the proportionality factor in e2a. For
constant but nonzero λ, proper time is now given by a

hypergeometric function of T, which complicates any

further analysis of general Kasner models. It is nevertheless

possible to understand the general behavior.

To do so, we first introduce a new time coordinate

t ¼ Tβ2þ3=4, such that

dτ ∝
Tβ2−1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ̄2T−2β2−1=2
p dT

¼ 1

β2 þ 3=4

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ̄2t−2ðβ
2þ1=4Þ=ðβ2þ3=4Þ

p ð188Þ

according to the time component of (187). For large T, t
and τ therefore proceed at almost the same rate, up to a

constant rescaling. With respect to proper time, we now

have the line element

ds2 ¼ −dτ2 þ λ−20 tðτÞ2p1dθ2 þ tðτÞ2p2dx2 þ tðτÞ2p3dy2

ð189Þ

with Kasner exponents pi as in (138), obeying the classical

relations, and the inverse of a hypergeometric function

(times t) for tðτÞ. [For λ̄ ¼ 1, tðτÞ is the inverse of

t2F1ð1=2; 1=a; 1þ 1=a; taÞ if a ¼ −2ðβ2 þ 1=4Þ=ðβ2þ
3=4Þ ≠ −1. If a ¼ −1, tðτÞ is the inverse of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt − 1Þt
p

−

sinh−1ðtÞ.]
For large tðτÞ such that λ̄ ≪ Tβ2þ1=4 ¼ tðβ

2þ1=4Þ=ðβ2þ3=4Þ,
the behavior is close to the classical Kasner dynamics with

the same relationship between the Kasner exponents and

the conserved quantity β. For smaller t, however, there is a
new effect because the relationship between t and τ is not

one-to-one, in contrast to the classical solutions. We have

dt

dτ
¼ λ0ðβ2 þ 3=4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ̄2t−2ðβ
2þ1=4Þ=ðβ2þ3=4Þ

p

¼ 0 ð190Þ

at

t ¼ tλ̄ ¼ λ̄ðβ
2þ3=4Þ=ðβ2þ1=4Þ: ð191Þ

At the same value of t,

d2t

dτ2
¼ λ0λ̄

2ðβ2 þ 1=4Þ t−ð3β
2þ5=4Þ=ðβ2þ3=4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ̄2t−2ðβ
2þ1=4Þ=ðβ2þ3=4Þ

p

dt

dτ

¼ λ20λ̄
2ðβ2 þ 1=4Þðβ2 þ 3=4Þt−ð3β2þ5=4Þ=ðβ2þ3=4Þ

¼ λ20ðβ2 þ 1=4Þðβ2 þ 3=4Þt−1
λ̄

> 0 ð192Þ

such that tðτÞ has a local minimum at the value tðτÞ ¼ tλ̄.
The full dynamics therefore describes nonsingular evolu-

tion of a collapsing Kasner model connected to an

expanding Kasner model with the same exponents. All

three spatial directions transition from collapse to expan-

sion at the same time τðtλ̄Þ. The behavior of tðτÞ is

illustrated in Figs. 1 and 2.

The special case of the modified flat Kasner model is

given by μ ¼ 1, β ¼ 1=2, α ¼ an ¼ bn ¼ 0, which implies

W ¼ 1
2
lnT and a ¼ 0. We have A ¼ 0 and

sinðλ̄KÞ
λ̄

¼ 1
ffiffiffiffi

T
p ; ð193Þ

and the line element

ds2 ¼ λ−20 ð− sec2ðλ̄KÞdT2 þ dθ2Þ þ T2dx2 þ dy2: ð194Þ

Here, proper time τðTÞ can be integrated more easily but its

inversion to TðτÞ remains complicated.

3. Homogeneous solution: Internal-time gauge

Let us now use the inhomogeneous curvature component

as an internal time, TK ¼ K. The two time coordinates are

related to each other by

sinðλ̄TKÞ
λ̄

¼ 1
ffiffiffiffi

T
p ð195Þ
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such that

−2
λ̄3

sin3ðλ̄TKÞ
cosðλ̄TKÞdTK ¼ dT: ð196Þ

Substituting in the line element for the modified flat Kasner

model, we obtain

ds2 ¼ λ−20

�

−4
λ̄6

sin6ðλ̄TKÞ
dT2

K þ dθ2
�

þ λ̄4

sin4ðλ̄TKÞ
dx2 þ dy2; ð197Þ

which is indeed regular at maximum curvature, TK ¼ π=2λ̄,
defining a surface of reflection symmetry.

We now derive this result by directly solving the

equations of motion in the internal-time gauge (147), rather

than performing a coordinate transformation. For the

homogeneous model, we set P0
W̄
¼ W̄0 ¼ ā0 ¼ ε0 ¼ K0 ¼

A0 ¼ N0 ¼ 0 and assume a vanishing cosmological con-

stant,Λ ¼ 0. We note that the modified constraints (94) and

(109) are identical in the homogeneous case if the classical

values for the functions cf; α2; α3 → 1, q → 0, and Λ0 →

Λ → 0 are taken, with constant λ ¼ λ̄, ν ¼ ν̄, and λ0. The

results of the present and the following subsections then

apply to both cases.

We first see that because of homogeneity the local version

of the observable (27) is conserved, Ġ ¼ 2πṖW ¼ 0, and we

will write the momentum asPW ¼ 2μβ with constants μ and

β. The on-shell conditionHθ ¼ 0 is trivially satisfied in this

case, while H̃ ¼ 0 is solved by

A ¼ −
ā

4ε

tanðλ̄KÞ
λ̄

þ λ̄ cotðλ̄KÞ
4ε

4μ2β2

ā
: ð198Þ

We then obtain

∂T

�

ā
tanðλ̄KÞ

λ̄

�

¼



ā
tanðλ̄KÞ

λ̄
; H̃½N�

�

∝ H̃; ð199Þ

which vanishes on-shell, such that ā tanðλ̄KÞ=λ̄ ¼ μwhere μ

is a constant. Hence,

A ¼ ð4β2 − 1Þ μ

4ε
: ð200Þ

In combination with the chain rule we obtain the

equations

dε

dK
¼ ε̇

K̇
¼ −

4λ̄

ð1þ 4β2Þ tanðλ̄KÞ ε; ð201Þ

d

dK

�

sinðν̄ W̄Þ
ν̄

�

¼ −
4βλ̄

ð1þ 4β2Þ tanðλ̄KÞ ; ð202Þ

solved by

ε ¼ cε

�

sinðλ̄KÞ
λ̄

�

−4=ð1þ4β2Þ
ð203Þ

and

FIG. 1. The function of tðτÞ with λ̄ ¼ 1, obtained from the

inverse of a hyperbolic function, shows the transition from

collapse to expansion in Kasner models of emergent modified

gravity. Its dependence on different values of β is shown here by

the range of possible curves, with the upper bound given by large

β such that −2ðβ2 þ 1=4Þ=ðβ2 þ 3=4Þ ≈ −2 and the lower bound

given by β ¼ 0 such that −2ðβ2 þ 1=4Þ=ðβ2 þ 3=4Þ ¼ −2=3
(dotted curves). The value β ¼ 1=2 (solid line), such that

−2ðβ2 þ 1=4Þ=ðβ2 þ 3=4Þ ¼ −1, is close to the midpoint of this

range.

FIG. 2. The asymptotic behavior of the function of tðτÞ for large
τ is close to tðτÞ ¼ �τ þ t� if λ̄ ¼ 1. The value β ¼ 1=4 has been
used for the solid curve.
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sinðν̄ W̄Þ
ν̄

¼ ln

�

ecw
sinðλ̄KÞ

λ̄

�

−4β=ð1þ4β2Þ
: ð204Þ

For convenience, the integration constants may be rede-

fined as

cε ¼ ðμTð4β2−1Þ=4
0 Þ4=ð4β

2þ1Þ ð205Þ

and

e2cw ¼ e2αðμTð4β2−1Þ=4
0 Þ8β=ð4β

2þ1Þ
: ð206Þ

Finally, the lapse function is obtained by solving the

consistency equation K̇ ¼ 1,

N ¼ −
4

1þ 4β2

ffiffiffiffiffi

cε
p

λ0
sec2ðν̄ W̄Þ

�

sinðλ̄KÞ
λ̄

�

−2=ð1þ4β2Þ−2
:

ð207Þ

The spacetime line element is then given by

ds2 ¼ sec4ðν̄ W̄Þ
�

sinðλ̄TKÞ
λ̄

�

4=ð1þ4β2Þ−2�

−

�

4

1þ 4β2

�

2 cε

λ20

�

sinðλ̄TKÞ
λ̄

�

−8=ð1þ4β2Þ−2
dT2

K þ μ2

cε
dθ2

�

þ cεe
2cw

�

sinðλ̄TKÞ
λ̄

�

−4ð2βþ1Þ=ð4β2þ1Þ
dx2 þ cεe

−2cw

�

sinðλ̄TKÞ
λ̄

�

4ð2β−1Þ=ð4β2þ1Þ
dy2; ð208Þ

where W̄ is implicitly given by (204).

4. Modified flat Kasner solution

The Kasner solution μ ¼ 1, β ¼ 1=2 is given by the

simpler metric

ds2 ¼ sec4ðν̄ W̄Þ
�

−
4

λ20

�

sinðλ̄TKÞ
λ̄

�

−6

dT2
K þ dθ2

�

þ
�

sinðλ̄TKÞ
λ̄

�

−4

dx2 þ dy2; ð209Þ

where W̄ can be obtained from inverting its relation withK,

sinðλ̄TKÞ
λ̄

¼ exp

�

−
sinðν̄ W̄Þ

ν̄

�

: ð210Þ

Taking ν̄ → 0, the Kasner solution in this gauge (209)

has the Ricci scalar

R ¼ λ̄2
�

sinðλ̄TKÞ
λ̄

�

6

; ð211Þ

and the Kretschmann invariant

K≡ RμναβR
μναβ ¼ −

λ̄4

8

�

sinðλ̄TKÞ
λ̄

�

22

: ð212Þ

Both expressions are finite at TK ¼ π=ð2λ̄Þ. The model is

approximately flat only for TK ≪ λ̄, and both curvature

invariants vanish in the classical limit λ̄ → 0.

A hypersurface of constant time TK of the modified

Kasner spacetime (209) defines a three-dimensional space

with extrinsic curvature

Kabdx
adxb ¼ λ0

λ̄2 cosðλ̄TKÞ
sin2ðλ̄TKÞ

dθ2; ð213Þ

which vanishes only at themaximum-curvature hypersurface.

5. Flat solution: Nonunique vacuum

From the above example one might conclude that the

vacuum solution of this theory is different from Minkowski

spacetime, as suggested for a similar case for instance in

[34]. It is easy to see that such a statement is incorrect

because flat spacetime, described by

N ¼ 1; Nθ ¼ 0;

ε ¼ 1; ā ¼ 1; W̄ ¼ 0;

A ¼ 0; K ¼ 0; PW̄ ¼ 0; ð214Þ

is a solution to the same theory if, to be specific, we take the

classical values for all the modification functions except for

λ and ν which we leave as arbitrary functions. This solution

is excluded from the case of Kasner-like line elements by

the assumption that ε can be used as a time variable, such

that ε ¼ 1 can be obtained only on one spacelike hyper-

surface but not across an entire spacetime region.

Nevertheless, flat Minkowski spacetime is a solution of

the same modified theory in which we obtained our Kasner

spacetimes.

Minkowski spacetime is relevant because its local

behavior describes the background spacetime of vacuum

states in quantum field theory. According to the general

meaning of “vacuum” in particle physics or general

relativity, all Kasner models are vacuum solutions because

they do not include matter. The case of β ¼ 1=2 is special

only because, classically, it happens to be locally equivalent
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to Minkowski spacetime and just appears written in non-

Cartesian coordinates. The result that this correspondence

is not realized in a modified theory only means that there is

no longer a Kasner model related to flat Minkowski

spacetime. It does not mean that Minkowski spacetime

itself is modified or no longer appears as a solution, as

demonstrated by the explicit counterexample of (214).

A distinguishing feature of (214) compared with any

Kasner solution is that it is not only devoid of matter but

also has a vanishing local gravitational degrees of freedom

described by ðW̄; PW̄Þ. We can formalize this property by

making use of the definition of an effective stress energy,

obtained from the Einstein tensor of the emergent space-

time metric. We find that the flat solution (214) has a

vanishing net stress-energy tensor, while the modified flat

Kasner solution has a nontrivial one, as shown by the

nonvanishing Ricci scalar (211). Therefore, the solutions

are distinguished from one another by their effective

gravitational energy content. From this perspective, the

standard Minkowski solution remains the preferred vacuum

spacetime also in a modified theory. For λ̄ → 0, the

effective stress-energy tensor vanishes, and the modified

flat Kasner solution approaches the strictly flat Minkowski

solution.

The correct identification of a candidate vacuum solution

therefore requires an extension of strict minisuperspace

models to some inhomogeneity, which tells us that the

nonzero W̄ and PW̄ in Kasner models are homogeneous

remnants of a propagating gravitational degree of freedom,

and the correct identification of a covariant spacetime

structure that defines curvature and effective stress energy.

It is also important to have a gauge-invariant treatment that is

not built on a fixed gauge choice such as an internal time, as

such a choice might restrict the accessible solution space.

None of these ingredients had been available in previous

models of quantum cosmology. With some choices of

modification functions, it might happen that strict

Minkowski spacetime is no longer a solution or that the

zero-mass limit of a black-hole solution differs from

Minkowski spacetime as seen explicitly in an example in

[15]. But such a conclusion cannot be drawn in a reliable

manner in theories based on restricted gauge choices or on

incomplete demonstrations of covariance properties.

C. Constraints compatible with the classical-W̄ limit

We now use the constraint (115) in the internal time gauge

(147) for the homogeneous case where P0
W̄
¼ W̄0 ¼ ā0 ¼

ε0 ¼ K0 ¼ A0 ¼ N0 ¼ 0. For simplicity we take the classical

values for the followingmodification functions and assume a

vanishing cosmological constant, cf; α2; α3 → 1, q → 0, and

Λ0 → Λ → 0.We also set λ0, λ ¼ λ̄, andν ¼ ν̄ constant.With

these values, the inhomogeneous component of the emergent

spatial metric is given by

q̃θθ ¼ λ−20 cos−4ðν̄ W̄Þ ā2

cos2 ðλ̄KÞ
1

ε
: ð215Þ

As before, homogeneity implies that the local version of

the observable (27) is conserved, Ġ ¼ 0, and we shall write

it as G ¼ 4πμβ such that PW̄ ¼ 2μβ, anticipating an

integration constant (μ) that will be introduced in the

process of solving equations of motion. The value of β

then parametrizes the momentum.

The relevant equations of motion for recovering the

emergent spacetime geometry are given by

d ln ðā2= cos2 ðλ̄KÞÞ
dðsin ðλ̄KÞ=λ̄Þ ¼ −2

λ̄

sin ðλ̄KÞ

�

sin2ðλ̄KÞ
λ̄2

cos2 ðλ̄KÞ ā2

cos2 ðλ̄KÞ þ 4μ2β2
cos ð2λ̄KÞ
j cos ðλ̄KÞj

�

×

�

sin2ðλ̄KÞ
λ̄2

cos2 ðλ̄KÞ ā2

cos2 ðλ̄KÞ þ 4μ2β2j cos ðλ̄KÞj
�

−1

ð216Þ

as well as

d ln ε

dK
¼ −4

sin ð2λ̄KÞ
2λ̄

�

sin2 ðλ̄KÞ
λ̄2

j cos ðλ̄KÞj þ 4μ2β2
cos2ðλ̄KÞ

ā2

�

−1

ð217Þ

and

d

dK

�

sinðν̄ W̄Þ
ν̄

�

¼ −4μβ
cos2ðλ̄KÞ

ā

�

sin2ðλ̄KÞ
λ̄2

j cos ðλ̄KÞj þ 4μ2β2
cos2ðλ̄KÞ

ā2

�

−1

; ð218Þ

where we have chosen K as an evolution parameter. Equation (216) can be solved exactly,

ā2

cos2ðλ̄KÞ ¼
μ2

4

λ̄2

sin2ðλ̄KÞ

�

1 − 4β2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − 4β2Þ2 þ 16β2

j cosðλ̄KÞj

s

�2

: ð219Þ
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The integration constant μ2 and the sign of the square root

have been chosen for the solution to match the classical

one, Eq. (149), in the limit λ̄ → 0.

The ratio (219) appears directly as a factor in the

emergent metric component qθθ, given by (215). Near

the maximum-curvature hypersurface, defined by

K → π=ð2λ̄Þ, this expression diverges as secðλ̄KÞ, and its

internal-time derivative (216) diverges as sec2ðλ̄KÞ. Using
this, we find that the right-hand side of (217) remains finite

at the maximum-curvature hypersurface,

d ln ε

dK
≈ −4

λ̄

sinðλ̄KÞ ; ð220Þ

while that of (218) vanishes. We conclude that both ε and

sinðν̄ W̄Þ remain finite, and hence the homogeneous com-

ponents qxx and qyy are finite too.

We complete the gauge fixing by enforcing the consis-

tency equation K̇ ¼ 1 and solve it for the lapse function,

N ¼ −
sec2ðν̄ W̄Þ

λ0
4

ffiffiffi

ε
p �

ā2

cos2ðλ̄KÞ j cosðλ̄KÞj
sin2ðλ̄KÞ

λ̄2
þ 4μ2β2

�

−1 ā2

cos2ðλ̄KÞ j cosðλ̄KÞj; ð221Þ

which is finite at the maximum-curvature hypersurface

provided W̄ ≠ −π=ð2ν̄Þ.
Because of the divergence of (219) and its derivative

(216), the emergent line element has a singular θ-compo-

nent at the maximum-curvature hypersurface, and its time

derivatives are singular there too. Thus, neglecting the time

derivatives of the qxx and qyy components, a homogeneous

line element of the form

ds2 ¼ −N2dT2
K þ q̃θθdθ

2 þ qxxdx
2 þ qyydy

2 ð222Þ

has the Ricci scalar

R ≈ −
˙̃qθθ
q̃θθ

Ṅ

N3
−

1

2N2

��

˙̃qθθ
q̃θθ

�

2

− 2
q̈θθ
qθθ

�

; ð223Þ

which diverges as R ∼ sec2ðλ̄TKÞ near the maximum-

curvature hypersurface, while the Kretschmann scalar takes

the form

K ≈ −
R2

2q̃θθN
2
; ð224Þ

which diverges as K ∼ sec3ðλ̄TKÞ near the maximum-

curvature hypersurface This constraint, unlike the other

two versions considered in this paper, therefore implies a

singular geometry at the maximum-curvature hypersurface.

VII. DISCUSSION

We have extended emergent modified gravity from

spherically symmetric models to polarized Gowdy systems,

preserving most of the qualitative features observed in

previous publications. In particular, modification functions

of the same number and type remain in the classes of

modified constraints derived explicitly here, building on a

relationship with models of a scalar field coupled to

spherically symmetric gravity. Emergent modified gravity

therefore is not restricted to spherical symmetry, and it is

compatible with different kinds of local degrees of freedom

from matter or gravity.

One class of models, compatible with the classical limit

of the local gravitational degree of freedom, has a set of

modification functions such that polarized gravitational

waves travel on an emergent spacetime geometry just like a

minimally coupled scalar field. The existence of these

models shows that a nontrivial class of theories in emergent

modified gravity has gravitational waves and matter (a

minimally coupled massless scalar field propagating on the

same geometry) traveling at the same speed. Emergent

modified gravity is therefore compatible with strong

observational restrictions on the difference of the two

speeds [35–38]. Moreover, emergent modified gravity does

not require higher time derivatives for nontrivial modifi-

cations, and is therefore free of related instabilities [16].

Compared with spherically symmetric models, polarized

Gowdy systems have a large class of homogeneous

solutions that correspond to the full Kasner dynamics of

the Bianchi I model. We have derived consistent modifi-

cations of this dynamics with the correct classical limit at
large volume but different behaviors at small volume. Some

types of modifications lead to nonsingular evolution con-
necting collapsing and expanding Kasner dynamics, while

models compatible with the classical limit for the local
gravitational degree of freedom retain the classical big-bang

singularity. In the nonsingular case, all three spatial direc-
tions transition from collapse to expansion at the same time.

We demonstrated that the modified Kasner family may no
longer include Minkowski spacetime, but that a different

gauge choice not based on an internal time nevertheless
shows that this geometry remains a solution of the modified

theory. Discussions of possible vacuum states in a modified
theory therefore require access to different gauge choices and

cannot be made reliably in a deparametrized setting, as often
used in quantum cosmology.

The restrictions on inhomogeneous terms in the covar-

iant constraints, imposing the covariance requirement

on an emergent spacetime metric distinct from the basic
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phase-space variables, demonstrates the nontrivial nature of

modifications or quantizations of the polarized Gowdy

model. In particular, a separate modification or quantization

of a homogeneous Bianchi model coupled to linearized

classical-type inhomogeneity, as proposed for instance in

hybrid loop quantum cosmology [39–41], does not lead to

covariant spacetime solutions because it is not contained in

the general class of consistent models derived here.

Modifications of the background dynamics, one of the

key ingredients in cosmological models of loop quantum

gravity, instead have to be reflected in coefficients of the

inhomogeneous terms and in the corresponding emergent

line element, as determined by strong covariance condi-

tions. Midisuperspace quantizations of polarized Gowdy

and related models, as in [42–49], would have to take into

account the new holonomy behavior found in Eq. (74) in

order to be compatible with a covariant semiclassical limit.

The dependence of the holonomies on anisotropies (rather

than areas or volumes as previously assumed in models of

loop quantum gravity) then implies new phenomenological

behaviors. These applications indicate that emergent modi-

fied gravity has important implications for classical as well

as quantum models of gravity.

Our successful extension of emergent modified gravity

from spherical symmetry to polarized Gowdy models is

nontrivial, as previous attempts to generalize anomaly-free

modifications of spherically symmetric models to Gowdy

symmetries had failed [46]. The constructions shown here

not only imply anomaly-free modified constraints, they

also implement full covariance conditions. Together with

the previous extension of vacuum spherically symmetric

models to scalar matter [6] and perfect fluids [3], also

within emergent modified gravity, these are the first non-

trivial canonical modifications of gravitational models with

local or matter degrees of freedom. Based on these

examples, it seems that each new degree of freedom allows

one additional modification function, without restricting

the modification freedom of the remaining degrees of

freedom. This success is encouraging, but the question

remains open as to whether nontrivial versions of emergent

modified gravity exist without any symmetry assumptions.

As shown recently, some of the crucial equations that

implement covariance for modified canonical theories hold

in general because they follow from intrinsic properties of

hypersurface deformations [50]. However, the solution

space of these equations so far remains unexplored.
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