

¹ Unraveling the Nature of Lasing Emission from Hybrid Silicon Nitride and Colloidal Nanocrystal Photonic Crystals with Low Refractive Index Contrast

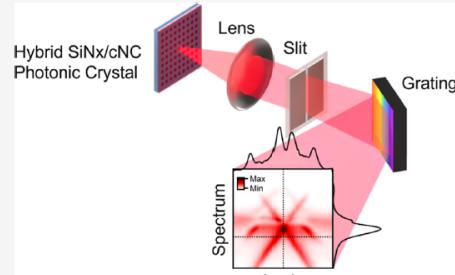
⁴ Published as part of ACS Photonics special issue "Rising Stars in Photonics".

⁵ Ivo Tanghe,* Tom Vandekerckhove, Margarita Samoli, Amelia Waters, Dulanjan Harankahage,
⁶ Mikhail Zamkov, Zeger Hens, Christian Seassal, Hai-Son Nguyen, Dries Van Thourhout,
⁷ and Pieter Geiregat*

Cite This: <https://doi.org/10.1021/acspolitronics.4c01410>

Read Online

ACCESS |


Metrics & More

Article Recommendations

Supporting Information

8 ABSTRACT: Silicon nitride is used for its low optical loss and high 9 thermal stability, making it a suitable platform for visible-light applications 10 in integrated photonic devices. However, its application has been limited 11 due to inefficient light emission, a problem addressed by integrating various 12 types of light emitters onto the platform. In particular, the integration of 13 solution-processable colloidal nanocrystals (NCs) as optical gain materials 14 onto the silicon nitride platform is a promising route but requires a more 15 solid theoretical footing. By leveraging 2D surface-emitting photonic crystal 16 structures combined with NCs, we effectively confine and manipulate light 17 to achieve lasing from green to red. Building on this, we model the light– 18 matter interactions of the low index contrast NC/nitride platform, validated 19 by extensive experimental validations through Fourier imaging techniques, 20 revealing the full photonic band structure and showing clear mode 21 congestion. These comprehensive studies confirm the potential of hybrid NC-based structures for fully integrated on-chip laser 22 applications and indicate routes for further improvement.

23 KEYWORDS: photonic crystal, colloidal nanocrystal, laser, BIC lasing, silicon nitride, integrated photonics

24 ■ INTRODUCTION

25 The drive toward miniaturization in photonics implicates a need 26 for compact, efficient, on-chip lasers capable of precise 27 wavelength selectivity and directional emission. These devices 28 are crucial across a variety of applications, including microdis- 29 plays, tunable light sources, and advanced sensing/imaging 30 systems.^{1,2} The need for integrating multiple laser sources on a 31 single chip without compromising performance poses significant 32 challenges in terms of possible device architectures and 33 commensurate compatibility of the active materials.

34 Silicon photonics has emerged as a robust platform for 35 addressing these challenges, particularly through the use of 36 silicon nitride (SiNx), which offers excellent properties for 37 visible-light applications due to its low optical loss in this part of 38 the spectrum and a high thermal stability. By now, losses as low 39 as 1 dB/m are achievable, allowing for quality factors (Q) above 40 1 million.³ SiNx's compatibility with standard CMOS 41 fabrication processes further enhances its appeal for integrated 42 photonic devices.^{4,5} However, despite its potential as a passive 43 platform, the lack of efficient light emission from SiNx limits its 44 wider application.

To address this, various heterogeneous integration methods 45 have been developed to pair the low-loss SiNx platform with 46 active semiconductor materials. These methods include 47 bonding⁶ and transfer printing,⁷ which facilitate applications 48 on the SiNx platform such as on-chip lasing with III–V⁴⁹ semiconductors,⁸ high-speed modulators, and efficient second-⁵⁰ harmonic generation with lithium niobate.^{9,10} However, these 51 integration methods face clear limitations. For example, every 52 additional bonding step requires complex processing, making it 53 difficult to combine multiple gain materials on a single chip.⁵⁴ Furthermore, both methods still require the use of two separate 55 foundries to create both wafers, leading to a costly and complex 56 manufacturing process.²

Received: July 30, 2024

Revised: October 24, 2024

Accepted: October 25, 2024

ACS Publications

© XXXX American Chemical Society

A

<https://doi.org/10.1021/acspolitronics.4c01410>
ACS Photonics XXXX, XXX, XXX–XXX