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ABSTRACT. We study the connection between multimatroids and moduli spaces of rational curves with
cyclic action. Multimatroids are generalizations of matroids and delta-matroids that naturally arise
in topological graph theory. The perspective of moduli of curves provides a tropical framework for
studying multimatroids, generalizing the previous connection between type-A permutohedral varieties
(Losev-Manin moduli spaces) and matroids, and the connection between type-B permutohedral vari-
eties and delta-matroids. Specifically, we equate a combinatorial nef cone of the moduli space with the
space of R-multimatroids, a generalization of multimatroids, and we introduce the independence poly-
topal complex of a multimatroid, whose volume is identified with an intersection number on the moduli
space. As an application, we give a combinatorial formula for a natural class of intersection numbers on
the moduli space by relating to the volumes of independence polytopal complexes of multimatroids.

1. INTRODUCTION

There have been rapid recent developments in the interplay amongst three objects: Coxeter
groups, matroids, and the Chow rings of certain moduli spaces of rational curves. In type A, the
key insight is that the base polytope of a matroid on a set with n elements is a type-A generalized
permutohedron [GGMS87], meaning that its normal fan coarsens the type-A permutohedral fan
Y4, _,. This allows one to associate to any matroid an element of the Chow ring of the toric variety
Xa
curves with weighted marked points. The connections between these perspectives have yielded
breakthroughs in both matroid theory and geometry [AHK18, BST, BEST23, DR22, EHL23, Ham17,
LdMRS20].

For type-B Coxeter groups, a similar unifying framework was developed in [EFLS22, ELS23],

which was realized by the work of Losev and Manin [LM00] as a moduli space of rational

n—17

establishing a connection between the algebraic geometry of the type-B permutohedral fan ¥ 5 and
the combinatorics of delta-matroids, an analogue of matroids first introduced by Bouchet [Bou87].
Batyrev and Blume showed that the toric variety Xp, also admits a modular interpretation as a
moduli space of rational curves equipped with an involution [BB11a, BB11b].

At present, it seems that this story does not extend to other Coxeter types. In particular, obstacles
were encountered while studying the tautological classes of other Coxeter matroids [EFLS22, Re-
mark 3.6] and in finding a modular interpretation for toric varieties corresponding to other Coxeter
types [BB11a].

On the other hand, there is another family of complex reflection groups that generalize type-A
and type-B Coxeter groups, called generalized symmetric groups S(r,n), which depend on param-
eters > 2 and n > 1. In our previous work [CDH'23, CDLR23], we constructed moduli spaces
of curves that correspond to these groups in a precise sense. The result is a smooth projective mod-

uli space L., parameterizing rational stable curves with an order-r automorphism and n orbits of
1
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weighted points, which coincides when r = 2 with Batyrev—-Blume’s space. A similar generaliza-
tion applies in matroid theory: delta-matroids are the » = 2 case of objects known as r-matroids,
which are a special case of multimatroids [Bou87]. The connection between the theory of r-matroids
and the geometry of £,, has not yet been studied, and developing this connection is our primary
motivation for the current work.

To describe the more general setting in which we work, fix a positive integer n, a finite set F, and
a surjection 7: E — [n], where [n] := {1,...,n}. The data of 7 is equivalent to a partition

E=FEU---UFE,

by setting F; := (i) for each i. A subset S C F is m-colored if it contains at most one element
of each E;. We denote by R, the poset of m-colored subsets of E, ordered by inclusion. Note that
the maximal elements of this poset are the size-n subsets of E consisting of precisely one element of
each F;.

In the same way that a matroid on ground set E can be defined via a rank function on subsets
of F, a multimatroid is a rank function rk : R, — N that satisfies analogous axioms specified in
Definition 4.2. A key feature of these axioms is that, for any maximal w-colored subset ' C E, the
restriction of rk to subsets of T' (all of which are automatically 7-colored) is a matroid in the usual
sense; in this way, a multimatroid can roughly be viewed as a way of patching together a collection
of matroids on equal-sized ground sets.

The role played by the permutohedral fan in the theory of matroids is played in the theory of
multimatroids by the m-colored fan X", which we introduce in Section 2.4; it is the n-dimensional
fan in the vector space

NF :=RF1/R1 x --- x RE» /R1
with a cone
o¢ = cone{€g,,...,€s, }

for each chain ¢ = (S1 ¢ --- ¢ Sk) of nonempty m-colored subsets of E, where €s denotes the

=

image in N7 of 3, qe; € R¥. For any maximal 7-colored subset ' C E, the intersection of X7
with the subspace R>q - {€; | i € T} C Ny is identical to a distinguished orthant (which we call
the affine permutohedral fan) of the stellahedral fan studied in [EHL23]. So, analogously to the
above perspective on multimatroids, the w-colored fan can roughly be viewed as a way of patching
together a collection of affine permutohedral fans; see Remarks 2.8 and 4.17.

Toric geometry allows one to give an explicit presentation of the Chow ring of the toric variety

Xsr as a quotient of

Z[:L' S ‘ S e R-ﬂ—]
with relations described explicitly in Proposition 2.10. In the special case where |E;| = r for each i
(in which case we refer to 7 as a uniform partition), the w-colored fan ¥™ coincides with the fan X,
studied in [CDLR23], and the results of that work show that
1) AY(L,) = A*(23).

The perspective on X7 as a union of affine permutohedral fans can be given a precise geometric
interpretation in this setting, as explained in Remark 6.2.
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One crucial property of 7™ is that it is a balanced tropical fan, and in particular, by [AHKIS,
Proposition 5.6], there exists a well-defined degree map
cAMET) =R
s
with the defining property that [, o = 1 for each maximal cone o. Our first main result is a
combinatorial formula for these degrees.

Such a formula can be stated in terms of the generators zg of A*(X7™), and in some sense, these
are the most geometrically natural generators: they correspond to the rays of £7 and, in the uniform
case, they are identified by the isomorphism (1) with the boundary divisors of Z,,. However, as was
already understood in the matroid setting by [BES23], the formula becomes much more combinato-
rially elegant when stated in terms of a different basis. Specifically, for each S € R, set

One way to understand the special role played by these alternative generators (analogously to
[DR22]) is that, in the uniform case, they can be viewed under the isomorphism (1) as pullbacks
of psi-classes under a family of forgetful morphisms from Z,, to a simpler moduli space, and the
combinatorially rich structure of psi-classes is well-understood; see Section 6.

To state the formula for the degree of a monomial in the above generators of A*(X7), we define,
for any collection Sy, . .., S, of m-colored subsets (possibly with repetitions), the set

7;(517 .. .,Sn) = {T c R:—Iax

there exists a bijection ¢ : [n] — T
with «(i) € S; for each i '

In other words, 7,(S1,...,S,) consists of the maximal elements of R, containing precisely one
element from each of the sets .S;. Then we have the following formula.

Theorem A. For any collection 51, ..., S, € R, (with repetitions allowed), we have
/ hs, -+ hs, = |T=(S1,...,5n)|

The analogue of this theorem in type A follows from [Pos09, Theorem 5.1] and [BES23], while the
type-B case is proved in [EFLS22, Theorem A(b)]. At the same time, given the perspective on hg
as a pullback of a psi-class in the uniform case, this theorem can be viewed as an analogue of the
computations of intersection numbers of psi-classes on M ,, in [BELL23, Wit91]. This suggests that
Theorem A may admit an algebro-geometric proof via the theory of psi-classes; we investigate this
direction in Section 6, but we do not currently know of a complete proof by these methods.

Instead, we prove Theorem A via the geometry and combinatorics of multimatroids. To do so,
we introduce the independence polytopal complex IPC(M) of a multimatroid in Definition 4.13,
generalizing the independence polytope IP(M) of a matroid M. We prove that the volume of this
independence polytopal complex, when suitably normalized (see Section 4.10), coincides with the
degree of the top power of a divisor on X" naturally associated to M. Specifically, for any multima-
troid M, let

Dy = Z rk(S)rg € AY(X™).
SERL
Then we have the following theorem.
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Theorem B. (see Theorem 5.1) For any multimatroid M on (E, ),
(B) / (Dnm)" = Vol(IPC(M)).

Remark 1.1. Matroids are a special case of multimatroids, and the analogue of Theorem B in this
setting is the equality, for any matroid M, of the degree of the divisor Dj; on the stellahedral fan
and the volume of the independence polytope of M. In this setting, the theorem can be deduced
from a standard result in toric geometry: the volume of the polytope corresponding to a nef divisor
D on a rational, complete fan ¥ is equal to [, D" (see, for example [Ful93, page 111]). The divisor
Dy is known to be nef, and its corresponding polytope is precisely the independence polytope. The
multimatroid case, on the other hand, is considerably more subtle.

Theorem B implies Theorem A via the results of [EL23], as we show in Section 5. In order to
prove Theorem B, the main idea is to use the work of Nathanson—Ross [NR23], which relates the
degrees of top powers of divisors on tropical fans to the volumes of associated polytopal complexes
known as normal complexes. However, their results generally apply only to divisors satisfying a
cubical condition, which Dy does not necessarily satisfy. We resolve this obstruction by extending
the statement as an equality of functions on the space of multimatroids on (E, 7).

The key idea is to consider a slight generalization of the notion of multimatroid that we refer to as
an R-multimatroid, which consists of a rank function rk: R, — R satisfying the properties listed in
Definition 4.3. The notions of Dys and IPC(M) extend to this setting, so the statement of Theorem B
makes sense when M is an R-multimatroid, and it is in this setting that we prove the theorem. The
advantage of this extension is two-fold:

(1) The space .# of R-multimatroids on (E, 7) is a connected subspace of R, while the space
of all multimatroids on (E, 7) is discrete (see Definition 4.7).

(2) For a given (E,7), one can always find an R-multimatroid M for which Dy is cubical
(Lemma 4.23); this is not true if we only consider multimatroids.

Given this extension, we prove Theorem 5.1 (and hence Theorem B) by showing that both sides of
(B) are polynomial functions on ./ that agree—via the work of [NR23]—on the subset consisting of
R-multimatroids M for which Dy is cubical. Since this locus is non-empty and open (Lemma 4.23),
this implies that the two polynomial functions agree on all of .#, showing that the theorem holds
for every R-multimatroid.

1.2. Future directions. One of the reasons for our interest in Theorem A is that it provides evidence
for the existence of an exceptional isomorphsim from the Chow ring A(L,,) to the Grothendieck
K-ring of vector bundles K (Z,,) similar to isomorphisms appearing in the study of matroids and
delta-matroids [BEST23, EFLS22, EHL.23, LLPP22]. In future work, we plan to study the conjectural
existence of such an isomorphism, which we hope will yield a Hirzebruch-Riemann—-Roch-type
formula for computing Euler characteristics of vector bundles on Z,,. In the case of matroids and
delta-matroids, this isomorphism also relates to an isomorphism with the polytope algebra of gen-
eralized (type-A or type-B) permutohedra, so we hope along the way to relate the K-ring of Z,,
to a polytopal complex algebra. Such a connection would also yield a relationship between Euler
characteristics of vector bundles on Z,, and lattice point counts of certain polytopal complexes of
multimatroids, analogous to the case of matroids [CF22] and toric varieties [Ful93, Section 5.3]. As
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applications of this circle of ideas, we hope to apply the present framework to the study of certain
polynomials of multimatroids, embedded graphs, and knots [EMM13].

1.3. Outline of the paper. Section 2 introduces the fan ¥™ and the relevant generators of its Chow
ring. In Section 3, we first review from [NR23] the definition of the normal complex Cf, .(D) of a fan
¥ equipped with a divisor D € A!(X)g, as well as the relation between the volume of the normal
complex and [, D" under the condition that D is cubical. We then specialize this framework to the
case of X7, in which case we can make both the notion of volume and the cubical condition concrete.
We turn in Section 4 to the definition of multimatroids and R-multimatroids, and we explain how to
associate to any R-multimatroid M both a divisor Dy € A'(X™)g and an independence polytopal
complex IPC(M). The key result of this section is that there is a nonempty open subset in the
space of R-multimatroids on which the divisor Dy is cubical, and the first result of Section 5 is that
IPC(M) is equal to the normal complex Cs= ,(Dwm) (with equivalent notions of volume) in this case.
Combining these results with [NR23] proves Theorem B, and the remainder of Section 5 is devoted
to unpacking Theorem B from the perspective of the generators hg in order to deduce Theorem A.
Lastly, in Section 6, we specialize to the case in which = is uniform with |E;| = r for each ¢, and
we use the isomorphism A*(X7) = A*(L)) to reprove some cases of Theorem A from a geometric
perspective.

Acknowledgments. We are grateful to Federico Ardila, Renzo Cavalieri, Matt Larson, Rohini Ra-
madas, and Dusty Ross for helpful discussions. We thank the anonymous referee for their insights,
which in particular led to the proof of Lemma 5.4. EC is supported by NSF CAREER Grant 2137060.
CE is supported by NSF Grant DMS-2246518. DH is supported by NSF Grant DMS-2202900. SL is
supported by NSF Grant DMS-1926686 and partially supported by a Coline M. Makepeace Fellow-
ship from Brown University Graduate School.

2. THE m-COLORED FAN
Throughout what follows, we fix a nonempty finite set E' with a partition
E=EU---UE,,
or equivalently, a surjective map 7: E — [n] where 771 (i) = E,. We refer to the partition as uniform

if |E;| = |Ej| for all 4, j € [n].

2.1. Colored sets. Viewing [n] as the set of possible colors, and 7 as a way to assign a unique color
to every element of F/, we are particularly interested in subsets of E that contain at most one element
of each color. More precisely, we have the following definition.

Definition 2.2. A subset S C E is w-colored (or just colored, if 7 is clear from context) if
SN E;| <1

for each i € [n]. We denote by R the poset of colored subsets of E, ordered by inclusion. Maximal
elements of R, are those that contain exactly one element of each E;, and we denote the set of these
by RX#*. We often wish to exclude the possibility that S = &, so we denote R} = R, \ {2}.
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Remark 2.3. One can generalize the notion of colored sets by requiring that the set S N E; has at
most a specified number of elements ¢;, which might depend on ¢ € [n]. Though we do not take up
this generalization in this work, it would be interesting to investigate the extent to which the results
of this paper generalize to that setting.

2.4. The m-colored fan. To define a fan associated to the data of (F, w), we consider the real vector
space R¥ with standard basis {e; | i € E}. For each X C E, denote
ex = Z e;.
ieX
Set
RE REn

2 Ng = e
( ) R ReEl X X ReEn,

and denote the image of e; or ex in Nf by €, or €x, respectively. Similarly, for every X C E, denote
by RY the image of RX C R¥ in NE.

Definition 2.5. The 7-colored fan X7 is the fan in /Vf consisting of cones
o = cone{€g,,...,€s,}

for each chain ¢’ = (51 C --- C S) of elements S; € RX.

In the special case where (E, ) is uniform with |E;| = r > 2 for each i, the fan ™ coincides
with the r-permutohedral fan 3}, studied in [CDLR23]. If, furthermore, r = 2, then it is the type-B
permutohedral fan ¥ 5 ;. We begin by illustrating what 3™ looks like in this particularly simple case.

Example 2.6. Let £ = {1,1} U {2,2} with £y = {1,1} and E> = {2,2}. Then

-~ Rei®Re; Rey@Res
Ng = X .
R(e; +e7) R(ez+e3)

Choosing the basis {€;,@:} for NZ gives an isomorphism NZ = R? in which

€] — (170)7 e] — (71,O)> € — (0,1)7 €3 — (0771)

The fan ¥™ = X, is depicted under this isomorphism in Figure 1.

©{1,2} oy €(1,2}
er < > €1

— hd —

€12} &5 €12}

FIGURE 1. The fan X p,, with the cone corresponding to ¢ = ({2} C {1,2}) shaded.

On the other hand, the following example illustrates a non-uniform case.
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Example 2.7. Let E = {a,b,c} U{1,2} with Ey = {a,b, c} and E; = {1,2}. Then Figure 2 depicts the
associated fan ¥7, under the isomorphism N = R? given by the basis {€,, &, € }.

€14,2}

FIGURE 2. The fan X7 for (E, ) as in Example 2.7, with the cone corresponding to
¢ = ({a} € {a,2}) shaded.

Remark 2.8. For any T € R™*, the restriction of X" to the subset R = RZ is a fan X1 that can
be identified with the fan in RZ consisting of a cone for each chain of subsets of [n]. This fan in
RZ,, which we call the affine p;.rmutohedral fan, is a distinguished portion (the negative orthant)
of the stellahedral fan defined in [BHM*22]. Thus, £™ can be viewed as a union of copies of the
n-dimensional affine permutohedral fan, one for each T' € R}**. Given the connection between
stellahedral fans and matroids studied in [EHL23], this observation can be seen as the fan-theoretic
analogue of the perspective mentioned in the introduction that a multimatroid is a way of patching
together a collection of matroids.

2.9. The Chow ring of the m-colored fan. Standard results in toric geometry calculate the Chow
ring of ¥™ (or, equivalently, of the associated toric variety).

Proposition 2.10. The Chow ring of ¥™ is

Z[aﬁg | S e RX]
AE) = ——— =
(5 = 2L =K,
where 7 is the ideal of quadratic relations
(3) T = (zszg | S and S’ incomparable)

(in which “incomparable” means that neither S C $' nor S’ C S) and J is the ideal of linear relations

4 J::<sz—2xs

S3e Soe’

distinct e, ¢’ € E; for some z> .

In fact, although the divisors xg for S € R are manifestly generators of the Chow ring A*(X7),
another generating set has more elegant intersection-theoretic properties (and has a natural geomet-
ric interpretation explained in Section 6). Namely, for each S € R, we define
(5) h S = Z xTrgr.

S'NS#e

These indeed generate A*(X7), as a result of the following lemma.



8 E. CLADER, C. DAMIOLINI, C. EUR, D. HUANG, AND S. LI

Lemma 2.11. For any S € R, one has

Tg = Z (=1)\TIHISIHU+ 1,

UTERX
UCTDS

Proof. It is helpful to first express hg in terms of yet another generating set fs, defined by

(6) fT = Z Tz

Z2T

foreachT' € R. Then

(7) hs =Y (=D)ITH fp,

TCS

as one sees from the following standard inclusion-exclusion argument. The right-hand side can be
expanded as

®) Dofi= D fut Do fur— (DI,

i€s i,jeSs i,j,k€S

The first term of these sums is equal to

E xT,

€S
T34

and while each of these z7’s appears in the definition of hg, those for which T contains two distinct
elements of S are double-counted. The second summand of (8) subtracts these, but this double-
counts those zt for which T contains three distinct elements of .S, and so on.

Since any interval in the poset R} is isomorphic to an interval in the Boolean lattice, the Mtbius
function of this poset is (7, S) = (—1)/71*15! for any S C T. Thus, the relation (7) can be inverted
via Mobius inversion (which is effectively inclusion-exclusion again) to yield

) fo =Y (=) hy,

TCS

and by the same token, the relation (6) can be inverted to yield

(10) Tg = Z(_l)\THIS\fT_

TDS

Combining these two equations gives

g = Z(,l)\T\HS\ Z (71)|U\+1hU

DS UCT

which is precisely the statement of the lemma. O

Remark 2.12. It is occasionally convenient to allow that S = @, in which case we set 25 = hg = 0.
However, we caution the reader that Lemma 2.11 does not hold for S = @.
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3. NORMAL COMPLEXES

Recall that Theorem B is a statement about the degree of the top power of a particular divisor on
7. Such degrees have been related to the volumes of normal complexes introduced by Nathanson-
Ross [NR23]. In this section, we review the relevant background—in a slightly less general setting
than the framework of [NR23]—and study its application to the 7-colored fan.

3.1. Background on normal complexes. Let IV be a lattice and let ¥ be a fan in the vector space
Ngr .= N ® R. Assume that X is

e unimodular, meaning that every cone has generators that can be extended to a basis of NV;

e pure of dimension n, meaning that all maximal cones are n-dimensional;

e tropical and balanced,' meaning that there exists a linear degree map Js: A"(2) = Rsuch
that |. s X = 1 for each maximal cone o of ¥, where X, is the product of the generators of
A*(X) associated to the rays of .

Given such a fan, associated to any choice of inner product x on Ng and any divisor D € A!(X)g,
one can define a normal complex by truncating each cone of 3 by affine hyperplanes normal to the
rays; here, the notion of normal is determined by * and the distance of the hyperplanes from the
origin is determined by D. More precisely, the definition is as follows.

For each ray p of ¥, denote by u, € Ng the primitive integral generator (i.e., the first nonzero
element of N that lies on p), which exists because ¥ is unimodular. Denoting by {z, | p € (1)}
the generators of A*(X) associated to the rays of X, any divisor D € AL(X)g can be expressed, not

D= Z a,T,

peX(1)

necessarily uniquely, as

for some a, € R. From here, associated to each cone ¢ € ¥, one defines a polytope
(11) P,.(D)={meo|mx*u, <a, forallp e o(l)} C Ng,

where (1) denotes the set of rays of o.

The normal complex of ¥ associated to = and D is the union of these polytopes as ¢ ranges over all
maximal cones. However, in order to ensure that these polytopes meet along faces—and therefore
their union forms a polytopal complex—one must impose the following compatibility condition on
xand D.

Definition 3.2. A divisor D on X is called pseudo-cubical with respect to the inner product = if
the bounding hyperplanes of P, .(D) meet within o for all cones o; that is, for each ¢ € X (not

The definition of tropical fan is generally stated in terms of the existence of a weight function on the maximal cones of
Y under which a weighted balancing condition is satisfied; see, for instance, [NR23, Section 2.7]. The requirement that
is balanced in our case means that the weight function is identically 1, and it is a result of [AHK18, Proposition 5.6] that
this is equivalent to the existence of a degree map as stated. It is worth noting that the definition of the balancing condition
in [AHKI18] and [NR23] is subtlely different from the condition used in some other sources such as [FS97, equation (3)]:
the former is stated in terms of primitive integral generators u,\ , of rays o \ 7, where o is a maximal coneand 7 C o a
codimension-one face, whereas the latter replaces Ug\ 7 with a lattice point ny, - whose image generates the quotient N, /N.
The two definitions coincide when ¥ is unimodular, which is sufficient for our purposes; avoiding this subtlety is the reason

we assume Y is unimodular in this subsection.



10 E. CLADER, C. DAMIOLINI, C. EUR, D. HUANG, AND S. LI

necessarily maximal), we have

on{me Nr|mx*u,=ua,forallpeo(l)} #a.
The divisor D is cubical with respect to x if

c°N{m & Nr | m=u, =a,forallpeo(l)} #o
for all o € ¥, where o° denotes the interior of o.

From here, one can define the normal complex precisely as follows.

Definition 3.3. The normal complex Cy. . (D) of ¥ with respect to * and D is the union
(12) Cen(D):= |J Pru(D).
oceX(n)

It has the structure of a polytopal complex when D is pseudo-cubical.

We refer the reader to Section 3.5 for several examples of normal complexes in the specific context
relevant to the current work.

In the case where X is complete, the normal complex Cyx, (D) is the classical normal polytope as-
sociated to D. Moreover, a fundamental result of toric geometry (see, for example, [Ful93, Corollary,
page 111]) states that, when D is nef, the volume of its normal polytope is equal to the degree [, D".
The main theorem of [NR23] asserts that the analogous result is true when ¥ is not necessarily com-
plete, with the normal complex now playing the role of the normal polytope.

To state the result precisely, care must be taken in how the volume is defined. Specifically, for
each o € X(n), let

N, := N Nspang(o),
and let
M, = N, = Homz(N,,Z).
These are lattices in different vector spaces, but the inner product * allows one to view them both
as lattices in the same space spang(c). In this way, one can define the volume of any polytope in
spang (o) by declaring

Vol, . (any n-simplex unimodular with respect to M, ) = 1,

where unimodular means that the simplex is lattice-equivalent to the n-simplex with vertices at
0 and the standard basis vectors. This definition of volume, in particular, allows us to define the
volume of the polytope P, .(D) C spang(c), and adding these over each maximal cone defines the
volume of the normal complex:
(13) Vols. (Cu (D)) = Y Voo (Py (D).

c€X(n)

The main theorem of [NR23], in the generality we will need, is the following.

Theorem 3.4. [NR23, Theorem 6.3] Let ¥ be a unimodular, pure n-dimensional, balanced tropical
fan in Ng, let x be an inner product on Ng, and let D € A'(X)g be a divisor that is pseudo-cubical
with respect to x. Then

/ D" = V0127* (Cg,*(D)) .
P
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3.5. Application to the 7-colored fan. We now specialize the previous subsection to the case in
which ¥ is the m-colored fan X7. In this case, the lattice N is
7.1 7En

NT™ = X - X ,
ZeE1 ZeEn

so that Nf is as in (2). It is straightforward to see that ¥™ is indeed unimodular and pure n-
dimensional. To see that it is a balanced tropical fan, one must verify the condition of [NR23, equa-
tion (2.16)] with w(o) = 1: namely, for each chain % of lengthn — 1,

(14) Z €4\« € spang (o),

€’ €MaxChain(R )
o Coer

where MaxChain(R,) denotes the set of maximal chains and %’ \ € is the unique colored set in
the chain ¢’ that is not in the chain . If the maximal element of ¥ has size n, then we can write
€ =(5C--C8C---C8,) forsomei € [n], with |S;| = jforall j € [n]\ {¢}. In this case, one
sees that the sum in (14) equals

Z €s;_,U{z} = €s; 1 T €51,
z€Si+1\Si—1
which indeed lies in spang (o). If the maximal element of 4" does not have size n, then the sum (14)
is > ¢, € for some i € [n], which equals zero and therefore also lies in spang (o).

To apply the machinery of [NR23], we must now choose an inner product on Nj. To define the
inner product, recall that R™* denotes the image of R¥' in Nf. Choose an inner product *; on each
R™ with

éj *; éj = 1,

forall j € F;, and set * := %1 X « -+ X .

Remark 3.6. There is a non-canonical isomorphism R” = RIE:I-1 given by choosing a € E; and
sending {€; | j # a} to the standard basis vectors, while sending €, to the vector (—1,—1,...,—1).
We note that #; is not the standard inner product on RI#:/=! under this isomorphism unless |E;| = 2.
For example, if E; = {1,2,3} and we choose the isomorphism R” = R? given by

e — (_17_1)a €y > (170)7 €3 — (071)7

then x; is not the standard inner product on R? but can instead be taken to be

1
(1,91) *i (v2,Y2) = X172 + Y1Y2 — §($1y2 + 22y1).

This example can be generalized to all dimensions to give an explicit formula for ;.

Under this choice of inner product, we can describe the normal complex Cy~ (D) explicitly as
follows. First, note that by Definition 2.5, the maximal cones of ¥™ are of the form o« in which ¢ is
a maximal chain in R, so we can rewrite (12) as

Csr (D) = U P, .(D).
€ €MaxChain(R )
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Grouping these chains according to their maximal element, which is necessarily an element of R7*¥,
we have
(15) CsrW(D) = | U P..D),
TERR** ¢ €MaxChain(T)

where MaxChain(T') is the subset of MaxChain(R ) consisting of maximal chains with T as their
maximal element. Note, in this grouping, that all of polytopes P, (D) lie in the same subspace
R C Nf. Moreover, the volume functions Vol,., . for any ¥ € MaxChain(T) are all restrictions of
the same volume function on @T, which we now describe.

To do so, note that for any 7' € R***, the fact that T is colored implies that KT =~ R7, and the fact
that it is maximal further implies that R’ is isomorphic to R" via a basis of the form

(16) {€;|ieT}.
Now, let Volr be the volume function on R" =2 RT with
(17) Volr(standard n-simplex) = 1,

where the standard n-simplex refers to the convex hull of 0 and the standard basis vectors in R".
Then we have the following lemma.

Lemma 3.7. For any maximal cone oy of ¥™ associated to a chain ¥ € MaxChain(T'), the volume

. =T . o -
function Vol,., , on spang (o) C R™ is the restriction of Volr.

Proof. Fix a maximal cone oy as in the statement of the lemma. Then the set (16) is both an orthonor-
mal basis of R’ and a Z-basis of N™ N R . It follows that the isomorphism NZ = (NZ)" given by
* identifies the lattice N7 _ with the lattice M _. Thus, under the isomorphism R =Re provided
by this basis, the standard n-simplex is unimodular with respect to M7 _ = N _, and the lemma
follows. O

Combining Lemma 3.7 with the definition of volume in (13), one sees that for any divisor D on
Y7, the volume of the normal complex Cs~ (D) is given by

(18) Vol (Cro(D)) = > Voly U P, .(D)
TeRmax € €MaxChain(T")
Let us illustrate this normal complex and its volume in some examples. We specifically consider
cases where the divisor D is  Jg. hs, as this will play a key role in the proof of Theorem A below.

Example 3.8. As in Example 2.6, let E = {1,1} LI {2,2} and consider the divisor D =} ¢ hs. A
straightforward computation from the definition (5) of hg shows that D can be expanded as

(19) D=3(eqy+om o tom) +5 (eps Hoan Yran tray).

The normal complex Cy~ (D) is depicted in the leftmost part of Figure 3. Note that it is bounded by
hyperplanes normal to the eight rays, and that the normal hyperplanes to the rays of any maximal
cone o meet in the interior of 0. This shows that D is cubical, and it illustrates the reason for the
terminology: the cubical condition ensures that P,., .(D) is combinatorially a cube.

There are four choices of T' € RX** in this example, and the corresponding subspaces R’ C N
are the four quadrants in Figure 3. Each quadrant contains two polytopes P,., .(D), corresponding
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to the two choices of ¥ € MaxChain(T). The decomposition (18) then says that Vol (Cg~ (D))
is computed by assigning volume 1 to the standard n-simplex within each quadrant. From the
rightmost part of Figure 3 we deduce that the volume of Cx~ (D) is 68.

FIGURE 3. On the left, the normal complex Cs;~ (D) from Example 3.8. In the mid-
dle, the polytope P, .(D) and its bounding hyperplanes, where o« is the maximal
cone associated with the chain ¢ = ({1} C {1,2}). On the right, Cy~ (D) is subdi-
vided into simplices, each of volume 1.

Example 3.9. By contrast to the previous example, the divisor D = ¢ hs is not necessarily
cubical if the partition is not uniform. For instance, as in Example 2.7, let £ and its partition 7 be
defined by E' = {a, b, c} U {1,2}. Then the divisor D = } 5. hs can be expanded as

3@ (o) + 2oy + Tpey) HA@py + 1) 6T T F T T T2a) T TR0+ T20).

This divisor is pseudo-cubical but not cubical: the normal hyperplanes to the rays of the cone o on
the right-hand part of Figure 4 meet on the boundary of 0.

FIGURE 4. On the left, the normal complex Cy~ (D) from Example 3.9. On the
right, the polytope P, .(D) and its bounding hyperplanes, where o is the maxi-
mal cone associated with the chain 4 = ({a} C {1, a}). Note that the intersection of
the bounding hyperplanes lies on the boundary of o«.

For later reference, we describe the pseudo-cubical condition for the m-colored fan explicitly. To
do so, we express a divisor D € A!(X™)g as a linear combination of the generators zs for S € R,
in which case we have the following lemma.
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Lemma 3.10. Let
D= Z c(S)zs € ALY )r
SER
be such that ¢(S) > 0 for all S. Then D is pseudo-cubical if and only if, for any maximal chain
% = (S1 € -+ C Sn) of nonempty colored sets and for every i € [n — 1] and j € [n], the following
conditions hold:

(20) 20(51) > C(Si_l) + C(S1’+1) and C(Sj) > C(Sj_l),
where ¢(Sy) = 0. Furthermore, D is cubical if and only if the inequalities are all strict.

Proof. We first show that, for the m-colored fan, it suffices to check the cubicality condition of Defi-
nition 3.2 on maximal cones. This follows from the observation that, for any maximal cone o of X7
and any face 7 C o, the orthogonal projection of spang (o) onto spang(7) takes o to 7 and o° to 7°.
This is tedious but straightforward to check: first, by relabelling elements of £, we can assume that
o is the cone associated with the maximal chain ¢ = ({1} € {1,2} C --- C [n]) and that 7 is the cone
associated to a chain (S C - -+ C Si) which is refined by %. For every i € [k], weset T; .= S; \ Si_1,
which necessarily consists of consecutive integers. Then, since {€r,,...€r, } is an orthogonal basis
of spany (7), the orthogonal projection of spang (o) onto spang(7) sends

Tr=cie + Co€f10) + -t cn€p €0

to

> i+ +en) | &,

koL k
T *ep _ 1 1
1eTi: (C‘+C'+1+"'+Cn)—
; |T] ; | T3] J; T Tinl
i i41
Writing T, = {{+ 1,4+ 2,... ., +a}and T;41 = {j+ 1,7+ 2,...,5 + b} for £ + a < j, the coefficient
of €g, in the above summation is

. j b .
mzﬂ Ec€+z + y:HZ(Hl cy + ; (1 - 5) Cjtz
This is manifestly non-negative whenever ¢; > 0 for all j and positive whenever ¢; > 0 for all j.
Therefore, the orthogonal projection indeed sends ¢ to 7 and ¢° to 7°.

Thus, to check that D is (pseudo-)cubical, one must only check the condition of Definition 3.2 on
each maximal cone of 7. These are of the form o4 for a maximal chain € = (S; € --- € S,), and
the pseudo-cubical condition is that

(21) U%ﬂ{f:ineieRS" Zxeg = c(9) forallSe%};éQ,
i€S,

while the cubical condition is that these intersections all lie within ¢¢,. Since the chain % is maximal,

for every i # j € S,, we have €; x€; = §;;. Thus, the n conditions Z x €5 = ¢(5) for S € € yield the

equations

Z x; = c(Sk) for all k € [n]

1€Sk
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on the coordinates of Z. These equations determine #, meaning that (21) consists of a single point.
Namely, if we order the elements of S,, = {j1,. .., jn} by the condition that j; € T; for each i, then
we have

T= Z (c(Si) = c(Si-1)) &,

i=1

This & belongs to
0w = cone (€;,, €, +€),, €, +€j, +&,..., €, + - +€j,)

ifand only if z;,,, < x;, foreveryi € [n— 1] and z; > 0 for every j € [n], and it belongs to ¢%, if and

only if these inequalities are all strict. This completes the proof. O

Example 3.11. One can use Lemma 3.10 to verify that the divisor D from Example 3.8 is cubical. For
instance, for the chain ¢ = ({1} C {1, 2}), the relevant coefficients of D satisfy

2.¢({1)=2-3>0+5=c(@)+c({1,2}) and c({1,2})=5>3=c({1}).

On the other hand, one can also use Lemma 3.10 to verify that the divisor D from Example 3.9
is pseudo-cubical but not cubical. For instance, the chain ¥ = ({a} C {1,a}) gives the equality
2-3=0+6.

Equipped with the explicit descriptions of the pseudo-cubical condition and the volume function
furnished by the previous two lemmas, we can restate the results of [NR23] for the 7-colored fan as
follows.

Corollary 3.12. Let D = > g px c(S)rs € Al (X7™)g be such that ¢(S) > 0 for all S. Assume that D
is pseudo-cubical with respect to *, or equivalently, that the coefficients ¢(.S) satisfy the inequalities
(20) for all maximal chains ¥ of colored sets. Then

D" = Vol (Csr (D))
271’

in which Vol is defined by (18).

In order to use Corollary 3.12 to prove Theorem 5.1, we must now specialize to the case D = Dy
for a multimatroid M. For this, we turn in the next section to giving the requisite preliminary
definitions on multimatroids.

4. MULTIMATROIDS

We begin this section by introducing the concept of an R-multimatroid, which can be seen as a
generalization of the multimatroids introduced in [Bou97, Section 3]. As explained in the introduc-
tion, the motivation for this extension is that it allows us to extend the equality of Corollary 3.12 to
settings where the divisor D = Dy is not necessarily cubical. Throughout, we assume that the data
of (E, ) is fixed.
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4.1. Definition of R-multimatroids. First, we recall the definition of multimatroid from [Bou97].

Definition 4.2. A multimatroid M on (E, 7) is a rank function rk: R, — N satisfying the following
conditions:

(BR1) rk(2) =0;

(BR2) (monotonicity and boundedness) for any S € R, and any « € E; suchthat £, NS = &,

rk(S) <rk(SU{z}) <rk(S)+1
(BR3) (submodularity) for any S,T € R, with SUT € R,
rk(SUT) +rk(SNT) <rk(S)+rk(T);

(BR4) forany S € R, and any pair {z,y} C E; such that E;NS = &, either rk(SU{z}) —rk(S) =
orrk(SU{y}) —rk(S) =

If (E, 7) is uniform with |E;| = r for each i, then M is referred to as an r-matroid.

One can always define a multimatroid on (E, ) by setting rk(S) = |S| for all S € R,; this
is referred to as the Boolean multimatroid. For a somewhat more motivated class of examples—
which, in fact, was one of the original reasons for the definition of multimatroids—one can consider
the collection of vertex splitters of the medial graph of an embedded (or, more generally, 4-regular)
graph; this is the main subject of [EMM13].

The generalization of the concept of multimatroid that we require allows the rank function to
be R-valued and removes the boundedness condition from (BR2) for the two reasons stated at the
end of the introduction, so our notion might be called a weak R-multimatroid in the language of
[BB19]. We also remove condition (BR4), since that condition is not needed for any of our results,?
so our notion might be called a weak poly-R-multimatroid in the language of [Edm03]. To avoid
this proliferation of qualifiers, we simply refer to our concept as an R-multimatroid, and we define
it precisely as follows.

Definition 4.3. An R-multimatroid M on (E, ) is a rank function rk: R, — R satisfying
(R1) rk(@) =0;
(R2) (monotonicity) for any S,T € R, with S C T, one has rk(S) < rk(T);
(R3) (submodularity) for any S,T € R with SUT € R,

rk(SUT) +rk(SNT) < rk(S) + rk(T).

Example 4.4. Let £ = {1,1} LU {2,2}. Then one can define an R-multimatroid on E by

rk(2) = 0;
rk({1}) = rk({1}) = ({2}) =rk({2}) = rk({1,2}) = rk({1,2}) = 1;
rk({1,2}) = rk({I,2}) =

In fact, this example is a multimatroid, as one can check from Definition 4.2.

2We refer to [Bou97, Remark, page 633] for a comment about (BR4). It is worth noting that, although Bouchet originally
viewed the structure defined by (BR1)-(BR3) as “too weak to be interesting,” our results show that one can indeed prove

interesting results without imposing condition (BR4).
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Example 4.5. Let F = {1,1} U {2, 2}. Then one can define an R-multimatroid on F by

rk(@) =0;

rk(1) = rk(1) = 5;

rk(2) = rk(2) = 4;

rk({1,2}) = rk({1,2}) = rk({1,2}) = rk({1,2}) = 6.

This is not a multimatroid because it does not satisfy the boundedness condition in (BR2).

Remark 4.6. One advantage of the additional constraints in Definition 4.2 is that they allow one
to alternatively describe multimatroids via their associated collection of independent sets, bases,
or circuits, in the same way that matroids are often described. It would be interesting to determine
whether R-multimatroids can analogously be described via their independent sets, bases, or circuits,
but we currently do not know of such a description.

By identifying each R-multimatroid with its rank function, one can define a topological space of
R-multimatroids as follows.

Definition 4.7. The space of R-multimatroids on (£, ), denoted .# = .#, E,m), 18 the subset of the
set of functions R, — R satisfying the conditions of Definition 4.3. Identifying the function space
with R®= and giving it the usual Euclidean topology, we have an embedding

M CRR=

in which .# is a closed, full-dimensional, connected subspace. To see this, note that axiom (R1)
of Definition 4.3 ensures that .# C R7~. Inequalities (R2) and (R3) describe .# as an intersection
of closed half-spaces, so . is closed and convex (in particular, connected). The fact that it is full-
dimensional follows from Lemma 4.23.

As mentioned in the introduction, a key feature of multimatroids is that their restriction to any
colored set yields a matroid, so a multimatroid can in some sense be viewed as a way of patching
together a collection of ordinary matroids. More precisely, if rk defines a multimatroid and S € R,
then every subset of S is also an element of R, so one can define a rank function on the power set
P(S) by the restriction of rk, and it is straightforward to verify from conditions (BR1) — (BR3) that
rk|p(g) defines a matroid on the ground set S (the axiom (BR4) is irrelevant for this purpose).

A similar story holds for R-multimatroids, but the restrictions are the following weakening of
matroids; these are essentially the same as polymatroids [EdmO03], but with real-valued rather than
integer-valued rank function.

Definition 4.8. An R-matroid is a function rk: P(S) — R on the power set P(S) satisfying
M1) rk(2) =0;
(M2) rk(X) <rk(Y) whenever X CY;
(M3) forevery X,Y € P(S), rk(X UY) +1k(X NY) <rk(X) + rk(Y).
Comparing the conditions (R1), (R2) and (R3) of Definition 4.3 with (M1), (M2) and (M3) above,
one sees that the following definition indeed yields an R-matroid.

Definition 4.9. For an R-multimatroid M and S € R, the restriction of M to S is the R-matroid
M(S) given by restricting the rank function of M to subsets of S.
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4.10. Independence polytopal complexes. We now introduce the analogue for multimatroids and
R-multimatroids of the independence polytope of a matroid. Carrying forth the philosophy that a
multimatroid M is a way of patching together a collection of matroids M(.S), we form the indepen-
dence polytopal complex of M by patching together the independence polytopes of the matroids
M(S). This same idea holds for R-multimatroids, but in this case the components M(S) are only
R-matroids, so care must be taken in how their independence polytopes are defined.

Definition 4.11. The independence polytope of an R-matroid M(S) is the polytope

(22) IP(M(S)) == {Z 28 € Ray

icS

3 i < rk(X) forall X C S} CRY, C NE.
ieX

Remark 4.12. If M(S) is an honest matroid and not merely an R-matroid, then one defines the
independent sets of M(S) as those subsets I C S such that rk(I) = |I|. In this situation, [ABD10,
equation (4)] show that the independence polytope of M(S) is given by

IP(M(S)) = conv{e; | I C S an independent set},

which explains its name. However, when M(S) is R-valued, there is not, to our knowledge, a
good notion of independent sets (as discussed in Remark 4.6), so we do not know of a convenient
description of IP(M(S)) as a convex hull.

Gluing the polytopes M(S) across all colored subsets S € R, one obtains the following.

Definition 4.13. The independence polytopal complex of an R-multimatroid M is the union
IPC(M) := [ ] TP(M(S)).
SER~
Remark 4.14. The fact that IPC(M) forms a polytopal complex follows from the observation that,
for any S1, 52 € R, with §1 NSy # &, one has

IP(M(S1)) NIP(M(S2)) = IP(M(S1 N S2))
by axiom (R2), and therefore this intersection is a face of each of the two independence polytopes on
the left-hand side. This furthermore shows that
(23) PCM) = | IPM(T))

TeRmax

since for every S C T we have IP(M(S)) C IP(M(T)).

Example 4.15. For the multimatroid M as in Example 4.4, IPC(M) can be realized as the polytopal
complex in R? depicted in Figure 5.

Example 4.16. For the R-multimatroid M as in Example 4.5, the complex IPC(M) is depicted in
Figure 6.

Remark 4.17. Analogously to the observation in Remark 2.8 that ¥™ can be viewed as a union of
copies of the n-dimensional affine permutohedral fan, with one copy associated to each T' € R,
equation (23) shows that IPC(M) can be viewed as a union of independence polytopes of matroids
on size-n ground sets, with one matroid associated to each T' € R};'**. This parallelism is no accident:
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IP(M({2}))

IP(M({}2})) IP(M({1,2}))

IP(M({1})) . IP(M({1}))

IP(M({1,2})) IP(M({1,2}))

IP(M({2}))

FIGURE 5. The independence polytopal complex of the multimatroid M of Example 4.4

IP(M({2}))

IP(M({1,2})) IP(M({1,2}))

IP(M({1})) . IP(M({1}))

IP(M({1,2})) | IP(M({1,2}))

IP(M({2}))

FIGURE 6. The independence polytopal complex of the multimatroid M of Example 4.5

we will see in Lemma 5.3 that, under a certain condition on M, the polytopal complex IPC(M) is a
normal complex of 7.

In the same way that the volume of a normal complex Cy~ (D) was given in (18) as the sum over
volumes of its components in each RT, we define the volume of IPC(M) as the sum

(24) VolIPC(M)) :== Y Volg(IP(M(T))),
TEeRmax

where the volume Vol on R is defined by (17). One key property of this volume function that will
play a crucial role below is the following.

Lemma 4.18. The volume function
Vol: # — R
Vol(M) = Vol(IPC(M))

is a polynomial function on .# C R®~.
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Proof. It is enough to show that, for every 7' € RX*, the expression Vol (IP(M(T))) is a polyno-
mial in {rk(S)}zxscr. This follows by applying [CLS11, Theorem 13.4.4] to the stellahedral fan, for
which the nef divisors correspond to the monotone submodular rank functions by [EHL23, Propo-
sition 3.13]. O

4.19. Divisor associated to a multimatroid. Having fully defined the objects appearing on the
right-hand side of Theorem B, we now turn to the left-hand side, describing how an R-multimatroid
M defines a divisor Dy on X7. In particular, using the notation of Section 2.4, we set

(25) Dyo= Y rk(S)zs.

SER~

We say that an R-multimatroid is pseudo-cubical if Dy is a pseudo-cubical divisor on ¥™ under the
inner product described in Section 3.5. By Lemma 3.10, this is equivalent to the condition that, for
every maximal chain ¢ = (S; € --- C S,,) of nonempty colored sets, we have

= =

(26) ZI‘k(SZ) > I‘k(Si_l) + I‘k(SH_l) and I‘k(S]) > I‘k(Sj_l)

for each i € [n — 1] and j € [n], where rk(Sy) = 0. Similarly, an R-multimatroid M is cubical if Dyg
is a cubical divisor, which is equivalent to the condition that the inequalities (26) are all strict.

It is straightforward to check from the conditions (26) that the Boolean multimatroid is pseudo-
cubical for any (£, 7). The following examples illustrate the behavior of Dy in some somewhat
more interesting cases.

Example 4.20. For M as in Example 4.4, we have
Dy =2 (w2 + o) + 1 (v + 2y + oy + o) + 20y + 23) -
This is a pseudo-cubical but not cubical multimatroid, since, for instance, the chain
¢ = ({1} c{1,2})
yields the equality 2- 1 =0 + 2.
Example 4.21. For M as in Example 4.5, we have
Dy =4 (21 +2q1y) +5 (22 +2021) + 6 (212) + 212y + 202y +212}) -
This is a cubical R-multimatroid; for instance, the chain
¢ = ({1} € {1,2})
yields the inequality 2 - 4 > 0 4 6, and the chain
¢ = ({2} € {1,2})
yields the inequality 2 - 5 > 0 + 6.

Interestingly, the pseudo-cubical condition on Dy in fact implies the R-multimatroid axioms.
This observation is useful in what follows, so we prove it in the following lemma.

Lemma 4.22. For any function rk: R, — R such that rk(@) = 0, if the divisor } g r rk(5)zs is
pseudo-cubical, then rk defines an R-multimatroid.
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Proof. The second inequality of (26) clearly implies the monotonicity axiom (R2). We now show that
the submodularity axiom (R3) is implied by the first inequality of (26).
For every I € R, and for every x,y € E'\ I such that I U {z,y} € R, applying (26) gives

2rk(I U {z}) > rk(I) + rk(I U {z,y}) and 2rk(I U {y}) > rk(I) + rk(I U {z,y}),
so we obtain
(27) rk(ITU{z}) +rk(I U {y}) > rk(I) + rk(I U {z,y}).

This shows that axiom (R3) holds when |[SUT| = |S|+1 = |T| + 1, by setting I = SNT. It is known
that the validity of (R3) in such cases implies its validity in full generality [Sch03, Theorem 44.1]. For
the sake of self-containment, we include a proof below.

Again setting I = SN T, denote S = I U {s1,...,sgtand T = I U {t1,...,t;}. Then, for every
0<a<kandO0 < b </, define the set

Xop =TU{s1,...,8ast1,---,ts} € R,
where X, o =5, Xo¢ =T, and X0 = I. Then (27) yields
rk(Xop—1) +rk(Xo—1p) > rk(Xo—1,p-1) + rk(Xap)
for all a € [k] and b € [{]. Taking the sum over all such a and b, we obtain the inequality
rk(S) + rk(T) = rk(Xy,0) + rk(Xo) > rk(Xo0) + rk(X ) =rk(SNT) +rk(SUT),

which shows that (R3) holds and thus concludes the proof. O

Now, in the topological space .# of R-multimatroids defined in Definition 4.7, define the subset

MP = {M € .4 | M is cubical} .

Then we have the following key properties.

Lemma 4.23. The space .#® is a nonempty, open subset of R?=. In particular, .# has nonempty
interior and is therefore a full-dimensional subset of R%~ .

Proof. The conditions (26) with strict inequalities manifestly define .#® as an open subset of R%x .
We are left to show that .Z is nonempty. To do so, we define a specific cubical R-multimatroid M

by setting
(28) rk(S) = <n—|—1> B (n+1—S|>
2 2
foreach S € R ;. Itis straightforward to see that the inequalities (26) hold and therefore M is cubical.
By Lemma 4.22, it follows that M is an R-multimatroid, so M € .# @, O

Remark 4.24. The fact that (28) defines an R-multimatroid and not an ordinary multimatroid is one
of the key reasons why we require the generalization from multimatroids to R-multimatroids in this
work. In fact, if n > 3, then no (E,7) can admit a cubical multimatroid. To see this, let M be a
multimatroid on (E, 7) with n > 3, so that, for every maximal chain ¥ = (S C --- € S,) in R,
one has rk(S;) € Nand rk(S;) < rk(S;+1) < rk(S;) + 1 for every i € [n — 1]. The inequalities (26)
show that M can only be cubical if

(i) 2rk(Sy) > rk(Ss) and (i) 2rk(S2) > rk(S1) + rk(Ss).
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Condition (i) implies that rk(S;) # 0 and so necessarily rk(S;) = 1. This implies that rk(S2) = 1
and so rk(Ss) € {1,2}. None of these options is compatible with condition (ii), and so M cannot be
cubical.

At this point, we have all the ingredients necessary to prove Theorem B, so we turn in the next
section to its proof and then, in turn, to the deduction of Theorem A.
5. PROOFS OF MAIN THEOREMS

While Theorem B was stated in the introduction as a statement about multimatroids, we in fact
prove it for all R-multimatroids. The statement is as follows.

Theorem 5.1. For any R-multimatroid M on (E, ),
(29) / (Dnm)"™ = Vol(IPC(M)).

5.2. Proof of Theorem 5.1. When M is pseudo-cubical, Theorem 5.1 can be deduced from what we
have already done, so we begin with this case.

Lemma 5.3. Let M be a pseudo-cubical R-multimatroid. Then

(30) Csr «(Dm) = IPC(M),

and furthermore, their volumes agree in the sense that

(31) Vol (Cs= «(Dm)) = Vol(IPC(M)),

where the left-hand side is defined by (18) and the right-hand side by (24). In particular, combining
(31) with Corollary 3.12, it follows that Theorem 5.1 holds when M is pseudo-cubical.

Proof. As noted in (15), we have

Csnu(Dm) = | U Pee.(Dw),

TeRRPa> € ecMaxChain(T)

where MaxChain(T') again denotes the set of maximal chains ¢ = (S; € --- C S,,) of colored sets

=

with S,, = T'. Expanding the definition of P, , (Dw) as in (11) we obtain
P, .(Dm)={Z €o¢|Txes <rk(S) forall S € ¢}.

We claim, in fact, that
P, (Dm) ={ZF €0y | Txeg <rk(S) forall S C T}.

Because the proof of this claim is somewhat cumbersome, we relegate it to Lemma 5.4 below. As-
o e o . - =T .
suming it, and writing & € o« in terms of the orthonormal basis {€;};cr for R", we find

(32) U Pren(Dm) = {Zziei e Reg

€ €MaxChain(T) €T

in <rk(S) forall S C T} .
i€s

In view of (22), we conclude that (32) coincides with IP(IM(T')), so taking the union over T' € R»**
we see that the equality (30) holds. The fact that the notions of volume agree is the content of
equations (18) and (24), so (31) holds, as well. O
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Lemma 5.4. Let M be a pseudo-cubical R-multimatroid. Then
P, (Dm)={Z €0y | Txeg <rk(S) forall S C T}
for any T' € R>** and any ¢ € MaxChain(T').

Proof. Fix T € RF** and ¥ € MaxChain(T). Up to relabeling, we can write T’ = [n] and
¢ =(SpRlc ).
Now, let & € P,., «(Dwm). By definition, this means that & € o4 = cone(€[;}, €[y . . ., €[,), SO
T=a18n)+ -+ an€p = (a1 + - +an)€ + (a2 + - +a,)8 + - + a,8,

for some a1, ...,a, > 0. Equivalently, ¥ = cij€; + --- + ¢, €, for some ¢; > ¢c3 > -+ > ¢, > 0. The
defining inequalities of P, .(Dw1) then imply that

(33) S e < rk(S)

i€s
whenever S = [j] for some j € [n], and what we must prove is that the same is true for all S C [n].
To prove this, we define a pair of functions

fP(n]) = P([n]) and g:P([n]) = P([n])
on the power set P([n]) by setting f([j]) = g([j]) = [j] for each j € [n], and setting
f(8)=5U{as} and g(5) =S5\ {bs}
for any S that is not of this form, where as and bgs are defined by
ag :=min{i € [n] |i ¢ S}, bs :==min{i € S|i> as}.

We first claim that, if (33) holds for f(S) and ¢(S), then it also holds for S. This is trivially true
when S = [j] for some j, so we prove it in the case where S is not of this form. The assumption that
(33) holds for f(S) means that c,s + .. g < rk(f(S)). Since as < bs and therefore c,; > ¢y, it
follows that

(34) Cos + Y ¢ <TK(f(9)).

i€S
On the other hand, the assumption that (33) holds for g(.S) means that
(35) e+ e < k(g(S)).

i€s

Adding (34) and (35) yields
23 e <TK(f(9)) + rk(g(9)) < 2rk(S),

ies
where the second inequality follows by applying the pseudo-cubicality condition (26) to any maxi-
mal chain containing ¢(S) C S C f(S). This shows that (33) holds for S, as claimed.

From here, we prove that (33) holds for all S C [n] by descending induction, first on ag and
then on bg. Note that it suffices to prove the claim when S is not of the form [j] for any j € [n],
since it holds by assumption when S is of this form. The base case of the first induction is the case
as = n — 1. Then f(S) = [n] and g(S) = [n — 2], so (33) holds for both of these and therefore holds
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for S. Suppose, then, that (33) holds for all S” C [n] with ag: > k, and let S be such that ag = k. We
now introduce the second induction, a descending induction on bg.

The base case is bs = n. In this case, f(S) has a5y > k, so (33) holds for f(S) by the first
inductive hypothesis, whereas g(S) = [k — 1], so (33) holds for ¢(S) by assumption. Therefore, (33)
holds for S, completing the base case. Finally, suppose that (33) holds for all S” C [n] with bg > ¢,
and let S be such that bs = £. Then f(S) has ajs) > k and g(S) has bys) > ¢, so (33) holds for
both of these by the two inductive hypotheses. This implies that (33) holds for S, completing the
proof. O

Remark 5.5. Lemma 5.4 shows that the fan X" satisfies the global condition of [NR23, equation
(2.9)].

Remark 5.6. We note that the pseudo-cubical condition is critical in order for Lemmas 5.3 and 5.4

to hold. One indication of this, as pointed out in Remark 4.14, is that IPC(M) is always a polytopal

complex, whereas Cx~ . (Dn) is not necessarily a polytopal complex unless M is pseudo-cubical.
For a specific example, consider the R-multimatroid M on E = {1} U {2} defined by

k(1) =2, rk({2) =1,  rk({1,2})=3.

The figure below illustrates C's;~ . (Dw) on the left and IPC(M) on the right.

e €r1,2} €] €{1,2}

P”‘ﬁy*(DM)
e; €1

Csr «(Dm) IPC(M)

Note that in the cone o4 corresponding to ¥ = ({1} C {1,2}), the purple shaded polytope
P,.. .(Dm) on the left is bounded only by the two hyperplanes normal to the two incident rays. On
the other hand, IPC(M) is bounded by all three hyperplanes normal to the rays in @;0. Thus, we
see that Cy~ (Dm) # IPC(M) in this example, and moreover, that Lemma 5.4 fails: imposing the
defining equalities +€g < rk(S) on each maximal cone separately (which defines Cx~ . (Dwm)) does
not coincide with imposing them simultaneously on all of RZ, (which defnes IPC(M)).

To illustrate Lemma 5.3 in the pseudo-cubical case, it is illuminating to look back at Examples 4.15
and 4.16. In particular, one can see visually that the independence polytopal complexes in both of
these examples are normal complexes of the fan X7 illustrated in Figure 1, and that Example 4.16
is cubical while Example 4.15 is not; this is consistent with the computations of Examples 4.20 and
4.21. To see the same phenomenon in higher dimension, we turn to the following example.

Example 5.7. Suppose that n = 3, and let M be the cubical R-matroid defined by (28). Then, for any
T € R»**, the independence polytope IP(IM(T)) is the polytope illustrated in Figure 7. In particular,
note that each maximal cone of ™ contains exactly one vertex of the complex, which is consistent
with the claim that IPC(M) is a normal complex of X7 associated to a cubical divisor.
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FIGURE 7. The polytope IP(M(T')) for M as in (28) and any T' € R¥**, with one of
the maximal cones of ¥7 shaded.

Having proven Theorem 5.1 in the pseudo-cubical case, the general case follows almost immedi-
ately by polynomiality considerations.

Proof of Theorem 5.1. Letting M vary in .#, both sides of the theorem can be viewed as functions on
~—that is, functions on the parameters (rk(S))gcrx - The left-hand side is manifestly polynomial
in these parameters, and the right-hand side is polynomial as well by Lemma 4.18. Lemma 5.3
shows that the theorem holds when M is pseudo-cubical, so it in particular holds when M is cubical.
Therefore, the two sides of Theorem 5.1 agree on the subset .#% C .#, which is nonempty and open
by Lemma 4.23. Polynomiality then implies that they agree on all of .#, proving the result. O

The proof of Theorem 5.1 shows that it can actually be seen as an identity between polynomials

X
functions in the parameters (rk(S5))gcrx on the space Rgg . For values of these parameters that do

S

not necessarily define an ]R-multimateroid, the left-hand side of the theorem manifestly still makes
sense; as for the right-hand side, note that (23) can be taken as the definition of IPC(M), and while
it may not be a polytopal complex for values of (rk(S))g.rx that do not satisfy the R-multimatroid
axiomes, it is nevertheless a union of polytopes with finite volume. In the following subsection, we
rephrase this equality of polynomials in a different basis for R®+, which is what will ultimately

allow us to deduce Theorem A.

5.8. An alternative formulation. Recall from (5) that there is an alternative set of generators hg for
A*(X7™), and the divisors g can be expressed in terms of the divisors hg via Lemma 2.11. Thus, we
can rewrite

(36) DM = Z aShS
SeR%

for coefficients @ = (as)gcrx- In particular, the left-hand side of Theorem 5.1 is equal to the value
at this particular choice of @ of the polynomial

1(@) = / > ashs
" \serx
The right-hand side of Theorem 5.1 can also be expressed as a value of a polynomial in @, and this
polynomial turns out to have a very nice description. To state this description, for any T' € R2**
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and any S C T, define the simplex
T — | =T
Ag:=conv ({0}U{e;|je S} CR .

Then the intersection of IPC(M) with R’ canbe expressed as a Minkowski sum of these simplices,
as the following proposition verifies.

Proposition 5.9. Let M be an R-multimatroid. Then

VolIPC(M)) = > Volp | > asAfy |,
TeRpax SERY

where the sum denotes the Minkowski sum of polytopes and the coefficients @ = (as)gcrx are
defined by (36).

Before proving the proposition, we illustrate it in some examples.

Example 5.10. Consider the R-multimatroid in Example 4.5, whose independence polytopal com-
plex is illustrated in Example 4.15. Via the change of coordinates from {zg} to {hs} in Lemma 2.11,
we obtain
Dn = haz + Do,

S0 a3 = ajy = 1 and ag = 0 for all other S € RX. Thus, taking T' = {1, 2} on the right-hand side of
Proposition 5.9, one obtains the following Minkowski sum of polytopes:

AT zna2y T 182002y = 18T +140.
The contribution to the proposition from this 7" then follows from the equality

IPC(M({1,2})) = 1A]}, + 1AT,,

which can be seen from Example 4.15 because IPC(M({1, 2})) is a square with vertices at 0, €;, €5,
and €; +€,. On the other hand, a similar computation shows that the contribution to the proposition
from T = {1,2} is

IPC(M({1,2})) = 147, ,,
which can again be seen from Example 4.15 because IPC(M({1, 2})) is the standard simplex in its
quadrant.

Example 5.11. Now consider the R-multimatroid in Example 4.5, whose independence polytopal
complex is illustrated in Example 4.16. Again applying Lemma 2.11, we find

Dyv = -1 (h1 + hi) -2 (hz + hg) +3 (h{LQ} + h{LQ} + h{l_g} + h{iyg}) .
Hence, the Minkowski sum of polytopes on the right-hand sum of Proposition 5.9 for T = {1, 2} is
~1A7 A2y — 28000y T 38T 5002y 38 2pn 12y T 3012y
_ T T T T T
_ AT T T
=2A0y + 1A% +3A¢ o).
Thus, the statement of the proposition for T = {1, 2} is that
IP(M({1,2})) = 247, + 1A% +3A7, 5,
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N

L

which one indeed sees is the case from the figure below.

A similar decomposition applies in this example for all other T' € R,

Equipped with the intuition of these examples, we are prepared to prove the proposition in gen-
eral.

Proof of Proposition 5.9. By the definition of Vol(IPC(M)) in (24), it suffices to prove that, for any
T € R}**, one has
(37) IP(M(T)) = ) asAfnr.

SERX
This follows from the computation of the independence polytope of a matroid as a Minkowski sum
of simplices given in [ABD10]. Before stating their result, we require some notation. Note, either us-
ing Lemma 2.11 or through [ABD10], that the free module Z[{zs}scr] is isomorphic to Z[{hL}scr],
where

Thus, one can write

SCT SCT

for uniquely defined ol € Z. In fact, [ABD10, Proposition 4.3] shows that

(38) IP(M(T)) = ) a§A¥,
SCT

so the content of the proof of (37) is relating the coefficients a; to the coefficients as. We can unpack
this relationship using the commutative diagram

Zl{hs} gepx] ———— Zl{h§}scr]

J: J:

Z{zs}gepx] ——— Z[{zs}tscrl,
where the upper horizontal arrow is hg — hl ;. and the lower horizontal arrow is

zg fSCT
rs —
0  otherwise.

In particular, applying the commutativity of this diagram to > g, x ashs shows that

> rk(S)zs = Y ashlar.

SCcT SeR%
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Re-writing the right-hand side slightly gives

Z rk(S)zs = Z Z as hg’

SCT SCT \ s'erX
S'NT=8
from which we deduce
S'eR)
S'NT=S
Combining this with (38) shows (37) and thus completes the proof. ]

In light of Proposition 5.9, we define the polynomial

V(a) = Z Volrp Z asAr
TeRmax SERX
in the parameters @. The equality of Theorem 5.1, when translated into these parameters, now
becomes the following.

Theorem 5.12. Theorem 5.1 is equivalent to the equality of polynomials (@) = V().

Proof. As above, fix an R-multimatroid M and write Dy = > serx ashs. Then the left-hand side of
(29) is equal to I(d@) by definition, and Proposition 5.9 shows that the right-hand side of (29) is equal
to V(@). In particular, Theorem 5.1 is equivalent to the statement that I(d) = V(&) on .#, the subset
of RR= consisting of values of the parameters @ that define an R-multimatroid. Since both sides are
polynomial and .# contains an open subset of R+, this is equivalent to the corresponding equality
on the entirety of RR~ . O

5.13. Proof of Theorem A. Having re-expressed Theorem 5.1 as an equality of polynomials in this
way, it follows that the coefficient of any monomial in I(&) agrees with the corresponding coefficient
in V(&@). The coefficient of a monomial in I(&) is, by definition, an integral of a monomial in the hg’s.
On the other hand, the coefficient of the corresponding monomial in V(&) is the mixed volume of
certain simplices, for which a previously-known formula is recorded as the following lemma.

Lemma 5.14. For a subset S C [n], define Ag C R" as the convex hull of {0} U {e; | i € S}. Then,
for subsets St, . .., S, of [n] (with repetitions allowed), the mixed volume MV of the corresponding
simplices is given by

1 there exists a bijection ¢ : [n] — [n] such that «(z) € S; for each ¢
MV(Ag,,...,Ag,) =

! 0 otherwise.
Proof. Standard results in toric geometry translate mixed volumes to intersection numbers of nef
divisors [Ful93, Chapter 5.4]. Applying this to polystellahedral fans, as done in [EL23, Section 2.2],
one finds that the lemma is a restatement of [EL23, Theorem 1.3 and Lemma 5.2]. One can also
deduce the lemma from [Pos09, Theorem 5.1] or from [EFLS22, Theorem A(b)]. a

We are now ready to prove Theorem A, whose statement we recall for convenience.
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Theorem A. For any collection Sy, ..., S, € R, (with repetitions allowed), we have
(A) / hs, -+ hs, = |T=(S1,...,5)|,
where

Tr(S1,---,80) = TER;rnaX . . .
(51 ) { with «(7) € S; for each i

there exists a bijection ¢ : [n] = T }

Proof. The left-hand side of (A) is the coefficient of the monomial ag, - - - ag, in the polynomial I(&).
The coefficient of the same monomial in V(@) is, by definition, the sum of mixed volumes
> MV (AL ars AL Ar) -
TeRmax

For each T' € R?**, Lemma 5.14 states that

1 lfTEIEr(Sl,,Sn)

MV (AL . ... AT =
(Asier sunit) 0 otherwise,

so the coefficient of ag, - - -ag, in V(@) is precisely the right-hand side of (A). Thus, the two sides
agree by Theorem 5.1 and Theorem 5.12. O

6. INTERSECTION NUMBERS OF PSI-CLASSES

One way in which to understand the special role played by the generators hg in the Chow ring of
Y7 is to look more closely at the uniform case, in which case X7 is the fan ¥], studied in [CDLR23].
In this section, we prove that the generators h g in the uniform case are pullbacks of psi-classes under
certain forgetful morphisms, analogously to the results of [DR22] for the case of Losev—Manin space.
This allows us to reprove some cases of Theorem A from a more geometric perspective, assuming
some familiarity with the tools and language of moduli of curves. Throughout what follows, we
assume that 7 is uniform with | E;| = r for each i, so we can write

(39) E={°%1" 102t 2 e u{nfnt, o e
and we assume that r» > 2.

6.1. Background on the moduli space. The papers [CDH 23, CDLR23] study the moduli space Z,,
parameterizing the following data:

e an r-pinwheel curve C, which is a rational curve consisting of a central projective line from
which r chains of projective lines (called spokes) emanate;

e an order-r automorphism o of C;

e a pair of distinct fixed points 2% € C of o;

e n labeled r-tuples (z7) iezns- -5 (2)) ez, of points 27 € C (called light points) satisfying

O'(Z,f) _ Zg-‘,—l mod r

for each i, j, which are allowed to coincide with one another and with z%;
e an additional labeled r-tuple (y)scz, satisfying

O’(yé) _ y€+1 mod r
for each ¢, whose elements are distinct from one another as well as from z* and 27.

%
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These marked points are subject to a stability condition, the details of which can be found in [CDH 23,
Section 2.1]; see Figure 8 for an example element. Note that via the expression (39) we can view the
light points as indexed by elements of E, and the light points on any given spoke form a colored set.

y'
y2

—=3 . T

FIGURE 8. A sample element of £, where each circle represents a projective line
and o is the rotational automorphism. Not pictured are the marked points " and
x~, which are the two fixed points of o and must both lie on the central component.

When r = 2, the moduli space Z,, is the toric moduli space constructed by Batyrev—-Blume [BB11a,
BB11b], which is the toric variety Xp, associated to the type-B permutohedral fan ¥2. When r >
2, on the other hand, the moduli space is no longer toric, so in particular it no longer coincides
with Xy.. Nevertheless, the main result of [CDLR23] is that Z:L can be viewed as a wonderful
compactification (the closure of a very affine variety) inside Xy, and that the inclusion induces an
isomorphism

AY(5) = AY(L,).

Furthermore, for any chain ¢ of colored subsets of F, the class of the torus-invariant stratum in Xs-
corresponding to the cone o« restricts to a boundary stratum S C Z,TL. Roughly, if ¢ is a chain of
length k, then S is the closure of the locally closed subvariety S¢ consisting of curves in which each
spoke has length & and the distribution of marked points is specified by ¢; see [CDH " 23, Section 4]
for the precise definition.

In particular, the generator x5 € A*(37) restricts to the boundary divisor [Xg] € A*(Z,,), which
is the class of the closure of the locus X5 of curves in which each spoke has length one and the light
marked points on the y°-spoke are precisely those indexed by S. The generators hg, on the other
hand, restrict to pullbacks of certain psi-classes. To explain this, we introduce the moduli space Mls,

which parameterizes the following data:

a curve C that consists of a chain of projective lines;
a pair of distinct points 2% € C;

a tuple (z;);es of points z; € C (again called light points), which are allowed to coincide
with one another and with z=;

an additional marked point y € C, which is not allowed to coincide with any other marked
point.
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These marked points, again, are subject to a stability condition made precise in [CDH 23, Section
. . e | -— . .
3.1]; to state it succinctly, one can view Mg as a Hassett space M , with weight vector

1 1
w=|-4€=-4¢€¢...,¢1
2 2 N——

| S| copies
for 0 < e < 1/(|S| + 2). This, in particular, forces that 2% lie together on one end-component of the
chain C' and y lies on the opposite end-component.

Remark 6.2. We briefly digress to notice that, for any 7" € RX**, the toric variety X5, associated
to the affine permutohedral fan(defined in Remark 2.8) can be identified with an open subvariety
Ur C ﬂlT When one observes that MlT can be identified with the toric variety of the stellahedral
fan, this open inclusion is the inclusion of toric varieties corresponding to the inclusion of the affine
permutohedral fan, in the stellahedral fan. To provide a modular description, for any element of
ﬂlT, let Cp C C be the component containing z*, and choose coordinates Cy in which z+ = 1,
2~ = —1, and the unique node of Cj (or the point y, if there is no node) is equal to 0. Define Ur
to consist of those curves for which, in these coordinates, one has z; # oo for each i. Via these
coordinates, Ur can be viewed as an iterated blow-up of A" along the loci where k coordinates are
equal to zero, in decreasing order from k = n to k = 2, and this gives an identification Ur = Xx,..
In light of this observation, the inclusion of fans ¥1 < ¥}, induces an inclusion

UT (—>XE;'L7

and the intersection of Ur with Z,, < X s is the union of the locally closed boundary strata S¢ for
% a chain of subsets of T. As T varies, these intersections Ur N L, cover L,,, so this observation
can be viewed as the moduli-theoretic analogue of the covering of £7 by the fans ¥ described in
Remark 2.8 and the covering of IPC(M) by the polytopes IP(M(T')) described in Remark 4.17.

Returning to the definition of hg via psi-classes, recall that one can define psi-classes on any
Hassett space as the first Chern classes of the cotangent line bundles at the marked points. In the
case of M;, this in particular yields a class

by = er(Ly) € A' (M),

where L, roughly speaking, is the line bundle on ﬂ}g whose fiber at a marked curve C is the

. . . —1 . .
cotangent line to C' at the point y. More precisely, L, = 05w, AL where C{ — My is the universal
: © S S

-1 . . . .
curve and o, : Mg — C} is the section corresponding to the marked point y.

Now, any S € R} induces a morphism
Fs: Z:z — m;«
that forgets all of the marked points in C except for 2%, 4°, and the light marked points 2/ indexed

by i/ € S. Equipped with the morphism Fg, we claim that the generators hg can be described as
follows.

Lemma 6.3. Under the isomorphism A*(X7) 2 A*(L,) given by g + [Xs], one has

hs = F5(¢y)-
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Proof. Similarly to the boundary divisors on Z,,, there are boundary divisors D). € A (ﬂls) for
each nonempty subset T' C S. Namely, D1 is the class of closure of the locus of curves consisting of
two components, one containing the marked points y and z; with ¢ € T, and the other containing
the remaining marked points.

We claim, first, that
(40) by= Y Dip.

D#TCS

The proof is by induction on |S|. When |S| = 0, the moduli space ﬂ}s‘ =~ My is a single point,
so both sides of (40) are zero for dimension reasons. Suppose, now, that (40) holds on ﬂg, with
|S’| = |S| — 1. To prove that it holds on Mg, consider the forgetful map

—-—1 —-—1
f: MS — MS\{*}

given by forgetting one of the light points z, and stabilizing. A standard comparison argument (see
e.g., [Koc, Lemma 1.3.1]) shows that the following equation holds in A* (ﬂg)

(41) f*¢y = d’y - D%*}a

in which the 9, on the left-hand side lies on M}g\ () and the 9, on the right-hand side lies on ﬂ;
(The idea of the proof of (41) is that the line bundles L, and f*L, agree away from the locus of
curves that are stabilized under f, which is precisely the subvariety whose class is D%*}.) On the
other hand, the boundary divisors are related under f by

(42) f*Dy = Di+ Dryy

for any nonempty subset ' C S\ {x}. Pulling back both sides of the equation (40) on ﬂ}g\ () under
f and applying equations (41) and (42), one obtains

Yy —Diy= Y. D+ Dy
GATCH\ [+}

Rearranging this equation yields the equation (40) on M}g
Having proven (40), we deduce the lemma by pulling back both sides under Fs: L, — ﬂ};
Namely, it is straightforward from the definitions of the boundary divisors to see that

F3(Dr)= Y [Xzl,

RAS=T
so (40) yields
Fi(by) = > > [Xgl= > [X&l
@#TCS RNS=T RNS#o
which is precisely hs under the identification of [X ] € A'(Z,,) with zz € AY(X0). O

Remark 6.4. One might wonder why we do not also consider classes F§(,+) or F§(v.,), which
can also be defined for any S. But in fact, one can show that

F§(Yp+) =0 and F§(¢.,) = —hy; foranyi e S,
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s0 no new divisors on L, are obtained in this way. The key point in the proof of these observations
is that the analogues for 1+ and 1., of equation (41) are

f*ql)mi = g+ and f*'(/}zl = wzm

since the marked points % and z; never lie on a component contracted by f. Iterating this observa-
tion and using that ¢,+ = 0 on ﬂ}g for dimension reasons shows that ¢,+ = 0 on every ﬂé On
the other hand, one can check (for example, using [Shal9, Lemma 2.7]) that ¢,, = —, on ﬂ?l},
from which the equation F§(v.,) = —h;; follows.

6.5. Geometric perspective on Theorem A. Given the perspectives on xg via boundary divisors
on L, and hg via psi-classes, one can prove at least some cases of Theorem A using geometric
techniques from the study of moduli of curves. Although we were not able to prove Theorem A in
full generality using these techniques, we believe that it is an illuminating perspective that deserves
further exploration, so we illustrate the ideas in this last subsection. Throughout what follows,
we identify x5 and hg with their images under the isomorphism A*(X%) = A*(L,), so that zg
is the boundary divisor associated to S and hg is defined via these boundary divisors by (5), or
equivalently (via Lemma 6.3) it is given by hg = F§,,.

We begin with a lemma that follows directly from the relations in A*(X]) = A*(L.). Here, for
every S € R, we denote by S the image of S in [n]—in other words, the set obtained from S by
forgetting the superscripts.

Lemma 6.6. Let k € [n], and let S € R, be such that k € S. Then
h{kj} crg = 0
forall j € Z,.

Proof. By assumption we have k € S for some i € Z,, and without loss of generality, we can assume
i # j, since the linear relation (4) in A*(Z:L) implies Ay = h (W'} Thus, we have k7 ¢ S, so the
quadratic relations (3) for A*(Z,,) imply that zs/z5 = 0 for all S" € R, containing k. Since

higiy = Z Tgr,

kies’

it follows that iy 25 = 0, as claimed. O

This lemma already allows us to give a geometric proof of Theorem A in the case where the sets
S1,...,59, € R, define a maximal chain.

Proposition 6.7. Let (S1 € S2 € --- € S,) € MaxChain(R,). Then

/ﬂ hs hs, - hs, =1,
L’Il

so in particular, Theorem A holds in this case.

Proof. The proof is by induction on n. As a base case, suppose that n = 1. Then the integral in

/ hS y
Ly

question is
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in which S is a singleton. But hg = g when n = 1, so we have

/7hs:/7 zs,
Ly Ly

which equals 1 because £, = P! and the boundary divisor s is the class of a single point.
Now, suppose that the lemma holds on Z,,_,. The hypothesis that the chain is maximal implies
that S; = {k7} for some k/ € E, and we claim that, if S} := S, \ {k’} for each i € [n], then

(43) /7‘h51-~-h3":/7 hsé---hs;.
L s

n n—1

If we can prove this, then the proposition will follow by the induction hypothesis.
To prove (43), we first note that, whenever S € R is such that k € S, Lemma 6.6 implies

hslxs = h{kj} g = 0.

It follows that, in the product hg, hg, - - - hg,, one can replace hg, foreachi € {2,...,n} by

Z rs =¢" (hsr),

SNS;, #2
%44

where ¢: L, — L.,_, is the forgetful map forgetting the light orbit indexed by k. That s,

h51h52 "'h’Sn = h’S1¢*(hSé hS;L)

It therefore follows from the projection formula that

/ﬂ hg, - hg, = L ¢u(hs, sy - hs;

L

n n—1

so to prove (43), it suffices to prove that ¢.(hs,) = 1. To see this, express

h51 =xg, + E xg.
$25,
[S|>2

Then
¢*(hs1) = ((lesl)* (1Xsl) + Z (¢|Xs)* (1XT)7

528,

|S]=2
where we recall that X5 C L, is the subvariety such that [Xg] = z5 € A'(L,,). Geometrically,
one sees that ¢|x, : X5, — L, _; is an isomorphism, so (¢|x, )« (Lxs,) = 1 (see, for example,
[CDH 23, Proposition 5.5]). On the other hand, for each S appearing in the summation above,
d|xs: Xg — L, reduces the dimension, so (7| x. )« (1x<) = 0. Thus, we indeed have ¢, (hg,) =1,
so the proposition is proved. O

Remark 6.8. In fact, the proof of Proposition 6.7 holds as long as the underlying sets are strictly
nested (thatis, §; C --- € 5,,), without necessarily assuming the stronger condition that .S; C --- C
Shp.
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Remark 6.9. The equation (43) can also be used to prove that Theorem A holds in the case where
Si,...,S, are pairwise disjoint. The main idea of the argument is to use the relations in A*(Z,,) to

/,, hs, ---hs, . hs, = Z /7 hs, - hs, hia)
4 L,

L a€Sy

by applying the pairwise disjoint hypothesis, and then to apply (43) to rewrite this as

> /, hsi\{a} =~ Ps,\{a}-
L

a€S, n—1

argue that

This sets up an induction on n from which Theorem A immediately follows.

Building off of Proposition 6.7, one can prove Theorem A for collections Sy, ..., S, € R, that are
nested but not strictly nested. The key ingredient in the proof of this generalization is the following

geometric lemma.
Lemma 6.10. Let .S € R, and choose any element x € S. Then

hshs\{*} if ‘S| > 1,

hs)? = :
"s=1, i 1S = 1

Proof. When |S| = 1, the result follows from Lemma 6.6. Now, suppose that |S| > 1. Choose any
element x € S, and set
S =S\ {x}.
By Lemma 6.3, we have hg = Fi(1h,) and hg: = F%, (1h,). Furthermore, if f : Mg — M, is the map
forgetting the light marked point z,, we have Fg = f o Fg. Applying (41) then shows
hshs: = Fg(by)Fs(f*(¥y))

= F5(y)F5(vy — Dy,y)

= F5(ty)* = F5(ty - Dpy)

= (hs)® = F§(1y - Diy)-
However, we have 1, - D%*} = 0, because in the divisor D%*}, the marked point y lies on a genus-

zero component with only three special points, so its cotangent line bundle is trivial. Therefore,
hshs = (hs)?, as claimed. O

Proposition 6.11. Let S1,...,S, € RX besuch that S; C Sy C--- CS,. Then

1 if|S;| >iforalli € [n],
/7,h51h82"'h5n: .
Yol 0 otherwise.

n

In particular, Theorem A holds in this case.

Proof. First, we prove that the integral equals zero whenever |S;| < ¢ for some i € [n]; the proof is
by induction on the smallest i for which this occurs. Since each S; has size at least 1, the base case is
i = 2: that is, we suppose that |S2| < 2. This means that S; = S = {x} for some x € E, but then

h51 h52 = h{*}h{*} =0
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by Lemma 6.10.
Now, fix i > 1, and suppose that the integral equals zero for all chains

¢ =(51C8C---CS,)
of colored sets such that |S;_,| < i — 1. Fix a chain

¢ =(51C8C--CSh)
with |S;—1]| =i — 1 but |S;| < 4. This forces that S;_; = S;, and so there exists some k < i with

Sk-1 C Sk =Skp1=---=8_-1=25;.
Now, choose any x € Si_1 \ Sk, and for each j € {k,...,i — 1}, set S} := S; \ {x}. Then
hs;hs, = hg:hs,
by Lemma 6.10. It follows that we can replace the chain ¢ with the chain
¢ =(51C--CS-1C5C---CS_C85C---CSy)

without affecting the integral in question, but the integral for the chain ¢” equals zero by the induc-
tion hypothesis.

We have therefore proven that the integral equals zero unless |S;| > i for all 4, and what remains
to be shown is that it equals 1 when this condition is satisfied. This proof is again by induction, this
time on the number

T(Cg) = |{i€{1,...,n—1} | szSH-lH

of repetitions in ¢

If 7(¢) = 0, then ¥ is strictly nested and the statement follows from Proposition 6.7. Suppose,
then, that € = (51 C --- C ;) is a chain with at least one repetition and that the proposition holds
for all chains ¢’ with r(%") < r(%).

Let i be the minimum index such that S; = S;;1. It follows that S;_; C S;, so there exists
x e S;\Si—1. Let

T, = 5\ {x},

which is nonempty by the condition |S;+1| > i +1 > 2. Then

hs,hs,,, = hr,hs

i+1 i+1°

by Lemma 6.10, so we can replace the chain ¥ by the chain
¢ =(5C--C8 1 CTiCSip1 C---C8Sy)

without affecting the integral in question. Aslongas S;_; C Tj, we have r(¢”) < (%) and therefore
the integral equals 1 by the induction hypothesis. If S;_; = T;, then we we repeat the argument,
replacing S;_1 by T;_1 :== S;_1 \ {y} for y € S;_1 \ Si_2. This process eventually terminates, so the
integral equals 1 by the inductive hypothesis, completing the proof. O
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