
MULTIMATROIDS AND RATIONAL CURVES WITH CYCLIC ACTION

EMILY CLADER, CHIARA DAMIOLINI, CHRISTOPHER EUR, DAOJI HUANG, AND SHIYUE LI

ABSTRACT. We study the connection between multimatroids and moduli spaces of rational curves with

cyclic action. Multimatroids are generalizations of matroids and delta-matroids that naturally arise

in topological graph theory. The perspective of moduli of curves provides a tropical framework for

studying multimatroids, generalizing the previous connection between type-A permutohedral varieties

(Losev–Manin moduli spaces) and matroids, and the connection between type-B permutohedral vari-

eties and delta-matroids. Specifically, we equate a combinatorial nef cone of the moduli space with the

space of R-multimatroids, a generalization of multimatroids, and we introduce the independence poly-

topal complex of a multimatroid, whose volume is identified with an intersection number on the moduli

space. As an application, we give a combinatorial formula for a natural class of intersection numbers on

the moduli space by relating to the volumes of independence polytopal complexes of multimatroids.

1. INTRODUCTION

There have been rapid recent developments in the interplay amongst three objects: Coxeter

groups, matroids, and the Chow rings of certain moduli spaces of rational curves. In type A, the

key insight is that the base polytope of a matroid on a set with n elements is a type-A generalized

permutohedron [GGMS87], meaning that its normal fan coarsens the type-A permutohedral fan

ΣAn−1
. This allows one to associate to any matroid an element of the Chow ring of the toric variety

XAn−1
, which was realized by the work of Losev and Manin [LM00] as a moduli space of rational

curves with weighted marked points. The connections between these perspectives have yielded

breakthroughs in both matroid theory and geometry [AHK18, BST, BEST23, DR22, EHL23, Ham17,

LdMRS20].

For type-B Coxeter groups, a similar unifying framework was developed in [EFLS22, ELS23],

establishing a connection between the algebraic geometry of the type-B permutohedral fan ΣBn
and

the combinatorics of delta-matroids, an analogue of matroids first introduced by Bouchet [Bou87].

Batyrev and Blume showed that the toric variety XBn
also admits a modular interpretation as a

moduli space of rational curves equipped with an involution [BB11a, BB11b].

At present, it seems that this story does not extend to other Coxeter types. In particular, obstacles

were encountered while studying the tautological classes of other Coxeter matroids [EFLS22, Re-

mark 3.6] and in finding a modular interpretation for toric varieties corresponding to other Coxeter

types [BB11a].

On the other hand, there is another family of complex reflection groups that generalize type-A

and type-B Coxeter groups, called generalized symmetric groups S(r, n), which depend on param-

eters r g 2 and n g 1. In our previous work [CDH+23, CDLR23], we constructed moduli spaces

of curves that correspond to these groups in a precise sense. The result is a smooth projective mod-

uli space L
r

n parameterizing rational stable curves with an order-r automorphism and n orbits of
1
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weighted points, which coincides when r = 2 with Batyrev–Blume’s space. A similar generaliza-

tion applies in matroid theory: delta-matroids are the r = 2 case of objects known as r-matroids,

which are a special case of multimatroids [Bou87]. The connection between the theory of r-matroids

and the geometry of L
r

n has not yet been studied, and developing this connection is our primary

motivation for the current work.

To describe the more general setting in which we work, fix a positive integer n, a finite set E, and

a surjection Ã : E → [n], where [n] := {1, . . . , n}. The data of Ã is equivalent to a partition

E = E1 ⊔ · · · ⊔ En

by setting Ei := Ã−1(i) for each i. A subset S ¦ E is Ã-colored if it contains at most one element

of each Ei. We denote by RÃ the poset of Ã-colored subsets of E, ordered by inclusion. Note that

the maximal elements of this poset are the size-n subsets of E consisting of precisely one element of

each Ei.

In the same way that a matroid on ground set E can be defined via a rank function on subsets

of E, a multimatroid is a rank function rk : RÃ → N that satisfies analogous axioms specified in

Definition 4.2. A key feature of these axioms is that, for any maximal Ã-colored subset T ¦ E, the

restriction of rk to subsets of T (all of which are automatically Ã-colored) is a matroid in the usual

sense; in this way, a multimatroid can roughly be viewed as a way of patching together a collection

of matroids on equal-sized ground sets.

The role played by the permutohedral fan in the theory of matroids is played in the theory of

multimatroids by the Ã-colored fan ΣÃ , which we introduce in Section 2.4; it is the n-dimensional

fan in the vector space

NÃ
R
:= RE1/R1× · · · × REn/R1

with a cone

ÃC = cone{eS1
, . . . , eSk

}

for each chain C = (S1 ª · · · ª Sk) of nonempty Ã-colored subsets of E, where eS denotes the

image in NÃ
R

of
∑

i∈S ei ∈ RE . For any maximal Ã-colored subset T ¦ E, the intersection of ΣÃ

with the subspace Rg0 · {ei | i ∈ T} ¦ NÃ
R

is identical to a distinguished orthant (which we call

the affine permutohedral fan) of the stellahedral fan studied in [EHL23]. So, analogously to the

above perspective on multimatroids, the Ã-colored fan can roughly be viewed as a way of patching

together a collection of affine permutohedral fans; see Remarks 2.8 and 4.17.

Toric geometry allows one to give an explicit presentation of the Chow ring of the toric variety

XΣπ as a quotient of

Z[xS | S ∈ RÃ]

with relations described explicitly in Proposition 2.10. In the special case where |Ei| = r for each i

(in which case we refer to Ã as a uniform partition), the Ã-colored fan ΣÃ coincides with the fan Σr
n

studied in [CDLR23], and the results of that work show that

(1) A∗(L
r

n)
∼= A∗(Σr

n).

The perspective on Σr
n as a union of affine permutohedral fans can be given a precise geometric

interpretation in this setting, as explained in Remark 6.2.
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One crucial property of ΣÃ is that it is a balanced tropical fan, and in particular, by [AHK18,

Proposition 5.6], there exists a well-defined degree map
∫

Σπ

: An(ΣÃ) → R

with the defining property that
∫
Σπ Ã = 1 for each maximal cone Ã. Our first main result is a

combinatorial formula for these degrees.

Such a formula can be stated in terms of the generators xS of A∗(ΣÃ), and in some sense, these

are the most geometrically natural generators: they correspond to the rays of ΣÃ and, in the uniform

case, they are identified by the isomorphism (1) with the boundary divisors of L
r

n. However, as was

already understood in the matroid setting by [BES23], the formula becomes much more combinato-

rially elegant when stated in terms of a different basis. Specifically, for each S ∈ RÃ , set

hS :=
∑

S′∩S ̸=∅

xS′ .

One way to understand the special role played by these alternative generators (analogously to

[DR22]) is that, in the uniform case, they can be viewed under the isomorphism (1) as pullbacks

of psi-classes under a family of forgetful morphisms from L
r

n to a simpler moduli space, and the

combinatorially rich structure of psi-classes is well-understood; see Section 6.

To state the formula for the degree of a monomial in the above generators of A∗(ΣÃ), we define,

for any collection S1, . . . , Sn of Ã-colored subsets (possibly with repetitions), the set

TÃ(S1, . . . , Sn) :=

{
T ∈ Rmax

Ã

∣∣∣∣∣
there exists a bijection º : [n] → T

with º(i) ∈ Si for each i

}
.

In other words, TÃ(S1, . . . , Sn) consists of the maximal elements of RÃ containing precisely one

element from each of the sets Si. Then we have the following formula.

Theorem A. For any collection S1, . . . , Sn ∈ RÃ (with repetitions allowed), we have
∫

Σπ

hS1
· · ·hSn

= |TÃ(S1, . . . , Sn)|.

The analogue of this theorem in type A follows from [Pos09, Theorem 5.1] and [BES23], while the

type-B case is proved in [EFLS22, Theorem A(b)]. At the same time, given the perspective on hS

as a pullback of a psi-class in the uniform case, this theorem can be viewed as an analogue of the

computations of intersection numbers of psi-classes on M0,n in [BELL23, Wit91]. This suggests that

Theorem A may admit an algebro-geometric proof via the theory of psi-classes; we investigate this

direction in Section 6, but we do not currently know of a complete proof by these methods.

Instead, we prove Theorem A via the geometry and combinatorics of multimatroids. To do so,

we introduce the independence polytopal complex IPC(M) of a multimatroid in Definition 4.13,

generalizing the independence polytope IP(M) of a matroid M . We prove that the volume of this

independence polytopal complex, when suitably normalized (see Section 4.10), coincides with the

degree of the top power of a divisor on ΣÃ naturally associated to M. Specifically, for any multima-

troid M, let

DM :=
∑

S∈Rπ

rk(S)xS ∈ A1(ΣÃ).

Then we have the following theorem.
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Theorem B. (see Theorem 5.1) For any multimatroid M on (E, Ã),

(B)

∫

Σπ

(DM)
n
= Vol(IPC(M)).

Remark 1.1. Matroids are a special case of multimatroids, and the analogue of Theorem B in this

setting is the equality, for any matroid M , of the degree of the divisor DM on the stellahedral fan

and the volume of the independence polytope of M . In this setting, the theorem can be deduced

from a standard result in toric geometry: the volume of the polytope corresponding to a nef divisor

D on a rational, complete fan Σ is equal to
∫
Σ
Dn (see, for example [Ful93, page 111]). The divisor

DM is known to be nef, and its corresponding polytope is precisely the independence polytope. The

multimatroid case, on the other hand, is considerably more subtle.

Theorem B implies Theorem A via the results of [EL23], as we show in Section 5. In order to

prove Theorem B, the main idea is to use the work of Nathanson–Ross [NR23], which relates the

degrees of top powers of divisors on tropical fans to the volumes of associated polytopal complexes

known as normal complexes. However, their results generally apply only to divisors satisfying a

cubical condition, which DM does not necessarily satisfy. We resolve this obstruction by extending

the statement as an equality of functions on the space of multimatroids on (E, Ã).

The key idea is to consider a slight generalization of the notion of multimatroid that we refer to as

an R-multimatroid, which consists of a rank function rk : RÃ → R satisfying the properties listed in

Definition 4.3. The notions of DM and IPC(M) extend to this setting, so the statement of Theorem B

makes sense when M is an R-multimatroid, and it is in this setting that we prove the theorem. The

advantage of this extension is two-fold:

(1) The space M of R-multimatroids on (E, Ã) is a connected subspace of RRπ , while the space

of all multimatroids on (E, Ã) is discrete (see Definition 4.7).

(2) For a given (E, Ã), one can always find an R-multimatroid M for which DM is cubical

(Lemma 4.23); this is not true if we only consider multimatroids.

Given this extension, we prove Theorem 5.1 (and hence Theorem B) by showing that both sides of

(B) are polynomial functions on M that agree—via the work of [NR23]—on the subset consisting of

R-multimatroids M for which DM is cubical. Since this locus is non-empty and open (Lemma 4.23),

this implies that the two polynomial functions agree on all of M , showing that the theorem holds

for every R-multimatroid.

1.2. Future directions. One of the reasons for our interest in Theorem A is that it provides evidence

for the existence of an exceptional isomorphsim from the Chow ring A(L
r

n) to the Grothendieck

K-ring of vector bundles K(L
r

n) similar to isomorphisms appearing in the study of matroids and

delta-matroids [BEST23, EFLS22, EHL23, LLPP22]. In future work, we plan to study the conjectural

existence of such an isomorphism, which we hope will yield a Hirzebruch–Riemann–Roch-type

formula for computing Euler characteristics of vector bundles on L
r

n. In the case of matroids and

delta-matroids, this isomorphism also relates to an isomorphism with the polytope algebra of gen-

eralized (type-A or type-B) permutohedra, so we hope along the way to relate the K-ring of L
r

n

to a polytopal complex algebra. Such a connection would also yield a relationship between Euler

characteristics of vector bundles on L
r

n and lattice point counts of certain polytopal complexes of

multimatroids, analogous to the case of matroids [CF22] and toric varieties [Ful93, Section 5.3]. As
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applications of this circle of ideas, we hope to apply the present framework to the study of certain

polynomials of multimatroids, embedded graphs, and knots [EMM13].

1.3. Outline of the paper. Section 2 introduces the fan ΣÃ and the relevant generators of its Chow

ring. In Section 3, we first review from [NR23] the definition of the normal complex CΣ,∗(D) of a fan

Σ equipped with a divisor D ∈ A1(Σ)R, as well as the relation between the volume of the normal

complex and
∫
Σ
Dn under the condition that D is cubical. We then specialize this framework to the

case of ΣÃ , in which case we can make both the notion of volume and the cubical condition concrete.

We turn in Section 4 to the definition of multimatroids and R-multimatroids, and we explain how to

associate to any R-multimatroid M both a divisor DM ∈ A1(ΣÃ)R and an independence polytopal

complex IPC(M). The key result of this section is that there is a nonempty open subset in the

space of R-multimatroids on which the divisor DM is cubical, and the first result of Section 5 is that

IPC(M) is equal to the normal complex CΣπ,∗(DM) (with equivalent notions of volume) in this case.

Combining these results with [NR23] proves Theorem B, and the remainder of Section 5 is devoted

to unpacking Theorem B from the perspective of the generators hS in order to deduce Theorem A.

Lastly, in Section 6, we specialize to the case in which Ã is uniform with |Ei| = r for each i, and

we use the isomorphism A∗(ΣÃ) ∼= A∗(L
r

n) to reprove some cases of Theorem A from a geometric

perspective.
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2. THE Ã-COLORED FAN

Throughout what follows, we fix a nonempty finite set E with a partition

E = E1 ⊔ · · · ⊔ En,

or equivalently, a surjective map Ã : E → [n] where Ã−1(i) = Ei. We refer to the partition as uniform

if |Ei| = |Ej | for all i, j ∈ [n].

2.1. Colored sets. Viewing [n] as the set of possible colors, and Ã as a way to assign a unique color

to every element ofE, we are particularly interested in subsets ofE that contain at most one element

of each color. More precisely, we have the following definition.

Definition 2.2. A subset S ¦ E is Ã-colored (or just colored, if Ã is clear from context) if

|S ∩ Ei| f 1

for each i ∈ [n]. We denote by RÃ the poset of colored subsets of E, ordered by inclusion. Maximal

elements of RÃ are those that contain exactly one element of each Ei, and we denote the set of these

by Rmax
Ã . We often wish to exclude the possibility that S = ∅, so we denote R×

Ã = RÃ \ {∅}.
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Remark 2.3. One can generalize the notion of colored sets by requiring that the set S ∩ Ei has at

most a specified number of elements ci, which might depend on i ∈ [n]. Though we do not take up

this generalization in this work, it would be interesting to investigate the extent to which the results

of this paper generalize to that setting.

2.4. The Ã-colored fan. To define a fan associated to the data of (E, Ã), we consider the real vector

space RE with standard basis {ei | i ∈ E}. For each X ¦ E, denote

eX :=
∑

i∈X

ei.

Set

(2) NÃ
R
:=

RE1

ReE1

× · · · ×
REn

ReEn

,

and denote the image of ei or eX in NÃ
R

by ei or eX , respectively. Similarly, for every X ¦ E, denote

by R
X

the image of RX ¦ RE in NÃ
R

.

Definition 2.5. The Ã-colored fan ΣÃ is the fan in NÃ
R

consisting of cones

ÃC = cone{eS1
, . . . , eSk

}

for each chain C =
(
S1 ª · · · ª Sk

)
of elements Si ∈ R×

Ã .

In the special case where (E, Ã) is uniform with |Ei| = r g 2 for each i, the fan ΣÃ coincides

with the r-permutohedral fan Σr
n studied in [CDLR23]. If, furthermore, r = 2, then it is the type-B

permutohedral fan ΣBn
. We begin by illustrating what ΣÃ looks like in this particularly simple case.

Example 2.6. Let E = {1, 1̄} ⊔ {2, 2̄} with E1 = {1, 1̄} and E2 = {2, 2̄}. Then

NÃ
R
=

Re1 · Re1̄
R(e1 + e1̄)

×
Re2 · Re2̄
R(e2 + e2̄)

.

Choosing the basis {e1, e2} for NÃ
R

gives an isomorphism NÃ
R
∼= R2 in which

e1 7→ (1, 0), e1̄ 7→ (−1, 0), e2 7→ (0, 1), e2̄ 7→ (0,−1).

The fan ΣÃ = ΣB2
is depicted under this isomorphism in Figure 1.

e{1,2}e{1̄,2}

e{1,2̄}e{1̄,2̄} e2̄

e2

e1e1̄

ÃC

FIGURE 1. The fan ΣB2
, with the cone corresponding to C = ({2} ª {1̄, 2}) shaded.

On the other hand, the following example illustrates a non-uniform case.
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Example 2.7. Let E = {a, b, c}⊔ {1, 2} with E1 = {a, b, c} and E2 = {1, 2}. Then Figure 2 depicts the

associated fan ΣÃ , under the isomorphism NÃ
R
∼= R3 given by the basis {ea, eb, e1}.

eb
e1

e{a,2}

ea
e2

ec

ÃC

FIGURE 2. The fan ΣÃ for (E, Ã) as in Example 2.7, with the cone corresponding to

C = ({a} ª {a, 2}) shaded.

Remark 2.8. For any T ∈ Rmax
Ã , the restriction of ΣÃ to the subset RT

g0
∼= Rn

g0 is a fan ΣT that can

be identified with the fan in Rn
g0 consisting of a cone for each chain of subsets of [n]. This fan in

Rn
g0, which we call the affine permutohedral fan, is a distinguished portion (the negative orthant)

of the stellahedral fan defined in [BHM+22]. Thus, ΣÃ can be viewed as a union of copies of the

n-dimensional affine permutohedral fan, one for each T ∈ Rmax
Ã . Given the connection between

stellahedral fans and matroids studied in [EHL23], this observation can be seen as the fan-theoretic

analogue of the perspective mentioned in the introduction that a multimatroid is a way of patching

together a collection of matroids.

2.9. The Chow ring of the Ã-colored fan. Standard results in toric geometry calculate the Chow

ring of ΣÃ (or, equivalently, of the associated toric variety).

Proposition 2.10. The Chow ring of ΣÃ is

A∗(ΣÃ) =
Z[xS | S ∈ R×

Ã ]

I + J
,

where I is the ideal of quadratic relations

(3) I := ïxSxS′ | S and S′ incomparableð

(in which “incomparable" means that neither S ¦ S′ nor S′ ¦ S) and J is the ideal of linear relations

(4) J :=

〈
∑

S∋e

xS −
∑

S∋e′

xS

∣∣∣∣∣ distinct e, e′ ∈ Ei for some i

〉
.

In fact, although the divisors xS for S ∈ R×
Ã are manifestly generators of the Chow ring A∗(ΣÃ),

another generating set has more elegant intersection-theoretic properties (and has a natural geomet-

ric interpretation explained in Section 6). Namely, for each S ∈ R×
Ã , we define

(5) hS :=
∑

S′∩S ̸=∅

xS′ .

These indeed generate A∗(ΣÃ), as a result of the following lemma.
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Lemma 2.11. For any S ∈ R×
Ã , one has

xS =
∑

U,T∈R×
π

U¦T§S

(−1)|T |+|S|+|U |+1hU .

Proof. It is helpful to first express hS in terms of yet another generating set fS , defined by

(6) fT :=
∑

Z§T

xZ

for each T ∈ R×
Ã . Then

(7) hS =
∑

T¦S

(−1)|T |+1fT ,

as one sees from the following standard inclusion-exclusion argument. The right-hand side can be

expanded as

(8)
∑

i∈S

fi −
∑

i,j∈S

fij +
∑

i,j,k∈S

fijk − · · ·+ (−1)|S|fS .

The first term of these sums is equal to
∑

i∈S
T∋i

xT ,

and while each of these xT ’s appears in the definition of hS , those for which T contains two distinct

elements of S are double-counted. The second summand of (8) subtracts these, but this double-

counts those xT for which T contains three distinct elements of S, and so on.

Since any interval in the poset R×
Ã is isomorphic to an interval in the Boolean lattice, the Möbius

function of this poset is µ(T, S) = (−1)|T |+|S| for any S ¦ T . Thus, the relation (7) can be inverted

via Möbius inversion (which is effectively inclusion-exclusion again) to yield

(9) fS =
∑

T¦S

(−1)|T |+1hT ,

and by the same token, the relation (6) can be inverted to yield

(10) xS =
∑

T§S

(−1)|T |+|S|fT .

Combining these two equations gives

xS =
∑

T§S

(−1)|T |+|S|


∑

U¦T

(−1)|U |+1hU


 ,

which is precisely the statement of the lemma. □

Remark 2.12. It is occasionally convenient to allow that S = ∅, in which case we set x∅ = h∅ = 0.

However, we caution the reader that Lemma 2.11 does not hold for S = ∅.
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3. NORMAL COMPLEXES

Recall that Theorem B is a statement about the degree of the top power of a particular divisor on

ΣÃ . Such degrees have been related to the volumes of normal complexes introduced by Nathanson–

Ross [NR23]. In this section, we review the relevant background—in a slightly less general setting

than the framework of [NR23]—and study its application to the Ã-colored fan.

3.1. Background on normal complexes. Let N be a lattice and let Σ be a fan in the vector space

NR := N ¹ R. Assume that Σ is

• unimodular, meaning that every cone has generators that can be extended to a basis of N ;

• pure of dimension n, meaning that all maximal cones are n-dimensional;

• tropical and balanced,1 meaning that there exists a linear degree map
∫
Σ
: An(Σ) → R such

that
∫
Σ
XÃ = 1 for each maximal cone Ã of Σ, where XÃ is the product of the generators of

A∗(Σ) associated to the rays of Ã.

Given such a fan, associated to any choice of inner product ∗ on NR and any divisor D ∈ A1(Σ)R,

one can define a normal complex by truncating each cone of Σ by affine hyperplanes normal to the

rays; here, the notion of normal is determined by ∗ and the distance of the hyperplanes from the

origin is determined by D. More precisely, the definition is as follows.

For each ray Ä of Σ, denote by uÄ ∈ NR the primitive integral generator (i.e., the first nonzero

element of N that lies on Ä), which exists because Σ is unimodular. Denoting by {xÄ | Ä ∈ Σ(1)}

the generators of A∗(Σ) associated to the rays of Σ, any divisor D ∈ A1(Σ)R can be expressed, not

necessarily uniquely, as

D =
∑

Ä∈Σ(1)

aÄxÄ

for some aÄ ∈ R. From here, associated to each cone Ã ∈ Σ, one defines a polytope

(11) PÃ,∗(D) := {m ∈ Ã | m ∗ uÄ f aÄ for all Ä ∈ Ã(1)} ¦ NR,

where Ã(1) denotes the set of rays of Ã.

The normal complex of Σ associated to ∗ andD is the union of these polytopes as Ã ranges over all

maximal cones. However, in order to ensure that these polytopes meet along faces—and therefore

their union forms a polytopal complex—one must impose the following compatibility condition on

∗ and D.

Definition 3.2. A divisor D on Σ is called pseudo-cubical with respect to the inner product ∗ if

the bounding hyperplanes of PÃ,∗(D) meet within Ã for all cones Ã; that is, for each Ã ∈ Σ (not

1The definition of tropical fan is generally stated in terms of the existence of a weight function on the maximal cones of

Σ under which a weighted balancing condition is satisfied; see, for instance, [NR23, Section 2.7]. The requirement that Σ

is balanced in our case means that the weight function is identically 1, and it is a result of [AHK18, Proposition 5.6] that

this is equivalent to the existence of a degree map as stated. It is worth noting that the definition of the balancing condition

in [AHK18] and [NR23] is subtlely different from the condition used in some other sources such as [FS97, equation (3)]:

the former is stated in terms of primitive integral generators uσ\τ of rays σ \ τ , where σ is a maximal cone and τ ⊆ σ a

codimension-one face, whereas the latter replaces uσ\τ with a lattice point nσ,τ whose image generates the quotient Nσ/Nτ .

The two definitions coincide when Σ is unimodular, which is sufficient for our purposes; avoiding this subtlety is the reason

we assume Σ is unimodular in this subsection.
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necessarily maximal), we have

Ã ∩ {m ∈ NR | m ∗ uÄ = aÄ for all Ä ∈ Ã(1)} ≠ ∅.

The divisor D is cubical with respect to ∗ if

Ã◦ ∩ {m ∈ NR | m ∗ uÄ = aÄ for all Ä ∈ Ã(1)} ≠ ∅

for all Ã ∈ Σ, where Ã◦ denotes the interior of Ã.

From here, one can define the normal complex precisely as follows.

Definition 3.3. The normal complex CΣ,∗(D) of Σ with respect to ∗ and D is the union

(12) CΣ,∗(D) :=
⋃

Ã∈Σ(n)

PÃ,∗(D).

It has the structure of a polytopal complex when D is pseudo-cubical.

We refer the reader to Section 3.5 for several examples of normal complexes in the specific context

relevant to the current work.

In the case where Σ is complete, the normal complex CΣ,∗(D) is the classical normal polytope as-

sociated to D. Moreover, a fundamental result of toric geometry (see, for example, [Ful93, Corollary,

page 111]) states that, whenD is nef, the volume of its normal polytope is equal to the degree
∫
Σ
Dn.

The main theorem of [NR23] asserts that the analogous result is true when Σ is not necessarily com-

plete, with the normal complex now playing the role of the normal polytope.

To state the result precisely, care must be taken in how the volume is defined. Specifically, for

each Ã ∈ Σ(n), let

NÃ := N ∩ span
R
(Ã),

and let

MÃ := N(
Ã = HomZ(NÃ,Z).

These are lattices in different vector spaces, but the inner product ∗ allows one to view them both

as lattices in the same space span
R
(Ã). In this way, one can define the volume of any polytope in

span
R
(Ã) by declaring

VolÃ,∗(any n-simplex unimodular with respect to MÃ) = 1,

where unimodular means that the simplex is lattice-equivalent to the n-simplex with vertices at

0 and the standard basis vectors. This definition of volume, in particular, allows us to define the

volume of the polytope PÃ,∗(D) ¦ span
R
(Ã), and adding these over each maximal cone defines the

volume of the normal complex:

(13) VolΣ,∗ (CΣ,∗(D)) :=
∑

Ã∈Σ(n)

VolÃ,∗ (PÃ,∗(D)) .

The main theorem of [NR23], in the generality we will need, is the following.

Theorem 3.4. [NR23, Theorem 6.3] Let Σ be a unimodular, pure n-dimensional, balanced tropical

fan in NR, let ∗ be an inner product on NR, and let D ∈ A1(Σ)R be a divisor that is pseudo-cubical

with respect to ∗. Then ∫

Σ

Dn = VolΣ,∗ (CΣ,∗(D)) .
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3.5. Application to the Ã-colored fan. We now specialize the previous subsection to the case in

which Σ is the Ã-colored fan ΣÃ . In this case, the lattice N is

NÃ :=
ZE1

ZeE1

× · · · ×
ZEn

ZeEn

,

so that NÃ
R

is as in (2). It is straightforward to see that ΣÃ is indeed unimodular and pure n-

dimensional. To see that it is a balanced tropical fan, one must verify the condition of [NR23, equa-

tion (2.16)] with w(Ã) = 1: namely, for each chain C of length n− 1,

(14)
∑

C
′∈MaxChain(Rπ)

ÃC¦ÃC′

eC ′\C ∈ span
R
(ÃC ),

where MaxChain(RÃ) denotes the set of maximal chains and C ′ \ C is the unique colored set in

the chain C ′ that is not in the chain C . If the maximal element of C has size n, then we can write

C = (S1 ª · · · ª Ŝi ª · · · ª Sn) for some i ∈ [n], with |Sj | = j for all j ∈ [n] \ {i}. In this case, one

sees that the sum in (14) equals

∑

x∈Si+1\Si−1

eSi−1∪{x} = eSi−1
+ eSi+1

,

which indeed lies in span
R
(ÃC ). If the maximal element of C does not have size n, then the sum (14)

is
∑

j∈Ei
ej for some i ∈ [n], which equals zero and therefore also lies in span

R
(ÃC ).

To apply the machinery of [NR23], we must now choose an inner product on NÃ
R

. To define the

inner product, recall that R
Ei

denotes the image of REi in NÃ
R

. Choose an inner product ∗i on each

R
Ei

with

ej ∗i ej = 1,

for all j ∈ Ei, and set ∗ := ∗1 × · · · × ∗n.

Remark 3.6. There is a non-canonical isomorphism R
Ei ∼= R|Ei|−1 given by choosing a ∈ Ei and

sending {ej | j ̸= a} to the standard basis vectors, while sending ea to the vector (−1,−1, . . . ,−1).

We note that ∗i is not the standard inner product on R|Ei|−1 under this isomorphism unless |Ei| = 2.

For example, if Ei = {1, 2, 3} and we choose the isomorphism R
Ei ∼= R2 given by

e1 7→ (−1,−1), e2 7→ (1, 0), e3 7→ (0, 1),

then ∗i is not the standard inner product on R2 but can instead be taken to be

(x1, y1) ∗i (x2, y2) := x1x2 + y1y2 −
1

2
(x1y2 + x2y1).

This example can be generalized to all dimensions to give an explicit formula for ∗i.

Under this choice of inner product, we can describe the normal complex CΣπ,∗(D) explicitly as

follows. First, note that by Definition 2.5, the maximal cones of ΣÃ are of the form ÃC in which C is

a maximal chain in RÃ , so we can rewrite (12) as

CΣπ,∗(D) =
⋃

C∈MaxChain(Rπ)

PÃC ,∗(D).
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Grouping these chains according to their maximal element, which is necessarily an element of Rmax
Ã ,

we have

(15) CΣπ,∗(D) =
⋃

T∈Rmax
π

⋃

C∈MaxChain(T )

PÃC,∗
(D),

where MaxChain(T ) is the subset of MaxChain(RÃ) consisting of maximal chains with T as their

maximal element. Note, in this grouping, that all of polytopes PÃC,∗
(D) lie in the same subspace

R
T
¦ NÃ

R
. Moreover, the volume functions VolÃC ,∗ for any C ∈ MaxChain(T ) are all restrictions of

the same volume function on R
T

, which we now describe.

To do so, note that for any T ∈ Rmax
Ã , the fact that T is colored implies that R

T ∼= RT , and the fact

that it is maximal further implies that R
T

is isomorphic to Rn via a basis of the form

(16) {ei | i ∈ T}.

Now, let VolT be the volume function on Rn ∼= R
T

with

(17) VolT (standard n-simplex) := 1,

where the standard n-simplex refers to the convex hull of 0 and the standard basis vectors in Rn.

Then we have the following lemma.

Lemma 3.7. For any maximal cone ÃC of ΣÃ associated to a chain C ∈ MaxChain(T ), the volume

function VolÃC ,∗ on span
R
(ÃC ) ¦ R

T
is the restriction of VolT .

Proof. Fix a maximal cone ÃC as in the statement of the lemma. Then the set (16) is both an orthonor-

mal basis of R
T

and a Z-basis of NÃ ∩ R
T

. It follows that the isomorphism NÃ
R

∼= (NÃ
R
)( given by

∗ identifies the lattice NÃ
ÃC

with the lattice MÃ
ÃC

. Thus, under the isomorphism R
T ∼= Rn provided

by this basis, the standard n-simplex is unimodular with respect to MÃ
ÃC

= NÃ
ÃC

, and the lemma

follows. □

Combining Lemma 3.7 with the definition of volume in (13), one sees that for any divisor D on

ΣÃ , the volume of the normal complex CΣπ,∗(D) is given by

(18) VolÃ(CΣπ,∗(D)) :=
∑

T∈Rmax
π

VolT


 ⋃

C∈MaxChain(T )

PÃC ,∗(D)


 .

Let us illustrate this normal complex and its volume in some examples. We specifically consider

cases where the divisor D is
∑

S∈Rπ
hS , as this will play a key role in the proof of Theorem A below.

Example 3.8. As in Example 2.6, let E = {1, 1̄} ⊔ {2, 2̄} and consider the divisor D =
∑

S∈Rπ
hS . A

straightforward computation from the definition (5) of hS shows that D can be expanded as

(19) D = 3
(
x{1} + x{1̄} + x{2} + x{2̄}

)
+ 5

(
x{1,2} + x{1̄,2} + x{1,2̄} + x{1̄,2̄}

)
.

The normal complex CΣπ,∗(D) is depicted in the leftmost part of Figure 3. Note that it is bounded by

hyperplanes normal to the eight rays, and that the normal hyperplanes to the rays of any maximal

cone ÃC meet in the interior of ÃC . This shows that D is cubical, and it illustrates the reason for the

terminology: the cubical condition ensures that PÃC ,∗(D) is combinatorially a cube.

There are four choices of T ∈ Rmax
Ã in this example, and the corresponding subspaces R

T
¦ NÃ

R

are the four quadrants in Figure 3. Each quadrant contains two polytopes PÃC ,∗(D), corresponding
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to the two choices of C ∈ MaxChain(T ). The decomposition (18) then says that VolÃ (CΣπ,∗(D))

is computed by assigning volume 1 to the standard n-simplex within each quadrant. From the

rightmost part of Figure 3 we deduce that the volume of CΣπ,∗(D) is 68.

e{1,2}e{1,2}

e{1,2}e{1,2} e2

e2

e1e1
x = 3

x+ y = 5
(3, 2)

FIGURE 3. On the left, the normal complex CΣπ,∗(D) from Example 3.8. In the mid-

dle, the polytope PÃC ,∗(D) and its bounding hyperplanes, where ÃC is the maximal

cone associated with the chain C = ({1} ¦ {1, 2}). On the right, CΣπ,∗(D) is subdi-

vided into simplices, each of volume 1.

Example 3.9. By contrast to the previous example, the divisor D =
∑

S∈Rπ
hS is not necessarily

cubical if the partition is not uniform. For instance, as in Example 2.7, let E and its partition Ã be

defined by E = {a, b, c} ⊔ {1, 2}. Then the divisor D =
∑

S∈Rπ
hS can be expanded as

3(x{a} + x{b} + x{c}) + 4(x{1} + x{2}) + 6(x{1,a} + x{1,b} + x{1,c} + x{2,a} + x{2,b} + x{2,c}).

This divisor is pseudo-cubical but not cubical: the normal hyperplanes to the rays of the cone ÃC on

the right-hand part of Figure 4 meet on the boundary of ÃC .

ebe1

ea
e2

ec

FIGURE 4. On the left, the normal complex CΣπ,∗(D) from Example 3.9. On the

right, the polytope PÃC ,∗(D) and its bounding hyperplanes, where ÃC is the maxi-

mal cone associated with the chain C = ({a} ¦ {1, a}). Note that the intersection of

the bounding hyperplanes lies on the boundary of ÃC .

For later reference, we describe the pseudo-cubical condition for the Ã-colored fan explicitly. To

do so, we express a divisor D ∈ A1(ΣÃ)R as a linear combination of the generators xS for S ∈ R×
Ã ,

in which case we have the following lemma.
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Lemma 3.10. Let

D =
∑

S∈R×
π

c(S)xS ∈ A1(ΣÃ)R

be such that c(S) g 0 for all S. Then D is pseudo-cubical if and only if, for any maximal chain

C =
(
S1 ª · · · ª Sn

)
of nonempty colored sets and for every i ∈ [n − 1] and j ∈ [n], the following

conditions hold:

(20) 2c(Si) g c(Si−1) + c(Si+1) and c(Sj) g c(Sj−1),

where c(S0) = 0. Furthermore, D is cubical if and only if the inequalities are all strict.

Proof. We first show that, for the Ã-colored fan, it suffices to check the cubicality condition of Defi-

nition 3.2 on maximal cones. This follows from the observation that, for any maximal cone Ã of ΣÃ

and any face Ä ¦ Ã, the orthogonal projection of span
R
(Ã) onto span

R
(Ä) takes Ã to Ä and Ã◦ to Ä◦.

This is tedious but straightforward to check: first, by relabelling elements of E, we can assume that

Ã is the cone associated with the maximal chain C = ({1} ª {1, 2} ª · · · ª [n]) and that Ä is the cone

associated to a chain (S1 ª · · · ª Sk) which is refined by C . For every i ∈ [k], we set Ti := Si \ Si−1,

which necessarily consists of consecutive integers. Then, since {eT1
, . . . eTk

} is an orthogonal basis

of span
R
(Ä), the orthogonal projection of span

R
(Ã) onto span

R
(Ä) sends

x⃗ = c1e1 + c2e{1,2} + · · ·+ cne[n] ∈ Ã

to

k∑

i=1

x⃗ ∗ eTi

|Ti|
eTi

=

k∑

i=1


 1

|Ti|

∑

j∈Ti

(cj + cj+1 + · · ·+ cn)−
1

|Ti+1|

∑

j∈Ti+1

(cj + · · ·+ cn)


 eSi

.

Writing Ti = {ℓ+ 1, ℓ+ 2, . . . , ℓ+ a} and Ti+1 = {j + 1, j + 2, . . . , j + b} for ℓ+ a f j, the coefficient

of eSi
in the above summation is

a∑

x=1

x

a
cℓ+x +

j∑

y=ℓ+a+1

cy +

b∑

z=1

(
1−

z

b

)
cj+z

This is manifestly non-negative whenever cj g 0 for all j and positive whenever cj > 0 for all j.

Therefore, the orthogonal projection indeed sends Ã to Ä and Ã◦ to Ä◦.

Thus, to check that D is (pseudo-)cubical, one must only check the condition of Definition 3.2 on

each maximal cone of ΣÃ . These are of the form ÃC for a maximal chain C = (S1 ª · · · ª Sn), and

the pseudo-cubical condition is that

(21) ÃC ∩

{
x⃗ =

∑

i∈Sn

xiei ∈ R
Sn

∣∣∣∣∣ x⃗ ∗ eS = c(S) for all S ∈ C

}
̸= ∅,

while the cubical condition is that these intersections all lie within Ã◦
C

. Since the chain C is maximal,

for every i ̸= j ∈ Sn we have ei ∗ ej = ¶ij . Thus, the n conditions x⃗ ∗ eS = c(S) for S ∈ C yield the

equations
∑

i∈Sk

xi = c(Sk) for all k ∈ [n]



MULTIMATROIDS AND RATIONAL CURVES WITH CYCLIC ACTION 15

on the coordinates of x⃗. These equations determine x⃗, meaning that (21) consists of a single point.

Namely, if we order the elements of Sn = {j1, . . . , jn} by the condition that ji ∈ Ti for each i, then

we have

x⃗ =
n∑

i=1

(c(Si)− c(Si−1)) eji .

This x⃗ belongs to

ÃC = cone (ej1 , ej1 + ej2 , ej1 + ej2 + ej3 , . . . , ej1 + · · ·+ ejn)

if and only if xji+1
f xji for every i ∈ [n− 1] and xj g 0 for every j ∈ [n], and it belongs to Ã◦

C
if and

only if these inequalities are all strict. This completes the proof. □

Example 3.11. One can use Lemma 3.10 to verify that the divisor D from Example 3.8 is cubical. For

instance, for the chain C = ({1} ¦ {1, 2}), the relevant coefficients of D satisfy

2 · c({1}) = 2 · 3 > 0 + 5 = c(∅) + c({1, 2}) and c({1, 2}) = 5 > 3 = c({1}).

On the other hand, one can also use Lemma 3.10 to verify that the divisor D from Example 3.9

is pseudo-cubical but not cubical. For instance, the chain C = ({a} ¦ {1, a}) gives the equality

2 · 3 = 0 + 6.

Equipped with the explicit descriptions of the pseudo-cubical condition and the volume function

furnished by the previous two lemmas, we can restate the results of [NR23] for the Ã-colored fan as

follows.

Corollary 3.12. Let D =
∑

S∈R×
π
c(S)xS ∈ A1(ΣÃ)R be such that c(S) g 0 for all S. Assume that D

is pseudo-cubical with respect to ∗, or equivalently, that the coefficients c(S) satisfy the inequalities

(20) for all maximal chains C of colored sets. Then

∫

Σπ

Dn = VolÃ (CΣπ,∗(D))

in which VolÃ is defined by (18).

In order to use Corollary 3.12 to prove Theorem 5.1, we must now specialize to the case D = DM

for a multimatroid M. For this, we turn in the next section to giving the requisite preliminary

definitions on multimatroids.

4. MULTIMATROIDS

We begin this section by introducing the concept of an R-multimatroid, which can be seen as a

generalization of the multimatroids introduced in [Bou97, Section 3]. As explained in the introduc-

tion, the motivation for this extension is that it allows us to extend the equality of Corollary 3.12 to

settings where the divisor D = DM is not necessarily cubical. Throughout, we assume that the data

of (E, Ã) is fixed.
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4.1. Definition of R-multimatroids. First, we recall the definition of multimatroid from [Bou97].

Definition 4.2. A multimatroid M on (E, Ã) is a rank function rk : RÃ → N satisfying the following

conditions:

(BR1) rk(∅) = 0;

(BR2) (monotonicity and boundedness) for any S ∈ RÃ and any x ∈ Ei such that Ei ∩ S = ∅,

rk(S) f rk(S ∪ {x}) f rk(S) + 1;

(BR3) (submodularity) for any S, T ∈ RÃ with S ∪ T ∈ RÃ ,

rk(S ∪ T ) + rk(S ∩ T ) f rk(S) + rk(T );

(BR4) for any S ∈ RÃ and any pair {x, y} ¦ Ei such thatEi∩S = ∅, either rk(S∪{x})−rk(S) = 1

or rk(S ∪ {y})− rk(S) = 1.

If (E, Ã) is uniform with |Ei| = r for each i, then M is referred to as an r-matroid.

One can always define a multimatroid on (E, Ã) by setting rk(S) = |S| for all S ∈ RÃ ; this

is referred to as the Boolean multimatroid. For a somewhat more motivated class of examples—

which, in fact, was one of the original reasons for the definition of multimatroids—one can consider

the collection of vertex splitters of the medial graph of an embedded (or, more generally, 4-regular)

graph; this is the main subject of [EMM13].

The generalization of the concept of multimatroid that we require allows the rank function to

be R-valued and removes the boundedness condition from (BR2) for the two reasons stated at the

end of the introduction, so our notion might be called a weak R-multimatroid in the language of

[BB19]. We also remove condition (BR4), since that condition is not needed for any of our results,2

so our notion might be called a weak poly-R-multimatroid in the language of [Edm03]. To avoid

this proliferation of qualifiers, we simply refer to our concept as an R-multimatroid, and we define

it precisely as follows.

Definition 4.3. An R-multimatroid M on (E, Ã) is a rank function rk : RÃ → R satisfying

(R1) rk(∅) = 0;

(R2) (monotonicity) for any S, T ∈ RÃ with S ¦ T , one has rk(S) f rk(T );

(R3) (submodularity) for any S, T ∈ RÃ with S ∪ T ∈ RÃ ,

rk(S ∪ T ) + rk(S ∩ T ) f rk(S) + rk(T ).

Example 4.4. Let E = {1, 1̄} ⊔ {2, 2̄}. Then one can define an R-multimatroid on E by

rk(∅) = 0;

rk({1}) = rk({1̄}) = rk({2}) = rk({2̄}) = rk({1̄, 2}) = rk({1, 2̄}) = 1;

rk({1, 2}) = rk({1̄, 2̄}) = 2.

In fact, this example is a multimatroid, as one can check from Definition 4.2.

2We refer to [Bou97, Remark, page 633] for a comment about (BR4). It is worth noting that, although Bouchet originally

viewed the structure defined by (BR1)–(BR3) as “too weak to be interesting,” our results show that one can indeed prove

interesting results without imposing condition (BR4).
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Example 4.5. Let E = {1, 1̄} ⊔ {2, 2̄}. Then one can define an R-multimatroid on E by

rk(∅) = 0;

rk(1) = rk(1̄) = 5;

rk(2) = rk(2̄) = 4;

rk({1, 2}) = rk({1̄, 2}) = rk({1, 2̄}) = rk({1̄, 2̄}) = 6.

This is not a multimatroid because it does not satisfy the boundedness condition in (BR2).

Remark 4.6. One advantage of the additional constraints in Definition 4.2 is that they allow one

to alternatively describe multimatroids via their associated collection of independent sets, bases,

or circuits, in the same way that matroids are often described. It would be interesting to determine

whether R-multimatroids can analogously be described via their independent sets, bases, or circuits,

but we currently do not know of such a description.

By identifying each R-multimatroid with its rank function, one can define a topological space of

R-multimatroids as follows.

Definition 4.7. The space of R-multimatroids on (E, Ã), denoted M = M(E,Ã), is the subset of the

set of functions RÃ → R satisfying the conditions of Definition 4.3. Identifying the function space

with RRπ and giving it the usual Euclidean topology, we have an embedding

M ¦ RR×
π

in which M is a closed, full-dimensional, connected subspace. To see this, note that axiom (R1)

of Definition 4.3 ensures that M ¦ RR×
π . Inequalities (R2) and (R3) describe M as an intersection

of closed half-spaces, so M is closed and convex (in particular, connected). The fact that it is full-

dimensional follows from Lemma 4.23.

As mentioned in the introduction, a key feature of multimatroids is that their restriction to any

colored set yields a matroid, so a multimatroid can in some sense be viewed as a way of patching

together a collection of ordinary matroids. More precisely, if rk defines a multimatroid and S ∈ RÃ ,

then every subset of S is also an element of RÃ , so one can define a rank function on the power set

P(S) by the restriction of rk, and it is straightforward to verify from conditions (BR1) – (BR3) that

rk|P(S) defines a matroid on the ground set S (the axiom (BR4) is irrelevant for this purpose).

A similar story holds for R-multimatroids, but the restrictions are the following weakening of

matroids; these are essentially the same as polymatroids [Edm03], but with real-valued rather than

integer-valued rank function.

Definition 4.8. An R-matroid is a function rk : P(S) → R on the power set P(S) satisfying

(M1) rk(∅) = 0;

(M2) rk(X) f rk(Y ) whenever X ¦ Y ;

(M3) for every X,Y ∈ P(S), rk(X ∪ Y ) + rk(X ∩ Y ) f rk(X) + rk(Y ).

Comparing the conditions (R1), (R2) and (R3) of Definition 4.3 with (M1), (M2) and (M3) above,

one sees that the following definition indeed yields an R-matroid.

Definition 4.9. For an R-multimatroid M and S ∈ RÃ , the restriction of M to S is the R-matroid

M(S) given by restricting the rank function of M to subsets of S.
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4.10. Independence polytopal complexes. We now introduce the analogue for multimatroids and

R-multimatroids of the independence polytope of a matroid. Carrying forth the philosophy that a

multimatroid M is a way of patching together a collection of matroids M(S), we form the indepen-

dence polytopal complex of M by patching together the independence polytopes of the matroids

M(S). This same idea holds for R-multimatroids, but in this case the components M(S) are only

R-matroids, so care must be taken in how their independence polytopes are defined.

Definition 4.11. The independence polytope of an R-matroid M(S) is the polytope

(22) IP(M(S)) :=

{
∑

i∈S

xiei ∈ R
S

g0

∣∣∣∣∣
∑

i∈X

xi f rk(X) for all X ¦ S

}
¦ R

S

g0 ¦ NÃ
R
.

Remark 4.12. If M(S) is an honest matroid and not merely an R-matroid, then one defines the

independent sets of M(S) as those subsets I ¦ S such that rk(I) = |I|. In this situation, [ABD10,

equation (4)] show that the independence polytope of M(S) is given by

IP(M(S)) = conv{eI | I ¦ S an independent set},

which explains its name. However, when M(S) is R-valued, there is not, to our knowledge, a

good notion of independent sets (as discussed in Remark 4.6), so we do not know of a convenient

description of IP(M(S)) as a convex hull.

Gluing the polytopes M(S) across all colored subsets S ∈ RÃ , one obtains the following.

Definition 4.13. The independence polytopal complex of an R-multimatroid M is the union

IPC(M) :=
⋃

S∈Rπ

IP(M(S)).

Remark 4.14. The fact that IPC(M) forms a polytopal complex follows from the observation that,

for any S1, S2 ∈ RÃ with S1 ∩ S2 ̸= ∅, one has

IP(M(S1)) ∩ IP(M(S2)) = IP(M(S1 ∩ S2))

by axiom (R2), and therefore this intersection is a face of each of the two independence polytopes on

the left-hand side. This furthermore shows that

(23) IPC(M) =
⋃

T∈Rmax
π

IP(M(T ))

since for every S ¦ T we have IP(M(S)) ¦ IP(M(T )).

Example 4.15. For the multimatroid M as in Example 4.4, IPC(M) can be realized as the polytopal

complex in R2 depicted in Figure 5.

Example 4.16. For the R-multimatroid M as in Example 4.5, the complex IPC(M) is depicted in

Figure 6.

Remark 4.17. Analogously to the observation in Remark 2.8 that ΣÃ can be viewed as a union of

copies of the n-dimensional affine permutohedral fan, with one copy associated to each T ∈ Rmax
Ã ,

equation (23) shows that IPC(M) can be viewed as a union of independence polytopes of matroids

on size-n ground sets, with one matroid associated to each T ∈ Rmax
Ã . This parallelism is no accident:
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IP(M({1, 2}))

IP(M({1̄, 2̄}))

IP(M({1̄, 2}))

IP(M({1, 2̄}))

IP(M({1}))IP(M({1̄}))

IP(M({2}))

IP(M({2̄}))

FIGURE 5. The independence polytopal complex of the multimatroid M of Example 4.4

.

IP(M({1, 2}))

IP(M({1̄, 2̄}))

IP(M({1̄, 2}))

IP(M({1, 2̄}))

IP(M({1}))IP(M({1̄}))

IP(M({2}))

IP(M({2̄}))

FIGURE 6. The independence polytopal complex of the multimatroid M of Example 4.5

.

we will see in Lemma 5.3 that, under a certain condition on M, the polytopal complex IPC(M) is a

normal complex of ΣÃ .

In the same way that the volume of a normal complex CΣπ,∗(D) was given in (18) as the sum over

volumes of its components in each R
T

, we define the volume of IPC(M) as the sum

(24) Vol(IPC(M)) :=
∑

T∈Rmax
π

VolT (IP(M(T ))),

where the volume VolT on R
T

is defined by (17). One key property of this volume function that will

play a crucial role below is the following.

Lemma 4.18. The volume function

Vol : M → R

Vol(M) = Vol(IPC(M))

is a polynomial function on M ¦ RRπ .
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Proof. It is enough to show that, for every T ∈ Rmax
Ã , the expression VolT (IP(M(T ))) is a polyno-

mial in {rk(S)}∅ ̸=S¦T . This follows by applying [CLS11, Theorem 13.4.4] to the stellahedral fan, for

which the nef divisors correspond to the monotone submodular rank functions by [EHL23, Propo-

sition 3.13]. □

4.19. Divisor associated to a multimatroid. Having fully defined the objects appearing on the

right-hand side of Theorem B, we now turn to the left-hand side, describing how an R-multimatroid

M defines a divisor DM on ΣÃ . In particular, using the notation of Section 2.4, we set

(25) DM :=
∑

S∈Rπ

rk(S)xS .

We say that an R-multimatroid is pseudo-cubical ifDM is a pseudo-cubical divisor on ΣÃ under the

inner product described in Section 3.5. By Lemma 3.10, this is equivalent to the condition that, for

every maximal chain C = (S1 ª · · · ª Sn) of nonempty colored sets, we have

(26) 2rk(Si) g rk(Si−1) + rk(Si+1) and rk(Sj) g rk(Sj−1)

for each i ∈ [n− 1] and j ∈ [n], where rk(S0) = 0. Similarly, an R-multimatroid M is cubical if DM

is a cubical divisor, which is equivalent to the condition that the inequalities (26) are all strict.

It is straightforward to check from the conditions (26) that the Boolean multimatroid is pseudo-

cubical for any (E, Ã). The following examples illustrate the behavior of DM in some somewhat

more interesting cases.

Example 4.20. For M as in Example 4.4, we have

DM = 2
(
x{1,2} + x{1̄,2̄}

)
+ 1

(
x{1,2̄} + x{1̄,2} + x{1} + x{1̄} + x{2} + x{2̄}

)
.

This is a pseudo-cubical but not cubical multimatroid, since, for instance, the chain

C = ({1} ¦ {1, 2})

yields the equality 2 · 1 = 0 + 2.

Example 4.21. For M as in Example 4.5, we have

DM = 4
(
x{1} + x{1̄}

)
+ 5

(
x{2} + x{2̄}

)
+ 6

(
x{1,2} + x{1̄,2} + x{1,2̄} + x{1̄,2̄}

)
.

This is a cubical R-multimatroid; for instance, the chain

C = ({1} ¦ {1, 2})

yields the inequality 2 · 4 > 0 + 6, and the chain

C = ({2} ¦ {1, 2})

yields the inequality 2 · 5 > 0 + 6.

Interestingly, the pseudo-cubical condition on DM in fact implies the R-multimatroid axioms.

This observation is useful in what follows, so we prove it in the following lemma.

Lemma 4.22. For any function rk : RÃ → R such that rk(∅) = 0, if the divisor
∑

S∈Rπ
rk(S)xS is

pseudo-cubical, then rk defines an R-multimatroid.



MULTIMATROIDS AND RATIONAL CURVES WITH CYCLIC ACTION 21

Proof. The second inequality of (26) clearly implies the monotonicity axiom (R2). We now show that

the submodularity axiom (R3) is implied by the first inequality of (26).

For every I ∈ RÃ , and for every x, y ∈ E \ I such that I ∪ {x, y} ∈ RÃ , applying (26) gives

2rk(I ∪ {x}) g rk(I) + rk(I ∪ {x, y}) and 2rk(I ∪ {y}) g rk(I) + rk(I ∪ {x, y}),

so we obtain

(27) rk(I ∪ {x}) + rk(I ∪ {y}) g rk(I) + rk(I ∪ {x, y}).

This shows that axiom (R3) holds when |S ∪T | = |S|+1 = |T |+1, by setting I = S ∩T . It is known

that the validity of (R3) in such cases implies its validity in full generality [Sch03, Theorem 44.1]. For

the sake of self-containment, we include a proof below.

Again setting I = S ∩ T , denote S = I ∪ {s1, . . . , sk} and T = I ∪ {t1, . . . , tℓ}. Then, for every

0 f a f k and 0 f b f ℓ, define the set

Xa,b := I ∪ {s1, . . . , sa, t1, . . . , tb} ∈ RÃ,

where Xk,0 := S, X0,ℓ := T , and X0,0 := I . Then (27) yields

rk(Xa,b−1) + rk(Xa−1,b) g rk(Xa−1,b−1) + rk(Xa,b)

for all a ∈ [k] and b ∈ [ℓ]. Taking the sum over all such a and b, we obtain the inequality

rk(S) + rk(T ) = rk(Xk,0) + rk(X0,ℓ) g rk(X0,0) + rk(Xk,ℓ) = rk(S ∩ T ) + rk(S ∪ T ),

which shows that (R3) holds and thus concludes the proof. □

Now, in the topological space M of R-multimatroids defined in Definition 4.7, define the subset

M
� := {M ∈ M | M is cubical} .

Then we have the following key properties.

Lemma 4.23. The space M � is a nonempty, open subset of RR×
π . In particular, M has nonempty

interior and is therefore a full-dimensional subset of RR×
π .

Proof. The conditions (26) with strict inequalities manifestly define M � as an open subset of RR×
π .

We are left to show that M � is nonempty. To do so, we define a specific cubical R-multimatroid M

by setting

(28) rk(S) :=

(
n+ 1

2

)
−

(
n+ 1− |S|

2

)

for each S ∈ RÃ . It is straightforward to see that the inequalities (26) hold and therefore M is cubical.

By Lemma 4.22, it follows that M is an R-multimatroid, so M ∈ M �. □

Remark 4.24. The fact that (28) defines an R-multimatroid and not an ordinary multimatroid is one

of the key reasons why we require the generalization from multimatroids to R-multimatroids in this

work. In fact, if n g 3, then no (E, Ã) can admit a cubical multimatroid. To see this, let M be a

multimatroid on (E, Ã) with n g 3, so that, for every maximal chain C = (S1 ª · · · ª Sn) in R×
Ã ,

one has rk(Si) ∈ N and rk(Si) f rk(Si+1) f rk(Si) + 1 for every i ∈ [n − 1]. The inequalities (26)

show that M can only be cubical if

(i) 2rk(S1) > rk(S2) and (ii) 2rk(S2) > rk(S1) + rk(S3).
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Condition (i) implies that rk(S1) ̸= 0 and so necessarily rk(S1) = 1. This implies that rk(S2) = 1

and so rk(S3) ∈ {1, 2}. None of these options is compatible with condition (ii), and so M cannot be

cubical.

At this point, we have all the ingredients necessary to prove Theorem B, so we turn in the next

section to its proof and then, in turn, to the deduction of Theorem A.

5. PROOFS OF MAIN THEOREMS

While Theorem B was stated in the introduction as a statement about multimatroids, we in fact

prove it for all R-multimatroids. The statement is as follows.

Theorem 5.1. For any R-multimatroid M on (E, Ã),

(29)

∫

Σπ

(DM)
n
= Vol(IPC(M)).

5.2. Proof of Theorem 5.1. When M is pseudo-cubical, Theorem 5.1 can be deduced from what we

have already done, so we begin with this case.

Lemma 5.3. Let M be a pseudo-cubical R-multimatroid. Then

(30) CΣπ,∗(DM) = IPC(M),

and furthermore, their volumes agree in the sense that

(31) VolÃ(CΣπ,∗(DM)) = Vol(IPC(M)),

where the left-hand side is defined by (18) and the right-hand side by (24). In particular, combining

(31) with Corollary 3.12, it follows that Theorem 5.1 holds when M is pseudo-cubical.

Proof. As noted in (15), we have

CΣπ,∗(DM) =
⋃

T∈Rmax
π

⋃

C∈MaxChain(T )

PÃC,∗
(DM),

where MaxChain(T ) again denotes the set of maximal chains C = (S1 ª · · · ª Sn) of colored sets

with Sn = T . Expanding the definition of PÃC,∗
(DM) as in (11) we obtain

PÃC ,∗(DM) = {x⃗ ∈ ÃC | x⃗ ∗ eS f rk(S) for all S ∈ C } .

We claim, in fact, that

PÃC ,∗(DM) = {x⃗ ∈ ÃC | x⃗ ∗ eS f rk(S) for all S ¦ T}.

Because the proof of this claim is somewhat cumbersome, we relegate it to Lemma 5.4 below. As-

suming it, and writing x⃗ ∈ ÃC in terms of the orthonormal basis {ei}i∈T for R
T

, we find

(32)
⋃

C∈MaxChain(T )

PÃC ,∗(DM) =

{
∑

i∈T

xiei ∈ R
T

g0

∣∣∣∣∣
∑

i∈S

xi f rk(S) for all S ¦ T

}
.

In view of (22), we conclude that (32) coincides with IP(M(T )), so taking the union over T ∈ Rmax
Ã

we see that the equality (30) holds. The fact that the notions of volume agree is the content of

equations (18) and (24), so (31) holds, as well. □
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Lemma 5.4. Let M be a pseudo-cubical R-multimatroid. Then

PÃC ,∗(DM) = {x⃗ ∈ ÃC | x⃗ ∗ eS f rk(S) for all S ¦ T}

for any T ∈ Rmax
Ã and any C ∈ MaxChain(T ).

Proof. Fix T ∈ Rmax
Ã and C ∈ MaxChain(T ). Up to relabeling, we can write T = [n] and

C = ([1] ª [2] ª · · · ª [n]).

Now, let x⃗ ∈ PÃC ,∗(DM). By definition, this means that x⃗ ∈ ÃC = cone(e[1], e[2] . . . , e[n]), so

x⃗ = a1e[1] + · · ·+ ane[n] = (a1 + · · ·+ an)e1 + (a2 + · · ·+ an)e2 + · · ·+ anen

for some a1, . . . , an g 0. Equivalently, x⃗ = c1e1 + · · · + cnen for some c1 g c2 g · · · g cn g 0. The

defining inequalities of PÃC ,∗(DM) then imply that

(33)
∑

i∈S

ci f rk(S)

whenever S = [j] for some j ∈ [n], and what we must prove is that the same is true for all S ¦ [n].

To prove this, we define a pair of functions

f : P([n]) → P([n]) and g : P([n]) → P([n])

on the power set P([n]) by setting f([j]) = g([j]) = [j] for each j ∈ [n], and setting

f(S) = S ∪ {aS} and g(S) = S \ {bS}

for any S that is not of this form, where aS and bS are defined by

aS := min{i ∈ [n] | i /∈ S}, bS := min{i ∈ S | i > aS}.

We first claim that, if (33) holds for f(S) and g(S), then it also holds for S. This is trivially true

when S = [j] for some j, so we prove it in the case where S is not of this form. The assumption that

(33) holds for f(S) means that caS
+

∑
i∈S ci f rk(f(S)). Since aS < bS and therefore caS

g cbS , it

follows that

(34) cbS +
∑

i∈S

ci f rk(f(S)).

On the other hand, the assumption that (33) holds for g(S) means that

(35) −cbS +
∑

i∈S

ci f rk(g(S)).

Adding (34) and (35) yields

2
∑

i∈S

ci f rk(f(S)) + rk(g(S)) f 2rk(S),

where the second inequality follows by applying the pseudo-cubicality condition (26) to any maxi-

mal chain containing g(S) ª S ª f(S). This shows that (33) holds for S, as claimed.

From here, we prove that (33) holds for all S ¦ [n] by descending induction, first on aS and

then on bS . Note that it suffices to prove the claim when S is not of the form [j] for any j ∈ [n],

since it holds by assumption when S is of this form. The base case of the first induction is the case

aS = n − 1. Then f(S) = [n] and g(S) = [n − 2], so (33) holds for both of these and therefore holds



24 E. CLADER, C. DAMIOLINI, C. EUR, D. HUANG, AND S. LI

for S. Suppose, then, that (33) holds for all S′ ¦ [n] with aS′ > k, and let S be such that aS = k. We

now introduce the second induction, a descending induction on bS .

The base case is bS = n. In this case, f(S) has af(S) > k, so (33) holds for f(S) by the first

inductive hypothesis, whereas g(S) = [k − 1], so (33) holds for g(S) by assumption. Therefore, (33)

holds for S, completing the base case. Finally, suppose that (33) holds for all S′′ ¦ [n] with bS′′ > ℓ,

and let S be such that bS = ℓ. Then f(S) has af(S) > k and g(S) has bg(S) > ℓ, so (33) holds for

both of these by the two inductive hypotheses. This implies that (33) holds for S, completing the

proof. □

Remark 5.5. Lemma 5.4 shows that the fan ΣÃ satisfies the global condition of [NR23, equation

(2.9)].

Remark 5.6. We note that the pseudo-cubical condition is critical in order for Lemmas 5.3 and 5.4

to hold. One indication of this, as pointed out in Remark 4.14, is that IPC(M) is always a polytopal

complex, whereas CΣπ,∗(DM) is not necessarily a polytopal complex unless M is pseudo-cubical.

For a specific example, consider the R-multimatroid M on E = {1} ⊔ {2} defined by

rk({1}) = 2, rk({2}) = 1, rk({1, 2}) = 3.

The figure below illustrates CΣπ,∗(DM) on the left and IPC(M) on the right.

e1

e1 e{1,2}

CΣπ,∗(DM)

PÃC ,∗(DM)
e1

e1 e{1,2}

IPC(M)

Note that in the cone ÃC corresponding to C = ({1} ¦ {1, 2}), the purple shaded polytope

PÃC ,∗(DM) on the left is bounded only by the two hyperplanes normal to the two incident rays. On

the other hand, IPC(M) is bounded by all three hyperplanes normal to the rays in R
T

g0. Thus, we

see that CΣπ,∗(DM) ̸= IPC(M) in this example, and moreover, that Lemma 5.4 fails: imposing the

defining equalities x⃗∗eS f rk(S) on each maximal cone separately (which defines CΣπ,∗(DM)) does

not coincide with imposing them simultaneously on all of RT
g0 (which defnes IPC(M)).

To illustrate Lemma 5.3 in the pseudo-cubical case, it is illuminating to look back at Examples 4.15

and 4.16. In particular, one can see visually that the independence polytopal complexes in both of

these examples are normal complexes of the fan ΣÃ illustrated in Figure 1, and that Example 4.16

is cubical while Example 4.15 is not; this is consistent with the computations of Examples 4.20 and

4.21. To see the same phenomenon in higher dimension, we turn to the following example.

Example 5.7. Suppose that n = 3, and let M be the cubical R-matroid defined by (28). Then, for any

T ∈ Rmax
Ã , the independence polytope IP(M(T )) is the polytope illustrated in Figure 7. In particular,

note that each maximal cone of ΣÃ contains exactly one vertex of the complex, which is consistent

with the claim that IPC(M) is a normal complex of ΣÃ associated to a cubical divisor.
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FIGURE 7. The polytope IP(M(T )) for M as in (28) and any T ∈ Rmax
Ã , with one of

the maximal cones of ΣÃ shaded.

Having proven Theorem 5.1 in the pseudo-cubical case, the general case follows almost immedi-

ately by polynomiality considerations.

Proof of Theorem 5.1. Letting M vary in M , both sides of the theorem can be viewed as functions on

M —that is, functions on the parameters (rk(S))S∈R×
π

. The left-hand side is manifestly polynomial

in these parameters, and the right-hand side is polynomial as well by Lemma 4.18. Lemma 5.3

shows that the theorem holds when M is pseudo-cubical, so it in particular holds when M is cubical.

Therefore, the two sides of Theorem 5.1 agree on the subset M � ¦ M , which is nonempty and open

by Lemma 4.23. Polynomiality then implies that they agree on all of M , proving the result. □

The proof of Theorem 5.1 shows that it can actually be seen as an identity between polynomials

functions in the parameters (rk(S))S∈R×
π

on the space R
R×

π

g0 . For values of these parameters that do

not necessarily define an R-multimatroid, the left-hand side of the theorem manifestly still makes

sense; as for the right-hand side, note that (23) can be taken as the definition of IPC(M), and while

it may not be a polytopal complex for values of (rk(S))S∈R×
π

that do not satisfy the R-multimatroid

axioms, it is nevertheless a union of polytopes with finite volume. In the following subsection, we

rephrase this equality of polynomials in a different basis for RR×
π , which is what will ultimately

allow us to deduce Theorem A.

5.8. An alternative formulation. Recall from (5) that there is an alternative set of generators hS for

A∗(ΣÃ), and the divisors xS can be expressed in terms of the divisors hS via Lemma 2.11. Thus, we

can rewrite

(36) DM =
∑

S∈R×
π

aShS

for coefficients a⃗ = (aS)S∈R×
π

. In particular, the left-hand side of Theorem 5.1 is equal to the value

at this particular choice of a⃗ of the polynomial

I (⃗a) :=

∫

Σπ


 ∑

S∈R×
π

aShS




n

.

The right-hand side of Theorem 5.1 can also be expressed as a value of a polynomial in a⃗, and this

polynomial turns out to have a very nice description. To state this description, for any T ∈ Rmax
Ã



26 E. CLADER, C. DAMIOLINI, C. EUR, D. HUANG, AND S. LI

and any S ¦ T , define the simplex

∆T
S := conv

(
{0} ∪ {ej | j ∈ S}

)
¦ R

T
.

Then the intersection of IPC(M) with R
T

can be expressed as a Minkowski sum of these simplices,

as the following proposition verifies.

Proposition 5.9. Let M be an R-multimatroid. Then

Vol(IPC(M)) =
∑

T∈Rmax
π

VolT


 ∑

S∈R×
π

aS∆
T
S∩T


 ,

where the sum denotes the Minkowski sum of polytopes and the coefficients a⃗ = (aS)S∈R×
π

are

defined by (36).

Before proving the proposition, we illustrate it in some examples.

Example 5.10. Consider the R-multimatroid in Example 4.5, whose independence polytopal com-

plex is illustrated in Example 4.15. Via the change of coordinates from {xS} to {hS} in Lemma 2.11,

we obtain

DM = h12̄ + h1̄2,

so a12̄ = a1̄2 = 1 and aS = 0 for all other S ∈ R×
Ã . Thus, taking T = {1, 2} on the right-hand side of

Proposition 5.9, one obtains the following Minkowski sum of polytopes:

1∆T
{1,2̄}∩{1,2} + 1∆T

{1̄,2}∩{1,2} = 1∆T
{1} + 1∆T

{2}.

The contribution to the proposition from this T then follows from the equality

IPC(M({1, 2})) = 1∆T
{1} + 1∆T

{2},

which can be seen from Example 4.15 because IPC(M({1, 2})) is a square with vertices at 0, e1, e2,

and e1+e2. On the other hand, a similar computation shows that the contribution to the proposition

from T = {1̄, 2} is

IPC(M({1̄, 2})) = 1∆T
{1̄,2},

which can again be seen from Example 4.15 because IPC(M({1̄, 2})) is the standard simplex in its

quadrant.

Example 5.11. Now consider the R-multimatroid in Example 4.5, whose independence polytopal

complex is illustrated in Example 4.16. Again applying Lemma 2.11, we find

DM = −1 (h1 + h1̄)− 2 (h2 + h2̄) + 3
(
h{1,2} + h{1̄,2} + h{1,2̄} + h{1̄,2̄}

)
.

Hence, the Minkowski sum of polytopes on the right-hand sum of Proposition 5.9 for T = {1, 2} is

− 1∆T
{1}∩{1,2} − 2∆T

{2}∩{1,2} + 3∆T
{1,2̄}∩{1,2} + 3∆T

{1̄,2}∩{1,2} + 3∆T
{1,2}

=− 1∆T
{1} − 2∆T

{2} + 3∆T
{1} + 3∆T

{2} + 3∆T
{1,2}

= 2∆T
{1} + 1∆T

{2} + 3∆T
{1,2}.

Thus, the statement of the proposition for T = {1, 2} is that

IP(M({1, 2})) = 2∆T
{1} + 1∆T

{2} + 3∆T
{1,2},
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which one indeed sees is the case from the figure below.

A similar decomposition applies in this example for all other T ∈ Rmax
Ã .

Equipped with the intuition of these examples, we are prepared to prove the proposition in gen-

eral.

Proof of Proposition 5.9. By the definition of Vol(IPC(M)) in (24), it suffices to prove that, for any

T ∈ Rmax
Ã , one has

(37) IP(M(T )) =
∑

S∈R×
π

aS∆
T
S∩T .

This follows from the computation of the independence polytope of a matroid as a Minkowski sum

of simplices given in [ABD10]. Before stating their result, we require some notation. Note, either us-

ing Lemma 2.11 or through [ABD10], that the free module Z[{xS}S¦T ] is isomorphic to Z[{hTS}S¦T ],

where

hTS :=
∑

S′¦T
S∩S′ ̸=∅

xS′ .

Thus, one can write

DM(T ) :=
∑

S¦T

rk(S)xS =
∑

S¦T

aTSh
T
S

for uniquely defined aTS ∈ Z. In fact, [ABD10, Proposition 4.3] shows that

(38) IP(M(T )) =
∑

S¦T

aTS∆
T
S ,

so the content of the proof of (37) is relating the coefficients aTS to the coefficients aS . We can unpack

this relationship using the commutative diagram

Z[{hS}S∈R×
π
] Z[{hTS}S¦T ]

Z[{xS}S∈R×
π
] Z[{xS}S¦T ],

∼= ∼=

where the upper horizontal arrow is hS 7→ hTS∩T and the lower horizontal arrow is

xS 7→




xS if S ¦ T

0 otherwise.

In particular, applying the commutativity of this diagram to
∑

S∈R×
π
aShS shows that

∑

S¦T

rk(S)xS =
∑

S∈R×
π

aSh
T
S∩T .
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Re-writing the right-hand side slightly gives

∑

S¦T

rk(S)xS =
∑

S¦T




∑

S′∈R×
π

S′∩T=S

aS′


hTS ,

from which we deduce

aTS =
∑

S′∈R×
π

S′∩T=S

aS′ .

Combining this with (38) shows (37) and thus completes the proof. □

In light of Proposition 5.9, we define the polynomial

V (⃗a) :=
∑

T∈Rmax
π

VolT


 ∑

S∈R×
π

aS∆
T
S∩T




in the parameters a⃗. The equality of Theorem 5.1, when translated into these parameters, now

becomes the following.

Theorem 5.12. Theorem 5.1 is equivalent to the equality of polynomials I (⃗a) = V (⃗a).

Proof. As above, fix an R-multimatroid M and writeDM =
∑

S∈R×
π
aShS . Then the left-hand side of

(29) is equal to I (⃗a) by definition, and Proposition 5.9 shows that the right-hand side of (29) is equal

to V (⃗a). In particular, Theorem 5.1 is equivalent to the statement that I (⃗a) = V (⃗a) on M , the subset

of RR×
π consisting of values of the parameters a⃗ that define an R-multimatroid. Since both sides are

polynomial and M contains an open subset of RR×
π , this is equivalent to the corresponding equality

on the entirety of RR×
π . □

5.13. Proof of Theorem A. Having re-expressed Theorem 5.1 as an equality of polynomials in this

way, it follows that the coefficient of any monomial in I (⃗a) agrees with the corresponding coefficient

in V (⃗a). The coefficient of a monomial in I (⃗a) is, by definition, an integral of a monomial in the hS ’s.

On the other hand, the coefficient of the corresponding monomial in V (⃗a) is the mixed volume of

certain simplices, for which a previously-known formula is recorded as the following lemma.

Lemma 5.14. For a subset S ¦ [n], define ∆S ¦ Rn as the convex hull of {0} ∪ {ei | i ∈ S}. Then,

for subsets S1, . . . , Sn of [n] (with repetitions allowed), the mixed volume MV of the corresponding

simplices is given by

MV(∆S1
, . . . ,∆Sn

) =




1 there exists a bijection º : [n] → [n] such that º(i) ∈ Si for each i

0 otherwise.

Proof. Standard results in toric geometry translate mixed volumes to intersection numbers of nef

divisors [Ful93, Chapter 5.4]. Applying this to polystellahedral fans, as done in [EL23, Section 2.2],

one finds that the lemma is a restatement of [EL23, Theorem 1.3 and Lemma 5.2]. One can also

deduce the lemma from [Pos09, Theorem 5.1] or from [EFLS22, Theorem A(b)]. □

We are now ready to prove Theorem A, whose statement we recall for convenience.
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Theorem A. For any collection S1, . . . , Sn ∈ RÃ (with repetitions allowed), we have

(A)

∫

Σπ

hS1
· · ·hSn

= |TÃ(S1, . . . , Sn)|,

where

TÃ(S1, . . . , Sn) :=

{
T ∈ Rmax

Ã

∣∣∣∣∣
there exists a bijection º : [n] → T

with º(i) ∈ Si for each i

}
.

Proof. The left-hand side of (A) is the coefficient of the monomial aS1
· · · aSn

in the polynomial I (⃗a).

The coefficient of the same monomial in V (⃗a) is, by definition, the sum of mixed volumes
∑

T∈Rmax
π

MV
(
∆T

S1∩T , . . . ,∆
T
Sn∩T

)
.

For each T ∈ Rmax
Ã , Lemma 5.14 states that

MV
(
∆T

S1∩T , . . . ,∆
T
Sn∩T

)
=




1 if T ∈ TÃ(S1, . . . , Sn)

0 otherwise,

so the coefficient of aS1
· · · aSn

in V (⃗a) is precisely the right-hand side of (A). Thus, the two sides

agree by Theorem 5.1 and Theorem 5.12. □

6. INTERSECTION NUMBERS OF PSI-CLASSES

One way in which to understand the special role played by the generators hS in the Chow ring of

ΣÃ is to look more closely at the uniform case, in which case ΣÃ is the fan Σr
n studied in [CDLR23].

In this section, we prove that the generators hS in the uniform case are pullbacks of psi-classes under

certain forgetful morphisms, analogously to the results of [DR22] for the case of Losev–Manin space.

This allows us to reprove some cases of Theorem A from a more geometric perspective, assuming

some familiarity with the tools and language of moduli of curves. Throughout what follows, we

assume that Ã is uniform with |Ei| = r for each i, so we can write

(39) E = {10, 11, . . . , 1r−1} ⊔ {20, 21, . . . , 2r−1} ⊔ · · · ⊔ {n0, n1, . . . , nr−1},

and we assume that r g 2.

6.1. Background on the moduli space. The papers [CDH+23, CDLR23] study the moduli space L
r

n

parameterizing the following data:

• an r-pinwheel curve C, which is a rational curve consisting of a central projective line from

which r chains of projective lines (called spokes) emanate;

• an order-r automorphism Ã of C;

• a pair of distinct fixed points x± ∈ C of Ã;

• n labeled r-tuples (zj1)j∈Zr
, . . . , (zjn)j∈Zr

of points zji ∈ C (called light points) satisfying

Ã(zji ) = zj+1 mod r
i

for each i, j, which are allowed to coincide with one another and with x±;

• an additional labeled r-tuple (yℓ)ℓ∈Zr
satisfying

Ã(yℓ) = yℓ+1 mod r

for each ℓ, whose elements are distinct from one another as well as from x± and zji .
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These marked points are subject to a stability condition, the details of which can be found in [CDH+23,

Section 2.1]; see Figure 8 for an example element. Note that via the expression (39) we can view the

light points as indexed by elements of E, and the light points on any given spoke form a colored set.

z11
z21

z01

z12

z22

z02

z24

z04

z14

z03

z13

z23

y0

y1

y2

FIGURE 8. A sample element of L
3

4, where each circle represents a projective line

and Ã is the rotational automorphism. Not pictured are the marked points x+ and

x−, which are the two fixed points of Ã and must both lie on the central component.

When r = 2, the moduli space L
r

n is the toric moduli space constructed by Batyrev–Blume [BB11a,

BB11b], which is the toric variety XBn
associated to the type-B permutohedral fan Σ2

n. When r >

2, on the other hand, the moduli space is no longer toric, so in particular it no longer coincides

with XΣr
n

. Nevertheless, the main result of [CDLR23] is that L
r

n can be viewed as a wonderful

compactification (the closure of a very affine variety) inside XΣr
n

, and that the inclusion induces an

isomorphism

A∗(Σr
n)

∼= A∗(L
r

n).

Furthermore, for any chain C of colored subsets of E, the class of the torus-invariant stratum inXΣr
n

corresponding to the cone ÃC restricts to a boundary stratum SC ¦ L
r

n. Roughly, if C is a chain of

length k, then SC is the closure of the locally closed subvariety SC consisting of curves in which each

spoke has length k and the distribution of marked points is specified by C ; see [CDH+23, Section 4]

for the precise definition.

In particular, the generator xS ∈ A∗(Σr
n) restricts to the boundary divisor [XS ] ∈ A∗(L

r

n), which

is the class of the closure of the locus XS of curves in which each spoke has length one and the light

marked points on the y0-spoke are precisely those indexed by S. The generators hS , on the other

hand, restrict to pullbacks of certain psi-classes. To explain this, we introduce the moduli space M
1

S ,

which parameterizes the following data:

• a curve C that consists of a chain of projective lines;

• a pair of distinct points x± ∈ C;

• a tuple (zi)i∈S of points zi ∈ C (again called light points), which are allowed to coincide

with one another and with x±;

• an additional marked point y ∈ C, which is not allowed to coincide with any other marked

point.
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These marked points, again, are subject to a stability condition made precise in [CDH+23, Section

3.1]; to state it succinctly, one can view M
1

S as a Hassett space M0,w with weight vector

w =



1

2
+ ϵ,

1

2
+ ϵ, ϵ, . . . , ϵ︸ ︷︷ ︸

|S| copies

, 1




for 0 < ϵ < 1/(|S| + 2). This, in particular, forces that x± lie together on one end-component of the

chain C and y lies on the opposite end-component.

Remark 6.2. We briefly digress to notice that, for any T ∈ Rmax
Ã , the toric variety XΣT

associated

to the affine permutohedral fan(defined in Remark 2.8) can be identified with an open subvariety

UT ¦ M
1

T . When one observes that M
1

T can be identified with the toric variety of the stellahedral

fan, this open inclusion is the inclusion of toric varieties corresponding to the inclusion of the affine

permutohedral fan, in the stellahedral fan. To provide a modular description, for any element of

M
1

T , let C0 ¦ C be the component containing x±, and choose coordinates C0 in which x+ = 1,

x− = −1, and the unique node of C0 (or the point y, if there is no node) is equal to 0. Define UT

to consist of those curves for which, in these coordinates, one has zi ̸= ∞ for each i. Via these

coordinates, UT can be viewed as an iterated blow-up of An along the loci where k coordinates are

equal to zero, in decreasing order from k = n to k = 2, and this gives an identification UT = XΣT
.

In light of this observation, the inclusion of fans ΣT ↪→ Σr
n induces an inclusion

UT ↪→ XΣr
n
,

and the intersection of UT with L
r

n ↪→ XΣr
n

is the union of the locally closed boundary strata SC for

C a chain of subsets of T . As T varies, these intersections UT ∩ L
r

n cover L
r

n, so this observation

can be viewed as the moduli-theoretic analogue of the covering of ΣÃ by the fans ΣT described in

Remark 2.8 and the covering of IPC(M) by the polytopes IP(M(T )) described in Remark 4.17.

Returning to the definition of hS via psi-classes, recall that one can define psi-classes on any

Hassett space as the first Chern classes of the cotangent line bundles at the marked points. In the

case of M
1

S , this in particular yields a class

Èy := c1(Ly) ∈ A1(M
1

S),

where Ly , roughly speaking, is the line bundle on M
1

S whose fiber at a marked curve C is the

cotangent line to C at the point y. More precisely, Ly = Ã∗
yÉC1

S
/M

1

S

, where C1
S → M

1

S is the universal

curve and Ãy : M
1

S → C1
S is the section corresponding to the marked point y.

Now, any S ∈ R×
Ã induces a morphism

FS : L
r

n → M
1

S

that forgets all of the marked points in C except for x±, y0, and the light marked points zji indexed

by ij ∈ S. Equipped with the morphism FS , we claim that the generators hS can be described as

follows.

Lemma 6.3. Under the isomorphism A∗(Σr
n)

∼= A∗(L
r

n) given by xS 7→ [XS ], one has

hS = F ∗
S(Èy).
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Proof. Similarly to the boundary divisors on L
r

n, there are boundary divisors D1
T ∈ A1

(
M

1

S

)
for

each nonempty subset T ¦ S. Namely, D1
T is the class of closure of the locus of curves consisting of

two components, one containing the marked points y and zi with i ∈ T , and the other containing

the remaining marked points.

We claim, first, that

(40) Èy =
∑

∅ ̸=T¦S

D1
T .

The proof is by induction on |S|. When |S| = 0, the moduli space M
1

S
∼= M0,3 is a single point,

so both sides of (40) are zero for dimension reasons. Suppose, now, that (40) holds on M
1

S′ with

|S′| = |S| − 1. To prove that it holds on M
1

S , consider the forgetful map

f : M
1

S → M
1

S\{⋆}

given by forgetting one of the light points z⋆ and stabilizing. A standard comparison argument (see

e.g., [Koc, Lemma 1.3.1]) shows that the following equation holds in A∗
(
M

1

S

)
:

(41) f∗Èy = Èy −D1
{⋆},

in which the Èy on the left-hand side lies on M
1

S\{⋆} and the Èy on the right-hand side lies on M
1

S .

(The idea of the proof of (41) is that the line bundles Ly and f∗Ly agree away from the locus of

curves that are stabilized under f , which is precisely the subvariety whose class is D1
{⋆}.) On the

other hand, the boundary divisors are related under f by

(42) f∗D1
T = D1

T +D1
T∪{⋆}

for any nonempty subset T ¦ S \ {⋆}. Pulling back both sides of the equation (40) on M
1

S\{⋆} under

f and applying equations (41) and (42), one obtains

Èy −D1
{⋆} =

∑

∅ ̸=T¦S\{∗}

D1
T +D1

T∪{⋆}.

Rearranging this equation yields the equation (40) on M
1

S .

Having proven (40), we deduce the lemma by pulling back both sides under FS : L
r

n → M
1

S .

Namely, it is straightforward from the definitions of the boundary divisors to see that

F ∗
S(D

1
T ) =

∑

R∩S=T

[XR],

so (40) yields

F ∗
S(Èy) =

∑

∅ ̸=T¦S

∑

R∩S=T

[XR] =
∑

R∩S ̸=∅

[XR],

which is precisely hS under the identification of [XR] ∈ A1(L
r

n) with xR ∈ A1(Σr
n). □

Remark 6.4. One might wonder why we do not also consider classes F ∗
S(Èx±) or F ∗

S(Èzi), which

can also be defined for any S. But in fact, one can show that

F ∗
S(Èx±) = 0 and F ∗

S(Èzi) = −h{i} for any i ∈ S,
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so no new divisors on L
r

n are obtained in this way. The key point in the proof of these observations

is that the analogues for Èx± and Èzi of equation (41) are

f∗Èx± = Èx± and f∗Èzi = Èzi ,

since the marked points x± and zi never lie on a component contracted by f . Iterating this observa-

tion and using that Èx± = 0 on M
1

∅
for dimension reasons shows that Èx± = 0 on every M

1

S . On

the other hand, one can check (for example, using [Sha19, Lemma 2.7]) that Èzi = −Èy on M
1

{1},

from which the equation F ∗
S(Èzi) = −h{i} follows.

6.5. Geometric perspective on Theorem A. Given the perspectives on xS via boundary divisors

on L
r

n and hS via psi-classes, one can prove at least some cases of Theorem A using geometric

techniques from the study of moduli of curves. Although we were not able to prove Theorem A in

full generality using these techniques, we believe that it is an illuminating perspective that deserves

further exploration, so we illustrate the ideas in this last subsection. Throughout what follows,

we identify xS and hS with their images under the isomorphism A∗(Σr
n)

∼= A∗(L
r

n), so that xS

is the boundary divisor associated to S and hS is defined via these boundary divisors by (5), or

equivalently (via Lemma 6.3) it is given by hS = F ∗
SÈy .

We begin with a lemma that follows directly from the relations in A∗(Σr
n)

∼= A∗(L
r

n). Here, for

every S ∈ RÃ , we denote by S the image of S in [n]—in other words, the set obtained from S by

forgetting the superscripts.

Lemma 6.6. Let k ∈ [n], and let S ∈ RÃ be such that k ∈ S. Then

h{kj} · xS = 0

for all j ∈ Zr.

Proof. By assumption we have ki ∈ S for some i ∈ Zr, and without loss of generality, we can assume

i ̸= j, since the linear relation (4) in A∗(L
r

n) implies h{kj} = h{kj′}. Thus, we have kj /∈ S, so the

quadratic relations (3) for A∗(L
r

n) imply that xS′xS = 0 for all S′ ∈ RÃ containing kj . Since

h{kj} =
∑

kj∈S′

xS′ ,

it follows that h{kj}xS = 0, as claimed. □

This lemma already allows us to give a geometric proof of Theorem A in the case where the sets

S1, . . . , Sn ∈ RÃ define a maximal chain.

Proposition 6.7. Let (S1 ª S2 ª · · · ª Sn) ∈ MaxChain(RÃ). Then
∫

L
r

n

hS1
hS2

· · ·hSn
= 1,

so in particular, Theorem A holds in this case.

Proof. The proof is by induction on n. As a base case, suppose that n = 1. Then the integral in

question is ∫

L
r

1

hS ,
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in which S is a singleton. But hS = xS when n = 1, so we have

∫

L
r

1

hS =

∫

L
r

1

xS ,

which equals 1 because L
r

1
∼= P1 and the boundary divisor xS is the class of a single point.

Now, suppose that the lemma holds on L
r

n−1. The hypothesis that the chain is maximal implies

that S1 = {kj} for some kj ∈ E, and we claim that, if S′
i := Si \ {k

j} for each i ∈ [n], then

(43)

∫

L
r

n

hS1
· · ·hSn

=

∫

L
r

n−1

hS′
2
· · ·hS′

n
.

If we can prove this, then the proposition will follow by the induction hypothesis.

To prove (43), we first note that, whenever S ∈ RÃ is such that k ∈ S, Lemma 6.6 implies

hS1
xS = h{kj} · xS = 0.

It follows that, in the product hS1
hS2

· · ·hSn
, one can replace hSi

for each i ∈ {2, . . . , n} by

∑

S∩Si ̸=∅

k/∈S

xS = ϕ∗
(
hS′

i

)
,

where ϕ : L
r

n → L
r

n−1 is the forgetful map forgetting the light orbit indexed by k. That is,

hS1
hS2

· · ·hSn
= hS1

ϕ∗
(
hS′

2
· · ·hS′

n

)
.

It therefore follows from the projection formula that

∫

L
r

n

hS1
· · ·hSn

=

∫

L
r

n−1

ϕ∗(hS1
)hS′

2
· · ·hS′

n
,

so to prove (43), it suffices to prove that ϕ∗(hS1
) = 1. To see this, express

hS1
= xS1

+
∑

S§S1

|S|g2

xS .

Then

ϕ∗(hS1
) = (ϕ|XS1

)∗
(
1XS1

)
+

∑

S§S1

|S|g2

(ϕ|XS
)∗ (1XT

) ,

where we recall that XS ¦ L
r

n is the subvariety such that [XS ] = xS ∈ A1(L
r

n). Geometrically,

one sees that ϕ|XS1
: XS1

→ L
r

n−1 is an isomorphism, so (ϕ|XS1
)∗

(
1XS1

)
= 1 (see, for example,

[CDH+23, Proposition 5.5]). On the other hand, for each S appearing in the summation above,

ϕ|XS
: XS → L

r

n−1 reduces the dimension, so (Ã|XS
)∗ (1XS

) = 0. Thus, we indeed have ϕ∗ (hS1
) = 1,

so the proposition is proved. □

Remark 6.8. In fact, the proof of Proposition 6.7 holds as long as the underlying sets are strictly

nested (that is, S1 ª · · · ª Sn), without necessarily assuming the stronger condition that S1 ª · · · ª

Sn.
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Remark 6.9. The equation (43) can also be used to prove that Theorem A holds in the case where

S1, . . . , Sn are pairwise disjoint. The main idea of the argument is to use the relations in A∗(L
r

n) to

argue that ∫

L
r

n

hS1
· · ·hSn−1

hSn
=

∑

a∈Sn

∫

L
r

n

hS1
· · ·hSn−1

h{a}

by applying the pairwise disjoint hypothesis, and then to apply (43) to rewrite this as

∑

a∈Sn

∫

L
r

n−1

hS1\{a} · · ·hSn\{a}.

This sets up an induction on n from which Theorem A immediately follows.

Building off of Proposition 6.7, one can prove Theorem A for collections S1, . . . , Sn ∈ RÃ that are

nested but not strictly nested. The key ingredient in the proof of this generalization is the following

geometric lemma.

Lemma 6.10. Let S ∈ RÃ , and choose any element ⋆ ∈ S. Then

(hS)
2 =




hShS\{⋆} if |S| > 1,

0 if |S| = 1
.

Proof. When |S| = 1, the result follows from Lemma 6.6. Now, suppose that |S| > 1. Choose any

element ⋆ ∈ S, and set

S′ := S \ {⋆}.

By Lemma 6.3, we have hS = F ∗
S(Èy) and hS′ = F ∗

S′(Èy). Furthermore, if f : M
1

S → M
1

S′ is the map

forgetting the light marked point z⋆, we have FS′ = f ◦ FS . Applying (41) then shows

hShS′ = F ∗
S(Èy)F

∗
S(f

∗(Èy))

= F ∗
S(Èy)F

∗
S(Èy −D1

{⋆})

= F ∗
S(Èy)

2 − F ∗
S(Èy ·D

1
{⋆})

= (hS)
2 − F ∗

S(Èy ·D
1
{⋆}).

However, we have Èy · D1
{⋆} = 0, because in the divisor D1

{⋆}, the marked point y lies on a genus-

zero component with only three special points, so its cotangent line bundle is trivial. Therefore,

hShS′ = (hS)
2, as claimed. □

Proposition 6.11. Let S1, . . . , Sn ∈ R×
Ã be such that S1 ¦ S2 ¦ · · · ¦ Sn. Then

∫

L
r

n

hS1
hS2

· · ·hSn
=




1 if |Si| g i for all i ∈ [n],

0 otherwise.

In particular, Theorem A holds in this case.

Proof. First, we prove that the integral equals zero whenever |Si| < i for some i ∈ [n]; the proof is

by induction on the smallest i for which this occurs. Since each Si has size at least 1, the base case is

i = 2: that is, we suppose that |S2| < 2. This means that S1 = S2 = {⋆} for some ⋆ ∈ E, but then

hS1
hS2

= h{⋆}h{⋆} = 0
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by Lemma 6.10.

Now, fix i > 1, and suppose that the integral equals zero for all chains

C
′ = (S′

1 ¦ S′
2 ¦ · · · ¦ S′

n)

of colored sets such that |S′
i−1| < i− 1. Fix a chain

C = (S1 ¦ S2 ¦ · · · ¦ Sn)

with |Si−1| = i− 1 but |Si| < i. This forces that Si−1 = Si, and so there exists some k < i with

Sk−1 ª Sk = Sk+1 = · · · = Si−1 = Si.

Now, choose any ⋆ ∈ Sk−1 \ Sk, and for each j ∈ {k, . . . , i− 1}, set S′
j := Sj \ {⋆}. Then

hSj
hSi

= hS′
j
hSi

by Lemma 6.10. It follows that we can replace the chain C with the chain

C
′ := (S1 ¦ · · · ¦ Sk−1 ¦ S′

k ¦ · · · ¦ S′
i−1 ¦ Si ¦ · · · ¦ Sn)

without affecting the integral in question, but the integral for the chain C ′ equals zero by the induc-

tion hypothesis.

We have therefore proven that the integral equals zero unless |Si| g i for all i, and what remains

to be shown is that it equals 1 when this condition is satisfied. This proof is again by induction, this

time on the number

r(C ) :=
∣∣{i ∈ {1, . . . , n− 1}

∣∣ Si = Si+1

}∣∣

of repetitions in C .

If r(C ) = 0, then C is strictly nested and the statement follows from Proposition 6.7. Suppose,

then, that C = (S1 ¦ · · · ¦ Sn) is a chain with at least one repetition and that the proposition holds

for all chains C ′ with r(C ′) < r(C ).

Let i be the minimum index such that Si = Si+1. It follows that Si−1 ª Si, so there exists

x ∈ Si \ Si−1. Let

Ti := Si \ {x},

which is nonempty by the condition |Si+1| g i+ 1 g 2. Then

hSi
hSi+1

= hTi
hSi+1

.

by Lemma 6.10, so we can replace the chain C by the chain

C
′ := (S1 ¦ · · · ¦ Si−1 ¦ Ti ¦ Si+1 ¦ · · · ¦ Sn)

without affecting the integral in question. As long as Si−1 ª Ti, we have r(C ′) < r(C ) and therefore

the integral equals 1 by the induction hypothesis. If Si−1 = Ti, then we we repeat the argument,

replacing Si−1 by Ti−1 := Si−1 \ {y} for y ∈ Si−1 \ Si−2. This process eventually terminates, so the

integral equals 1 by the inductive hypothesis, completing the proof. □
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