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Curve-counting is a subject that dates back hundreds, even
thousands, of years. Broadly speaking, its goal is to an-
swer questions about the number of curves in some am-
bient space that satisfy prescribed conditions, such as the
following:• Howmany conics pass through 昀椀ve given points in the

plane?• Howmany lines pass through four given lines in three-
space?• How many lines lie on the quintic threefold{ÿ51 + ÿ52 +⋯+ ÿ55 = 0}
in ℂℙ4?

The answer to the 昀椀rst of these questions was known to the
ancient Greeks: given 昀椀ve (suf昀椀ciently general) points inℝ2, there is exactly one conic that passes through all 昀椀ve
of them. The method by which the ancient Greeks would
have arrived at this answer is by an explicit construction,
given the coordinates of the 昀椀ve points, of the conic that
passes through them.

Themodern perspective on curve-counting is somewhat
different. Rather than seeking explicit constructions of
the curves being counted—which can be unnecessarily
cumbersome if our ultimate goal is simply enumeration—
one instead searches for answers that are deformation-
invariant: for example, a count of conics through 昀椀ve
given points that remains unchanged if the 昀椀ve points are
slightly varied. This property not only allows us to answer
entire families of questions simultaneously (not just “how
many conics pass through these 昀椀ve points?” but “how
many conics pass through any 昀椀ve general points?”), but
it also introduces the possibility of answering a dif昀椀cult
question by deforming it to a simpler one.

For instance, suppose one wishes to answer the second
question posed at the beginning of the article: how many
lines pass through four given lines ℓ1, ℓ2, ℓ3, ℓ4 in ℝ3? If
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the answer to this question is deformation-invariant, then
we can deform our lines until they meet in pairs, so thatℓ1∩ℓ2 = {�} and ℓ3∩ℓ4 = {�}. At this point, a bit of re昀氀ec-
tion is enough to see that there are exactly two lines passing
through all four of our original lines: one that joins � and�, and one where the plane spanned by ℓ1 and ℓ2 meets
the plane spanned by ℓ3 and ℓ4.

The deformation-invariance of enumerations like this
one was 昀椀rst proposed by Hermann Schubert in the 1870s
under the name Prinzip der Erhaltung der Anzahl, or prin-
ciple of convseration of number [Sch79]. But exactly when
does this principle hold, and why? A rigorous explana-
tion of Schubert’s enumerations was missing from the
mathematical literature for decades, and the hunt for such
an explanation was deemed important enough to appear
on Hilbert’s famous list of 23 unsolved problems that
shaped twentieth-century mathematics, in which the 昀椀f-
teenth problem is listed (in the English translation that
appeared in the Bulletin of the AMS in 1902) as “rigorous
foundation of Schubert’s enumerative calculus.”

The solution to Hilbert’s 昀椀fteenth problem came in the
second half of the twentieth century, with the twin devel-
opments of moduli spaces and intersection theory. Amod-
uli space, roughly speaking, is a geometric space (often a
variety ormanifold) inwhich each point corresponds to an
object of some type being studied. For example, someone
wishing to study the number of conics passing through 昀椀ve
points in the planemight form amoduli spaceℳ in which
each point corresponds to a plane conic. From this per-
spective, the conics passing through a given point form a
subvariety of ℳ, and the original enumerative question
is reinterpreted as a count of the number of intersection
points of the 昀椀ve corresponding subvarieties. The advan-
tage of this reframing is that it allows curve-counting ques-
tions to be attacked via the tools of intersection theory,
a deep mathematical subject studying the structure of in-
tersections within an ambient variety that was developed
(in large part with precisely the application to Hilbert’s 昀椀f-
teenth problem in mind) over many decades in the early
twentieth century.

Through the lens of intersection theory, one can see
more clearly the sense in which curve counts are—or are
not—deformation-invariant. First, an intersection theory
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problem generally only has a deformation-invariant an-
swer when one works over an algebraically closed 昀椀eld (for
instance, ℂ rather than ℝ) and within a compact ambient
variety. To illustrate the 昀椀rst of these limitations, consider
the intersection of the parabola þ = ý2 and the line þ = �
in ℝ2. These curves intersect in two points for � > 0, but
for � < 0, the intersection points are only visible if we work
not in ℝ2 but in ℂ2. In fact, so long as we count intersec-
tions “with multiplicity,” the parabola þ = ý2 and the lineþ = � in ℂ2 meet in exactly two points for any choice of �.

To see why compactness is necessary, consider the ques-
tion “in how many points do two lines in ℝ2 intersect?”
The answer to this question can change when the lines are
deformed, because the lines can become parallel, which ef-
fectively means that their point of intersection has “fallen
off” the noncompact ambient space ℝ2. To avoid this
phenomenon, one should replace ℝ2 by its compacti昀椀ca-
tion ℝℙ2, in which any two lines indeed meet in a single
point—so long as they are not the same line.

This brings us to one 昀椀nal issue of deformation-
invariance that intersection theory is equipped to solve:
can an intersection still be said to be deformation-
invariant if the subvarieties are deformed so far that they
meet along an entire curve? For instance, is there a sensi-
ble way in which to interpret the “number of intersection
points” of two identical lines inℝℙ2 as 1, so that this num-
ber is truly insensitive to deformations of the lines? The
answer to this question is “yes,” and it is precisely what
the subject of excess intersection theory addresses.

Applying these ideas to the context of enumerative ge-
ometry led mathematicians, in the late twentieth century,
to express curve counts as certain intersection numbers
on a moduli space that are now called Gromov–Witten
invariants. This development allowed the deformation-
invariance of curve counts to 昀椀nally be expressed in a
robust and rigorous way, but the work was far from
over. In particular, the project of actually computing
Gromov–Witten invariants is dif昀椀cult and ongoing, and
moreover, there are other methods of formalizing curve
counts (such as Donaldson–Thomas theory) whose rela-
tionship to Gromov–Witten theory is not obvious. One
breakthrough in the subject came in the 1990s from an un-
expected interaction between curve-counting and the the-
oretical physics of string theory, and in the decades since
then, this interdisciplinary connection has continued to
yield fruit.

The Moduli Space of Stable Maps
We begin our journey toward de昀椀ning Gromov–Witten in-
variants by 昀椀xing an ambient space � in which we will
count curves. For the reasons mentioned above, we will
always assume that � is compact and the ground 昀椀eld
is ℂ; for instance, if our goal is to count conics passing

through 昀椀ve given points in the plane, “the plane” refers
to � = ℂℙ2. We also 昀椀x the degree � of the curves being
counted and the number � of incidence conditions being
imposed, so in the above example, � = 2 and � = 5. To put
things a bit more precisely, � should be a smooth projec-
tive variety and � an element of ÿ2(�; ℤ), so setting � = 2
in our example really means � = 2�, where � is the ho-
mology class of a line in ℂℙ2. What we will count is maps� ∶ þ → � , where þ is a curve, �∗[þ] = �, and the image of� satis昀椀es the requisite incidence conditions. In order for
our count to be 昀椀nite in general, we must 昀椀x one further
piece of information: the genus � of the source curve þ.
In our example of conics through 昀椀ve points, this choice
is forced upon us if we want our count to include the em-
bedded irreducible conics in ℂℙ2, since the genus-degree
formula implies that � = 0 for these.

Having 昀椀xed the data of � , �, �, and �, we now de昀椀ne
a moduli space in which we will interpret our curve count
as an intersection theory problem. As we have seen, we
should look for a compact moduli space if we want any
hope that our count will be deformation-invariant. Un-
fortunately, this means that we cannot restrict ourselves to
including only maps � ∶ þ → � for which þ is a smooth
curve, nor for which � is an embedding, even if these are
the types of maps we really care about; the issue is that
these “nice” maps may degenerate to less nice ones.

To produce a compact moduli space, one must allow
some degeneracies. This can be done while keeping the
singularities of the curves mild; speci昀椀cally, we will con-
sider nodal curves, which can roughly be viewed as the
result of gluing together a collection of smooth curves at
昀椀nitely many pairs of points, as illustrated in Figure 1. The
trade-off for the mildness of these singularities is that the
map � ∶ þ → � may become quite degenerate, possibly
collapsing entire components to a point. The result is the
following key player in our story.

De昀椀nition 1. The moduli space of stable maps is the setℳ�,�(�, �) consisting of (isomorphism classes of) tuples(þ; ý1, … , ý�; �), where• þ is a nodal curve of arithmetic genus �;• ý1, … , ý� ∈ þ are distinct and not nodes;• � ∶ þ → � is a morphism with �∗[þ] = �;• the data (þ; ý1, … , ý�; �) has 昀椀nitely many automor-
phisms.

We will abbreviate ℳ = ℳ�,�(�, �) for now. The last
condition in the de昀椀nition may appear technical—and re-
lies on a de昀椀nition of “isomorphism” that we have not
speci昀椀ed—but, as we will see momentarily, it turns out
to be crucial in ensuring that the moduli space is well-
behaved from a geometric perspective.

But what isℳ, as a geometric object? Thus far, we have
de昀椀ned it as a set, but what makes it a “moduli space” is
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Figure 1. A nodal curve of arithmetic genus five.

that it can be given a geometry that encodes how tuples(þ; ý1, … , ý�; �) can continuously vary. For example, onceℳ is given a geometric structure, it makes sense to speak
of a “path” in ℳ, and the elements of ℳ that one passes
through while walking along this path should form a one-
parameter family of tuples (þ; ý1, … , ý�; �). Figure 2 is a
cartoon illustration of this phenomenon.

ℳ2,1
Figure 2. A one-parameter family of curves.

Thus, in order to give ℳ a geometry, one must 昀椀rst de-
cide upon a de昀椀nition of family of stable maps over any
base ý; a one-parameter family, for instance, is a family in
which ý is a line. From here, what it means to say that the
geometry of ℳ encodes how stable maps vary is that, for
any base ý, there is a bijection{families of stable maps over ý}/ ≅↕ (1){morphisms ý → ℳ}.
This, in particular, relies on giving ℳ a geometry in order
to make the notion of “morphism” meaningful.

Up to this point, we have been purposefully vague
about what we mean by “geometry.” A topologist might
hope thatℳ is a manifold, or an algebraic geometer might
hope that it is a variety. Unfortunately, neither can be the
case: a manifold or variety ℳ for which (1) is a bijection
does not, in fact, exist. The root of the problem lies in the
existence of automorphisms of stable maps, which allow
one to construct families in which every stable map in the
family is isomorphic to every other (so they should corre-
spond to constantmaps on the right-hand side of (1)), but
which are nevertheless nontrivial as families. See Figure 3
for a cartoon illustration.

There is a 昀椀x to this problem, which is to give ℳ the
structure of an orbifold (or, in more modern language, a

ý
Figure 3. A nontrivial family of curves in which every fiber is
isomorphic. (The tori over each point of ý should be viewed
as fitting together into something of a Möbius band, so that
as one moves in a full circle around ý, the initial torus is
identified with the final torus via a nontrivial automorphism.)

Deligne–Mumford stack); very roughly, this is a space that
looks locally like the quotient of a manifold by a 昀椀nite
group. In the setting ofℳ, these 昀椀nite groups are the auto-
morphism groups of stable maps, which helps to explain
why we insisted that a stable map have 昀椀nitely many au-
tomorphisms. Equipped with the more general notion of
morphism in the orbifold setting, a bijection as in (1) in-
deed exists.

Gromov–Witten Invariants
Now that we have a moduli space, our goal is to use it to
count genus-�, degree-� curves in� that satisfy a collection
of � incidence conditions—that is, that pass through a col-
lection of � prescribed subvarieties �1, … , �� ⊆ � . In order
to do so, we 昀椀rst de昀椀ne evaluation mapsev� ∶ ℳ�,�(�, �) → �
for each � ∈ {1, … , �}, byev�(þ; ý1, … , ý�; �) = �(ý�).
Then ev−1� (� �) is the set of stable maps � ∶ þ → � whose
image passes through � � at �(ý�), so one way in which
to encode our desired curve count might be to count the
number of points in the intersectionev−11 (�1) ∩ ev−12 (�2) ∩⋯ ∩ ev−1� (��), (2)

provided this intersection is 昀椀nite. Inverse images gener-
ally preserve codimension, and intersections generally add
codimension, so if codim�(� �) = ��, we would expect (2)
to be 昀椀nite—that is, to have dimension zero—when�1 +⋯+ �� = dim(ℳ�,�(�, �)).

A more re昀椀ned version of (2), which captures its insen-
sitivity to deformations of the subvarieties � �, would be
to consider instead the cohomology class �� ≔ [� �] ∈ÿ�� (�;ℚ). We then interpret (2) in cohomology by replac-
ing inverse image with pullback and intersection with cup
product, yielding the following preliminary de昀椀nition of
a Gromov–Witten invariant.
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Preliminary De昀椀nition 1. Fix �, �, and �, and 昀椀x �� ∈ÿ�� (�;ℚ) for � = 1, … , �. Assume that � ≔ �1 +⋯+ �� =dim(ℳ�,�(�, �)). Then the associated Gromov–Witten in-
variant is given by evaluating the cohomology classev∗1(�1) ⌣ ⋯⌣ ev∗�(��) ∈ ÿ�(ℳ�,�(�, �); ℚ)
on the fundamental class ofℳ�,�(�, �) to yield an element

of ÿ0(ℳ�,�(�, �); ℚ) ≅ ℚ. We denote this evaluation by∫[ℳ�,�(�,�)]
ev∗1(�1) ⌣ ⋯⌣ ev∗�(��) ∈ ℚ.

We will see shortly that this de昀椀nition has some serious
de昀椀ciencies that will need to be repaired, but taking it as a
working de昀椀nition for the moment, one sees that using it
requires 昀椀rst of all knowing the dimension of ℳ�,�(�, �).
What is this dimension? Let us walk through how it might
be computed, momentarily taking � = 0 for simplicity.

If ℳ�,0(�, �) were a smooth manifold, then its dimen-
sion would be the same as the dimension of its tangent
space at any point. Thinking of a point in ℳ�,0(�, �) as
a stable map � ∶ þ → � , and a tangent vector as an “in-
昀椀nitesimal family” of stable maps containing this one, we
arrive at the perspective that the dimension of ℳ�,0(�, �)
should be the dimension of the space of “in昀椀nitesimal de-
formations” of any given stable map. In the special case
where � ∶ þ → � is an embedding of a smooth curve, the
space of such in昀椀nitesimal deformations can be identi昀椀ed
with the space of sections of the normal bundle of þ ⊆ � ,
the intuition being that a section of the normal bundle
gives a direction in which each point in þ can deform.

This reasoning leads to the guess that dim(ℳ�,0(�, �))
is the dimension of the vector space ÿ0(��/�) of sections
of the normal bundle for any stable map � ∶ þ → � . This
guess cannot be correct, however, because the dimension
of this vector space depends on � ∶ þ → � . What is inde-
pendent of � is the differencedim(ÿ0(��/�)) − dim(ÿ1(��/�)),
which equals (dim� − 3)(1 − �) +∫� �1(��). (3)

(The interested reader with some background in algebraic
geometry is encouraged to verify this computation; the key
ingredients are the short exact sequence0 → �� → �∗�� → ��/� → 0
and the Riemann–Roch theorem.)

We refer to the quantity (3) as the virtual dimension ofℳ�,0(�, �). Similar reasoning applies when � is nonzero,
yielding the following.

De昀椀nition 2. The virtual dimension ofℳ�,�(�, �), denotedvdim(ℳ�,�(�, �)), is the integer

(dim� − 3)(1 − �) +∫� �1(��) + �.
The idea, from a deformation-theoretic perspective, is

that while ÿ0(��/�) parameterizes in昀椀nitesimal deforma-
tions of a stable map, ÿ1(��/�) parameterizes obstruc-
tions to extending these in昀椀nitesimal deformations to hon-
est deformations over some base. We thus denote it byOb(þ, �) in the case where � = 0, and we denote the ana-
logue more generally by Ob(þ, ý1, … , ý�, �).

If it happens that Ob(þ, ý1, … , ý�, �) = 0 for all stable
maps in the moduli space, then the virtual dimension is
the dimension of the space of in昀椀nitesimal deformations,
which, by the above reasoning, is equal to the dimension
of the moduli space. This happens, albeit rarely; for in-
stance, it happens when � = ℂℙ� and � = 0, as well as
when � is a single point.

If, however, Ob(þ, ý1, … , ý�, �) ≠ 0 for some stable
maps in the moduli space, then the dimension of the
space of in昀椀nitesimal deformations of these stable maps
is higher than the virtual dimension, and it may vary from
one stable map to another. This is a re昀氀ection of the fact
thatℳ�,�(�, �) can have multiple irreducible components
of different dimensions, all of which are bounded below
by the virtual dimension.

A simpli昀椀ed perspective may give a 昀氀avor of these ideas:
imagine that ℳ is given by the vanishing of ÿ equations
in a smooth �-dimensional variety. Then the dimension
that one would expect ℳ to have is � − ÿ, and this is cer-
tainly true when ÿ = 0, in the sameway that the dimension
of ℳ is equal to the virtual dimension when the obstruc-
tions vanish. But when ÿ ≠ 0, dependencies among the
de昀椀ning equations may lead the actual dimension of ℳ
to be larger than expected, or even to vary from one com-
ponent ofℳ to another; for instance, the vanishing of the
equations ýþ = 0 and ýÿ = 0 in ℝ3 consists of the lineþ = ÿ = 0 (which has the expected dimension) together
with the plane ý = 0 (which has larger dimension).

With all of this in mind, we now see two problems with
our preliminary de昀椀nition of Gromov–Witten invariants.
First, because ℳ�,�(�, �) may have different components
of different dimensions, it is unclear how to make sense of
the condition that �1 +⋯+ �� is equal to the dimension
of the moduli space. And second, because it has multi-
ple irreducible components, ℳ�,�(�, �) is in general not
smooth, so it need not have a fundamental class on which
to evaluate.

OCTOBER 2024 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1143



The solution to these problems lies in constructing a
virtual fundamental class, an element[ℳ�,�(�, �)]vir ∈ ÿvdim(ℳ�,�(�, �); ℚ)
that agrees with the fundamental class in the special sit-
uations where the moduli space is smooth of dimension
equal to the virtual dimension. It is a hard theorem, 昀椀rst
due to Behrend–Fantechi in the algebro-geometric setting
[BF97] and to Li–Tian in the related setting of symplectic
geometry [LT98], that a natural such class exists.

To give a very rough intuition in the simpli昀椀ed vision
of ℳ as a vanishing locus inside a smooth �-dimensional
variety � , suppose that the ÿ de昀椀ning equations of ℳ cor-
respond to a section Ā of a rank-ÿ vector bundle Ā on � ,
so that ℳ = {Ā = 0} ⊆ � . In this setting, what we seek
is a (� − ÿ)-dimensional homology class supported on ℳ.
If Ā meets the zero section of Ā transversally, this can be
done by simply taking [{Ā = 0}]. On the opposite end of
the spectrum, if Ā is identically zero, it can be done by tak-
ing [�] ∩ �ÿ(Ā), where �ÿ(Ā) denotes the top Chern class;
roughly, this amounts to perturbing Ā ≡ 0 to a transverse
section and then taking its zero locus. In practice, how-
ever, such a perturbation may not exist, and even if it does,
it is unclear how to use the vanishing of the perturbation
to produce a homology class supported on {Ā = 0}. The
hard work of de昀椀ning a virtual fundamental class lies in
surmounting these dif昀椀culties, and doing so even whenℳ is not given as a vanishing locus in a smooth ambient
variety.

Once the virtual fundamental class is constructed, we
are at last ready to give the true de昀椀nition of Gromov–
Witten invariants.

De昀椀nition 3. Fix �, �, and �, and 昀椀x �� ∈ ÿ�� (�) for each� = 1, … , �. Assume that �1 +⋯+ �� = vdim(ℳ�,�(�, �)).
Then the associated Gromov–Witten invariant is⟨�1⋯��⟩�,�,� ≔ ∫[ℳ�,�(�,�)]vir

ev∗1(�1) ⌣ ⋯⌣ ev∗�(��).
At this point, we have gotten quite far a昀椀eld of our ini-

tial goal of counting curves. Thus, at least two questions
are in order. First, do Gromov–Witten invariants agree
with a more naïve notion of curve counts, when the latter
is possible? And second, how can Gromov–Witten invari-
ants be computed?

The answer to the 昀椀rst question is sometimes—though
admittedly rarely—yes. For instance, we have mentioned
that the virtual fundamental class is the ordinary funda-
mental class on ℳ0,�(ℂℙ�, �), and in this case, the locus
of smooth embedded curves � ∶ þ → ℂℙ� is dense in the
moduli space. Thus, the Gromov–Witten invariant asso-
ciated to �1, … , �� genuinely counts the number of genus-
zero degree-� embedded curves in ℂℙ� in which ý1, … , ý�

lie in generic subvarieties �1, … , �� representing the coho-
mology classes �1, … , ��. As an example, one could calcu-
late the number of conics through 昀椀ve generic points inℂℙ2 as the Gromov–Witten invariant⟨� ⋅ � ⋅ � ⋅ � ⋅ �⟩0,5,2, (4)

where � ∈ ÿ∗(ℂℙ2) denotes the cohomology class of a
point.

This situation is rare, though. In fact, the possibility thatℳ�,�(�, �) has orbifold structure means that Gromov–
Witten invariants are not even necessarily integers but
rational numbers in general, so it is dif昀椀cult to inter-
pret them as counting anything at all. A particularly
stark—yet fascinating—example occurs when � is a quin-
tic threefold in ℂℙ4, for which �1(��) = 0 and hencevdim(ℳ�,�(�, �)) = �. Taking � = 0, one might hope to
interpret the Gromov–Witten invariant

⟨ ⟩0,0,� = ∫[ℳ0,0(�,�)]vir
1 (5)

as counting the number of degree-� embedded rational
curves on � , but this cannot be the case. Indeed, for any
divisor � of �, one can obtain a degree-� map ℂℙ1 → �
by composing a �-fold cover ℂℙ1 → ℂℙ1 with a degree-(�/�) map ℂℙ1 → � , and there is a positive-dimensional
family of such covers. This means thatℳ0,0(�, �) has com-
ponents of excess dimension, which contribute in a com-
plicated way to (5). The BPS conjecture suggests a way to
account for these contributions to extract integers (called
Gopakumar–Vafa invariants) fromGromov–Witten invari-
ants in this case, but this is a longer story that we will not
delve into here.

Instead, we will simply content ourselves with attempt-
ing to compute Gromov–Witten invariants, out of the phi-
losophy that this is a worthwhile goal even when we are
not in the rare situations when the invariants are enumer-
ative. In particular, Gromov–Witten invariants have beau-
tiful structure that is worth studying in its own right; we
will see one example of this at the end of the article when
we discuss mirror symmetry. Various other connections
to theoretical physics as well as to more classical algebro-
geometric subjects like the moduli space of curves have
motivated mathematicians to study Gromov–Witten the-
ory. Thus, as often happens in mathematics, our initial
goal (curve-counting) has led us to an object (Gromov–
Witten invariants) that is interesting regardless of the ex-
tent to which it actually achieves the goal.

How, then, to calculate Gromov–Witten invariants?
This is a dif昀椀cult question, in many cases prohibitively dif-
昀椀cult, but there are important situations in which compu-
tation is possible. The 昀椀rst such situation we consider is
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when � = ℂℙ2 and � = 0, which was famously addressed
by Kontsevich.

Kontsevich’s Formula
To explain Kontsevich’s computation, we 昀椀rst note that
in the case where the target � = • is a single point, the
moduli space ℳ�,� = ℳ�,�(•, 0) was studied well be-
fore the advent of Gromov–Witten theory, and remains
a topic of active research. This study is advantageous to
us because, for any target � , there is a map ℳ�,�(�, �) →ℳ�,�, so—at least in good situations whereℳ�,�(�, �) is a
smooth manifold—an understanding of the cohomology
ofℳ�,� can be pulled back to yield information about the
Gromov–Witten invariants of � . A particularly good situ-
ation occurs when � = 0 and � ≥ 4; then, there is a mor-
phism ý ∶ ℳ0,�(�, �) → ℳ0,4
whose codomain can be understood very concretely. First,
when þ is smooth, there is a unique isomorphism þ ≅ℂℙ1 = ℂ ∪ {∞} sending (ý1, ý2, ý3, ý4) to (0, 1,∞, þ) for
some þ, so the locus of smooth curves in ℳ0,4 is isomor-
phic to ℂℙ1 ⧵ {0, 1,∞}. The compacti昀椀cation, then, must
be ℳ0,4 ≅ ℂℙ1, and indeed, the three missing points cor-
respond to the nodal curves shown in Figure 4, which we
denote by ÿ12|34, ÿ13|24, and ÿ14|23, respectively.ý1ý2 ý3ý4 ý1ý3 ý2ý4

ý1ý4 ý2ý3
Figure 4. The three nodal curves in ℳ0,4.

Because any two points in ℂℙ1 are equivalent in coho-
mology, one obtains a relation[ÿ12|34] = [ÿ13|24] = [ÿ14|23] ∈ ÿ2(ℳ0,4). (6)

Pulling this relation back under ý yields a corresponding
relation among three cohomology classes on ℳ0,�(�, �).
Namely, for any decomposition {1, … , �} = Ā ⊔ ā and � =�1 + �2 of the marked points and degree, let ÿ̃�,�1|�,�2 ⊆ℳ0,�(�, �) denote the subvariety whose general element is
a curve with two components, one containing the marked
points indexed by Ā on which the degree of � is �1, and the
other containing the remaining marked points and degree.
Then the pullback of (6) under ý shows that the sum∑�⊔�=[�]�1+�2=�1,2∈� and 3,4∈�

[ÿ̃�,�1|�,�2] ∈ ÿ2(ℳ0,�(�, �))

is equal to the corresponding sum where we instead in-
sist that 1, 3 ∈ Ā and 2, 4 ∈ ā, and also to the sum where
we insist 1, 4 ∈ Ā and 2, 3 ∈ ā. In particular, multi-
pyling ev∗1(�1) ⌣ ⋯ ⌣ ev∗�(��) by any of these three
cohomology classes before integrating should yield the
same answer. Furthermore, ÿ̃�,�1|�,�2 can be interpreted

as a 昀椀ber product of the two moduli spacesℳ0,|�|+1(�, �1)
and ℳ0,|�|+1(�, �2), so one can deduce an equality be-
tween three sums, each of whose terms is a product of two
Gromov–Witten invariants.

This yields a host of relations among genus-zero
Gromov–Witten invariants, collectively known as the
WDVV relations. When � = ℂℙ2, an example of one of
the resulting relations (after a bit of simpli昀椀cation) is the
following, in which � denotes the cohomology class of a
point, � the cohomology class of a line, and 1 the funda-
mental class: ⟨� ⋅ �⟩0,2,1⟨� ⋅ �⟩0,2,1+⟨� ⋅ � ⋅ 1⟩0,3,0⟨� ⋅ � ⋅ � ⋅ � ⋅ �⟩0,5,2=2⟨� ⋅ �⟩0,2,1⟨� ⋅ �⟩0,2,1.
Interpreting the invariant ⟨� ⋅�⟩0,2,1 as the number of lines
through two points in ℂℙ2, it should be intuitively believ-
able that it equals 1. Similarly, interpreting the invariant⟨� ⋅ � ⋅ 1⟩0,3,0 as the number of intersection points of two
lines in ℂℙ2 suggests (correctly) that this invariant equals1, as well. Thus, the above relation implies⟨� ⋅ � ⋅ � ⋅ � ⋅ �⟩0,5,2 = 1,
which recovers, via much more modern machinery, the an-
cient Greeks’ assertion that there is a unique conic pass-
ing through 昀椀ve general points in the (complex, projec-
tive) plane. In a celebrated theorem from the early days of
Gromov–Witten theory [Kon92], Kontsevich generalized
the above computation to interpret theWDVV relations onℂℙ2 as a recursion that effectively computes all of the num-
bers �� of rational degree-� curves through 3�−1 general
points in ℂℙ2, requiring only the base case of �1 = 1.

Although Kontsevich’s proof was entirelymathematical,
there is a different interpretation of his result that passes
through the unexpected world of theoretical physics—
more speci昀椀cally, string theory. Curves arise in that set-
ting as the “worldsheet” traced out by a string as it trav-
els through spacetime, and Gromov–Witten invariants ap-
pear in the de昀椀nition of a structure known as the “quan-
tum product” on ÿ∗(�). The WDVV equations turn out
to be equivalent to the condition that this product is as-
sociative, so Kontsevich’s formula can be interpreted as a
consequence of this associativity for � = ℂℙ2.

The proof of Kontsevich’s theorem was a true triumph;
prior to this work, only a handful of the numbers�� could
be computed, and then only by dif昀椀cult ad hoc methods.
But this early success of the interplay between enumerative
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geometry and string theory was only the beginning of a
decades-long story that continues to reveal new structures
and bring new computations within reach. A second key
moment came with the discovery of mirror symmetry, to
which we now turn. Although our discussion will be neces-
sarily brief, the reader can 昀椀nd much more on the connec-
tion between physics and curve-counting in surveys such
as [Kat06] and [Cla17].

Mirror Symmetry
In the language of theoretical physics, string theories pro-
vide an example of an object known as an � = 2 super-
conformal 昀椀eld theory, where the � = 2 refers to the
presence of two “supersymmetries.” One way in which to
construct such a theory, called the nonlinear sigma model,
takes as input a three-dimensional compact complex man-
ifold � with trivial canonical bundle (that is, a Calabi–
Yau threefold) together with a complexi昀椀ed Kähler class� ∈ ÿ2(�; ℂ).

In fact, the data of (�, �) determines not just a supercon-
formal 昀椀eld theory but an ordering of the two supersym-
metries, with the two possible choices of ordering referred
to as the “A-model” and “B-model” of the theory. Each of
these models gives an induced choice of generators for a
distinguished two-dimensional subalgebra of the theory’s
in昀椀nitesimal symmetries, and the eigenspaces of these gen-
erators can bemathematically identi昀椀ed withÿþ(�, Λý��)
and ÿþ(�,Ωý�).

The statement of mirror symmetry, from a physical per-
spective, is that there should exist a “mirror” pair (�∨, �∨)
for which the associated nonlinear sigma model is the
same superconformal 昀椀eld theory but with the opposite
ordering of the supersymmetries. This would in particular
imply isomorphisms of eigenspacesÿþ(�, Λý��) ≅ ÿþ(�∨, Ωý�∨)ÿþ(�,Ωý�) ≅ ÿþ(�∨, Λý��∨).
In the special case when ý = þ = 1, deformation the-
ory interpretsÿ1(�, ��) as the space of in昀椀nitesimal defor-
mations of the complex structure on � and ÿ1(�,Ω�) as
the space of in昀椀nitesimal deformations of the Kähler class.
This leads to a more re昀椀ned version of the mirror conjec-
ture: there should be an isomorphism between a neighbor-
hood of (�, �) in the moduli space of complex structures
on the underlying manifold of � , and a neighborhood of(�∨, �∨) in the moduli space of Kähler structures on �∨.

The predictions of mirror symmetry extend still deeper,
and this is where the enumerative geometry comes in. The
superconformal 昀椀eld theory associated to (�, �) admits
two types of “correlation functions,” which can be inter-
preted mathematically as connections on certain vector
bundles: in the A-model, this is the quantum connection on
a vector bundle over the moduli space of complex struc-

tures, and in the B-model, it is the Gauss–Manin connec-
tion on a vector bundle over the moduli space of Kähler
structures. The quantum connection can be de昀椀ned in
terms of genus-zero Gromov–Witten invariants, whereas
the Gauss–Manin connection is a more well-studied and
explicit object that uses period integrals to measure how
integral homology deforms relative to Kähler structure.
In this context, mirror symmetry predicts an exchange
of the A-model and B-model connections on (�, �) and(�∨, �∨), yielding an equality between a generating func-
tion of genus-zero Gromov–Witten invariants of � and cer-
tain B-model information from �∨ that can be exactly cal-
culated.

As a particular key example, one can take � to be the
quintic threefold—that is, the vanishing locus of the equa-
tion �(ÿ1, … , ÿ5) = ÿ51 +⋯+ ÿ55
in ℂℙ4. Then mirror symmetry—due in this setting to the
1991 work of physicists Candelas, de la Ossa, Green, and
Parkes [CdlOGP91]—predicted that a certain generating
function of the numbers �� of degree-� rational curves in� could be recovered via explicit elementary transforma-
tions from a simple hypergeometric series. This conjecture
shocked the mathematical community, since it not only
would imply that the numbers �� (which, after account-
ing for multiple cover contributions, can be related to the
genus-zero Gromov–Witten invariants of �) can be effec-
tively computed, but it would reveal that these numbers
admit a deep and unexpected structure.

The 昀椀rst mathematical proof of the abovemirror conjec-
ture was provided by Givental [Giv96]. (A different view-
point also appeared at approximately the same time in
work of Lian–Liu–Yau [LLY99], but we will focus on Given-
tal’s formulation here.) To state the result, it is helpful to
introduce a generalization of Gromov–Witten invariants
known as descendent integrals; these are integrals∫[ℳ�,�(�,�)]vir

ev∗1(�1)��11 ⋯ev∗�(��)���� ,
where �� ∈ ÿ2(ℳ�,�(�, �)) is the 昀椀rst Chern class the
line bundle whose 昀椀ber over (þ; ý1, … , ý�; �) is the cotan-
gent line �∗��þ. (These “psi-classes” show up naturally in
the theory, from non-transverse intersections of the classesÿ̃�,�1|��2 mentioned in the previous section.) The genus-
zero descendent invariants of � can be packaged into a
generating seriesā(�) = ÿ + � + ∑�,�,� þ��! ⟨�(�), … , �(�), ��ÿ − �⟩0,�+1,���,
which takes as input � ∈ ÿ∗(�)[ÿ] and produces as output
a formal series in þ, ÿ, and ÿ−1 with coef昀椀cients in ÿ∗(�).
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Another such formal series, this time an entirely explicit
one, is the power series expansion of

Ā = ÿ ∑�≥0 ∏5��=1(5ÿ + �ÿ)∏��=1(ÿ + �ÿ)5 ,
whereÿ ∈ ÿ∗(�) denotes the restriction to � of the hyper-
plane class on ℂℙ4. Givental’s mirror theorem states that
these two functions differ by a change of variables.

Theorem 1 (Givental’s mirror theorem). Let Ā+ denote the
part of Ā with non-negative powers of ÿ. ThenĀ = ā( − ÿ + Ā+).

Though these generating functions are complex at 昀椀rst
glance, the moral of the theorem is simple: by comparing
coef昀椀cients of monomials on the two sides of the theorem,
certain genus-zero Gromov–Witten invariants of � can be
calculated. In fact, basic relationships determine all of the
genus-zero Gromov–Witten invariants of � in terms of the
ones that appear in this equality, so the mirror theorem
provides a way to calculate the genus-zeroGromov–Witten
theory of the quintic threefold in its entirety.

Givental’s original proof of the mirror theorem was a
tour de force involving, among other tools, an equivari-
ant localization formula that can be used to express the
Gromov–Witten invariants of � as a complicated sum
over graphs. Although this localization method had been
previously employed by Kontsevich [Kon95] to compute
particular numbers ��, the combinatorial complexity of
the graph sum increases incredibly quickly; one aspect of
Givental’s contribution was an ingenious method of orga-
nizing the sum.

On the other hand, in the years since Givental’s work, a
new perspective on the mirror theorem has emerged that
makes the proof somewhat more transparent: Gromov–
Witten theory can be viewed as just one among a family
of theories depending on a positive rational parameter �,
and the mirror theorem arises in this context as a relation-
ship between the theories when � → ∞ and � → 0. This
more general theory, known as quasimap theory and devel-
oped in the work of Ciocan-Fontanine, Kim, and Maulik
[CFKM14,CFK14] (building on previous work by Marian–
Oprea–Pandharipande [MOP11]), is the topic of the next
and 昀椀nal section of the article.

Wall-Crossing and Beyond
To motivate the de昀椀nition of quasimaps, note that a stable
map � ∶ þ → � to the quintic � ⊆ ℂℙ4 can be described
via its 昀椀ve coordinates. When þ ≅ ℂℙ1, these are 昀椀ve poly-
nomials in the coordinates [ý ∶ þ] ∈ ℂℙ1; more generally,
they can be viewed as 昀椀ve sections �1, … , �5 ∈ ÿ0(�) of the
line bundle � = �∗�ℂℙ4(1). In order to ensure that these

give a well-de昀椀ned map to � ⊆ ℂℙ4, these sections must
satisfy

1. �1, … , �5 have no common zeroes (so that � gives a
map to ℂℙ4), and

2. �(�1, … , �5) = 0 (so that � lands in �).

Furthermore, the condition that � is stable can be un-
packed in terms of the sections: it amounts to insisting
that

3. deg(�) > 0 on any genus-zero component of þ with
fewer than three special points.

(A “special point,” here, is a point that is either a node or
one of the marked points ý1, … , ý�.)

Now, let � be a positive rational number. An �-stable
quasimap to � is a curve þ equipped with a line bundle� and 昀椀ve sections �1, … , �5 ∈ ÿ0(�) satisfying variants of
the above conditions in which �1, … , �5 are allowed to have
common zeroes to a limited extent controlled by �. More
precisely, they must satisfy

1′. �1, … , �5 may have common zeroes, but only 昀椀nitely
many and only at nonspecial points, and the order of
any common zero must be ≤ 1/�;

2. �(�1, … , �5) = 0;
3′. deg(�) > 0 on any genus-zero component with two

special points, and deg(�) > 1/� on any genus-zero
component with one special point.

Note, in particular, that taking � → ∞ recovers the de昀椀-
nition of ordinary stable maps. On the other hand, when� → 0, common zeroes of arbitrarily high order are al-
lowed, and the geometry of the curve is correspondingly
simpli昀椀ed; in particular, condition 3′ implies thatþ has no
rational tails (genus-zero components with a single special
point).

The key observation of Ciocan-Fontanine and Kim is
that there exists a generating function ā�(�) of genus-zero�-stable quasimaps for any �, which agrees with Givental’sā-function when � → ∞ and with Givental’s Ā-function
when � → 0 and � = 0. Themirror theorem then becomes a
special case of a more general result relating the functionsā� for different values of � to one another. The advantage
of this increased generality is that, since the theory only
changes at discrete values of � (namely, when 1/� is an in-
teger), which are sometimes referred to as the “walls” of
the theory, the problem of relating ā�→∞ to ā�→0 can in-
stead be tackled by understanding how quasimap theory
changes when � crosses each wall individually.

In addition to providing an enlightening new perspec-
tive on Givental’s mirror theorem, quasimap theory also
gives a hint as to a dif昀椀cult further question: given that
the mirror theorem, as stated above, applies only in genus
zero, is there an analogous statement in higher genus?

One answer to this question is provided by Ciocan-
Fontanine and Kim’s work on higher-genus wall-crossing
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[CFK17]. To state their result, denote by ℳ��,�(�, �) the
moduli space of �-stable quasimaps to � . For any tuple⃗� = (�0, … , ��) of nonnegative integers with �0+⋯+�� =�, there is a map� ⃗� ∶ ℳ�,�+�(�, �0) → ℳ��,�(�, �)
that, roughly speaking, replaces the last � marked points
of an ordinary stable map with common zeroes of �1, … , �5
of orders �1, … , ��. The essence of the higher-genus wall-
crossing theorem is that the map � ⃗� relates the virtual fun-
damental classes of the ordinary and the �-stable mod-
uli spaces to one another, with a correction coming from
genus-zero data

Theorem 2. Let ā�+ denote the part of ā�(0) with non-negative
powers of ÿ, and let ���(ÿ) denote the coef昀椀cient of þ� in−ÿ+ā�+.
Then [ℳ��,�(�, �)]vir= ∑�0+…+��=�

1�!� ⃗�∗ ( �∏�=1 ev∗�+�(���� (−��+�))⌢ [ℳ�,�+�(�, �0)]vir).
This theorem—昀椀rst proved by Ciocan-Fontanine and

Kim via the techniques of virtual pushforwards and later
reproved by the author with Janda and Ruan via more for-
mal machinery that can be applied in greater generality
[CJR17, CJR21b]—is much more powerful than the orig-
inal mirror theorem, not only because it applies in all
genus, but because it relates not merely enumerative in-
variants but the virtual fundamental classes themselves.
On the other hand, on a surface level, perhaps a state-
ment like this should not come as a complete surprise: the
geometric difference between quasimap theory and ordi-
nary Gromov–Witten theory can be understood in terms
of what sorts of rational tails are allowed, which is genus-
zero information and thus can be encoded in the coef昀椀-
cients of the function ā�.

Even with the new perspective provided by wall-
crossing, however, it is not obvious how to use mirror
symmetry to compute the Gromov–Witten invariants of
the quintic threefold in higher genus, because the higher-
genus quasimap theory for � → 0 must still be com-
puted. Physicists Bershadsky, Cecotti, Ooguri, and Vafa
conjectured what the answer should be as early as 1993,
proposing an explicit formula for the generating func-
tions of genus-one and genus-two Gromov–Witten invari-
ants that relied on structural properties inherent in the B-
model [BCOV97]. Ten years after this prediction, a math-
ematical proof in genus one was given by Zinger [Zin09],
and another ten years later, the genus-two prediction was

proven by Chen–Guo–Janda–Ruan [GJR17,CJR21a]. The
immense amount of work that it has taken to achieve these
increases in genus is one indication of the depth of themir-
ror symmetry phenomenon, and the wealth of mysteries
that it continues to hold.
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