Curve-Counting

and Mirror Symmetry

Emily Clader

Curve-counting is a subject that dates back hundreds, even
thousands, of years. Broadly speaking, its goal is to an-
swer questions about the number of curves in some am-
bient space that satisfy prescribed conditions, such as the
following:

« How many conics pass through five given points in the

plane?

« How many lines pass through four given lines in three-

space?

« How many lines lie on the quintic threefold

{Zi+25+ - +23 =0}
in CP*?

The answer to the first of these questions was known to the
ancient Greeks: given five (sufficiently general) points in
R2, there is exactly one conic that passes through all five
of them. The method by which the ancient Greeks would
have arrived at this answer is by an explicit construction,
given the coordinates of the five points, of the conic that
passes through them.

The modern perspective on curve-counting is somewhat
different. Rather than seeking explicit constructions of
the curves being counted—which can be unnecessarily
cumbersome if our ultimate goal is simply enumeration—
one instead searches for answers that are deformation-
invariant: for example, a count of conics through five
given points that remains unchanged if the five points are
slightly varied. This property not only allows us to answer
entire families of questions simultaneously (not just “how
many conics pass through these five points?” but “how
many conics pass through any five general points?”), but
it also introduces the possibility of answering a difficult
question by deforming it to a simpler one.

For instance, suppose one wishes to answer the second
question posed at the beginning of the article: how many
lines pass through four given lines ¢;,¢,,€5,€, in R3? If
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the answer to this question is deformation-invariant, then
we can deform our lines until they meet in pairs, so that
€:n¢, ={P}and ¢3n¢, = {Q}. At this point, a bit of reflec-
tion is enough to see that there are exactly two lines passing
through all four of our original lines: one that joins P and
Q, and one where the plane spanned by ¢; and ¢, meets
the plane spanned by ¢; and ¢,.

The deformation-invariance of enumerations like this
one was first proposed by Hermann Schubert in the 1870s
under the name Prinzip der Erhaltung der Anzahl, or prin-
ciple of convseration of number [Sch79]. But exactly when
does this principle hold, and why? A rigorous explana-
tion of Schubert’s enumerations was missing from the
mathematical literature for decades, and the hunt for such
an explanation was deemed important enough to appear
on Hilbert's famous list of 23 unsolved problems that
shaped twentieth-century mathematics, in which the fif-
teenth problem is listed (in the English translation that
appeared in the Bulletin of the AMS in 1902) as “rigorous
foundation of Schubert’s enumerative calculus.”

The solution to Hilbert's fifteenth problem came in the
second half of the twentieth century, with the twin devel-
opments of moduli spaces and intersection theory. A mod-
uli space, roughly speaking, is a geometric space (often a
variety or manifold) in which each point corresponds to an
object of some type being studied. For example, someone
wishing to study the number of conics passing through five
points in the plane might form a moduli space M in which
each point corresponds to a plane conic. From this per-
spective, the conics passing through a given point form a
subvariety of M, and the original enumerative question
is reinterpreted as a count of the number of intersection
points of the five corresponding subvarieties. The advan-
tage of this reframing is that it allows curve-counting ques-
tions to be attacked via the tools of intersection theory,
a deep mathematical subject studying the structure of in-
tersections within an ambient variety that was developed
(in large part with precisely the application to Hilbert's fif-
teenth problem in mind) over many decades in the early
twentieth century.

Through the lens of intersection theory, one can see
more clearly the sense in which curve counts are—or are
not—deformation-invariant. First, an intersection theory
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problem generally only has a deformation-invariant an-
swer when one works over an algebraically closed field (for
instance, C rather than R) and within a compact ambient
variety. To illustrate the first of these limitations, consider
the intersection of the parabola y = x? and the line y = ¢
in R2. These curves intersect in two points for ¢ > 0, but
forc < 0, the intersection points are only visible if we work
not in R? but in C2. In fact, so long as we count intersec-
tions “with multiplicity,” the parabola y = x? and the line
y = c in C? meet in exactly two points for any choice of c.

To see why compactness is necessary, consider the ques-
tion “in how many points do two lines in R? intersect?”
The answer to this question can change when the lines are
deformed, because the lines can become parallel, which ef-
fectively means that their point of intersection has “fallen
off” the noncompact ambient space R?. To avoid this
phenomenon, one should replace R? by its compactifica-
tion RP?, in which any two lines indeed meet in a single
point—so long as they are not the same line.

This brings us to one final issue of deformation-
invariance that intersection theory is equipped to solve:
can an intersection still be said to be deformation-
invariant if the subvarieties are deformed so far that they
meet along an entire curve? For instance, is there a sensi-
ble way in which to interpret the “number of intersection
points” of two identical lines in RP? as 1, so that this num-
ber is truly insensitive to deformations of the lines? The
answer to this question is “yes,” and it is precisely what
the subject of excess intersection theory addresses.

Applying these ideas to the context of enumerative ge-
ometry led mathematicians, in the late twentieth century,
to express curve counts as certain intersection numbers
on a moduli space that are now called Gromov-Witten
invariants. This development allowed the deformation-
invariance of curve counts to finally be expressed in a
robust and rigorous way, but the work was far from
over. In particular, the project of actually computing
Gromov-Witten invariants is difficult and ongoing, and
moreover, there are other methods of formalizing curve
counts (such as Donaldson-Thomas theory) whose rela-
tionship to Gromov-Witten theory is not obvious. One
breakthrough in the subject came in the 1990s from an un-
expected interaction between curve-counting and the the-
oretical physics of string theory, and in the decades since
then, this interdisciplinary connection has continued to
yield fruit.

The Moduli Space of Stable Maps

We begin our journey toward defining Gromov-Witten in-
variants by fixing an ambient space X in which we will
count curves. For the reasons mentioned above, we will
always assume that X is compact and the ground field
is C; for instance, if our goal is to count conics passing
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through five given points in the plane, “the plane” refers
to X = CP2. We also fix the degree § of the curves being
counted and the number n of incidence conditions being
imposed, so in the above example, § = 2and n = 5. To put
things a bit more precisely, X should be a smooth projec-
tive variety and 8 an element of H,(X; Z), so setting § = 2
in our example really means 8 = 2L, where L is the ho-
mology class of a line in CP?. What we will count is maps
f 1 C > X, where C is a curve, f,[C] = 8, and the image of
f satisfies the requisite incidence conditions. In order for
our count to be finite in general, we must fix one further
piece of information: the genus g of the source curve C.
In our example of conics through five points, this choice
is forced upon us if we want our count to include the em-
bedded irreducible conics in CP?, since the genus-degree
formula implies that g = 0 for these.

Having fixed the data of X, g, 5, and n, we now define
a moduli space in which we will interpret our curve count
as an intersection theory problem. As we have seen, we
should look for a compact moduli space if we want any
hope that our count will be deformation-invariant. Un-
fortunately, this means that we cannot restrict ourselves to
including only maps f : C — X for which C is a smooth
curve, nor for which f is an embedding, even if these are
the types of maps we really care about; the issue is that
these “nice” maps may degenerate to less nice ones.

To produce a compact moduli space, one must allow
some degeneracies. This can be done while keeping the
singularities of the curves mild; specifically, we will con-
sider nodal curves, which can roughly be viewed as the
result of gluing together a collection of smooth curves at
finitely many pairs of points, as illustrated in Figure 1. The
trade-off for the mildness of these singularities is that the
map f : C - X may become quite degenerate, possibly
collapsing entire components to a point. The result is the
following key player in our story.

Definition 1. The moduli space of stable maps is the set
]t_/[g,n(X, B) consisting of (isomorphism classes of) tuples
(C; %1, .., X5 ), where

 Cis a nodal curve of arithmetic genus g;

* Xp,..,X, € C are distinct and not nodes;

« f: C - Xisamorphism with f,[C] = §;

« the data (C;x,..., x,,; f) has finitely many automor-

phisms.

We will abbreviate M = ﬁg’n(X, B) for now. The last
condition in the definition may appear technical—and re-
lies on a definition of “isomorphism” that we have not
specified—but, as we will see momentarily, it turns out
to be crucial in ensuring that the moduli space is well-
behaved from a geometric perspective.

But what is M, as a geometric object? Thus far, we have
defined it as a set, but what makes it a “moduli space” is
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Figure 1. A nodal curve of arithmetic genus five.

that it can be given a geometry that encodes how tuples
(C;x1, ..., X5 f) can continuously vary. For example, once
M is given a geometric structure, it makes sense to speak
of a “path” in M, and the elements of M that one passes
through while walking along this path should form a one-
parameter family of tuples (C; Xy, ..., X,; f). Figure 2 is a
cartoon illustration of this phenomenon.

Figure 2. A one-parameter family of curves.

Thus, in order to give Ma geometry, one must first de-
cide upon a definition of family of stable maps over any
base B; a one-parameter family, for instance, is a family in
which B is a line. From here, what it means to say that the
geometry of M encodes how stable maps vary is that, for
any base B, there is a bijection

{families of stable maps over B}/ =
! (1)
{morphisms B — M}.

This, in particular, relies on giving Ma geometry in order
to make the notion of “morphism” meaningful.

Up to this point, we have been purposefully vague
about what we mean by “geometry.” A topologist might
hope that M is a manifold, or an algebraic geometer might
hope that it is a variety. Unfortunately, neither can be the
case: a manifold or variety M for which (1) is a bijection
does not, in fact, exist. The root of the problem lies in the
existence of automorphisms of stable maps, which allow
one to construct families in which every stable map in the
family is isomorphic to every other (so they should corre-
spond to constant maps on the right-hand side of (1)), but
which are nevertheless nontrivial as families. See Figure 3
for a cartoon illustration. o

There is a fix to this problem, which is to give M the
structure of an orbifold (or, in more modern language, a

1142

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

|l@

Figure 3. A nontrivial famlly of curves in which every fiber is
isomorphic. (The tori over each point of B should be viewed
as fitting together into something of a Mébius band, so that
as one moves in a full circle around B, the initial torus is
identified with the final torus via a nontrivial automorphism.)

Deligne—-Mumford stack); very roughly, this is a space that
looks locally like the quotient of a manifold by a finite
group. In the setting of M, these finite groups are the auto-
morphism groups of stable maps, which helps to explain
why we insisted that a stable map have finitely many au-
tomorphisms. Equipped with the more general notion of
morphism in the orbifold setting, a bijection as in (1) in-
deed exists.

Gromov-Witten Invariants

Now that we have a moduli space, our goal is to use it to
count genus-g, degree-f curves in X that satisfy a collection
of n incidence conditions—that is, that pass through a col-
lection of n prescribed subvarieties Y, ..., ¥,, C X. In order
to do so, we first define evaluation maps

ev; : Mg (X, 8) > X

foreachi € {1,...,n}, by

X3 f) = f(x).

Then evi!(Y;) is the set of stable maps f : C — X whose
image passes through Y; at f(x;), so one way in which
to encode our desired curve count might be to count the
number of points in the intersection

“Nevy! (Y, (2)

ev;(C; xq, ...

evi'(M) nevy' (V)N

provided this intersection is finite. Inverse images gener-
ally preserve codimension, and intersections generally add
codimension, so if codimy(Y';) = d;, we would expect (2)
to be finite—that is, to have dimension zero—when

dl + o 4 dn = dlm(ﬁg,n(X’ 5))

A more refined version of (2), which captures its insen-
sitivity to deformations of the subvarieties Y;, would be
to consider instead the cohomology class y; = [Y;] €
HY%(X; Q). We then interpret (2) in cohomology by replac-
ing inverse image with pullback and intersection with cup
product, yielding the following preliminary definition of
a Gromov-Witten invariant.
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Preliminary Definition 1. Fix g,n, and §, and fix y; €
H%(X;Q) fori =1,..,n. Assume thatd :=d; + --- + d, =
dim(Jx_/[g,n(X,ﬁ)). Then the associated Gromov-Witten in-
variant is given by evaluating the cohomology class

evi(y) — - — evi(yn) € HA Mg 1(X, B); Q)

on the fundamental class of ﬁg,n(X , B) to yield an element
of Ho(ﬂg,n(X ,B); @) = Q. We denote this evaluation by

f Vi) — - — evi(y) € Q.
[Mg,n(X,8)]

We will see shortly that this definition has some serious
deficiencies that will need to be repaired, but taking it as a
working definition for the moment, one sees that using it
requires first of all knowing the dimension of ]ng,n(X ,B).
What is this dimension? Let us walk through how it might
be computed, momentarily taking n = 0 for simplicity.

If Mg,O(X , ) were a smooth manifold, then its dimen-
sion would be the same as the dimension of its tangent
space at any point. Thinking of a point in J\_/[g,O(X, B) as
a stable map f : C — X, and a tangent vector as an “in-
finitesimal family” of stable maps containing this one, we
arrive at the perspective that the dimension of ﬁg,o(X ,B)
should be the dimension of the space of “infinitesimal de-
formations” of any given stable map. In the special case
where f : C — X is an embedding of a smooth curve, the
space of such infinitesimal deformations can be identified
with the space of sections of the normal bundle of C C X,
the intuition being that a section of the normal bundle
gives a direction in which each point in C can deform.

This reasoning leads to the guess that dim(ﬁg,o(X ,B))
is the dimension of the vector space H(N ¢/x) of sections
of the normal bundle for any stable map f : C — X. This
guess cannot be correct, however, because the dimension
of this vector space depends on f : C — X. What is inde-
pendent of f is the difference

dim(HO(N ¢/x)) — dim(H'(N ¢/x))s

which equals
(dimX -3)1—-g) + /cl(TX). (3)
B

(The interested reader with some background in algebraic
geometry is encouraged to verify this computation; the key
ingredients are the short exact sequence

0—-Tc— f'Tx > N¢)x =0

and the Riemann-Roch theorem.)

We refer to the quantity (3) as the virtual dimension of
Mg o(X, ). Similar reasoning applies when n is nonzero,
yielding the following.
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Definition 2. The virtual dimension of J\_/[g’n(X , B), denoted
vdim(M, (X, B)), is the integer

(dimX -3)1-g) + /cl(TX) + n.
B

The idea, from a deformation-theoretic perspective, is
that while H%(N ¢/x) parameterizes infinitesimal deforma-
tions of a stable map, H!(N¢,x) parameterizes obstruc-
tions to extending these infinitesimal deformations to hon-
est deformations over some base. We thus denote it by
Ob(C, f) in the case where n = 0, and we denote the ana-
logue more generally by Ob(C, x;, ..., X, f).

If it happens that Ob(C, xy, ..., X, f) = 0 for all stable
maps in the moduli space, then the virtual dimension is
the dimension of the space of infinitesimal deformations,
which, by the above reasoning, is equal to the dimension
of the moduli space. This happens, albeit rarely; for in-
stance, it happens when X = CP™ and g = 0, as well as
when X is a single point.

If, however, Ob(C, x;,...,X,, f) # 0 for some stable
maps in the moduli space, then the dimension of the
space of infinitesimal deformations of these stable maps
is higher than the virtual dimension, and it may vary from
one stable map to another. This is a reflection of the fact
that Mg,n(X , 8) can have multiple irreducible components
of different dimensions, all of which are bounded below
by the virtual dimension.

A simplified perspective may give a flavor of these ideas:
imagine that M is given by the vanishing of r equations
in a smooth d-dimensional variety. Then the dimension
that one would expect M to have is d — r, and this is cer-
tainly true when r = 0, in the same way that the dimension
of M is equal to the virtual dimension when the obstruc-
tions vanish. But when r # 0, dependencies among the
defining equations may lead the actual dimension of M
to be larger than expected, or even to vary from one com-
ponent of M to another; for instance, the vanishing of the
equations xy = 0 and xz = 0 in R3 consists of the line
¥ = z = 0 (which has the expected dimension) together
with the plane x = 0 (which has larger dimension).

With all of this in mind, we now see two problems with
our preliminary definition of Gromov-Witten invariants.
First, because Mg,n(X , ) may have different components
of different dimensions, it is unclear how to make sense of
the condition that d; + --- + d,, is equal to the dimension
of the moduli space. And second, because it has multi-
ple irreducible components, Jx_/fg,n(X, B) is in general not
smooth, so it need not have a fundamental class on which
to evaluate.
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The solution to these problems lies in constructing a
virtual fundamental class, an element

[Mg,n(X7 ﬁ)]Vir € Hvdim(ﬁg,n(X: B); Q)

that agrees with the fundamental class in the special sit-
uations where the moduli space is smooth of dimension
equal to the virtual dimension. It is a hard theorem, first
due to Behrend-Fantechi in the algebro-geometric setting
[BF97] and to Li-Tian in the related setting of symplectic
geometry [LT98], that a natural such class exists.

To give a very rough intuition in the simplified vision
of M as a vanishing locus inside a smooth d-dimensional
variety Y, suppose that the r defining equations of M cor-
respond to a section s of a rank-r vector bundle E on Y,
so that M = {s = 0} C Y. In this setting, what we seek
is a (d — r)-dimensional homology class supported on M.
If s meets the zero section of E transversally, this can be
done by simply taking [{s = 0}]. On the opposite end of
the spectrum, if s is identically zero, it can be done by tak-
ing [Y] N ¢,(E), where c,(E) denotes the top Chern class;
roughly, this amounts to perturbing s = 0 to a transverse
section and then taking its zero locus. In practice, how-
ever, such a perturbation may not exist, and even if it does,
it is unclear how to use the vanishing of the perturbation
to produce a homology class supported on {s = 0}. The
hard work of defining a virtual fundamental class lies in
surmounting these difficulties, and doing so even when
M is not given as a vanishing locus in a smooth ambient
variety.

Once the virtual fundamental class is constructed, we
are at last ready to give the true definition of Gromov-
Witten invariants.

Definition 3. Fix g,n, and §, and fix y; € H%(X) for each
i=1,..,n. Assume thatd; + -+ + d,, = vdim(Mg ,(X, B)).
Then the associated Gromov-Witten invariant is

I ndgng = f evin) — - — evi(¥n)-
[Mg,n (X )V

At this point, we have gotten quite far afield of our ini-
tial goal of counting curves. Thus, at least two questions
are in order. First, do Gromov-Witten invariants agree
with a more naive notion of curve counts, when the latter
is possible? And second, how can Gromov-Witten invari-
ants be computed?

The answer to the first question is sometimes—though
admittedly rarely—yes. For instance, we have mentioned
that the virtual fundamental class is the ordinary funda-
mental class on ﬁo,n(CPm, B), and in this case, the locus
of smooth embedded curves f : C - CP™ is dense in the
moduli space. Thus, the Gromov-Witten invariant asso-
ciated to y;, ..., ¥, genuinely counts the number of genus-
zero degree-f3 embedded curves in CP™ in which x, ..., x,
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lie in generic subvarieties Yj, ..., Y;, representing the coho-
mology classes y;,...,¥,. As an example, one could calcu-
late the number of conics through five generic points in
CP? as the Gromov-Witten invariant

(P-P-P-P-P)ys,, (4)

where P € H*(CP?) denotes the cohomology class of a
point.

This situation is rare, though. In fact, the possibility that
Jt_/[g,n(X,ﬁ‘) has orbifold structure means that Gromov-
Witten invariants are not even necessarily integers but
rational numbers in general, so it is difficult to inter-
pret them as counting anything at all. A particularly
stark—yet fascinating—example occurs when X is a quin-
tic threefold in CP*, for which ¢;(Tx) = 0 and hence
Vdim(J\_/[g,n(X ,)) = n. Taking n = 0, one might hope to
interpret the Gromov-Witten invariant

Ooop = f 1 5)

[Mo,0(X,B)1ViF

as counting the number of degree-5 embedded rational
curves on X, but this cannot be the case. Indeed, for any
divisor k of 8, one can obtain a degree-8 map CP! — X
by composing a k-fold cover CP! — CP! with a degree-
(B/k) map CP! — X, and there is a positive-dimensional
family of such covers. This means that J\_/fo,o (X, B) has com-
ponents of excess dimension, which contribute in a com-
plicated way to (5). The BPS conjecture suggests a way to
account for these contributions to extract integers (called
Gopakumar-Vafa invariants) from Gromov-Witten invari-
ants in this case, but this is a longer story that we will not
delve into here.

Instead, we will simply content ourselves with attempt-
ing to compute Gromov-Witten invariants, out of the phi-
losophy that this is a worthwhile goal even when we are
not in the rare situations when the invariants are enumer-
ative. In particular, Gromov-Witten invariants have beau-
tiful structure that is worth studying in its own right; we
will see one example of this at the end of the article when
we discuss mirror symmetry. Various other connections
to theoretical physics as well as to more classical algebro-
geometric subjects like the moduli space of curves have
motivated mathematicians to study Gromov-Witten the-
ory. Thus, as often happens in mathematics, our initial
goal (curve-counting) has led us to an object (Gromov-
Witten invariants) that is interesting regardless of the ex-
tent to which it actually achieves the goal.

How, then, to calculate Gromov-Witten invariants?
This is a difficult question, in many cases prohibitively dif-
ficult, but there are important situations in which compu-
tation is possible. The first such situation we consider is
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when X = CP? and g = 0, which was famously addressed
by Kontsevich.

Kontsevich’s Formula
To explain Kontsevich’s computation, we first note that
in the case where the target X = « is a single point, the
moduli space J\_/[g’n = J\_/[g,n(-,o) was studied well be-
fore the advent of Gromov-Witten theory, and remains
a topic of active research. This study is advantageous to
us because, for any target X, there is a map Mg’n(X ,B) —
J\_/[g,n, so—at least in good situations where ﬂg,n(X ,B)isa
smooth manifold—an understanding of the cohomology
of ﬁg,n can be pulled back to yield information about the
Gromov-Witten invariants of X. A particularly good situ-
ation occurs when g = 0 and n > 4; then, there is a mor-
phism

P Mo (X,8) = Mo
whose codomain can be understood very concretely. First,
when C is smooth, there is a unique isomorphism C =
CP! = C U {oo} sending (x;, X,, X3, x,) to (0,1, 00,q) for
some ¢, so the locus of smooth curves in Jx_/[0’4 is isomor-
phic to CP! \ {0, 1, c0}. The compactification, then, must
be MOA =~ CP!, and indeed, the three missing points cor-
respond to the nodal curves shown in Figure 4, which we
denote by Dyj34, Di3pa, and Dyypp3, respectively.

x2 x3 x3 x2
X X
X4 1 X4

X4 X,
9 Y-

Figure 4. The three nodal curves in ]T/[o,4-

Because any two points in CP! are equivalent in coho-
mology, one obtains a relation

[D12|34] = [D13|24] = [D14|23] € Hz(]‘_/foA)- (6)
Pulling this relation back under p yields a corresponding
relation among three cohomology classes on M, ,(X, ).
Namely, for any decomposition {1,...,n} = Il J and g =
By + B of the marked points and degree, let Dy g 55,

J\_/to,n(X , ) denote the subvariety whose general element is
a curve with two components, one containing the marked
points indexed by I on which the degree of f is 5, and the
other containing the remaining marked points and degree.
Then the pullback of (6) under p shows that the sum

Z [ﬁl,ﬁllfﬁz] € Hz(ﬂo,n(X’ﬁ))
IuJ=[n]

B1+B2=p
1,2€l and 3,4eJ
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is equal to the corresponding sum where we instead in-
sist that 1,3 € I and 2,4 € J, and also to the sum where
we insist 1,4 € I and 2,3 € J. In particular, multi-
pyling evi(y;) — -+ — evy(yn) by any of these three
cohomology classes before integrating should yield the
same answer. Furthermore, ﬁl’ﬁﬂ 7,3, can be interpreted

as a fiber product of the two moduli spaces M0,|I|+1(X’ B1)

and ﬂo,mﬂ(X, B5), so one can deduce an equality be-
tween three sums, each of whose terms is a product of two
Gromov-Witten invariants.

This yields a host of relations among genus-zero
Gromov-Witten invariants, collectively known as the
WDVV relations. When X = CP?, an example of one of
the resulting relations (after a bit of simplification) is the
following, in which P denotes the cohomology class of a
point, L the cohomology class of a line, and 1 the funda-
mental class:

(P P)o2,1(P Py
HL-L-1)g30(P-P-P-P-P)ys,
=2(P - P)o,1(P - P) 21

Interpreting the invariant (P - P) , ; as the number of lines
through two points in CP?, it should be intuitively believ-
able that it equals 1. Similarly, interpreting the invariant
(L-L-1)y30 as the number of intersection points of two
lines in CP? suggests (correctly) that this invariant equals
1, as well. Thus, the above relation implies

<P‘P'P‘P'P>0,5’2=1,

which recovers, via much more modern machinery, the an-
cient Greeks' assertion that there is a unique conic pass-
ing through five general points in the (complex, projec-
tive) plane. In a celebrated theorem from the early days of
Gromov-Witten theory [Kon92], Kontsevich generalized
the above computation to interpret the WDVV relations on
CP? as a recursion that effectively computes all of the num-
bers N4 of rational degree-d curves through 3d — 1 general
points in CP?, requiring only the base case of N; = 1.

Although Kontsevich’s proof was entirely mathematical,
there is a different interpretation of his result that passes
through the unexpected world of theoretical physics—
more specifically, string theory. Curves arise in that set-
ting as the “worldsheet” traced out by a string as it trav-
els through spacetime, and Gromov-Witten invariants ap-
pear in the definition of a structure known as the “quan-
tum product” on H*(X). The WDVV equations turn out
to be equivalent to the condition that this product is as-
sociative, so Kontsevich’s formula can be interpreted as a
consequence of this associativity for X = CP?.

The proof of Kontsevich's theorem was a true triumph;
prior to this work, only a handful of the numbers N4 could
be computed, and then only by difficult ad hoc methods.
But this early success of the interplay between enumerative
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geometry and string theory was only the beginning of a
decades-long story that continues to reveal new structures
and bring new computations within reach. A second key
moment came with the discovery of mirror symmetry, to
which we now turn. Although our discussion will be neces-
sarily brief, the reader can find much more on the connec-
tion between physics and curve-counting in surveys such
as [Kat06] and [Cla17].

Mirror Symmetry

In the language of theoretical physics, string theories pro-
vide an example of an object known as an N = 2 super-
conformal field theory, where the N = 2 refers to the
presence of two “supersymmetries.” One way in which to
construct such a theory, called the nonlinear sigma model,
takes as input a three-dimensional compact complex man-
ifold X with trivial canonical bundle (that is, a Calabi-
Yau threefold) together with a complexified Kihler class
w € H*(X;C).

In fact, the data of (X, w) determines not just a supercon-
formal field theory but an ordering of the two supersym-
metries, with the two possible choices of ordering referred
to as the “A-model” and “B-model” of the theory. Each of
these models gives an induced choice of generators for a
distinguished two-dimensional subalgebra of the theory’s
infinitesimal symmetries, and the eigenspaces of these gen-
erators can be mathematically identified with H4(X, APTx)
and HI(X, fo).

The statement of mirror symmetry, from a physical per-
spective, is that there should exist a “mirror” pair (X, w")
for which the associated nonlinear sigma model is the
same superconformal field theory but with the opposite
ordering of the supersymmetries. This would in particular
imply isomorphisms of eigenspaces

HI(X, APTy) = HI(X, Q%)
HI(X, Q%) = HI(XV, APTy.).

In the special case when p = g = 1, deformation the-
ory interprets H'(X, Tx) as the space of infinitesimal defor-
mations of the complex structure on X and H'(X, Qx) as
the space of infinitesimal deformations of the Kihler class.
This leads to a more refined version of the mirror conjec-
ture: there should be an isomorphism between a neighbor-
hood of (X, w) in the moduli space of complex structures
on the underlying manifold of X, and a neighborhood of
(XY, w") in the moduli space of Kihler structures on XV.
The predictions of mirror symmetry extend still deeper,
and this is where the enumerative geometry comes in. The
superconformal field theory associated to (X,w) admits
two types of “correlation functions,” which can be inter-
preted mathematically as connections on certain vector
bundles: in the A-model, this is the quantum connection on
a vector bundle over the moduli space of complex struc-
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tures, and in the B-model, it is the Gauss—Manin connec-
tion on a vector bundle over the moduli space of Kihler
structures. The quantum connection can be defined in
terms of genus-zero Gromov-Witten invariants, whereas
the Gauss-Manin connection is a more well-studied and
explicit object that uses period integrals to measure how
integral homology deforms relative to Kihler structure.
In this context, mirror symmetry predicts an exchange
of the A-model and B-model connections on (X, ) and
(XY,w"), yielding an equality between a generating func-
tion of genus-zero Gromov-Witten invariants of X and cer-
tain B-model information from X" that can be exactly cal-
culated.

As a particular key example, one can take X to be the
quintic threefold—that is, the vanishing locus of the equa-
tion

Q(z1s ey 25) =25 + -+ + 22

in CP*. Then mirror symmetry—due in this setting to the
1991 work of physicists Candelas, de la Ossa, Green, and
Parkes [CdIOGP91]—predicted that a certain generating
function of the numbers ny of degree-d rational curves in
X could be recovered via explicit elementary transforma-
tions from a simple hypergeometric series. This conjecture
shocked the mathematical community, since it not only
would imply that the numbers ny (which, after account-
ing for multiple cover contributions, can be related to the
genus-zero Gromov-Witten invariants of X) can be effec-
tively computed, but it would reveal that these numbers
admit a deep and unexpected structure.

The first mathematical proof of the above mirror conjec-
ture was provided by Givental [Giv96]. (A different view-
point also appeared at approximately the same time in
work of Lian-Liu-Yau [LLY99], but we will focus on Given-
tal’s formulation here.) To state the result, it is helpful to
introduce a generalization of Gromov-Witten invariants
known as descendent integrals; these are integrals

f VIBOP - V(BB

[Mg,n(X,B)]Vir

where 3; € HZ(]_V[g,n(X,ﬁ)) is the first Chern class the
line bundle whose fiber over (C; xy, ..., X,,; f) is the cotan-
gent line Ty, C. (These “psi-classes” show up naturally in
the theory, from non-transverse intersections of the classes
51,51‘ Jg, mentioned in the previous section.) The genus-
zero descendent invariants of X can be packaged into a

generating series
¢ > o,

z- l,b 0,n+1,8

8
J=z+t+ ), % <t(zp),..- (1),

n,B,.u

which takes as input t € H*(X)[z] and produces as output
a formal series in g, z, and z~! with coefficients in H*(X).
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Another such formal series, this time an entirely explicit
one, is the power series expansion of

[1F (5H + bz)
Z ——

I= 5 ,
gz0 [[,_,(H + bz)>

where H € H*(X) denotes the restriction to X of the hyper-
plane class on CP*#. Givental’s mirror theorem states that
these two functions differ by a change of variables.

Theorem 1 (Givental’s mirror theorem). Let I denote the
part of I with non-negative powers of z. Then

1=J(-z+1.).

Though these generating functions are complex at first
glance, the moral of the theorem is simple: by comparing
coefficients of monomials on the two sides of the theorem,
certain genus-zero Gromov-Witten invariants of X can be
calculated. In fact, basic relationships determine all of the
genus-zero Gromov-Witten invariants of X in terms of the
ones that appear in this equality, so the mirror theorem
provides a way to calculate the genus-zero Gromov-Witten
theory of the quintic threefold in its entirety.

Givental’s original proof of the mirror theorem was a
tour de force involving, among other tools, an equivari-
ant localization formula that can be used to express the
Gromov-Witten invariants of X as a complicated sum
over graphs. Although this localization method had been
previously employed by Kontsevich [Kon95] to compute
particular numbers ny, the combinatorial complexity of
the graph sum increases incredibly quickly; one aspect of
Givental’s contribution was an ingenious method of orga-
nizing the sum.

On the other hand, in the years since Givental’s work, a
new perspective on the mirror theorem has emerged that
makes the proof somewhat more transparent: Gromov-
Witten theory can be viewed as just one among a family
of theories depending on a positive rational parameter ¢,
and the mirror theorem arises in this context as a relation-
ship between the theories when € — o0 and € — 0. This
more general theory, known as quasimap theory and devel-
oped in the work of Ciocan-Fontanine, Kim, and Maulik
[CFKM 14, CFK14] (building on previous work by Marian-
Oprea-Pandharipande [MOP11]), is the topic of the next
and final section of the article.

Wall-Crossing and Beyond

To motivate the definition of quasimaps, note that a stable
map f : C — X to the quintic X € CP* can be described
via its five coordinates. When C = CP!, these are five poly-
nomials in the coordinates [x : y] € CP!; more generally,
they can be viewed as five sections f, ..., fs € H°(L) of the
line bundle L = f*Ocp4(1). In order to ensure that these
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give a well-defined map to X C CP*, these sections must
satisfy
1. fi,..,fs have no common zeroes (so that f gives a
map to CP*), and
2. Q(fy, > fs) = 0 (so that f lands in X).

Furthermore, the condition that f is stable can be un-
packed in terms of the sections: it amounts to insisting
that

3. deg(L) > 0 on any genus-zero component of C with
fewer than three special points.

(A “special point,” here, is a point that is either a node or
one of the marked points x, ..., X;,.)

Now, let € be a positive rational number. An e-stable
quasimap to X is a curve C equipped with a line bundle
L and five sections fi, ..., fs € H°(L) satisfying variants of
the above conditions in which fi, ..., fs are allowed to have
common zeroes to a limited extent controlled by e. More
precisely, they must satisfy

1'. fi,..,fs may have common zeroes, but only finitely
many and only at nonspecial points, and the order of
any common zero must be < 1/¢;

2. Qfr,-r f5) =0;

3’. deg(L) > 0 on any genus-zero component with two
special points, and deg(L) > 1/¢ on any genus-zero
component with one special point.

Note, in particular, that taking € — oo recovers the defi-
nition of ordinary stable maps. On the other hand, when
€ — 0, common zeroes of arbitrarily high order are al-
lowed, and the geometry of the curve is correspondingly
simplified; in particular, condition 3’ implies that C has no
rational tails (genus-zero components with a single special
point).

The key observation of Ciocan-Fontanine and Kim is
that there exists a generating function J¢(t) of genus-zero
e-stable quasimaps for any ¢, which agrees with Givental’s
J-function when € - oo and with Givental’s I-function
when e — 0and t = 0. The mirror theorem then becomes a
special case of a more general result relating the functions
J¢ for different values of ¢ to one another. The advantage
of this increased generality is that, since the theory only
changes at discrete values of € (namely, when 1/¢ is an in-
teger), which are sometimes referred to as the “walls” of
the theory, the problem of relating J¢~* to J¢~° can in-
stead be tackled by understanding how quasimap theory
changes when € crosses each wall individually.

In addition to providing an enlightening new perspec-
tive on Givental's mirror theorem, quasimap theory also
gives a hint as to a difficult further question: given that
the mirror theorem, as stated above, applies only in genus
zero, is there an analogous statement in higher genus?

One answer to this question is provided by Ciocan-
Fontanine and Kim's work on higher-genus wall-crossing
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—€
[CFK17]. To state their result, denote by M ,,(X, §) the
moduli space of ¢-stable quasimaps to X. For any tuple

>

B = (Bo, .-, Bx) of nonnegative integers with Sy +---+ 8 =
B, there is a map

— —
Cg . Mg,n+k(X,,80) - Mg,n(X’ )

that, roughly speaking, replaces the last k marked points
of an ordinary stable map with common zeroes of fi, ..., f5
of orders S, ..., Br. The essence of the higher-genus wall-
crossing theorem is that the map c; relates the virtual fun-

damental classes of the ordinary and the e-stable mod-
uli spaces to one another, with a correction coming from
genus-zero data

Theorem 2. Let JS denote the part of J¢(0) with non-negative
powers of z, and let ,ug (2) denote the coefficient of g in —z+J5.
Then

[V (X, BV

k

1 *

-y L (Hevmwgiewm»
,30+...+ﬁk:ﬁ : i=1

~ [Mgnir(X, 50)]Vir>~

This theorem—first proved by Ciocan-Fontanine and
Kim via the techniques of virtual pushforwards and later
reproved by the author with Janda and Ruan via more for-
mal machinery that can be applied in greater generality
[CIR17, CJR21b]—is much more powerful than the orig-
inal mirror theorem, not only because it applies in all
genus, but because it relates not merely enumerative in-
variants but the virtual fundamental classes themselves.
On the other hand, on a surface level, perhaps a state-
ment like this should not come as a complete surprise: the
geometric difference between quasimap theory and ordi-
nary Gromov-Witten theory can be understood in terms
of what sorts of rational tails are allowed, which is genus-
zero information and thus can be encoded in the coeffi-
cients of the function J¢.

Even with the new perspective provided by wall-
crossing, however, it is not obvious how to use mirror
symmetry to compute the Gromov-Witten invariants of
the quintic threefold in higher genus, because the higher-
genus quasimap theory for ¢ — 0 must still be com-
puted. Physicists Bershadsky, Cecotti, Ooguri, and Vafa
conjectured what the answer should be as early as 1993,
proposing an explicit formula for the generating func-
tions of genus-one and genus-two Gromov-Witten invari-
ants that relied on structural properties inherent in the B-
model [BCOV97]. Ten years after this prediction, a math-
ematical proof in genus one was given by Zinger [Zin09],
and another ten years later, the genus-two prediction was
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proven by Chen-Guo-Janda-Ruan [GJR17, CJR21a]. The
immense amount of work that it has taken to achieve these
increases in genus is one indication of the depth of the mir-
ror symmetry phenomenon, and the wealth of mysteries
that it continues to hold.
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