
RESTRICTION OF EXPONENTIAL SUMS TO HYPERSURFACES
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Abstract. We prove moment inequalities for exponential sums with respect to singular mea-

sures, whose Fourier decay matches those of curved hypersurfaces. Our emphasis will be on

proving estimates that are sharp with respect to the scale parameter N , apart from Nε losses.
In a few instances, we manage to remove these losses.

1. Description of the questions

Let e(t) = e2πit. Given a 1-periodic d-dimensional exponential sum, what can be said about its
restriction to a given smooth manifold M in Td? In this paper we investigate a few examples, by
restricting attention to the case when M is a curved hypersurface.

Our most substantial findings will concern the exponential sums along the moment curve. For
d ≥ 2, N ∈ N, sequences a = (an) ∈ C and x = (x1, . . . , xd) ∈ Td (identified with [0, 1]d), we let

Sa,d(x,N) =
N∑
n=1

an e(x1n+ · · ·+ xdn
d).

In the special case an ≡ 1 we shall simplify the notation to Sd(x,N). The investigation of their Lp

moments on the measure space (Td, dx) has been at the forefront of both harmonic analysis and
analytic number theory for many years, culminating in the full resolution of this problem, see [5]
and [21]. The estimate

(1.1)

∫
Td
|Sa,d(x,N)|p dx .ε ‖a‖p`2

{
N ε, 0 < p ≤ d(d+ 1)

N
p
2−

d(d+1)
2 +ε, p > d(d+ 1)

is known to be sharp, up to the N ε term. Here and everywhere else ε denotes a positive, arbitrarily
small constant.

Our interest here lies in the behavior of such sums when they are restricted to hypersurfaces in
Td. For example, speaking somewhat informally, can the “large” values of Sa,d(x,N) “concentrate”
on such a singular set as a hypersurface? Such questions are already interesting and difficult for
the constant sequence an ≡ 1. But as we shall soon see, the arbitrary coefficient case comes with
additional motivation.

We make the following conjecture. It predicts that in a certain range of Lp spaces, the behavior
of exponential sum Sa,d(x,N) restricted to M is governed by square root cancellation.

Conjecture 1.1. Let σ be the surface measure of a smooth hypersurface M in Td with non–
vanishing Gaussian curvature. Then for each N ≥ 1, d ≥ 2 and for each sequence a, the estimate

(1.2)

∫
Td
|Sa,d(x,N)|p dσ(x) .ε ‖a‖p`2

{
N ε, p ≤ pd := d(d− 1)

N
p−pd

2 +ε, p > pd

holds for all ε > 0, with the implicit constant depending only on σ, ε and d.

Note that the estimate (1.2) at the critical exponent pd implies the estimates for all other values
of p. For p < pd this follows from Hölder, while for p > pd, by interpolation with the trivial bound

2010 Mathematics Subject Classification. Primary 42A45, Secondary 11L05.

Key words and phrases. Weyl sums, moment curve, paraboloid.
The first author is partially supported by the NSF grant DMS-1800305. The second author is supported by the

National Science Centre of Poland within the research project OPUS 2017/27/B/ST1/01623.

1



2 CIPRIAN DEMETER AND BARTOSZ LANGOWSKI

at p = ∞. Throughout this paper, interpolation will always refer to combining two estimates via
Hölder’s inequality.

To see that -apart from the N ε term- (1.2) is optimal, notice that given the box

Qd,N := [0, 1/N ]× [0, 1/N2]× . . .× [0, 1/Nd−1]× [0, 1/Nd]

we can always find a smooth hypersurface

M = {(x, F (x)) : x ∈ [0, 1]d−1} ⊂ [0, 1]d

with nonzero Gaussian curvature, and satisfying

(1.3) F
(
[0, 1/N ]× [0, 1/N2]× . . .× [0, 1/Nd−1]

)
⊂ [0, 1/Nd].

Indeed, we may take F (x1) = x2
1 when d = 2, F (x1, x2) = x1x2 when d = 3, F (x1, x2, x3) =

x2
2+x1x3

2 when d = 4, and F (x1, x2, x3, x4) = x1x4+x2x3

2 when d = 5. In general, we may take

F (x1, . . . , xd−1) =
2

d

∑
1≤i≤d/2

xixd−i.

GivenM satisfying (1.3), we let σ be its surface measure. Taking the constant sequence an ≡ 1,
we have ‖a‖`2 = N1/2. On the other hand, we have constructive interference, |Sd(x,N)| ' N for
x ∈ Qd,N , so we can estimate∫

Td
|Sd(x,N)|p dσ(x) ≥

∫
Qd,N

|Sd(x,N)|p dσ(x) ' Npσ(Qd,N ) ' NpN−d(d−1)/2.

Thus (1.2) is sharp if p > pd. By considering random sequences, we also see the optimality for
p ≤ pd.

It is not clear whether the requirement that the hypersurface has nonzero Gaussian curvature
is needed in order for (1.2) to hold. In fact, this inequality continues to hold if M is the graph
of any measurable F satisfying ‖F‖L∞([0,1]d−1) = O(1/Nd). In this case, summation by parts and

the fact that the variation norm of the sequence e(ndF (x)) is O(1), reduces (1.2) to an application
of (1.1) with d replaced with d − 1. Since the critical exponent for Conjecture 1.1 coincides with
the critical exponent for (1.1) in dimension d− 1, it is tempting to fantasize on whether there is a
clever way to quickly derive (1.2) from (1.1) for arbitrary, merely smooth F . We were not able to
prove this, and we believe such a direct argument is unlikely to exist.

One might suspect that the resolution of Conjecture 1.1 would rely on suitable use of the
asymptotic formula due to Herz [16]

(1.4) σ̂(ξ) = C

(
ξ

|ξ|

)
|ξ|−

d−1
2 cos

(
2π

(
sup
x∈M

(x · ξ)− d− 1

8

))
+O(|ξ|−

d+1
2 ),

where C is some positive continuous function.
One can ask what happens if we assume merely the relevant decay of the Fourier transform of

the measure, ignoring the oscillations in the formula (1.4). Clearly, one should expect a weaker
assertion. We propose the following conjecture, that will provide us with the main line of attack
for Conjecture 1.1.

Conjecture 1.2. Let d ≥ 2. Let σ be a positive finite measure on Td satisfying the Fourier
transform bound

(1.5) |σ̂(ξ)| . (1 + |ξ|)−β , ξ ∈ Zd,

with β = (d− 1)/2. Let

ρd :=

{
3d2−4

4 , d even
3d2−3

4 , d odd
.

We have

(1.6)

∫
Td
|Sa,d(x,N)|p dσ(x) .ε ‖a‖p`2

{
N ε, 0 < p ≤ ρd
N

p−ρd
2 +ε, p > ρd

.
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Note that once (1.6) is established for some p, the inequality for smaller values of p follows using
Hölder. Observe also that p2 = ρ2 = 2, p3 = ρ3 = 6, but ρd < pd for d ≥ 4. We add one more
conjecture, that will provide us with the strategy to approach Conjecture 1.2.

Conjecture 1.3. Let d ≥ 2. For each j ≥ 0 the following estimate holds

2j
d+1
2

∫
[0,2−j ]d

|Sa,d(x,N)|p dx .ε ‖a‖p`2

{
N ε, 0 < p ≤ ρd
N

p−ρd
2 +ε, p > ρd

.(1.7)

Since the sequence a is arbitrary, the domain of integration [0, 2−j ]d in (1.7) may be replaced
with any of its translates in Td.

Conjectures 1.2 and 1.3 are related in two ways. On the one hand, if (1.6) holds for some p,
then (1.7) will also hold for the same p. In particular, Conjecture 1.2 implies Conjecture 1.3. On
the other hand, the validity of (1.7) for some even integer p will be seen to imply the validity of
(1.6) for the same p (and thus, also for all smaller p). So Conjecture 1.3 implies Conjecture 1.2
whenever d is not divisible by 4. See Proposition 2.2 for details.

Note that (1.7) for some p ≤ ρd implies the same inequality for all smaller exponents, via Hölder.
In fact, the exponent d+1

2 of 2j can be taken to be larger for smaller values of p, but that will not
concern us. Given this exponent, the power of N in Conjecture 1.3, and thus also in Conjecture
1.2, is sharp. Indeed, let us test (1.7) with the constant sequence an ≡ 1 and 2j = Nk, where
k = d+1

2 if d is odd, and k = d+2
2 if d is even. Since

|Sd(x,N)| ' N, for |x1|, . . . , |xk−1| � 2−j and |xk| � N−k, . . . , |xd| � N−d,

we find that

2j
d+1
2

∫
[0,2−j ]d

|Sd(x,N)|p dx & Nk d+1
2 N−k(k−1)N

(k−1)k
2 − d(d+1)

2 Np = ‖a‖p`2N
p−ρd

2 .

When p ≤ ρd, (1.7) is seen to be sharp for j = 0, by testing with randomized sequences.
We caution that we have stated Conjecture 1.3 assuming that the worst case scenario when

p > ρd is provided by constructive interference near a point. It is possible that new obstructions
arise from more sophisticated interferences. However, we will prove that this is not the case in
dimensions d ≤ 5.

To put Conjecture 1.3 into perspective, we compare it with the following “folklore” conjecture,
a comprehensive generalization of (1.1) (see for example Section 13.6 in [10]).

Conjecture 1.4. Let β1 < β2 < . . . < βk be positive integers. For each p ≥ 2 and an ∈ C we have

‖
N∑
n=1

ane(x1n
β1 + . . .+ xkn

βk)‖Lp([0,1]k) .ε N
ε(1 +N

1
2−

β1+...+βk
p )‖an‖l2 .

When d is odd, (1.7) follows from Conjecture 1.4 with βi = d+1
2 + i, 1 ≤ i ≤ k = d−1

2 . Indeed,
it suffices to note that ρd = 2(β1 + . . .+ βk), and to write∫

[0,2−j ]d
|Sa,d(x,N)|p dx ≤ 2−j

d+1
2 sup

b: |bn|=|an|

∫
[0,1]

d−1
2

|
N∑
n=1

bne(xβ1
nβ1 + . . .+ xdn

βk)|pdx.

However, sharp results (at the critical exponent) for such incomplete systems are out of reach at
the moment, even in the simplest case k = 2, β1 = 1, β2 = 3. We follow a rather different approach
in this paper, that takes advantage of the oscillatory effect coming from the first d+1

2 variables.

Let us now describe another case of interest. It involves the exponential sums with frequencies
supported on dilates of the unit sphere Sd−1

SS
a,d(x,N) =

∑
n∈
√
NSd−1∩Zd

ane(n · x).

In [6], the following conjecture is made.
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Conjecture 1.5. Let M be a real analytic hypersurface in Td, with nonnegative curvature and
surface measure σ. Then

(1.8) ‖SS
a,d(x,N)‖L2(dσ) . ‖a‖`2 .

Note that the implicit constant in (1.8) is scale-independent. As SS
a,d(x,N) is the typical eigen-

function with eigenvalue −2πN for the Laplacian on Td, this conjecture is part of a vast literature,
that we do not recall here, but rather point the reader to [6] for references. Inequality (1.8) is
verified in [6] for d = 2 and d = 3. Proving (1.8) for d = 2, as well as with an N ε bound for d = 3
is rather easy, and it follows by using only the Fourier decay (1.5). The bulk of the paper [6] is
devoted to proving the scale-independent bound for d = 3. The argument is a wonderful blend of

analysis and number theory of all flavors. Most crucially, it relies on the oscillatory nature of d̂σ,
as expressed by (1.4). The authors prove

(1.9)
∑

n1,n2∈
√
NSd−1∩Zd

an1an2 d̂σ(n1 − n2) . ‖a‖2`2

by exploiting subtle cancellations between the Fourier coefficients of dσ.
While some of the ingredients needed to extend this argument to d = 4 are known (e.g. [6]

contains lots of Jarnik-type estimates, while the energy estimate was proved in [4]), pursuing this

remains challenging due to the delicate nature of the oscillatory component of d̂σ.
We note that if we insist on proving scale-independent inequalities, we cannot use Lp with p > 2

in place of L2 in (1.8), when d > 2. This follows by invoking constructive interference, as before.
However, there are some interesting questions left open in two dimensions, regarding larger values
of p. See Section 13, where we establish a connection with a conjecture of Cilleruelo and Granville.

We investigate the analogous questions for the paraboloid

Pd−1
N = {n = (n1, . . . , nd−1, n

2
1 + . . .+ n2

d−1) ∈ Zd : 1 ≤ ni ≤ N},
by considering the sums

SP
a,d(x,N) =

∑
n∈Pd−1

N

ane(n · x), x ∈ Td.

The motivation for investigating the paraboloid is twofold. First, it has positive principal cur-
vatures, like the sphere. But the distribution of the lattice points on the two manifolds is very

different, and the term d̂σ(n1 − n2) in (1.9) is sensitive to that. This makes the question for the
paraboloid of independent interest. An additional motivation is provided by the special significance
of the exponential sums SP

a,d(x,N): they are solutions to the free Schrödinger equation on Td.
We hesitantly make the following conjecture.

Conjecture 1.6. Let M be a real analytic hypersurface in Td, with nonnegative curvature and
surface measure σ. For each d ≥ 2, and N ≥ 1 we have the estimate

‖SP
a,d(x,N)‖L2(dσ) . ‖a‖`2 .

Notation. For a measurable (or finite) set A in Rn (or Zn) we denote by |A| its measure (or
cardinality, respectively). We will use either the notation X . Y or X = O(Y ) to indicate that
|X| ≤ CY , with a positive constant C independent of variable parameters such as scales (usually
denoted by N,M), sequences and functions. We shall write X ' Y when simultaneously X . Y
and Y . X. Finally, for positive Y we will write either X � Y or X = o(Y ) if |X| ≤ cY holds
with some small enough positive constant c, independent of variable parameters.

2. Main results and methodology

Given a finitely supported function f : Zd → C, its Fourier transform is

f̂(x) =
∑
n∈Zd

f(n)e(n · x), x ∈ Td.



5

Given a finite complex measure ν on Td (d|ν|(Td) <∞), its Fourier coefficients are

d̂ν(n) =

∫
Td
e(−n · x)dν(x).

The following lemma is classical. Its origins can be traced at least as far back as the work of Hardy
and Littlewood [15]. The argument uses the fact that p is even, and this is not just an artifact of
the proof. The lemma is false for p = 3 (see [13]) and in fact for any real number p > 2 that is not
an even integer (see Theorem 3.2 in [18]). The counterexamples use dµ(x) = dν(x) = dx.

Lemma 2.1. Let µ, ν be finite measures on Td. Assume ν has positive Fourier coefficients and

satisfies |d̂µ(n)| ≤ d̂ν(n) for all n ∈ Zd. Then for each finitely supported f : Zd → C and for each
positive even integer p we have

|
∫
Td
|f̂ |pdµ| ≤

∫
Td
|ĝ|pdν,

where g = |f |.

Proof. We use Plancherel’s formula first∫
Td
|f̂ |pdµ =

∑
n∈Zd

|̂f̂ |p(n) d̂µ(n).

An easy computation shows that, since p is even,∣∣∣∣|̂f̂ |p(n)

∣∣∣∣ ≤ |̂ĝ|p(n).

Thus

|
∫
Td
|f̂ |pdµ| ≤

∑
n∈Zd

|̂ĝ|p(n) d̂ν(n) =

∫
Td
|ĝ|pdν.

�

The lemma allows us to prove the connection between Conjecture 1.2 and Conjecture 1.3.

Proposition 2.2. If (1.6) holds for some p, then (1.7) also holds for the same p. If (1.7) holds
for some positive even integer p, then (1.6) also holds for the same p.

Proof. For the first part, we find it more convenient to identify Td with [−1/2, 1/2]d. Let η : Rd →
[0,∞] be a smooth function satisfying

1[−1/4,1/4]d ≤ η ≤ 1[−1/2,1/2]d .

The Fourier coefficient η̂(n) coincides with the Fourier transform of η evaluated at n. Then

dσ(x) = 2j
d+1
2 η(2j−2x)dx is a finite positive measure on Td that satisfies (1.5) uniformly over j.

Note also that 1[0,2−j ]4(x) ≤ η(2j−2x).

For the second part, let η : Rd → [0,∞) be a smooth nonnegative function, compactly supported
in [−1/2, 1/2]d, with positive Fourier transform satisfying η̂(ξ) & 1[−1,1]d(ξ). The positive measure

ν on Td given by

dν(x) =
∑

j: 1≤2j≤dNd
2j

d+1
2 η(2jx)dx

is finite and satisfies
|d̂σ(n)| . d̂ν(n), |n| ≤ dNd

if
|d̂σ(n)| . (1 + |n|)−

d−1
2 .

Let
φ(x) =

∑
n∈Zd: |n|≤dNd

d̂σ(n)e(n · x).

We now apply Lemma 2.1 to the pair (dµ = φ(x)dx, dν) and to f̂(x) = Sa,d(x,N)∫
Td
|Sa,d(x,N)|p dσ(x) =

∫
Td
|Sa,d(x,N)|pdµ(x)
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≤
∫
Td
|S|a|,d(x,N)|pdν(x)

.
∑

j: 1≤2j≤dNd
2j

d+1
2

∫
[−2−j ,2−j ]d

|S|a|,d(x,N)|pdx.(2.1)

It is now immediate that (1.7) implies (1.6).
�

In sections 5-7 we will use inequality (2.2) stated below, with |I||lS − lS| � 1. This will allow
us to replace integrals on short intervals where the integrand is essentially constant, with integrals
over [0, 1].

Lemma 2.3. Let (an)n∈S be a finite sequence of complex numbers, and let p = 2l be a positive
even integer. Write

lS − lS = {n1 + . . .+ nl − nl+1 − . . .− n2l : ni ∈ S}.

Then

|
∑
n∈S

an|p ≤ |lS − lS|
∫ 1

0

|
∑
n∈S

ane(nt)|pdt.

In particular, for each I ⊂ [0, 1] we have

(2.2)

∫
I

|
∑
n∈S

ane(nt)|pdt . |I||lS − lS|
∫ 1

0

|
∑
n∈S

ane(nt)|pdt.

Proof. It suffices to observe that

|
∑
n∈S

an|p =

∫ 1

0

|
∑
n∈S

ane(nt)|p
∑

m∈lS−lS

e(mt)dt.

�

In our paper we only investigate the subcritical regime in Conjectures 1.1, 1.2 and 1.3. Com-
bining (1.1) at p = d(d+ 1) with Hölder gives, for each p < d(d+ 1)

(2.3) 2j
d+1
2

∫
[0,2−j ]d

|Sa,d(x,N)|p dx .ε N ε2j(
1−d
2 + p

d+1 )‖a‖p`2 .

This shows that Conjecture 1.3 holds for p ≤ d2−1
2 , and thus Conjectures 1.1 and 1.2 also hold for

p ≤ d2−1
2 when d is odd, and for p ≤ d2−4

2 when d is even. This is a rather poor range of exponents,
and we will improve it significantly in low dimensions. Let us now state our main results.

Theorem 2.4. Conjecture 1.3 holds in the full range for d = 2 and d = 3, and in the range p ≤ 10
for d = 4.

Moreover, when d = 4, we have the following superficially weaker, but morally equivalent sub-
stitute for (1.7), in the full range p ≤ ρ4 = 11

2
5
2 j

∫
[0,2−j ]4

|Sa,4(x,N)|p dx .ε Np( 1
2−

1
6 )+ε‖a‖p`6 .(2.4)

When d = 5, the following holds in the full range p ≤ ρ5 = 18.

23j

∫
[0,2−j ]5

|Sa,5(x,N)|p dx .ε Np( 1
2−

1
9 )+ε‖a‖p`9 .(2.5)

In particular, (1.7) holds in the full range when d ≤ 5, for constant coefficients an ≡ 1.

The proof for d = 2 involves elementary methods. The case d = 3 as well as the range p ≤ 10
for d = 4 will rely on known decouplings. To reach p = 11 for d = 4 and p = 18 for d = 5 we need
to develop new small cap decoupling technology. The inspiration comes from a result proved in [2],
and streamlined in [11]. Our Theorem 3.3 extends the result from [2] to the case when small cap
is applicable to three (rather than two) of the variables, by removing the periodicity assumption
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on the second variable. Its linear counterpart, Theorem 3.4, will be used in multiple forms, see
Corollaries 3.5, 3.6, 3.7 and 3.8. In Section 10 we extend this approach to five dimensions.

The systematic study of small cap decoupling at the critical exponent for the moment curve has
been initiated only recently, and it mostly addresses dimensions 2 ≤ d ≤ 4. See [12], [11] and [17].
While partial results exist in higher dimensions, see e.g. [19], they are not strong enough to fully
solve Conjecture 1.3 in dimensions d ≥ 6.

The following result is a direct consequence of Theorem 2.4 and Proposition 2.2.

Corollary 2.5. Conjectures 1.1 and 1.2 hold true in the full range for d = 2 and d = 3, and in
the range p ≤ 10 for d = 4. When d = 5 and p ≤ 18, we have the following morally equivalent
substitute for (1.6) ∫

Td
|Sa,d(x,N)|p dσ(x) .ε N

p( 1
2−

1
9 )+ε‖a‖p`9 .

In particular, both conjectures are verified in the range p ≤ 18 for the constant sequence a ≡ 1.

Inequality (1.6) has been proved in [7], see Theorem 2.2 and Example 2.3 there, in the supercrit-
ical regime p ≥ d(d+1) > ρd. The argument relies on a simple application of (1.1) for p = d(d+1),
similar to the subcritical estimate (2.3).

Let us make a quick comparison between our methods and the ones in [7]. The latter also makes
implicit use of Lemma 2.1, by noting that each σ satisfying (1.5) with β = (d− 1)/2 also satisfies

|d̂σ(n)1FN (n)| . d̂ν(n) =
∑

1≤2j.Nd

2−j
d−1
2 1Aj(N)(n).

Here Aj(N) is the intersection of the annulus |n| ' 2j with the frequency support

FN = {n = (n1, . . . , nd) : |n1| . N, . . . , |nd| . Nd}

of Sa,d(x,N). The argument in [7] continues by using the rather weak estimate

d|ν|(x) ≤
∑

1≤2j≤dNd
2−j

d−1
2 |Aj(N)|1Td(x)dx,

that destroys important cancellations. Since |Aj(N)| ' N1+2+...+(kj−1)2j(d+1−kj) if Nkj−1 . 2j .
Nkj , 1 ≤ kj ≤ d, the application of Lemma 2.1 gives for each positive even integer p∫

Td
|Sa,d(x,N)|p dσ(x) .

∑
1≤2j≤dNd

N
(kj−1)kj

2 2j(
d+3
2 −kj)

∫
Td
|S|a|,d(x,N)|pdx.

We may use Lemma 2.3 to show that this upper bound is larger than the one in (2.1). Indeed, for
each j we apply (2.2) for each of the first kj − 1 variables

2j
d+1
2

∫
[−2−j ,2−j ]d

|S|a|,d(x,N)|pdx ≤ N
(kj−1)kj

2 2j(
d+3
2 −kj)

∫
Tkj−1×[0,2−j ]d+1−kj

|S|a|,d(x,N)|pdx.

The smallness of the range of the last variables will be used crucially in our argument, by means
of exploiting the small cap decoupling phenomenon.

In most cases, we have formulated our conjectures with the N ε term in the bound. While
we do this mostly out of abundance of caution, it must be pointed out that one of our favorite
tools, Theorem 3.2, is known to have a genuine logarithmic loss in the scale. In any case, we do
manage to prove a few scale-independent results. One of them is the sharp form of (1.2) for p = 4
and d = 3, proved in Section 12 using counting arguments. We also prove the scale-independent
version of Conjecture 1.1 for d = 2, in the full range. In fact, in Section 11 we prove sharp L2

estimates for the paraboloids in all dimensions, subject only to the decay of d̂σ. The bounds are
scale-independent only in the case d = 2. When d = 3, there is a logarithmic loss. This is very
similar to the situation for the sphere described in the previous section. The question of removing

this logarithmic loss by exploiting the oscillations of d̂σ remains open.
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3. Decouplings and exponential sum estimates, old and new

In this section we record the main tools we will use to address Conjecture 1.3.

Theorem 3.1 (L2 orthogonality). Let (ξk)1≤k≤K be a 1/R-separated sequence of real numbers.
Then, for each interval ω of length & R and for each ak ∈ C we have

‖
K∑
k=1

ake(ξkx)‖L2(ω) . |ω|1/2‖ak‖`2 .

Theorem 3.2 (l2(L6) decoupling for curved planar curves, [3]). Let I ⊂ [0, 1] be an interval.
Assume φ1, φ2 are C3 real-valued curves on the interval I satisfying the curvature condition∣∣∣∣∣∣det

φ′1(t) φ′2(t)

φ
′′

1 (t) φ
′′

2 (t)

∣∣∣∣∣∣ ' 1, t ∈ I.

Partition I into intervals H or length 1/
√
R. Then for each collection of points ξk ∈ I, each ak ∈ C

and for each square Q in R2 with diameter & R we have

‖
K∑
k=1

ake(x1φ1(ξk) + x2φ2(ξk))‖L6(Q) .ε R
ε(
∑
H

‖
∑
ξk∈H

ake(x1φ1(ξk) + x2φ2(ξk))‖2L6(Q))
1/2.

We now introduce our new decouplings. Let us start with the case of curves in four dimensions.
Let φ2, φ3, φ4 will be real analytic functions defined on some open interval containing [ 1

2 , 1], and
satisfying

(3.1) ‖φ′k‖C3([ 12 ,1]) =
∑

1≤n≤4

max
1
2≤t≤1

|φ(n)
k (t)| . 1, k ∈ {2, 3, 4},

the Wronskian condition

(3.2) |W (1, φ′2, φ
′
3, φ
′
4)| =

∣∣∣∣∣∣∣det

φ
(2)
2 (t) φ

(3)
2 (t) φ

(4)
2 (t)

φ
(2)
3 (t) φ

(3)
3 (t) φ

(4)
3 (t)

φ
(2)
4 (t) φ

(3)
4 (t) φ

(4)
4 (t)


∣∣∣∣∣∣∣ ' 1, t ∈ [

1

2
, 1],

and

(3.3)

∣∣∣∣det

[
φ′′2(t) φ′′3(t)
φ′′2(s) φ′′3(s)

]∣∣∣∣ ' 1, t, s ∈ [
1

2
, 1] with |t− s| ' 1.

Theorem 3.3 (Bilinear small cap l2L12 decoupling). Let I1, I2 be intervals of length ' N in
[N2 , N ], with dist(I1, I2) ' N . Let Ω = [0, 1] × ω2 × ω3 × ω4, where ωi are intervals satisfying

|ω2|, |ω3| ≥ N2, |ω4| ≥ N . Then we have∫
Ω

|
2∏
j=1

∑
n∈Ij

ane(nx1 + φ2(
n

N
)x2 + φ3(

n

N
)x3 + φ4(

n

N
)x4)|6dx .ε N ε|Ω|‖a‖12

`2 .

The case φ2(t) = t2 was explained in [11]. In this context, the requirements (3.2) and (3.3) are
superficially weaker than, but essentially equivalent (cf. Exercise 7.10 in [10]) to those stated in
[11], which we recall below ∣∣∣∣∣det

[
φ

(3)
3 (t) φ

(4)
3 (t)

φ
(3)
4 (s) φ

(4)
4 (s)

]∣∣∣∣∣ ' 1, t, s ∈ [
1

2
, 1],

and

|φ(3)
3 (t)| ' 1, t ∈ [

1

2
, 1].

The novelty of this formulation is that it allows small cap in three of the four variables. The
argument will crucially exploit periodicity in the x1 variable, so it does not accommodate a small
cap on this component. Our main new observation is that periodicity on the second component is
not needed.
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It is easy to see that the linear version of Theorem 3.3 is not true. Let us first observe that if
p > 2 then

‖a‖`2([N/2,N ]) . ‖a‖`p([N/2,N ])N
1
2−

1
p ,

and the inequality is an equivalence when a = 1[N/2,N ]. The l2 norm turns out to be too strong.
In fact, we show that for all p < 6, the inequality∫

[−1,1]2×[−1/N,1/N ]×[−1/N3,1/N3]

|
∑

N/2≤n≤N

ane(nx1+φ2(
n

N
)N2x2+φ3(

n

N
)N3x3+φ4(

n

N
)N4x4)|12dx

.ε N
ε−4‖a‖12

`pN
6− 12

p

is false for the sequence a = 1[N2 ,
N
2 +M ], with M = N3/4. Consider the set S of points

(3.4) (x1, . . . , x4) ∈ [−1, 1]× [−1, 1]× [−1/N, 1/N ]× [−1/N3, 1/N3]

satisfying 

1 φ′2( 1
2 ) φ′3( 1

2 ) φ′4( 1
2 )

0 φ′′2( 1
2 ) φ′′3( 1

2 ) φ′′4( 1
2 )

0 φ′′′2 ( 1
2 ) φ′′′3 ( 1

2 ) φ′′′4 ( 1
2 )

0 φ′′′′2 ( 1
2 ) φ′′′′3 ( 1

2 ) φ′′′′4 ( 1
2 )





x1

Nx2

N2x3

N3x4


=



o(1/M)

o(N/M2)

o(N2/M3)

o(N3/M4)


.

Since the entries o(1/M), o(N/M2), o(N2/M3), o(N3/M4) are all o(1), using (3.1) and (3.2), it
follows that any solution to this system satisfies

|x1|, |Nx2|, |N2x3|, |N3x4| ≤ 1.

In particular, (3.4) is guaranteed to hold. Also, for each 2 ≤ k ≤ 4 and m ≤M we have

sup
t∈[1/2,1]

|φ(5)
k (t)(

m

N
)5Nkxk| � 1.

We use Taylor’s formula with fifth order remainder, to write for each k and n = N/2 +m

φk(
n

N
) =

4∑
l=0

φ
(l)
k (

1

2
)(
m

N
)l + φ

(5)
k (tk,m)(

m

N
)5.

Combining all these facts, we see that we have constructive interference

|
∑

N/2≤n≤N/2+M

e(nx1 + φ2(
n

N
)N2x2 + φ3(

n

N
)N3x3 + φ4(

n

N
)N4x4)| 'M

for each x ∈ S. Since |S| ' 1/M10, it follows that if a = 1[N/2,N/2+M ]∫
[−1,1]2×[−1/N,1/N ]×[−1/N3,1/N3]

|
∑

N/2≤n≤N

ane(nx1+φ2(
n

N
)N2x2+φ3(

n

N
)N3x3+φ4(

n

N
)N4x4)|12dx

&M2.

This lower bound is significantly bigger than N ε−4‖a‖12
`pN

6− 12
p , when p < 6.

However, the next result shows that we can work with p = 6. We will need to add another
determinant condition, that is satisfied in all our applications

(3.5)

∣∣∣∣det

[
φ′′2(t) φ′′3(t)
φ′′′2 (t) φ′′′3 (t)

]∣∣∣∣ ' 1, t ∈ [
1

2
, 1].
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Theorem 3.4 (Linear small cap l6L12 decoupling). Assume φ2, φ3, φ4 : (0, 3)→ R are real analytic
and satisfy (3.1), (3.2), (3.3) and (3.5) on [1/4, 1]. Let Ω = [0, 1] × ω2 × ω3 × ω4, where ωi are
intervals satisfying |ω2|, |ω3| ≥ N2, |ω4| ≥ N . Then we have∫

Ω

|
∑

N/2≤n≤N

ane(nx1 + φ2(
n

N
)x2 + φ3(

n

N
)x3 + φ4(

n

N
)x4)|12dx .ε (N1/3+ε‖a‖`6)12|Ω|.

Note that this result is sharp in three ways. First, the factor N4 on the right cannot be made any
smaller. This can be seen by using a random sequence an ∈ {−1, 1}. Second, as observed above,
the term N1/3‖a‖`6 cannot be replaced with the smaller term N1/2−1/p‖a‖`p , for p < 6. Third,
none of the intervals ωi can be allowed to be significantly smaller than the specified lower bounds.
This can be seen by using the constant sequence a ≡ 1, which leads to constructive interference on
[0, o(1/N)]× [0, o(1)]3.

We list as corollaries four particular cases of interest for us. The first one was proved in [2] for
the constant sequence a ≡ 1. It corresponds to φ2(t) = t2, φ3(t) = t4, φ4(t) = t3.

Corollary 3.5. Let ω̄3, ω̄4 be intervals of length greater than 1/N2. Then∫
[0,1]×[0,1]×ω̄3×ω̄4

|
∑

N/2≤n≤N

ane(nx1 + n2x2 + n3x3 + n4x4)|12dx .ε N
4+ε|ω̄3||ω̄4|‖a‖12

`6 .

The second one is a new result, even for the constant sequence. It corresponds to φ2(t) = t3,
φ3(t) = t4, φ4(t) = t2. We will see that, at least for our purposes, this is a stronger estimate
than the first corollary. That comes from the fact that ω̄2 is allowed to be much smaller than the
periodicity interval [0, 1]. By renaming the variables, the result is as follows.

Corollary 3.6. Let ω̄2, ω̄3 be intervals of length greater than 1/N . Let ω̄4 be an interval of length
greater than 1/N2. Then∫

[0,1]×ω̄2×ω̄3×ω̄4

|
∑

N/2≤n≤N

ane(nx1 + n2x2 + n3x3 + n4x4)|12dx .ε N
4+ε|ω̄2||ω̄3||ω̄4|‖a‖12

`6 .

Here are two more corollaries that we will use to address the five dimensional moment curve in
Section 10. They will serve as lower dimensional decoupling in the “easier” regimes.

Corollary 3.7. Let ω̄3, ω̄4 be intervals of length greater than 1/N2. Let ω̄5 be an interval of length
greater than 1/N3. Then∫

[0,1]×ω̄3×ω̄4×ω̄5

|
∑

N/2≤n≤N

ane(nx1 + n3x3 + n4x4 + n5x5)|12dx .ε N
4+ε|ω̄3||ω̄4||ω̄5|‖a‖12

`6 .

Corollary 3.8. Let ω̄4, ω̄5 be intervals of length greater than 1/N3. Then∫
[0,1]2×ω̄4×ω̄5

|
∑

N/2≤n≤N

ane(nx1 + n2x2 + n4x4 + n5x5)|12dx .ε N
4+ε|ω̄4||ω̄5|‖a‖12

`6 .

In Section 10 we will pursue a similar investigation in five dimensions. To keep things simple, we
confine ourselves to only proving the following result, that suffices for our applications to the “hard”
regimes. While the technology involved in proving the previous results is of quadratic nature (the
governing tool is the decoupling for the parabola), the next theorem will take into consideration
the oscillatory effect of cubic terms, similar to the decoupling inequality for the three dimensional
moment curve. The small cap decoupling nature of the next result is captured by the variables x3,
x4 and x5. The novelty compared to the result in [19] is that we allow x3 to have a range as small
as 1/N2, as opposed to the periodicity range [0, 1]. This will be crucial to our argument in Section
7.

Theorem 3.9. Let ω̄3, ω̄5 be intervals of length greater than 1/N2. Let ω̄4 be an interval of length
greater than 1/N . Then we have∫

[0,1]2×ω̄3×ω̄4×ω̄5

|
∑

N/2≤n≤N

ane(nx1+n2x2+n3x3+n4x4+n5x5)|18dx .ε N
18( 1

2−
1
9 )+ε|ω̄3||ω̄4||ω̄5|‖a‖18

`9 .
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The exponent 7 of N on the right hand side is sharp. It seems plausible that the result remains
valid with the box ω̄3×ω̄4×ω̄5 replaced with a smaller one, having volume N−6. Also, our argument
does not use periodicity for x2, which suggests that perhaps there is a more general formulation
of this result, in the style of Theorem 3.4. However, the nondegeneracy conditions associated with
such a result are expected to be rather complicated. To avoid unnecessary technicalities, we follow
a more economical approach in Section 10.

4. Proof of Conjecture 1.3: d = 3

Recall that it suffices to prove the conjectured estimate at the critical exponent ρ3 = 6. Invoking
a dyadic decomposition, it suffices to prove that for j ≥ 0∫

[0,2−j ]3
|

N∑
n=N/2

ane(x1n+ x2n
2 + x3n

3)|6dx .ε 2−2jN ε‖an‖6`2 .

Since we are dealing with the moment curve, it is tempting to use the strongest estimate for it,
inequality (1.1) for d = 3∫

[0,1]3
|

N∑
n=N/2

ane(x1n+ x2n
2 + x3n

3)|12dx .ε N
ε‖a‖12

`2 .

However, the reader may check that either combining this with Hölder, or interpolating it with the
L2 bound (available in the nontrivial range 2j ≤ N2)∫

[0,2−j ]3
|

N∑
n=N/2

ane(x1n+ x2n
2 + x3n

3)|2dx . 2−3j‖a‖`2 ,

does not produce the desired decay 2−2j for p = 6. It turns out that what we have to use instead
is decoupling for planar curves.

We distinguish three cases. The variable x1 will not play any role, and abusing notation, we
write x = (x2, x3).

Case 1. Assume 2j ≤ N . We will prove the superficially stronger estimate

(4.1)

∫
[0,2−j ]2

|
N∑

n=N/2

ane(x2n
2 + x3n

3)|6dx .ε 2−jN ε‖an‖6`2 .

Working with the last two variables proves to be the most efficient choice, as it leads to spatial
domains of largest possible size, and thus to a more efficient decoupling. Via a change of variables
and enlarging the range of x2 to [0, 1] in order to give ourselves enough room to decouple, we write∫

[0,2−j ]2
|

N∑
n=N/2

ane(x2n
2 + x3n

3)|6dx ≤ N−5

∫
[0,N2]×[0,N32−j ]

|
N∑

n=N/2

ane(x2(
n

N
)2 + x3(

n

N
)3)|6dx.

We cover [0, N2] × [0, N32−j ] with squares Q with side length R = N2 and apply Theorem 3.2
to the curve φ(t) = (t2, t3), to get the desired estimate. Note that each interval H of length

1/N = 1/
√
R contains only one point ξn = n/N .

Case 2. Assume N < 2j ≤ N2. We prove (4.1). We will combine l2(L6) decoupling with L2

orthogonality as follows. First, we enlarge the range for x2 to [0, N2−j ]. Then we change variables
and decouple using Theorem 3.2 for the curve φ(t) = (t2, t3), with R = N32−j .∫

[0,2−j ]2
|

N∑
n=N/2

ane(x2n
2+x3n

3)|6dx ≤ N−5

∫
[0,N32−j ]2

|
N∑

n=N/2

ane(x2(
n

N
)2 + x3(

n

N
)3)|6dx

.ε N
ε−5[

∑
H

[

∫
[0,N32−j ]2

|
∑
n∈H

ane(x2(
n

N
)2 + x3(

n

N
)3)|6dx]1/3]3.
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Here the sum is over intervals H of length M = (2j/N)1/2 partitioning [N/2, N ]. Since H is small,
its corresponding arc on the parabola is essentially flat with respect to our spatial domain. In
the absence of curvature, our best tool is L2 decoupling. For each H, we write | · |6 = | · |4| · |2.
We estimate the first term pointwise by M2‖a‖4`2(n∈H), using the Cauchy–Schwarz inequality.

Since N32−j ≥ N , we can estimate the integral of the second term applying Theorem 3.1 (using
orthogonality in any of the x2 or x3 variables)∫

[0,N32−j ]2
|
∑
n∈H

ane(x2(
n

N
)2 + x3(

n

N
)3)|6dx .M2‖a‖4`2(H)(N

32−j)2‖a‖2`2(H).

Plugging this into the previous inequality leads to the proof of (4.1).

Case 3. Assume N2 < 2j . Ignoring the first and second variables, it suffices to prove that∫
[0,2−j ]

|
N∑

n=N/2

ane(x3n
3)|6dx3 . ‖an‖6`2 .

For 2j = N2, this follows from L2 orthogonality as in the previous case, while for larger values,
the integral gets smaller.

5. d = 4: Proof of (2.4)

It suffices to deal with p = 11. We also normalize the sequence a such that N1/3‖a‖`6 = 1.
Thus, ‖a‖`2 ≤ 1. Let us start by giving a measure of the difficulty of the inequality we need to
prove

(5.1)

∫
[0,2−j ]4

|
N∑
n=1

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|11dx .ε N

ε2−
5j
2 .

As in the previous section, it is tempting to use the Vinogradov-type estimate ((1.1) with d = 4)

(5.2)

∫
[0,1]4

|
N∑
n=1

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|20dx .ε N

ε.

Combining it with Hölder leads to a weaker estimate than the one we need (see (2.3))∫
[0,2−j ]4

|
N∑
n=1

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|11dx .ε N

ε2−
9j
5 .

When 2j ≤ N2, we can do better, by interpolating (5.2) with the inequality∫
[0,2−j ]4

|
N∑
n=1

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|6dx .ε N ε2−3j max{2−j , 1

N
}‖a‖6`2(5.3)

≤ N ε2−3j max{2−j , 1

N
}.

The estimate (5.3) follows from l2(L6) decoupling for the curve φ(t) = (t3, t4) and L2 orthogonality,

as in the previous section. The reader may check that this verifies (5.1) in the range 2j ≤ N 9
8 .

We may also try something else when N ≤ 2j ≤ N2. From now on, we will replace [1, N ] with
[N/2, N ], via the dyadic decomposition used earlier.

Instead of interpolating the L6 estimate with the L20 estimate, we interpolate it with the L12

estimate, the latter being derived from Corollary 3.5 as follows∫
[0,2−j ]4

|
N∑

n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|12dx

≤ N2−j
∫

[0,1]×[0,2−j ]3
|

N∑
n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|12dx
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≤ N2−j
∫

[0,1]2×[0,2−j ]2
|

N∑
n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|12dx

.ε N
1+ε2−3j .(5.4)

The first inequality follows from Lemma 2.3, while the last one follows from Corollary 3.5. Com-
bining this with (5.3) gives∫

[0,2−j ]4
|

N∑
n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|11dx .ε 2−3jN

2
3 +ε.

This is only as good as (5.1) if 2j ≥ N4/3.
In summary, our methods so far leave a gap between 9/8 and 4/3. To cover the remaining part

of the range we will rely instead on Corollary 3.6. In fact, this result is so strong that it will give
us (5.1) even for p = 12, when 2j ≤ N2.

Case 1. 2j ≤ N . We enlarge the domain for x1 to [0, 1], then apply Corollary 3.6.∫
[0,2−j ]4

|
N∑

n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|12dx

≤
∫

[0,1]×[0,2−j ]3
|

N∑
n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|12dx

.ε N
ε2−3j .

This is actually better than what we need (for p = 12) by a factor of 2−j/2.

Case 2. N ≤ 2j ≤ N2. Applying Lemma 2.3, we enlarge the range for x1 to [0, 1] and gain
the factor N2−j . We also enlarge the range for both x2 and x3 to [0, 1/N ] and then apply Corol-
lary 3.6∫

[0,2−j ]4
|

N∑
n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|12dx

. N2−j
∫

[0,1]×[0,1/N ]2×[0,2−j ]

|
N∑

n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|12dx

.ε N
ε−12−2j .

Note that the upper bound is more favorable than the one (i.e. (5.4)) obtained via Corollary 3.5.
It is also better than what we need (for p = 12).

Writing σ = σNhigh + σNlow, with σNlow the Fourier restriction of σ to frequencies ≤ N2, we have
proved that ∫

T4

|Sa,4(x,N)|12 dσNlow(x) .ε N
ε.

As observed in the introduction, these methods cannot prove the similar statement for σNhigh.

Indeed, if an ≡ 1 and N2 � 2j � N4, then constructive interference near the origin gives the
lower bound∫

[0,2−j ]4
|

N∑
n=N/2

e(x1n+ x2n
2 + x3n

3 + x4n
4)|12dx & N52−2j min(1, N32−j).

This is much bigger than 2−
5j
2 ‖an‖12

`2 . The best that can be proved with our methods is p = 11.
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Case 3. N2 ≤ 2j ≤ N3. In this regime, Corollary 3.5 is stronger than Corollary 3.6. We first apply
Lemma 2.3 for both the first and the second variables, then Corollary 3.5∫

[0,2−j ]4
|

N∑
n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|12dx

. 2−2jN3

∫
[0,1]2×[0,1/N2]2

|
N∑

n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|12dx

.ε N
ε−12−2j .

To get a favorable L11 estimate we interpolate this with the following L6 bound that we may get
by reasoning as in the previous section. The variables x1, x2 play no role this time.∫

[0,2−j ]4
|

N∑
n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|6dx

. 2−2jN−7 sup
b: |bn|=|an|

∫
[0,N32−j ]×[0,N42−j ]

|
N∑

n=N/2

bne(x3(
n

N
)3 + x4(

n

N
)4)|6dx3dx4

.ε 2−2jN ε−7 sup
b: |bn|=|an|

[
∑
H

[

∫
[0,N32−j ]×[0,N42−j ]

|
∑
n∈H

bne(x3(
n

N
)3 + x4(

n

N
)4)|6dx3dx4]1/3]3.

For each interval H of length M = (2j/N)1/2 we combine L2 decoupling with Cauchy–Schwarz∫
[0,N32−j ]×[0,N32−j ]

|
∑
n∈H

bne(x3(
n

N
)3 + x4(

n

N
)4)|6dx

≤M2‖b‖4`2(H)

∫
[0,N32−j ]×[0,N42−j ]

|
∑
n∈H

bne(x3(
n

N
)3 + x4(

n

N
)4)|2dx3dx4

.M2N72−2j‖a‖6`2(H).

Combining the inequalities in the last two paragraphs we get

(5.5)

∫
[0,2−j ]4

|
N∑

n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|6dx .ε

N ε

23jN
‖a‖6`2 ≤

N ε

23jN
.

Interpolation leads to ∫
[0,2−j ]4

|
N∑

n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|11dx

.ε N
ε(

1

23jN
)1/6(

1

22jN
)5/6 = N ε 1

213j/6N
.

This is smaller than the desired bound N ε2−5j/2 precisely when 2j ≤ N3.

Case 4. If 2j ≥ N3, the result follows from L2 orthogonality. The first three variables play
no role here. ∫

[0,2−j ]4
|

N∑
n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|11dx

≤ 2−3j sup
b: |bn|=|an|

∫
[0,1/N3]

|
N∑

n=N/2

bne(x4n
4)|11dx4

≤ 2−3jN9/2 sup
b: |bn|=|an|

∫
[0,1/N3]

|
N∑

n=N/2

bne(x4n
4)|2dx4
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. 2−3jN3/2 . 2−5j/2.

6. Proof of Conjecture 1.3: d = 4, p ≤ 10

We prove

(6.1)

∫
[0,2−j ]4

|
N∑
n=1

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|10dx .ε N

ε2−
5j
2 ‖a‖10

`2 .

Recall (see (5.3) and (5.5)) that for 2j ≤ N3

(6.2)

∫
[0,2−j ]4

|
N∑
n=1

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|6dx .ε N ε max{ 1

N
, 2−j}2−3j‖a‖6`2 .

When 2j ≤ N2, (6.1) follows by interpolating∫
[0,1]4

|
N∑
n=1

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|20dx .ε N

ε‖a‖20
`2

with (6.2).
When N2 ≤ 2j ≤ N3, we use again (6.2) and the fact that | · |10 = | · |6| · |4 to conclude that∫

[0,2−j ]4
|
N∑
n=1

ane(x1n+ x2n
2 + x3n

3 + x4n
4)|10dx .ε

N ε

N23j
‖a‖6`2N2‖an‖4`2 .ε N ε2−

5
2 j‖a‖10

`2 .

When 2j ≥ N3, it suffices to replace [0, 2−j ] with [0, 1/N3] for x4, and to use L2 orthogonality for
this variable.

7. d = 5: Proof of (2.5)

It suffices to deal with p = 18. We normalize the sequence a such that N
1
2−

1
9 ‖a‖`9 = 1. In

particular, N
1
2−

1
6 ‖a‖`6 ≤ 1 and ‖a‖`2 ≤ 1. We need to prove

Ij :=

∫
[0,2−j ]5

|
N∑

n=N/2

ane(x1n+ x2n
2 + x3n

3 + x4n
4 + x5n

5)|18dx .ε N
ε2−3j .

Case 1. If 2j ≤ N , the inequality follows from Theorem 3.9, using the inclusion [0, 2−j ]5 ⊂
[0, 1]2 × [0, 2−j ]3.

Case 2. If N ≤ 2j ≤ N2, we combine Lemma 2.3 (for x1) and Theorem 3.9 as follows

Ij . N2−j
∫

[0,1]2×[0,2−j ]×[0, 1
N ]×[0,2−j ]

|
N∑

n=N/2

ane(x1n+x2n
2+x3n

3+x4n
4+x5n

5)|18dx .ε N
ε2−3j .

When N2 ≤ 2j , Theorem 3.9 becomes inefficient. We use instead lower dimensional methods.

Case 3. When N2 ≤ 2j ≤ N3, the variable x2 plays no role. We combine Lemma 2.3 (for
x1) with Corollary 3.7 and Cauchy–Schwarz (18 = 12 + 6)

Ij . N2−j2−jN3 sup
b: |bn|=|an|

∫
[0,1]×[0, 1

N2 ]×[0, 1
N2 ]×[0,2−j ]

|
N∑

n=N/2

bne(x1n+ x3n
3 + x4n

4 + x5n
5)|12dx

.ε N
ε2−3j .
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Case 4. When N3 ≤ 2j ≤ N4, the variable x3 plays no role. We combine Lemma 2.3 (for x1

and x2) with Corollary 3.8 and Cauchy–Schwarz

Ij . N2−jN22−j2−jN3 sup
b: |bn|=|an|

∫
[0,1]2×[0, 1

N3 ]×[0, 1
N3 ]

|
N∑

n=N/2

bne(x1n+ x2n
2 + x4n

4 + x5n
5)|12dx

.ε N
ε2−3j .

Case 5. If 2j ≥ N4, we use L2 orthogonality in x5 together with Cauchy–Schwarz (18 = 2 + 16)

Ij ≤ 2−4jN8 sup
b: |bn|=|an|

∫
[0, 1

N4 ]

|
N∑

n=N/2

bne(x5n
5)|2dx5 . 2−4jN8N−4 ≤ 2−3j .

8. Proof of Theorem 3.3

We denote by E the extension operator associated with the curve Φ

(8.1) Φ(t) = (t, φ2(t), φ3(t), φ4(t)), t ∈ [
1

2
, 1].

More precisely, for f : [ 1
2 , 1]→ C and I ⊂ [ 1

2 , 1] we write

EIf(x) =

∫
I

f(t)e(tx1 + φ2(t)x2 + φ3(t)x3 + φ4(t)x4)dt.

We recall the following results from [11]. The first one holds true since the curve Φ has torsion
' 1, as expressed by (3.2). To not obscure the presentation, we will ignore the use of weights wB
throughout the rest of the paper.

Theorem 8.1. Assume that Φ satisfies (3.1) and (3.2). Let I1, I2 be two intervals of length ' 1
in [ 1

2 , 1], with dist(I1, I2) ' 1. Let also fi : [ 1
2 , 1] → C. Then for each ball BN of radius N in R4

we have

‖EI1f1EI2f2‖L6(BN ) .ε N
ε(
∑
J1⊂I1

∑
J2⊂I2

‖EJ1f1EJ2f2‖2L6(BN ))
1/2.

The sum on the right is over intervals J of length N−1/2.

We will use this in combination with the following inequality

(8.2) ‖EJ1f1EJ2f2‖6L6(BN ) . N
−4‖EJ1f1‖6L6(BN )‖EJ2f2‖6L6(BN ).

The third inequality we need from [11] is stated below.

Theorem 8.2. Assume ψ1, . . . , ψ4 : [−1, 1]→ R have C3 norm O(1), and in addition satisfy

|ψ′′2 (t)|, |ψ′′3 (t)| � 1, ∀ |t| ≤ 1

and

|ψ′′1 (t)|, |ψ′′4 (t)| ' 1, ∀ |t| ≤ 1.

Let

Ψ(t, s) = (t, s, ψ1(t) + ψ2(s), ψ3(t) + ψ4(s)), |t|, |s| ≤ 1.

Then for each ball BN ⊂ R4 with radius N and each constant coefficients cm1,m2 ∈ C we have

(8.3) ‖
∑

m1≤N1/2

∑
m2≤N1/2

cm1,m2
e(x ·Ψ(

m1

N1/2
,
m2

N1/2
))‖L6(BN ) .ε N

ε‖cm1,m2
‖`2 |BN |1/6.

The implicit constant is independent of N and of ψi.
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We now proceed with the proof of Theorem 3.3. Fix an with ‖a‖`2 = 1. Rescaling the last three
variables, we slightly modify the earlier notation and write

EI(x) =
∑
n∈I

ane(nx1 + φ2(
n

N
)Nx2 + φ3(

n

N
)Nx3 + φ4(

n

N
)Nx4) =

∑
n∈I

ane(NΦ(
n

N
) · x).

Note that

EI(x) = EI/Nf(Nx),

where f is the distribution equal to ∑
n∈I

anδ nN .

Standard approximation arguments allow Theorem 8.1 to also be applicable to such f .
We also write

Ω = [0, 1]× [0, N ]× [0, N ]× [0, 1].

We need to prove that

(8.4)

∫
Ω

|EI1EI2 |6 . N2+ε.

The argument involves two decouplings.

Step 1. We cover Ω with cubes B of side length 1, apply Theorem 8.1 on each B (or rather
NB, after rescaling), then we sum these estimates to get∫

Ω

|EI1EI2 |6 .ε N ε[
∑
J1⊂I1

∑
J2⊂I2

(

∫
Ω

|EJ1EJ2 |6)1/3]3.

Here J1, J2 are intervals of length N1/2.
The remaining part of the argument will be concerned with proving the estimate∫

Ω

|EJ1EJ2 |6 .ε N2+ε‖an‖6`2(J1)‖an‖
6
`2(J2).

The combination of the last two inequalities leads to (8.4).
For i = 1, 2 fix Ji = [hi + 1, hi +N1/2].

Step 2. We point out the main difference between the forthcoming argument and the one in
[11]. Here, the variables x2 and x3 play an entirely symmetrical role, not just in terms of range,
but also functionality.

We will seek a change of variables in R4, one that will allow us to use Theorem 8.2. As in [11],
the variable x4 plays no role in this part of the argument, as it produces no oscillations. This
variable only played a role in the first step of the argument. We need to create another variable,
in addition to x1, x2, x3.

First, we apply (8.2) on each cube NB∫
B

|EJ1EJ2 |6 = N−4

∫
NB

|EJ1(
·
N

)EJ2(
·
N

)|6

. N−8

∫
NB

|EJ1(
·
N

)|6
∫
NB

|EJ2(
·
N

)|6 =

∫
B

|EJ1 |6
∫
B

|EJ2 |6.

Second, we use the following abstract inequality, that only relies on the positivity of |EJi |6

(8.5)
∑
B⊂Ω

∫
B

|EJ1 |6
∫
B

|EJ2 |6 .
∫

Ω

dx

∫
(y,z)∈[−1,1]4×[−1,1]4

|EJ1(x+ y)EJ2(x+ z)|6dydz.

Using periodicity in the y1, z1 variables, we can dominate the right hand side above by

1

N2

∫
x1,x4,y2,y3,y4,z2,z3,z4∈[−1,1]

dx1 . . . dz4

∫
y1,z1,x2,x3∈[0,N ]

|EJ1(x+ y)EJ2(x+ z)|6dy1dz1dx2dx3.
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In short, the variable x1 is now replaced with the new variables y1 and z1. It remains to prove
that the following square root cancellation

(8.6)

∫
y1,z1,x2,x3∈[0,N ]

|EJ1(x+ y)EJ2(x+ z)|6dy1dz1dx2dx3 .ε N
4+ε‖an‖6`2(J1)‖an‖

6
`2(J2)

holds uniformly over x1, x4, y2, y3, y4, z2, z3, z4. With these variables fixed for the rest of the argu-
ment, we make the linear change of variables (y1, z1, x2, x3) 7→ (u1, u2, w1, w2)

(8.7)


u1 = y1 + φ′2(h1

N )x2 + φ′3(h1

N )x3

u2 = z1 + φ′2(h2

N )x2 + φ′3(h2

N )x3

w1 = φ′′2(h1

N ) x2

2N + φ′′3(h1

N ) x3

2N

w2 = φ′′2(h2

N ) x2

2N + φ′′3(h2

N ) x3

2N

.

The Jacobian is ' 1
N2 , due to (3.3). The cube [0, N ]4 is mapped to a subset of |u1|, |u2| . N ,

|w1|, |w2| . 1. Note also that, due to (3.3), x3 = Aw1 +Bw2, x2 = Cw1 +Dw2, where A,B,C,D
depend only on h1, h2, and |A|, B|, |C|, |D| . N .

Let for i = 1, 2 θi(m) = m3 φ
′′′
2 (

hi
N )

3!N2 +m4 φ
′′′′
2 (

hi
N )

4!N3 + . . .

ηi(m) = m3 φ
′′′
3 (

hi
N )

3!N2 +m4 φ
′′′′
3 (

hi
N )

4!N3 + . . .

Using this we may dominate the integral in (8.6) by

(8.8) N2

∫
|ui|.N, |wi|.1

|
N

1
2∑

m1=1

N
1
2∑

m2=1

cm1,m2
e(m1u1 +m2

1w1 +m2u2 +m2
2w2+

+(θ1(m1) + θ2(m2))(Cw1 +Dw2) + (η1(m1) + η2(m2))(Aw1 +Bw2))|6du1du2dw1dw2.

The coefficient cm1,m2 depends only on m1,m2, x1, y2, z2, y3, z3, x4, y4, z4, but not on the variables
of integration ui, wi. Moreover,

|cm1,m2
| = |ah1+m1

ah2+m2
|.

The argument of each exponential may be rewritten as

m1

N1/2
u1N

1/2 + (ψ1(
m1

N1/2
) + ψ2(

m2

N1/2
))w1N+

m2

N1/2
u2N

1/2 + (ψ3(
m1

N1/2
) + ψ4(

m2

N1/2
))w2N

where 
ψ1(t) = t2+ t3

Aφ′′′3 (
h1
N )+Cφ′′′2 (

h1
N )

3!N3/2 + t4
Aφ′′′′3 (

h1
N )+Cφ′′′′2 (

h1
N )

4!N2 + . . .

ψ2(t) = t3
Aφ′′′3 (

h2
N )+Cφ′′′2 (

h2
N )

3!N3/2 + t4
Aφ′′′′3 (

h2
N )+Cφ′′′′2 (

h2
N )

4!N2 + . . .

ψ3(t) = t3
Bφ′′′3 (

h1
N )+Dφ′′′2 (

h1
N )

3!N3/2 + t4
Bφ′′′′3 (

h1
N )+Dφ′′′′2 (

h1
N )

4!N2 − . . .
ψ4(t) = t2+ t3

Bφ′′′3 (
h2
N )+Dφ′′′2 (

h2
N )

3!N3/2 + t4
Bφ′′′′3 (

h2
N )+Dφ′′′′2 (

h2
N )

4!N2 − . . .

.

These functions satisfy the requirements in Theorem 8.2. The expression in (8.8) becomes

1

N

∫
|ui|.N3/2, |wi|.N

|
N1/2∑
m1=1

N1/2∑
m2=1

cm1,m2e((u1, u2, w1, w2) ·Ψ(
m1

N1/2
,
m2

N1/2
))|6du1du2dw1dw2.

If we cover the domain of integration with balls BN and apply (8.3) on each of them, we may
dominate the above expression by

N4+ε‖cm1,m2
‖6`2([1,N1/2]×[1,N1/2]) = N4+ε‖an‖6`2(J1)‖an‖

6
`2(J2).

This proves (8.6) and ends the argument.
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9. Proof of Theorem 3.4

In this section we prove that Theorem 3.3 implies Theorem 3.4.

The parameter K will be very large and universal, independent of N , φk. The larger the K we
choose to work with, the smaller the ε from the N ε loss will be at the end of the section.

Proposition 9.1. Assume φ2, φ3, φ4 : (0, 3) → R are real analytic and satisfy (3.1), (3.2), (3.3)
and (3.5) on [1/4, 1]. Let as before ω2 = ω3 = [0, N2], ω4 = [0, N ] and

EI,N (x) =
∑
n∈I

ane(nx1 + φ2(
n

N
)x2 + φ3(

n

N
)x3 + φ4(

n

N
)x4).

We consider arbitrary integers N0,M satisfying 1 ≤ M ≤ N0

K and N0 + [M, 2M ] ⊂ [N2 , N ]. Let

H1, H2 be intervals of length M
K inside N0 + [M, 2M ] such that dist(H1, H2) ≥ M

K . Then∫
[0,1]×ω2×ω3×ω4

|EH1,N (x)EH2,N (x)|6 .ε N9+ε‖a‖12
`6([N0+M,N0+2M ]).

Proof. Write H1 = N0 + I1, H2 = N0 + I2 with I1, I2 intervals of length M
K inside [M, 2M ] and

with separation ≥ M
K . Note that N0/N ∈ [1/4, 1]. Note that the roles and the properties of φ2,

φ3 are completely symmetrical in EI,N and in (3.1), (3.2), (3.3) and (3.5). It follows by (3.3) that

either φ
(2)
2 (N0

N ) or φ
(2)
3 (N0

N ) is nonzero. So, due to symmetry, we can assume without the loss of

generality that φ
(2)
2 (N0

N ) 6= 0.
We use the following expansion, certainly valid for all m in Ii.

φ2(
N0 +m

N
) = Q2(m) +

∑
n≥2

φ
(n)
2 (N0

N )

n!
κn

= Q2(m) + κ2
∑
n≥2

φ
(n)
2 (N0

N )κn−2

n!
(
m

M
)n.

Here Q2(m) = A+Bm with B = O( 1
N ), and we denoted κ = M/N . Observe that by choosing K

sufficiently large we can make κ arbitrarily small. We introduce the analogue φ̃2 of φ2 at scale M

φ̃2(t) =
∑
n≥2

φ
(n)
2 (N0

N )κn−2

n!
tn.

This series is convergent as long as N0

N + t ∈ (0, 3), so the new function is certainly real analytic

on (0, 2), since N0 ≤ N . We can decompose φ̃2 as

φ̃2(t) =: a2t
2 + a3t

3κ+ a4t
4κ2 + r2(t)κ3,

with

an =
φ

(n)
2 (N0

N )

n!
, n = 2, 3, 4,

and r2(t) satisfying

sup
k=2,3,4

sup
t∈[1/2,1]

|r(k)
2 (t)| = O(1).

We have

φ2(
N0 +m

N
) = Q2(m) + κ2φ̃2(

m

M
).

We also write for m ∈ Ii with Q3(m) = C +Dm satisfying D = O( 1
N ),

(9.1) φ3(
N0 +m

N
) = Q3(m) +

∑
n≥2

φ
(n)
3 (N0

N )κn

n!
(
m

M
)n.
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We will use the following formula, with An =
φ
(n)
2 (

N0
N )κn

n! (mM )n, Bn =
φ
(n)
3 (

N0
N )κn

n! (mM )n∑
n≥2

Bn =
B2

A2

∑
n≥2

An +
∑
n≥3

BnA2 −B2An
A2

,

provided that A2 6= 0. The sum
∑
n≥2 in (9.1) is equal to

φ
(2)
3 (N0

N )

φ
(2)
2 (N0

N )
κ2φ̃2(

m

M
) +

∑
n≥3

φ
(n)
3 (N0

N )φ
(2)
2 (N0

N )− φ(2)
3 (N0

N )φ
(n)
2 (N0

N )

φ
(2)
2 (N0

N )n!
κn(

m

M
)n.

Let φ̃3 be the analogue of φ3 at scale M defined by

φ̃3(t) =
∑
n≥3

φ
(n)
3 (N0

N )φ
(2)
2 (N0

N )− φ(2)
3 (N0

N )φ
(n)
2 (N0

N )

φ
(2)
2 (N0

N )n!
κn−3tn.

This can be decomposed as

φ̃3(t) =: b3t
3 + b4t

4κ+ r3(t)κ2,

with

bn =
φ

(n)
3 (N0

N )φ
(2)
2 (N0

N )− φ(2)
3 (N0

N )φ
(n)
2 (N0

N )

φ
(2)
2 (N0

N )n!
, n = 3, 4,

and r3(t) satisfying

sup
k=2,3,4

sup
t∈[1/2,1]

|r(k)
3 (t)| = O(1).

We can write

φ3(
N0 +m

N
) = Q3(m) +

φ
(2)
3 (N0

N )

φ
(2)
2 (N0

N )
κ2φ̃2(

m

M
) + κ3φ̃3(

m

M
).

Finally, we let Q4(m) = E+Fm with F = O( 1
N ). Note that (3.5) guarantees that b3 6= 0. This

allows us to define

φ4(
N0 +m

N
) = Q4(m) +

∑
n≥2

φ
(n)
4 (N0

N )κn

n!
(
m

M
)n

= Q4(m) +
φ

(2)
4 (N0

N )

2!a2

(
a2(

m

M
)2 + a3(

m

M
)3κ+ a4(

m

M
)4κ2

)
κ2

+

φ
(3)
4 (

N0
N )

3! − a3φ
(2)
4 (

N0
N )

2!a2

b3

(
b3(

m

M
)3 + b4(

m

M
)4κ
)
κ3

+

[(
−
a4φ

(2)
4 (N0

N )

2!a2
+
φ

(4)
4 (N0

N )

4!
− b4
b3

(
−
a3φ

(2)
4 (N0

N )

2!a2
+
φ

(3)
4 (N0

N )

3!

))
(
m

M
)4

+
∑
n≥5

φ
(n)
4 (N0

N )κn−4

n!
(
m

M
)n
]
κ4

= Q4(m) +
φ

(2)
4 (N0

N )

2!a2
φ̃2(

m

M
)κ2 +

φ
(3)
4 (

N0
N )

3! − a3φ
(2)
4 (

N0
N )

2!a2

b3
φ̃3(

m

M
)κ3

+ κ4

[(
−
a4φ

(2)
4 (N0

N )

2!a2
+
φ

(4)
4 (N0

N )

4!
− b4
b3

(
−
a3φ

(2)
4 (N0

N )

2!a2
+
φ

(3)
4 (N0

N )

3!

))
(
m

M
)4

+
∑
n≥5

φ
(n)
4 (N0

N )κn−4

n!
(
m

M
)n −

φ
(2)
4 (N0

N )

2!a2
r2(

m

M
)κ−

φ
(3)
4 (

N0
N )

3! − a3φ
(2)
4 (

N0
N )

2!a2

b3
r3(

m

M
)κ

]

=: Q4(m) +
φ

(2)
4 (N0

N )

2!a2
φ̃2(

m

M
)κ2 +

φ
(3)
4 (

N0
N )

3! − a3φ
(2)
4 (

N0
N )

2!a2

b3
φ̃3(

m

M
)κ3 + φ̃4(

m

M
)κ4.
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We write

φ̃4(t) =
(
−
a4φ

(2)
4 (N0

N )

2!a2
+
φ

(4)
4 (N0

N )

4!
− b4
b3

(
−
a3φ

(2)
4 (N0

N )

2!a2
+
φ

(3)
4 (N0

N )

3!

))
t4 + r4(t)κ,

with

r4(t) =
∑
n≥5

φ
(n)
4 (N0

N )κn−5

n!
tn −

φ
(2)
4 (N0

N )

2!a2
r2(t)−

φ
(3)
4 (

N0
N )

3! − a3φ
(2)
4 (

N0
N )

2!a2

b3
r3(t)

satisfying

sup
k=2,3,4

sup
t∈[1/2,1]

|r(k)
4 (t)| = O(1).

Letting

R2(t) = a3t
3 + a4t

4κ+ r2(t)κ2,

R3(t) = b4t
4 + r3(t)κ

R4(t) = r4(t),

we have

(9.2) sup
k=2,3,4

sup
t∈[1/2,1]

|R(k)
2 (t)|+ sup

k=2,3,4
sup

t∈[1/2,1]

|R(k)
3 (t)|+ sup

k=2,3,4
sup

t∈[1/2,1]

|R(k)
4 (t)| = O(1),

and, after doing some basic algebra, we get

φ̃2(t) =
1

2!
φ

(2)
2 (

N0

N
)t2 +R2(t)κ,

φ̃3(t) =
1

3!

1

φ
(2)
2 (N0

N )
det

[
φ

(2)
2 (N0

N ) φ
(2)
3 (N0

N )

φ
(3)
2 (N0

N ) φ
(3)
3 (N0

N )

]
t3 +R3(t)κ

φ̃4(t) =
1

4!
det

[
φ

(2)
2 (N0

N ) φ
(2)
3 (N0

N )

φ
(3)
2 (N0

N ) φ
(3)
3 (N0

N )

]−1

det

φ
(2)
2 (N0

N ) φ
(2)
3 (N0

N ) φ
(2)
4 (N0

N )

φ
(3)
2 (N0

N ) φ
(3)
3 (N0

N ) φ
(3)
4 (N0

N )

φ
(4)
2 (N0

N ) φ
(4)
3 (N0

N ) φ
(4)
4 (N0

N )

 t4 +R4(t)κ.

Summarizing, we have obtained the following decomposition

φ2(
N0 +m

N
) = Q2(m) + κ2φ̃2(

m

M
),

φ3(
N0 +m

N
) = Q3(m) +

φ
(2)
3 (N0

N )

φ
(2)
2 (N0

N )
κ2φ̃2(

m

M
) + κ3φ̃3(

m

M
),

φ4(
N0 +m

N
) = Q4(m) +

φ
(2)
4 (N0

N )

φ
(2)
2 (N0

N )
κ2φ̃2(

m

M
) +

φ
(3)
4 (N0

N )φ
(2)
2 (N0

N )− φ(3)
2 (N0

N )φ
(2)
4 (N0

N )

φ
(3)
3 (N0

N )φ
(2)
2 (N0

N )− φ(2)
3 (N0

N )φ
(3)
2 (N0

N )
κ3φ̃3(

m

M
)

+ κ4φ̃4(
m

M
).

It motivates the change of variables

y1 = x1 +Bx2 +Dx3 + Fx4,

y2 = κ2

(
x2 +

φ
(2)
3 (

N0
N )

φ
(2)
2 (

N0
N )

x3 +
φ
(2)
4 (

N0
N )

φ
(2)
2 (

N0
N )

x4

)
,

y3 = κ3

(
x3 +

φ
(3)
4 (

N0
N )φ

(2)
2 (

N0
N )−φ(3)

2 (
N0
N )φ

(2)
4 (

N0
N )

φ
(3)
3 (

N0
N )φ

(2)
2 (

N0
N )−φ(2)

3 (
N0
N )φ

(3)
2 (

N0
N )

x4

)
,

y4 = κ4x4.

Due to periodicity, we may extend the range of x1 to [0, N ]. This linear transformation maps
[0, N ] × ω1 × ω3 × ω4 to a subset of the box ω̃1 × ω̃2 × ω̃3 × ω̃4 centered at the origin, with
dimensions roughly N,M2,M3N−1,M4N−3.

Thus

|EHk,N (x)| = |EIk,M (y)|
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where

EIk,M (y) =
∑
m∈Ik

aN0+me(my1 + φ̃2(
m

M
)y2 + φ̃3(

m

M
)y3 + φ̃4(

m

M
)y4).

Note that, as we mentioned before, by choosing K large enough, κ can be made arbitrarily
small. Therefore, the functions φ̃2, φ̃3 and φ̃4 satisfy conditions (3.1), (3.2) and (3.3). Indeed,
condition (3.1) follows from (9.2) and the fact that functions φ2, φ3 and φ4 satisfy (3.1). Condition
(3.2) follows from the identity

det

φ̃2
(2)

(N0

N ) φ̃3
(2)

(N0

N ) φ̃4
(2)

(N0

N )

φ̃2
(3)

(N0

N ) φ̃3
(3)

(N0

N ) φ̃4
(3)

(N0

N )

φ̃2
(4)

(N0

N ) φ̃3
(4)

(N0

N ) φ̃4
(4)

(N0

N )

 =
1

2!3!4!
det

φ
(2)
2 (N0

N ) φ
(2)
3 (N0

N ) φ
(2)
4 (N0

N )

φ
(3)
2 (N0

N ) φ
(3)
3 (N0

N ) φ
(3)
4 (N0

N )

φ
(4)
2 (N0

N ) φ
(4)
3 (N0

N ) φ
(4)
4 (N0

N )

+O(κ).

Finally, a direct computation reveals that

det

[
φ̃2
′′
(t) φ̃3

′′
(t)

φ̃2
′′
(s) φ̃3

′′
(s)

]
= |t− s| det

[
φ2
′′(N0

N ) φ3
′′(N0

N )
φ2
′′(N0

N ) φ3
′′(N0

N )

]
,

which implies (3.3).
We may write, using again periodicity in y1∫

[0,1]×ω2×ω3×ω4

|EH1,N (x)EH2,N (x)|6 =
1

N

∫
[0,N ]×ω2×ω3×ω4

|EH1,N (x)EH2,N (x)|6

≤ (
N

M
)9

∫
[0,1]×ω̃2×ω̃3×ω̃4

|EI1,M (y)EI2,M (y)|6.

Finally, we use Theorem 3.5 with N = M , noting that ω̃2, ω̃3 ⊂ [−M2,M2] and ω̃4 ⊂ [−M,M ], to
estimate the last expression by

(
N

M
)9M5+ε‖a‖12

`2([N0+M,N0+2M ]) ≤ N
9+ε‖a‖12

`6([N0+M,N0+2M ]).

�

We can now prove Theorem 3.4. Let Ω = [0, 1]× [0, N2]× [0, N2]× [0, N ].
Let Hn(I) be the collection of dyadic intervals in I with length N

2Kn . We write H1 6' H2 to
imply that H1, H2 are not neighbors. Then

|EI,N (x)| ≤ 3 max
H∈H1(I)

|EH,N (x)|+K10 max
H1 6'H2∈H1(I)

|EH1,N (x)EH2,N (x)|1/2.

We repeat this inequality until we reach intervals in Hl of length ' 1, that is Kl ' N . We have

|EI,N (x)| . l3lK10 max
1≤n≤l

max
H∈Hn(I)

max
H1 6'H2∈Hn+1(H)

|EH1,N (x)EH2,N (x)|1/2

. (logN)N logK 3 max
1≤n≤l

max
H∈Hn(I)

max
H1 6'H2∈Hn+1(H)

|EH1,N (x)EH2,N (x)|1/2.

Using Proposition 9.1 we finish the proof as follows∫
Ω

|EI,N (x)|12dx .K N ε+O(logK 3)
∑
n

∑
H∈Hn(I)

max
H1 6'H2∈Hn+1(H)

∫
Ω

|EH1,N (x)EH2,N (x)|6dx

.K,ε N
ε+O(logK 3)

∑
n

∑
H∈Hn(I)

N9‖an‖12
`6(H)

.K,ε N
9+ε+logK 3‖a‖12

`6 .

Choosing K large enough, we may force logK 3 to be as small as we wish.
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10. Proof of Theorem 3.9

We will work with the functions

φ1(t) = t, φ2(t) = t2, φ3(t) = t3 + ε3t
4, φ4(t) = t4 + ε4t

5, φ5(t) = t5,

where ε3, ε4 = o(1). The smallness of ε3, ε4 will be used in the proof of Proposition 10.5.
For all practical purposes, Φ = (φ1, . . . , φ5) will be a negligible perturbation (in fact, a nonsin-

gular linear image) of the moment curve Φ0 corresponding to ε3 = ε4 = 0. All implicit constants
in the results that we prove about Φ will be uniform over all such εi.

We abuse earlier notation and write

EI,N (x) =
∑
n∈I

ane(Φ(
n

N
) · x).

Note that this is N -periodic in x1 and N2-periodic in x2. At the end of this section we prove that
Theorem 3.9 is a consequence of the following bilinear result.

Theorem 10.1 (Bilinear small cap l9L18 decoupling). Let I1, I2 be intervals of length ' N in
[N2 , N ], with dist(I1, I2) ' N . Let Ω = [0, N ] × [0, N2] × ω3 × ω4 × ω5, where ωi are intervals

satisfying |ω3|, |ω4| ≥ N3, |ω5| ≥ N . Then we have∫
Ω

|
2∏
j=1

EIj ,N (x)|9dx .ε N18( 1
2−

1
9 )+ε|Ω|‖an‖9`9(I1)‖an‖

9
`9(I2).

From now on, we may and will assume that

Ω = [0, N3]4 × [0, N ].

Enlarging the range of the first two variables is done only for convenience, to accommodate various
changes of variables. It comes at no cost, due to periodicity. The novel small cap decoupling nature
of this result is reflected by the size ' N of the range of x5. Our argument cannot accommodate
a smaller range, due to our crucial use of N -periodicity in x1 for EI,N . This will be apparent in
Step 2 of the argument. However, the size ' N is exactly what is needed in our applications.

At the heart of our proof of Theorem 10.1 lies the following inequality proved in [14], for the
surface

G = (t, s, t2, s2, t3 + s3).

This can be thought of as a two dimensional analog of the decoupling for the moment curve in
R3. It will play the same role in this section as the role played by L6 decoupling in the proof of
Theorem 3.3. Notably, the argument in this section will make crucial use of the oscillatory nature
of the cubic terms in G.

Theorem 10.2. Given f : [0, 1]2 → C and intervals J1, J2 ⊂ [0, 1] let

EGJ1×J2f(x) =

∫
J1×J2

f(t, s)e(tx1, sx2, t
2x3, s

2x4, (t
3 + s3)x5)dtds.

Then for each ball BR ⊂ R5 we have

‖EG[0,1]2f‖L9(BR) .ε R
2
3 ( 1

2−
1
9 )+ε(

∑
|J1|,|J2|=1/R1/3

‖EGJ1×J2f‖
9
L9(BR))

1/9.

The first application of this theorem will be used to produce the Step 1 decoupling in the proof
of Theorem 10.1. For f : I ⊂ [0, 1]→ C let

EΦ
I f(x) =

∫
I

f(t)e(Φ(t) · x)dt.

Proposition 10.3. We have

‖EΦ
I1fE

Φ
I2f‖L9(BR) .ε R

2
3 ( 1

2−
1
9 )+ε(

∑
Ji⊂Ii: |Ji|=1/R1/3

‖EΦ
J1fE

Φ
J2f‖

9
L9(BR))

1/9.
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The idea behind this result is that Φ(I1) + Φ(I2) is a surface that can be locally approximated
by nonsingular affine images of the reference surface G. This is the approach taken in [19], and we
refer the reader to this paper for details.

We will combine this with the following transversality result.

Proposition 10.4. We have

‖EΦ
J1fE

Φ
J2f‖

9
L9(BR) . R

−5‖EΦ
J1f‖

9
L9(BR)‖E

Φ
J2f‖

9
L9(BR).

Proof. The proof is very similar to the one for (8.2), explained in [11]. We sketch the details, with
an emphasis on the main geometric inequality. Since

EΦ
J f(x) = EΦ0

J f(Ax), A(x1, . . . , x5) = (x1, x2, x3, x4 + ε3x3, x5 + ε4x4)

and since BR does not change much under the action of A, we may assume that Φ = Φ0.
Let ηR be a positive, smooth approximation of 1BR with Fourier support inside B(0, 1/R). The

Fourier transform of ηRE
Φ0

Ji
f is supported on the set (for arbitrary ti ∈ Ji)

{(ti + s, . . . , (ti + s)5) : |s| = O(R−1/3)}+B(0, 1/R).

This is easily seen to lie inside a translate of the rectangular box B(Ji) defined as follows. Let
π(ti) be the plane spanned by the vectors

e1(ti) = (1, 2ti, 3t
2
i , 4t

3
i , 5t

4
i ), e2(ti) = (0, 1, 3ti, 6t

2
i , 10t3i ).

Let R(ti) be the rectangle inside π(ti), centered at the origin, with long side of length O(1/R1/3)
in the direction e1(ti), and short side of length O(1/R2/3) in the orthogonal direction. We take
B(Ji) to be the Cartesian product of R(Ji) and the cube [−O(1/R), O(1/R)]3, the latter being a
subset of π(tj)

⊥. We write

|EΦ0

Ji
f |91BR ≈ |E

Φ0

Ji
f |9ηR ≈

∑
Pi∈Pi

cPi1Pi ,

with cPi ∈ (0,∞), and Pi a tiling of R5 with rectangular boxes Pi dual to B(Ji). Each Pi has
dimensions R1/3×R2/3×R×R×R, with the first two entries corresponding to π(ti) and the last
three corresponding to π(ti)

⊥.
Note that if x ∈ Pi then

〈x, e1(ti)〉 = O(R1/3), 〈x, e2(ti)〉 = O(R2/3).

Let us describe the intersection of P1 and P2. Since

det


1 2t1 3t21 4t31
1 2t2 3t22 4t32
0 1 3t1 6t21
0 1 3t2 6t22

 ' |t1 − t2|4 ' 1,

it follows that π(t1) ∩ π(t2) = {0} and that π(t1)⊥ ∩ π(t2)⊥ is a line, spanned by some unit
vector v. It also follows that the matrix M with rows one through five consisting of the vectors
e1(t1), e1(t2), e2(t1), e2(t2),v has determinant of magnitude ' 1. Since each x ∈ P1 ∩ P2 must
satisfy Mx ∈ [−O(R1/3), O(R1/3)]2 × [−O(R2/3), O(R2/3)]2 × [−O(R), O(R)], we conclude that
|P1 ∩ P2| . R3. This estimate can also be seen to be sharp. Thus

‖EΦ
J1fE

Φ
J2f‖

9
L9(BR) ≈

∑
P1∈P1

∑
P2∈P2

cP1
cP2
|P1 ∩ P2|

. R−5
∑
P1∈P1

∑
P2∈P2

cP1
cP2
|P1||P2|

≈ R−5‖EΦ
J1f‖

9
L9(BR)‖E

Φ
J2f‖

9
L9(BR).

�
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The following result will allow us to perform the Step 2 decoupling in the proof of Theorem
10.1. We let M = N2/3 and Hi = [hi + 1, hi + M ], with h1, h2, |h1 − h2| ' N . Note that the
variable x5 no longer plays any role. Let us write

EH,short(x1, x2, x3, x4) =
∑
n∈H

ane(φ1(
n

N
)x1 + . . .+ φ4(

n

N
)x4).

Proposition 10.5. We have∫
[0,N3]5

|EH1,short(y1, x2, x3, x4)EH2,short(z1, x2, x3, x4)|9dy1dz1dx2dx3dx4

.ε N
15+εM18( 1

2−
1
9 )‖an‖9`9(H1)‖an‖

9
`9(H2).

Proof. Let αi = hi/N . We make the change of variables

u1 = 1
N (y1 + 2α1x2 + φ′3(α1)x3 + φ′4(α1)x4)

u2 = 1
N (z1 + 2α2x2 + φ′3(α2)x3 + φ′4(α2)x4)

w1 = 1
N2 (x2 +

φ′′3 (α1)
2 x3 +

φ′′4 (α1)
2 x4)

w2 = 1
N2 (x2 +

φ′′3 (α2)
2 x3 +

φ′′4 (α2)
2 x4)

v = x2

N2

.

It has Jacobian ' N−8, since ε3, ε4 were chosen to be small. Note that

|EH1,short(y1, x2, x3, x4)| = |
M∑

m1=1

ah1+m1×

e(m1u1 +m2
1w1 +m3

1

φ
(3)
3 (α1)x3 + φ

(3)
4 (α1)x4

3!N3
+m4

1

φ
(4)
3 (α1)x3 + φ

(4)
4 (α1)x4

4!N4
+m5

1

φ
(5)
4 (α1)x4

5!N5
)|

|EH2,short(z1, x2, x3, x4)| = |
M∑

m2=1

ah2+m2
×

e(m2u2 +m2
2w2 +m3

2

φ
(3)
3 (α2)x3 + φ

(3)
4 (α2)x4

3!N3
+m4

2

φ
(4)
3 (α2)x3 + φ

(4)
4 (α2)x4

4!N4
+m5

2

φ
(5)
4 (α2)x4

5!N5
)|.

Using the equations for w1, w2, v and the fact that

β := det

[
φ′′3(α1) φ′′4(α1)
φ′′3(α2) φ′′4(α2)

]
' 1,

we find that

(10.1) x3 = aw1 + bw2 + cv, x4 = dw1 + ew2 + fv,

with a, . . . , f = O(N2). Moreover,

c = 2N2β−1[φ′′4(α1)− φ′′4(α2)], f = 2N2β−1[φ′′3(α2)− φ′′3(α1)].

The coefficients of m3
1 and m3

2 become

φ
(3)
3 (α1)x3 + φ

(3)
4 (α1)x4

6N3
=
ε1 − 24(α1 − α2)2

Nβ
v +O(1/N)w1 +O(1/N)w2

and
φ

(3)
3 (α2)x3 + φ

(3)
4 (α2)x4

6N3
=
ε2 + 24(α1 − α2)2

Nβ
v +O(1/N)w1 +O(1/N)w2.

The numbers ε1, ε2 depend on ε3, ε4 and can be guaranteed to be as small as needed, by choosing
ε3, ε4 = o(1). Since |α1 − α2| ' 1, we have that

|A :=
ε1 − 24(α1 − α2)2

β
| ' 1, |B :=

ε2 + 24(α1 − α2)2

β
| ' 1.

We next replace x3, x4 using (10.1). We also rescale

ūi = Mui, w̄i = M2wi, v̄ = M3N−1v.
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This allows us to rewrite

|EH1,short(y1, x2, x3, x4)EH2,short(z1, x2, x3, x4)| = |
M∑

m1=1

M∑
m2=1

ah1+m1ah2+m2×

e(
m1

M
ū1 +

m2

M
ū2 + (ψ1(

m1

M
) + ψ2(

m2

M
))w̄1 + (ψ3(

m1

M
) + ψ4(

m2

M
))w̄2 + (ψ5(

m1

M
) + ψ6(

m2

M
))v̄)|,

where

ψ1(t) = t2 +O(M−1/2)t3 +O(M−1)t4 +O(M−3/2)t5,

ψ2(s) = O(M−1/2)s3 +O(M−1)s4 +O(M−3/2)s5,

ψ3(t) = O(M−1/2)t3 +O(M−1)t4 +O(M−3/2)t5,

ψ4(s) = s2 +O(M−1/2)s3 +O(M−1)s4 +O(M−3/2)s5,

ψ5(t) = At3 +O(M−1/2)t4 +O(M−1)t5,

ψ6(s) = Bs3 +O(M−1/2)s4 +O(M−1)s5.

The coefficients can be easily found, but only their size matters. It is important that |A|, |B| ' 1,
and also that the leading coefficients of ψ1 and ψ4 have magnitude ' 1. The result now follows
immediately from Theorem 10.6, that we prove below.

�

This is the analog of Theorem 8.2 in five dimensions.

Theorem 10.6. Let β > 0 be fixed. Assume that ψ1, . . . , ψ6 : [−1, 1] → R have C4 norm O(1),
and in addition satisfy, uniformly over all |t| ≤ 1

|ψ′′2 (t)|, |ψ′′3 (t)| � 1,

|ψ′′1 (t)|, |ψ′′4 (t)| ' 1,

|ψ′′′i (t)| .M−β , 1 ≤ i ≤ 4,

|ψ′′′5 (t)|, |ψ′′′6 (t)| ' 1,

|ψ′′′′i (t)| .M−β , 1 ≤ i ≤ 6.

Let

Ψ(t, s) = (t, s, ψ1(t) + ψ2(s), ψ3(t) + ψ4(s), ψ5(t) + ψ6(s)), |t|, |s| ≤ 1.

Then for each ball BM3 ⊂ R5 with radius M3 and each constant coefficients cm1,m2 ∈ C we have

(10.2) ‖
∑

m1≤M

∑
m2≤M

cm1,m2e(x ·Ψ(
m1

M
,
m2

M
))‖L9(BM3 ) .ε M

2( 1
2−

1
9 )+ε‖cm1,m2

‖`9 |BM3 |1/9.

Proof. The proof is very similar to the one of Theorem 8.2. The upper bound M−β may easily
be relaxed to O(1). We chose to work with the former in order to simplify the exposition. Let
0 < α < 1 be such that β + 3α ≥ 3. Let

EΨ
S f(x) =

∫
S

f(t, s)e(x ·Ψ(t, s))dtds,

where S ⊂ [−1, 1]2. It suffices to prove that the smallest constant d(M) that makes the following
inequality true for each ball BM3 and each f , satisfies d(M) .ε M ε

‖EΨ
[−1,1]2f‖L9(BM3 ) ≤ d(M)M2( 1

2−
1
9 )(

∑
H1,H2⊂[−1,1]: |Hi|=1/M

‖EΨ
H1×H2

f‖9L9(BM3 ))
1/9.

This will follow once we prove that d(M) .ε M εd(Mα). First, we observe that

(10.3) ‖EΨ
[−1,1]2f‖L9(BM3 ) ≤ d(Mα)M2α( 1

2−
1
9 )(

∑
K1,K2⊂[−1,1]: |Ki|=1/Mα

‖EΨ
K1×K2

f‖9L9(BM3 ))
1/9.

Second, we note that using Taylor’s expansions with fourth order remainder, the restriction of Ψ
to K1 ×K2 := [t0 − 1/Mα, t0 + 1/Mα]× [s0 − 1/Mα, s0 + 1/Mα] can be written as

Ψ(t0 + t, s0 + s) = Ψ(t0, s0) + Ψ∗(t, s) +O(1/M3),
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where 
Ψ∗1(t, s) = t, Ψ∗2(t, s) = s

Ψ∗3(t, s) = A3t+B3t
2 +D3s+ E3s

2

Ψ∗4(t, s) = A4t+B4t
2 +D4s+ E4s

2

Ψ∗5(t, s) = A5t+B5t
2 +D5s+ E5s

2 + C5t
3 + F5s

3

.

Thus, Ψ(K1×K2) and (a translate of) Ψ∗((K1− t0)× (K2−s0)) are within O(1/M3), and we may
replace Ψ with Ψ∗ on BM3 . Our hypothesis implies that all coefficients are O(1), and moreover,
E3, B4 = o(1), and also |B3|, |E4| ' 1. These guarantee that the Jacobian of the following linear
transformation is ' 1 

y1

y2

y3

y4

y5

 =


1 0 A3 A4 A5

0 1 D3 D4 D5

0 0 B3 B4 B5

0 0 E3 E4 E5

0 0 0 0 1



x1

x2

x3

x4

x5

 .
This allows us to write

|EΨ∗

[−M−α,M−α]2f(x)| ' |
∫

[−M−α,M−α]2
f(t, s)(y · (t, s, t2, s2, C5t

3 + F5s
3))dtds|.

Recall that our hypothesis also implies that |C5|, |F5| ' 1. This allows us to apply Theorem 10.2,
which upon rescaling gives

(10.4) ‖EΨ
K1×K2

f‖L9(BM3 ) .ε M
2(1−α)( 1

2−
1
9 )+ε(

∑
Hi⊂Ki: |Hi|=1/M

‖EΨ
H1×H2

f‖9L9(BM3 ))
1/9.

Finally, the combination of (10.3) and (10.4) shows that d(M) .ε M εd(Mα).
�

It is time to prove Theorem 10.1. Recall that we work with Ω = [0, N3]4 × [0, N ].

Proof. Step 1. We cover Ω with cubes B of side length N , and apply Proposition 10.3 on each of
them, then sum up the inequalities to get

(10.5)

∫
Ω

|
2∏
j=1

EIj ,N (x)|9dx .ε N6( 1
2−

1
9 )+ε

∑
J1⊂I1

∑
J2⊂I2

∫
Ω

|
2∏
j=1

EJj ,N (x)|9dx.

The intervals Ji have length M = N2/3.

Step 2. Fix J1, J2. We apply Proposition 10.4 on each B, followed by the analog of the smoothing
inequality (8.5)∫

Ω

|
2∏
j=1

EJj ,N (x)|9dx . N−5
∑
B⊂Ω

∫
B

|EJ1,N (x)|6dx
∫
B

|EJ2,N (x)|6dx

. N−10

∫
Ω

dx

∫
(y,z)∈[−N,N ]5×[−N,N ]5

|EJ1,N (x+ y)EJ2,N (x+ z)|6dydz.

We freeze the variables x1, x5, y2, y3, y4, y5, z2, z3, z4, z5, whose range has volume ' N12. We hide
their contributions into the coefficient an, whose magnitude remains the same. Recall our earlier
notation

EH,short(x1, x2, x3, x4) =
∑
n∈H

ane(φ1(
n

N
)x1 + . . .+ φ4(

n

N
)x4).

Using N -periodicity in the variables y1, z1, the previous expression can be dominated by

N−2

∫
[0,N3]5

|EH1,short(y1, x2, x3, x4)EH2,short(z1, x2, x3, x4)|9dy1dz1dx2dx3dx4.

By Proposition 10.5, this is at most

N13+εN12( 1
2−

1
9 )‖an‖9`9(J1)‖an‖

9
`9(J2) = N17+ 2

3 ‖an‖9`9(J1)‖an‖
9
`9(J2).
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Finally, we combine this with (10.5) to get the desired estimate∫
Ω

|
2∏
j=1

EIj ,N (x)|9dx .ε N6( 1
2−

1
9 )+ε

∑
J1⊂I1

∑
J2⊂I2

N17+ 2
3 ‖an‖9`9(J1)‖an‖

9
`9(J2)

.ε N
20+ε‖an‖9`9(I1)‖an‖

9
`9(I2).

�

We next use Theorem 10.1 to prove a bilinear counterpart of Theorem 3.9. Note that we are
renaming the variables x3, x4, x5, only for convenience.

Proposition 10.7. Let Ω = [0, N3]4 × [0, N ]. Let K � 1. We consider arbitrary integers N0,M
satisfying 1 ≤M ≤ N0

K and N0 + [M, 2M ] ⊂ [N2 , N ].

Let H1, H2 be intervals of length M
K inside N0 + [M, 2M ] such that dist(H1, H2) ≥ M

K . Then∫
Ω

2∏
i=1

|
∑
n∈Hi

ane(
n

N
x1 +(

n

N
)2x2 +(

n

N
)4x3 +(

n

N
)5x4 +(

n

N
)3x5)|9dx .ε M2+εN18‖a‖18

`9(N0+[M,2M ]).

Proof. Write H1 = N0 + I1, H2 = N0 + I2 with I1, I2 intervals of length M
K inside [M, 2M ] and

with separation ≥ M
K . Let

φ3(t) = t3 +
M

4N0
t4, φ4(t) = t4 +

2M

5N0
t5, φ5(t) = t5

and 

y1 = M
N (x1 +A2x2 +A3x3 +A4x4 +A5x5)

y2 = (MN )2(x2 +B3x3 +B4x4 +B5x5)

y3 = (MN )3( 4N0

N x3 +
10N2

0

N2 x4 + x5)

y4 = (MN )4( 5N0

2N x4 − N
4N0

x5)

y5 = (MN )5 N2

10N2
0
x5.

The linear transformation has Jacobian equal to (MN )15, and maps Ω to a subset of

Ω̃ = [−O(MN2), O(MN2)]× [−O(M2N), O(M2N)]× [−O(M3), O(M3)]2 × [−O(M), O(M)].

The reader may check that (with the right choice of A2, . . . , B5 = O(1)) we have

|
∑
n∈Hi

ane(
n

N
x1 + (

n

N
)2x2 + (

n

N
)4x3 + (

n

N
)5x4 + (

n

N
)3x5)| =

|
∑
mi∈Ii

ami+N0
e(
mi

M
y1 + (

mi

M
)2y2 + φ3(

mi

M
)y3 + φ4(

mi

M
)y4 + φ5(

mi

M
)y5)|.

We invoke periodicity in y1 and y2 together with Theorem 10.1 to conclude the proof.
�

Theorem 3.9 follows from Proposition 10.7 via an argument identical to the one at the end of
the previous section. Details are left to the reader.

11. Mean value estimates for sums along the paraboloid

This section is devoted to proving the following theorem.

Theorem 11.1. For d ≥ 2 let σ be a measure on Td such that the Fourier decay (1.5) holds with
β = d−1

2 . Then the estimate

(11.1)

∫
Td
|SP
a,d(x,N)|2 dσ(x) . ‖a‖2`2({1,...,N}d−1)N

(d−3)/2


N1/2, d = 2,

logN, d = 3,

1, d ≥ 4,

holds with the implicit constant independent of N .
Moreover, the above estimate is sharp, in the sense that the constant on the right-hand side

cannot be improved in terms of the dependence on N .
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The above result shows that Conjecture 1.6 holds in the case d = 2 and also, up to the logN
loss, in the case d = 3.

Proof. Without the loss of generality assume that ‖a‖`2 = 1. Using (1.5) we get∫
Td
|SP
a,d(x,N)|2 dσ(x) =

∑
m,n∈{1,...,N}d−1

am an σ̂(m− n, |m|2 − |n|2)

.
∑

m,n∈{1,...,N}d−1

|am an| (1 + |(m− n, |m|2 − |n|2)|)−
d−1
2

. 1 +
∑

m,n∈{1,...,N}d−1

m6=n

|am an| ||m|2 − |n|2|−
d−1
2 .

Let

cm,n =

{
||m|2 − |n|2|− d−1

2 , m 6= n

0, m = n
.

To simplify notation let us assume that from now on an ≥ 0 for all n. Let

S = {(m,n) ∈ {1, . . . , N}d−1 × {1, . . . , N}d−1 : |m| ∈ (|n|/2, 2|n|)}.
Then we have

cm,n '


|m|− d−1

2 ||m| − |n||− d−1
2 , (m,n) ∈ S, m 6= n

(max{|m|, |n|})−(d−1)
, (m,n) /∈ S

0, m = n

.(11.2)

We begin with analyzing the contribution from (m,n) /∈ S. In view of (11.2) we have (the ranges
of summation in m and n are {1, . . . , N}d−1 unless indicated otherwise)∑

(m,n)/∈S

am an cm,n .
∑
m,n

am an (max{|m|, |n|})−(d−1)
:= D.

We shall prove that

D .
√
D,

which immediately implies D . 1, and consequently

(11.3)
∑

(m,n)/∈S

am an cm,n . 1.

By symmetry it suffices to show ∑
m,n
|m|≥|n|

am an |m|−(d−1) .
√
D.

Using the Cauchy–Schwarz inequality we obtain

∑
m,n
|m|≥|n|

am an |m|−(d−1) =
∑
m

am |m|−(d−1)
∑

n: |n|≤|m|

an ≤

∑
m

|m|−2(d−1)
( ∑

n: |n|≤|m|

an

)2

1/2

≤ (
∑
n,n′

an an′
∑

m: |m|>|n|,|n′|

|m|−2(d−1))1/2

' (
∑
n,n′

an an′ (max{|n|, |n′|})−(d−1)
)1/2 =

√
D.

It remains to treat the contribution from (m,n) ∈ S. Applying Cauchy-Schwarz inequality we get∑
(m,n)∈S

am an cm,n ≤ (
∑

(m,n)∈S

a2
m cm,n)1/2(

∑
(m,n)∈S

a2
n cm,n)1/2
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≤
∑

(m,n)∈S

a2
m cm,n +

∑
(m,n)∈S

a2
n cm,n.

By symmetry it suffices to estimate the first sum above. Recalling that ‖a‖`2 = 1 we obtain∑
(m,n)∈S

a2
m cm,n =

∑
m

a2
m

∑
n:(m,n)∈S

cm,n ≤ sup
m

∑
n:(m,n)∈S

cm,n.

We need to prove that

(11.4) sup
m

∑
n:(m,n)∈S

cm,n . N
(d−3)/2


N1/2, d = 2

logN, d = 3

1, d ≥ 4

.

To this end fix m ∈ {1, . . . , N}d−1. Using (11.2) we get∑
n: (m,n)∈S

cm,n ' |m|−
d−1
2

∑
n:|m|/2<|n|<2|m|

n6=m

||n| − |m||−
d−1
2

' |m|−
d−1
2

∑
k∈[|m|/2,2|m|]∩Z

k 6=|m|

|k − |m||−
d−1
2 |{n : |n| ∈ [k, k + 1)}|

' |m|−
d−1
2

∑
k∈[|m|/2,2|m|]∩Z

k 6=|m|

|k − |m||−
d−1
2 kd−2

' |m|−
d−1
2 |m|d−2

∑
k∈[|m|/2,2|m|]∩Z

k 6=|m|

|k − |m||−
d−1
2

' |m|−
d−1
2 |m|d−2

|m|∑
k=1

k−
d−1
2 ' |m|−

d−1
2 |m|d−2


|m|− d−1

2 +1, d = 2

log |m|, d = 3

1, d ≥ 4

.

We have thus showed

∑
n:(m,n)∈S

cm,n ' |m|
d−3
2


|m|− d−1

2 +1 d = 2,

log |m|, d = 3

1, d ≥ 4,

,

and (11.4) follows. Combining (11.3) and (11.4) gives the first part of the theorem.
We now prove sharpness in the most interesting case, d = 3. A similar argument works for the

other values of d. Using an ≡ 1, it suffices to verify the following lower bound

(11.5)
∑

m∈{1,...,N}2

n∈{1,...,N}2

(1 + |(m− n, |m|2 − |n|2)|)−1 & N2 logN.

Note that |m|2 − |n|2 = (|m| − |n|)(|m|+ |n|) > |m| − |n|, thus

1 + |(m− n, |m|2 − |n|2)| ' 1 + ||m|2 − |n|2|.
Consequently, we can estimate∑
m,n∈{1,...,N}2

(1 + |(m− n, |m|2 − |n|2)|)−1 &
∑

m,n∈{1,...,N}2
|m|>|n|+10

(|m|2 − |n|2)−1

'
O(N)∑
l=1

l−10∑
k=1

|{n : |n| ∈ [l, l + 1)}||{m : |m| ∈ [k, k + 1)}|
l2 − k2

'
O(N)∑
l=1

l−10∑
k=1

k l

l(l − k)
'
O(N)∑
l=1

l−10∑
k=1

(
k − l
l − k

+
l

l − k

)
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'
O(N)∑
l=1

(l log l − l) ' N2 logN.

�

12. ε-free L4 estimate for d = 3

In this section we verify the following scale-independent estimate.

Theorem 12.1. Let σ be a measure on T3 such that the estimate (1.5) holds with some β > 2/3.
Then the estimate

(12.1)

∫
T3

|Sa,3(x,N)|4 dσ(x) . ‖a‖4`2

holds with the implicit constant independent of N .

There does not seem to be an approach to this theorem using Proposition 2.2, not even when
β = 1. Given β > 2/3, (12.1) would follow from the scale-independent estimate

(12.2) ‖
N∑
n=1

ane(n
3t)‖Lp([0,1]) . ‖a‖`2 ,

conjectured to hold for p < 6. Indeed, using this with p > 4
β we find∫

T3

|Sa,3(x,N)|4dσ(x) .
∑

0≤j.logN

2(3−β)j

∫
[−2−j ,2−j ]3

|Sa,3(x,N)|4dx

≤
∑

0≤j.logN

2(1−β)j sup
b: |bn|=|an|

∫
[−2−j ,2−j ]

|
N∑
n=1

bne(n
3x3)|4dx3

≤
∑

0≤j.logN

2( 4
p−β)j sup

b: |bn|=|an|
(

∫ 1

0

|
N∑
n=1

bne(n
3x3)|pdx3)4/p

. ‖a‖4`2 .

However, (12.2) is not known even for p = 4 and an = 1. The difficulty of this inequality is already
captured by the following result in [20]: there is a sequence sk → ∞ such that the equation
n3 +m3 = sk has (log sk)3/5 integral solutions.

Our proof of (12.1) will be elementary, and will involve delicate counting arguments. We never
use the variable x1 in our proof. In fact, an inspection of the argument reveals that we prove the
stronger estimate

(12.3)

∫
T2

|Sa,3((0, x2, x3), N)|4 dσ(x2, x3) . ‖a‖4`2 ,

for measure σ on T2, subject to only the decay condition

|d̂σ(ξ)| . (1 + |ξ|)−β , β > 2/3.

This rate of decay is sharp, in the sense that the estimate (12.3) fails for β < 2/3. To see that,
let σ be a measure on T2 such that σ̂ is real, positive and σ̂(ξ) & 1

(1+|ξ|)β . Let a be the sequence

given by an = 1[1,2j/3] for some fixed 2j/3 . N . Then ‖a‖4`2 ' 22j/3 and∫
T2

|Sa,3((0, x2, x3), N)|4 dσ(x2, x3) &
1

2jβ

∣∣∣∣∣
{

(n1, . . . , n4) ∈ [1, 2
j
3 ]4 :

{
|n2

1 + n2
2 − n2

3 − n2
4| . 2j

|n3
1 + n3

2 − n3
3 − n3

4| . 2j

}∣∣∣∣∣
&

1

2jβ
(2j/3)4 � ‖a‖4`2 ,

if β < 2/3.
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Before we present the proof of Theorem 12.1 we need some technical preparation. For C > 0
define

(12.4) FC(a) :=
√
a(C − a3), a ∈ (0, C1/3).

The first lemma is just a simple estimate of the size of increments FC .

Lemma 12.2. Let C > 1000 be a fixed constant. Then

(a) FC attains its maximum on (0, C1/3) at amax = (C/4)1/3 and F ′C(x) > 0 for x ∈ (0, amax),

and F ′C(x) < 0 for x ∈ (amax, C
1/3).

(b) For each y ∈ [0, amax] one has

|FC(amax − y)− FC(amax)| ' y2,

with the implicit constant independent of C.

Proof. Part (a) is straightforward. To show (b), we begin with fixing y ∈ [0, amax]. Since FC(amax−
y) ≤ FC(amax), FC(amax) ' C2/3 and amax = (C/4)1/3, we have

|FC(amax − y)− FC(amax)| '
∣∣∣∣F 2

C(amax − y)− F 2
C(amax)

FC(amax)

∣∣∣∣
' C−2/3

∣∣(amax − y)(C − (amax − y)3)− amax(C − a3
max)

∣∣
= C−2/3

∣∣−yC + 4a3
maxy − 6a2

maxy
2 + 4amaxy

3 − y4
∣∣

= C−2/3
∣∣−6a2

maxy
2 + 4amaxy

3 − y4
∣∣

' C−2/3a2
maxy

2 ' y2,

so (b) is proved. �

Lemma 12.3. For M ∈ N let f : [0,M ] → R+ be such that f ′ > 0, f ′′ < 0 and f(0) = 0. Then
for any α > 0 the following estimate holds:

sup
x∈R+

M∑
j=1

1

|f(j)− x|α + 1
≤ 2 + 4

M∑
j=1

1

(f(M)− f(j))α + 1
.

The above lemma asserts that the supremum of the sum on the left-hand side is essentially
comparable with its value at x = f(M).

Proof. Fix x ∈ R+. If x ≥ f(M) then for each j we have

1

(x− f(j))α + 1
≤ 1

(f(M)− f(j))α + 1
,

and consequently

M∑
j=1

1

(x− f(j))α + 1
≤

M∑
j=1

1

(f(M)− f(j))α + 1
.

Therefore from now on we assume that x ∈ [0, f(M)]. If x is not in the range of f , i.e. x /∈
{f(0), . . . , f(M)}, let k ∈ {0, 1, . . . ,M − 1} be such that x ∈ (f(k), f(k + 1)). Note that then for
any j ≥ k + 2 we have

|f(j)− x|α = (f(j)− x)α > (f(j)− f(k + 1))α = |f(j)− f(k + 1)|α

and for any j ≤ k − 1

|f(j)− x|α = (x− f(j))α > (f(k)− f(j))α = |f(j)− f(k)|α.

Using the above relations for j ∈ {1, . . . , k − 1} ∪ {k + 2, . . . ,M} and estimating the terms cor-
responding to j ∈ {k, k + 1} trivially by 1 we obtain, with the convention that the sum over an
empty set of indices is zero,

M∑
j=1

1

|f(j)− x|α + 1
≤ 2 +

k−1∑
j=1

1

|f(j)− f(k)|α + 1
+

M∑
j=k+2

1

|f(j)− f(k + 1)|α + 1



33

≤ 2 + 2 max
k∈{0,1,...,M}

M∑
j=1

1

|f(j)− f(k)|α + 1
.

Consequently, it remains to prove that

(12.5) max
k∈{0,1,...,M}

M∑
j=1

1

|f(j)− f(k)|α + 1
≤ 2

M∑
j=1

1

(f(M)− f(j))α + 1
.

To this end fix k ∈ {0, 1, . . . ,M}. The key observation is that for a fixed l ∈ N the distances
between pairs of values of f at arguments separated by l decrease. Indeed, using the condition
f ′′ < 0 we can estimate for M1 ≤M2

f(M1 + l)− f(M1) =

∫ M1+l

M1

f ′(x) dx ≥
∫ M2+l

M2

f ′(x) dx = f(M2 + l)− f(M2).

In view of the above we get{
|f(j)− f(k)|α ≥ |f(M)− f(M − (k − j))|α, for 1 ≤ j ≤ k,
|f(j)− f(k)|α ≥ |f(M)− f(M − (j − k))|α, for k + 1 ≤ j ≤M.

Using the above relations we get

M∑
j=1

1

|f(j)− f(k)|α + 1
≤

M∑
j=M−k

1

(f(M)− f(j))α + 1
+

M∑
j=k

1

(f(M)− f(j))α + 1

≤ 2
M∑
j=1

1

(f(M)− f(j))α + 1
,

which completes the proof of (12.5) and consequently the entire lemma. �

Corollary 12.4. Let C > 1000, D ≥ 1 and let FC : (0, C1/3) → R+ be the function defined by
(12.4), with amax = (C/4)1/3. Then the following estimate holds for each β > 1/2

sup
x∈R+

bamaxc∑
a=1

1

|FC(a)− x|β +Dβ
. D1/2−β ,

with the implicit constant independent of C and D.

Proof. Note that the estimate we need to prove is equivalent to

sup
x∈R+

bamaxc∑
a=1

1

|FC(a)/D − x|β + 1
. D1/2.

Applying Lemma 12.3 with f = FC/D and M = bamaxc we get

sup
x∈R+

bamaxc∑
a=1

1

|FC(a)/D − x|β + 1
.
bamaxc∑
a=1

1

|FC(a)/D − FC(bamaxc)/D|β + 1

=

bamaxc∑
n=1

1

D−β |FC(bamaxc − n)− FC(bamaxc)|β + 1
:= S.

Due to monotonicity of FC on (0, amax) we can estimate

|FC(bamaxc − n)− FC(bamaxc)| ≥ |FC(amax − n)− FC(amax)| − |FC(amax)− FC(amax − 1)|.
Now using Lemma 12.2 we get

|FC(amax − n)− FC(amax)| ' n2

and
|FC(amax)− FC(amax − 1)| ' 1.

Therefore we can find and absolute constant n0 ∈ N such that for each n ≥ n0 we have

|FC(amax − n)− FC(amax)| ≥ 2|FC(amax)− FC(amax − 1)|.
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Then we have for n ≥ n0

|FC(bamaxc − n)− FC(bamaxc)| ' |FC(amax − n)− FC(amax)| ' n2.

Thus we can estimate

S .
n0∑
n=1

1 +

bamaxc∑
n=n0

1

D−βn2β + 1
.
D1/2∑
n=1

1 +Dβ
∞∑

n=D1/2

1

n2β
' D1/2,

which concludes the proof of the corollary. �

Now we are ready to prove Theorem 12.1.

Proof of Theorem 12.1. Using (1.5) we get∫
T3

|Sa,3(x,N)|4 dσ(x) =
N∑

n1,n2,n3,n4=1

an1an2an3an4

× σ̂(n1 + n2 − n3 − n4, n
2
1 + n2

2 − n2
3 − n2

4, n
3
1 + n3

2 − n3
3 − n3

4)

.
N∑

n1,n2,n3,n4=1

|an1
an2

an3
an4
|

× 1

(|(n2
1 + n2

2 − n2
3 − n2

4, n
3
1 + n3

2 − n3
3 − n3

4)|+ 1)β

:=
N∑

n1,n2,n3,n4=1

|an1
an2

an3
an4
|cn1,n2,n3,n4

.

Note that

N∑
n1,n2,n3,n4
n2=n4

|an1
an2

an3
an4
| cn1,n2,n3,n4

=
N∑

n1,n2,n3=1

|an1
a2
n2
an3
| cn1,n2,n3,n2

= ‖a‖2`2
N∑

n1,n3=1

|an1
an3
| 1

(|(n2
1 − n2

3, n
3
1 − n3

3)|+ 1)β

≤ ‖a‖2`2
N∑

n1,n3=1

|an1
an3
| 1

(|n2
1 − n2

3|+ 1)1/2

. ‖a‖4`2 .

By symmetry, we also have

N∑
n1,n2,n3,n4
n1=n3

|an1an2an3an4 | cn1,n2,n3,n4 . ‖a‖4`2 .

Therefore it remains to show

N∑
n1,n2,n3,n4=1

n1 6=n3
n2 6=n4

|an1an2an3an4 | cn1,n2,n3,n4 . ‖a‖4`2 .

Applying the Cauchy–Schwarz inequality and using the symmetry cn1,n2,n3,n4
= cn3,n4,n1,n2

we
get

N∑
n1,n2,n3,n4=1

n1 6=n3
n2 6=n4

|an1an2an3an4 |cn1,n2,n3,n4
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≤ (
N∑

n1,n2,n3,n4=1
n2 6=n4

|an1 |2 |an3 |2 cn1,n2,n3,n4)1/2(
N∑

n1,n2,n3,n4=1
n1 6=n3

|an2 |2 |an4 |2 cn1,n2,n3,n4)1/2

≤ ‖a‖4`2( sup
n1,n3∈N

∑
n2,n4∈N
n2 6=n4

cn1,n2,n3,n4
)1/2( sup

n2,n4∈N

∑
n1,n3∈N
n1 6=n3

cn1,n2,n3,n4
)1/2

= ‖a‖4`2 sup
n1,n3∈N

∑
n2,n4∈N
n2 6=n4

cn1,n2,n3,n4 .

Therefore it remains to prove that

sup
n1,n3∈N

∑
n2,n4∈N
n2 6=n4

cn1,n2,n3,n4
. 1.

Calling C = n3
3 − n3

1, D = n2
3 − n2

1, a = n2 − n4 6= 0 and b = n2 + n4, we reduce the problem to
showing

sup
C,D∈N

S(C,D) := sup
C,D∈N

∑
a,b∈N
b≥a>0

1

|ab−D|β + |a(a2 + 3b2)− C|β + 1
. 1.

Fix C,D ∈ N and let j ∈ N be such that C ' 2j . Let Ik = {(a, b) ∈ N2 : b ≥ a > 0, |a(3b2 + a2)−
C| ' 2k}. We observe that, since |a(a2 + 3b2)− C| & ab2 if (a, b) ∈ Ik with k ≥ j + 1, we have

S(C,D) '
∑

1≤2k≤2j

∑
(a,b)∈Ik

1

|ab−D|β + 2kβ + 1
+
∑
b≥a≥1

1

ab2
.

Note that the second sum is O(1), and that a . 2j/3 for each a contributing to the first sum.

Notice also that for a fixed a there are at most O( 2k√
a2j

+ 1) choices of b such that (a, b) ∈ Ik.

Indeed, if b1, b2 ∈ N are such that (a, b1), (a, b2) ∈ Ik then we have

|a(a2 + 3b21)− C − (a(a2 + 3b22)− C)| = 3|a(b21 − b22)| . 2k,

and it follows that

|b1 − b2| .
2k

a(b1 + b2)
' 2k
√
a
√
a(b21 + b22)

.

Noticing that ab2i ' 2j for i = 1, 2 we obtain

|b1 − b2| .
2k√
a2j

,

which implies the desired upper bound for the number of possible choices of b.
This motivates a further decomposition∑

1≤2k≤2j

∑
(a,b)∈Ik

1

|ab−D|β + 2kβ + 1
=

∑
1≤2k≤2j

∑
(a,b)∈I1k

1

|ab−D|β + 2kβ + 1

+
∑

1≤2k≤2j

∑
(a,b)∈I2k

1

|ab−D|β + 2kβ + 1

=: S1 + S2,

where

I1
k = {(a, b) ∈ Ik :

√
a2j ≤ 2k}, I2

k = {(a, b) ∈ Ik :
√
a2j > 2k}.

Using the fact that for a fixed a there are at most O( 2k√
a2j

+ 1) choices of b such that (a, b) ∈ Ik
we can estimate S1 as follows

S1 ≤
∑

1≤2k≤2j

∑
(a,b)∈I1k

1

2kβ
.

∑
1≤2k≤2j

1

2kβ
|I1
k | .

∑
1≤2k≤2j

1

2kβ

∑
1≤a.2j/3

2k√
a2j
.

∑
1≤2k≤2j

1

2kβ
2k

2j/3
. 1,



36 CIPRIAN DEMETER AND BARTOSZ LANGOWSKI

for β > 2/3.
We pass to the analysis of S2. Notice that given (a, b) ∈ I2

k there cannot exist b2 6= b such that
(a, b2) ∈ I2

k ; in other words, each a is associated with at most one b.
For a fixed (a, b) ∈ I2

k denote C ′k := a(3b2 + a2). Clearly C ′k depends on a and b. Next, let
Ck := C + 100× 2k. Then C ′k ' Ck ' C and |Ck − C ′k| . 2k. We have

ab =
1√
3

√
(C ′k − a3)a =

1√
3
FC′k(a),

where for K > 0 the function FK is given by (12.4). Furthermore, since a ≤ b, we can estimate

(12.6) a ≤ 3

√
a(3b2 + a2)

4
≤ 3

√
Ck
4

=: amax(k).

Since C ′k depends on (a, b) we would like to replace it with Ck. We have

|ab− 1√
3

√
(Ck − a3)a| = 1√

3
|
√

(C ′k − a3)a−
√

(Ck − a3)a| . 2ka√
2ja

= o(2k),

due to a . 2j/3. It follows that

|ab−D| ≥ |
√

(Ck − a3)a−D| − o(2k).

Thus

|ab−D|β + 2kβ & |
√

(Ck − a3)a−D|β + 2kβ = |FCk(a)−D|β + 2kβ .

Consequently

S2 =
∑

1≤2k≤2j

∑
(a,b)∈I2k

1

|ab−D|β + 2kβ + 1
.

∑
1≤2k≤2j

∑
1≤a≤amax(k)

1

|FCk(a)−D|β + 2kβ
.

Finally, using Corollary 12.4 with C = Ck, for each k such that 1 ≤ 2k ≤ 2j , we get

S2 . 1,

so the theorem is now proved. �

13. The circle

For N ∈ N , let S1
+(N) be the upper semicircle of radius

√
N and denote

SN := S1
+(N) ∩ Z2.

It is known that for any ε > 0 we have |SN | .ε N ε. Therefore one can estimate using the Cauchy–
Schwarz inequality, for any p ≥ 1 and any finite dσ∫

T2

∣∣∣∣∣ ∑
n∈SN

an e(n · x)

∣∣∣∣∣
p

dσ(x) .

∥∥∥∥∥ ∑
n∈SN

an e(n · x)

∥∥∥∥∥
p

∞

. N ε‖a‖p`2 .

It is interesting to ask for what values of p one can remove the N ε factor. We shall prove that this
is the case for p = 4, provided that a weaker form of the following Cilleruelo–Granville conjecture
from [9] holds.

Conjecture 13.1. For any γ ∈ (0, 1), every arc in S1
+(N) of length N

γ
2 contains at most C(γ)

lattice points.

The conjecture was proved to be true in [8] for all γ < 1
2 . Our conditional result reads as follows.

Theorem 13.2. Assume that Conjecture 13.1 is true for some γ > 1
2 . Let σ be a measure on T2

such that (1.5) holds with some β > 0 Then the estimate

(13.1)

∫
T2

∣∣∣∣∣ ∑
n∈SN

ane(n · x)

∣∣∣∣∣
4

dσ(x) . ‖a‖4`2(SN )

holds with the implicit constant independent of N .
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Proof. Let us write R =
√
N . We have∫

T2

∣∣∣∣∣ ∑
n∈SN

an e(n · x)

∣∣∣∣∣
4

dσ(x) .
∑

0≤j≤log2 R

2−jβ
∑

n1,n2,n3,n4∈SN
|n1+n2−n3−n4|'2j

|an1
an2

an3
an4
|+ ‖a‖4`2

.
∑

0≤j≤log2 R

2−jβIj‖a‖4`2 ,(13.2)

where
Ij = max

(n1,n2)∈SN×SN
|{(n3,n4) ∈ SN × SN : |n1 + n2 − n3 − n4| ' 2j}.

We distinguish two regimes. If 2j > R2γ−1, the trivial bound Ij .ε N ε suffices. Assume now that

2j ≤ R2γ−1. We cover S1
+(N) with arcs τ of length ' (2jR)1/2. The Cordoba–Fefferman geometric

argument (see for example Section 3.2 in [10]) shows that we can split the arcs τ into O(1) many
collections, such that

dist(τ1 + τ2, τ3 + τ4)� 2j

for each τ1, . . . , τ4 in each collection, subject only to the requirement that {τ1, τ2} 6= {τ3, τ4}. To
see that this is indeed the case, note that after rescaling this is equivalent to the fact that the sums
of two arcs of length δ = (2j/R)1/2 on S1

+(1) are separated by � δ2. Since each τi contains at
most C(γ) lattice points, it follows that Ij = O(1). The contribution of these j to (13.2) is thus
acceptable.

�
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