RESTRICTION OF EXPONENTIAL SUMS TO HYPERSURFACES

CIPRIAN DEMETER AND BARTOSZ LANGOWSKI

ABSTRACT. We prove moment inequalities for exponential sums with respect to singular mea-
sures, whose Fourier decay matches those of curved hypersurfaces. Our emphasis will be on
proving estimates that are sharp with respect to the scale parameter N, apart from N°€ losses.
In a few instances, we manage to remove these losses.

1. DESCRIPTION OF THE QUESTIONS

Let e(t) = e*™. Given a 1-periodic d-dimensional exponential sum, what can be said about its
restriction to a given smooth manifold M in T?? In this paper we investigate a few examples, by
restricting attention to the case when M is a curved hypersurface.

Our most substantial findings will concern the exponential sums along the moment curve. For
d>2, N € N, sequences a = (a,) € C and x = (z1,...,74) € T? (identified with [0, 1]%), we let

Sa,d(z,N) = Zan (z1n 4+ - + zqn?).

In the special case a,, = 1 we shall simplify the notation to Sy(z, N). The investigation of their LP
moments on the measure space (T?, dr) has been at the forefront of both harmonic analysis and
analytic number theory for many years, culminating in the full resolution of this problem, see [5]
and [21]. The estimate

N, 0<p<d(d+1)
1.1 Saa(@, N)Pdz S llallfz § v
- /le Ao NP do 5 ||a””{de“;”+f, p>d(d+1)

is known to be sharp, up to the N€ term. Here and everywhere else € denotes a positive, arbitrarily
small constant.

Our interest here lies in the behavior of such sums when they are restricted to hypersurfaces in
T?. For example, speaking somewhat informally, can the “large” values of S, 4(z, N) “concentrate”
on such a singular set as a hypersurface? Such questions are already interesting and difficult for
the constant sequence a,, = 1. But as we shall soon see, the arbitrary coefficient case comes with
additional motivation.

We make the following conjecture. It predicts that in a certain range of LP spaces, the behavior
of exponential sum S, ¢(x, N) restricted to M is governed by square root cancellation.

Conjecture 1.1. Let o be the surface measure of a smooth hypersurface M in T with non—
vanishing Gaussian curvature. Then for each N > 1, d > 2 and for each sequence a, the estimate

NE€, p<pg:=dld—-1
(12) [ Suata NP do(e) . ol { Ly, Pspesddsl
T4 N7 p>pd

holds for all € > 0, with the implicit constant depending only on o, € and d.

Note that the estimate (1.2) at the critical exponent p, implies the estimates for all other values
of p. For p < py this follows from Holder, while for p > pg, by interpolation with the trivial bound
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at p = co. Throughout this paper, interpolation will always refer to combining two estimates via
Holder’s inequality.
To see that -apart from the N€¢ term- (1.2) is optimal, notice that given the box

Qan :=[0,1/N] x [0,1/N?] x ... x [0,1/N%*] x [0,1/N7]
we can always find a smooth hypersurface
M= {(z,F(z)): = €[0,1]%'} c[0,1]?
with nonzero Gaussian curvature, and satisfying
(1.3) F([0,1/N] x [0,1/N?] x ... x [0,1/N471]) c [0,1/N4].
Indeed, we may take F(x1) = 22 when d = 2, F(x1,73) = m122 when d = 3, F(x1,22,23) =

2
LENL when d = 4, and F(21, 22, 73, 74) = D805 when d = 5. In general, we may take

2
F(l‘l,...“’l?d,l) :E Z Tild—s-
1<i<d/2

Given M satisfying (1.3), we let o be its surface measure. Taking the constant sequence a,, = 1,
we have ||a],2 = N*/2. On the other hand, we have constructive interference, |Sy(x, N)| ~ N for
r € Q4,N, SO we can estimate

/|Sd(m,N)|pda(x)2/ |Sa(x, N)|P do(x) ~ NPo(Qqn) ~ NP N~4d=1/2,
Td Qd,N

Thus (1.2) is sharp if p > pg. By considering random sequences, we also see the optimality for
P < Pd-

It is not clear whether the requirement that the hypersurface has nonzero Gaussian curvature
is needed in order for (1.2) to hold. In fact, this inequality continues to hold if M is the graph
of any measurable F' satisfying ||F|| e (jo,1ja-1) = O(1/N%). In this case, summation by parts and
the fact that the variation norm of the sequence e(n?F(z)) is O(1), reduces (1.2) to an application
of (1.1) with d replaced with d — 1. Since the critical exponent for Conjecture 1.1 coincides with
the critical exponent for (1.1) in dimension d — 1, it is tempting to fantasize on whether there is a
clever way to quickly derive (1.2) from (1.1) for arbitrary, merely smooth F. We were not able to
prove this, and we believe such a direct argument is unlikely to exist.

One might suspect that the resolution of Conjecture 1.1 would rely on suitable use of the
asymptotic formula due to Herz [16]

) a0 =C () I s (20 (sup o - S5 ) ) + 001,

where C' is some positive continuous function.

One can ask what happens if we assume merely the relevant decay of the Fourier transform of
the measure, ignoring the oscillations in the formula (1.4). Clearly, one should expect a weaker
assertion. We propose the following conjecture, that will provide us with the main line of attack
for Conjecture 1.1.

Conjecture 1.2. Let d > 2. Let o be a positive finite measure on T¢ satisfying the Fourier
transform bound

(1.5) GOl A +1e)~", ez,

with 8= (d—1)/2. Let
3d24*4, d even
Pd *= 9 342-3

T, d odd
We have
(16) [, Bt WP doo) 5. {
T

N, 0<p<pa
N7t p>pa
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Note that once (1.6) is established for some p, the inequality for smaller values of p follows using
Holder. Observe also that py = py = 2, p3 = p3 = 6, but pg < pg for d > 4. We add one more
conjecture, that will provide us with the strategy to approach Conjecture 1.2.

Conjecture 1.3. Let d > 2. For each j > 0 the following estimate holds

_ Ne, 0<p<
(1.7) 91 5+ 1Sa.a(z, NP da <. [lalPs " Jovs b=pd
) ~ Y2 PTPd 4 ¢
[0,2-3]d N7="7¢ p>pqg

Since the sequence a is arbitrary, the domain of integration [0,277]¢ in (1.7) may be replaced
with any of its translates in T¢.

Conjectures 1.2 and 1.3 are related in two ways. On the one hand, if (1.6) holds for some p,
then (1.7) will also hold for the same p. In particular, Conjecture 1.2 implies Conjecture 1.3. On
the other hand, the validity of (1.7) for some even integer p will be seen to imply the validity of
(1.6) for the same p (and thus, also for all smaller p). So Conjecture 1.3 implies Conjecture 1.2
whenever d is not divisible by 4. See Proposition 2.2 for details.

Note that (1.7) for some p < pg implies the same inequality for all smaller exponents, via Holder.
In fact, the exponent % of 27 can be taken to be larger for smaller values of p, but that will not
concern us. Given this exponent, the power of N in Conjecture 1.3, and thus also in Conjecture
1.2, is sharp. Indeed, let us test (1.7) with the constant sequence a, = 1 and 2/ = N* where
k= 4L if d is odd, and k = 4£2 if d is even. Since

1Sa(x, N)| =~ N, for |z1],...,|zx_1| <277 and |zx| < N7% ... |24 < N9,
we find that
215 |Sa(z, N)|P do 2 NESG N—RE=D) NS S52 Np g, N5

[0,2-414

When p < pg, (1.7) is seen to be sharp for j = 0, by testing with randomized sequences.

We caution that we have stated Conjecture 1.3 assuming that the worst case scenario when
p > pq is provided by constructive interference near a point. It is possible that new obstructions
arise from more sophisticated interferences. However, we will prove that this is not the case in
dimensions d < 5.

To put Conjecture 1.3 into perspective, we compare it with the following “folklore” conjecture,
a comprehensive generalization of (1.1) (see for example Section 13.6 in [10]).

Conjecture 1.4. Let 81 < s < ... < Bk be positive integers. For each p > 2 and a,, € C we have

N
1_Bi+-.+Bg
I E ane(zin® + .. + xknﬁ’“)HLp([OJ]k) ScN‘(1+ N2 ) |lane-
n=1

When d is odd, (1.7) follows from Conjecture 1.4 with g8; = % +i,1<i<k= %. Indeed,
it suffices to note that pg = 2(81 + ...+ Bk), and to write

N
/ ISG/7d($7 N)|:D dr < 2—]‘% sup / s | Z bne(l‘glnﬁl +...+ J)dnﬁk)‘pdx.
[0,2—3]d b: [bn|=lan|/[0,1] 2 n=1

However, sharp results (at the critical exponent) for such incomplete systems are out of reach at
the moment, even in the simplest case k = 2, 51 = 1, S = 3. We follow a rather different approach
in this paper, that takes advantage of the oscillatory effect coming from the first % variables.

Let us now describe another case of interest. It involves the exponential sums with frequencies
supported on dilates of the unit sphere S¥~!

Sid(m, N) = Z ane(n - x).
nevVNSd—1nzd

In [6], the following conjecture is made.
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Conjecture 1.5. Let M be a real analytic hypersurface in T?, with nonnegative curvature and
surface measure o. Then

(1.8) 155 (@, N) 2240y S llallez-

Note that the implicit constant in (1.8) is scale-independent. As S5 ;(x, N) is the typical eigen-
function with eigenvalue —27 N for the Laplacian on T¢, this conjecture is part of a vast literature,
that we do not recall here, but rather point the reader to [6] for references. Inequality (1.8) is
verified in [6] for d = 2 and d = 3. Proving (1.8) for d = 2, as well as with an N bound for d =3
is rather easy, and it follows by using only the Fourier decay (1.5). The bulk of the paper [6] is
devoted to proving the scale-independent bound for d = 3. The argument is a wonderful blend of
analysis and number theory of all flavors. Most crucially, it relies on the oscillatory nature of c/lr;,
as expressed by (1.4). The authors prove

(1.9) > an, @n, do(n; —n2) < [la]Z
ni,n.€VNSI—1NZd
by exploiting subtle cancellations between the Fourier coefficients of do.

While some of the ingredients needed to extend this argument to d = 4 are known (e.g. [6]
contains lots of Jarnik-type estimates, while the energy estimate was proved in [4]), pursuing this
remains challenging due to the delicate nature of the oscillatory component of do.

We note that if we insist on proving scale-independent inequalities, we cannot use LP with p > 2
in place of L? in (1.8), when d > 2. This follows by invoking constructive interference, as before.
However, there are some interesting questions left open in two dimensions, regarding larger values
of p. See Section 13, where we establish a connection with a conjecture of Cilleruelo and Granville.

We investigate the analogous questions for the paraboloid
Pt ={n=(n1,...,ng_1,n° +...+n3_;) €2 1 <n; <N},
by considering the sums
S’f’d(LN) = Z ane(n-z), x € T
nepPd !
The motivation for investigating the paraboloid is twofold. First, it has positive principal cur-
vatures, like the sphere. But the distribution of the lattice points on the two manifolds is very
different, and the term %(nl —1ny) in (1.9) is sensitive to that. This makes the question for the

paraboloid of independent interest. An additional motivation is provided by the special significance
of the exponential sums SE: 4(z, N): they are solutions to the free Schrédinger equation on T

We hesitantly make the following conjecture.

Conjecture 1.6. Let M be a real analytic hypersurface in T?, with nonnegative curvature and
surface measure o. For each d > 2, and N > 1 we have the estimate

“S;P,d(x7N)||L2(do') S llalle:-

Notation. For a measurable (or finite) set A in R™ (or Z™) we denote by |A| its measure (or
cardinality, respectively). We will use either the notation X <Y or X = O(Y) to indicate that
|X| < CY, with a positive constant C independent of variable parameters such as scales (usually
denoted by N, M), sequences and functions. We shall write X ~ Y when simultaneously X <Y
and Y < X. Finally, for positive Y we will write either X < Y or X = o(Y) if | X| < ¢Y holds
with some small enough positive constant ¢, independent of variable parameters.

2. MAIN RESULTS AND METHODOLOGY

Given a finitely supported function f : Z% — C, its Fourier transform is

fl@)=Y" fme(n-z), zeT?

neZzd



Given a finite complex measure v on T? (d|v|(T%) < co), its Fourier coefficients are

@ (n) = /jT e(—n - 2)dv(z).

The following lemma is classical. Its origins can be traced at least as far back as the work of Hardy
and Littlewood [15]. The argument uses the fact that p is even, and this is not just an artifact of
the proof. The lemma is false for p = 3 (see [13]) and in fact for any real number p > 2 that is not
an even integer (see Theorem 3.2 in [18]). The counterexamples use du(z) = dv(z) = dz.

Lemma 2.1. Let p,v be finite measures on T?. Assume v has positive Fourier coefficients and
satisfies |du(n)| < dv(n) for all n € Z. Then for each finitely supported f : Z¢ — C and for each

positive even integer p we have
I/ [fIPdp| < / |g[Pdv,
']I‘d 'H‘d

Proof. We use Plancherel’s formula first

[ 7= Tt @

nezd

where g = |f].

An easy computation shows that, since p is even,

||/f\p<n> < G (n).

Thus
| / Flrdpl < S [GlF(n) d(n) = / glPdv.
Ta T

nezad

The lemma allows us to prove the connection between Conjecture 1.2 and Conjecture 1.3.

Proposition 2.2. If (1.6) holds for some p, then (1.7) also holds for the same p. If (1.7) holds
for some positive even integer p, then (1.6) also holds for the same p.

Proof. For the first part, we find it more convenient to identify T¢ with [—~1/2,1/2]¢. Let n: R —
[0, 0] be a smooth function satisfying

Lo1ja1/ae <0< 1_q/01/9)a.
The Fourier coefficient 7j(n) coincides with the Fourier transform of 5 evaluated at n. Then
do(z) = 2j%77(2j’2x)d$ is a finite positive measure on T¢ that satisfies (1.5) uniformly over j.
Note also that 1jg -5 (2) < n(2/~2z).

For the second part, let 7 : R? — [0, 00) be a smooth nonnegative function, compactly supported
in [-1/2,1/2]¢, with positive Fourier transform satisfying 7(¢) > 1i_1,174(§). The positive measure
v on T? given by

dv(z) = Z Qj%n(ij)d:E

j: 1<29 <dN¢
is finite and satisfies
[do ()| < dv(n), o] < dN
if
ldo(n)| < (1+ |n)~ %

Let -

o(x) = Z do(n)e(n - x).

nezZ: n|<dN9

~

We now apply Lemma 2.1 to the pair (du = ¢(z)dz,dv) and to f(z) = S4,q(z, N)

/ | a(z, NP do(z) = / 1S alr, ) Pdu(z)
’]I‘d ’]I‘d,
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< [ ISiatz, W)lPav(a)
T

(2.1) < Y 2j%/ |Sjapalz, N)[Pda.
[~2-3,2-4]4

j: 1<29<dNd
It is now immediate that (1.7) implies (1.6).
g

In sections 5-7 we will use inequality (2.2) stated below, with |I]|lS — S| < 1. This will allow
us to replace integrals on short intervals where the integrand is essentially constant, with integrals
over [0, 1].

Lemma 2.3. Let (an)nes be a finite sequence of complex numbers, and let p = 21 be a positive
even integer. Write

ZS—ZSZ{nl—I—...—I—m—an—...—ngl: TL,‘ES}.
Then

1
1Sl < s — 18| / S ane(nt) Pt
0

nes nes
In particular, for each I C [0,1] we have

(2.2) /I S ane(nt) Pdt < [1)1S — 15| /0 S ane(nt) Pat.

nes nes
Proof. Tt suffices to observe that

1
1D anl? = / 1> ane(nt)? D e(mt)dt.

nes 0 nes melS—1S
O

In our paper we only investigate the subcritical regime in Conjectures 1.1, 1.2 and 1.3. Com-
bining (1.1) at p = d(d + 1) with Hélder gives, for each p < d(d + 1)

s d41

(2.3) 275 / |Sa.a(e, )P do <, N2 05+ ak)||q,.

[0,2-7]¢
This shows that Conjecture 1.3 holds for p < %, and thus Conjectures 1.1 and 1.2 also hold for
p < % when d is odd, and for p < % when d is even. This is a rather poor range of exponents,
and we will improve it significantly in low dimensions. Let us now state our main results.

Theorem 2.4. Conjecture 1.3 holds in the full range for d = 2 and d = 3, and in the range p < 10
ford=4.

Moreover, when d = 4, we have the following superficially weaker, but morally equivalent sub-
stitute for (1.7), in the full range p < py = 11

(2.4) Z%j/ |Saa(@, N)P do Se NPG=6)F<al,.
[0,2-9]4
When d = 5, the following holds in the full range p < ps = 18.

(2.5) 23j/[ o 1S NP do e NP8+ al,
0,2—7

In particular, (1.7) holds in the full range when d < 5, for constant coefficients a,, = 1.

The proof for d = 2 involves elementary methods. The case d = 3 as well as the range p < 10
for d = 4 will rely on known decouplings. To reach p = 11 for d = 4 and p = 18 for d = 5 we need
to develop new small cap decoupling technology. The inspiration comes from a result proved in [2],
and streamlined in [11]. Our Theorem 3.3 extends the result from [2] to the case when small cap
is applicable to three (rather than two) of the variables, by removing the periodicity assumption



on the second variable. Its linear counterpart, Theorem 3.4, will be used in multiple forms, see
Corollaries 3.5, 3.6, 3.7 and 3.8. In Section 10 we extend this approach to five dimensions.

The systematic study of small cap decoupling at the critical exponent for the moment curve has
been initiated only recently, and it mostly addresses dimensions 2 < d < 4. See [12], [11] and [17].
While partial results exist in higher dimensions, see e.g. [19], they are not strong enough to fully
solve Conjecture 1.3 in dimensions d > 6.

The following result is a direct consequence of Theorem 2.4 and Proposition 2.2.

Corollary 2.5. Conjectures 1.1 and 1.2 hold true in the full range for d = 2 and d = 3, and in
the range p < 10 for d = 4. When d = 5 and p < 18, we have the following morally equivalent
substitute for (1.6)

/ |Sual@, NP do(z) Se NP9 fa]|?,.
Td
In particular, both conjectures are verified in the range p < 18 for the constant sequence a = 1.

Inequality (1.6) has been proved in [7], see Theorem 2.2 and Example 2.3 there, in the supercrit-
ical regime p > d(d+1) > pg. The argument relies on a simple application of (1.1) for p = d(d+1),
similar to the subcritical estimate (2.3).

Let us make a quick comparison between our methods and the ones in [7]. The latter also makes
implicit use of Lemma 2.1, by noting that each o satisfying (1.5) with 8 = (d — 1)/2 also satisfies

|do(@) ey ()] Sdv(n) = D 2777 1a ().
1<2i<Nd

Here A;(N) is the intersection of the annulus |n| ~ 27 with the frequency support
Fy={n=(ni,...,nq): |m| <N,..., |ngl <N
of Sy,a(x, N). The argument in [7] continues by using the rather weak estimate

dvl(z) < Y 27T A (N) 1ga(z)d,

1<2i<dNd

that destroys important cancellations. Since |A;(N)| oz N2+ +(ki=1)i(d+1=k;) jf Nks—1 < 27 <
Nki 1 < k; < d, the application of Lemma 2.1 gives for each positive even integer p

St N aot@) s 3

1<2i<dN¢

(kj—1)k;
2

93 (2 —k;) /Td |Sat.a(z, N)|Pda.

We may use Lemma 2.3 to show that this upper bound is larger than the one in (2.1). Indeed, for
each j we apply (2.2) for each of the first k; — 1 variables

(kj—1)k;

oi 4 [Sjap,ale, N)[Pde < N~z 2305 ~ka) |Sjaf,alz, N)Pde.
[—2-i,2—i]d T =t x[0,2-9] 41 ki

The smallness of the range of the last variables will be used crucially in our argument, by means
of exploiting the small cap decoupling phenomenon.

In most cases, we have formulated our conjectures with the N€ term in the bound. While
we do this mostly out of abundance of caution, it must be pointed out that one of our favorite
tools, Theorem 3.2, is known to have a genuine logarithmic loss in the scale. In any case, we do
manage to prove a few scale-independent results. One of them is the sharp form of (1.2) for p =4
and d = 3, proved in Section 12 using counting arguments. We also prove the scale-independent
version of Conjecture 1.1 for d = 2, in the full range. In fact, in Section 11 we prove sharp L?
estimates for the paraboloids in all dimensions, subject only to the decay of do. The bounds are
scale-independent only in the case d = 2. When d = 3, there is a logarithmic loss. This is very
similar to the situation for the sphere described in the previous section. The question of removing
this logarithmic loss by exploiting the oscillations of do remains open.
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3. DECOUPLINGS AND EXPONENTIAL SUM ESTIMATES, OLD AND NEW
In this section we record the main tools we will use to address Conjecture 1.3.

Theorem 3.1 (L? orthogonality). Let ({x)1<k<k be a 1/R-separated sequence of real numbers.
Then, for each interval w of length 2 R and for each ay € C we have

K
1Y are(@ea)ll 2wy S lwl'?llax e
k=1

Theorem 3.2 ({2(L5) decoupling for curved planar curves, [3]). Let I C [0,1] be an interval.
Assume ¢1, ¢ are C3 real-valued curves on the interval I satisfying the curvature condition

PL(t)  da(t)
det ~1 tel.
¢1(t)  dy(t)
Partition I into intervals H or length 1/\/§ Then for each collection of points & € I, each ay, € C
and for each square Q in R? with diameter > R we have

K
1 are(@161 (&) + 2262 o) Se RO D ane(@idn(e) + wada(€))l 7o)

k=1 H ¢.€H

We now introduce our new decouplings. Let us start with the case of curves in four dimensions.
Let ¢2, ¢3, ¢4 will be real analytic functions defined on some open interval containing [%, 1], and
satisfying

(3.1) 5 lles @y = max [¢{V (1) $1, ke {234},
1<n<4 zstsd

the Wronskian condition
2 3 4

SNONCONN0 .
(3.2) W (1, ¢, ¢35, 6| = |det |63 (1) 68 (1) o5 ()| |1, tels,1],

o) (1) 6" ()
and

" t) ”(t):|

3.3 det A 3
(33 et [ G50 G0
Theorem 3.3 (Bilinear small cap [>L'? decoupling). Let I, I> be intervals of length ~ N in
[N NJ, with dist(I1,I2) ~ N. Let Q = [0,1] X wy X w3 X wy, where w; are intervals satisfying

PE
lwal, |w3| > N2, |wyg| > N. Then we have

1
~1, t,sé€ [5,1] with [t —s| ~ 1.

2
/Q | H Z ane(nxy + ¢2(%)m2 + ¢3(%)5f33 + ¢4(%)$4)|6d9€ Se N€|Q|||GH1}22-

j=1nel;

The case ¢(t) = t? was explained in [11]. In this context, the requirements (3.2) and (3.3) are
superficially weaker than, but essentially equivalent (cf. Exercise 7.10 in [10]) to those stated in
[11], which we recall below

o) o) _ 1
det [¢i3) (S) ¢§14)(S) — 17 ta ES [23 1]7

and )
3
o7 ()] =1, t € [5.1]
The novelty of this formulation is that it allows small cap in three of the four variables. The
argument will crucially exploit periodicity in the x; variable, so it does not accommodate a small

cap on this component. Our main new observation is that periodicity on the second component is
not needed.
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It is easy to see that the linear version of Theorem 3.3 is not true. Let us first observe that if
p > 2 then

1

1_

lallezvy2,n) S lalles (2, v N2 77,

and the inequality is an equivalence when a = 1jn/2 n]. The 12 norm turns out to be too strong.
In fact, we show that for all p < 6, the inequality

/ ane(n 92 N4 5 () N+ ba () Ns) 2
[~L12X[~1/N,1/NIxX[-1/N3 /N3] sy

Se N 4al|ENS—F

is false for the sequence a = 1[%7%+M], with M = N3/4. Consider the set S of points

(3.4) (z1,...,24) € [-1,1] x [-1,1] x [-1/N,1/N] x [-1/N3,1/N?]
satisfying
(1 o5(3)  ¢5(3)  h(3) | [ = | [ o(1/M) ]
0 ¢5(3) () ¢i(5) | | Naz o(N/M?)

0 () ) G| [Ns|  |oN2/M?)

0 o) a3 o)) [Noaa]  [oviarh)
Since the entries o(1/M),o(N/M?),0(N?/M?3),0(N3/M*?) are all o(1), using (3.1) and (3.2), it
follows that any solution to this system satisfies

|1‘1|, |N$2‘7 ‘N2I3|, |N3$4| <1

In particular, (3.4) is guaranteed to hold. Also, for each 2 < k <4 and m < M we have

m
sup (o7 (1) (57)" NP < 1.
te[1/2,1]

We use Taylor’s formula with fifth order remainder, to write for each k and n = N/2 +m

m
Zqﬁ = + 01 (trm)(57)°
Combining all these facts, we see that we have constructive interference

Do elnmy + da(5 )N+ ba(5)N w5 + dal )N )| = M
N/2<n<N/24+M

for each z € S. Since |S| ~ 1/M19, it follows that if a = 1ny2,N/24M)

/ Z ne(ne1+da(— )N $2+¢3( )N? $3+¢4( YN zy) |2 da
[=1,1]2x[=1/N,1/N] x[~1/N3,1/N3] N/zgngN

> M2,
This lower bound is significantly bigger than N€*4||a||%§N6_1772, when p < 6.

However, the next result shows that we can work with p = 6. We will need to add another
determinant condition, that is satisfied in all our applications

(3.5) det[ 3 (1) ;%/,(t)} ’ ~ 1, te o]

5 (t) 3 (t) 2
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Theorem 3.4 (Linear small cap 1°L'? decoupling). Assume ¢o, 3,04 : (0,3) — R are real analytic
and satisfy (3.1), (3.2), (3.3) and (3.5) on [1/4,1]. Let @ = [0,1] X we X w3 X w4, where w; are
intervals satisfying |wa|, |ws| > N2, |ws| > N. Then we have

n n n
/| > ane(ml+¢>2(ﬁ)$2+¢3(ﬁ)9~“3+¢4(ﬁ)$4)|12d1 Se (N34 all0) 2102
2 N/2<n<N

Note that this result is sharp in three ways. First, the factor N* on the right cannot be made any
smaller. This can be seen by using a random sequence a,, € {—1,1}. Second, as observed above,
the term N'/3||a||s6 cannot be replaced with the smaller term N'/2-1/?|a||s», for p < 6. Third,
none of the intervals w; can be allowed to be significantly smaller than the specified lower bounds.
This can be seen by using the constant sequence a = 1, which leads to constructive interference on
[0,0(1/N)] x [0,0(1)].

We list as corollaries four particular cases of interest for us. The first one was proved in [2] for
the constant sequence a = 1. It corresponds to ¢o(t) = 12, ¢3(t) = t*, ¢u(t) = t>.

Corollary 3.5. Let w3,y be intervals of length greater than 1/N2%. Then

/ | Z ane(nzy +n’ze + ntas + n'ay)|Pdr < N4+€|@3||@4|Ha||}62.
[0,1]%[0,1] x @3 X &g N/2<n<N

The second one is a new result, even for the constant sequence. It corresponds to ¢o(t) = t3,
b3(t) = t*, ¢a(t) = t2. We will see that, at least for our purposes, this is a stronger estimate
than the first corollary. That comes from the fact that @y is allowed to be much smaller than the
periodicity interval [0, 1]. By renaming the variables, the result is as follows.

Corollary 3.6. Let wo, w3 be intervals of length greater than 1/N. Let 04 be an interval of length
greater than 1/N?. Then

/[01] 1Y auelnay e 4 ') Pde S Ny @124 a2
L Xw2 Xws Xwy N/QSTLSN

Here are two more corollaries that we will use to address the five dimensional moment curve in
Section 10. They will serve as lower dimensional decoupling in the “easier” regimes.

Corollary 3.7. Let (3,4 be intervals of length greater than 1/N?. Let ws be an interval of length
greater than 1/N3. Then

/[0 : | Z ane(nzy +n®rz +ntry +ndxs)|PPde <o NV w3 |04 |@s| ||l 3
,1| X g Xwg Xws N/QS’!LSN

Corollary 3.8. Let wy, s be intervals of length greater than 1/N3. Then

/[01]2 o | Z ane(nzy + n’xo + ntry +nSxs)|de <o NPTy |05 ||all 2.
ATXWaXDs o<V

In Section 10 we will pursue a similar investigation in five dimensions. To keep things simple, we
confine ourselves to only proving the following result, that suffices for our applications to the “hard”
regimes. While the technology involved in proving the previous results is of quadratic nature (the
governing tool is the decoupling for the parabola), the next theorem will take into consideration
the oscillatory effect of cubic terms, similar to the decoupling inequality for the three dimensional
moment curve. The small cap decoupling nature of the next result is captured by the variables z3,
x4 and x5. The novelty compared to the result in [19] is that we allow z3 to have a range as small
as 1/N?, as opposed to the periodicity range [0, 1]. This will be crucial to our argument in Section
7.

Theorem 3.9. Let w3, w5 be intervals of length greater than 1/N?2. Let &4 be an interval of length
greater than 1/N. Then we have

/[0 . | Z ane(nri+nirotniry+nte+nas)|Bdr <, N18(%—$)+e|@3||@4||@5|Ha||é§.
5 X W3z Xwga Xws N/2<n<N
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The exponent 7 of N on the right hand side is sharp. It seems plausible that the result remains
valid with the box w3 X @y x @5 replaced with a smaller one, having volume N 6. Also, our argument
does not use periodicity for x4, which suggests that perhaps there is a more general formulation
of this result, in the style of Theorem 3.4. However, the nondegeneracy conditions associated with
such a result are expected to be rather complicated. To avoid unnecessary technicalities, we follow
a more economical approach in Section 10.

4. PROOF OF CONJECTURE 1.3: d =3

Recall that it suffices to prove the conjectured estimate at the critical exponent ps = 6. Invoking
a dyadic decomposition, it suffices to prove that for 57 > 0

N
/ | Z ane(zin + xan? + x3n®)|0de < 272N ||, ||%.
[0,2-712 n=N/2
Since we are dealing with the moment curve, it is tempting to use the strongest estimate for it,
inequality (1.1) for d =3
N
/ | Z ane(rin + xon? + x3n®)|2dr <. N¥a| 12
(0,1]? n=N/2
However, the reader may check that either combining this with Holder, or interpolating it with the
L? bound (available in the nontrivial range 29 < N?)
N

/ | Z ane(xin + zon? + z3n3)|*de < 27 ||al|,
(02771 —Ny2

does not produce the desired decay 2727 for p = 6. It turns out that what we have to use instead
is decoupling for planar curves.

We distinguish three cases. The variable x; will not play any role, and abusing notation, we
write z = (22, x3).

Case 1. Assume 2/ < N. We will prove the superficially stronger estimate
N
(4.1) / 1S ane(wan? +23n%)[%dz Se 279N an 5.
[072_j]2 n:N/Q

Working with the last two variables proves to be the most efficient choice, as it leads to spatial
domains of largest possible size, and thus to a more efficient decoupling. Via a change of variables
and enlarging the range of x5 to [0, 1] in order to give ourselves enough room to decouple, we write

N N
2 34(6 -5 6
ane(ron® + x3n’)|°de < N ane(zo + 23(=)%)|%d.
/[ 279]2 n—ZN/2 ( | [0,N2]x[0,N3277] |n_ZN:/2 (N) ( |

We cover [0, N?] x [0, N3277] with squares @ with side length R = N? and apply Theorem 3.2
to the curve ¢(t) = (t2,t3), to get the desired estimate. Note that each interval H of length
1/N = 1/v/R contains only one point &, = n/N.

Case 2. Assume N < 2/ < N2, We prove (4.1). We will combine [2(L5) decoupling with L?
orthogonality as follows. First, we enlarge the range for 2 to [0, N277]. Then we change variables
and decouple using Theorem 3.2 for the curve ¢(t) = (t2,¢%), with R = N327J.

N N

| ane(x2n2+x3n3)|6dx < N7° | ane(xg( ) +a:3( ) )|6dx
/[0,2%2 n_zm (0.N32-1]2 n_zm N N
SN ane (a0 + s ()] P
Z 0,N32-37]2 Z

neH
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Here the sum is over intervals H of length M = (27 /N)'/? partitioning [N/2, N]. Since H is small,
its corresponding arc on the parabola is essentially flat with respect to our spatial domain. In
the absence of curvature, our best tool is L? decoupling. For each H, we write |- [ = | - |*] - |%.
We estimate the first term pointwise by M 2||a||2}2(nE > using the Cauchy—Schwarz inequality.

Since N3277 > N, we can estimate the integral of the second term applying Theorem 3.1 (using
orthogonality in any of the x5 or z3 variables)

n n »
/[0 N32-7]2 | Z ane(xg(ﬁ)z + x?’(N)g)'de S MQHGHQ}?(H)(N?’Q J)2Ha||%2(H).
’ ’ neH

Plugging this into the previous inequality leads to the proof of (4.1).

Case 3. Assume N2 < 2J. Ignoring the first and second variables, it suffices to prove that
N

LY mctaan)foars 5

n=N/2

For 29 = N2, this follows from L? orthogonality as in the previous case, while for larger values,
the integral gets smaller.

5. d =4: PROOF OF (2.4)

It suffices to deal with p = 11. We also normalize the sequence a such that N/3|lal/; = 1.
Thus, ||a|lez < 1. Let us start by giving a measure of the difficulty of the inequality we need to
prove

N

5 / |Zan€($1n+x2n2 + z3n® + zyn®)|Mdz < N2~ 7.
[0,277]4 n=1
As in the previous section, it is tempting to use the Vinogradov-type estimate ((1.1) with d = 4)
N
02 / 1> ane(win + xon® + wgn® + wan®)[*0de S N°
[0.1]* n=1

Combining it with Holder leads to a weaker estimate than the one we need (see (2.3))

N
/ |Zane($1n+xgn2 + x3n® + 2yn?)|Mdx <. N2~ %,
[0.279]% 5=
When 29 < N2, we can do better, by interpolating (5.2) with the inequality
al 1
(5.3) / | Z ane(zin + xon? + x3n® + 4n)Sde < N27% max{277, —}|a||%
[0,2-7]4 N

n=1
<N€2 (jmaX{Q J 7}
7]\/v

The estimate (5.3) follows from [?(L%) decoupling for the curve ¢(t) = (t3,t*) and L? orthogonality,
as in the previous section. The reader may check that this verifies (5.1) in the range 2/ < N 8.
We may also try something else when N < 29 < N2. From now on, we will replace [1, N] with
[N/2, N], via the dyadic decomposition used earlier.
Instead of interpolating the L® estimate with the L2° estimate, we interpolate it with the L2
estimate, the latter being derived from Corollary 3.5 as follows
N
/ | Z ane(zin + xon® + x3n® + xy4nt) | dx
02791 _N/2
N
< N277 / | Z ane(x1n + zon? + x3n® 4+ x4n?)|Pde
o.1)x[02-1 T,
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N
< N27J / | Z ane(zin + zon? + x3n® + m4n4)|12dac
o.12x[0,2-412 S
(5.4) < Nitea=37,
The first inequality follows from Lemma 2.3, while the last one follows from Corollary 3.5. Com-
bining this with (5.3) gives
N
- 2
/ | Z ape(zin + xan? + z3n® + x4n4)|11dx < 273 NEte
021 552
This is only as good as (5.1) if 27 > N*/3,
In summary, our methods so far leave a gap between 9/8 and 4/3. To cover the remaining part

of the range we will rely instead on Corollary 3.6. In fact, this result is so strong that it will give
us (5.1) even for p = 12, when 27 < N2.

Case 1. 27 < N. We enlarge the domain for z; to [0, 1], then apply Corollary 3.6.

N
/ | Z ane(z1n + zon? + x3n® + z4nt)|2dx
(0,271 n=N/2
N
< / | Z ane(xin + zon? + x3nd + x4n4)\12dx
.1 [0.27917 S
< N€2737,

This is actually better than what we need (for p = 12) by a factor of 277/2.

Case 2. N < 29 < N2 Applying Lemma 2.3, we enlarge the range for x; to [0,1] and gain
the factor N277. We also enlarge the range for both x5 and 3 to [0,1/N] and then apply Corol-
lary 3.6

N

/ | Z ane(zin + zon? + x3n® + z4n?)|2dx
02791 _N/2
N
< N27J / _ | Z ane(xin + zon? + x3n® + x4n?)|Pdr
[0,1]%x[0,1/N]?x[0,2—7] n=N/2
<  Ne19=%,

Note that the upper bound is more favorable than the one (i.e. (5.4)) obtained via Corollary 3.5.
It is also better than what we need (for p = 12).

Writing o = o oh T oly  with of¥ = the Fourier restriction of o to frequencies < N2, we have
proved that

[ Suat N2 ol (@) S N

As observed in the introduction, these methods cannot prove the similar statement for U}]l\ggh.
Indeed, if a, = 1 and N? < 29 < N*, then constructive interference near the origin gives the
lower bound
N
/ | Z e(z1n + xon? + x3n® + x4n?)|*2dr > N°27% min(1, N3277).
02771 5o

This is much bigger than 2~ % |an||;2. The best that can be proved with our methods is p = 11.
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Case 3. N2 < 2/ < N3, In this regime, Corollary 3.5 is stronger than Corollary 3.6. We first apply
Lemma 2.3 for both the first and the second variables, then Corollary 3.5

N
/ | Z ane(zin + zon® + x3n® + x4n?)|2dx
[0:2791% = Ny2
N
52_2jN3/ | Z ane(zin + on® + x3n® + x4n?)|Pda
[0,1]2x[0,1/N?)2  “ /2
Se NTl27%,

To get a favorable L'! estimate we interpolate this with the following L% bound that we may get
by reasoning as in the previous section. The variables x1, x5 play no role this time.

N

/ | Z ane(zin + xon? + z3n® + x4n?)|%dx
02771 —N/2
N
<27UNTT sup / | Z bn6($3(£)3 + x4(2)4)|6dx3dx4
bi [ba|=lan| J[0,N32-3]x [0, N 423 T, N N

< 27UNTT O sup / | Z bne(xg(ﬁ)?’ + x4(ﬁ)4)|6dx3dx4]1/3]3.
b [bal=lan| G5 J0,N32-]x[0,N42-9] TH N N

For each interval H of length M = (2//N)/? we combine L? decoupling with Cauchy-Schwarz

bne(w +z Sdx
/[07N32J']x[0,N32j] |n€ZH el S(N) 4(N) )l

< M?||b||4 / bpe(xs(— 342y drsdry
LY AR D oLt ()P

S MPNT27% a2 )

Combining the inequalities in the last two paragraphs we get

al Ne Ne
6
(5.5) /[02 » |n_zN:/2ane(x1n+x2n + z3n® + x4n®)[Cdz <, 23JNHClHe S9N

Interpolation leads to
N

/[0 94 | Z ane(xln + .132’/12 + l'3’/l3 + 334ﬂ4)|11dx
T n=nNy2
1 1 1
< € 1/6 s 5/6 _ e 1
s (23jN) (22JN) N 9135 /6

This is smaller than the desired bound N€2757/2 precisely when 2/ < N3.

Case 4. If 27 > N3, the result follows from L? orthogonality. The first three variables play
no role here.

/ | Z ane(zin + xon? + x3n> + x4n4)|11dac
[0,277]

N
<273 sup / | Z bne(xan®)|Mday
bi [bn|=lan| Jl0,1/N) | ZX

N
<2 3N gup / | Z bne(xan®)Pday
b: |bn[=lan| J[0,1/N3] [ TG0
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5 273jN3/2 S 275‘]'/2'

6. PROOF OF CONJECTURE 1.3: d =4, p <10

We prove

N
(61) [ » | Z ane(:zrln + $2n2 + £E3n3 + x4n4)‘10d$ 55 NEQ*%J Ha”ég
0,2-7

n=1

Recall (see (5.3) and (5.5)) that for 27 < N3

N
1 ) .
(6.2) / 1> ane(@an + zon® + 230’ + z4n*)|Cda < N© max{ﬁ,gfﬂ}2*3ﬂ||a|\2’2.
[0,277]*

n=1

When 27 < N2, (6.1) follows by interpolating

N
/[o " | Z ane(rin + xon? + x3n® + x4n)*de <, N¢|a|| 2
’ n=1
with (6.2).
When N2 <27 < N3, we use again (6.2) and the fact that |- [1° =|-|%|-|* to conclude that
N € -
1Y anelain+ zan? + 2n® + 2an) de S, 0l N2an b S N2 5 a2
(- — N233

When 279 > N3, it suffices to replace [0,277] with [0,1/N3] for 24, and to use L? orthogonality for
this variable.

7. d =5: PROOF OF (2.5)

It suffices to deal with p = 18. We normalize the sequence a such that N27sjaljp = 1. In
particular, N2~ |aljss < 1 and [|a],> < 1. We need to prove

N
Z; = / | Z ape(zin + zon? + zan® + zynt + x5n5)|18d:ﬂ <. N<273,
(0,277]° n=N/2
Case 1. If 27 < N, the inequality follows from Theorem 3.9, using the inclusion [0,277]% C
[0,1]% x [0,277]3.

Case 2. If N <2/ < N2, we combine Lemma 2.3 (for z1) and Theorem 3.9 as follows

N
Z; S N2_j/ | Z ane(x1n+x2n2+x3n3+x4n4+x5n5)|18dx <. N€2737,
[0,112x[0,2-7]x [0, 41x[0.279] ,, 5575

When N2 < 27, Theorem 3.9 becomes inefficient. We use instead lower dimensional methods.

Case 3. When N2 < 27 < N3, the variable x5 plays no role. We combine Lemma 2.3 (for
x1) with Corollary 3.7 and Cauchy—Schwarz (18 = 12 + 6)

N
| Z bpe(rin + x3n® + zan* + z5n°)|2de

’#] x[0,277] n=N/2

T, SN279277N?  sup /
be |bn|=lan| J[0,1]x[0, =] x[0

< N€2739,
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Case 4. When N3 < 27 < N*%, the variable x5 plays no role. We combine Lemma 2.3 (for x;
and zq) with Corollary 3.8 and Cauchy—Schwarz

N
| Z bpe(zin + xon? + zan* + x5n°)|2dx
1

~ex0.53] ,ZN2

Z; SN27IN?27927IN3  sup /
b: ‘bn‘zlanl [071]2X[0’

<. N€2739,

Case 5. If 27 > N*, we use L? orthogonality in x5 together with Cauchy—Schwarz (18 = 2 + 16)

N
Z; <27YN®  sup / | > bue(asn®)Pdas S2TYNSNTH <27,
b bul=lanl J10.3) 2870

8. PROOF OF THEOREM 3.3

We denote by E the extension operator associated with the curve ®

1

(8.1) O(t) = (8, 92(1), ¢3(1), 04(t)), T € [, 1].

More precisely, for f: [1,1] = C and I C [$, 1] we write

B f(z) = / FOeltar + dalt)es + ds(t)as + da(t)za)dr.

We recall the following results from [11]. The first one holds true since the curve ® has torsion
~ 1, as expressed by (3.2). To not obscure the presentation, we will ignore the use of weights wgp
throughout the rest of the paper.

Theorem 8.1. Assume that ® satisfies (3.1) and (3.2). Let I, Is be two intervals of length ~ 1

in [5,1], with dist(I1, 1) ~ 1. Let also f; : [1,1] — C. Then for each ball By of radius N in R*

we have

IEn fEL fall Loy Se N°CD Y 1ELAEL fallesy)'
J1CIy J2Cl2

The sum on the right is over intervals J of length N~1/2.
We will use this in combination with the following inequality
(8.2) 1Es fLEn f2llSe8yy S NHER fillSe i) E foll 26 (5y)-
The third inequality we need from [11] is stated below.
Theorem 8.2. Assume 1,. .., : [—1,1] = R have C3 norm O(1), and in addition satisfy
Wy (@)1 195 ()] < 1, V [¢] < 1
and
WY@ 14 ()] ~ 1, V[t < 1.
Let
U(t,s) = (t,5,91(t) + ta(s), ¥s(t) + ¢als)), [t];[s] < 1.

Then for each ball By C R* with radius N and each constant coefficients Cmy,ms € C we have

my m2 €
(8.3) Yy > Cmma(® - V(55 Jria Eesa) Se Nlemsmsle | B,
m1§N1/2m2§N1/2

The implicit constant is independent of N and of ;.



17

We now proceed with the proof of Theorem 3.3. Fix a,, with ||a|s2 = 1. Rescaling the last three
variables, we slightly modify the earlier notation and write

Zan (nz1 + ¢2(— )Nx2+q53( )Nx3—|—¢4 )Nz4) = Zan N<I> - x).
nel nel
Note that

&r(x) = Eyyn f(Nx),

Zan(S%.

nel

where f is the distribution equal to

Standard approximation arguments allow Theorem 8.1 to also be applicable to such f.
We also write

Q=10,1] x [0, N] x [0, N] x [0,1].
We need to prove that

(3.4) [ lennp < v
Q
The argument involves two decouplings.

Step 1. We cover Q with cubes B of side length 1, apply Theorem 8.1 on each B (or rather
N B, after rescaling), then we sum these estimates to get

/|511512|6 Se Ne Z Z /|5J1 2| 1/3
Q

J1CI1 J2Cl2

Here Jy, J, are intervals of length N'/2.
The remaining part of the argument will be concerned with proving the estimate

/Q 1€0,€0,1° Se N* < lanllfz g,y lanllfz )

The combination of the last two inequalities leads to (8.4).
For i = 1,2 fix J; = [h; + 1,h; + N'/2].

Step 2. We point out the main difference between the forthcoming argument and the one in
[11]. Here, the variables zo and x3 play an entirely symmetrical role, not just in terms of range,
but also functionality.

We will seek a change of variables in R*, one that will allow us to use Theorem 8.2. As in [11],
the variable x4 plays no role in this part of the argument, as it produces no oscillations. This
variable only played a role in the first step of the argument. We need to create another variable,
in addition to x1, x2, 3.

First, we apply (8.2) on each cube NB

|lenenr=nt [ |5J1<4>a12<ﬁ>|6
B

<N / €0l / (5 / €56 / EnlC.

Second, we use the following abstract inequality, that only relies on the positivity of |, |°

(8.5) 3 / 1,0 / €15 < / do / 1€, (2 + y)Ex, (@ + 2)[Cdyd=.

BCQ (y,2)e[-L1]*x[-1,1]*
Using periodicity in the y;, z; variables, we can dominate the right hand side above by

1

N2 dzy ... d24/ &5, (x + )&, (x + 2)|%dy1dzy daodas.
y1,21,22,23€[0,N]

T1,%4,Y2,Y3,Ya,72,23,24€[—1,1]
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In short, the variable z; is now replaced with the new variables y; and z;. It remains to prove
that the following square root cancellation

(8.6) / 0, (z + 9)Es, (z + 2)|°dyndzrdaadrs Se N |an]|fz sy lanlf2 )
Y1,21,22,23€[0,N]

holds uniformly over x1, x4, Y2, Y3, Y4, 22, 23, 24. With these variables fixed for the rest of the argu-
ment, we make the linear change of variables (y1, 21, 22, x3) — (u1, U2, w1, ws)

up =y + ¢52(W1)$2 + %(%)
uz = 21 + ¢2(h2)332 + ¢fz(%
8.7
57 w = iRt + DR
s HB) 5+ 0

The Jacobian is ~ 5, due to (3.3). The cube [0, N]* is mapped to a subset of |uil,|uz| < N,
|wi], Jwe| < 1. Note also that, due to (3.3), x3 = Awy + Bws, €9 = Cwy + Dws, where A, B,C, D
depend only on hi, he, and |A|, B|, |C|,|D| < N.

Let for i = 1,2
1110 hy 111 hg
6;(m) = 3¢2 (ﬁ) —|—m47¢24,](VN) +...
ni(m )_m3¢3(N)+ 4¢311'1(V?)+'“

Using this we may dominate the integral in (8.6) by

1 1
N?2 N2
2 2 2
(8.8) N / | E E Cmy mp€(Mit1 + miwy + maug + mawa+
[ui| SN, [wil ST

m1:1 ’n’L2:1

+(01(m1) 4 02(m2))(Cwy + Dws) + (91 (m1) + na(mz))(Aw; + Bws))|®duy dugdw; dw,.

The coefficient ¢, m, depends only on my, ma, 1,2, 22, Y3, 23, T4, Y4, 24, but not on the variables
of integration u;,w;. Moreover,

|cm1,m2 ‘ - ‘ah1+ml Ahy+mo ‘

The argument of each exponential may be rewritten as

1/2
N1/2 ur N (11)1(]\[1/2)erz(]\jl/z))wlNJr
mao
N1/2 N1/2 (1/)3(]\71/2) + ¢4(N1/2))U)QN
where
" hl " 71 11" 11
() = ALGEUCHCH | o 0T GLCo () |
A (R2y el (h2 AP (h2yyopr(he
o (t) = 3 ¢3(3')]V3/2¢2(N)+t4 b3 (F 4)'N¢ )+”.
B 111 hy D " B 22 D 1"y
b= PSS N) PG D ()
1" 1" 111 11110 ho
,(/)4( ) _ t2 t3 Bég ( 3')1\4[‘3?2(152 ) +t4 Bog ( 4)IJ]r\/'€¢2 ( ) _

These functions satisfy the requirements in Theorem 8.2. The expression in (8.8) becomes

N1/2 pn1/2

1 mi mo
N i j<nore \w,\<N‘ 2 2 le’me((ul’uz’wl’wQ)'@(W’N1/2))|6du1du2dw1dw2'

m1:1 ’n’L2:1

If we cover the domain of integration with balls By and apply (8.3) on each of them, we may
dominate the above expression by

Nt €y mo H??([I,Nl/Z]x[l,Nl/?]) = N4+6||an||?2(h) Han||?2(J2)-

This proves (8.6) and ends the argument.
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9. PROOF OF THEOREM 3.4
In this section we prove that Theorem 3.3 implies Theorem 3.4.

The parameter K will be very large and universal, independent of N, ¢;. The larger the K we
choose to work with, the smaller the e¢ from the N€ loss will be at the end of the section.

Proposition 9.1. Assume ¢a, d3, ¢4 : (0,3) = R are real analytic and satisfy (3.1), (3.2), (3.3)
and (3.5) on [1/4,1]. Let as before wy = w3 = [0, N?], wy = [0, N] and

n
Ern(z ;ane nry +¢2( )2 + ¢3( )933+¢4(N)I4)-
We consider arbitrary integers No, M satisfying 1 < M < N° and No + [M, 2M] [ ,N]. Let
Hy, Hy be intervals of length 4 M inside Ny + [M,2M] such that dist(Hy, Hy) > M - Then

/ |5H1,N($)5H2,N(5U)|6 N9+6||11He6( [No+M,No+2M])*
[O 1]><UJ2 Xwsz Xwy

Proof. Write Hy = Ny + I, Hy = Ny + Iy with Iy, Iy intervals of length % inside [M, 2M] and
with separation > 2£. Note that No/N € [1/4,1]. Note that the roles and the properties of ¢,
¢3 are completely symmetrical in & y and in (3.1), (3.2), (3.3) and (3.5). It follows by (3.3) that
2 (R) or 07 (5

N 32) is nonzero. So, due to symmetry, we can assume without the loss of

generality that ¢52)(%) # 0.
We use the following expansion, certainly valid for all m in I;.

either

¢2(N°;m +Z¢2 (%) K"
n>2
(n) n—2
+/<JQZ 2 )H (%)”

n>2
Here Q2(m) = A+ Bm with B = O(3:), and we denoted x = M/N. Observe that by choosing K
sufficiently large we can make k arbitrarily small. We introduce the analogue Q;Q of ¢ at scale M

(n) Noy,.n—2
ity = 3 EE

n!
n>2

This series is convergent as long as % +t € (0,3), so the new function is certainly real analytic
n (0,2), since Ny < N. We can decompose ¢y as

qb}(t) =: aogt® + azt®k + agt*x? + ro(t)K3,
with
68" (5%)

N2 n=234,
n.

an =
and 7o (t) satisfying

sup  sup [rg” (1) = O(1).
k=2,3,4t€[1/2,1]

We have
N —|— m ~ . m
Or(= ) = Qalm) + 52a(5).
We also write for m € I; with Qg(m) = C + Dm satisfying D = O(%),
NO + m ¢3 N n
(9.1) b3 N )+ Z M) .

n>2
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s(m
We will use the following formula, with A, w( ), By, = #(

BnA _BAn
ZanA—jZAHZ%,

n>2 n>2 n>3 2
provided that As # 0. The sum }_ -, in (9.1) is equal to

HeD RLIN o ) (%e)pl (B2) — o8 (Re)el” ()

i\s
]

s W) R (T
(%) = 05" (3¢)n! M
Let ¢5 be the analogue of ¢ at scale M defined by
o) = 3 AR — 98 (RO (R) sy
¥ @) (Noyp,1 '
n>3 5 ( N )n!

This can be decomposed as 3
¢3(t) =: b3t3 + b4t4li + Tg(t)li27
with
68" (h0)as” (Be) — o (Xe)es" (B)
o (Se)n!

b, = , n = 3,4,

and r3(t) satisfying

sup  sup |r:(3k) )] =O0(1).
k=2,3,4t€[1/2,1]
We can write @
No+m, 5 (%) 2+ 3
o3 N )—Qs(mﬂ'% ¢(M)+/€¢3( )

Finally, we let Q4(m) = E + Fm with F = O(4). Note that (3.5) guarantees that bs # 0. This
allows us to define
(n)

N +m R)e™ m,
¢ ON +Z : n' M)
n>2
(2)(&> m m m
=+ ) (1 )
<3><”°> ascﬁif’(%) - -
2las o 3 0 4 3
+ , (ba(7)* +ba(57) %)
. (_a4¢f><%>+ A b a3¢2><N°>+¢f><%> )y
2!6(,2 4! b3 2'0,2 3' M
(n) No n—4
i ()R man| 4
3 G
(2)(M) m ¢£13)(|%) _ a3¢f:)(%) m
- 3! 2la e
—Q4(m)+42!7a;v¢2(ﬁ)f€2+ ™ 2 ¢3(M)H3
iy (_a4¢f><%>+¢i‘”<%>_b4 o (), (R )y
2!&2 4! b3 2'&2 3! M
3 2
(n) ¢ Ng\,.n—4 (2) 1 No (=) s (&)
i (e m n_¢4 () m. T3l 2laz m
+nz>:5 n! S72 o0y 2" bs ra(3p)m
(2)(&) m ¢§13)(|%) - awgi)(%) m m
4 \N)7 m, o 3! 2las 7 /My 3, 7 /M, 4
=: Qa(m) + S0y ¢2(M)ff + b ¢3(M)/€ +¢>4(M)
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We write
= (- a5 oCR) b (asel(R) 7R L
w 2las Al bs 2las 3l o
with . .
n - ds (=) azdy (=)
o0 (Gp)rn L e (%) s —
t) = t" — t) — : 02 t
T4( ) T; n' 2!@2 TQ( ) b3 TS( )
satisfying
sup  sup |7Q(Lk) (t)] = O(1).
k=2,3,4tc[1/2,1]
Letting
Ry(t) = ast’ + agttk + Tg(t)/i2,
Rg(t) = b4t4 + T3(t)l€
Ry(t) = ra(2),
we have
(9.2) sup  sup |R(k) (t)]+ sup sup |Rf(k)(t)| + sup sup |R(k) )] =0(1)
2 3 4 )

k=2,3,4t€[1/2,1] k=2,3,4t€[1/2,1] k=2,3,4t€[1/2,1]

and, after doing some basic algebra, we get

oa(t) = 262 (X0)2 1 Ry (1),

T2 AN
— 1 1 ¢(2)(M) (@(M) 3
P3(t) = — ———det | 4 N S N+ Ry(t)k
LX) | (Re) o7 ()
() e (R e (R
(3) (N N,

-~ 1 2) (Mo ¢(2) Do) 1 %3) 'S 3) ?3) 4
Falt) = et |22, () SOV et [ 6002y g0(H) ()| ¢+ Rufo)n.
: 2 No

Summarizing, we have obtained the following decomposition

¢2(NO; ) = Qo(m) + HngNQ(%)a
No + 05 (5) - -
d3(—5) = Qalm) + an;}) + (1),
No+m, 0 (%) 25 om0 (56 () — 68’ (6T () o
R T AT ) S e ) — P B ) T
+I€4$4(% .

It motivates the change of variables
y1 = o1 + Bxo + Dx3 + Fay,
(2) ( No (2) (No.
y2:/€2 1‘2+¢(32>(1%)$3+¢?2)(1%)(£4 ’
> () ¢ (&)
007 ()07 () =65 ()" ()
857 (3857 (F) 08" () ()7 )

ys = K3 | x3 +

Yyq = I<L4{E4.
Due to periodicity, we may extend the range of z1 to [0, N]. This linear transformation maps
[0, N] X w1 X w3 X wg to a subset of the box w; X &g X @3 X Wy centered at the origin, with
dimensions roughly N, M2, M3N~ MAN—3.
Thus

&, N ()] = |E1,,, 01 (Y)]
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where
&M Z aNg+me(myr + ¢>2( Jy2 + ¢3( )ys + ¢4( ) 1)
mely
Note that, as we mentioned before, by choosing K large enough, x can be made arbitrarily
small. Therefore, the functions ¢2,¢3 and ¢4 satisfy conditions (3.1), (3.2) and (3.3). Indeed,

condition (3.1) follows from (9.2) and the fact that functions ¢s, ¢35 and ¢4 satisfy (3.1). Condition
(3.2) follows from the identity

N SR O RTC ST N IR NCONC
det |6, (50) s~ (N8) éa (Re)| = gigra det %(%) o:%,j; ) @23(%) +0(x)
EAC ORI OREANCD) b2 (%) 457(%) o (R

Finally, a direct computation reveals that
~ I ~ I

ot 122 @ @3 (O e (92 ( A
dt[ )‘| |t |dt[¢2//(]]\>{)) ¢//(1{IV

~ I ~ I
2 (s 3 (s

which implies (3.3).
We may write, using again periodicity in y;

1
L (@), (@) = €11, ¥ (2)E 1 0 (2)
Xwa Xwgzg Xw4yq

[O,N]XUJQXW;gXLAhL
N g 6
< (M €1, (Y)Em, 01 (y)|°
[0,1] X @2 X 3 X Wy
Finally, we use Theorem 3.5 with N = M, noting that @, 03 C [~M?, M?] and &4 C [-M, M], to
estimate the last expression by

N . ;
(]\4)9]\/‘[&r lallzZ v+ a1, 30 42001y < Nl allz v 4 21,56 +20)-

[0, N2] x [0, N?] x x 0, N

We can now prove Theorem 3.4. Let Q = [0, 1] x
We write H; % Hy to

Let H,(I) be the collection of dyadic intervals in I with length K,L.
imply that Hy, Hs are not neighbors. Then

£ <3 £ K £ £ /2,
|&1.n ()] e |Ea,n ()] + R |Em, N (2)Em, N ()]

We repeat this inequality until we reach intervals in #; of length ~ 1, that is K! ~ N. We have

|€rn(x)] S 13 'K max max max |5H1,N(x)5H27N(a:)|1/2
1<n<l HEH,,(I) H1 2 Ho€EHpy1 (H
< (logN)NlogK max 1max max |5H17N(x)5H27N(z)|1/2.
1<n<l HEH,,(I) H1 ¢ Ho€Hpy1 (H

Using Proposition 9.1 we finish the proof as follows

£ 12dx< NetOUogy 3) max / £ z)€ x)|8dz
JCE] X B el o)

NeJrO(logK 3) Z Z N ”anHEG(H)
n HeMna(I)

K N9+e+logK 3 Ha||12
~

Choosing K large enough, we may force log 3 to be as small as we wish.
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10. PROOF OF THEOREM 3.9

We will work with the functions

¢1(t) = tv ¢2(t) = tzv ¢3(t) = t3 + €3t47 ¢4(t) = t4 + 64t57 ¢5(t) = tsv

where €3, €4 = 0(1). The smallness of €3, ¢4 will be used in the proof of Proposition 10.5.

For all practical purposes, ® = (¢1,...,¢s5) will be a negligible perturbation (in fact, a nonsin-
gular linear image) of the moment curve ®, corresponding to e3 = ¢4 = 0. All implicit constants
in the results that we prove about ® will be uniform over all such e;.

We abuse earlier notation and write

n
Ein(r) = Zane(cb(ﬁ) - ).
nel
Note that this is N-periodic in z; and N2-periodic in 5. At the end of this section we prove that

Theorem 3.9 is a consequence of the following bilinear result.

Theorem 10.1 (Bilinear small cap I°L'® decoupling). Let Iy, > be intervals of length ~ N in
(5, N], with dist(l;,I5) ~ N. Let Q = [0,N] x [0, N?] x w3 X wy X ws, where w; are intervals
satisfying |ws|, |ws| > N3, |ws| > N. Then we have

1

2
1_1y4e
/Q T 0 @)Pde Se NSG=8441Q an a1 lan
j=1

From now on, we may and will assume that
Q=1[0,N%*x [0, N].

Enlarging the range of the first two variables is done only for convenience, to accommodate various
changes of variables. It comes at no cost, due to periodicity. The novel small cap decoupling nature
of this result is reflected by the size ~ N of the range of x5. Our argument cannot accommodate
a smaller range, due to our crucial use of N-periodicity in x; for £ . This will be apparent in
Step 2 of the argument. However, the size ~ N is exactly what is needed in our applications.

At the heart of our proof of Theorem 10.1 lies the following inequality proved in [14], for the
surface

G =(t,s,t% s t3 +5°).

This can be thought of as a two dimensional analog of the decoupling for the moment curve in
R3. It will play the same role in this section as the role played by L% decoupling in the proof of
Theorem 3.3. Notably, the argument in this section will make crucial use of the oscillatory nature
of the cubic terms in G.

Theorem 10.2. Given f : [0,1]> — C and intervals Jy, Jo C [0,1] let
EngJQf(:z:) = / f(t,s)e(tay, sxo, t2xs, s%xy, (2 + 5%)xs)dtds.
JlXJQ

Then for each ball Br C R® we have

201_1y4,
VEG e fllioqm Se REGTDC ST IES,  fl%0mm) -
[J1l,|J2|=1/R/3

The first application of this theorem will be used to produce the Step 1 decoupling in the proof
of Theorem 10.1. For f: I C [0,1] — C let

B f(a) = / F(t)e(®(t) - 2)dt.
Proposition 10.3. We have

201 _ 1y, .
1B FEL fllomr) Se B3G9+ > IET, FES, [l 705"
JiCI;: |J7|:1/R1/3
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The idea behind this result is that ®(I;) + ®(I3) is a surface that can be locally approximated
by nonsingular affine images of the reference surface G. This is the approach taken in [19], and we
refer the reader to this paper for details.

We will combine this with the following transversality result.

Proposition 10.4. We have
I1ES, FET, fllio 5y S BNES, FI Lo 1T, £l70 (5

Proof. The proof is very similar to the one for (8.2), explained in [11]. We sketch the details, with
an emphasis on the main geometric inequality. Since

Ef?f(a:) = E?Of(A:c), A(z1,...,25) = (21,22, T3, T4 + €373, T5 + €474)

and since Br does not change much under the action of A, we may assume that ® = ®y.
Let nr be a positive, smooth approximation of 15, with Fourier support inside B(0,1/R). The
Fourier transform of nREiO f is supported on the set (for arbitrary ¢; € J;)

{(ti+ s, (ti+5)°) ¢ [s| = O(R™Y®)} + B(0,1/R).

This is easily seen to lie inside a translate of the rectangular box B(J;) defined as follows. Let
m(t;) be the plane spanned by the vectors

e1(ts) = (1,2t;,3t2, 43, 5t1), ea(t;) = (0,1,3t;, 6t2, 10t3).

Let R(t;) be the rectangle inside 7(t;), centered at the origin, with long side of length O(1/R'/3)
in the direction e;(t;), and short side of length O(1/R?/?) in the orthogonal direction. We take
B(J;) to be the Cartesian product of R(J;) and the cube [-O(1/R),O(1/R)]3, the latter being a
subset of 7(t;)Lt. We write

|Ei0f|91BR ~ |EiOf|9nR ~ Z cp.1p,,
P;eP;

with cp, € (0,00), and P; a tiling of R® with rectangular boxes P; dual to B(J;). Each P; has
dimensions R'/? x R?/3 x R x R x R, with the first two entries corresponding to m(t;) and the last
three corresponding to 7 (¢;)*.

Note that if z € P; then
(@, e1(t)) = O(RY?), (x,es(t;)) = O(R*®).
Let us describe the intersection of P; and P,. Since

1 2t; 3t3 43
1 2ty 3t 4t
0 1 3t 63
0 1 3ty 63

det ~ |t] — t2|4 ~1,

it follows that m(t;) N m(t2) = {0} and that w(t;)* N 7(t2)L is a line, spanned by some unit
vector v. It also follows that the matrix M with rows one through five consisting of the vectors
e1(t1), e1(t2), ea(t1), ea(ta), v has determinant of magnitude ~ 1. Since each x € P; N P, must
satisfy Mz € [~O(RY?), O(RY?)]? x [~O(R?/3),0(R?/3)]? x [~O(R),O(R)], we conclude that
|P1 N P3| < R3. This estimate can also be seen to be sharp. Thus

IES FES f3omm = D> D cpcp|PiN Py
P1EPy PP

SR_S Z Z CP10P2|P1HP2|

PiePy PP
~ R7°NET, fl 708w IET f 70 (51)-
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The following result will allow us to perform the Step 2 decoupling in the proof of Theorem
10.1. We let M = N?/3 and H; = [h; + 1,h; + M], with hy, ho, |hy — ho| ~ N. Note that the
variable x5 no longer plays any role. Let us write

n n
EH short (T1, T2, T3,24) = ;Iane(%(ﬁ)xl +.o T+ ¢4(N)5”4)-

Proposition 10.5. We have
/ &1, short (Y1, T2, 3, 4)E, short (21, Ta, T3, ©4) |2 dyrdz1 drodrsday
[0,N3]5
1_1
<, NHep18Gs 9)”an”?Q(Hl)Han||?9(H2)'

Proof. Let a; = h;/N. We make the change of variables

ur = % (y1 + 20122 + s (ar)ws + ¢)y(ar)wa)

U9 = %(21 + 2a9o + ¢/3(042).133 + (l)ﬁl(ag)le)
wy = 5z (T2 + % (;1)333 + (2a1)304)
wy = 7z (x2 + 22 (Qaz)l“:s + & (2a2)9€4)
— T2
L

It has Jacobian ~ N~8 since €3, e4 were chosen to be small. Note that

M
|5H1,short(y17x27x37x4)‘ = ‘ Z Ahy+my X
m1:1
(3) (1) (3) (4) (4) (5)
: )73 + ¢y (a1)zy 3 (a1)zs+ ¢y ()zs | 504 ()zs
e(m1ul+m%w1 er‘f 2 3!N34 +le1 2 4!N44 +my 45!]\[5 )l
M
|EH, short (21, T2, T3, T4)| = | Z Ghytma X
mo=1
(3) (3) (4) (4) (5)
¢ (an)zs + ¢y (a2)xy ¢y (ag)ws + by (az)ay ¢y (az)rs
e(maug + miwy +mj -2 3!N34 +my = 4!N44 +m3 45!N5 )l

Using the equations for wy, ws, v and the fact that

om0 ] =1

we find that
(10.1) x3 = awy + bws + cv, x4 = dwi + ews + fu,
with a, ..., f = O(N?). Moreover,
¢ =2N?87 ¢ (o) — ¢ ()], f=2N?B7"[¢f5 () — ¢ (en1)].
The coefficients of m3 and m3 become

§3)(041)1’3 + (,254(13) (041)1'4 _ €1 — 24(0[1 — 042)2
6N3 NB

v+ O(1/N)wy + O(1/N)ws

and
(3) (3) 2
3 (052)1’3 + (7254 (042)1‘4 o €2 + 24(0&1 — 042)
e = NG v+ O(1/N)wy + O(1/N)ws.
The numbers €1, €5 depend on €3, €4 and can be guaranteed to be as small as needed, by choosing
€3,€4 = 0o(1). Since |o; — ap| >~ 1, we have that
€1 — 24(041 — 042)2

B

We next replace 3,24 using (10.1). We also rescale

u; = Mu;, w; = M*w;, v = M>N 1.

€ + 24(041 — 042)2

|A = 3

|~1, |B:=

| ~ 1.
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This allows us to rewrite

M M
|5H1,9h07"t(y17x27x37$4)5H2,sh07"t(z1ax27x37x4 Z Z ah1+77l1ah2+MQ><
(S, + + (1(55) + Yo (T2 + (6 <m—>+w<—>> + (Ws(52) + g6 (52))0)|
GMU1 Muz 1 2MU/1 3M 4Mw2 5M 6MU,
where

Pi(t) = 2 + O(M ™Y + O(M M)t + O(M~3/2)e5,
Ya(s) = O(M Y23 + O(M~Y)s* + O(M3/2)s°
Vs (t) = O(M Y2t + O(M~Y)th + O(M 3/,
Ya(s) = s>+ O(M~Y2)s® + O(M~Y)s* + O(M~3/2)s°
Vs(t) = A3 + O(M Y2t + O(M~ 1),
Ve(s) = Bs® + O(M~Y%)s* + O(M~1)s.
The coefficients can be easily found, but only their size matters. It is important that |A|,|B| ~ 1,

and also that the leading coefficients of 1 and 4 have magnitude ~ 1. The result now follows

immediately from Theorem 10.6, that we prove below.
O

This is the analog of Theorem 8.2 in five dimensions.

Theorem 10.6. Let 3 > 0 be fized. Assume that 1, ..., : [~1,1] = R have C* norm O(1),
and in addition satisfy, uniformly over all |t| <1

b (8)], 5 ()] < 1,
1Y ()], [95 (8)] = 1,
W S M7 1<i<4,
[g" ()], [ (8)] = 1,
W) SMP 1<i<6.
Let
\Il(tﬂ 5) = (tv 871/11(75) + wQ(S)a ¢3(t) + 1/)4(5)71/15(15) + 7/}6(5))’ ‘t|a |S| S 1.
Then for each ball Bys C R® with radius M? and each constant coefficients Cma,ms € C we have

mip My 1_ 1y,
(102) 1 3 3 emamaele W D e Se M e, ol Bas
mi1 <M mao<M

Proof. The proof is very similar to the one of Theorem 8.2. The upper bound M~? may easily
be relaxed to O(1). We chose to work with the former in order to simplify the exposition. Let
0 < a < 1 be such that 8+ 3a > 3. Let

EY f(x) /f (t,s)e(x - ¥(t,s))dtds,

where S C [—1,1]2. It suffices to prove that the smallest constant d(M) that makes the following
inequality true for each ball Bys and each f, satisfies d(M) <, M€

1B 12 fllzo(s,,s) < d(M)MG=5)( > B3, <11, f 705
Hy HyC[=1,1]: |Hi|=1/M
This will follow once we prove that d(M) <, Med(M*®). First, we observe that

(10.3) B 12 fllio () < dM®) M0 > I1ER, xacs fl2o(5,,)) "
K17K2C[71,1]: |Ki|:1/MO‘

)1/9'

m3)

Second, we note that using Taylor’s expansions with fourth order remainder, the restriction of ¥
to K1 X Ko :=[tg — 1/M% to +1/M?*] X [so — 1/M*, s0 + 1/M] can be written as

U(to+t,50 +5) = U(tg, so) + U*(t,s) + O(1/M?),
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where
Wit,s) =t, W(t,s) = s
Ui(t,s) = Ast + Bst? + D3s + E3s?
Ui(t,s) = Agt + Byt? + Dys + Eys?

\1’5 (t, S) = Ast + B5t2 + Dss + E582 + C5t3 + F583
Thus, ¥(K; x K3) and (a translate of) U*((K; —tg) x (K3 — s0)) are within O(1/M?3), and we may
replace ¥ with ¥* on Bjss. Our hypothesis implies that all coefficients are O(1), and moreover,

Es, By, = o(1), and also |Bs|,|E4| ~ 1. These guarantee that the Jacobian of the following linear
transformation is ~ 1

Y1 1 0 A3 Ay As| |z
Y2 0 1 D3 Dy Ds| |22
ys| = |0 0 By By Bs| |x3
Ya 0 0 E3 Ey Es| |24
s 00 0 0 1]z

This allows us to write
‘E M-« M- 2f(1:)| = |/ f(t,s)(y'(t,S,t2,827C5t3+F553))dtd5|.
M-« M a]2

Recall that our hypothesis also implies that |Cs|, |F5| ~ 1. This allows us to apply Theorem 10.2,
which upon rescaling gives

) (2 1)ae

(10.4) IER, e FllLo(B,ya) Se MP—Gm0)te( > 1B, fl 705
H;,CK;: ‘HL‘:l/M

Finally, the combination of (10.3) and (10.4) shows that d(M) <, Md(M®).

)1/9.

3)

It is time to prove Theorem 10.1. Recall that we work with Q = [0, N3]* x [0, N].

Proof. Step 1. We cover §2 with cubes B of side length N, and apply Proposition 10.3 on each of
them, then sum up the inequalities to get

2
(105) LTI v@pas < ve-br 52 5 | |H5J w(@)ldr,
Q 5

J1CI J2Cl2
The intervals J; have length M = N?/3,

Step 2. Fix Ji, Jo. We apply Proposition 10.4 on each B, followed by the analog of the smoothing
inequality (8.5)

/|H5JJ7 2)Pde < N- 5Z/|5J17 6dx/ 1. ()

BCQ
§N_10/ da:/ ‘5J17N(.T+y)gJ27N($+Z)|6dde.
Q (y,2)€[-N,N]5x[~N,N15

We freeze the variables x1, 5, Y2, Y3, Ya, s, 22, 23, 24, 25, whose range has volume ~ N'2. We hide
their contributions into the coefficient a,,, whose magnitude remains the same. Recall our earlier
notation n
EH, short(T1, T2, T3, T4) Z ane ¢1 351 +...+ ¢4(N)£U4)~
neH
Using N-periodicity in the variables 1, 21, the previous expression can be dominated by

) 9
N |E 1y short (Y1, T2, T3, £4)EH, short (21, T2, T3, T4) | dyr1 dz1 drodrzdr .
[0,N3]5

By Proposition 10.5, this is at most

‘ 1_1 2
N13+e 1203 9)||an||§9(J1)\|an||§’9(J2) = N17+3||anH§9(J1)||an||gg(J2)_
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Finally, we combine this with (10.5) to get the desired estimate

2
114 2
/Q|H51j,N(9C)\gd$ < NOGE=a)t Z Z Nl”“"||an||?9(.11)||an||29(.12)
j=1

J1CI1 J2Cl2
Se N2 Nlanllfo(ryyllanll?o(z,)-
]

We next use Theorem 10.1 to prove a bilinear counterpart of Theorem 3.9. Note that we are
renaming the variables 3, x4, x5, only for convenience.

Proposition 10.7. Let Q = [0, N3]* x [0, N]. Let K > 1. We consider arbitrary integers No, M
satisfying 1 < M < 22 and Ny + [M,2M] C [£, N].
Let Hy, Hy be intervals of length % inside No + [M,2M] such that dist(Hy, Hy) > % Then

n n n .
/H| Z ane $1+ N) wz+(N)4333+(N)5$4+(N)3$5)|9d9€ Se M N18||a||%98(N0+[M,2M})-
i=1 neH;

Proof. Write Hy = Ng + Iy, Hy = Ny + Iy with Iy, I5 intervals of length % inside [M,2M] and
with separation > % Let

Ga(t) = 5+ Lt gty =t 4 2oLy a(t) =

AN, 5N
and
y1 = (21 + Aswo + Asws + Agzy + Aszs)
y2 = (X)2(22 + Bsxs + Byzs + Bsas)
ys = (3F)3(4Fews + N]\zl T4+ x5)
ya = (5 (3 ws — ph-25)
Ys = (%)516\[71\/.3%5.

The linear transformation has Jacobian equal to ( %)15, and maps §2 to a subset of

Q= [~O(MN?),0(MN?)] x [~O(M?N), O(M*N)] x [~O(M?), O(M?)? x [-O(M), O(M)].
The reader may check that (with the right choice of As,..., Bs = O(1)) we have

n n n
| Z ane !E1+(N) 332+(N)4$3+(N)5$4+(N)3335)| =
neH;

\Zam+No y1+(M)y2+¢3( s + da( ot )l/4+¢5( )y5)|

m;€l;
We invoke periodicity in y; and yo together with Theorem 10.1 to conclude the proof.
O

Theorem 3.9 follows from Proposition 10.7 via an argument identical to the one at the end of
the previous section. Details are left to the reader.

11. MEAN VALUE ESTIMATES FOR SUMS ALONG THE PARABOLOID

This section is devoted to proving the following theorem.

Theorem 11.1. For d > 2 let o be a measure on T¢ such that the Fourier decay (1.5) holds with
5= %. Then the estimate

N2, d=2,
(11.1) / 1S (@, N)P do(z) < llallz2 1, xya1y N972 S log N, d=3,
B o 1 d>4

holds with the implicit constant independent of N.
Moreover, the above estimate is sharp, in the sense that the constant on the right-hand side
cannot be improved in terms of the dependence on N.
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The above result shows that Conjecture 1.6 holds in the case d = 2 and also, up to the log N
loss, in the case d = 3.

Proof. Without the loss of generality assume that ||al|;z = 1. Using (1.5) we get

/|£Aawwwdm= S ama@ao(m—n[mf - |n?)
. mmne{l,... ,N}¢-?1
d—1
S Y Jaman|(1+|m - n,|m]> - n?)|)~ %
mmne{l,... ,N}4-1
d—1
<1+ Y JamanlIm? - 0?7
mmne{l,...,N}4~1
m#n

Let
_71
C_{WPHI . m#n
m,n —

0, m=n
To simplify notation let us assume that from now on a, > 0 for all n. Let
S={(m,n)ec{l,..., N}t x{1,...,N}* ' jm| € (|n|/2,2n])}.

Then we have

Im|~ %" ||lm| — |n]| =", (m,n) €S, m#n
(11.2) Comn =~ { (max{|m|, |n|})~@Y (m,n) ¢ S
0, m=n

We begin with analyzing the contribution from (m,n) ¢ S. In view of (11.2) we have (the ranges

of summation in m and n are {1,..., N}4~! unless indicated otherwise)
Y GmOnCmn S Zam an (max{|ml, n|}) """ = D.
(m,n)¢S

We shall prove that
D <VD,
which immediately implies D < 1, and consequently
(11.3) > Gmncmn S 1.
(mn)¢s

By symmetry it suffices to show
> aman|m|~*"D VD,

|m|>n

Using the Cauchy—Schwarz inequality we obtain

Z Gm Gn |m‘_(d_1) = Zam |m‘_(d_1) Z an < Z |m|_2(d_1) ( Z an)

1/2
2

n: |n|<|m| m n: [n|<|m|
|m|>|n|
< (Z Uy g Z |m|—2(d—1))1/2
n,n’ m: [m|>|n|,|n’|
(d—1
= (3" anaw (max{jnl, [n'[}) =)/ = VD.
n,n’

It remains to treat the contribution from (m,n) € S. Applying Cauchy-Schwarz inequality we get

Y tmancmn<( Y agmemn)?( Y ancmn)'?

(m,n)eS (m,n)eS (m,n)eS
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2 2
< E m Cmon T g Uy Cmon-

(m,n)es (m,n)es
By symmetry it suffices to estimate the first sum above. Recalling that ||a|,2 = 1 we obtain
> ahemn=) 0k Y Cmn <SP Y Cmn
(m,n)eS m n:(m,n)eS m n:(m,n)eS

We need to prove that

N1/2 d=2
(11.4) sip Y ema SN2 o N, d=3.
n:(m,n)eS 1 d> 4

9 -

To this end fix m € {1,..., N}4~1. Using (11.2) we get

a1 _d1
Z Cmn = [m[” 2 Z ] — [ml|~ 2

n: (m,n)esS n:|m|/2<|n|<2|m|
n#m
_d—1
~|m|” = > Ik — m||~7 |{n:|n| € [k, k+ 1)}
k€[lm|/2,2|m|]NZ
k#|m|
1—1 _d—-1
~ |m|~ %= S k= |m|T T R
k€[lm|/2,2|m|]NZ
k#|m|
S D SN U
k€[|m|/2,2|m|]NZ
k#|m|
jm| m| =5+, d=2
~ [m|~*z" [ml|? QZR "~ lm[~ % |m|?"% { log |m], d=3
1, d>4
We have thus showed
jm|~ "+ d=2,
d—3
> cmn~m|7 {logml|, d=3,
n:(m,n)eS 1’ d > 4’

and (11.4) follows. Combining (11.3) and (11.4) gives the first part of the theorem.

We now prove sharpness in the most interesting case, d = 3. A similar argument works for the

other values of d. Using a, = 1, it suffices to verify the following lower bound

(11.5) Y. (+[m-njmf—n’))~" 2 Nlog N.
me{l,...,N}?
ne{l,...,N}?

Note that |m|? — [n|? = (jm| — |n|)(jm| + |n|) > |m| — |n|, thus
1+|(m —n, |m® —n]*)| =1+ [|m|* — [n|?|.
Consequently, we can estimate
Y. +fm-nmP-pA)Ttz Y (mf -0

mne{l,...,N}? m,ne{l,...,N}?
|m|>|n|+10

O(N)i1— 10

nlel,l+1 m: |m kk+1
;Z n:n| €| +)l}2H{k2| | €[k k+ 1)}

O(N)1-10
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O(N)
~ > (llogl —1) ~ N*log N.
=1

12. e-FREE L* ESTIMATE FOR d = 3
In this section we verify the following scale-independent estimate.

Theorem 12.1. Let o be a measure on T3 such that the estimate (1.5) holds with some 3 > 2/3.
Then the estimate

(12,1 [ 8uale )1 do(o) 5 ol
T3
holds with the implicit constant independent of N.

There does not seem to be an approach to this theorem using Proposition 2.2, not even when
B =1. Given 8 > 2/3, (12.1) would follow from the scale-independent estimate

N
(12.2) 1Y~ ane(m®t)l| o o,17) < llalle,

n=1

conjectured to hold for p < 6. Indeed, using this with p > % we find

/|Sa,3(:c,N)|4da(x)g Z 2(376»'/ |Sas(x, N)|[*dx
T3 [—2-79,2-7]3

0<j<log N
N
< Z 2= gup / o |an€(n3$3)|4d:c3
0<j<log N b: [bn|=lan| J[-277,2=7]
4 . 1 N
< Z 2GR sup (/ ‘ane(n3x3)|pdx3>4/p
0<j<log N b lbnl=lanl Jo 2
< llallze-

However, (12.2) is not known even for p = 4 and a,, = 1. The difficulty of this inequality is already
captured by the following result in [20]: there is a sequence s — oo such that the equation
n3 4+ m? = s has (log s)?/® integral solutions.

Our proof of (12.1) will be elementary, and will involve delicate counting arguments. We never
use the variable z1 in our proof. In fact, an inspection of the argument reveals that we prove the
stronger estimate

(12.3) / 1S05((0, 22, 23), N)|* do (2, 23) < lall&,
’]T2

for measure o on T2, subject to only the decay condition
|do(€)] S (L+1€)77, B> 2/3.

This rate of decay is sharp, in the sense that the estimate (12.3) fails for 8 < 2/3. To see that,

let o be a measure on T? such that & is real, positive and 5(¢) > W. Let a be the sequence

given by a, = 1y 9i/s] for some fixed 2//3 < N. Then |al|}, ~ 2%/% and

. 2,.2 .92 9 j
J4_{”1+”2_n3_”4|52j }‘

S,.5((0, 29, x3), N)|* do(z2, x ni,...,ng) € [1,23]%: )
S0, 23), ) dir(a, ) 2 g5 | { (o) € b TR S

>
T2 ~ 2]5

1
2 55 (27> Jall,

if B<2/3.
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Before we present the proof of Theorem 12.1 we need some technical preparation. For C' > 0
define

(12.4) Feo(a) :== va(C — a?), a € (0,C3).
The first lemma is just a simple estimate of the size of increments Fc.
Lemma 12.2. Let C > 1000 be a fized constant. Then
(a) Fc attains its mazimum on (0,CY3) at apmas = (0/4)1/3 and F,(x) > 0 for z € (0, amaz),
and F(x) < 0 for x € (amaz, C1/3).
(b) For each y € [0, maqy] one has
|Fo(amaz — Y) — Fo(amaz)| = v,
with the implicit constant independent of C.

Proof. Part (a) is straightforward. To show (b), we begin with fixing y € [0, amaz]. Since Fo(amaz—
Y) < Fo(tmaz), Foltmae) =~ C%% and apmas = (C/4)'/3, we have

Fé (anmw B y) — Fé (amax)

FC(amam)
~ (723 |(amaz —9)(C = (amaz — ¥)®) — tmaz(C — afnaw)’
= 072/3 |_yC + 4a§na$y - 60’72namy2 + 4amazy3 - y4|

|FC(af’ma;E - y) - FC(amam)‘ ~

= 0_2/3 ‘—Ga?nwyz + damany® — y4‘
so (b) is proved. O
Lemma 12.3. For M € N let f : [0, M] — R be such that f' > 0, f” <0 and f(0) = 0. Then
for any o > 0 the following estimate holds:

1 1
2 2 e S 2 L GOn e T

The above lemma asserts that the supremum of the sum on the left-hand side is essentially
comparable with its value at z = f(M).
Proof. Fix x € Ry. If > f(M) then for each j we have
1 < 1
(@ = fUN*+1 7 (f(M) = f()*+1

and consequently

Zx— -l-l_Z @*+1

J=1
Therefore from now on we assume that « € [0, f(M)]. If  is not in the range of f, i.e. x ¢
{f@0),..., f(M)}, let k € {0,1,..., M — 1} be such that « € (f(k), f(k+ 1)). Note that then for
any j > k + 2 we have
1FG) —2|* = (fG) —2)* > (f(J) = f(E+1)* = |f() = f(k+1)*
and for any j <k —1
1fG) == = (@ = f(5)" > (f(k) = FG)* = f() — fF(R)|*
Using the above relations for j € {1,...,k — 1} U{k +2,..., M} and estimating the terms cor-

responding to j € {k,k + 1} trivially by 1 we obtain, with the convention that the sum over an
empty set of indices is zero,

> T S IR SR

j= k+2

k+DP+1
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M
1
<2+2 max - .
ke{0,1,-., M}; |f(3) = f(R)|*+1

Consequently, it remains to prove that

M
(12:5) k€{01 ,,,,, M}Z |7 () E)e+1— Z ]))a+1'

To this end fix k € {0,1,...,M}. The key observatlon is that for a fixed I € N the distances
between pairs of values of f at arguments separated by [ decrease. Indeed, using the condition
f" < 0 we can estimate for M; < Ms

M+l Ma+1
f(M1+l)—f(M1):/ f/(x)d$2/ fl(@)de = f(My+1) — f(My).
My Mo

In view of the above we get
{If(j) — [ > | F(M) = (M = (k= )|, for 1<j <k
LfG) = fR)* > [f(M) = f(M = (§—k))|*, for k+1<j< M.

Using the above relations we get

2 1 = 1
Z T —T0F+1° 2 GON— o) +1 " & G0 — o +1
al 1
2L Gan =T
which completes the proof of (12.5) and consequently the entire lemma. g

Corollary 12.4. Let C' > 1000,D > 1 and let Fo : (0,CY3) — R be the function defined by
(12.4), with @mae = (C/4)Y/3. Then the following estimate holds for each > 1/2

[amaz ]

1 126
sup <D
29 2 (Rl P T DF

with the implicit constant independent of C' and D.

Proof. Note that the estimate we need to prove is equivalent to
lamaxz ] 1
sup <

S0 2 Ro@/D P11
Applying Lemma 12.3 with f = Fo/D and M = |ama.| We get
lamaz ]

1 1
seks 2:2 [Fo(@)/D —aP +1°~ 2 [Fc(a)/D = Fo([amaz])/DPP +1

D1/2

I.amazJ

I_arnamj

1
Z D=B|Fc([amaz] — 1) — Fo([amaz])]? + 1 =S

n=1

Due to monotonicity of Fo on (0, Gmaes) We can estimate

|FC(|_amaxJ - TL) - FC(LamaxJ)‘ 2 |FC(amam - n) - FC(amam)l - |FC(ama1:) - FC(amam - ]-)|

Now using Lemma 12.2 we get

|FC'(amaa: - ?’L) - FC(amam)| ~ n2

and
|Fc(am,m) — Fc(amm — 1)| ~ 1.
Therefore we can find and absolute constant ng € N such that for each n > ng we have

|FC(amar - TL) - FC(amaz)‘ Z 2|FC(amax) - FC(amaI - 1)|
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Then we have for n > ng

|[Fo(lamaz] —n) = Fo(lamaz])| = [ Fo(@maez — 1) = Fo(@mae)| = n’.

Thus we can estimate

lamaz] D/?
< B  ~ 1/2
S Zl+ Z Dﬁn2ﬂ+1~zl+D Z/ ,B_D
Dl 2
which concludes the proof of the corollary. O

Now we are ready to prove Theorem 12.1.

Proof of Theorem 12.1. Using (1.5) we get

N

/11‘3 |Sus(x, N)|*do(z) = Z Gy Gy Gy Oy

ni,ne,n3,na=1

~ 2 2 2 2 .3 3 3 3
X a(ny +ng —ng —ng,ny +n5 —nz —nyg,ng + Ny —ny —ny)

N
S Z |ny Qg Gy Oy |
ni,ne,n3,ng=1
1
(I(nf +n3 —n3 —ni,ni +n3 —nd —nd)|+1)7
N
= Z |Gy Gy Gy Oy € g s s
ni,n2,ng,na=1
Note that
N N
Z |Gy Qg Oy Oy | iy mg g na = Z |an1aigans Cnyingng,ng
ni,n2,n3,Nn4 ni,n2,n3=1
na2=mnqg
al 1
=llalz > lan, an,l
ni,nz=1 e (|(TL% - nl%?ni’ - n§)| + 1)6
N
<falz Y o an,| :
— mni ns 2 1/2
2 e ED
< llalfz-
By symmetry, we also have
N
Z ‘anlanza‘nsa’n4 Cni,na,nz,ng 5 HG’H?2
ni,n2,n3,Nq
ni=ns
Therefore it remains to show
N
Z ‘anlan2an3an4 Cni,nz,nz,na 5 HaHle
ni,ne2,n3,na=1
ng
naF#ng

Applying the Cauchy—Schwarz inequality and using the symmetry cn, ny.ns,m4 = Cns.na,ni,ne We
get
N
E |an1an2an3an4 Cny,na,ng,ny
ni,n2,ng,ng=1

ni1#ns
na#ng
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N N
< ( Z |a’ﬂ1 |2 |an3 ‘2 cnl,n27n37714)1/2( Z |an2 |2 |an4 ‘2 cn1,n27"37n4)1/2
ni,n2,ng,na=1 ni,n2,ng,na=1
naF#ng ni#ns
< ”aH??( sup Z Cnl1n27n3,77«4)1/2( sup Z Cnl,n27n3,’n4)1/2
nl’nSENTLzJMEN nz’n4€Nn17n36N
TL27$7L4 n175n3
= ”a’H?? sup Z Cni,na,nz,na-
n17n3€Nn2,7z46N
na#ng

Therefore it remains to prove that

sup E : cn17n27n3)n4 S L.

ni,n3EN na,ma€EN

noFEny

Calling C =n3 —n3, D =n3 —n?, a =ny —ny # 0 and b = ny + ny, we reduce the problem to
showing

1
3 S(C,D) := s <1
S SCD) = s D o Dp et £8P 0P 1

b>a>0

Fix C,D € N and let j € N be such that C' ~ 27. Let I} = {(a,b) € N?>: b > a > 0, |a(3b? + a?) —
C| ~ 2*}. We observe that, since |a(a? + 3b%) — C| = ab? if (a,b) € I}, with k > j + 1, we have

1
=~ D) lab — D\ﬁ+2kﬂ+1+ 2. ab?’

1<2k <27 (a,b)EI} >a>1

Note that the second sum is O(1), and that a < 27/3 for each a contributing to the first sum.
Notice also that for a fixed a there are at most O(\/% + 1) choices of b such that (a,b) € I.
Indeed, if by, by € N are such that (a,by), (a,bs) € It then we have

la(a® +3b1) — C — (a(a® + 363) — C)| = 3la(b] - b3)| < 2",

and it follows that
2k 2k

< ~ .
IR )~ Vayali )
Noticing that ab? ~ 27 for i = 1,2 we obtain

by — b

2k
by — bs| <
|b1 2|N\/ﬁ,

which implies the desired upper bound for the number of possible choices of b.
This motivates a further decomposition

Z Z D|B+2k6+1 Z Z lab — D|ﬂ+2k6+1

1<2k <27 (a,b)EI} 1<2+ <27 (a,b)el}

+ Z Z lab — D|ﬁ+2kﬂ+1

1<2k <29 (a,b)el?
=: 51+ 5y,

where
I} ={(a,b) € I} : Va2i <2*},  I? ={(a,b) € I : Va2i > 2F}.

Using the fact that for a fixed a there are at most O(\/% + 1) choices of b such that (a,b) € I
we can estimate Sp as follows

1 1 1
Z Z 2Tg§ Z 2Tﬁ|111|§ Z Z FN 2k62g/3~1’

1<2k<27 (a,b)ET} 1<2k <24 1§2k521 1<a<21/3 1<2k <24
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for 5> 2/3.

We pass to the analysis of Sy. Notice that given (a,b) € I? there cannot exist by # b such that
(a,by) € I,f; in other words, each a is associated with at most one b.

For a fixed (a,b) € I? denote Cj, := a(3b* + a?). Clearly Cj depends on a and b. Next, let
Cy, := C +100 x 2%, Then C}, ~ O} ~ C and |Cy — C}| < 2%. We have

ab = f (- )a:%FC;(a),

where for K > 0 the function F is given by (12.4). Furthermore, since a < b, we can estimate

(3b2 2) /C
(126) a< ¥ a +a =k = amax

Since C), depends on (a,b) we would like to replace it with Cj. We have

1 1 2kq
ab — —=+/(Cx — a3)a] = —=|1/(C}, —a3)a — /(C, — a?)a| S = o(2"),
b =G = a%al = 2 1\/(CL — a¥)a - VG~ £ = = o2
due to a < 29/3. Tt follows that

lab — D| > |\/(Cy, — a3)a — D| — o(2%).

lab — D|P + 288 > |\/(Cy — a3)a — D|P + 2% = |Fy, (a) — D|P 4 2FP,

Thus

Consequently

1
Z Z \ab—D|B+2kﬁ+1N Z Z |Fe, (a) — D|B 4 2k8°

1<2k <27 (a,b)el2 1<2+k <27 1<a<amaz (k)
Finally, using Corollary 12.4 with C' = Cy, for each k such that 1 < 2¥ < 27, we get
SQ S, ]-v

so the theorem is now proved. ]

13. THE CIRCLE
For N € N, let S (N) be the upper semicircle of radius VN and denote
Sy = SL(N) Nz

It is known that for any € > 0 we have |Sy| <S¢ N€. Therefore one can estimate using the Cauchy—
Schwarz inequality, for any p > 1 and any finite do

/T2 Zane(n-m)p Zane(n-m)

do(a) S
neSy nesSy
It is interesting to ask for what values of p one can remove the N€ factor. We shall prove that this

is the case for p = 4, provided that a weaker form of the following Cilleruelo-Granville conjecture
from [9] holds.

p
S Nelallz.

o0

Conjecture 13.1. For any v € (0,1), every arc in S}.(N) of length N? contains at most C(v)
lattice points.

The conjecture was proved to be true in [8] for all v < % Our conditional result reads as follows.

Theorem 13.2. Assume that Conjecture 13.1 is true for some v > % Let o be a measure on T?
such that (1.5) holds with some 8 > 0 Then the estimate

4
(13.1) /TQ > ane(n-x)

do(z) < [lallzz(sy)
neSy
holds with the implicit constant independent of N.
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Proof. Let us write R = V' N. We have
4

LIS anctna)| do@) s 30 2 Y fanansamon| + alls
T2 neSy 0<j<logs R ni,n2,ng,n €SN
|n1+n27n37n4\’:2]
(13.2) S Y 270 allg,
0<j<log, R
where ‘
I = max H{(ns,ny) € Sy x Sy @ n; +n2 —ng —ng| ~ 27},

(n1,n2)ESN X SN
We distinguish two regimes. If 27 > R?7~1 | the trivial bound I; <. N¢ suffices. Assume now that
27 < R*~1. We cover S! (N) with arcs 7 of length ~ (27 R)'/2. The Cordoba-Fefferman geometric
argument (see for example Section 3.2 in [10]) shows that we can split the arcs 7 into O(1) many
collections, such that
dist (1 + 72,73 + 74) > 27

for each 71,...,74 in each collection, subject only to the requirement that {7, 7} # {73, 7a}. To
see that this is indeed the case, note that after rescaling this is equivalent to the fact that the sums
of two arcs of length § = (27/R)'/2 on S! (1) are separated by > §2. Since each 7; contains at
most C(v) lattice points, it follows that I; = O(1). The contribution of these j to (13.2) is thus
acceptable.

O
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