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Abstract—We construct random walks on simple Lie
groups that quickly converge to the Haar measure for
all moments up to order t. Specifically, a step of the walk
on the unitary or orthogonal group of dimension 2n is a
random Pauli rotation eiθP/2. The spectral gap of this
random walk is shown to be Ω(1/t), which coincides with
the best previously known bound for a random walk on
the permutation group on {0, 1}n. This implies that the
walk gives an ε-approximate unitary t-design in depth
O(nt2 + t log 1

ε
)d where d = O(log n) is the circuit depth

to implement eiθP/2. Our simple proof uses quadratic
Casimir operators of Lie algebras.

Index Terms—pseudorandomness, quantum comput-
ing, unitary designs, spectral methods, derandomization

I. Introduction

An approximate unitary t-design [1], [2] is an ensemble
of unitaries that behaves similarly to the Haar random
ensemble up to t-th moments. For n-qubit (C2) systems,
there have been constructions of approximate unitary t-
designs with circuit size poly(n, t) [3], [4], which have found
wide applications in quantum information theory. However,
existing constructions using local random quantum circuits
had rather steep dependence on t. In this paper, we consider
random Pauli rotations, which are exp(iθP/2) where θ is
a random angle and P is a random n-qubit Pauli operator.
We show that the product of k independent random Pauli
rotations eiθkPk/2 · · · eiθ2P2/2eiθ1P1/2 converges to a unitary
t-design as k increases.

Theorem I.1. For any integers n, t ≥ 1, it holds that∥∥∥∥ E
θ∼(−π,π)

E
P∼Pn

(
ei θ

2P ⊗ e−i θ
2 P̄
)⊗t

− E
U∼SU(2n)

(U ⊗ Ū)⊗t
∥∥∥∥

≤ 1 − 1
4t − 1

4n − 1 . (1)

Here, Pn = {12, σ
x, σy, σz}⊗n \ {12n} is the set of all

nonidentity n-qubit Pauli operators, the norm denotes the
greatest singular value, Ū denotes the complex conjugate
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of U , and the distributions for P , θ, and U are uniform in
the designated domains.

In addition, for any finite dimensional unitary represen-
tation ρ of SU(2n), we have∥∥∥∥ E
θ∼(−2π,2π)

E
P∼Pn

ρ(ei θ
2P ) − E

U∼SU(2n)
ρ(U)

∥∥∥∥ < 1 − 1
4n − 1 .

(2)
Corollary I.2. Consider two mixed unitary channels

Ct : η 7→ E
P∼Pn, θ∼(−π,π)

(
ei θ

2P
)⊗t

η
(
e−i θ

2P
)⊗t

and
Ht : η 7→ E

U∼SU(2n)
U⊗tηU †⊗t

using the same distributions of P, θ and U as in Eq. (1).
1) If k ≥ (4 log 2)nt2 + 4t log 1

ε , then∥∥Ckt − Ht

∥∥
⋄ ≤ ε.

2) If k ≥ (4 log 8)nt2 + 4t log 1
ε , then

(1 − ε)Ht ⪯ Ckt ⪯ (1 + ε)Ht.

Here, ∥·∥⋄ denotes the diamond norm (completely bounded
trace norm). Every instance eiθkPk/2 · · · eiθ1P1/2 can be
implemented using O(kn) 1-qubit and any-to-any CNOT
gates in depth O(k log n).

We also give similar results for the special orthogonal
groups in Section VI.
A. Previous spectral gap bounds

Unless otherwise noted, N stands for 2n.
For a distribution ν over SU(N), the spectral gap ∆(ν, t)

at t-th order1 is given by

1 − ∆(ν, t) =
∥∥∥∥ E
U∼ν

(U ⊗ Ū)⊗t − E
U∼SU(N)

(U ⊗ Ū)⊗t
∥∥∥∥.

1In [5], the spectral gap means

1 − sup
ρ

∥∥∥∥ E
U∼ν

ρ(U) − E
U∼SU(N)

ρ(U)

∥∥∥∥ = 1 − sup
ρ

∥∥∥ E
U∼ν

ρ(U)
∥∥∥

where the supremum is over all nontrivial finite dimensional unitary
irreps of SU(N). This is an immediate consequence of Proposition II.4
and the Peter–Weyl theorem. See also [6, Thm 3.9]. Not all irreps
of SU(N) appear in U 7→

⊕
t≥1(U ⊗ Ū)⊗t.
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Consider the distribution of the product of k independent
draws from ν, which corresponds to the k-fold convo-
lution ν∗k. Then, since Ht = EU∼SU(N)(U ⊗ Ū)⊗t is a
projector and EU∼ν(U ⊗ Ū)⊗t contains the image of Ht in
the eigenspace of eigenvalue +1 (see Proposition II.4), the
spectral gap amplifies as 1−∆(ν∗k, t) = (1−∆(ν, t))k. This
allows us to exponentially improve the accuracy at the cost
of linear blow-up in circuit size. More generally, proving
lower bounds on the spectral gap of the t-th moment
operator is a standard approach to show that a random
walk on a group quickly converges to a t-wise independent
distribution (often referred to as “designs”).

Hence, a primary goal in efficient approximate unitary
designs is to find ν with poly(n) circuit size with a large
spectral gap, for example, 1/ poly(n, t). A simple brickwall
“spacetime” geometry of random unitary circuit has been
shown to achieve this goal [3], whose analysis was recently
improved [4]. Once the operator norm distance is bounded,
one can convert it to additive or relative diamond distance.

As far as we know, the best previous spectral gap for any
efficient approximate unitary design on an n-qubit system
was Ω(t−4−o(1)) [4]. This work takes the ensemble of [3],
where the circuit geometry is brickwall that uses local gates
in a one-dimensional lattice. Our ensemble does not have
any geometric locality. Note that Theorem I.1 gives a lower
bound 4−n on the spectral gap independent of t. Such a t-
independent bound was also given in [4, Theorem 1], which
reads Ω(n−54−n).

Similarly to unitary designs, the best previous spectral
gap lower bound for the special orthogonal group SO(N)
had a large inverse-polynomial dependence on t [6], while
the best previous spectral gap for the symmetric group SN
was Ω(t−1) [7].2 Our spectral gap bounds for the special
unitary and orthogonal groups are thus the strongest in
terms of t dependence, and they coincides with the best
known spectral gap for the symmetric group.

Some results on unitary designs bypass spectral gap
analysis. Aiming to minimize non-Clifford resources, [8]
analyzed alternating “Clifford+K” circuits and the dia-
mond distance of the associated mixed unitary channel
to the Haar random channel directly. Compared with the
brickwall circuits, our construction is conceptually closer
to [8]. However, their result is only applicable in the regime
when t = O

(√
n
)
.

While the previous best approximate unitary designs on
n qubits have circuit depth O(nt5+o(1)) for exponentially-
large moments t = O(20.4n) [4], there exist constructions
with linear dependence in t but with major restrictions.
A family of stochastic Hamiltonians constructed in [9]
were proved to be linear designs in the regime when t =
O
(√

n
)
. It was showed in [10] that the spectral gap of

local random circuits becomes t-independent Ω(n−1) when
the local dimension of a qudit is at least 6t2. [11] argued

2Here we ignore polynomial dependence in n as it can be eliminated
by taking powers.

that certain random time-dependent Hamiltonian evolution
converges to t-designs at a linear rate.

B. Implications

1) Circuit complexity: By known reductions [12], our
result directly implies a lower bound for robust quantum
circuit complexity of a product of k random Pauli rotations.
Specifically, let U be a product of k ≪ 2n random Pauli
rotations, which can be implemented by O(kn) gates. Then
with high probability over the choice of U , any unitary
V satisfying ∥U − V ∥ ≤ 0.01 must have quantum circuit
complexity (the minimum number of gates to implement V )
Ω̃(

√
kn). Note that a robust square root circuit complexity

lower bound was also established in [13]; however, the family
of quantum circuits considered there used a non-universal
gate set, and therefore does not form an approximate
unitary design. A major open question is whether it is
possible to construct distributions on SU(2n) using poly(n)
size quantum circuits, such that the spectral gap is at least
1/ poly(n) and independent of t. Such a result would imply
a robust linear growth of quantum circuit complexity.

2) Seed length: Our unitary design requires sampling
from a continuous interval (−π, π); however, for given
t, we can instead sample uniformly from a discrete set
{mπ/t : m ∈ Z ∩ [−t, t− 1]} (see Appendix A). Therefore,
our distribution for ε-approximate unitary t-design is
samplable using only O(t(nt+ log 1/ε)(n + log t)) random
bits. Furthermore, instead of sampling each random Pauli
rotation independently and uniformly at random, we can
sample them in a pseudorandom way using a technique
of [6] which is a generalization of the derandomized graph
squaring [14]. We can thus reduce the seed length to
only O(nt+ log 1/ε) by applying [6, Theorem 6.21]. While
this has the same scaling as the main result of [6], our
construction has the advantage of having explicit constants,
as we do not rely on the implicit spectral gap of [5].

3) Orthogonal designs and more: Our approach to
unitary designs can be adapted to the special orthogonal
groups SO(N) with parallel arguments. The results are
found in Section VI. The seed length can be similarly
reduced to O(nt + log 1/ε) with explicit constants. This
has been used to construct pseudorandom generators for
halfspaces [6]. Finally, we discuss quantum state designs
in Appendix B, where we obtain better bounds than what
would be obtained by directly applying our unitary design.

The analysis of the orthogonal groups is so similar to
that of the unitary groups that one might desire to have
unified statements for all simple finite dimensional Lie
groups. However, as the representation theory of Lie groups
is tackled in a case-by-case fashion in detail, we find it
best to analyze them separately. Beyond the unitary and
orthogonal groups, there is a family of symplectic groups,
which might have applications in classical Hamiltonian
dynamics and quantum optics as one often encounters
symplectic spaces in these subjects.
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C. Overview of the argument
We start by rewriting the tensor product in a different

form,
(
ei θ

2P ⊗ e−i θ
2 P̄
)⊗t

= eiθτ∗(P/2), where

τ∗(P/2) =
1
2

t∑
j=1

(1N⊗1N)⊗(j−1)⊗(P⊗1N−1N⊗P̄ )⊗(1N⊗1N)⊗(t−j).

(3)

Note that for every P ∈ Pn, the eigenvalues of τ∗(P/2)
are exactly the integers in [−t, t]. Thus, the averaging over
θ gives Eθ∼(−π,π) e

iθτ∗(P/2) = KP , where KP denotes the
orthogonal projector onto the kernel of τ∗(P/2). Our goal
is now reduced to analyzing the spectrum of EP∼Pn KP .
We calculate the norm of this exactly for the special case
of n = 1 in Section IV. In general cases, we first block-
diagonalize KP using the observation that P 7→ τ∗(P ) is a
Lie algebra representation. In each irrep, we upper bound
the kernel projector by a quadratic approximation:

K(H) ⪯ 1 −H2/∥H∥2 (4)

where K(H) is the kernel projector for a Hermitian
operator H , which holds for any nonzero H . This inequality
is useful because the kernel projector sum is then bounded
by a sum of squares of represented operators. A nice
property of Pauli operators is that this sum of squares
of represented operators is a scalar multiple of the identity
for any irrep. We then bound the scalar by t,N.

We use the representation theory of Lie algebras, but our
exposition is elementary for the core bound in Theorem I.1;
we assume no prior knowledge beyond the representation
theory of su(2) for the main bound.

Note added. We recently became aware of independent
related work of C. Chen, J. Docter, M. Xu, A. Bouland,
and P. Hayden achieving similar results via a different
construction [15].

II. Lie algebras and probability distributions
We begin with an observation that any unitary design

can be regarded as a distribution on the linear space of a Lie
algebra. This will allow us to analyze spectral properties of
a unitary design by looking at certain hermitian operators
in irreducible representations of su(N = 2n). We will find
the latter more convenient since our unitary design will
have the most succinct description as a distribution on the
Lie algebra, rather than on the Lie group.

Often a Lie algebra is described by very concrete
data, called structure constants, fabc, that enter in the
commutation relations as [Jb, Jc] = i

∑
a f

a
bcJa where Ja

are said to span the Lie algebra. While this is mostly correct
and causes no trouble in practice, the appearance of the
imaginary unit i might bring some confusion. So, we would
like to clarify the complex and real coefficients. The tangent
space at the origin of a Lie group, taken as a real manifold,
is a real Lie algebra su(N;R). This is a linear space over

real numbers of traceless antihermitian matrices where a
Lie bracket is defined by matrix commutator; after all, the
commutator of two hermitian operators is antihermitian,
which is not in the R-linear space of hermitian operators.
However, since a representation space is taken to be a
complex vector space, there is no reason not to allow
complex coefficients in the span of antihermitian operators.
This extension of the coefficient field is formally called the
complexification of the Lie algebra: C ⊗R su(N;R). This
complexified space consists of all C-linear combinations
of traceless antihermitian operators, which is the C-linear
space of all traceless matrices. Hence, the complexification
is perhaps better denoted as sl(N;C) = C ⊗R su(N;R), the
Lie algebra of special linear group. In this paper, we take
a liberal convention that

• when su(N) appears in the context of representation,
we mean its complexificiation sl(N;C), and

• when we discuss a probability distribution on su(N),
we mean a distribution on the real vector space of
hermitian, rather than antihermitian, operators, with
insertion of the imaginary unit i, whenever needed,
understood.

Suppose we have an M -dimensional representation ρ :
SU(N) → U(M) of SU(N) for some M ≥ 1, which may
be reducible. The representation map ρ is a Lie group
homomorphism, and we have a corresponding commutative
diagram [16, §8.3] by the exponential map:

su(N) ρ∗ //

exp
��

u(M)

exp
��

SU(N) ρ
// U(M)

(5)

where ρ∗ is the induced, natural, Lie algebra homomor-
phism (a representation). In the context of unitary designs,
we are interested in the tensor representation τ : SU(N) ∋
U 7→ (U ⊗ Ū)⊗t so M = N2t, whose induced Lie algebra
representation τ∗ is given by Eq. (3) for all traceless N × N
matrix P .

We define

Pn = {12, σ
x, σy, σz}⊗n \ {12n},

the set of all nonidentity tensor products of Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

There are N2 − 1 = 4n − 1 elements, each of which is called
a Pauli operator. The factor of half in Eq. (3) is immaterial
in that equation since τ∗ is C-linear, but we will keep it
because

Lemma II.1. For any Pauli operator P ∈ Pn, all the
eigenvalues of τ∗(P/2) are integers in [−t, t], and any integer
in that range appears as an eigenvalue of τ∗(P/2).

Proof. All the summands of Eq. (3) are commuting with
each other, so they are simultaneously diagonalizable, which
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amounts to setting P = σz⊗12n−1 , that is a diagonal matrix
with ±1 on the diagonal. The lemma follows. Alternatively,
we can think of τ∗ as τ∗ = (1 ⊕ ad)⊗t =

⊕t
k=0

(
t
k

)
ad⊗k

where 1 denotes the trivial representation and ad is the
adjoint representation. This is because the tensor product
of the defining representation of su(N) and its dual is a
direct sum of the trivial and the adjoint, each of which
is irreducible.3 The represented operator ad(P/2) has
eigenvalues ±1, and therefore ad⊗t has integer eigenvalues
in [−t, t].

We note that all Pauli operators P are equivalent to one
another in any representation:

Lemma II.2. For any representation ρ∗ of su(N) that is
possibly reducible, and any nonidentity hermitian Pauli
operator P , the eigenvalue spectrum of the represented
operator ρ∗(P ) is independent of P . In particular, the
eigenvalue spectrum of ρ∗(P ) is inversion symmetric about
the origin; that is, ρ∗(P ) and −ρ∗(P ) have the same
spectrum.

Proof. Any two nonidentity Pauli operator P,Q on n
qubits are congruent: P = UQU † for some U ∈ SU(N).
Exponentiating with θ ∈ R we have eiθP = UeiθQU†,
and thus ρ(eiθP ) = ρ(U)ρ(eiθQ)ρ(U)†. By Eq. (5) this
translates to eiθρ∗(P ) = ρ(U)eiθρ∗(Q)ρ(U)†. Differentiating
with respect to θ, we finally have ρ∗(P ) = ρ(U)ρ∗(Q)ρ(U)†.
The last claim is because P and −P are congruent by some
anticommuting Pauli operator.

Now, we can consider probability distributions on su(N)
and their induced distributions on SU(N). For example, to
assess a unitary design we have to analyze the distribution
on U(N2t) for various values of t induced by the tensor
representation τ . For a probability distribution µ on the
top left of the diagram Eq. (5), we have corresponding
distributions on all three other entries. For any distri-
bution µ on su(N), we denote an average with respect
to µ by

∫
su(N) · · ·µ(X)dX where X denotes any hermitian

operator.4 In other words, X 7→ µ(X) is the probability
density “function.” For any distribution µ on su(N) and
any integer t ≥ 1 we consider a linear operator on (CN)⊗2t

Cµ,t =
∫
su(N)

exp(iX)⊗t ⊗ exp(−iX̄)⊗tµ(X)dX. (6)

An obvious lemma will be useful:

Lemma II.3. If ϕ : SU(N) → Aut(V ) for V ⊆ (CN)⊗2t is
a subrepresentation of τ : U 7→ (U ⊗ Ū)⊗t, then

Cµ,t|V =
∫
su(N)

exp(iϕ∗(X))µ(X)dX.

3On the trivial representation the representation map is zero, and
on the adjoint we have ad(P/2) = 1

2 (P ⊗ 1 − 1 ⊗ P̄ )|su(N) where the
restriction is on the linear space of all (vectorized) traceless N-by-N
matrices. Almost always, the adjoint representation map is explained
by ad(P/2)(X) = 1

2 [P, X] for all X ∈ su(N).
4Another prevalent notation is

∫
· · · dµ(X).

Proof. ϕ is a Lie group representation, so the claim follows
from the commutative diagram Eq. (5). The assumption
that ϕ is a subrepresentation of ρ is irrelevant.

The Haar probability distribution on SU(N), which we
denote as dU , does give a distribution on su(N) using the
fact that the exponential map is one-to-one on the open
ball of radius π at the origin in the Schatten ∞-norm and
is almost onto from that restricted domain, but this is
not very enlightening. However, relevant averages can be
succinctly described in terms of subrepresentations.

Proposition II.4. For any finite dimensional unitary
representation ρ of a compact Lie group G, the inte-
gral

∫
G
ρ(U)dU with respect to the Haar measure is the

orthogonal projector onto the trivial subrepresentation
subspace of ρ. In particular, for any integer t ≥ 1 the
Haar average

Ht =
∫

SU(N)
(U ⊗ Ū)⊗tdU

is the orthogonal projector onto the trivial subrepresentation
subspace of τ : U 7→ (U ⊗ Ū)⊗t within (CN)⊗2t.

Note that in Theorem I.1 we denoted the Haar random
mixed unitary channel by Ht, but here we overload the
notation to mean its vectorized map. The representation ρ
does not have to be finite dimensional, but we do not discuss
any infinite dimensional representations in this paper.

Proof. Let H =
∫
G
ρ(U)dU . Since the Haar measure is left

invariant, the represented unitary ρ(V ) for any V ∈ G acts
by the identity on the image of H. It follows that H2 = H.
Since ρ is a unitary representation, H† =

∫
G
ρ(U−1)dU .

Since U 7→ U−1 is a measure-preserving homeomorphism
of G onto itself, H† = H. Let V be the representation
space. The trivial representation subspace is T = {v ∈
V : ρ(U)v = v, ∀U ∈ G}. If v = Hw for some w ∈ V,
then ρ(U)v = ρ(U)Hw = Hw = v, and hence v ∈ T . So,
the image of H is contained in the trivial representation.
If v ∈ T , then Hv = v, showing that v is in the image
of H.

III. Random Pauli rotations
Now we consider more concrete distributions on su(N)

where N = 2n for an integer n ≥ 1.

Definition III.1. For any P ∈ Pn we define a distribution,
called a random Pauli rotation by P , as the uniform proba-
bility measure on {iθP/2 ∈ su(N;R) | θ ∈ (−π, π) ⊂ R}. A
random Pauli rotation with respect to a discrete probability
distribution {(P,Pr[P ])|P ∈ Pn} on Pn is the probabilistic
mixture

∑
P Pr[P ]µP of random Pauli rotations µP by P .

We will only use the uniform distribution over Pn, but
it may be helpful to proceed with a general distribution
on Pn.

Lemma III.2. For a random Pauli rotation µ =∑
P Pr[P ]µP , the average operator Cµ,t in Eq. (6) restricted

466

Authorized licensed use limited to: MIT. Downloaded on June 10,2025 at 19:04:38 UTC from IEEE Xplore.  Restrictions apply. 



to a subrepresentation ϕ∗ : su(N) → Aut(V ) of su(N) within
the tensor representation τ : U 7→ (U ⊗ Ū)⊗t, simplifies as

Cµ,t|V =
∫
su(N)

exp(iϕ∗(X))µ(X)dX

=
∑
P

Pr[P ]K(ϕ∗(P/2))

where K(H) for any hermitian operator H is the orthogonal
projector onto kerH, the eigenspace of eigenvalue zero.

Proof. The first equality is noted in Lemma II.3. For
the second equality, it suffices to evaluate CµP ,t|V for
a random Pauli rotation µP by P . We have observed
in Lemma II.1 that all the eigenvalues of τ∗(P/2) are
integers. A subrepresentation of τ∗ is nothing but a block-
diagonal piece of τ∗ after a unitary basis change on (CN)⊗2t,
so the eigenvalues of ϕ∗(P/2) can only be a subset of
those of τ∗(P/2). Hence, the average of eiθϕ∗(P/2) over θ
eliminates all eigenspaces of nonzero eigenvalues.

Remark III.3. A Pauli operator P , a tensor product
of hermitian Pauli matrices, is a traceless unitary of
eigenvalues ±1. Observe that iP is a member of SU(N)
and also of su(N;R) where N is a power of 2. For example,
iσz ∈ SU(2) ∩ su(2;R) and iσz ⊗σz ∈ SU(4) ∩ su(4;R). If ρ
is a Lie group representation map, and ρ∗ is the derived Lie
algebra representation map, then we may consider ρ(iP )
and ρ∗(iP ) both of which are some matrices of the same di-
mension. Generally, ρ(iP ) ̸= ρ∗(iP ). However, since P 2 = 1,
we instead have exp(iπP/2) = cos(π/2)1+i sin(π/2)P = iP
and therefore by Eq. (5) we have

exp(iπρ∗(P )/2) = exp(ρ∗(iπP/2))
= ρ(exp(iπP/2)) = ρ(iP ).

Proposition III.4. For any random Pauli rotation with
respect to {(P,Pr[P ])} at order t, we have

∥Cµ,t − Ht∥ = max
ϕ

∥∥∥∥∥∑
P

Pr[P ]K(ϕ∗(P/2))
∥∥∥∥∥

where ϕ ranges over all irreducible nontrivial subrepresen-
tations of the tensor representation τ : U 7→ (U ⊗ Ū)⊗t.

Proof. Immediate from Lemma III.2 and Proposition II.4.

It is known [17, Lemma 3.7] that the spectral gap, 1 −
∥Cµ,t − Ht∥, is positive if {(P,Pr[P ])} induces a “densely
generating” distribution on SU(N).

The motivation for us to consider the quantum circuit
of random Pauli rotations is its simple implementation:

Proposition III.5. Suppose that for an n-qubit system,
CNOT can be applied only across a set of unordered
pairs of qubits. This defines an undirected simple graph
(“connectivity graph”) over qubits, which we assume is
connected. For any P ∈ Pn and θ ∈ R, a unitary ei θ

2P

can be implemented using (1) one 1-qubit Pauli X rotation

ei θ
2σ

x , (2) at most 2n 1-qubit Hadamard and Phase gates,
and (3) at most 2n − 2 CNOT and SWAP gates.

Proof. It suffices to find a sequence of gates that maps
ei θ

2P to ei θ
2σ

x ⊗ 1⊗(n−1)
2 by conjugation. We first apply

Hadamard and Phase gates by conjugation to obtain ei θ
2Q

where Q = Q1⊗· · ·⊗Qn is a tensor product of σx’s and 12’s.
In the connectivity graph, we assign each node a binary
value corresponding to the support of Q, i.e., vi = 1 if and
only if Qi = σx. Every connected graph has a spanning tree.
For each edge (vparent, vchild) in the spanning tree such that
all the children of vchild are zeros, if vparent = vchild = 1,
apply a CNOT gate by conjugation on the corresponding
two qubits. If vparent = 0 and vchild = 1, apply a SWAP
gate by conjugation on the corresponding two qubits. Both
operations will result in vparent = 1, vchild = 0, i.e., all
the children of vparent are zeros. This procedure terminates
when the only nonzero node is the root, which corresponds
to ei θ

2σ
x ⊗1⊗(n−1)

2 . The total number of CNOT and SWAP
gates applied is at most twice the number of edges in the
spanning tree, which is 2(n − 1).

Corollary III.6. With all-to-all connectivity, for any P ∈
Pn and θ ∈ R, the unitary ei θ

2P can be implemented using
O(n) 1-qubit and CNOT gates in circuit depth O(log n).
See Fig. 1 for an example.

IV. The special case of su(2)
There are only three Pauli operators σx, σy, σz (up

to real scalars) in su(2) so a random Pauli rotation
is specified by Pr[σx],Pr[σy],Pr[σz]. The goal is clear
in Proposition III.4. With an su(2)-irrep ϕ∗ in mind, we
just write Jx,y,z to mean ϕ∗(σx,y,z/2). Note the factor of 2
in the denominator, which gives [Ja, Jb] = iJc where (a, b, c)
is a cyclic permutation of (x, y, z). We have to calculate
the spectral norm of

Pr[σx]K(Jx) + Pr[σy]K(Jy) + Pr[σz]K(Jz)

for all irreps that appear in the tensor representation τ :
SU(2) ∋ U 7→ (U ⊗ Ū)⊗t. Since the dual of the defining
irrep of su(2) is equivalent to itself, the representation τ
is simply the 2t-fold tensor product of the defining irrep
of su(2). It is a standard fact that every irrep that appears
in τ is odd dimensional because 2t is an even number, and
every irrep of dimension 2ℓ+ 1 appears in τ where ℓ ≤ t.

Lemma IV.1. Each of K(Jx),K(Jy),K(Jz) has rank 1
on any nontrivial su(2)-irrep of odd dimension 2ℓ+ 1 for
an integer ℓ ≥ 1. There exist normalized vectors |x⟩ ∈
ker Jx, |y⟩ ∈ ker Jy, |z⟩ ∈ ker Jz such that

⟨x|y⟩ = ⟨y|z⟩ = ⟨z|x⟩ =
{

(−1)ℓ/2

2ℓ

(
ℓ
ℓ/2
)

if ℓ is even,
0 otherwise.

In view of so(3) ∼= su(2), an odd dimensional irrep is
often called an “integer spin” representation, and an even
dimensional irrep a “half-integer spin” representation. For
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ei θ
2P =

H H

H ei θ
2σ

x
H

H H

Fig. 1. Implementation of ei θ
2 P (P ∈ Pn) by an O(log n) depth circuit. The example corresponds to the Pauli string XZXZXXXZ. Gates between

two dashed lines are implemented in parallel.

even dimensional irreps, it is well known that K(Jx) =
K(Jy) = K(Jz) = 0.

Proof. Let ϕ∗ be an su(2)-irreducible representation map
acting on V ∼= C2ℓ+1. It is a standard fact that Jz has
eigenvalues ℓ, ℓ−1, . . . ,−ℓ+1,−ℓ, each with multiplicity 1.
Hence, the kernel is one-dimensional.

(First method by symmetric powers) Note that U =
exp(−i π

3
√

3 (σx + σy + σz)) ∈ SU(2) acts by conjugation
as σx 7→ σy 7→ σz 7→ σx. For a normalized vector |z⟩ ∈
ker Jz ⊂ V , the vector |x⟩ = ϕ(U) |z⟩ spans ker Jx and
|y⟩ = ϕ(U2) |z⟩ spans ker Jy. So, the three inner products
in the claim are the same. It remains to calculate ⟨z|x⟩ =
⟨z|ϕ(U) |z⟩.

A concrete expression for ϕ is obtained by considering
the 2ℓ-fold symmetric power of the defining representation
of su(2) [16, (11.8)]. Let |0⟩ and |1⟩ be a basis of C2 such
that σz |0⟩ = + |0⟩ and σz |1⟩ = − |1⟩. Then,

U = e−iπ/4
√

2

(
1 −i
1 i

)
.

Written in terms of vectors in (C2)⊗2ℓ, a set of basis vectors
of V can be chosen to be(

2ℓ
k

)−1/2 ∑
w∈{0,1}2ℓ:|w|=k

|w⟩

for k = 0, 1, 2, . . . , 2ℓ, where |w| is the number of 1’s in the
bitstring w of length 2ℓ. These are eigenvectors of Jz with
eigenvalues ℓ− k. So,

|z⟩ =
(

2ℓ
ℓ

)−1/2 ∑
w:|w|=ℓ

|w⟩ .

Applying ϕ(U) = U⊗2ℓ
∣∣
V

, we will obtain |x⟩. With |+⟩ =
2−1/2(|0⟩+ |1⟩) and |−⟩ = 2−1/2(|0⟩−|1⟩), we have U |0⟩ =
e−iπ/4 |+⟩ and U |1⟩ = −eiπ/4 |−⟩. Hence,

⟨z|x⟩ = ⟨z|U⊗2ℓ |z⟩

=
∑

w∈{0,1}2ℓ:|w|=ℓ

⟨w| (−1)ℓ |+⟩⊗ℓ|−⟩⊗ℓ

where the second equality is because both |z⟩ and ⟨z|
are invariant under permutations of tensor factors. For a
bitstring w of length 2ℓ with |w| = ℓ, let m be the number
of 1’s in the last ℓ bits. Then, ⟨w| +ℓ −ℓ⟩ = 2−ℓ(−1)m.
There are

(
ℓ

ℓ−m
)(

ℓ
m

)
such bitstrings, and m ranges from 0

to ℓ. So,

⟨z|x⟩ = (−1)ℓ
2ℓ

ℓ∑
m=0

(−1)m
(

ℓ

ℓ−m

)(
ℓ

m

)
.

The sum is the coefficient of hℓ in a polynomial (1+h)ℓ(1−
h)ℓ = (1 − h2)ℓ in a variable h. There is no hℓ term if ℓ is
odd, implying that the sum is zero. If ℓ is even, then the
coefficient is (−1)ℓ/2( ℓ

ℓ/2
)
. This completes the proof.

(Second method using raising and lowering operators) Let
|ℓ⟩ be an eigenstate of Jz with eigenvalue ℓ: Jz |ℓ⟩ = ℓ |ℓ⟩.
Define J+ = Jx + iJy and J− = Jx − iJy, and inductively
J− |k⟩ = a−k |k − 1⟩ for k = ℓ, ℓ− 1, . . . ,−ℓ+ 1 where

ak =
√
ℓ(ℓ+ 1) − k(k + 1) = a−k−1.

Here, |0⟩ = |z⟩. It is straightforward to check that J+ |k⟩ =
ak |k + 1⟩; the vector |ℓ+ 1⟩ is never defined, but aℓ = 0.

Since Jy |y⟩ = 0, we have J+ |y⟩ = J− |y⟩. This implies
that |ℓ− 1⟩ cannot be a nonzero component of |y⟩, which
implies, in turn, that |ℓ− 2j − 1⟩ for any integer j cannot
be a nonzero component of |y⟩. Hence, |y⟩ is in the span
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of |ℓ⟩ , |ℓ− 2⟩ , . . . , |−ℓ+ 2⟩ , |−ℓ⟩. In particular, if ℓ is odd,
⟨z|y⟩ = ⟨0|y⟩ = 0.

Suppose ℓ = 2p, an even integer, and put |y⟩ =∑p
k=−p ck |2k⟩. Then, the equation J+ |y⟩ = J− |y⟩ implies

that
cka2k = ck+1a−2k−2 = ck+1a2k+1. (7)

One can verify that ck = c−k and

a2
2k

a2
2k+1

= 2p(2p+ 1) − 2k(2k + 1)
2p(2p+ 1) − (2k + 1)(2k + 2)

= (p− k)(2p+ 2k + 1)
(p+ k + 1)(2p− 2k − 1)

= (p− k)2(2p+ 2k + 2)(2p+ 2k + 1)
(2p− 2k)(2p− 2k − 1)(p+ k + 1)2

=
(2p−2k−2
p−k−1

)(2p+2k+2
p+k+1

)(2p−2k
p−k

)(2p+2k
p+k

) .

Therefore,
|ck|2

|c0|2
=
(2p−2k
p−k

)(2p+2k
p+k

)(2p
p

)2 .

Since ⟨y|y⟩ = 1, we must have

1 =
p∑

k=−p

|ck|2

= |c0|2(2p
p

)2

p∑
k=−p

(
2p− 2k
p− k

)(
2p+ 2k
p+ k

)

= |c0|2(2p
p

)2 42p,

where the last equality follows from a combinatorial
identity5 [18]

n∑
i=0

(
2i
i

)(
2n− 2i
n− i

)
= 4n.

This shows that |⟨y|z⟩| = |c0| = 1
4p

(2p
p

)
if ℓ = 2p.

The complex phase α of ⟨y|z⟩ = α 1
4p

(2p
p

)
is not fixed

by the normalization, but ⟨x|y⟩⟨y|z⟩⟨z|x⟩ is well defined
regardless of α. To evaluate this product of the three
inner products, we may use any normalized vectors in
the kernels. A vector |x⟩ ∈ ker Jx can be computed
by solving J+ |x⟩ = −J− |x⟩. By completely parallel
calculation, we find a solution |x⟩ =

∑p
k=−p(−1)kck |2k⟩.

Then,

β = ⟨x|y⟩⟨y|z⟩⟨z|x⟩ = ⟨x|y⟩⟨y|0⟩⟨0|x⟩

= |c0|2
p∑

k=−p

(−1)k|ck|2.

5This can be proved by, for example, a formula (1 − 4h)−1/2 =∑∞
n=0

(2n
n

)
hn and its square, where h is a variable.

This is a real number, which means that we may take
α = ±1 = β/|β|. We know that |β| = |c0|3 < 1, so∑p
k=−p(−1)k|ck|2 = ±|c0|.
From Eq. (7) we know that |c0| < |c1| < · · · < |cp|.

Suppose p is odd and β > 0. Then, we must have∑p
k=−p(−1)k|ck|2 = |c0|, which gives a contradiction:

0 = (−|c0| − |c1|2) + (|c0|2 − |c1|2) + 2(|c2|2 − |c3|2) +
· · · + 2(|cp−1|2 − |cp|2) < 0. Therefore, β < 0 if p is odd.
Similarly, suppose p is even and β < 0. Then, we must have∑p
k=−p(−1)k|ck|2 = −|c0|, which gives a contradiction: 0 =

(|c0|+|c0|2)+2(−|c1|2 +|c2|2)+· · ·+2(−|cp−1|2 +|cp|2) > 0.
Therefore, β > 0 if p is even. This completes the proof.

Corollary IV.2. For a random Pauli rotation µ with
respect to {(σx, 1

3 ), (σy, 1
3 ), (σz, 1

3 )} we have

∥Cµ,t − Ht∥ = 1
12 ·


4 (t = 1)
6 (t = 2, 3)
7 (t ≥ 4)

.

Proof. We calculated f2 = Tr(K(Jx)K(Jy)), etc,
in Lemma IV.1, where (−1)ℓ/2f =

(
ℓ
ℓ/2
)
/2ℓ is a decreasing

function in even integer ℓ. Hence by Proposition III.4, there
are only three cases to check: f = 0 if ℓ is odd, f = −1/2
if ℓ = 2, and f = 3/8 if ℓ = 4.

Let M = K(Jx) +K(Jy) +K(Jz) and a, b, c ∈ [0, 3] ⊂ R
be the eigenvalues of M . Then Tr(M) = a + b + c = 3,
Tr(M2) = a2 + b2 + c2 = 3 + 6f2, and Tr(M3) = a3 + b3 +
c3 = 3 + 18f2 + 6f3. Calculation gives a = b = 1 − f and
c = 1+2f up to permutations, so ∥M∥ = max(1−f, 1+2f).
This norm reaches the maximum 7/4 when ℓ = 4 and
f = 3/8.

V. A spectral gap bound by quadratic Casimir
invariants

Theorem V.1. Let µ be the random Pauli rotation with
respect to the uniform distribution on Pn. Then, with N = 2n

and for any integer t ≥ 1,

∥Cµ,t − Ht∥ ≤ 1 − 1
4t

N2

N2 − 1 − 1
N2 − 1 . (8)

If t ≤ N/2, then

∥Cµ,t − Ht∥ ≤ 1 − 1
2t

N(N − t+ 1)
N2 − 1 . (9)

Comparing with Corollary IV.2, we see that with N = 2
the inequality in Eq. (8) is saturated if and only if t ∈
{1, 2, 4}.

Proof. It follows from Proposition III.4 that

∥Cµ,t − Ht∥ = max
J

∥∥∥∥ E
P∈Pn

K(JP )
∥∥∥∥

where the maximum is over all nontrivial su(N)-irreps that
appear in the tensor representation τ : U 7→ (U ⊗ Ū)⊗t.
By Eq. (3), the norm ℓ of a represented operator JP in a
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nontrivial su(N)-irrep is a nonzero integer and is at most t.
We use an operator inequality

K(H) ⪯ 1 −H2/∥H∥2 (10)

which holds for any nonzero hermitian operator H, where
K(H) is the orthogonal projector onto kerH. Averaging
over Pn, we have that

E
P∈Pn

K(JP ) ⪯ 1 − E
P∈Pn

J2
P

∥JP ∥2 . (11)

It is well known (by a more general argument) that the last
term is a scalar multiple of the identity, called a Casimir
operator or invariant, where the scalar depends only on
the irrep. We give an elementary calculation to this end
in Lemma V.2 below. By the lower bound in Lemma V.3
below,

1 − E
P∈Pn

J2
P

∥JP ∥2 ⪯ 1
(

1 − 1
4ℓ

N2

N2 − 1 − 1
N2 − 1

)
where ℓ = ∥JP ∥ is independent of P . Since ℓ ≤ t, we com-
plete the proof of Eq. (8). For Eq. (9), we use Lemma V.4
further below.

Lemma V.2. For any su(N)-irrep ϕ∗, the quadratic sum∑
P∈Pn

ϕ∗(P/2)2 is a scalar multiple of the identity.

Proof. Abbreviate ϕ∗(P/2) by JP . We show by direct
calculation that

∑
P J

2
P commutes with JQ for all Q ∈ Pn.

Since the commutator obeys the Leibniz rule, we have
[JQ, J2

P ] = JP [JQ, JP ] + [JQ, JP ]JP . This may be nonzero
only if PQ = −QP = ±iR for some R ∈ Pn. For
an anticommuting pair P,Q, the Pauli operator R also
anticommutes with each of P,Q. So, the subset of all Pauli
operators that anticommute with Q is partitioned into
unordered pairs {P,R} where [JP , JQ] = iJR. That is, for
each pair {P,R}, the three elements JP , JQ, JR span su(2).
Then,

[JQ, J2
P + J2

R]
= JP [JQ, JP ] + [JQ, JP ]JP + JR[JQ, JR] + [JQ, JR]JR
= JP (−iJR) + (−iJR)JP + JR(iJP ) + (iJP )JR
= 0. (12)

Since we are working with an irrep, Schur’s lemma implies
that A =

∑
P J

2
P is proportional to the identity.

Lemma V.3. Let JP = ϕ∗(P/2) be the represented
operator in an su(N)-irrep ϕ∗ for any Pauli operator P ∈ Pn
where N = 2n ≥ 2, and let ℓ = ∥JP ∥ be the Schatten ∞-
norm, which is independent of P . Then,(

N2ℓ

4 + ℓ2
)

1 ⪯
∑
P∈Pn

J2
P ⪯

(
N(N − 1)ℓ

2 + (N − 1)ℓ2
)

1.

For any n ∈ Z>0 and ℓ ∈ 1
2Z>0, there is an su(2n)-irrep that

saturates the upper bound. For any n, k ∈ Z>0, there is an
su(2n)-irrep with ℓ = 2n−2k that saturates the lower bound.
The saturating irreps are unique up to isomorphisms.

In this lemma it is not required that ϕ∗ is a subrepre-
sentation of a tensor representation τ : U 7→ (U ⊗ Ū)⊗t.

The lower bound proof can be understood using just the
representation theory of su(2).

Proof of the lower bound. The norm ℓ = ∥JP ∥ is indepen-
dent of P by Lemma II.2. Lemma V.2 says that A =

∑
P J

2
P

is a scalar multiple of the identity. We have to estimate
the eigenvalue of A. It suffices to examine the action of A
on any vector.

Let Z1 = σz ⊗ 1⊗(n−1)
2 ∈ Pn. Let |ψ⟩ be any vector such

that JZ1 |ψ⟩ = ℓ |ψ⟩, where ℓ is the greatest eigenvalue.
There are 4n−1 unordered pairs {σx ⊗W,σy ⊗W} where
W ∈ {12, σ

x, σy, σz}⊗(n−1) such that C{Z1, σ
x ⊗W,σy ⊗

W} ∼= su(2) as Lie algebras. We know if X,Y, Z are a
triple generating su(2) such that [X,Y ] = iZ (and cyclic
permutations thereof), then

ρ∗(X)2 + ρ∗(Y )2 + ρ∗(Z)2 = ℓρ(ℓρ + 1)1

for any irrep ρ∗ where ℓρ is the greatest eigenvalue of ρ∗(Z).
The linear span of all vectors obtained by acting with
JZ1 , Jσx⊗W , Jσy⊗W on |ψ⟩ is an su(2)-irrep because JZ1

assumes the greatest eigenvalue ℓ on |ψ⟩, and hence

(J2
Z1

+ J2
σx⊗W + J2

σy⊗W ) |ψ⟩ = (ℓ2 + ℓ) |ψ⟩ ,
(J2
σx⊗W + J2

σy⊗W ) |ψ⟩ = ℓ |ψ⟩ .

Therefore,

⟨ψ|A |ψ⟩ ≥ ⟨ψ| J2
Z1

|ψ⟩ +
∑
W

⟨ψ| (J2
σx⊗W + J2

σy⊗W ) |ψ⟩

= ℓ2 + 4n−1ℓ.

This proves the lower bound.

The remainder of the proof uses highest weights.

Proof of the rest of the claims in Lemma V.3. To prove
the upper bound we take |ψ⟩ to be a highest weight vector.
By definition, this means that |ψ⟩ is annihilated by all
positive roots of su(N), which span the C-linear space of
all strictly upper triangular N-by-N matrices. This means
that

(JX + iJY ) |ψ⟩ = 0

for any X + iY ∈ su(N) that is upper triangular in a
standard basis for Pauli operators. Then,

0 = ⟨ψ| (JX − iJY )(JX + iJY ) |ψ⟩
= ⟨ψ| (J2

X + J2
Y − JZ) |ψ⟩ (13)

where iZ = [X,Y ]. It follows that

⟨ψ| J2
X + J2

Y |ψ⟩ = ⟨ψ| JZ |ψ⟩ ≤ ℓ. (14)

To use this we partition Pn as follows. For a bitstring z ∈
{0, 1}k−1 of length k − 1, define Z(z) =

⊗k−1
j=1 (σz)zj ∈

Pk−1. For a Z4-string w ∈ {0, 1, 2, 3}n−k, define W (w) =
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⊗n−k
j=1 σ

wj where σ0 = 12, σ1 = σx, σ2 = σy, and σ3 = σz.
Then, a triple of

Z(z) ⊗ σx ⊗W (w),
Z(z) ⊗ σy ⊗W (w),

1⊗(k−1)
2 ⊗ σz ⊗ 1⊗(n−k)

2

forms an su(2) subalgebra. So we have identified∑n
k=1 2k−14n−k = 4n(2−1 − 2−n−1) subalgebras. The pairs

{Z(z)⊗σx⊗W (w), Z(z)⊗σy⊗W (w)} account for 4n −2n

elements of Pn, and the remaining 2n − 1 operators of Pn
are tensor products of 12 and σz. Therefore,∑

P∈Pn

⟨ψ| J2
P |ψ⟩ ≤ 4n(2−1 − 2−n−1)ℓ+ (2n − 1)ℓ2.

The tightness of the bounds can be shown by considering
specific highest weights and using the partition above. The
upper bound is saturated if and only if Eq. (14) is saturated
for all nonidentity tensor product Z of 12 and σz. So, we
need to show that such a linear functional on the Cartan
subalgebra is a valid point on the weight lattice. This is
easy: if Lj denotes the dual vector of the diagonal matrix
with a sole 1 at the j-th diagonal, 2ℓL1 is the desired
weight.

To prove that the lower bound can be saturated, we
take a highest weight in which only JZ1 , where Z1 =
σz ⊗ 1⊗(n−1)

2 , takes the greatest eigenvalue ℓ, but JZ for
any other diagonal Z assumes zero. This amounts to the
weight k

∑N/2
j=1 Lj , giving ℓ = kN/4 for some positive

integer k. Then, on the highest weight vector |ψ⟩, the
generator Z1 gives ℓ2, and the 4n−1 pairs {σx⊗W,σy⊗W}
gives 4n−1ℓ, but all other 2n − 2 diagonal generators
give zero by the choice of the highest weight. Finally,
Eq. (13) implies that the 4n − 2n − 2 · 4n−1 generators
Z(z) ⊗ σx ⊗W (w), Z(z) ⊗ σy ⊗W (w) give zero.

In those saturating conditions, we are forced to choose
a unique highest weight given ℓ, which in turn determines
the irrep (up to equivalence).

Next, we present an alternative and slightly tighter
bound, which assumes familiarity with highest weights
for Lie algebra representations (e.g. [16, §14-15]). Note,
again, that our proof of the lower bound in Lemma V.3
only uses the representation theory of su(2).

A finite-dimensional irreducible representation of su(N)
is labeled by its highest weight

∑
j µjLj , which is labeled

by a sequence of N integers µ = (µ1, µ2, . . . , µN) where
µi ≥ µi+1 modulo integer multiples of (1, 1, . . . , 1). We
choose a representative µ such that

∑N
i=1 µi = 0, which is

possible for subrepresentations of τ : U 7→ (U ⊗ Ū)⊗t,
and henceforth the Killing form ⟨·, ·⟩ on the dual of
Cartan subalgebra is given by ⟨µ, µ′⟩ =

∑
i µiµ

′
i. (The

normalization here is different from that in [16, §15].)
Let

H = 1
2σ

z ⊗ 1⊗n−1
2 = 1

2 diag(1, 1, . . . , 1,−1,−1, . . . ,−1)

be an element of the Cartan subalgebra. We would like to
determine ℓ = ∥ϕ∗(H)∥. Since the set of weights are in the
convex hull of the Weyl group orbit of µ, the maximum
eigenvalue of ϕ∗(H) is given by ℓ = maxw∈Weyl(w ·µ)(H) =
µ(H) = 1

2
(
µ1 + · · · + µN/2 − µN/2+1 − · · · − µN

)
.

Next, we invoke a formula for the quadratic Casimir
operator (e.g. [16, (25.14)]): For any finite-dimensional
irrep ϕ∗ with highest weight µ, and for any basis {Xj} of
su(N) that is orthonormal with respect to the Killing form,∑

j

ϕ∗(Xj)2 = (⟨µ, µ⟩ + ⟨µ, δ⟩)1,

where δ is the sum of all positive roots, which can be
written in a vector form as δ = (N − 1,N − 3, . . . ,−(N −
1)). Therefore, 4

N
∑
P∈Pn

J2
P = (⟨µ, µ⟩ + ⟨µ, δ⟩)1, where the

factor 4/N comes from renormalizing JP to an orthonormal
basis (Tr((P/2)2) = N/4). Now, our quantity of interest is
exactly determined by the highest weight of a given irrep:

1
ℓ2

∑
P∈Pn

J2
P = N(⟨µ, µ⟩ + ⟨µ, δ⟩)(

µ1 + · · · + µN/2 − µN/2+1 − · · · − µN
)2 1.

(15)

Lemma V.4. Assume t ≤ N/2. Let ϕ∗ be an irreducible
su(N)-subrepresentation of τ : U 7→ (U ⊗ Ū)⊗t. Let ℓ =
∥ϕ∗(P/2)∥ be the Schatten ∞-norm, which is independent
of P ∈ Pn.

1
ℓ2

∑
P∈Pn

J2
P ⪰ N(N − t+ 1)

2t 1.

There exists an irreducible subrepresentation ϕ∗ of τ achiev-
ing the equality.

Roughly speaking, in the small-t regime where t ≪ N,
this gives a factor of 2 improvement relative to Lemma V.3.
Note that this is consistent with the tightness stated in
Lemma V.3, because the irreps that saturate the lower
bound of Lemma V.3 are not subrepresentations of τ when
t ≪ N. If t = N/2, then this lemma gives the same bound
as Lemma V.3.

The strategy in the proof below applies for t > N/2 and
gives an alternative proof of the lower bound of Lemma V.3,
but we will omit such calculation.

Proof. It only remains to perform an elementary calcula-
tion: minimize the right-hand side of Eq. (15) over the
highest weights that correspond to irreducible subrepresen-
tations of τ .

The decomposition of τ into irreps is well understood
(e.g. [19, Theorem 4]). An irrep with highest weight µ is
a subrepresentation of τ if and only if

∑
i µi = 0 and∑

i|µi| ≤ 2t. When t ≤ N/2, the minimizer is given by

µ∗ = (1, 1, . . . , 1, 0, 0, . . . , 0,−1,−1, . . . ,−1)

with the first t entries being 1 and last t entries being −1.
Calculating the right-hand side of Eq. (15) with respect to
µ∗ gives the stated bound.
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Remark V.5. If Eq. (11) is saturated, then t ∈ {1, 2, 4}.
If ℓ /∈ {1, 2, 4}, then we know by comparing Corollary IV.2
with Eq. (8) that K(Jx)+K(Jy)+K(Jz)+(J2

x+J2
y+J2

z )/ℓ2

has norm strictly smaller than 3 in any nontrivial irrep
of su(N) with ∥Jx∥ = ℓ for any triple Jx, Jy, Jz that form
an su(2) subalgebra.

Remark V.6. It may be significant underestimation of
the spectral gap using K(H) ⪯ 1 − H2/∥H∥2. Take
the case of su(2) and consider a random Pauli rotation
by {(σx, 1

2 ), (σy, 1
2 )}. In the (2ℓ + 1)-dimensional su(2)-

irrep, since J2
x + J2

y + J2
z = (ℓ2 + ℓ)1 and J2

z ⪯ ℓ21,
we see (J2

x + J2
y )/ℓ2 ⪰ 1/ℓ, which is best possible since

⟨ψ| (J2
x + J2

y ) |ψ⟩ /ℓ2 = 1/ℓ if Jz |ψ⟩ = ℓ |ψ⟩. This gives a
lower bound on the spectral gap Ω(1/t). However, by the
exact calculation in Lemma IV.1 above, we know that the
spectral gap of this design is independent of t.

Proof of Theorem I.1. The spectral gap bound is proved
in Theorem V.1. Note that a random Pauli rotation is
defined by a uniform probability distribution on Pn ×
(−π, π) while the second statement of Theorem I.1 takes a
uniform distribution on Pn × (−2π, 2π).

The discrepancy of a factor of 2 here is completely
dismissable for the first statement of Theorem I.1 since
we only need a range of θ in exp(iθϕ∗(P/2)) such that the
average over θ of a represented operator ϕ∗(P/2) for any
Pauli operator P ∈ Pn is the projection onto the kernel
of ϕ∗(P/2); for irreps ϕ that appear in τ : U 7→ (U ⊗ Ū)⊗t,
the eigenvalues of ϕ∗(P/2) are integers.

However, if we consider an arbitrary finite dimensional
unitary representation ρ of SU(N), we are no more guar-
anteed that ρ∗(P/2) has integer eigenvalues. Fortunately,
every eigenvalue of ρ∗(P/2) is half an integer for any unitary
representation ρ because every finite dimensional unitary
irrep of SU(N) is a subrepresentation of U 7→ U⊗m for
some integer m ≥ 0 [16, §15.3].

Note that for an irrep ρ∗ where 2∥ρ∗(P/2)∥ is an
odd integer, the kernel of ρ∗(P/2) is zero, implying that
averaging over θ eliminates this irrep.

Proof of Corollary I.2. Let D = Ckt − Ht be the difference
of the channels. With k ≥ (4 log 2)nt2 + 4t log 1

ε , we have
∥D⊗I∥2→2 = ∥D∥2→2 ≤ (1− 1

4t )k ≤ ε2−nt by Theorem I.1,
where I means the identity channel on any auxiliary system.
Since the diamond norm is obtained by taking an equal
dimensional auxiliary system, ∥D∥⋄ = ∥D ⊗ I2nt∥1→1 ≤
2nt∥D ⊗ I2nt∥2→2 ≤ ε, where the first equality is by [20,
Theorem 11.1]. (The use of 2 → 2 norm for this purpose
has appeared in [3], [21].)

Similarly, if k ≥ (4 log 8)nt2 + 4t log 1
ε , we have∥∥Ckt − Ht

∥∥
⋄ ≤ ε4−nt which implies (1 − ε)Ht ⪯ Ckt ⪯

(1 + ε)Ht by [3, Lemma 3].
The gate complexity follows from Corollary III.6.

VI. Orthogonal designs
Our approach can be adapted for special orthogonal

groups. This section uses arguments parallel to those in

the analysis for SU(N), so we will be rather brief.

A. Skew-symmetric Pauli operators
We consider the special orthogonal group SO(N) in a

fashion similar to our random Pauli rotations. We directly
use the inclusion SO(N) = SU(N) ∩ RN×N ⊂ SU(N) for
N = 2n.

Define a set Yn of Pauli operators with entries in iR:

Yn = {P ∈ Pn |
An odd number of σy tensor factors appear in P .}

We first verify that the R-linear span of iYn is pre-
cisely the real Lie algebra so(N = 2n) consisting of all
antisymmetric real matrices. It is clear that iYn is R-
linearly independent and consists of skew-symmetric real
matrices. We can check that |Yn| = N(N − 1)/2 by solving
a recursion equation as follows. Let e(n) be the number of
all Pauli operators {1, σx, σy, σz}⊗n that contain an even
number of tensor factors σy. The identity operator 1⊗n

2
contributes 1 to e(n). Consider a subset of Pauli “strings”
whose first “letter” is σy, and another set of Pauli strings
whose first letter is one of 1, σx, σz. It is then clear that
|Yn+1| = 3|Yn| + e(n) and e(n + 1) = 3e(n) + |Yn|
with initial conditions e(1) = 3 and |Y1| = 1. The
claim |Yn| = 2n−1(2n − 1) follows by induction in n.

Theorem VI.1. Suppose N = 2n > 4. For any integer t ≥
1, we have∥∥∥∥ E

θ∼(−2π,2π), P∈Yn

(eiθP/2)⊗t − E
O∼SO(N)

O⊗t
∥∥∥∥

≤ 1 − 1
2t

N − 2
N − 1 − 2

N(N − 1) .

The small orthogonal groups, SO(2) and SO(4), are
excluded for simplicity of the proof as they are not simple
Lie groups. Note that every finite dimensional unitary
irrep6 of SO(N) for N > 4 appears as a subrepresentation of
the tensor representation O 7→ O⊗t for some integer t ≥ 1.
This is explained in [16, §19]. Therefore, Theorem VI.1
implies that for any irrep of SO(N = 2n > 4) the spectral
gap is at least 1/ dim SO(N).

A representation of SU(N) gives a representation
of SO(N), but a representation of SO(N) does not in general
give a representation of SU(N). So, this theorem cannot
be thought of as a corollary of Theorem I.1. The proof
below is however almost identical to that of Theorem I.1,
mainly because we use only the common aspects of the
representation theories of SO(N) and SU(N). Thus, we will
assume a reader’s familiarity with the proof of Theorem I.1,

6A representation of the Lie group SO(N) induces a representation
of its Lie algebra so(N), but not every representation of so(N) arises
in this way, and the seed for the remaining so(N)-irreps is spin
representations. This phenomenon does not happen for SU(N). It does
not seem to make sense to consider spin representations in orthogonal
designs since the Haar average over SO(N) of a spin representation is
ill-defined.
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or rather the proofs of Theorem V.1 and Lemma V.3, and
omit some detail.

Proof. (Step 0: to irreps) The Haar average (the second
term in the norm) is the projector onto the trivial subrep-
resentation (Proposition II.4). Hence, we consider an irre-
ducible nontrivial so(N)-subrepresentation ρ∗ of O 7→ O⊗t.

(Step 1: random angles give kernel projectors.) It is clear
that ρ∗(P/2) has half-integer eigenspectrum for any P ,
and therefore the average over θ ∈ (−2π, 2π) eliminates all
nonzero eigenvalues: Eθ∼(−2π,2π) e

iθρ∗(P/2) = K(ρ∗(P/2))
is the projector onto the kernel of ρ∗(P/2).7

(Step 2: identical eigenspectra for all represented oper-
ators) The norm of ρ∗(P/2) is independent of P ∈ Yn:
this is an analog of Lemma II.2 for so(N), and the
proof is similar. Note that for any matrix M , we have
det(M⊗12) = det(M⊕M) = (detM)2. So, if O ∈ O(N/2),
then O ⊗ 12 ∈ SO(N). The Clifford unitaries, CNOT and
Hadamard, are in O(4). If there is a tensor factor σy ⊗ σy

in some P ∈ Yn, then we must have n ≥ 3 since P
must contain an odd number of σy’s. Hence, using CNOT
and Hadamard Clifford unitary acting on those two 2 × 2
tensor factors, we can turn P by SO(N) conjugation into
a Pauli that where σy ⊗ σy is replaced by σx ⊗ σx while
not changing any other tensor factor of P . Inductively,
we turn all pairs of σy tensor factors into pairs of σx.
By the same argument, we can turn any σz tensor factor
into σx. Now, the conjugation of σy ⊗ 12 by CNOT is
σy ⊗ σx. Therefore, any P ∈ Yn with n ≥ 3 is congruent
to σy ⊗ 1⊗(n−1)

2 by some element of SO(N). Hence for
any P ∈ Yn where n ≥ 3, there exists O ∈ SO(N)
such that ρ(O)ρ∗(P )ρ(O)−1 = ρ∗(σy ⊗ 1⊗(n−1)

2 ). Put
ℓ = ∥ρ∗(P/2)∥ ≤ t/2 for any P ∈ Yn.

(Step 3: to quadratic Casimir) Bounding the kernel
projector by the quadratic operator (Eq. (4)), we are left
with the problem of lower bounding

E
P∈Yn

ρ∗(P/2)2/ℓ2.

By a completely analogous calculation as in Eq. (12), this
average is a scalar multiple of the identity.

(Step 4: find a large number of su(2)’s) To estimate the
unique eigenvalue of this average, we look at a vector |ψ⟩
such that ρ∗( 1

2σ
y⊗1⊗(n−1)

2 ) |ψ⟩ = ℓ |ψ⟩. We can find |Yn−1|
su(2)-subalgebras:

σy ⊗ 1⊗(n−1)
2 , σx ⊗W, σz ⊗W,

where each triple of su(2) generators is uniquely labeled
by W ∈ Yn−1. Hence,∑

P∈Yn

ρ∗(P/2)2 ⪰ 1
(
ℓ2 + |Yn−1|ℓ

)
.

The theorem is proved since ℓ ≤ t/2.
7We implicitly allowed complex coefficients for so(N), i.e., the

complexification. Exponentiated matrices are all real.

B. Skew-symmetric elementary matrix basis
We give another orthogonal design. In this subsection,

we will not require N to be a power of 2.
Let N ≥ 3 be any integer. For any integers a, b (1 ≤ a, b ≤

N), let Ea,b = |a⟩⟨b| − |b⟩⟨a| denote the skew-symmetric
N × N matrix in which there are only two nonzero matrix
entries ±1. Define

EN =
{
Ea,b ∈ RN×N ∣∣ 1 ≤ a < b ≤ N

}
Clearly, EN is a linear basis for so(N). We see that
[Ea,b, Eb,c] = Ea,c for any a, b, c. This basis is convenient
because different elements are orthogonal with respect to
the Killing form.

Theorem VI.2. Let N ≥ 3 and t ≥ 1 be any integers.
Then,∥∥∥∥ E

θ∼(−π,π), E∈EN

(eθE)⊗t − E
O∼SO(N)

O⊗t
∥∥∥∥

≤ 1 − 1
t

2(N − 2)
N(N − 1) − 2

N(N − 1) .

This can be used to generate an approximately Haar
random N × N orthogonal matrix fast. The exponential of
an element E ∈ EN is a 2 × 2 matrix, direct summed with
an N − 2 dimensional identity matrix. Hence, multiplying
a dense N × N matrix by eθE takes O(N) arithmetic
operations. For some applications, this method can be
better than generating N × N Gaussian random entries and
running the Gram–Schmidt process.

Proof. As before, we consider an SO(N)-irrep ρ, and
estimate the norm of Eθ,E ρ(eθE).

(Step 1: random angles give kernel projectors.) The
eigenvalues of any E ∈ EN are 0,±i. So, the average over θ
gives Eθ,E ρ(eθE) = EE K(ρ∗(E)).

(Step 2: identical eigenspectra for all represented op-
erators) It is obvious that two different elements of EN
are related by some row and column permutations. A
transposition is not in SO(N), but the product of a
transposition and a diagonal matrix with N − 1 entries
being 1 and the remaining being −1 is. Since N ≥ 3,
we can always find such diagonal matrix that leaves a
given Ea,b fixed — just look at a zero column or a row.
Hence, any two elements of EN are congruent by SO(N),
and the eigenspectrum of represented operators ρ∗(E)
is independent of E ∈ EN. Let ℓ = ∥ρ∗(E)∥ ≤ t for
any E ∈ EN.

(Step 3: to quadratic Casimir) We need to check that∑
E∈EN

ρ∗(E)2 commutes with every E ∈ EN. A moment’s
thought shows that it suffices to check the commutation of
ρ∗(Ea,b) with ρ∗(Ea,c)2 + ρ∗(Eb,c)2 for any c, but this is
exactly the same calculation as for the su(2) case. Hence,
an upper bound 1 − EE ρ∗(E)2/ℓ2 on EE K(ρ∗(E)) is a
scalar multiple of the identity.

(Step 4: find a large number of su(2)’s) We focus on a
vector with an eigenvalue ℓ for ρ∗(E1,2). For any c ≥ 3, we
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have an su(2)-subalgebra generated by E1,2, E1,c, E2,c. So,∑
E∈EN

ρ∗(E)2 ⪰ 1(ℓ2 + (N − 2)ℓ).
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Appendix A
Discrete angles

In the proof of Theorem I.1, the only place where we use
averaging over θ ∼ (−π, π) is in the following context: for
a nonzero hermitian operator H with integer eigenvalues
in [−t, t], we have

E
θ∼(−π,π)

eiθH = K(H) ⪯ 1 − H2

∥H∥2 ,

where K(H) is the orthogonal projector onto the kernel
of H (see Eq. (10)). Since H has bounded norm, we can
instead consider averaging over the angles in the discrete
set Θt = {mπ/t : m ∈ Z ∩ [−t, t − 1]}. Then, for any
hermitian operator H with integer eigenvalues in [−t, t],
we have

E
θ∼Θt

eiθH = E
θ∼(−π,π)

eiθH = K(H) (16)

because for any integer k,
t−1∑
m=−t

exp(imkπ/t) =
{

2t if k = 0,
0 if 0 < |k| ≤ t.

The rest of the proof is exactly the same as the proof
of Theorem I.1.

Appendix B
State designs

We consider distributions ν on a complex projective
space CPN−1 where N = 2n is a power of 2. This is
often called a state design because CPN−1 is the set of
all normalized state vectors modulo global phase factors
in an n-qubit system, or equivalently the set of all rank-
1 projectors |ψ⟩⟨ψ| on (C2)⊗n. There is a natural (left)
action of a unitary group given by |ψ⟩⟨ψ| 7→ U |ψ⟩⟨ψ|U†

for U ∈ SU(N). The Haar measure of SU(N) induces an
SU(N)-invariant measure on CPN−1. This is the target
distribution we wish to approximate. A natural metric
to measure the quality of approximation is closeness in t-th
moments, maximized over all possible measurements. This
is succinctly described by the trace distance:

1
2

∥∥∥ E
ψ∼ν

(|ψ⟩⟨ψ|)⊗t︸ ︷︷ ︸
Sν,t

− E
U∼SU(N)

(U |α⟩⟨α|U †)⊗t

︸ ︷︷ ︸
SHaar,t

∥∥∥
1

(17)

where |α⟩ can be any normalized vector in (C2)⊗n due to
the right invariance of the Haar measure. Any approximate
unitary design can be used for state designs, and a bound
on the t-th moment trace distance directly comes from the
analysis of the approximate unitary design. For example,
the result of Corollary I.2 serves the purpose. However,
this is not necessarily the best one can show.

Theorem B.1. Let ∥·∥1 denote the Schatten 1-norm of
a matrix, the sum of all singular values. For any integers
t, k, n ≥ 1 and a normalized vector |α⟩ ∈ CN, we have∥∥∥Ckt (|α⟩⊗t⟨α|⊗t) − SHaar,t

∥∥∥
1

≤
(

N + t− 1
t

)1/2(
1 − 1

2t
N

N + 1 − N
2(N2 − 1)

)k
. (18)

The last term in the parenthesis is ≈ (2N)−1 for large N,
which contrasts to the last term ≈ N−2 in Theorem I.1.

Proof. The input (|α⟩⟨α|)⊗t is invariant under tensor factor
permutations either on the ket or bra factors. The action
by SU(N) commutes with this permutation symmetry, and
hence the input vector is in an SU(N)-representation Σ =
Symt(CN) ⊗ Symt((CN)∗). By the Littlewood–Richardson
rule (actually its special case [16, 15.25(i)]), we have a
decomposition of Σ into irreps:

Σ = Symt(CN) ⊗ Symt((CN)∗)

=
t⊕

s=0
highest weight s(L1 − LN)︸ ︷︷ ︸

Γs

Here, Li is the dual of the diagonal matrix (an element of
the Cartan subalgebra) where there is a sole nonzero entry
that is 1 at the i-th position. Note that all the multiplicities
of the irreps are 1, and Γ0 is a one-dimensional trivial
representation. Decompose (|α⟩⟨α|)⊗t into

⊕t
s=0 γs(α)

according to the irrep decomposition Γs.8 Proposition II.4
applied to Σ says that the Haar average of SHaar,t projects
(|α⟩⟨α|)⊗t onto γ0(α). This projection is independent of α
because γ0 = γ0(α) is uniquely determined by the trace-
preserving property.9

It is now clear that

Ckt ((|α⟩⟨α|)⊗t) − SHaar,t = Ckt

(
t⊕

s=1
γs(α)

)
. (19)

We are going to bound the Schatten 2-norm of Eq. (19) by
the factor in the parenthesis of Eq. (18). Since it is after

8Here, |α⟩⊗t⟨α|⊗t is a vector of the representation space Σ. The
inner product is inherited from (CN)⊗t ⊗ (CN)∗⊗t and is thus the
Hilbert–Schmidt inner product. Since Σ is a unitary representation,
the components γs(α) ∈ Σ for s = 0, 1, . . . , t are orthogonal to each
other, and have length (defined by the inner product) equal to the
Schatten 2-norm of the corresponding matrix in (CN)⊗t ⊗ (CN)∗⊗t.

9The other components γs(α) with s > 0 depend on α, but ∥γs(α)∥2
are independent of α, since they are invariant under SU(N) whose
action is transitive on CPN−1.
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all a matrix acting on Symt(CN) of dimension
(N+t−1

t

)
,

conversion to the Schatten 1-norm gives the theorem.
Lemma III.2 says that∥∥Ckt |Γs

∥∥
2→2 = ∥ E

P∈Pn
K(Γs∗(P/2))∥k

where Γs∗ is the induced Lie algebra representation. Invok-
ing Eq. (10), Lemma V.2, and most importantly Eq. (15)
with highest weights s(L1 − LN) where s = 1, 2, . . . , t, we
find that∥∥∥∥∥

t⊕
s=1

E
P
K(Γs∗(P/2))

∥∥∥∥∥ ≤ 1 − 1
2t

N
N + 1 − N

2(N2 − 1) .

One can perform similar calculation for a real projec-
tive space RPN−1, which is the same as the hemisphere
(spherical cap) of dimension N − 1, excluding the equator
of measure zero.
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