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Abstract
Background
Self-regulated learning (SRL) strategies can be domain specific. However, it remains unclear
whether this specificity extends to different subtopics within a single subject domain. In this
study, we collected data from 210 college students engaged in a computer-based learning
environment to examine the heterogeneous manifestations of learning behaviors across four
distinct subtopics in introductory statistics. Further, we explore how the time spent engaging in
metacognitive strategies correlated with learning gain in those subtopics.
Results
By employing two different analytical approaches that combine data-driven learning analytics
(i.e., sequential pattern mining in this case), and theory-informed methods (i.e., coherence
analysis), we discovered significant variability in the frequency of learning patterns that are
potentially associated with SRL-relevant strategies across four subtopics. In a subtopic related to
calculations, engagement in coherent quizzes (i.e., a type of metacognitive strategy) was found to
be significantly less related to learning gains compared to other subtopics. Additionally, we
found that students with different levels of prior knowledge and learning gains demonstrated
varying degrees of engagement in learning patterns in an SRL context.
Conclusion
The findings imply that the use—and the effectiveness—of learning patterns that are potentially
associated with SRL-relevant strategies varies not only across contexts and domains, but even
across different subtopics within a single subject. This underscores the importance of
personalized, context-aware SRL training interventions in computer-based learning

environments, which could significantly enhance learning outcomes by addressing the



heterogeneous relationships between SRL activities and outcomes. Further, we suggest
theoretical implications of subtopic-specific heterogeneity within the context of various SRL
models. Understanding SRL heterogeneity enhances these theories, offering more nuanced

insights into learners’ metacognitive strategies across different subtopics.
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Introduction

Computer-based learning environments offer a flexible and adaptive learning experience,
granting students significant autonomy. However, these environments also present distinct
challenges, particularly for students who have not yet acquired all the necessary self-regulated
learning (SRL) skills (Bol & Garner, 2011; Irfan et al., 2020; Pedrotti & Nistor, 2019). SRL is a
learner’s active management and adaptation of their learning strategies to meet their learning
goals and overcome challenges encountered throughout learning. Students with SRL skills
possess the ability to orchestrate their learning plans strategically, as well as the capacity to
reflect upon and assess their learning progress continually, which ultimately benefits learning
(Azevedo, 2005; Johnson et al., 2011; van Alten et al., 2020; van der Graaf et al., 2022).
Therefore, the inherent freedom and complexity of computer-based learning environments,
although beneficial in numerous ways, often pose challenges in navigation and success,
particularly for learners who are still developing their SRL skills (Taub et al., 2021; Zheng et al.,
2022).

Although SRL is crucial for effective learning, it is not an inherent skill among students
and varies substantially between students (Bernacki et al., 2015; Muwonge et al., 2020). This
variability in SRL skills often reflects disparities in educational resources and learning
opportunities, rather than an inherent flaw or lack of potential in the students themselves
(Zimmerman, 2002). Fortunately, however, SRL skills are not static but can be developed and
enhanced over time (Zimmerman & Kitsantas, 2005). Thus, there are promising opportunities for
interventions to teach SRL skills; although some students may not have had sufficient

opportunities to hone these skills, SRL can be progressively learned and enhanced with



appropriate guidance and practice (Bernacki et al., 2020; Schunk & Zimmerman, 1997;
Zimmerman, 2002).

While SRL-supporting tools are crucial in fostering students” SRL skills (Bellhduser et
al., 2023; T. Li et al., 2023), current approaches tend to model and support a uniform application
of SRL strategies across various learning domains and subdomains. Broadbent et al. (2020)
highlight a challenge in the development of SRL interventions, questioning whether it is more
effective to design these SRL interventions with a focus on specific domains or to apply a more
general approach across domains. While Broadbent and colleagues acknowledge that non-
content-specific SRL strategies can be beneficial, they discuss that content-specific approaches
to SRL interventions might be more effective. In line with this perspective, numerous studies
confirmed that SRL strategies are not one-size-fits-all and are indeed subject-specific and
underscored the need for domain-specific SRL approaches, since they are not universally
applicable (Alexander et al., 2011; Greene, Bolick, Caprino, et al., 2015; Greene, Bolick,
Jackson, et al., 2015; Lee et al., 2023; Poitras & Lajoie, 2013). However, such evidence prompts
further questions about whether such specificity in SRL strategies should extend to the varied
subtopics within a single subject domain, such as mathematics, computer science, and
humanities.

Within subject domains, there are more narrowly focused areas, which we refer to as
subtopics, that potentially demand unique problem-solving approaches. For instance, in this
study, we refer to statistics as a subject domain, which involves the study of collecting,
interpreting, and analyzing data. Even within the subject of statistics, there exist numerous
subtopics, such as calculation and graph interpretation, each requiring distinct problem-solving

methods. For example, calculation involves tasks like probability computations and standard



deviation calculations, which rely on direct application of mathematical formulas. In contrast,
graph interpretation entails understanding graphical data presented in formats such as scatter
plots or histograms, demanding different skills. Similarly, in computer science, the subtopic of
programming requires an understanding of the syntax and semantics of various languages, along
with coding skills, while the data structures subtopic demands a deep understanding of
algorithms, including sorting and search algorithms.

For students who struggle with SRL skills, recognizing and adapting the appropriate
cognitive and metacognitive strategies to the specific demands of each subtopic poses a
significant challenge. A generalized approach may not sufficiently account for the intricate
variances in how SRL strategies are employed (and should be employed), even across different
subtopics within a single domain. Therefore, there is a need to develop Al-based systems that can
support students’ personalized learning by fostering the development of SRL skills tailored to
specific subtopics in computer-based learning environments. Numerous studies explored the
heterogeneous application of SRL strategies across diverse student populations, taking into
account variables such as gender, race, and academic performance (Carroll & Garavalia, 2002;
Foong et al., 2021; Norman & Furnes, 2016; Virtanen & Nevgi, 2010; Yukselturk & Bulut, 2009;
Zimmerman & Pons, 1990). However, there remains a gap in understanding how SRL strategies
can and should vary across different subtopics within a single domain in SRL research.

In this paper, we explore this issue by investigating differential engagement in SRL-
relevant learning patterns across four different subtopics within the subject domain of statistics.
To the best of our knowledge, this study is the first to explore the heterogeneity of computer-
based learning behaviors in an SRL context across various subtopics within a single domain.

While SRL skills benefit many academic outcomes, in general, and in domain-specific research



(Kramarski & Gutman, 2006; Mason et al., 2010; Schraw et al., 2006; Tseng et al., 2006), our
exploration challenges the conventional belief that increased SRL engagement invariably leads to
higher learning gains, irrespective of the subtopics. Our focus is on discerning whether the
correlation between SRL engagement and learning gains is consistent across various subtopics or
shows notable variations. Such investigations are crucial as they question the generalizability of
the efficacy of SRL strategies and offer insights into how SRL skills could be taught in a more
targeted, effective fashion. By exploring the complexities of SRL heterogeneity, our study aims
to make contributions in two ways. First, we expect that the insights gained from our study will
contribute to enhancing the development of more personalized and context-dependent Al-based
systems, thereby enhancing the overall effectiveness of SRL in computer-based learning
environments. Second, we anticipate that our findings will enrich existing SRL theories by
revealing the potential to account for variations in SRL-relevant strategies based on specific
subtopics.

Our research is structured into two closely related analyses. Analysis 1 employs a data-
driven approach to explore the heterogeneity of learning patterns in an SRL context across
subtopics, addressing two specific research questions (RQ1 and RQ2) using sequential pattern
mining. Analysis 2, which addresses RQ3, takes a theory-driven approach to examine the
heterogeneous relationship between time spent using metacognitive strategies (a type of SRL
skill) and learning gains (measured as the difference between posttest and pretest grades) across
subtopics. While Analysis 1 focuses on uncovering the varied nature of learning patterns in an
SRL context—questioning whether the frequency of employing specific learning patterns differs
based on the subtopic—Analysis 2 advances this inquiry by examining the extent to which

metacognitive strategies produced comparable learning gains across different subtopics.



Our research questions were as follows:

RQI. Are there variations in the frequency of learning patterns in an SRL context across

different subtopics?

RQ2. How does the association between learning gain (measured as the difference

between posttest and pretest grades) and the frequency of learning patterns in an SRL

context vary across different subtopics? Furthermore, how does the association between

prior knowledge (measured as the pretest grade) and the frequency of learning patterns

that are potentially associated with SRL-relevant strategies vary across different

subtopics?

RQ3. Does the relationship between time spent on metacognitive strategy use and

learning gain vary across different subtopics?
Theoretical Models of SRL

SRL is a comprehensive framework that includes cognitive, metacognitive, affective, and
behavioral facets of learning (Panadero, 2017; Schunk & Greene, 2017). Numerous theoretical
models have been developed to understand SRL (Efklides, 2011; Pintrich, 2000; Zimmerman,
1989; Zimmerman & Moylan, 2009), with several specifically designed to subdivide and
categorize the processes inherent to SRL. For instance, Zimmerman’s SRL model (Zimmerman
& Moylan, 2009) comprises three phases: forethought, performance, and self-reflection. In the
forethought phase, students engage in preparatory steps, including analyzing the task, setting
goals, and planning their strategies, to establish a foundation for their learning process. In the
performance phase, students execute the learning strategies by managing time, monitoring their

progress, and using metacognitive strategies to keep themselves motivated. Lastly, in the self-
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reflection phase, students assess and reflect on their goals, strategies, and plans to set their future
learning.

In Winne and Hadwin’s SRL model (Winne & Hadwin, 1998), which has a strong focus
on metacognition, students actively manage their learning by monitoring and employing
(meta)cognitive strategies. Specifically, this model highlights the goal-driven nature of SRL and
the impact of self-regulatory actions on motivation. Winne and Hadwin’s model also provides a
detailed examination of the interaction between various SRL components. The model
acknowledges that SRL occurs across phases but differs from many other models by also
modeling the information processes that occur within each phase (Azevedo et al., 2010; Winne &
Hadwin, 1998). Based on Winne and Hadwin’s model, students employ five distinct facets—
conditions, operations, products, evaluations, and standards—within tasks that unfold over four
phases. These phases include task definitions, goal setting, the enactment of study tactics, and
metacognitive adaptations to studying. Although there exist differences within a multitude of
SRL models (Efklides, 2011; Pintrich, 2000; Winne & Hadwin, 1998; Zimmerman & Moylan,
2009), especially in terms of the focus of the model and perspective the researchers are using to
understand SRL process (e.g., Zimmerman uses a socio-cognitive perspective of SRL and Winne
and Hadwin use the view of information processing theory), researchers agree that SRL consists
of different phases and subprocesses that students revisit repeatedly throughout learning. Further,
one common facet of SRL models is the use of metacognitive strategies during learning. Using
metacognitive strategies, such as task analysis, goal setting, selecting and applying strategies,
and monitoring and reflection on learning, are key components across many SRL models

(Panadero, 2017; Puustinen & Pulkkinen, 2001; Schunk & Greene, 2017).
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Supporting SRL in Computer-based Online Learning Environments

Investigating heterogeneity in an SRL context is particularly important not only because
it provides opportunities to observe the array of strategies students use to steer their own
learning, but also because it pinpoints areas where students may benefit from additional support
or instruction regarding SRL skills in computer-based learning environments. Research
demonstrated the critical role of SRL in online learning environments, showing a positive
relationship between employing these strategies and academic achievement (Jin et al., 2023;
Johnson et al., 2011; Richardson et al., 2012; Xu et al., 2023). However, computer-based
learning environments often demand higher levels of SRL skills compared to traditional in-
person courses, as students are required to independently monitor their learning processes and
make continuous adjustments as necessary. For instance, students must decide when and how to
engage with the course content, often with minimal guidance beyond the course’s structural
design (Lajoie & Azevedo, 2000).

This autonomy underscores the necessity for students to exhibit a significant capacity for
SRL skills to achieve the required learning objectives (Artino & Stephens, 2009; Barnard et al.,
2008; Broadbent & Poon, 2015; Kizilcec & Schneider, 2015). Therefore, providing
individualized support could be especially beneficial to students who lack SRL skills since those
students often confront challenges in navigating and succeeding within these learning
environments (Aleven & Koedinger, 2002; Graesser & McNamara, 2010; Greene et al., 2010). In
response to this, numerous studies attempted to foster and support students’ SRL skills in online
learning environments through a variety of approaches. These methods include open learner
models (Bull et al., 2014; Ferreira da Rocha et al., 2023; Guerra et al., 2016, 2018; Kay et al.,

2022; Law et al., 2017; Sun et al., 2023; Tacoma et al., 2018; Winne, 2021), dashboards (Alphen
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& Bakker, 2016; Hsiao et al., 2016; Mejia et al., 2017; Muldner et al., 2015), interventions
(Cicchinelli et al., 2018; Jansen et al., 2020; Miiller & Seufert, 2018; Zarei Hajiabadi et al.,
2023), metacognitive prompts (Engelmann et al., 2021; Pieger & Bannert, 2018; Sonnenberg &
Bannert, 2019), and others. For systematic literature reviews of SRL-supporting tools, see
Alvarez et al. (2022), Araka et al. (2020), Edisherashvili et al. (2022), Heikkinen et al. (2023),
Hooshyar et al. (2020), and Matcha et al. (2020). Although tools supporting SRL are crucial for
enhancing students’ use of SRL skills, existing methods usually adopt a one-size-fits-all
approach to SRL support, even across subtopics within various domains.

Moreover, among the tools designed to support students” SRL skills or behaviors, only a
few studies utilized recommendations on which specific SRL skills should be used to actively
guide students in developing their SRL capabilities (Du & Hew, 2022). For instance, Bodily et al.
(2018) developed a content recommender which aimed to support students identifying
knowledge gap by providing them summary of their mastery level of each concept. Additionally,
they designed a skill recommender that provides students with an overview of their
metacognitive strategy use, along with corresponding recommendations to support students’
application of these strategies in an introductory blended chemistry course, at the university
level. While Bodily et al. (2018) found that the majority of students who received the
recommendations had positive feedback, these SRL strategy recommendations could be further
personalized by suggesting effective strategies tailored to each subtopic in the course. Despite
advancements in SRL-supporting tools, there is still significant potential for these tools or Al-
based systems to offer students more personalized, content-dependent SRL support depending on
the subtopics.

Measuring and Analyzing SRL through a Temporal Perspective
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The effectiveness of SRL support is contingent upon the accurate measurement of
students’ SRL skills and SRL-related behaviors in computer-based learning environments (Q. Li
et al., 2020; Winters et al., 2008). However, measuring SRL skills and behaviors is a multifaceted
challenge (Greene & Azevedo, 2010; Hadwin et al., 2007; Winne, 2010; Winne & Perry, 2000).
Researchers suggest SRL measures should be viewed as both aptitudes and events (Bannert et
al., 2014; Winne, 2010). The aptitude-based approach focuses on students’ characteristics, such
as their cognitive, motivational, and emotional dispositions, and how these affect their ability to
regulate their learning, treating SRL as a set of relatively static traits. This approach often uses
questionnaires and structured interviews (Bannert et al., 2014; Winne, 2010). Some of the most
used questionnaires and structured interviews include the Motivated Strategies for Learning
Questionnaire (MSLQ) (Pintrich et al., 1991), the Self-Efficacy for Learning Form (SELF)
(Zimmerman & Kitsantas, 2007), and the Online Self-Regulated Learning Questionnaire (OSLQ)
(Barnard et al., 2008, 2010). However, despite its widespread use, the aptitude-based approach
has been critiqued for portraying SRL as a fixed trait (Azevedo, 2015; Veenman & van Cleef,
2019).

Moreover, the reliance on students’ perceptions and memories in questionnaires may not
accurately reflect their in situ behaviors and strategies in a learning situation. As Greene and
Azevedo (2010) argue, the aptitude-based approach can be incomplete since it does not account
for the dynamic nature of SRL, wherein learners continuously adapt their learning processes
within and between tasks in response to the unique demands of each. Similarly, trace data—
digital footprints that learners leave behind as they interact with online learning environments,
such as clicking on a link, submitting an answer, or spending time on a page (Brusilovsky, 2001;

Du et al., 2023)—also has inherent limitations in capturing learner’s self-perceptions. For
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instance, Choi et al. (2023) found substantial differences between students’ self-reported goals
and their goal-relevant behaviors reflected in trace data. However, this substantial misalignment
indicates that trace data can serve as a counterpoint to self-perception measures. While there
exist limitations in capturing SRL comprehensively using trace data alone, numerous studies
have highlighted the discrepancies between self-reported and trace data, demonstrating the value
of trace data in providing objective insights into student behaviors (Choi et al., 2023; Hadwin et
al., 2007; F. Han, 2023; Syal & Nietfeld, 2020; Winne & Jamieson-Noel, 2002). For instance,
studies discovered that student’s trace data were better predictors of student game performance
and academic performance than self-reported data (Syal & Nietfeld, 2020; Ye & Pennisi, 2022).
Likewise, studies increasingly rely on trace data because it captures actual student actions in
real-time, which could reduce the biases and inaccuracies often associated with self-reports
(Palanci et al., 2024).

Given the limitations of the aptitude-based approach to SRL measurement, researchers
have shifted towards examining SRL as a dynamic, temporal process (Fan et al., 2021; Saint et
al., 2021). Process models, for example, focus on students’ self-regulatory actions within specific
contexts or tasks, viewing SRL as an unfolding series of actions and decisions in response to
specific task demands (Cloude et al., 2022; Hardy et al., 2019; Klug et al., 2011; Winne & Perry,
2000). The process-based perspective has opened new ways to explore SRL but also introduced
new challenges (Molenaar et al., 2023). First, shifting to a temporal perspective requires
innovative methods for conceptualizing SRL’s multi-dimensionality and dynamic nature
(Azevedo, 2014; Jarveld et al., 2019; Jovanovic¢ et al., 2017). Reimann (2009) suggest that the
temporal conceptualization of SRL should extend beyond mere time-on-task, frequency, and

duration to also include the sequential order of learning events. Despite challenges with
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interpreting temporality and choosing measurement units, numerous studies investigated SRL as
a series of events over time to better understand its dynamic nature. For instance, Maldonado-
Mahauad et al. (2018) conceptualized SRL measurements by using questionnaire and process
mining to extract students’ learning interaction in massive open online courses. They identified
six different interaction sequence patterns and related each pattern with corresponding SRL
strategies grounded in literature. Although the authors further discuss the challenges that emerge
while extracting theory-based patterns from observed behaviors, their study advances SRL
research by providing a deeper understanding of how students engage with course content and
assessments through the identification of SRL strategies in massive open online courses.

The second challenge stems from handling complex trace data, which demands advanced
analytical techniques to extract meaningful insights into students’ use of SRL skills (Gasevi¢ et
al., 2015; Kizilcec et al., 2017; Siemens & Baker, 2012). In response to this challenge, numerous
temporally focused learning analytics methods to measure and analyze SRL emerged, each with
unique strengths and potential limitations. One method employed is lag-sequential analysis, as
Kuvalja et al. (2014) used. This technique is used to examine the timing and order of events, with
an emphasis on investigating the timing of actions, which can be beneficial for understanding the
connections between events. Methods such as process mining and epistemic network analysis
have been applied for a more holistic view of the SRL process. Process mining is a technique
used to analyze and visualize sequences of processes based on event logs (Bogarin et al., 2018;
Saint et al., 2021; Sobocinski et al., 2017). Despite its limitation of not allowing a global
statistical test for group differences and varying individual weights, process mining can offer a
detailed view of the sequence and flow of SRL events. Meanwhile, epistemic network analysis,

which is grounded in epistemic frames theory (Shaffer, 2004, 2006), is applied to analyzing log
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or trace data in individual and collaborative learning settings to help understand students’
temporal learning behaviors. As Paquette et al. (2021) noted, epistemic network analysis
provides both statistical tests and networked visualizations for qualitative interpretations,
overcoming some process mining limitations. Additionally, methods like constrained Sequential
Pattern Discovery (cSPADE) (Kang et al., 2017; Ng et al., 2023; Wong et al., 2019; Zhichun Liu
& Jewoong Moon, 2023), another form of sequence analysis, and the combination of process
mining and clustering (Maldonado-Mahauad et al., 2018) provide innovative ways of capturing
and analyzing the temporal and sequential characteristics of SRL.

However, another complication arises in choosing temporally focused analytical
methods: deciding on the analytical direction—whether top-down or bottom-up—in which SRL
skills and behaviors could be measured (Azevedo, 2014; Panadero et al., 2016). For instance, the
sequential pattern mining approach (Zaki, 2001), being data-driven, and coherence analysis
(Segedy et al., 2015), being theory-informed, provide unique insights into students’ SRL-related
behaviors. These two methods differentiate themselves in their fundamental analytical
approaches. Sequential pattern mining is a bottom-up method that uncovers patterns directly
from the observed data. On the other hand, coherence analysis exemplifies a top-down approach
that leverages existing theoretical frameworks to conceptualize and interpret students’
metacognitive behavior.

Sequential pattern mining is a data mining technique to uncover sequential patterns or
event sequences in large databases (J. Han et al., 2022). This method analyzes frequent patterns
of events to identify recurring patterns, such as transactions, time-stamped events, or activities.
Unlike association rule mining, which focuses on co-occurring events, sequential pattern mining

specifically targets the sequential relationship between events, emphasizing the temporal
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ordering and dependencies within a sequence. Sequential pattern mining also differs from lag-
sequential analysis, which examines the strength and statistical relationships, such as transitional
frequencies, between events at any given lag. Specifically, lag-sequential analysis focuses on
calculating the probabilities of transitions between individual events or activities, making it
effective for understanding the likelihood of one event following another in a sequence. In
contrast, sequential pattern mining aims to identify frequent sequences of events within the entire
dataset. It detects patterns that occur frequently, providing insights into common learning
pathways and repeated behaviors within the dataset. There is, however, a great deal of overlap
between the two methods, since the events within a sequential pattern are, by definition, in order
and thus contain transitions. In our study, the primary interest lies in detecting frequent learning
patterns across the entire dataset. Sequential pattern mining is well-suited for this purpose as it
can uncover the most common sequences of learning activities, offering a broader view of
learning behaviors.
Metacognitive Learning Strategies and Learning Patterns

Metacognitive strategies, a central component of SRL, encompass students’ deliberate
use of learning strategies to regulate their own learning process (Panadero, 2017). Identifying
and understanding learning patterns associated with these strategies are crucial, since they can
serve as valuable indicators of SRL usage, which can inform the design of Al-driven targeted
interventions to improve students’ SRL skills. Several studies have used sequential pattern
mining to examine students’ sequential learning patterns and behavior in computer-based online
learning environments (S. Li et al., 2020; Mirriahi et al., 2016; Munshi et al., 2018; Shirvani
Boroujeni & Dillenbourg, 2019; Siadaty et al., 2016; Zhang & Paquette, 2023). For instance,

research in game-based learning environments has identified patterns in students’ gameplay
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strategies or navigation sequences over time (Kang et al., 2017; Kang & Liu, 2022; Kinnebrew &
Biswas, 2012; Rowe et al., 2015). Kang et al. (2017) and Kang and Liu (2022) utilized cSPADE
to explore students’ problem-solving behavior patterns within a serious game called Alien
Rescue. The study focused on the behavior patterns of different performance groups and revealed
distinct problem-solving strategies between high- and low-performing students.

In learning management systems, Poon et al. (2017) used sequential pattern mining to
identify navigational patterns. Such pattern discovery in diverse learning environments assists in
providing feedback to learners for a successful learning experience and offers insights for
designers to enhance the learning environments (Perera et al., 2009). Regarding the application
of sequential pattern mining in massive open online courses, Wong et al. (2019) utilized cSPADE
to analyze log data, exploring differences in interaction patterns between students who viewed
SRL prompt videos and those who did not. The findings indicated that SRL prompt viewers
engaged with more course activities and exhibited a more consistent sequential pattern in
completing them than their counterparts (Wong et al., 2019).

Building on this analysis of learning patterns, research further demonstrated how
analyzing metacognitive strategies provides valuable insights into students’ engagement in SRL
(Segedy et al., 2015). For instance, coherence analysis (Segedy et al., 2015) provides a more
theory-driven approach to understanding SRL compared to other learning analytics methods that
are more data-driven. This approach measures metacognitive strategies during SRL by analyzing
the coherence (i.e., how well two activities work together in sequence) of students’ actions
observed in online learning contexts. Focusing on coherence allows researchers to see beyond
simple action and reaction, highlighting the importance of consistent, strategic behaviors in

successful learning. The idea of measuring SRL skills via coherence analysis can be adapted to
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conceptualize numerous aspects of students’ use of metacognitive strategies, tailored to specific
learning settings and research contexts.

Numerous studies applied coherence analysis to assess students’ employment of
metacognitive strategies in online learning settings. For example, Bosch et al. (2021) examined
the links among verbalized metacognition and learning, confusion, and metacognitive problem-
solving strategies. Zhang et al. (2020) used coherence analysis in a computer-based learning
environment called Betty’s Brain to investigate the relationship between confusion and
metacognitive strategies. Expanding upon their earlier work, Zhang et al. (2022) further utilized
coherence analysis to explore the evolution of metacognitive strategy use, advancing the
understanding of how metacognitive strategy use develops over time.

Study Participants and Research Context
Participants

We gathered behavioral data and survey responses from 210 college students who learned
four different subtopics in statistics using a web-based learning environment. We used two
sampling methods: in one sample, we recruited 112 students locally from a public research
university in the Midwest region of the United States. Students who participated through this
method received course credit upon completing the study. In the second sample, we recruited 98
students on Prolific, an online crowdsourcing platform that enables research with a diverse
sample of students from U.S. colleges and universities (Peer et al., 2021). While Prolific allows
researchers to filter potential participants based on various criteria, including demographic
variables, we only restricted our selection to undergraduate students from either 2-year or 4-year

community colleges or universities for eligibility in our study. The Prolific sample represented
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62 unique colleges/universities, including 11 community colleges. We compensated each Prolific
participant who completed our study with $15.
Ethics, Consent and Permissions

Before participating, students completed an IRB-approved consent form (IRB protocol
#21019).
Demographics

We present students’ self-reported demographic information to offer an insight into the
diversity of our participants, even though not all demographic variables were examined in our
analysis. Sample characteristics also serve to inform generalizability in meta-analytic research
based on studies such as this one. Students self-described demographic characteristics, resulting
in some fine-grained characteristics that had to be grouped together to protect privacy. Students’
demographic information regarding race and ethnicity, gender, English as a first language, age,
and class standing is described in the Appendix Tables 1-5.
Research Context

We developed a self-guided online learning system that allowed students to navigate
educational content at their own pace. The study, spanning approximately 90 minutes, involved
students engaging with the system to learn about introductory statistics. The participants began
the study by completing a demographics survey. After completing the survey, participants took a
pretest and were asked to guess their performance in a previous version of the same test without
access to their actual scores. Following this, students engaged in a self-paced learning session for
60 minutes, during which their time remaining was displayed by a timer that operated
exclusively during active software interaction to promote focus. The self-paced online learning

environment included four distinct, illustratively presented subtopics with associated icons
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(Figure 1). Each subtopic module included one reading, quiz, set of worked examples, and
summary. Although students were not required to complete all the subtopics during the learning
session, the platform allowed students to revisit and complete any activity multiple times,
catering to their individual learning needs and preferences. As a final step in the study,
participants took a posttest, which allowed us to measure learning gains by calculating the
difference between their pretest and posttest scores.

We developed pretest and posttest to evaluate knowledge on four subtopics covered in the
learning material, with each test comprising 12 questions—three for each subtopic. In particular,
pretests were designed to assess students’ prior knowledge across 4 subtopics that were covered
in the learning material. We calculated the correlation between students’ actual pretest grade and
their pretest score that they made immediately after taking the pretest (» = .447, p <.001), as
verification that students’ performance on the pretest aligns with their self-assessed
understanding. Such alignment suggests that the pretest measures a construct that students are
aware of, which could indirectly support its validity. From a convergent validity perspective,
although self-assessed knowledge and actual knowledge differ, they are (ideally) closely related
such that a positive correlation suggests the related constructs are indeed related. The correlation
value of .447 does suggest a moderate positive association between students’ actual pretest
grades and their immediate guessing scores. This correlation serves as evidence that the pretest
accurately reflects students’ understanding of the concepts it is intended to measure, thereby
aligning the pretest’s objectives with students’ perceptions of their own knowledge. Additionally,
we report the correlation between pretest and posttest (» = .480, p < .001); although we would
not expect the correlation to be perfect, since some students learn more than others, this

correlation serves as evidence that pretest and posttest measure the same knowledge as intended.
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Pretests and posttest were also designed to be as similar as possible in difficulty and
subtopic coverage. To this end, we created two versions of the test, A and B, which were
interchangeable as either pretests or posttests. To ensure similar difficulty levels for tests A and
B, we calculated the percentage of students who answered each question correctly. This
information is provided in the Appendix Table 6 along with the full questions from tests A and B.
While most pairs of questions had similar correct response rates, indicating comparable difficulty
levels for those specific questions in both tests, we noted some variations that suggest slight
differences in difficulty. Despite these variations, tests A and B alternately featured questions
with higher correct response rates. Therefore, while not all pairs of questions achieved exactly
the same difficulty level, we ensured that tests A and B maintained a similar level of difficulty
overall. Additionally, to minimize any ordering effects between tests A and B and ensure the
reliability of our measurements, we employed a counterbalanced test order, where students were
randomly assigned one of two versions: A or B. Students in version A began with test 4 as their
pretest and test B for their posttest.

The test order was then reversed in version B to reduce effects due to test difficulty
differences. Specifically, the random assignment of students to different test order neutralizes
potential differences in test difficulty as it relates to statistical analysis of learning. Random
assignment of test order evenly distributes potential differences in test difficulty across all
students, thereby mitigating bias on average (i.e., in statistical point estimates of the mean)
despite individual student-level biases in the learning gain estimate. Estimates of learning are
therefore conservative, since the point estimate is unbiased but any potential test difficulty
differences contribute variance to the estimate, decreasing statistical confidence. To establish

content validity, we also asked four content experts (i.e., individuals with substantial post-
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graduate training in statistics) to match the randomly shuffled questions from tests A and B,
which were interchangeably used as pretests and posttests, as described above. The experts were
tasked with aligning each question from Test A to a corresponding question from Test B based on
the statistical concepts they believed each question measured. All four experts achieved a
correctness level of 100%, providing evidence that the questions from each test measure similar
knowledge. We included full questions from Tests A and B in Appendix Table 6 to detail the

structure and content of both the pretest and posttest.
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Figure 1
Screenshot of a main menu of the learning software (top) and an illustration of an incorrect quiz

question attempted by a student (bottom).
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Scenario: The job placement center at your school surveys all
graduating seniors at the school. Their report about the survey
provides numerical summaries such as the average starting salary
and the percentage of students earning more than $30,000 a year.

Are these statistical analyses descriptive or inferential?

Your response:

Both descriptive and inferential

Incorrect

Note. If a student’s quiz answer was wrong, we displayed that information, but did not display
the correct answer.
Learning Activities and Subtopic Characteristics

The learning session comprised four distinct modules, each addressing a unique subtopic
within introductory statistics. One subtopic, referred to as Terminology for concision, included
comprehensive explanations and descriptions to enhance understanding of fundamental statistical

concepts. It covered various related concepts, including descriptive and inferential statistics, the
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distinction between sample and population, the concept of margin of error, and its basic
calculations. Furthermore, the subtopic contained the categorization of data types into categorical
(including nominal and ordinal variables) and quantitative (comprising discrete and continuous
variables). The Graphs subtopic focused on interpreting various graphs, particularly histograms.
Emphasis was placed on comprehending histograms representing quantitative variables and
identifying their distribution as unimodal, bimodal, or symmetric. The Calculation subtopic
entailed computations of central measures, such as mean and mode, and dispersion measures,
including variance and standard deviations. Finally, the Amalgamation subtopic covered various
aspects like response and explanatory variables, confounding variables, and associations.
Students also learned how to interpret scatterplots, understand correlation and correlation
scatterplots, and grasp the properties of correlations. The Amalgamation subtopic necessitated a
mix of competencies intrinsic to other subtopics, including the interpretation of graphs and the
memorization of terminologies.

Each module comprised four distinct learning activities: reading, quizzes, examples, and
summaries. Students had the flexibility to select the order of these activities, irrespective of the
subtopic. Every activity served a distinct learning purpose. The reading activity, typically four to
six pages per subtopic, provided comprehensive information about the subject matter. The quiz,
consisting of around 10 questions, allowed students to assess their understanding of the material
without any time limitations. Incorrect answers were flagged, but the correct answers were not
revealed, promoting self-guided learning. The examples provided more than just correct answers
to example questions; they demonstrated the proper problem-solving methods. Finally, the
summary provided a concise recap of each module’s essential learning materials, allowing

students to review each subtopic’s material quickly.
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Analysis 1: Employing a Data-driven Approach

Data

We used 210 participants’ trace data from the online learning system, which recorded
their learning activities in real-time for our study. These trace data contained types of activities
that students engaged in, activity durations, and test/quiz results recorded during the students’
interactions with every stage of the software. In analysis 1, we leveraged sequential pattern
mining and linear mixed-effect regressions. To implement the sequential pattern mining, we first
transformed student’s log data into a long format where every event was identified by a student
ID, a learning activity (i.e., Read, Quiz, Example, and Summary), and an element ID (indicating
the order of the learning activities). The element ID is crucial as it specifies the chronological
order in which each learning activity occurred. For instance, in a learning sequence of Read —
Quiz — Example, the “Quiz” learning activity would be assigned an element ID of 2 to indicate
that it was the second activity in the sequence. Then, we transformed students’ log data into two
different long formats. The first, the overall learning activity list, contained the sequence of
learning activities that students engaged in throughout the entire learning session, regardless of
the subtopic. For the second long format data, subtopic-specific learning activity list, we
extracted students’ learning activities in relation to each subtopic (Terminology, Graphs,
Calculation, and Amalgamation) individually. Therefore, we had four different subtopic-specific
learning activity list for each subtopic. This transformation was necessary to enable us to
investigate heterogeneity in learning patterns within SRL context across subtopics.
Analytic Framework and Methods

In this section, we provide a brief overview of our analytical approach, followed by

detailed descriptions of each stage to help readers follow the methodological pipeline. The initial
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step involved using sequential pattern mining on students’ overall learning activity sequence data
to unveil commonly occurring learning patterns. We then identified and associated the frequently
observed learning patterns potentially relevant to SRL-relevant strategies, as outlined in Table 1.
This first step is detailed in the Sequential Pattern Mining subsection below. Once this
groundwork was laid, we tallied each learning pattern’s occurrences across subtopic-specific
learning activity lists to examine the variations within the use of learning patterns within this
SRL context across subtopics. Then, as a second step, we employed the frequencies of learning
patterns potentially related to SRL-relevant strategies as variables within mixed-effects
regression models (described in the Analyzing Learning Patterns with Linear Mixed-Effects
Regression subsection) to address our research questions (RQ1-2).
Sequential Pattern Mining

We utilized the cSPADE algorithm (Zaki, 2000, 2001) for sequential pattern mining on
our dataset. Specifically, we used the R package arulesSequences to implement cSPADE and
discover frequent sequential learning patterns. cSPADE requires data in a long format and offers
the flexibility to define parameters, such as the minimum support, which represents the threshold
for the proportion of students utilizing a pattern for it to be considered frequent. Another
constraint is the maximum gap, which sets the largest allowable time difference between
elements in a sequence. Given that the appropriate settings for these parameters can vary based
on the research context and objectives, many studies that leveraged cSPADE for discovering
frequent patterns in the educational research domain determined these values based on the
specifics of their research context (Kang et al., 2017; Kang & Liu, 2022; Ng et al., 2023; Wong
et al., 2019; Zhichun Liu & Jewoong Moon, 2023). In our study, we used students’ overall

learning activity as a data input for cCSPADE with minimum support value of 0.4 and a maximum
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gap value of 1. This minimum support value ensures that we only include sequences used by
more than 40% of students in our results. The maximum gap value sets the largest allowable time
difference between consecutive elements in a sequence. In our study, we defined a maximum
gap value of 1, indicating that a sequence of two activities of interest should have at most one
other activity between them. This particular constraint was chosen to align with our measurement
of SRL constructs via coherence analysis for answering RQ2. In coherence analysis, we utilized
a 5-minute window timeframe (as outlined in Analysis 2); for cSPADE, we observed that
students, on average, spent approximately three minutes per learning activity, and thus there
would typically be 2—3 activities overlapping with any given 5 minutes (i.e., a maximum gap of
1), approximately matching the timeframe used for coherence analysis.

After applying cSPADE to the overall learning activity list, we obtained the most
common sequences of learning activity patterns that students engaged in and the corresponding
support values, which indicates the proportion of students who engaged in each frequent learning
pattern at least once. For instance, an example of a frequent learning pattern could be Read —
Quiz with support value .75, which implies that 75% of the students engaged in a reading activity
then a quiz activity at least once throughout the entire learning session.

Associating Frequent Learning Patterns to Potential SRL-relevant Strategies

We examined frequent learning sequences to relate these recurring learning patterns to
potential SRL-relevant strategies that are theoretically grounded in the literature (Corrin et al.,
2017; Sonnenberg & Bannert, 2015; Zimmerman & Pons, 1986). We mainly adopted
Zimmerman’s 14 classes of SRL strategies (Zimmerman & Pons, 1986) as a framework to relate
each frequent learning pattern to a potential SRL-relevant strategy. Zimmerman and Pons

developed these 14 types of SRL strategies to assess students’ application of SRL in naturalistic
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settings. In their SRL strategy schema, they defined SRL strategy as actions directed at acquiring
information or skills, such that the actions involve agency, purpose (goals), and instrumentality
self-perceptions by a learner (Zimmerman & Pons, 1986). Zimmerman and Pons’s SRL
strategies focus on evaluating students’ active SRL behaviors in terms of their actions. While
Zimmerman’s three-phase SRL model (Zimmerman & Moylan, 2009) describes SRL through
distinct phases such as forethought, performance, and self-reflection, the classification of 14 SRL
strategies delves deeper into evaluating students’ active application of these strategies. Notably,
these strategies, particularly those centered on action, may align closely with the performance
phase of Zimmerman’s model, where learners are actively employing SRL strategies and
behaviors, as opposed to phases before learning (i.e., forethought) or after (i.e., reflection).
Given our focus on investigating students’ potential use of SRL-relevant strategies based
on their learning patterns during their active learning phase using trace data from computer
interactions, Zimmerman’s SRL strategy classifications serve as a fitting framework for our
study—provided that we operationalize the potential use of SRL-relevant strategies in terms of
behaviors that are possible in our computer-based learning context. SRL encompasses not just
the observable use of SRL strategies by students, but also their motivational aspects and self-
perceptions, which are inherently internal and often difficult to measure solely through trace data
extracted from online learning platforms. However, capturing both of these aspects, especially
students “agency, purpose, or instrumentality self-perceptions” as described by Zimmerman and
Pons, is challenging when only trace data is available. The feasibility of collecting self-reported
data on SRL varies, making it essential, as we aim in this study, to devise methods to measure

and conceptualize SRL solely through the analysis of trace data. In this study, we adopt a
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process-based perspective to understand SRL, focusing on investigating students’ observable
actions as inferred from trace data.
Therefore, we note that our approach to conceptualizing the potential usage of SRL-

2 ¢C

relevant strategies does not encompass students’ “agency, purpose, or instrumentality self-
perceptions,” as directly measured by self-reported surveys, which are subjective to student’s
own beliefs and perceptions. However, our SRL-relevant strategy conceptualization does aim to
capture students’ agency, purpose, or instrumentality to the extent that they are apparent through
trace data, rather than through self-reported data. Although trace data cannot capture all aspects
of SRL, at least not equally, it can still provide valuable insights into students’ agency and
purpose. For instance, frequent and purposeful engagement with specific learning strategies can
indicate a high level of agency and goal orientation. Learning patterns such as regular revisiting
of reading or repeating quiz takings can reflect a student’s purpose and strategic approach
towards achieving their goals.

Table 1 details each frequent learning pattern, its support value, and potentially associated
SRL-relevant strategies. For instance, the most prevalent learning pattern identified was the Read
— Quiz, which could potentially imply the use of seeking information SRL-relevant strategy.
Further, we provide a detailed description in Table 1 on how each learning pattern is potentially
associated with SRL-relevant strategies. We highlight that the frequent learning pattern may
potentially imply student’s use of SRL-relevant strategies, thus does not strictly indicate
student’s use of SRL strategies. For instance, the Read — Quiz sequence could potentially imply
students’ use of seeking evaluation strategy (Zimmerman & Pons, 1986). When learners read

material and then take a quiz, they are assessing their comprehension and recall of the content.

By taking the quiz, students can evaluate the quality or progress of their understanding based on
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their performance. Learning patterns such as Quiz — Read and Quiz — Summary, where a
student takes the quiz and goes on to reading or summary, could potentially be associated with
student’s use of keeping records and monitoring (Zimmerman & Pons, 1986), seeking
information (Zimmerman & Pons, 1986), and search (Sonnenberg & Bannert, 2015). Students
engaging in these learning patterns are likely to seek information relevant to their quiz attempts
to enhance their understanding. Further, these learning patterns could potentially indicate that
students are aware of knowledge gaps found by taking quizzes and actively search for specific
material to address these gaps.

We potentially related Quiz — Quiz learning pattern with rehearsing and memorizing
(Zimmerman & Pons, 1986) and repeating (Sonnenberg & Bannert, 2015) SRL-relevant
strategies. Engaging in continuous self-assessments allows students to rehearse and help them
identify errors and knowledge gaps. Moreover, the act of retaking quizzes aligns with the SRL-
relevant strategy of repeating, as it provides continuous practice and aids in the deepening of
understanding. Quiz — Examples learning pattern could potentially indicate the use of Aelp-
seeking (Corrin et al., 2017), keeping records and monitoring (Zimmerman & Pons, 1986), and
seeking information (Zimmerman & Pons, 1986) SRL-relevant strategies. This learning pattern
can possibly imply students’ proactive efforts to clarify doubts by seeking help through
reviewing example questions like those in the quiz. By referring to examples after quizzes,
students monitor their performance and track progress, ensuring they comprehend the material.
We associated Read — Examples potentially with elaboration (Sonnenberg & Bannert, 2015)
and seeking information (Zimmerman & Pons, 1986) SRL-relevant strategies. Elaboration
involves deeper processing through activities such as paraphrasing, connecting, and inferring

(Sonnenberg & Bannert, 2015). This learning pattern possibly suggests that students engage in
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detailed examination and integration of the material by connecting reading content with practical
examples. Additionally, by going over the examples, students actively seek relevant information
to enhance their understanding.

Visualizing frequent learning patterns among students can be a challenging task,
especially given the variability in sequence lengths and the number of elements within sequences
depending on the research objectives. We used a Sankey diagram (Figure 2) to illustrate the
frequent learning patterns potentially linked to specific SRL-relevant strategies as outlined in
Table 1. The diagrams’ links effectively display the sequence in which each learning pattern is
employed within SRL context. The width of each link signifies its support level; broader links
indicate a higher number of students engaging in a specific learning pattern.

Figure 2

Sankey Diagram Displaying Students’ Usage of Frequent Learning Patterns

Read D

SurnmaryD

Quiz A

Example

DRead Quiz

Note. To interpret the diagram, begin from the leftmost label, Quiz. This starting point branches

into four distinct frequent learning patterns: transitioning from Quiz to Read, Quiz to Summary,

Quiz to Example, and Quiz to another Quiz.
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Proposed Alignment Between SRL-relevant Strategy and the Frequent Learning Patterns Found

via the cSPADE Algorithm

Frequent Support SRL-relevant strategy Description
Learning (specific subcategory)
Pattern
Read — 0.85 - Seeking evaluation When students read material and then
Quiz (Zimmerman & Pons, 1986)  take a quiz on it, they are evaluating
their understanding and recall of the
material they just read. After taking
the quiz, they can gauge the quality or
progress of their work based on their
performance.
Quiz — 0.77 - Keeping records and Students taking the quiz and then
Read monitoring (Zimmerman & reading the main material signifies
Pons, 1986) that students are aware of the
- Seeking information knowledge gap and might specifically
(Zimmerman & Pons, 1986)  look for information to address the
- Search (Sonnenberg & gaps.
Bannert, 2015)
Quiz — 0.69 - Rehearsing and When students encounter the first
Quiz memorizing (Zimmerman &  quiz, they are prompted to recall
Pons, 1986) specific information. By the second
- Repeating (Sonnenberg & quiz, they are not just accessing their
Bannert, 2015) foundational understanding but also
relying on memory from the previous
quiz attempt.
Quiz — 0.63 - Keeping records and After taking the quiz, students are
Examples monitoring (Zimmerman & trying to make an effort to gather
Pons, 1986) specific, detailed information on how
- Seeking information to approach or solve problems
(Zimmerman & Pons, 1986)  correctly.
- Help-seeking (Corrin, de
Barba, & Bakharia, 2017)
Read — 0.57 - Seeking information Ilustrates student-initiated efforts to
Examples (Zimmerman & Pons, 1986)  seek additional knowledge from
- Elaboration (Sonnenberg & additional resources to bolster their
Bannert, 2015) learning. Students are actively
seeking clarity and deeper
understanding as Examples provides
them with detailed worked-out
problems with explanations on how to
approach solving the problem.
Quiz — 0.45 - Keeping records and Students are not only keeping records
Summary monitoring (Zimmerman & of their quiz performance but are also

Pons, 1986)

actively seeking to enhance their
understanding through the
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- Seeking information supplementary information provided
(Zimmerman & Pons, 1986)  in the summary. This dual approach
- Search (Sonnenberg & allows them to both identify areas of
Bannert, 2015) improvement from their quiz results

and address those areas by going
through a summary.

Note. The left most column lists the frequent learning patterns, followed by a column indicating
their support values, which reflect the prevalence of these patterns among the students. The next
columns detail the potential association with corresponding SRL-relevant strategies found in the
literature and provide descriptions of these possible associations.
Analyzing Learning Patterns with Linear Mixed-Effects Regression

Using students’ subtopic-specific learning activity lists, we counted the occurrence of
each frequent learning pattern for each subtopic (Table 1). By examining the frequencies of
learning patterns across subtopics, we determined whether students adjusted their learning
patterns with varying frequency across subtopics. We then employed these frequencies of
subtopic-specific learning patterns as variables in a linear mixed-effects regression. However, as
discussed in the previous section, one of the limitations of using cSPADE is that the results (i.e.,
the frequent learning patterns) from cSPADE do not afford an inferential, statistical
interpretation. In this study, we overcame this limitation by arranging the cSPADE results such
that they are suitable for follow-up linear mixed-effects regression modeling. All models
included subtopic-wise frequency of learning patterns and learning gain as dependent variables.
For all models, we checked the assumptions of linear regression (linear relationship,
independence, homoscedasticity, and normality). All regression models included a random
intercept for participant ID to account for the hierarchical nature of the data (i.e., many observed
behaviors per student). Such an approach allowed us to consider individual differences at the

baseline level. We report standardized betas as effect sizes in situations where predictors and
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outcomes were continuous, or partially standardized betas where predictors were categorical
(e.g., subtopic ID).

For RQ1, we analyzed the occurrences of learning patterns as dependent variables and
subtopic names (treated as factor variables) as independent variables. For RQ2, we also modeled
each learning pattern frequency as the dependent variable in a model, but included different
predictor variables: type of subtopics, learning gain, and prior knowledge (as measured by
pretest score). We note that our focus is to investigate whether we observe variations in the
frequencies of learning patterns within an SRL context across different subtopics. Therefore, to
address our research question, we used learning patterns as dependent variables, rather than
predictors. Learning gain was measured by taking the difference between students’ posttest and
pretest grades to assess how much students improved in their understanding of the study material
throughout the learning session. We also considered interactions between these predictors.
Specifically, we hypothesize that the influence of prior knowledge and learning gain on the count
of learning patterns might vary depending on the study subtopic. Thus, we included interaction
terms between the study subtopic and the other three predictors. These terms allowed us to assess
whether the heterogeneous effects of pretest score and learning gain on the occurrence of
learning patterns are explained by the specific subtopic under study. We note that in RQ2, we are
interested in investigating whether students’ prior knowledge, learning gain, and their
interactions across subtopics have predictive power regarding engagement with learning patterns
in an SRL context. Therefore, learning gain and prior knowledge are used as independent
variables, allowing us to explore how variations in these factors are associated with using

learning patterns.
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Analysis 1 Results

Before answering RQ1 and RQ2, we present an overview of learning patterns along with
potentially associated SRL-relevant strategy usage across subtopics to examine whether there
was a varied distribution of these learning patterns with possibly related SRL-relevant strategies
among students within different subtopics (Table 2). Specifically, the frequencies indicate the
proportion of students who engaged in each learning pattern at least once, across different

subtopics. Across all subtopics, we found that students predominantly engaged in the learning

pattern of Read — Quiz which we propose is associated with the SRL-relevant strategy of

seeking evaluation (as shown in Table 1). However, the extent to which students engaged in this
learning pattern varied notably across different subtopics. For instance, engagement rates were
observed to be 79.4% for Terminology, 65.1% for Graphs, 58.1% for Calculation, and 66.8% for
Amalgamation. Further, our analysis revealed that certain learning patterns exhibited higher
frequencies in specific subtopics compared to others. For instance, the learning pattern of Quiz
— Quiz, which we propose is associated with the use of rehearsing and memorizing and
repeating SRL-relevant strategies was found to be a common learning pattern within the Graphs
subtopic (34.0%). In contrast, the Read — Example learning pattern, which we propose is
associated with the seeking information SRL-relevant strategy, was particularly prominent within
the Calculation subtopic, accounting for 31.0% of the learning patterns students engaged in. The
observed subtopic-specific learning patterns possibly associated with SRL-relevant strategies
hint at the possibility that students may adapt their choice of learning patterns based on the
subtopic they are studying. For instance, the prevalence of the learning pattern, Quiz — Quiz,
which we propose is associated with the use of rehearsing and memorizing and repeating SRL-

relevant strategies in the Graphs subtopic might suggest that recalling specific information
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during the initial quiz, and then reinforcing that memory in subsequent quizzes are particularly
beneficial for understanding graphical data. Meanwhile, the high occurrence of the Read — Quiz
learning pattern, possibly implying the use of seeking information and elaboration SRL-relevant
strategies, indicates that students may benefit from seeking detailed examples after their readings
to further consolidate their understanding, especially when dealing with computational or
problem-solving tasks.

We conducted an additional analysis to investigate the mindfulness of students’
engagement in these learning patterns in SRL context. To this end, we randomly shuffled the
order of learning activities that students engaged in for each subtopic using the second long
format data, which is described in the Data subsection of the Analysis 1: Employing a Data-
driven Approach section. Specifically, we shuffled each subtopic’s learning activity list using the
“shuffle” function in Python. Shuffling each subtopic’s learning activity list simulates a null
distribution in which students engage in the observed activities with no intentionality, i.e.,
without selecting their next activity based on previous activities. We adopted the same approach
for calculating the frequencies of learning patterns for each subtopic, as provided in Table 2,
when calculating the frequencies of each learning pattern using the shuffled data. By comparing
the frequencies of learning patterns in the original data with those in the shuffled data, we aimed
to investigate whether students’ engagement in learning patterns was intentional or merely
random.

Differing frequencies between randomly shuffled and original data in learning sequences
would provide insight into the intentionality behind students’ actions. The rationale behind this
comparison is that intentional actions tend to produce consistent learning patterns that are

unlikely to occur by chance. For instance, if students are consciously engaging in learning
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patterns (e.g., intentionally following a Read — Quiz sequence to check their understanding), we
would expect the frequency of such learning pattern in the original data to differ from it in the
shuffled data, where the order of actions is randomized. This difference suggests that students are
deliberately choosing to engage in a specific learning pattern. In contrast, if students are
engaging in learning patterns without clear intention—perhaps clicking on activities without
much thought—we would expect the frequencies in the original and shuffled data to be similar.
This similarity would indicate that the sequences are not the result of intentionally selecting an
action based on the previous action(s).

This approach to discerning whether students’ learning pattern is happening by a random
chance or not is taken from research on sequence mining and permutation tests, which are used
to identify patterns that significantly deviate from what would occur by chance (Pinxteren &
Calders, 2021; Tonon & Vandin, 2019; Zhang et al., 2024). Specifically, Zhang et al. (2024)
demonstrated the effectiveness of permutation tests in identifying statistically significant and
nonredundant patterns in educational data. The permutation test, as described by Zhang et al.
(2024), is directly analogous to our approach since it involves creating a baseline of random data
against which the original data is compared. In their study, permutation tests are used to shuffle
the sequence of events in educational data to determine which patterns occur more frequently
than would be expected by chance. This approach filters out random patterns, highlighting those
that are statistically significant and likely to represent intentional patterns.

Our analysis revealed differing frequencies for learning patterns across subtopics. The
frequency of the learning sequence (Read — Quiz) was 79.4% in the original data but dropped to
34.8% in the randomly shuffled data. This difference in frequencies implies that students were

more likely to engage in the Read — Quiz sequence intentionally rather than randomly.
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Similarly, decreased frequencies for the Read — Quiz sequence across all subtopics in the
shuffled data further support the idea that students’ engagement in this sequence was deliberate
and less mindless. Furthermore, we observed varying frequencies in all other learning patterns as
well. For instance, for certain specific learning pattern such as Quiz — Read, we observed
increased frequencies in the shuffled data, suggesting that students engaged in these learning
patterns less frequently than expected by random chance in the original data. Moreover, we
observed similar frequencies in a few cases of the learning patterns across both the original and
shuffled data, suggesting that certain sequences might be less dependent on intentionality.
Although we acknowledge that some students might have engaged in these learning patterns
mindlessly, the consistent differences in frequencies between the original and shuffled data
suggest that a substantial portion of students were engaging in these learning patterns
intentionally.

Table 2

Frequencies of Learning Patterns across Subtopics

Sequence  Terminology Terminology Graph Graph Calculation  Calculation Amalgamation Amalgamation
(shuffled) (shuffled) (shuffled) (shuffled)

Read — 79.4% 34.8% 65.1% 34.0% 58.1% 32.5% 66.8% 28.8%

Quiz

Quiz — 17.1% 32.4% 23.4% 37.3% 22.7% 30.0% 15.4% 28.4%

Read

Quiz — 28.1% 32.0% 34.0% 33.0% 25.1% 26.6% 21.2% 22.1%

Quiz

Quiz — 47.6% 24.8% 33.0% 25.8% 23.3% 20.2% 32.7% 21.1%

Examples

Read — 25.2% 23.8% 23.4% 21.5% 31.0% 18.7% 23.6% 23.1%

Examples

Quiz — 27.1% 35.2% 24.4% 28.3% 24.1% 25.6% 22.1% 23.6%

Summary




40

Note. The percentages do not add up to 100% for each subtopic because the frequencies indicate
the proportion of students engaged in each learning pattern across subtopics. The corresponding
column labeled “shuftled” for each subtopic indicates the frequency of learning pattern
calculated using shuffled data.
RQI: Relationship Between Frequency of SRL-relevant Strategies and Subtopic

Across different subtopics, we found heterogeneous frequencies of learning patterns
potentially associated with SRL-relevant strategies such as Read — Quiz, Quiz — Quiz, and
Quiz — Summary, depending on the subtopic of the study. The Read — Quiz learning pattern,
possibly linked with the SRL-relevant strategy of seeking information, was significantly less
prevalent in the Graphs subtopic (8= -.397, 95% CI [-.549, -.245], p < .001), the Calculation
subtopic (S =-.492, 95% CI [-.644, -.341], p <.001), and the Amalgamation subtopic (= -.405,
95% CI [-.557, -.253], p <.001) compared to the Terminology subtopic. A comprehensive
regression table is provided in Appendix Table 7. On the other hand, the Quiz — Quiz learning
pattern, potentially implying the use of rehearsing and memorizing and repeating SRL-relevant
strategies, was more frequent in both the Terminology and Graphs subtopics compared to
Calculation and Amalgamation. This was evident for Terminology (= .167, 95% CI
[.012,.229], p = .030) and Graphs (f=.287, 95% CI [.099, .316], p <.001) compared to
Calculation. Additionally, the frequency of the learning pattern, Quiz — Summary, potentially
associated with keeping records and monitoring, seeking information, and search SRL-relevant
strategies, was significantly higher in the Terminology subtopic compared to Graph (b = .29,
95% CI[.134, .447], p <.001), Calculation (b = .489, 95% CI [.332, .645], p <.001), and

Amalgamation (b = 0.36, 95% CI [.203, .516], p <.001). The significant variability we observed
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in occurrences of learning patterns across subtopics suggests that students might adapt their
frequency of specific learning patterns based on the subtopic under study.
RQ?2: Subtopic Heterogeneity in the Relationship Between SRL-relevant Strategies, Learning
Gain, and Prior Knowledge

We found significant results regarding the relationships between learning gain and the
frequency of various learning patterns in an SRL context. In particular, we found that for the
Graphs subtopic (relative to the reference level, Terminology), learning gain was significantly
negatively related to the frequency of the learning pattern Quiz — Quiz, which we propose
implies the use of rehearsing and memorizing and repeating SRL-relevant strategies (f = -.234,
95% CI [-.445, -.023], p = .031). A comprehensive regression table is provided in Appendix
Table 8. This result implies that—compared to studying the Terminology subtopic—when
students study the Calculation subtopic, as their learning gain increases, the frequency of
engaging in the Quiz — Quiz learning pattern decreases.

Similarly, compared to the Graphs subtopic, students’ learning gains were significantly
negatively associated to the Quiz — Quiz learning pattern in Calculation (£ = -.352, 95% CI
[-.555, -.148], p <.001). On the other hand, compared to the Calculation subtopic, learning gain

was significantly positively related to the frequency of engaging in the Quiz — Quiz learning

pattern in Amalgamation (b = .225, 95% CI [.011, .439], p = .225). For the Quiz — Example

learning pattern, which we propose is associated with the SRL-relevant strategies of keeping

records and monitoring, seeking information, and help-seeking, we found that, similar to the

Quiz — Quiz learning pattern, learning gain was significantly negatively associated with the

frequency of engaging in the Quiz — Example learning pattern for the Calculation subtopic
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compared to the Terminology subtopic (b = -.289, 95% CI [-.527, -.051], p = .018). These
varying relationships between learning gains and prior knowledge, and the use of learning
patterns within this SRL context suggest that students with different levels of prior knowledge
and learning gain might adjust their use of learning patterns depending on the subtopics.
Analysis 2: Employing a Theory-driven Approach: Coherence Analysis

In the second analysis, we employed coherence analysis and linear mixed-effect
regressions to examine the relationship between SRL measures and learning gains across
subtopics (RQ3).
Method
Coherence Analysis

Coherence Analysis (CA) is a theory-based method that measures the use of
metacognitive strategies via the order and timing of learning activities (Segedy et al., 2015). CA
quantifies the extent to which specific learning activities work together (i.e., are coherent) to
enact certain metacognitive strategies. For instance, if a student takes a quiz, then reviews the
material relevant to any incorrect quiz answers, both taking the quiz and revisiting the content
(such as reading) exemplify coherence. Coherent actions implicitly signify the utilization of
metacognitive strategies, given that such an action involves a student assessing information
gleaned from previous activities (such as perusing relevant material) and modulating their
current actions (like taking a quiz) based on this information (Segedy et al., 2015; Zhang et al.,
2020). Coherent actions need not be sequential, but it is necessary to constrain the time interval
between those actions since it is less clear (and perhaps less likely) that one action is informed by
the results of a specific previous action if that previous action is in the distant past. Previous

research in the context of Betty’s Brain revealed that students typically utilized the information
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they encountered within five minutes of encountering it: coherent actions within this time span
were positively correlated with assessment scores within a learning session as well as learning
gains across a whole session (Segedy et al., 2015). We developed CA measures based on
metacognitive theory to capture students’ use of metacognitive regulation during active learning,
focusing on SRL skills like planning, monitoring, and managing their use of skills (Veenman,
2016).

We defined two universal CA measures—coherent quiz and coherent reading—and
computed these two CA measures for each subtopic, resulting in four unique, subtopic-specific
sets of CA measurements. These subtopic-specific CA measurements capture the variability in
SRL-relevant strategies as students navigate each subtopic. The “coherent quiz” CA measure
refers to the cumulative time a student spent engaging in reading activities within the five
minutes prior to taking quizzes on the topics in those readings. The reading activities
encompassed three types: studying the primary reading material, reading worked-out examples,
and reading summary pages. Collectively, these three actions are referred to as “reading” actions
within the context of this study. As such, the coherent quiz action was quantified based on the
total time students allocated to reading activities before undertaking the quiz within a five-
minute window. Coherent quiz behavior indicates that students are thoughtfully allocating their
time to read and understand the necessary information before testing their understanding of that
information by taking the quiz. Coherent quiz behavior thus exemplifies one usage of
metacognitive strategies as students self-regulate their review and assessment processes.
Similarly, the decision to utilize the information within a specific time frame (the five-minute

window) indicates the students’ awareness of the relevance and retention of the information.
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A related CA measure, “coherent reading” refers to students’ time spent reading material
related to the questions they missed in the quiz. We calculated coherent reading by tallying the
time students spent studying the related material of missed quiz questions within a five-minute
window following the quiz. Coherent reading represents a metacognitive strategy that comes
after a quiz, wherein students identified their knowledge gaps through quiz results and
immediately dedicated time to addressing these gaps by focusing on the specific areas of
misunderstanding. Such an approach highlights a student’s capability to monitor their learning
progress, recognize their errors, and take the necessary action to improve—key elements of
metacognitive strategy use. Hence, coherent reading serves as a valuable indicator of the
application of metacognitive strategies in the learning process.

The effectiveness of CA constructs was demonstrated by Segedy et al. (2015) in the
Betty’s Brain learning platform, where students are expected to teach a virtual agent by
developing a causal map. The researchers measured five CA constructs: edit frequency,
unsupported edit percentage, information viewing time, potential generation time, and used
potential time (Segedy et al., 2015). Potential generation and information viewing time are
closely aligned with coherent quiz and coherent reading constructs from this study. Potential
generation is quantified by the amount of time students spend viewing information that could
support their subsequent action, which is editing causal map in Betty’s Brain. Likewise, coherent
quiz is measured by the total time students spend reading relevant material before taking the
quiz, where reading time supports students’ quiz attempt. Similarly, information viewing time
refers to the time spent reviewing graded answers or resource pages, corresponding to coherent
reading measurement, which totals the time spent reviewing material related to missed quiz

questions.
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Investigating the Relationship Between Metacognitive Strategy Use and Learning Gain with
Linear Mixed-effects Regression

We explored the relationships between the topic, coherent reading, and coherent quiz
actions on learning gains via mixed-effects regression. In RQ3, learning gain was the dependent
variable, and predictor variables were the study subtopic name and two different CA measures:
coherent reading and coherent quiz. We also included the interaction terms between subtopics
and CA measures to examine how the association between learning gain and coherent behaviors
differed across different subtopics. The regression model included a random effect for participant
ID to account for the hierarchical nature of the data.
Analysis 2 Results
RQ3: Relationship Between the Use of Metacognitive Strategies and Learning Gain across
Subtopics

For the main effects of coherent reading and coherent quiz, we observed a statistically
significant negative effect of coherent quiz on learning gain only when the Calculation subtopic
was the reference variable (b =-4.393, 95% CI [-8.172, -.610], p = .023). A comprehensive
regression table is provided in Appendix Table 9. We found a significant negative interaction
between the Calculation subtopic and coherent quiz measures, compared to the Terminology
subtopic (b =-6.212, 95% CI [-12.043, -.373], p = .037) and compared to the Graphs subtopic (b
=-11.066, 95% CI [-19.685, -2.441], p = .013). These negative interactions indicate that coherent
quiz behavior was less effective for learning in the Calculation subtopic, relative to others. As
students spent more time engaging in coherent quiz actions, the learning gain decreased on that
subtopic compared to other subtopics. One potential explanation is that the distinct nature of the

Calculation subtopic, which heavily focuses heavily on solving mathematical problems, may not
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benefit as much from preparatory reading before a quiz, as is demonstrated by a coherent quiz
activity. This lack of benefit might be because direct engagement with quiz questions that require
problem-solving might be more advantageous for enhancing understanding of the material within
the Calculation subtopic. In contrast, for subtopics such as Graphs or Terminology, where
conceptual understanding is crucial, spending time on reading before a quiz might improve
students’ comprehension, although significant results were not observed. This divergence in
SRL-relevant strategy effectiveness highlights the need for a more context-dependent approach
to supporting students’ SRL in computer-based online learning environments. Further, these
findings imply that certain SRL behaviors may be more beneficial than others within specific
subtopics, indicating that the effectiveness of SRL-relevant strategies might vary, even within a
single domain.
Discussion

By leveraging data collected from 210 college students engaged in a computer-based
learning environment for introductory statistics with diverse subtopics, we addressed three
research questions. At a high level, we found:

RQ1. We observed a significant variability in frequencies of learning patterns across

subtopics within an SRL context.

RQ2. Students with different levels of prior knowledge and learning gains exhibited

varying degrees of engagement of learning patterns potentially associated with SRL-

relevant strategies across subtopics.

RQ3. In the calculation subtopic, engaging in coherent quiz activities had a negative

impact on learning gains.
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Theoretical Implications

Our findings contribute to the refinement of both SRL theory and its practical application
within computer-based learning environments. We first situate findings regarding learning
patterns potentially associated with SRL-relevant strategies and outcome heterogeneity within
SRL models, contributing to understanding and refining these models. Students employing
different learning patterns across various subtopics within an SRL context (RQ1) suggests that
the dimension of contextual variability could be incorporated into SRL models to account for
variations of learning patterns within an SRL context depending on the specific subtopic of the
study. In Zimmerman’s model and in Winne and Hadwin’s model, we suggest adding the
dimension of contextual variability, which would acknowledge and account for variations of
learning patterns possibly related to SRL-relevant strategies depending on the specific subtopic
of the study. Specifically, the performance phase of Zimmerman’s cyclical model could be
augmented to reflect that students might execute the metacognitive strategies differently across
subtopics, and that doing so is beneficial for learning when variations in strategy are congruent
with heterogeneous task demands. Similarly, in the operation phase of Winne and Hadwin’s
model, where students employ learning strategies, we propose an enhanced emphasis on the role
of subtopic heterogeneity. This involves students not just deploying a generic set of strategies
across all tasks but adaptively selecting and modifying their strategies based on each subtopic's
specific demands and nature. By doing so, students can better align their efforts with the unique
requirements of different subtopics, thereby potentially enhancing their overall learning
effectiveness. We investigated heterogeneity in learning patterns within an SRL context utilizing
complementary data-driven and theory-informed methods, which also could provide

opportunities to extend SRL theory by considering how the findings of open-ended, data-driven
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methods indicate areas for expanding theory-driven methods (i.e., CA, in this case). Specifically,
we demonstrated how using a data-driven method, specifically sequential pattern mining, helped
us in potentially associating students’ frequent learning patterns to SRL-relevant strategies. This
possible alignment, combined with linear regression, allowed us to uncover the potentially
heterogeneous nature of learning patterns within an SRL context. Furthermore, these preliminary
insights into heterogeneity prompted us to examine it by constructing CA measures which were
designed to capture students’ use of metacognitive regulation. However, since this theory-driven
approach can be adapted to measure other aspects of students’ learning strategies, our study also
highlights how the theory-driven coherence analysis, in this case, can be further expanded to
explore other manifestations of SRL, thereby extending SRL theory.
Practical Implications

Our findings suggest that it becomes crucial to consider the heterogeneous nature of
learning patterns potentially associated with SRL-relevant strategies and outcomes when it
comes to designing SRL-supportive learning environments, given that refinements to SRL
theoretical models should result in corresponding changes to the ways that SRL skills that are
taught to students (e.g., to set expectations for the outcome of applying a particular SRL skill in
context). The variability in learning patterns across different subtopics in an SRL context (RQ1-
2), combined with the finding that the effectiveness of metacognitive strategies is not uniform
across all subtopics (RQ3), collectively offers insights for developing personalized SRL
supporting tools in computer-based learning environments.

These insights direct us towards the development of SRL supporting tools that are not
merely adaptive to students, but also to specific content they are engaging with. Such tools

would benefit from incorporating more tailored approaches that can do more than track and



49

encourage frequent SRL-relevant strategies; they would also analyze the effectiveness of these
strategies in relation to the learner’s performance in the current context. By doing so, SRL
supporting tools can guide learners away from over-relying on strategies that are less effective
for a given subtopic and steer them towards alternative approaches that are better suited to the
demands of the subtopics. Furthermore, the potential of data-driven Al systems to develop such
personalized SRL supporting tools is significant. By data-driven Al systems, we refer to artificial
intelligent systems that leverage data-driven algorithms or advanced computational techniques
such as machine learning, explainable Al methods, or predictive analytics. Specifically, by
leveraging insights into the variability of learning patterns effectiveness across subtopics and
individual differences in an SRL context, Al systems can use machine learning algorithms to
predict or identify the most effective SRL-relevant strategies for a given subtopic, and
subsequently provide personalized recommendations. For instance, adopting a personalized and
context-sensitive approach would enable the SRL supporting systems to recommend more
effective strategies for calculation-related subtopics, where attempting repeated quizzes may be
effective in computer-based learning environments. However, it still necessitates further
investigation into the heterogeneous characteristics of SRL and its effectiveness on learning in
future research.
Methodological Implications

In addition to the theoretical and practical contributions, our work introduces a
complementary methodological approach that integrates cCSPADE and mixed-effects regression
modeling. This method enhances the utility of cSPADE’s sequential pattern outputs by enabling
statistically robust explorations of temporal patterns in SRL. Although SRL measurement is a

complex and evolving field (Fan et al., 2022; Hilpert et al., 2023), as our understanding deepens
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and our analytical tools improve, we anticipate the emergence of new measurement approaches
that offer even richer insights into SRL. This study is a step in that direction, demonstrating the
power of combining complementary analytical approaches in uncovering the complex dynamics
of SRL. Our approach paves the way for future research and practical implementations that
consider the multidimensional nature of heterogeneous subtopics and its association with
students’ learning gain and prior knowledge in both theory and application.
Limitations

In this section, we discuss several limitations of our study. First, the online learning
environment we developed might differ from some other online learning environments, such as
semester-long computer-based courses where the duration of the learning period is longer and
students typically have more diverse options for learning activities. Further research is needed to
explore whether our findings regarding heterogeneity in learning patterns within an SRL context
can be generalized to other online learning environments, such as massive open online courses.
Second, we highlight the challenge of measuring SRL using trace data in online learning
environments. SRL is a multifaceted concept encompassing a variety of cognitive,
metacognitive, emotional, and motivational aspects, which are sometimes internal to students
and difficult to measure directly (Greene & Azevedo, 2010; Winne & Perry, 2000).
Consequently, no single measurement method or construct can capture all dimensions of SRL,
necessitating the use of more diverse methods for its measurement and conceptualization. Our
study focuses on investigating students’ engagement in learning patterns within an SRL context
in terms of the sequences of actions they engage in during learning. Although our method of
investigating SRL-relevant strategies is not capable of capturing all aspects related to SRL, we

argue that students’ choices regarding the order of engaging in learning activities, as
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demonstrated by sequences of actions, can still provide insights into their potential use of SRL-
relevant strategies.

Lastly, we acknowledge that there are limitations when potentially associating each
learning sequence with corresponding SRL-relevant strategies. Each learning sequence (e.g.,
Quiz — Quiz) identified using sequential pattern mining might imply more than one possible
SRL-relevant strategy than we associated in the study. For instance, a frequent learning pattern,
Quiz — Quiz, which we categorize as a potential SRL-relevant strategy of rehearsing and
memorizing, might also imply other SRL-relevant strategies, such as those related to self-
evaluation. Altogether, despite the limitations we discussed, we argue that our study contributes
to the discovery of the heterogeneous nature of learning patterns within an SRL context in
computer-based learning environments.

Conclusion

SRL skills are invaluable in online educational environments, yet much remains to be
discovered regarding what drives differences in what SRL skills are most relevant and helpful in
which context. This paper contributes to enriching our understanding of the heterogeneous nature
of learning patterns in an SRL context via complementary data-driven and theory-informed
methods, revealing areas where SRL theories could be enhanced by data-driven insights, while
also demonstrating the potential for integrating theoretical insights into data-driven Al systems
for teaching SRL skills via a prototype SRL training intervention. Lastly, our findings suggest
that understanding learning patterns across different subtopics can inform the design of
interventions tailored to the specific characteristics of each subtopic, thereby enhancing learning

outcomes.
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Table 1

Appendix

Distribution of Students by Race and Ethnicity

Race/ethnicity Local (n=112) Prolific (n=98) Responses

category

White 63 (56.3%) 54 (55.1%) White, Caucasian, European/Middle East and North
Africa White/Hispanic, White/Mexican

Asian 28 (25%) 16 (16.3%) Asian, Asian American, Asian/White, Chinese
American, Indian, Chinese, East Asian, Filipino,
Korean American, South Asian, Middle Eastern,
South Asian

Black 9 (8.04%) 12 (12.2%) Black, African American, Black — Caribbean
American, Black American

Latinx/Hispanic 9 (8.04%) 11 (11.2%) Chicano, Hispanic, Latina(o), Mexican, Mexican
American

Others 3(2.62%) 5(5.2%) Prefer not to answer, Guyanese American, Pacific
Islander, Native American, Black and Mexican

Table 2

Distribution of Students by Gender

Gender Local (n=112) Prolific (n=98) Responses

category

Female 83 (74.1%) 44 (44.9%) Female, Woman, Cisgender Woman
Male 26 (23.2%) 44 (44.9%) Male, Man, Cisgender Male
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Additional 3(2.7%) 10 (10.2%) Non-binary (Non binary, they), Transgender

(grouped for (Transgender man, Transman, Transmasculine),

anonymity) Queer (Genderqueer), Prefer not to answer
Table 3

Distribution of Students by English as a First Language

English as a first language category Local (n=112) Prolific (n=98)
English is the only first language 84 (75.0%) 77 (78.6%)
English is among the multiple first languages 17 (15.2%) 14 (14.3%)

English is not my first language; I Prefer not to answer 11 (9.8%) 7 (7.1%)




Table 4

Distribution of Students by Age
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Age category Local (n=112) Prolific (n=98)

18-20 84 (75%) 23 (23.5%)

21-25 24 (21.4%) 42 (42.9%)

26-30 2 (1.79%) 13 (13.4%)

31-35 1 (0.905%) 10 (10.1%)

Over 35 1 (0.905%) 10 (10.1%)
Table 5

Distribution of Students by Class Standing

Class standing category

Local (n=112)

Prolific (n=98)

Freshmen 8 (7.14%) 6 (6.12%)
Sophomore 54 (48.2%) 15 (15.3%)
Junior 34 (9.8%) 40 (40.8%)
Senior 9 (8.04%) 30 (30.6%)
Graduate or Professional 6 (5.35%) 2 (2.06%)
Prefer not to answer 1 (0.86 %) 5 (5.12%)




Table 6

Full questions for test A and test B and the corresponding correct response rate for each

77

question.

Test A Test A Test B Test B
correct correct
response response
rate rate

Identify each of the following variables. 48.8% Identify each of the following variables.  54.1%
a. The time it takes to run a marathon a. Number of pets in family
b. The choice of diet (vegetarian or non- b. Choice of auto to buy (domestic or
vegetarian) import)
o a: quantitative and discrete & b:
o a: quantitative and discrete & b: categorical and nominal
categorical and nominal o a: quantitative and discrete & b:
o a: quantitative and discrete & b: categorical and ordinal
categorical and ordinal o a: quantitative and continuous
o a: quantitative and continuous & b: & b: categorical and nominal
categorical and nominal o a: quantitative and continuous
o a: quantitative and continuous & b: & b: categorical and ordinal
categorical and ordinal
Describe the association found in the graph 65.7% Describe the association found in the 60.4%
below. graph below.
I y
| = -. . r=0
T T X
2 ’ o Positive linear association
o Positive linear association o Negative linear association
o Positive nonlinear association o Negative nonlinear association
o Negative linear association o Neither positive nor negative
o Negative nonlinear association linear association
Which of the following variables will most 27.5% Which of the following variables is most ~ 46.9%
likely to follow a normal curve? likely to follow a normal curve?
o The distribution of time to complete o  The distribution of height of
the course for all of the competitors female college students
in the Boston Marathon o The distribution of age of death
o The distribution of difference from cancer
between the weight today and the o The distribution of scores on a
weight tomorrow of the cows at a difficult exam
large dairy farm o The distribution of the
o The distribution of age of death from household income in the U.S.
heart disease
o The distribution of individual
incomes in the U.S.
The histogram below displays the number of ~ 58.5% Describe the shapes of the following 42.0%

CDs owned from a sample of STAT 100

histograms.
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students. What shape is displayed on this

histogram?

s Gl a BESE O g, PERSNERES

8] o  A:skewed to the left & B:

g e symmetric and unimodal

£ o A: skewed to the right & B:
o - symmetric and bimodal
M S — o A:skewed to the left & B:

Naumer o CDs symmetric and bimodal

o  Symmetric o A:skewed to the right & B:

o Skewed to the right symmetric and unimodal

o Skewed to the left

o No clear trend

Choose which type of statistics describes the ~ 88.4% Choose which type of statistics describes  48.8%
following. the following.

A prediction has been made that 5% of school Previous survey found that 85% of

students will participate in the oratorical college students do not have a car by

contest. displaying numerical summaries.

o Descriptive o Descriptive

o Inferential o Inferential

o Survey o Both descriptive and inferential

o Percentage o Percentage

Which of the following is true about 50.2% Which of the following is true about 70.5%
independent variables? dependent variable?

o An independent variable is o Dependent variable is
sometimes called the response sometimes called the response
variable variable

o Anindependent variable is o Dependent variable is
sometimes called the explanatory sometimes called the
variable explanatory variable

o Anindependent variable can be o Dependent variable can be
found along the y-axis found along the x-axis

o An independent variable is usually o Dependent variable is used to
the outcome of the study explain other variables

Which data point from the following ordered ~ 89.4% Given the following data set, calculate 86.0%
values could be considered as an outlier? the mean of the data set without the
outlier.
0.1,04,1.5,2.6,13 3,4,15,2,5,1

o 0.1 o 3

o 04 o 5

o 15 o 2

o 2.6 o 15

o 13

Which of the following is the range of 74.9% Which of the following is true about 78.7%

possible values that a correlation can assume?

Oto1
-1t00
-1tol
0 and above

O O O O

correlation?

o The value of the correlation
depends on the variables' units

o The correlation value can be
greater than 1

o The correlation coefficient
shows both the direction and the
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strength of relationship between
variables

o Two variables do not have the
same correlation no matter
which is treated as the response
variable and which is treated as
the explanatory variable

Generally, if mean is less than the median, the 52.7% Generally, if mean is greater than the 41.1%
distribution is: mode, the distribution is:

o Skewed to the right o Skewed to the right

o Skewed to the left o Skewed to the left

o  Symmetric o  Symmetric

o No distribution o No distribution
If the standard deviation of a dataset is 4, 74.9% If the variance of a data set is 16, whatis  63.3%
what is the variance? the standard deviation?

o 2 o 4

o 4 o 8

o 8 o 16

o 16 o 256
A low standard deviation implies that data 72.0% A high standard deviation implies that 59.4%
points are: data points are:

o Clustered around the outlier o Clustered around the outlier

o Distant from the outlier o Distant from the outlier

o Distant from the mean o Distant from the mean

o Clustered around the mean o Clustered around the mean
Which of the following surveys would have 70.0% Suppose a margin of error for a poll is 68.6%
the biggest margin of error? 4%. What is the correct interpretation of

the margin of error for this poll? In about

o Asamplesize of n=10 95% of all samples of this size, the

o Asample size of n =100

o Asample size of n = 10,000

o A sample size of n = 100,000 o Difference between the sample

percent and the population
percent will be within 4%

o Probability that the sample
percent does not equal the
population percent is 4%

o Probability that the sample
percent does equal the
population percent is 4%

o Difference between the sample
percent and the population
percent will exceed 4%

Note. Each question in test A and test B is displayed in an order that aligns with the testing of

similar statistical concepts. The correct response rate refers to the percentage of students

answering each question correctly. Some of the images were adapted from Statistics: The Art and
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Science of Learning from Data, 3" edition by Alan Agresti and Christine Franklin (Pearson

Education, 2013).

Table 7

Regression Table for RQ1 Model

Dependent Independent

variable variables

Sequence Terminology Graph Calculation Amalgamation
Read — Quiz =397 x* - 49 HHk - 405%**
Quiz — Read .032 -.056 -.071
Quiz — Quiz Reference 120 -.167* - 267
Quiz — Examples variable -.061 -.147 -.037
Read — Examples -.117 .026 -.052
Quiz — Summary -.200%** - 489%** -.360%***
Read — Quiz A400%** -.095 -.008
Quiz — Read -.032 -.087 -.103
Quiz — Quiz -.120 Reference - 287Kk - 387%**
Quiz — Examples 061 variable -.086 024
Read — Examples 117 .143 .065
Quiz — Summary 290%** -.200%* -.069
Read — Quiz 492 ** .095 .087
Quiz — Read .056 .087 -.016
Quiz — Quiz 167* 287k Reference -.100
Quiz — Examples 147 .086 variable 110
Read — Examples -.143 -.026 -.078
Quiz — Summary 489%** .199%* 130
Read — Quiz A05%** .008 -.087

Quiz — Read 071 .103 016

Quiz — Quiz 267%%* 387 .100 Reference
Quiz — Examples .037 -.024 -.110 variable
Read — Examples .052 -.065 .078

Quiz — Summary 360%** .069 -.120

Note. The term “Reference variable” implies that an independent variable was used as the

reference category within the model. Therefore, in interpreting the model, the outcomes for other

independent variables are evaluated in comparison to this reference variable. The levels of

significance are denoted as follows: * p <.05, ** p <.01, *** p <.001.



Table 8

Regression Table for RO2 Model

Dependent Independent
variable variables
=} gb =] =} o =} *ﬂ =] Eﬂ gl) gl) *ﬂ gl)
o = * .= =) B=] B * O O ) )
s 5 g 3 S 58 & w8 58 ®T  F %E 9%
< = g e o0 < o o = e Ew <52 2 = 2 g S
g ks g 2 £ 22 w2 = 55 22 «32 =g 5.2
-5 = = = g =
Learning £ g 2 E k= g EE TE EE EE Esx BB E5 &>
pattern & S S < & 3 £ 3 S a S 3 <3 g& S & S & <&
Read — -A408¥¥* 538k kk 41 2%F*F 038 .027 .046 .018 .020 .085 .071 -.078
Quiz
Quiz — o .069 .027 -.043 -.079 -.023 -.021 -.147 -.002 114 -.102 .090
Read Tg
Quiz — g 134 -.148 -274%* -.028 .061 118 -.234% -.009 276* -.007 .092
Quiz -
Quiz — 2 -.137 -.180 =117 150 211%* -.160 -.289* -.190 -.134 -296* -.114
Examples g
Read — 2 -.073 .058 .000 -.085 -.095 .160 174 .057 .189 .108 .018
Examples
Quiz — S200%kx L S[2%kK L 3SRFER Q] 5H** 053 %*** -.043 -.034 -.017 .007 .036 -.064
Summary
Read — 408*** -.130 -.004 123 .073 -.046 -.028 -.026  -.084 -.014 -.163
Quiz
Quiz — -.069 ° -.042 -.112 .035 -.043 .021 -.127 .018 -.114 -215 -.023
Read %
Quiz — - 134%* 5 -281¥¥*  _408%%* 248 179% -118 -352%¥* 127 -276% -283**  -184
Quiz 2
Quiz — 137 2 -.044 .020 .016 .051 .160 -.128 -.029 134 -.162 .020
Examples faj
Read — .073 2 131 .074 .104 .064 -.160 .014 -.103  -.189 -.082 -171
Examples
Quiz — 299 ** -213* -.059 021 .010 .043 .009 .027 -.007 .029 -.070
Summary
Read — 299%** 130 126 .109 .044 -018 .028 .003 -.071 .014 -.149
Quiz °
Quiz — -.027 .042 % -.070 - 181%* -.170 147 127 .145 102 215 192
Read §=
Quiz — .148 281 HH* > -.126 -.035 -173* 234%  352%%* .225% .007 283%** .099
Quiz ]
Quiz — 180 .044 § .064 -.146 -.077 289* 128 .100 296% 162 .182
Examples 2
Read — -.058 -.131 -.057 .022 .079 -.174 -.014 -117  -.108 .082 -.089

Examples
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Quiz — S12%x* 213* 154 .051 .019 .034 -.009 .018 -.036 -.029 -.100

Summary

Read — A13HH* .004 -.126 -.040 .047 -.020 .026 -.003 .078 .163 .149

Quiz

Quiz — .043 112 .070 ° 011 -.025 .002 -018 -.145 -.090 .023 -.192
Read )

Quiz — 274%%* A408%H* 126 = .064 .052 .009 127 -225% -.092 184 -.099
Quiz -

Quiz — 117 -.020 -.064 2 .036 .022 .189 .029 -.100 114 -.020 -.182
Examples g

Read — .000 -.074 .057 2 -.067 -.038 -.057 .103 117 -018 171 .089

Examples

Quiz — 358kHk .059 -.154 -.049 .037 .017 -.027 -018 .064 .070 .100

Summary

Note. The term “Reference variable” implies that an independent variable was used as the reference category within the model.
Therefore, in interpreting the model, the outcomes for other independent variables are evaluated in comparison to this reference

variable. The levels of significance are denoted as follows: * p <.05, ** p <.01, *** p <.001.



Table 9

Regression Table for RO3 Model

Dependent Independent
variable Variables
) on ) ) on
g g g g * g *
o g = N x5 T ., T 8% x.x N L gy
& g E & E & 8 2 og2 BE F & e ] E &
g = 5 g = 2 E2 &2 &2 E2 EZ2 &2 5 2 s 2
5 s = =) S =) 50 S5 =0 £ 3 5% S5 =0 €5
= &) @] < @) @] = O [CR @] [ORE) < O = O QO |OR @) <O
Reference  6.971* 3.657 2.567 -.978 1.818 -.153 -438 718 4.854 -6.212* -.900
variable
-6.971* Reference  -3.314 -4.405 -1.131  6.672 153 -.285 872 -4.854 -11.066*  -5.755
variable
Learning
gain -3.657 3314 Reference  -1.091 -1.416  -4.393* 438 285 1.157  6.212* 11.066* 5.311
variable
-2.567 4.405 1.091 Reference  -.259 918 -718 -.0872 -1.157 .900 5.755 -5.311
variable

Note. The term “Reference variable” implies that an independent variable was used as the reference category within the model.

Therefore, in interpreting the model, the outcomes for other independent variables are evaluated in comparison to this reference

variable. The levels of significance are denoted as follows: * p <.05, ** p <.01, *** p <.001.



	Abstract
	Background
	Results
	Conclusion

	Introduction
	Theoretical Models of SRL
	Supporting SRL in Computer-based Online Learning Environments

	Study Participants and Research Context
	Participants
	Ethics, Consent and Permissions
	Demographics
	Research Context
	Learning Activities and Subtopic Characteristics

	Analysis 1: Employing a Data-driven Approach
	Data
	Analytic Framework and Methods
	Note. The left most column lists the frequent learning patterns, followed by a column indicating their support values, which reflect the prevalence of these patterns among the students. The next columns detail the potential association with correspond...

	Analysis 1 Results
	Table 2
	Note. The percentages do not add up to 100% for each subtopic because the frequencies indicate the proportion of students engaged in each learning pattern across subtopics. The corresponding column labeled “shuffled” for each subtopic indicates the fr...
	RQ1: Relationship Between Frequency of SRL-relevant Strategies and Subtopic
	RQ2: Subtopic Heterogeneity in the Relationship Between SRL-relevant Strategies, Learning Gain, and Prior Knowledge


	Analysis 2: Employing a Theory-driven Approach: Coherence Analysis
	Method
	Coherence Analysis
	Investigating the Relationship Between Metacognitive Strategy Use and Learning Gain with Linear Mixed-effects Regression

	Analysis 2 Results
	RQ3: Relationship Between the Use of Metacognitive Strategies and Learning Gain across Subtopics


	Discussion
	Theoretical Implications
	Practical Implications
	Methodological Implications

	Limitations
	Conclusion
	References
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5


