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ABSTRACT: Knowing heat capacity is crucial for modeling temperature changes with the
absorption and release of heat and for calculating the thermal energy storage capacity of oxide
mixtures with energy applications. The current prediction methods (ab initio simulations,
computational thermodynamics, and the Neumann−Kopp rule) are computationally expensive,
not fully generalizable, or inaccurate. Machine learning has the potential of being fast, accurate,
and generalizable, but it has been scarcely used to predict mixture properties, particularly for
mixed oxides. Here, we demonstrate a method for the generalizable prediction of heat capacity
of solid oxide pseudobinary mixtures using heat capacity data obtained from computational
thermodynamics and descriptors from ab initio databases. Models trained through this
workflow achieved an error (mean absolute error of 0.43 J mol−1 K−1) lower than the
uncertainty in differential scanning calorimetry measurements, and the workflow can be
extended to predict other properties derived from the Gibbs free energy and for higher-order
oxide mixtures.

Solid oxide mixtures are increasingly being used in a variety
of advanced energy applications. This is owed to the

scientific interest and technological potential available in
exploring the vast range of oxide mixtures that can be used,
allowing for a diverse range of thermophysical, thermody-
namic, and electronic properties. This tunability can be
leveraged to maximize the performance of energy conversion,
energy storage, and renewable energy production systems,
which are key in the ongoing decarbonization of electricity
grids.1−6 However, optimizing these properties over a wide
range of possible compositions and temperatures, which can
exceed 1000 °C for thermal energy storage applications,7

remains challenging because of our inability to accurately
predict the temperature- and composition-dependent proper-
ties.
In this study, we explore mixture heat capacity Cp(T, x), a

property representing how temperature changes in a mixture in
response to absorbed or released heat, which is necessary for
modeling the transient thermal behavior of material systems
and assessing the performance of thermal devices. Common
methods for predicting this property include ab initio
simulation, computational thermodynamics (CALPHAD)
modeling based on the Gibbs free energy (GFE), and
application of simple empirical relations such as the
Neumann−Kopp rule (NKR).8−10 The use of these methods,
however, is typically subject to compromise between computa-
tional cost and accuracy, which limits their direct application to
high-throughput screening and optimization across the
composition and temperature ranges. Namely, ab initio
methods are generalizable but computationally expensive and
are limited to small systems. Here, while the CALPHAD

approach is more efficient, it has limited generalizability toward
new compositions that lack experimental data because of its
semiempirical formulation. Ideal mixing (i.e., NKR) is simple
and fast but insufficiently accurate, especially toward higher
temperatures. In recent years, machine learning has been
shown to be an alternative for material property prediction that
circumvents these limitations by providing both accuracy and
efficiency. However, most efforts so far have focused on
predicting the properties of relatively simple molecules and
pure compounds on the basis of their structure.11−13 As such, a
machine learning (ML) framework that allows the prediction
of oxide mixture properties from their composition (compo-
nents and their mole fractions) is still lacking. Here, we
propose a methodology for the generalizable prediction of
mixture heat capacity using the chemical, structural, and
electronic properties of the components (i.e., binary oxide
compounds) in the mixture, their mole fractions (xi, where i
represents one component), and temperature as input. The
objective of this workflow is to create chemistry-informed
prediction models that are more accurate than the NKR, less
computationally expensive than ab initio methods, and more
generalizable than semiempirical methods over a wide range of
compositions and temperatures.
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First, a diverse and learnable data set is created for
pseudobinary oxides (e.g., AxOy-BwOz, where A and B are
cations and O is oxygen) containing the atomic and structural
properties of the mixture components (e.g., AxOy) and the
corresponding molar heat capacity of a wide range of mixtures.
This data set is used to train a variety of ML models, which are
compared against the NKR. The heat capacity for the data set
is generated utilizing experimentally benchmarked Gibbs free

energy models with = ( )C Tp
G

T p,Ni

92

2 These models are

based on the compound energy formalism that represents the
solution behavior on sublattices that correspond to crystal
structure or chemical configurations in solid or liquid
solutions.14 The thermodynamic equilibrium phases and
corresponding heat capacities are calculated using CALPHAD
software Thermo-Calc with the GFE models implemented in
the TCOX12 database.15 The heat capacity values are
generated for 169 pseudobinary oxide systems built from 13
different oxide compounds, at ambient pressure, across the
temperatures range of 300−1100 K, and by varying the mole
percentage of one of the compounds in the mixture from 0 to 1
in increments of 0.025 mole fraction (the percentage of the
other compound is implicit because xA + xB = 1).
The fractions and temperatures that define this space are

included in the data set as input descriptors. To encode
chemical information about the components, descriptors
obtained from publicly available repositories of ab initio data
are included in additional columns. The Materials Project
(MP) database16 and the Jarvis-Tools Classical Force-field
Inspired Descriptors (JARVIS-CFID) database17 are used in
this work. In JARVIS-CFID, chemistry−structure−charge
information for each compound and its cations is used.
JARVIS contains 1557 descriptors for every possible material,
and we focus on the subset of the 438 averaged element-based
chemical descriptors not feature-engineered from other
descriptors available for the material. CFID properties

obtained at the compound level represent the average value
of that property across all atoms in a molecule. Structure-
dependent descriptors are obtained from the MP database as
material properties of the minimum energy structure of each
compound.18 The final list of all descriptors included in the
data set is available in the Supporting Information.
The data are augmented and preprocessed to ensure

permutation invariance of the models and to improve
trainability. All chemically equivalent orderings of the same
system are added in the training and test data sets. The final
data set consists of 108 471 data points ({X = descriptors for
chemical system at specific xi and T, Y = Cp}), which is split in
an 80/20 training/testing ratio. All inputs are standardized
using z-scores according to the mean and standard deviations
in the training set, and the data are used to tune, train, and
evaluate the ML algorithms.19

The algorithms tested in this work consist of four decision
tree (DT)-based algorithms and a deep neural network
(DNN).20 The DT-based algorithms consist of a random
forest (RF),21 gradient-boosted (GB) regression trees,22 an
AdaBoost (AB)23 ensemble using DTs as the weak learners,
and extra randomized trees (ETs).24 All DT-based algorithms
are tuned by performing 5-fold cross-validation using the mean
absolute error (MAE) as the performance metric to tune the
maximum depth, number of features, and number of estimators
of the base learners, with the final algorithms trained on the
entirety of the training set. The last algorithm consists of a fully
connected DNN25 with five hidden layers with 128 nodes
each, trained using an Adam optimizer.26 The DNN is
implemented with L2-norm regularization, and hyperpara-
meters are tuned by minimizing the loss on a validation set
consisting of 20% of the training set at each epoch.
After training, the feature importance of the descriptors is

calculated as the Shapley additive explanation values.27 These
importance values are used to reduce the number of
descriptors starting with those that are the least important

Figure 1. Parity plots (model vs reference) for molar heat capacity () of the training and test sets for AdaBoost (top left), a deep neural network
(top middle), extra trees (top right), gradient boosting (bottom left), a random forest (bottom middle), and the empirical NKR (bottom right).

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.4c00506
J. Phys. Chem. Lett. 2024, 15, 4721−4728

4722

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.4c00506/suppl_file/jz4c00506_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00506?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00506?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00506?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00506?fig=fig1&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c00506?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and are most highly correlated (based on Pearson’s correlation
coefficient28) with other descriptors in the data set. The final
data set contains 60 different descriptors per data point
(corresponding to the previously mentioned list included in
the Supporting Information), and it is used to retrain all
models. ML predictions are compared against the CALPHAD-
based reference values shown in Figure 1. ML performance
metrics are given in terms of mean absolute error (MAE),
mean absolute percentage error (MAPE), and coefficient of
determination (r2), and they are compared against the NKR in
Table 1.

Overall, the ML models are highly accurate across all
pseudobinary oxide mixtures, with MAPEs ranging from 0.40%
to 0.74% (MAE from 0.43 to 0.7 J mol−1 K−1), with ET
showing the highest prediction accuracy (MAE = 0.43 J mol−1
K−1; MAPE = 0.40%; r2 = 0.991). In all cases, these errors are
within the experimental uncertainty of heat capacity measure-

ments through differential scanning calorimetry (∼1.5%).29
Furthermore, all algorithms perform better in the test set than
the NKR (MAE = 2.5 J mol−1 K−1; MAPE = 2.2%, which is
higher than the experimental uncertainty). The NKR shows a
smaller error when applied in this data set than other examples
of its application in the literature (Kauwe et al.11 report an
MAPE of 13.69% and an r2 of 0.89, and Gillet et al.30 report an
MAPE of 4−6%). A possible explanation is that these examples
predict heat capacity for higher temperatures where the NKR
is known to break down (≤3900 K in Kauwe et al. and 2000 K
in Gillet et al, contrasting with a maximum temperature of
1100 K in our data set). This highlights performance
inconsistencies of empirical or semiempirical models across
large thermal and chemical spaces. This is an inherent
limitation of a model’s expressivity to adequately capture a
diverse range of interactions, which can in theory be overcome
by ML models. Within the data set presented here, issues in
NKR reliability can be clearly seen in the significant deviations
that are exhibited in Figure 1 (bottom right). These issues are
examined further in the next section.
In addition to the overall MAE, heat capacity Cp(T, x) is

predicted for specific oxide systems of technological interest,
including NiO, MgO−NiO, Al2O3−Cr2O3 (the latter two
considered for thermal energy storage31), CuO−Al2O3
(electrocatalysis32), Al2O3−HfO2 (dielectrics in light-emitting
diodes and solar cells33,34), and CuO−HfO2 (electrochemical
reduction of CO2 into biofuels

35), as shown in Figure 2. These
systems are known to have different solubilities, which allows
us to evaluate the ability of the models to predict non-ideal
contributions to heat capacity. Here, the Cp(T, x) values
predicted by the DNN, ET (smoothest ML predictions, as
shown in Figure S1), and NKR are compared for various oxide
compositions at temperatures in the range of 300−1100 K.

Table 1. Mean Absolute Errors (MAE), Mean Absolute
Percentage Errors (MAPE), and Coefficients of
Determination (r2) of Gradient Boosting (GB), AdaBoost
(AB), Random Forest (RF), Extra Trees (ETs), and Deep
Neural Network (DNN) Algorithms and the Neumann−
Kopp Rule (NKR) for Heat Capacity Prediction in the Test
Set

method MAE (J mol−1 K−1) MAPE (%) r2

GB 0.65 0.64 0.988
AB 0.69 0.72 0.988
RF 0.60 0.59 0.989
ET 0.43 0.40 0.991
DNN 0.70 0.74 0.988
NKR 2.5 2.2 0.924

Figure 2. Temperature vs heat capacity curves for selected oxide systems with technological applications: (a) pure NiO, (b) 50 mol %−50 mol %
MgO−NiO, (c) 40 mol %−60 mol % Al2O3−Cr2O3, (d) 20 mol %−80 mol % CuO−Al2O3, (e) 33.3 mol %−66.6 mol % Al2O3−HfO2, and (f) 40
mol %−60 mol % CuO−HfO2. Reference values plotted at a ΔT of 20 K.
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For pure NiO (Figure 2a), the ET accurately predicts Cp
across the temperature range while the DNN model slightly
underpredicts the heat capacity by ∼2 J mol−1 K−1 around
400−600 K, which exhibits a peak driven by a λ-type
transition.36 When NiO is mixed with MgO, a solid solution
is formed (see Figure S1) and the peak disappears as shown in
Figure 2b for a 50 mol %−50 mol % NiO−MgO mix. Here, the
NKR notably fails due to its assumption of ideal mixing. The
NiO−MgO solution is fundamentally different from its
components, not featuring the ordered−disordered transition
in electron spins that spawn the heat capacity peak in NiO.37

The inability of NKR to account for this leads to a prediction
with the NiO−MgO mix erroneously retaining a peak from
pure NiO shown in Figure 2a. In contrast, ML models
accurately account for this, suggesting that mixture interactions
are accurately captured. The same can be seen in the 60 mol
%−40 mol % Al2O3−Cr2O3 system shown in Figure 2c, which
tends toward a single solution at higher temperatures (Figure
S2b). For this and other mixtures, the lattice structure of the
solution will feature larger bond lengths on average due to
short-range repulsive and Coulomb-type interactions, decreas-
ing the vibrational frequency of phonons and increasing the
heat capacity.38,39 As shown in Figure 2c, ML can predict this
increase well, whereas the NKR exhibits an increasing error
with temperature, underpredicting Cp(T) by ∼12 J mol−1 K−1

at 1100 K. In other systems with compounds of very different
stoichiometries (A:O ratio in each compound), like Al2O3−
HfO2 and CuO−HfO2 shown in panels e and f of Figure 2,
respectively, phase segregation occurs, as predicted by
CALPHAD (see Figure S2c,d), leading to no contributions
of mixing to heat capacity. In these cases, the NKR describes

the heat capacity of the system perfectly as expected and the
ML methods perform just as accurately, with ET providing the
best quantitative and qualitative fit. Namely, ET predictions
provide smooth Cp(T) behavior in agreement with the
reference data, which is likely due to the inherent resistance
to overfitting provided by model ensembling and random-
ization in the selection of both features and cutoffs. The DNN
provides smooth but comparatively less accurate prediction of
heat capacity for all systems, with the higher variance of the
curve being indicative of overfitting, which could potentially be
improved by further regularization and tuning, and a larger
data set.
From their predictions on a diverse range of chemical

systems (Figure 2), it is apparent that ML models can
accurately predict heat capacity data for mixed oxides across
the temperature−composition space, regardless of whether
mixtures exist as non-ideal solid solutions or multiphase
systems. Furthermore, this was achieved without the need to
use component-level Cp(T) as model inputs that may not be
readily available, making ML models more generalizable than
semiempirical methods and more conducive for high-
throughput screening across a wide range of compositions
and thermodynamic conditions. In this respect, the inter-
polation accuracy of ML models is examined across all 169
pseudobinary systems in Figure 3. This figure shows the
system-averaged MAE in the test set (300−1100 K) for the
best performing ML model, ET.
As shown in the heat map matrix in Figure 3 (top), most

pseudobinary systems exhibit very small errors below the MAE
of 0.433 J mol−1 K−1 across all systems (Table 1) and the error
concentrates in a few systems, including Mn2O3−NiO, Cr2O3−

Figure 3. Heat maps showing the performance of the extra trees regressor in terms of MAE of predictions for pseudobinary oxide systems in the
test set: (top) matrix showing all combinations of compounds (compound vs compound) and (bottom) matrix showing average MAE across all
systems containing a given compound.
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Mn2O3, and Cr2O3−Fe2O3. The bottom part of Figure 3 shows
the MAE across each compound, which indicates that systems
containing Fe2O3 or Mn2O3 are generally associated with a
larger error of 0.975 or 0.787 J mol−1 K−1, respectively.
Systems containing NiO and Cr2O3 also show large errors
(0.588 and 0.731 J mol−1 K−1, respectively), but this is mainly
associated with the systems that also contain Fe2O3 or Mn2O3.
Not considering these systems produces mean MAEs of 0.211
and 0.290 J mol−1 K−1, respectively, which are lower than the
overall MAE for ET.
In addition to interpolation, extrapolation toward entirely

unseen chemical systems is also tested. First, this is done by
excluding components or systems from the training set and
testing their performance on those systems as shown in Figures
S8−S10. In the Al2O3−Cr2O3 and CaO tested cases from 300
to 1100 K, the accuracy of ET remains relatively high at MAEs
of 4.4 J mol−1 K−1 (3.5%) and 3.8 J mol−1 K−1 (6.8%),
respectively, which can be reduced further (MAE = 0.66 J
mol−1 K−1; 1.3%) by addition of a small number (N = 11) of
data points (Figure S10). Second, the best-performing ET
model is tested against limited experimental data in the NIST-
JANAF database, which contains 12 mixed oxide compounds,
11 of them with elements outside of the training data (Li, Na,
Be, W, and Ti). Even in this case, the ET provides a
remarkable overall prediction accuracy with an MAE of 16.7 J
mol−1 K−1 (MAPE = 10.3%) shown in Figure S12 and details

shown in the Supporting Information. This demonstrates the
ability of the ML models to learn across the periodic table by
drawing on correlations between underlying chemical−
structural properties (descriptors) and heat capacity, which
cannot be readily inferred by human intuition. Outside of
NIST-JANAF (which contains only compounds and not
multiphase mixtures), the majority of mixed oxide data exists
in commercial databases (e.g., Thermo-Calc, FactSage models
fit to experimental data), which should be tested and
benchmarked further in future studies.
To better understand the specific behavior of ML models,

the predicted Cp(T) is compared to reference data for some of
the systems exhibiting the largest errors in Figure 4, including
50 mol %−50 mol % Mn2O3−NiO (Figure 4a), 50 mol %−50
mol % Mn2O3−Cr2O3 (Figure 4b), 50 mol %−50 mol %
Fe2O3−Cr2O3 (Figure 4c), and pure Fe2O3 (Figure 4d). Here,
the Cp(T) curves are overlaid with the phase regions predicted
by CALPHAD.
The results shown in Figure 4 and other calculations in the

Supporting Information (Figure S7) suggest that the
discontinuities in these curves are the cause of the larger-
than-average error. All explored large-error systems present
such discontinuities, and calculating MAEs for discontinuous
curves gives large errors (ET calculates values of 2.588, 14.351,
3.586, and 0.970 J mol−1 K−1 for the systems shown in panels
a−d, respectively, of Figure 4). Moreover, these discontinuities

Figure 4. Heat capacity vs temperature with phases overlaid for selected large-error systems: (a) 50 mol %−50 mol % Mn2O3−NiO, (b) 50 mol
%−50 mol % Mn2O3−Cr2O3, (c) 50 mol %−50 mol % Fe2O3−Cr2O3, and (d) pure Fe2O3. The different colored regions represent the different
phase regions predicted by Thermo-Calc with a legend underneath the plot. The comparison with NKR is shown in Figure S13.
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are characteristic of first- and second-order phase transi-
tions,37,39 and they are shown to occur at the places at which
Thermo-Calc calculates phase transitions of both orders.
Those phase transitions are validated when inspecting the
experimental phase diagrams and other phase data for the
associated systems40−44 (more details are shown in Section S.5
of the Supporting Information). For the Mn2O3−NiO system,
Thermo-Calc calculates two phase transitions at 660 and 840
K, which both coincide with the points where discontinuities
of ∼12 and ∼9 J mol−1 K−1, respectively, appear. The reference
value curve shown for the Mn2O3−Cr2O3 system in Figure 4b
shows discontinuities of ∼37 and ∼130 J mol−1 K−1 that match
phase changes calculated through Thermo-Calc perfectly. For
50 mol %−50 mol % Fe2O3−Cr2O3 (Figure 4c), Thermo-Calc
predicts both corundum phases dissolving into a single
corundum solute at 740 K, and this roughly matches with
the observed heat capacity discontinuity of ∼150 J mol−1 K−1.
Lastly, Thermo-Calc calculates an unchanging corundum
phase across the temperature range for the pure Fe2O3 system
in Figure 4d, but the discontinuity occurs exactly at the Curie
temperature of hematite available through Thermo-Calc and
seen in the literature (955.67 and 950 K,44 respectively), which
marks its transition from a ferromagnetic to a paramagnetic
material, where a decrease in the heat capacity of ∼34 J mol−1
K−1 can be seen. In all systems, ML models become less
accurate close to the discontinuity points, especially for a
DNN, which was unable to capture discontinuities in the
Mn2O3−Cr2O3 system. This is likely due to the continuous
functions that are used in DNNs that require more data to
provide a better fit around such discontinuities compared to
ETs that utilize decision trees. These results suggest that the
larger error seen in specific systems is due to phase transitions
that cause sharp discontinuities in the mixture heat capacity.
The larger errors exhibited at phase boundaries open two

possible avenues for improving the accuracy of the models.
The first is to treat the prediction of the heat capacity
discontinuities as a more general mathematical problem of
approximating discontinuous functions as a topic for which the
implementation of neural networks with discontinuous
activation functions has been considered.45 Another option is
to incorporate information related to changes and instability in
the system phases into the models. There has been work on
the prediction of phase diagrams and phase stability using ML
methods, which could pave the way for the creation of phase
change-informed models for heat capacity prediction,46,47

which will be explored in the future. Nonetheless, the current
ML approach already predicts Cp(T, x) with an error that is
less than the experimental uncertainty and state-of-the-art
models (ideal, semiempirical), presenting a significant advance
and useful tool for the screening and Cp prediction for mixed
oxides, which can be generalized to higher-order systems.
In summary, a chemistry-informed ML approach for

predicting the heat capacity across a wide range of
compositions and temperatures for oxide mixtures has been
demonstrated for the first time. The ML models are more
accurate than empirical relations, are less computationally
expensive than the computational alternatives, and are more
generalizable toward unseen compositions, temperatures, and
unseen chemical systems, owing to the use of only the
chemical−structural data of individual components. It was
found that ET is the most accurate of all ML models (MAE =
0.43 J mol−1 K−1) and that all ML models can predict the
excess heat capacity resulting from molecular interactions in

oxide mixtures, enabling high-throughput screening. Although
larger errors were concentrated in systems exhibiting
discontinuities in Cp(T) at phase boundaries, this can be
improved in the future with advanced NN architectures that
handle discontinuities, or phase-informed descriptors. The
approach demonstrated by this work can be readily extended
to the prediction of other GFE-derived mixed oxide properties
(e.g., density, thermal expansion coefficient, etc.) and other
solid mixtures in general.
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(10) Leitner, J.; Voňka, P.; Sedmidubsky ́, D.; Svoboda, P.
Application of Neumann-Kopp Rule for the Estimation of Heat
Capacity of Mixed Oxides. Thermochim. Acta 2010, 497, 7−13.
(11) Kauwe, S. K.; Graser, J.; Vazquez, A.; Sparks, T. D. Machine
Learning Prediction of Heat Capacity for Solid Inorganics. Integr.
Mater. Manuf. Innov. 2018, 7, 43−51.
(12) Juneja, R.; Yumnam, G.; Satsangi, S.; Singh, A. K. Coupling the
High-Throughput Property Map to Machine Learning for Predicting
Lattice Thermal Conductivity. Chem. Mater. 2019, 31, 5145−5151.
(13) Tewari, A.; Dixit, S.; Sahni, N.; Bordas, S. P. A. Machine
Learning Approaches to Identify and Design Low Thermal
Conductivity Oxides for Thermoelectric Applications. Data-Centric
Engineering 2020, 1, No. e8.
(14) Hillert, M. The Compound Energy Formalism. J. Alloys Compd.

2001, 320, 161−176.
(15) Thermo-Calc Software. TCS Metal Oxide Solutions Database
(TCOX12); 2022. https://thermocalc.com/ (accessed 2024-05-04).
(16) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.;
Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K.
A. Commentary: The Materials Project: a Materials Genome
Approach to Accelerating Materials Innovation. APL Mater. 2013,
1, 1.
(17) Choudhary, K.; Garrity, K. F.; Reid, A. C. E.; DeCost, B.;
Biacchi, A. J.; Hight Walker, A. R.; Trautt, Z.; Hattrick-Simpers, J.;
Kusne, A. G.; Centrone, A.; Davydov, A.; Jiang, J.; Pachter, R.; Cheon,
G.; Reed, E.; Agrawal, A.; Qian, X.; Sharma, V.; Zhuang, H.; Kalinin,
S. V.; Sumpter, B. G.; Pilania, G.; Acar, P.; Mandal, S.; Haule, K.;
Vanderbilt, D.; Rabe, K.; Tavazza, F. The Joint Automated Repository
for Various Integrated Simulations (JARVIS) for Data-Driven
Materials Design. npj Comput. Mater. 2020, 6, 173.
(18) Bartel, C. J. Review of Computational Approaches to Predict
the Thermodynamic Stability of Inorganic Solids. J. Mater. Sci. 2022,
57, 10475−98.
(19) Pearson, R. K. Outliers in Process Modeling and Identification.
IEEE Trans. Control Syst. Technol. 2002, 10, 55−63.

(20) Hinton, G. E. Connectionist Learning Procedures. Artif. Intell.
1989, 40, 185−234.
(21) Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5−32.
(22) Friedman, J. H. Greedy Function Approximation: a Gradient
Boosting Machine. Annals of Statistics 2001, 29, 1189−1232.
(23) Drucker, H. Improving Regressors Using Boosting Techniques.
ICML 1997, 107−115.
(24) Geurts, P.; Ernst, D.; Wehenkel, L. Extremely Randomized
Trees. Mach. Learn. 2006, 63, 3−42.
(25) Murtagh, F. Multilayer Perceptrons for Classification and
Regression. Neurocomputing. 1991, 2, 183−197.
(26) Zeiler, M. D. ADADELTA: An Adaptive Learning Rate
Method. arXiv 2012, DOI: 10.48550/arXiv.1212.5701.
(27) Lundberg, S. M.; Allen, P. G.; Lee, S. I. A Unified Approach to
Interpreting Model Predictions. arXiv 2017, DOI: 10.48550/
arXiv.1705.07874.
(28) Pearson, K. Note on Regression and Inheritance in the Case of
Two Parents. Proc. R. Soc. London 1895, 58, 240−242.
(29) Rudtsch, S. Uncertainty of Heat Capacity Measurements with
Differential Scanning Calorimeters. Thermochim. Acta 2002, 382, 17−
25.
(30) Gillet, P.; Richet, P.; Guyot, F.; Fiquet, G. High-Temperature
Thermodynamic Properties of Forsterite. J. Geophys. Res. 1991, 96,
11805−11816.
(31) Stack, D. C. Development of High-Temperature Firebrick
Resistance-Heated Energy Storage (FIRES) Using Doped Ceramic
Heating System. Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge, MA, 2021.
(32) Mujtaba, A.; Janjua, N. K. Fabrication and Electrocatalytic
Application of CuO@Al2O3 Hybrids. J. Electrochem. Soc. 2015, 162,
H328−H337.
(33) Xu, Y.; Chen, H.; Xu, H.; Chen, M.; Zhou, P.; Li, S.; Zhang, G.;
Shi, W.; Yang, X.; Ding, X.; Wei, B. Physical Properties of an Ultrathin
Al2O3/HfO2 Composite Film by Atomic Layer Deposition and the
Application in Thin-Film Transistors. ACS Appl. Mater. Interfaces.
2023, 15, 16874−81.
(34) Smirnova, T. P.; Lebedev, M. S.; Morozova, N. B.;
Semyannikov, P. P.; Zherikova, K. V.; Kaichev, V. V.; Dubinin, Y.
V. MOCVD and Physicochemical Characterization of (HfO2)x-
(Al2O3)1‑x Thin Films. Chem. Vap. Depos. 2010, 16 (16), 185−90.
(35) Li, X.; Li, L.; Wang, L.; Xia, Q.; Hao, L.; Zhan, X.; Robertson,
A. W.; Sun, Z. Engineering the CuO-HfO2 Interface Toward
Enhanced CO2 Electroreduction to C2H4. ChemComm. 2022, 58,
7412−5.
(36) Radwanski, R. J.; Ropka, Z. Specific Heat and the Ground State
of NiO. Acta Phys. Polym. 2008, 114, 213.
(37) Thorn, R. J. On the Origin of the Lambda-Type Transition in
Heat Capacity. J. Chem. Thermodyn. 2002, 34, 973−85.
(38) Benisek, A.; Dachs, E. On the Nature of the Excess Heat
Capacity of Mixing. Phys. Chem. Miner. 2011, 38, 185−91.
(39) Kittel, C.; Kroemer, H. Thermal Physics, 2nd ed.; W. H.
Freeman and Co.: New York, 1980.
(40) Wickham, D. G. Solid-Phase Equilibria in the System NiO-
Mn2O3-O2. J. Inorg. Nucl. Chem. 1964, 26, 1369−77.
(41) Speidel, D. H.; Muan, A. The System Manganese Oxide -
Chromium Oxide in Air. J. Am. Chem. Soc. 1963, 46, 577−578.
(42) Muan, A.; Omiya, S. Phase Relations in the System Iron Oxide -
Chromium Oxide in Air. J. Am. Chem. Soc. 1960, 43, 204−209.
(43) Benny, S.; Grau-Crespo, R.; De Leeuw, N. H. A Theoretical
Investigation of α- Fe2O3-Cr2O3 Solid Solutions. Phys. Chem. Chem.
Phys. 2009, 11, 808−815.
(44) Sakurai, S.; Namai, A.; Hashimoto, K.; Ohkoshi, S. I. First
Observation of Phase Transformation of All Four Fe2O3 Phases (γ →
ε → β → α-Phase). J. Am. Chem. Soc. 2009, 131, 18299−18303.
(45) Della Santa, F.; Pieraccini, S. Discontinuous Neural Networks
and Discontinuity Learning. J. Comput. Appl. Math. 2023, 419,
No. 114678.
(46) Lund, J.; Wang, H.; Braatz, R. D.; García, R. E. Machine
Learning of Phase Diagrams. Mater. Adv. 2022, 3, 8485−8497.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.4c00506
J. Phys. Chem. Lett. 2024, 15, 4721−4728

4727

https://doi.org/10.1021/acscatal.9b02505?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.9b02505?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.9b02505?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c00107?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c00107?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jssc.2017.05.015
https://doi.org/10.1016/j.jssc.2017.05.015
https://doi.org/10.1016/j.jssc.2017.05.015
https://doi.org/10.13182/NT16-28
https://doi.org/10.13182/NT16-28
https://doi.org/10.13182/NT16-28
https://doi.org/10.1016/j.joule.2019.06.012
https://doi.org/10.1016/j.joule.2019.06.012
https://doi.org/10.1016/j.joule.2020.07.007
https://doi.org/10.1016/j.joule.2020.07.007
https://doi.org/10.1016/j.apenergy.2019.03.100
https://doi.org/10.1016/j.apenergy.2019.03.100
https://doi.org/10.1016/j.apenergy.2019.03.100
https://doi.org/10.1002/anie.200906780
https://doi.org/10.1002/anie.200906780
https://doi.org/10.1016/j.tca.2009.08.002
https://doi.org/10.1016/j.tca.2009.08.002
https://doi.org/10.1007/s40192-018-0108-9
https://doi.org/10.1007/s40192-018-0108-9
https://doi.org/10.1021/acs.chemmater.9b01046?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b01046?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b01046?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1017/dce.2020.7
https://doi.org/10.1017/dce.2020.7
https://doi.org/10.1017/dce.2020.7
https://doi.org/10.1016/S0925-8388(00)01481-X
https://thermocalc.com/
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://doi.org/10.1038/s41524-020-00440-1
https://doi.org/10.1038/s41524-020-00440-1
https://doi.org/10.1038/s41524-020-00440-1
https://doi.org/10.1007/s10853-022-06915-4
https://doi.org/10.1007/s10853-022-06915-4
https://doi.org/10.1109/87.974338
https://doi.org/10.1016/0004-3702(89)90049-0
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1016/0925-2312(91)90023-5
https://doi.org/10.1016/0925-2312(91)90023-5
https://doi.org/10.48550/arXiv.1212.5701
https://doi.org/10.48550/arXiv.1212.5701
https://doi.org/10.48550/arXiv.1212.5701?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.48550/arXiv.1705.07874?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.1705.07874?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/10.1016/S0040-6031(01)00730-4
https://doi.org/10.1016/S0040-6031(01)00730-4
https://doi.org/10.1029/91JB00680
https://doi.org/10.1029/91JB00680
https://doi.org/10.1149/2.0351506jes
https://doi.org/10.1149/2.0351506jes
https://doi.org/10.1021/acsami.2c22227?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.2c22227?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.2c22227?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/cvde.201006840
https://doi.org/10.1002/cvde.201006840
https://doi.org/10.1039/D2CC01776H
https://doi.org/10.1039/D2CC01776H
https://doi.org/10.12693/APhysPolA.114.213
https://doi.org/10.12693/APhysPolA.114.213
https://doi.org/10.1006/jcht.2001.0947
https://doi.org/10.1006/jcht.2001.0947
https://doi.org/10.1007/s00269-010-0394-z
https://doi.org/10.1007/s00269-010-0394-z
https://doi.org/10.1016/0022-1902(64)80116-0
https://doi.org/10.1016/0022-1902(64)80116-0
https://doi.org/10.1111/j.1151-2916.1963.tb14619.x
https://doi.org/10.1111/j.1151-2916.1963.tb14619.x
https://doi.org/10.1111/j.1151-2916.1960.tb12982.x
https://doi.org/10.1111/j.1151-2916.1960.tb12982.x
https://doi.org/10.1039/B815907F
https://doi.org/10.1039/B815907F
https://doi.org/10.1021/ja9046069?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9046069?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9046069?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cam.2022.114678
https://doi.org/10.1016/j.cam.2022.114678
https://doi.org/10.1039/D2MA00524G
https://doi.org/10.1039/D2MA00524G
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c00506?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(47) Arróyave, R. Phase Stability Through Machine Learning. J.
Phase Equilibria and Diffus. 2022, 43, 606−28.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.4c00506
J. Phys. Chem. Lett. 2024, 15, 4721−4728

4728

https://doi.org/10.1007/s11669-022-01009-9
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c00506?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

