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A B S T R A C T

A method for solving three dimensional discrete dislocation plasticity boundary-value problems
using a monopole representation of the dislocations is presented. At each time step, the
displacement, strain and stress fields in a finite body are obtained by superposition of infinite
body dislocation fields and an image field that enforces the boundary conditions. The three
dimensional infinite body fields are obtained by representing dislocations as being comprised
of points, termed monopoles, that carry dislocation line and Burgers vector information. The
image fields are obtained from a three dimensional linear elastic finite element calculation.
The implementation of the coupling of the monopole representation with the finite element
method, including the interaction of curved dislocations with free surfaces, is presented in
some detail because it differs significantly from an implementation with a line based dislocation
representation. Numerical convergence and the modeling of dislocation loop nucleation for large
scale computations are investigated. The monopole discrete dislocation plasticity framework is
used to investigate the effect of size and initial dislocation density on the torsion of wires
with diameters varying over three orders of magnitude. Depending on the initial dislocation
source density and the wire diameter, three regimes of torsion–twist response are obtained:
(i) for wires with a sufficiently small diameter, plastic deformation is nucleation controlled
and is strongly size dependent; (ii) for wires with larger diameters dislocation plasticity is
dislocation interaction controlled, with the emergence of geometrically necessary dislocations
and dislocation pile-ups playing a key role, and is strongly size dependent; and (iii) for
wires with sufficiently large diameters plastic deformation becomes less heterogeneous and the
dependence on size is greatly diminished.

1. Introduction

Plastic deformation arising from the evolution of dislocations is size dependent in micron scale metal crystals, see e.g. Hutchinson
2000). There are a variety of mechanisms that can lead to such size dependence with smaller being stronger. Some, for example,
islocation starvation and single arm dislocation source controlled plasticity at surfaces, can lead to size dependence when the
mposed boundary conditions are consistent with homogeneous deformation (Uchic et al., 2009; El-Awady, 2015). When the imposed
boundary conditions and/or boundary constraints induce a deformation gradient, dislocation structures evolve that have a local net
Burgers vector, the so-called Geometrically Necessary Dislocations (GNDs) (Ashby, 1970), give rise to long range stresses and induce
a strong size effect. Examples of loadings and boundary constraints that lead to a strong size effect include indentation (Nix and Gao,
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1998; Kysar et al., 2007), beam bending (Stölken and Evans, 1998; Cleveringa et al., 1999), torsion (Fleck et al., 1994), passivated
thin films (Nicola et al., 2006), and in the vicinity of a crack tip or sharp notch (Cleveringa et al., 2000).

Dislocations in crystals are line defects. Hence, in mesoscale modeling of the evolution of dislocations in crystals, the dislocations
are modeled as line defects in an elastic solid. In three dimensions, tracking the evolution of such lines is computationally
complex (Bulatov et al., 1998; Zbib et al., 1998; Ghoniem et al., 2000; Arsenlis et al., 2007). More recently, Deffo et al. (2019)
ave introduced an alternative description where the dislocation lines are carried by points, termed monopoles, and it is these
oints that must be kept track of, rather than the lines they carry. This has the potential for significantly simplifying mesoscale
islocation plasticity modeling.
In this study, torsion of single crystal wires is modeled using the monopole dislocation representation of Deffo et al. (2019) and

riza and Ortiz (2021). The method of monopoles may be regarded as a particle method applied to line dislocations, in which the
islocation line is concentrated at points, while simultaneously retaining local geometric information about the lines, namely length
nd direction, as well as local Burgers vector information. The collection of dislocation monopoles then supplies an approximation,
n the sense of local averages, to the dislocation density, in the spirit of particle methods for mass transport (Fedeli et al., 2017;
arrillo et al., 2017, 2019; Pandolfi et al., 2023). The dislocation monopoles are updated in time according to linear-elastic energetic
riving forces, a mobility law and geometric transformations that take into account the stretching of the dislocation lines that can
e associated with a change in curvature. These geometric updates encode the requirement that the monopoles approximate lines
nd, in particular, they ensure that the zero-divergence property of the dislocation density is satisfied approximately at all times.
he method of monopoles effectively eschews the problems of line entanglement that inevitably arise in line-based representations
nd, as is commonly the case with particle methods, is remarkable for its ability to navigate through complex three-dimensional
islocation dynamics simply and without ad hoc rules.
Three dimensional quasi-static calculations are carried out, within the context of a small deformation formulation (geometry

hanges neglected), for wires with diameters ranging from 150 nm to 10000 nm. Various initial dislocation source densities are
onsidered. Boundary conditions are imposed using the superposition method introduced by Van der Giessen and Needleman (1995)
nd, for line representation of dislocations, extended to three dimensions by Weygand et al. (2002), Crone et al. (2014) and Joa et al.
2023); also see Vattré et al. (2014) and Bertin et al. (2015) for alternative methods. The monopole representation of dislocations
equires a different treatment of dislocation-free boundary interactions than that given by Weygand et al. (2002) or more recent
line-based methods.

Experimentally, a strong size effect in torsion of polycrystalline metal wires was documented by Fleck et al. (1994). Because
wire torsion is an inherently three dimensional configuration, discrete dislocation modeling of wire torsion has only been carried
out relatively recently by Senger et al. (2011), Gravell and Ryu (2020), and Ryu et al. (2020). These analyses were carried out for
single crystals and used a line representation of the dislocations. As in the experiments of Fleck et al. (1994), a strong size effect
was obtained.

The calculations here are carried out for wires with a circular cross section comprised of a single fcc crystal with properties
representative of copper. Because implementation of the coupling between the monopole dislocation representation and the finite
element method differs significantly from that for the line representation finite element coupling, the implementation of the coupling
is described in some detail. Other aspects of the numerical implementation are discussed including consideration of numerical
accuracy. Results are then presented for the effect of size on the moment–twist relation and for the effect of size on the dislocation
structures that emerge. The variation of the scaling of the moment–twist relation with initial dislocation density is also illustrated.

2. Discrete dislocation plasticity framework

The three dimensional discrete dislocation plasticity formulation is based on the monopole representation of dislocations
introduced by Deffo et al. (2019), also see Ariza and Ortiz (2021), together with the superposition of an image field following Van
der Giessen and Needleman (1995) and Weygand et al. (2002). The presentation of the framework here focuses on the aspects
particular to combining the monopole dislocation representation with the image field obtained from a finite element calculation.

A finite body occupying domain 𝛺 is subjected to boundary tractions 𝐓0 on 𝜕𝛺t and boundary displacements 𝐔0 on 𝜕𝛺u, as
sketched in Fig. 1. In its current state, the body contains a distribution of dislocation lines, collectively denoted 𝐶, carrying a Burgers
vector 𝐛(𝐱) at every point 𝐱 of 𝐶. The dislocation network must be closed, i. e., the corresponding Nye’s dislocation density (Nye,
1953) must be divergence free, or terminate at the boundary of the solid. In addition, the Burgers vector 𝐛(𝐱) must be conserved
along dislocation lines and satisfy Frank’s rule at branching points.

The procedure used to calculate the evolution in time of the dislocation configuration for given time-dependent boundary
tractions and boundary displacements is described in the following sections.

2.1. The monopole approximation

In calculations, we approximate the dislocation distribution by an ensemble of 𝑀 monopoles labeled 𝑎 = 1,… ,𝑀 , with
coordinates {𝐱𝑎}𝑀𝑎=1. The monopoles additionally carry corresponding elements of dislocation line {𝝃𝑎}

𝑀
𝑎=1 and Burgers vector {𝐛𝑎}

𝑀
𝑎=1.

The monopole ensemble approximates the dislocation line density in the sense that, for every continuous function 𝜑𝑖𝑗 (𝐱),

∮ 𝜑𝑖𝑗 (𝐱)𝑏𝑖(𝐱)𝑑𝑥𝑗 ∼
𝑀
∑

𝜑𝑖𝑗 (𝐱𝑎)𝑏𝑎𝑖𝜉𝑎𝑗 , (1)
2

𝐶 𝑎=1
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Fig. 1. Decomposition of the problem into the superposition of interacting dislocations in a homogeneous infinite solid, the ( ̃ ) fields, and the image problem
that enforces the boundary conditions, the ( ̂ ) fields.

where we write 𝑏𝑎𝑖 ∶= (𝐛𝑎)𝑖 and 𝜉𝑎𝑖 ∶= (𝝃𝑎)𝑖, and the error of the approximation can be controlled and made arbitrarily small by
introducing a sufficiently large number of monopoles.

By Stokes′ theorem, the divergence, or closedness condition of the dislocation line density, requires that

∮𝐶

𝜕𝑓𝑖
𝜕𝑥𝑗

(𝐱)𝑏𝑖(𝐱)𝑑𝑥𝑗 = 0, (2)

for every differentiable function 𝑓𝑖(𝐱) with finite support. By the assumed approximation property, Eq. (1), it follows that, for a
distribution of monopoles to represent an admissible distribution of closed dislocation lines, it must satisfy

𝑀
∑

𝑎=1

𝜕𝑓𝑖
𝜕𝑥𝑗

(𝐱𝑎)𝑏𝑎𝑖𝜉𝑎𝑗 ∼ 0 (3)

for every differentiable function 𝑓𝑖(𝐱) with finite support, to within the level of approximation of the monopoles. This condition
laces a geometrical constraint on the distribution of monopoles that must be enforced at all times during the calculation by means
f suitable geometric updates, cf. Section 2.3.

.2. The instantaneous boundary-value problem

We presume that the body is in mechanical equilibrium and the position of every monopole in the body is known. Superposition
ay then be used to write the displacement, 𝐮, strain, 𝜺, and stress, 𝝈, fields as

𝐮(𝐱) = 𝐮̃(𝐱) + 𝐮̂(𝐱) ; 𝜺 = 𝜺̃ + 𝜺̂ ; 𝝈 = 𝝈̃ + 𝝈̂ , (4)

here the symbol ̃(⋅) refers to infinite-body fields and ̂(⋅) to image fields that enforce the boundary conditions, Fig. 1. By linearity,
he infinite-body displacement and stress fields follow as

𝐮̃(𝐱) =
𝑀
∑

𝑎=1
𝐮𝑎(𝐱) , 𝝈̃(𝐱) =

𝑀
∑

𝑎=1
𝝈𝑎(𝐱) , (5)

here 𝐮𝑎(𝐱) and 𝝈𝑎(𝐱) are the contributions to the fields from monopole 𝑎, respectively. The corresponding expressions follow
y inserting the approximation property Eq. (1) into well-known integral expressions from linear-elastic dislocation theory, cf.,
.g., Hirth and Lothe (1982, Chapter 4), and are collected in the Appendix, Eqs. (A.8) and (A.9), for completeness.
The ̂(⋅) fields are obtained from the solution of the linear elastic boundary value problem specified by

∇ ⋅ 𝝈̂ = 𝟎 ; 𝜺̂ = ∇⊗ 𝐮̂ ; 𝝈̂ =  ∶ 𝜺̂ for 𝐱 ∈ 𝛺, (6)

𝐧 ⋅ 𝝈̂ = 𝐓0 − 𝐧 ⋅ 𝝈̃ for 𝐱 ∈ 𝜕𝛺t ; 𝐮̂ = 𝐔0 − 𝐔̃ for 𝐱 ∈ 𝜕𝛺u (7)

ith  the isotropic tensor of elastic moduli and 𝐧 the outer normal to 𝜕𝛺. Also, 𝐔̃ and 𝐓̃ = 𝐧 ⋅ 𝝈̃ are respectively the boundary
isplacement and traction arising from the infinite body dislocation fields (see Fig. 1), ∇ is the nabla operator and ⊗ stands for the
ymmetric dyad. This boundary value problem is solved by the finite element method and traction boundary conditions are imposed
hrough effective nodal forces. With 𝐅0,n denoting the imposed nodal forces on a set 𝛤f of boundary nodes lying on 𝜕𝛺t , and with 𝐟n
nd 𝐟n the corresponding nodal forces associated with the ̂(⋅) and ̃(⋅) fields, the nodal forces imposed to obtain the image fields are

𝐟n = 𝐅0,n − 𝐟n, n ∈ 𝛤f (8)

he values of the tilde forces 𝐟n are obtained by assembling element nodal forces from all elements that have a boundary surface
ode. For each such element its contribution to the surface boundary nodal force is obtained by numerical integration of 𝝈̃(𝐱) within
3

hat element.



Journal of the Mechanics and Physics of Solids 190 (2024) 105709A. Cruzado et al.

e
p

w
o

s
a
T
w

2

W
m

b
v
o

T
f

a
l
o
c

m

w
g
c

2.3. Geometric updates

Suppose that the velocities {𝐯𝑎}𝑀𝑎=1 of the monopoles are known. Then, the positions {𝐱𝑎}
𝑀
𝑎=1 of the monopoles can be updated

simply by time integration. However, in order to fully update the monopole configuration we additionally need update rules for
the Burgers vectors {𝐛𝑎}𝑀𝑎=1 and line elements {𝝃𝑎}

𝑀
𝑎=1. The update rules follow by time integration of the transport, or continuity,

quation for the dislocation lines (cf. Mura (1982), Eqs. (32.2) and (38.4)). For a distribution of monopoles, by the approximation
roperty, Eq. (1), the discrete form of the transport equations becomes (Deffo et al., 2019; Ariza and Ortiz, 2021)

𝐛̇𝑎 = 𝟎, 𝝃̇𝑎 = (∇𝐯𝑎)𝝃𝑎, (9)

here ∇𝐯𝑎 is the gradient at 𝐱𝑎 of some suitable spatial interpolation of the monopole velocities {𝐯𝑎}𝑀𝑎=1 and (∇𝐯𝑎)𝝃𝑎 is the gradient
f the velocity field in the direction of the line element 𝝃𝑎.
It can be readily verified using the approximation property in Eq. (1) that the update of Eq. (9) properly accounts for the

tretching and rotation of the line elements attendant to the motion of the monopoles (Ariza and Ortiz, 2021). In addition, it can
lso be verified (Deffo et al., 2019) that the update in Eq. (9) preserves dislocation loops remaining closed in the sense of Eq. (3).
hus, if the monopole ensemble initially approximates a closed distribution of dislocation lines, it still does so after the update, to
ithin the accuracy of the monopole approximation and the velocity interpolation.
The computation of the velocity gradient requires an interpolation scheme of the general form

(∇𝐯𝑎)𝑖𝑗 =
𝑀
∑

𝑏=1
𝑣𝑏𝑖

𝜕𝑁𝑏
𝜕𝑥𝑗

(𝐱𝑎). (10)

where {𝑁𝑎(𝐱)}𝑀𝑎=1 are suitable shape functions. In calculations we specifically use the max-ent shape functions (Arroyo and Ortiz,
006)

𝑁𝑎(𝐱) =
1

𝑍(𝐱)
exp

(

−
𝛽𝑎
2
|𝐱 − 𝐱𝑎|2

)

, 𝑍(𝐱) =
𝑀
∑

𝑎=1
exp

(

−
𝛽𝑎
2
|𝐱 − 𝐱𝑎|2

)

. (11)

e note that the resulting interpolation, Eq. (10), is mesh-free and does not entail any ordering or connectivity between the
onopoles. In Eq. (11), the distance 1∕

√

𝛽𝑎 sets the range of interaction for monopole 𝑎. Thus, only those monopoles that are
at a distance of order 1∕

√

𝛽𝑎 ‘see’ and interact with monopole 𝑎. In practice, this property can be exploited to reduce the range of
the sums in Eqs. (10) and (11).

The effect of the shape functions 𝑁𝑎(𝐱) is to broaden the monopoles and give them a spatial profile of finite width 1∕
√

𝛽𝑎. This
roadening allows neighboring monopoles to ‘see’ each other for purposes of the interpolation of their velocities into a continuous
elocity field, which in turns governs the geometrical update of the line elements {𝝃𝑎}𝑀𝑎=1 per Eq. (9). In this sense, the broadening
f the monopoles is analogous to finite-particle, or ‘blob’, methods for problems of mass transport (Carrillo et al., 2019; Pandolfi
et al., 2023).

2.4. Mobility

In order to close the evolution problem, a mobility law for the velocity of the monopoles is required. The motion of the monopoles
is taken to be driven by the configurational Peach–Koehler force to account for a change in position of the dislocation as well as
the self force associated with the energy cost of a change in dislocation line length, so that

𝐟𝑎 =
(

𝝈(𝐱𝑎) ⋅ 𝐛𝑎
)

× 𝝃𝑎, (12)

or, in view of Eqs. (4) and (5),

𝐟𝑎 = (𝝈̂(𝐱𝑎) ⋅ 𝐛𝑎) × 𝝃𝑎 +
𝑀
∑

𝑏=1
(𝝈𝑏(𝐱𝑎) ⋅ 𝐛𝑎) × 𝝃𝑎. (13)

he driving force 𝐟𝑎 comprises one term contributed by the image stresses, which in turn accounts for boundary effects and the
initeness of the domain, and a second term resulting from the elastic interaction between the monopoles.
However, a direct evaluation of the self-force terms, 𝑏 = 𝑎 in Eq. (13), from linear elasticity is not possible since 𝝈𝑎(𝐱) diverges

s 𝐱 approaches 𝐱𝑎. The singularity can be removed by fitting the monopoles with a core profile of a width 𝜖 commensurate with a
attice parameter (Bulatov and Cai, 2006; Lazar, 2017; Deffo et al., 2019). A particular core profile, and the attendant regularization
f monopole self-forces, can be achieved by recourse to strain-gradient elasticity (Deffo et al., 2019). The resulting expressions are
ollected in Appendix for completeness.
Once a suitably regularized set of monopole forces has been defined, the velocity of the monopoles can be computed from a
obility law of the type

𝐯𝑎 = 𝐌𝑎𝐟𝑎, (14)

here 𝐌𝑎 is a mobility tensor. In general, the edge and screw mobilities of glide dislocations, as well as the climb mobilities, differ
reatly in actual crystals, and this renders the mobility tensor 𝐌𝑎 anisotropic. More general mobility laws, including nonlinearity,
4

an be treated likewise (Deffo et al., 2019; Ariza and Ortiz, 2021).
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Fig. 2. Schematic of a dislocation loop exiting the free surface and the introduction of virtual monopoles in three steps: (a) Step 1: check for monopoles that
re outside the body 𝛺 (black) and remove them. (b) Step 2: identify the two monopoles that are closest to the surface. (c) Step 3: create virtual monopoles
red) and the corresponding element of line 𝜉 that closes the loop.

2.5. Calculation of image forces

Determining the first term in Eq. (12), 𝐟𝑎, requires evaluating the image stress, determined by solving Eqs. (6) and (7),
at the location of monopole 𝑎. This is accomplished by interpolating the 𝝈̂ field to the position of the monopole. During the
deformation history, a monopole can change the finite element in which it is located. An efficient ((log𝑀) operations) binary
-tree algorithm (Comer, 1979) (so-called BB-tree Z-set, 2020) is used as an element locator to obtain the monopole coordinates 𝐱𝑎
ithin a finite element. Because the 𝝈̂ field is discontinuous across finite element boundaries, the values of 𝝈̂ are extrapolated to
lement nodes using the finite element shape functions. Then the nodal values of 𝐟𝑎 are averaged over all finite elements sharing
he same node before interpolation to the monopoles.

.6. Topological transitions

Because the infinite body dislocation expressions pertain to a closed line, a key issue in the numerical implementation of discrete
islocation dynamics in finite bodies is the treatment of cases where part of a dislocation loop exits the body, as illustrated in
ig. 2a. To address this within the context of the monopole representation of dislocations, a method involving virtual monopoles
s introduced, akin to virtual segments employed in line-based methods (Weygand et al., 2002; Liu et al., 2005; Weinberger et al.,
009; Deng et al., 2008; Leiter et al., 2013; Crone et al., 2014).
At each time step in the calculation, monopoles associated with a dislocation loop that have exited the body, as shown in Fig. 2a,

re identified. Then the two monopoles of that loop that remain in the body and that are closest to the surface are detected, see
ig. 2b. The distance between these two dislocations is denoted by 𝑑1−2. Virtual monopoles are introduced to close the loop as
llustrated in Fig. 2c. The monopoles shown black in Fig. 2a are removed from subsequent calculations of the dislocation dynamics.
he virtual monopoles shown in red in Fig. 2c are only used to calculate the tilde fields in Eqs. (5) and (12). In the computations
here 10 virtual monopoles lying on a semi-circle of radius equal to half the distance 𝑑1−2 are added.

Dislocation nucleation/multiplication is included in the calculations via a source model (Deffo et al., 2019). The locations of
potential sources are randomly distributed in the body prior to the start of the calculation of the deformation history. Each potential
source is defined as a set of monopoles arranged in a loop. At a given source location, a loop of radius 𝑟0 nucleates when

𝛼|𝐟𝑎| − |𝐟 𝜖𝑎 | > 0, ∀𝑎 ∈ 𝑀(𝑟0), (15)

with 𝑀(𝑟0) denoting the set of monopoles defining the loop and 𝛼 > 0 a parameter. Here, 𝐟 𝜖𝑎 denotes the second term in Eq. (12),
regularized using a core parameter 𝜖; see Appendix. Eq. (15) states that the external force acting on each monopole must exceed
its internal force so that the loop does not collapse. Once this condition is met, the source emits a dislocation loop so that the new
monopoles that comprise the nucleated loop are inserted into the calculation.

2.7. Coupled time-integration algorithm

For given domain geometry and forcing, Eqs. (9), (13) and (14) govern the evolution of the monopole ensemble. Time integration
may be accomplished using standard time-stepping algorithms, such as fully implicit backward-Euler (Deffo et al., 2019) or explicit
two-stage Runge–Kutta method (Ariza and Ortiz, 2021).

The computational method involves the following steps:

1. At time 𝑡 the body is in equilibrium and the position of each monopole in the body is known. The surface nodal forces 𝐟
̃ ̃
5

corresponding to 𝝈 and displacements 𝒖 are computed.
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Fig. 3. (a) Boundary-value problem for torsion of an fcc single crystal wire subjected to a prescribed twist angle 𝜃. In the calculations, the wire is taken to
have a [001] orientation. (b) Example finite element meshes for wire diameters of 𝐷 = 150 nm, 500 nm, and 1000 nm, nested into each other.

2. The boundary-value problem defined by Eqs. (6) and (7) for the ̂(⋅) fields is solved.
3. The 𝝈̂ field is interpolated to the monopole locations to evaluate the Peach–Koehler forces {𝐟𝑎}𝑀𝑎=1 in Eq. (12). This
interpolation is performed for both static source locations to evaluate the nucleation criterion, Eq. (15), and for existing
monopoles.

4. The condition for new loop nucleation, Eq. (15), is checked.
5. The rate equations Eq. (9), Eq. (13) and (14) are integrated in time to determine new monopole configurations at time 𝑡+𝛥𝑡.
6. Monopoles that lie outside the body are flagged and removed. Virtual monopoles are added to close the dislocation loop for
stress calculations.

7. Go to step 1 with 𝑡 ← 𝑡 + 𝛥𝑡.

The code used to solve the initial/boundary value problem is a combination of the serial MonoDis code of Deffo et al. (2019),
Ariza and Ortiz (2021) and the Z-set (Z-set, 2020) finite element code. These are integrated through a C++ plug-in interface. The
implementation has the following features: (i) for the linear elastic finite element calculations, Cholesky decomposition of the global
stiffness matrix is carried out once, (ii) expressions derived from the principle of virtual work are used to enforce the traction and
displacement boundary conditions, and (iii) the image force interpolation uses a BB-tree algorithm. Because inversion of the global
stiffness matrix is executed only once, the time used for the finite element part solution is a small part of the total computational
time for calculation of the deformation history.

3. Torsion problem formulation

Calculations were carried out on cylindrical specimens characterized by diameters 𝐷 ranging between 0.15 μm and 10 μm and a
length to diameter ratio 𝐿∕𝐷 = 3.5. Torsion boundary conditions were applied via an applied twist angle, with 𝐞𝑧 being a unit vector
along the axis of twist, Fig. 3a. The top surface (at 𝑧 = 𝐿∕2) was subjected to twist angle 𝜃 while all nodes of the bottom surface
(at 𝑧 = −𝐿∕2) were fixed, Fig. 3a. A linear approximation was employed where sin 𝜃 ≈ 𝜃, as is suitable for small strain problems.
The specimens were loaded with a constant torsion rate of 𝜑̇ ≈ 5.6◦ ns−1.

A relatively coarse mesh was used for all specimens, as illustrated in Fig. 3b. An analysis of mesh refinement and element type
was carried out; see Section 3.1. On that basis, most calculations were performed using meshes consisting of 1664 20 node brick
elements with quadratic displacement shape functions and 27 point Gaussian integration.

The centers of dislocation sources were randomly dispersed along the axial and hoop directions, but they were located radially
at 𝐷∕2 − 𝑒 from the surface, where 𝑒 denotes an exclusion distance, Fig. 4. In the calculations here, 𝑒 = 2𝑟0 with 𝑟0 being the initial
loop radius. The number of sources was adjusted so as to achieve a desired initial dislocation density 𝜌0. At nucleation, the radius
of initial loops is scaled with the specimen size as 𝑟0 = 𝐷∕10. Each loop is discretized using line element lengths 𝜉 = |𝝃𝑎| = 2
𝜋𝑟0∕𝑀(𝑟0). Also, no monopole splitting was used in any of the calculations.

A time step of 𝛥𝑡 = 0.3 ps was chosen based on numerical stability considerations (Ariza and Ortiz, 2021), derived from the
mallest dislocation loop (𝑟0 = 15 nm for a wire diameter of 𝐷 = 150 nm).
The material parameters were chosen to be representative of copper but with isotropic elastic properties, shear modulus
= 48 GPa, and Poisson’s ratio 𝜈 = 0.34. The Burgers vector length is taken to be 𝑏 = 0.2556 nm, and lattice parameter is
= 0.3614 nm. Only dislocation glide is considered in the calculations and the relation between glide component 𝑓glide of 𝐟𝑎 in
q. (13) and dislocation glide velocity 𝑣glide is taken to be independent of dislocation character and given by

𝑣 = 1 𝑓 (16)
6
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Fig. 4. Illustration of the exclusion distance 𝑒. (a) Sketch of a dislocation loop in a transverse plane of the wire; (b) Sketch of a dislocation loop on a slip plane
nclined relative to the wire axis.

ith the glide mobility constant taken to be 𝐵 = 10−5 Pa s−1.
Results are presented in terms of the normalized torque, 𝑇 ∕𝐷3, versus plastic strain on the surface, 𝛾𝑝surf . The net torque at any

given time 𝑡 is calculated using:

𝐓 =
𝑁surfz+
∑

n=1
𝐱n × 𝐟n +

[𝑁surfz+
∑

n=1
𝐱n × 𝐟n −

𝑁surfz−
∑

n=1
𝐱n × 𝐟n

]

(17)

where 𝐱n denotes the position of surface node n relative to the axis of torque, 𝑁surfz+ denotes the nodes corresponding to the positive
𝑧 face, and 𝑁surfz− corresponds to the negative 𝑧 face. The first term in Eq. (17) represents the net torque computed from the finite
lement solution, which is opposite and equal in magnitude to the reaction torque at the bottom surface. The second, bracketed
erm in Eq. (17) represents a correction torque arising from the symmetry breaking due to random dislocation locations.
The incremental plastic twist per unit length, 𝛥𝜃𝑝, due to dislocation motion, is obtained from

𝛥𝜃𝑝 =
𝛥𝜑
𝐿

=
𝑀
∑

𝑎

1
𝐼𝑝𝐿

− (𝑏𝑎𝑧𝜈
𝑎
𝑥 + 𝑏𝑎𝑥𝜈

𝑎
𝑧 )𝑦̄

𝑎 + (𝑏𝑎𝑧𝜈
𝑎
𝑦 + 𝑏𝑎𝑦𝜈

𝑎
𝑧 )𝑥̄

𝑎𝛥𝐴𝑎
𝑠𝑤𝑒𝑝𝑡 (18)

which is adapted from a similar equation used by Ryu et al. (2020). Here, 𝑥̄𝑎 and 𝑦̄𝑎 denote the centroid locations of the swept area
of the 𝑎th monopole element of line, 𝐼𝑝 = 𝜋𝑅4∕2 is the polar moment of inertia, and 𝜈𝑖 are the components of the slip plane normal.
The surface shear strain, 𝛾𝑝surf , is defined as

𝛾𝑝surf = 𝛥𝜃𝑝
(𝐷
2

)

(19)

3.1. Numerical aspects

First, the optimal size of the element of dislocation line 𝜉, needed to accurately reproduce the non-singular solution for (isolated)
general dislocation loops (Cai et al., 2006; Hirth and Lothe, 1982) is explored. Fig. 5a shows the shear stress, defined based on the
verage Peach–Koehler force

𝜏 = 1
𝑀

𝑀
∑

𝑎
|𝐟 𝜖𝑎 |∕𝑏 (20)

versus the loop radius for various values of 𝜉 using a core regularization parameter 𝜖 = 2𝑏. A value of 𝜉 = 0.86𝑏 is needed to recover
the analytical solution of the general loop. For larger loops, this value of 𝜉 leads to a large number of monopoles being required.
In order to reduce the computational time, a scaling relation between 𝜉 and 𝜖 is used. This enables calculations with larger values
of 𝜉 to be used while maintaining accuracy as illustrated in Fig. 5b.

In the calculations here, the values of 𝜉 and 𝜖 are set for 𝑟0 = 15 nm and then proportionally scaled with the dislocation loop
radius. This maintains accuracy for the value of the resolved shear stress of a general loop of radius 𝑟0 (Fig. 5b). As a result, only 10
monopoles are needed for both, a 𝑟0 = 15 nm dislocation loop nucleated at wire diameters of 𝐷 = 150 nm and a 𝑟0 = 1000 nm loop
nucleated at 𝐷 = 10 000 nm. This reduces the computational time needed for larger specimens by at least an order of magnitude.

Next, presume that loop nucleation occurs when the externally applied stress exceeds the equilibrium shear stress of a loop with
adius 𝑟0, as inferred from Fig. 5b. This would correspond to using 𝛼 = 1 in Eq. (15). Calculations showed that this condition can
lead to high curvature-driven shape instabilities, as illustrated in Fig. 6a, causing the loop to partially collapse and resulting in
numerical convergence issues. Stable growth of dislocation loops was found to occur using 𝛼 ≥ 1.5. Some examples are shown in
7

ig. 6b and Fig. 6c. In all subsequent calculations the value 𝛼 = 1.5 has been used.
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Fig. 5. Plots of resolved shear stress, 𝜏, for a general dislocation loop, defined by Eq. (20) versus loop radius 𝑟. (a) Comparison of the monopole discretization
results with the analytical solution of Hirth and Lothe (1982) for current line element values 𝜉 = 0.86b, 𝜉 = 27.52b and 𝜉 = 137.6b. The value of the regularization
parameter 𝜖 is fixed at 2b. (b) The effect of the choice of initial values of line element 𝜉0 and choice of the value of the regularization parameter 𝜖 for dislocation
loops with various values of initial radius 𝑟0.

Fig. 6. Monopole configurations at various time increments 𝑁 for an initially circular loop of radius 150𝑏 subject to a remote shear stress using (a) 𝛼 = 1, (b)
= 1.25, and (c) 𝛼 = 1.5 in Eq. (15).

Fig. 7. (a) Glide component of the Peach–Koehler force around a dislocation loop versus the number of monopoles used to represent the loop for various finite
lement mesh discretizations. The number in parenthesis is the number of elements per side of the cube and C3D20 and C3D8 denote 20 node and 8 node finite
lement shape functions, respectively. (b) The image shear stress, 𝜏, in the glide plane along a path that extends from the center of the dislocation loop through
he purely edge-oriented and screw-oriented parts of the dislocation to the free surface of the cube compared with the results of Weygand et al. (2002) with a
finite element discretization of 25 elements per side.

The effect of free surfaces is now analyzed by comparing with a result of Weygand et al. (2002) for a circular loop with radius
𝑟 = 4000𝑎, and Burgers vector 𝐛 = 𝑎[100]∕

√

2, placed at the center of a cube with side length 𝑙 = 10 000𝑎 that lies in the 𝑥− 𝑧 plane.

All surfaces of the cube are free of tractions. The loop was discretized using 𝜉 = 1185𝑏 and 𝜖 = 100𝑏.
8



Journal of the Mechanics and Physics of Solids 190 (2024) 105709A. Cruzado et al.

f
G

𝐟
e

Fig. 8. (a) Normalized torque, 𝑇 ∕𝐷3, versus surface plastic strain, 𝛾𝑝surf , and (b) dislocation density versus 𝛾
𝑝
surf , for an initial dislocation density 𝜌0 = 6×1013m−2

and for wire diameters 𝐷 = 150, 250, 500, 1000 nm. (c) Normalized torque, 𝑇 ∕𝐷3, versus surface plastic strain, 𝛾𝑝surf , and (d) dislocation density versus 𝛾𝑝surf , for an
initial dislocation density 𝜌0 = 0.01 − 0.02 × 1013m−2 and for wire diameters 𝐷 = 1000, 3000, 5000, 10 000 nm.

In these calculations, two types of spatial discretization were used: 20 node brick elements with quadratic displacement shape
unctions and 27 point Gaussian integration, as well as 8 node brick elements with linear displacement shape functions and 8 point
aussian integration.
Fig. 7a shows the norm of the infinite body Peach–Koehler force, 𝐟𝑎, and the norm of the finite element computed image force,

𝑎̂, per monopole as the length of the loop is spanned starting at the screw segment. Results are shown for the two types of finite
lements and various mesh densities denoted by the cube of the number of elements per side of the cube. For reference, the 8
elements per side and 64 elements per side correspond to element sizes of 883𝑏 and 110𝑏, respectively. Using quadratic elements
(denoted by C3D20 in Fig. 7a), convergence is attained for 16 elements per side (an element size of 441𝑏 ∼ 100 nm), which is
approximately half the size of the line elements used to discretize the loop. On the other hand, no convergence was obtained using
the linear elements (denoted by C3D8 in Fig. 7a) up to 64 elements per side.

It was verified that the hat component of the resolved shear stress, 𝜏 = −𝑛𝑖𝜎̂𝑖𝑗𝑏𝑗∕𝑏, matches the numerical solution obtained
by Weygand et al. (2002) using a line-based method, as shown in Fig. 7b.

4. Results

The normalized torque, 𝑇 ∕𝐷3, where 𝑇 = |𝐓 ⋅ 𝐞𝑧| is the torque calculated using Eq. (17) and 𝐷 is the wire diameter, is plotted
in Fig. 8 versus the average surface plastic strain, 𝛾𝑝surf , given by Eq. (19). Calculations were carried out for 5 to 10 realizations
with the same wire diameter and initial density of dislocation sources. In all calculations, the fcc single crystal wires are taken to
have a [001] orientation. Two values of initial dislocation source density were considered: (i) an initial dislocation source density
of 𝜌0 = 6 × 1013 m−2 for wire diameters in the range 𝐷 = 150–1000 nm; and (ii) a smaller value of initial dislocation source density,
𝜌0 = 1 × 1011 m−2, for wire diameters in the range 𝐷 = 1000–10 000 nm.

Fig. 8a shows the normalized torque versus average plastic strain at the surface for wires with diameters in the range between
𝐷 = 150 nm and 𝐷 = 1000 nm. For each wire diameter the response is plotted for all realizations analyzed. The normalized torque at
𝛾𝑝surf = 0.2% increases from about 60 MPa for 𝐷 = 1000 nm to 250 MPa for 𝐷 = 150 nm with the variation in response with realization
being greater for smaller values of wire diameter. This variation with wire diameter is similar to that found by Ryu et al. (2020).
9
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Fig. 9. Log–log plots of normalized torque, 𝑇 ∕𝐷3, versus wire diameter 𝐷 for single crystal fcc wires subject to a prescribed twist. Results are shown
or two values of initial dislocation density, 𝜌0. For 𝜌0 = 6 × 1013m−2 the values of 𝑇 ∕𝐷3 are at a surface plastic strain of 𝛾𝑝surf = 0.2% with wire
diameters of 𝐷 = 150, 250, 500, 1000 nm. For 𝜌0 = 1 × 1011m−2 the values of 𝑇 ∕𝐷3 are at a surface plastic strain of 𝛾𝑝surf = 0.02% with wire diameters of
𝐷 = 1000, 3000, 5000, 10 000 nm.

The evolution of the mean dislocation density 𝜌 for wire diameters ranging from 𝐷 = 150 nm to 𝐷 = 1000 nm is shown in Fig. 8b.
The formation of geometrically necessary dislocations (GNDs) leads to a higher mean dislocation density with increasing values of
𝛾𝑝surf and therefore with torque 𝑇 . The dislocation density increases more rapidly with 𝛾𝑝surf for 𝐷 = 150 nm than for the wires with
larger diameters. In the calculations here, the linear proportional relation between dislocation density and the surface plastic strain,
seen by Senger et al. (2011) and Ryu et al. (2020) is not obtained.

Fig. 8c and d, respectively, show the normalized torque, 𝑇 ∕𝐷3, versus average surface plastic strain 𝛾𝑝surf response and the
evolution of dislocation density for wires with diameters in the range 𝐷 = 1000 nm to 𝐷 = 10 000 nm. For larger diameter wires
the curves of 𝑇 ∕𝐷3 versus 𝛾𝑝surf show less variation with realization and are smoother, i.e. there are fewer strain bursts, than the
corresponding curves for smaller diameter wires in Fig. 8a. For these larger diameter wires, there is still some size effect but it is
much less pronounced than for the smaller diameter wires.

The scaling of the normalized torque with size, i.e. with the wire diameter 𝐷, is shown in Fig. 9 which is a log–log plot of the
average value over all realizations calculated of 𝑇 ∕𝐷3 at a specified value of 𝛾𝑝surf versus the wire diameter 𝐷. One curve is for wires
with diameters ranging from 𝐷 = 150 nm to 𝐷 = 1000 nm, with an initial dislocation source density of 𝜌0 = 6×1013m−2 and a torque
evaluated at 𝛾𝑝surf = 0.2%. The other curve is for wires with diameters ranging from 𝐷 = 1000 nm to 𝐷 = 10 000 nm, with an initial
dislocation source density of 𝜌0 = 1 × 1011m−2 and with the torque evaluated at 𝛾𝑝surf = 0.02%.

For both the smaller wires and the larger wires, the size dependence can be characterized by a bilinear fit. For wire diameters
in the range from 𝐷 = 150 nm to 𝐷 = 1000 nm, for those with 150 nm ≤ 𝐷 ≤ 500 nm the fit exponent is 𝑛 = −0.912 and for wire
diameters in the range from 𝐷 = 500 nm to 𝐷 = 1000 nm the fit exponent is 𝑛 = −0.332. While for the wires with the small values
of initial dislocation source density, which have diameters ranging from 1000 nm to 10 000 nm, the two exponents fit are 𝑛 = −0.247
and 𝑛 = 0.016, indicating that for a sufficiently large wire diameter, the response is predicted to be nearly size independent. Thus,
our results indicate that the exponent characterizing the size effect in torsion of single crystal wires is dislocation source density
dependent as well as size dependent. The values of the exponents characterizing the size dependence in previous discrete dislocation
plasticity analyses of wire torsion were 𝑛 = −0.96 by Senger et al. (2011) and 𝑛 = −0.417 by Ryu et al. (2020). The largest wire
diameter considered by Senger et al. (2011) was 1 μm and the largest wire diameter considered by Ryu et al. (2020) was 2 μm.

To gain insight into the bilinear size dependence, contours of the von Mises effective stress, defined by

𝜎𝑒 =
√

𝝈′ ∶ 𝝈′ , 𝝈′ = 𝝈 − 1
3
tr(𝝈)𝐈, (21)

are shown in Fig. 10 at 𝛾𝑝surf = 0.21% for wires with three values of wire diameter, 𝐷 = 150 nm in Fig. 10a, 𝐷 = 500 nm in Fig. 10b
and 𝐷 = 1000 nm in Fig. 10c. Recall that the meshes used are relatively coarse so that the stresses are actually more concentrated
than shown in the figure. The main effect in Fig. 10 is that the high values of Mises effective stress are in a single band for 𝐷 = 150
nm and that the distribution of Mises effective stress becomes more uniformly distributed for the larger values of 𝐷. The change
in slope in Fig. 9 is associated with the change from a nucleation-controlled, localized distribution of plasticity to one that is more
uniformly distributed. Also, for all three values of wire diameter, there is a radial gradient of the Mises effective stress, which varies
from near zero in the center of the wire to its maximum value at the surface.

Fig. 11 shows the dislocation structure for the three cases in Fig. 10. With 𝐷 = 150 nm (Fig. 11a), only a few dislocation sources
on a few glide planes are activated initially. With increasing twist, plastic deformation predominantly involves source nucleation,
and then subsequently dislocation exhaustion occurs due to dislocations exiting the free surface (Greer et al., 2005; Benzerga, 2008).
This can lead to an abrupt increase in the value of normalized torque, 𝑇 ∕𝐷3, due to the inability to nucleate more dislocation loops,
10
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Fig. 10. Contours of Mises effective stress, Eq. (21), illustrating increasing localization in a band with decreasing wire diameter 𝐷 at 𝛾𝑝surf = 0.21% for
𝜌0 = 6 × 1013m−2 and for various wire diameters. (a) 𝐷 = 150 nm, (b) 𝐷 = 500 nm and (c) 𝐷 = 1000 nm.

Fig. 11. Monopole locations showing the dislocation network with 𝜌0 = 6 × 1013m−2 at 𝛾𝑝surf = 0.21% and with wire diameters: (a) 𝐷 = 150 nm, (b) 𝐷 = 500 nm,
and (c) 𝐷 = 1000 nm. The dark blue colored monopoles denote dislocations that have velocity magnitudes less than 20 m∕s and that are essentially immobile.

thus leading to a higher stress level. The dark blue colored monopoles denote dislocations that have velocity magnitudes less than
20 m/s and that are essentially immobile. Immobile dislocations in pile-ups occur at the center of the wire. The mobile dislocations
can attain very high velocity magnitudes due to the linear mobility law, Eq. (16), and the high stresses that occur in the wires.

With 𝐷 = 1000 nm, Fig. 11c, more dislocation planes and sources are activated, leading to complex interactions between the
obile and immobile dislocations. These results are consistent with those of Senger et al. (2011) on wires having a ⟨100⟩ orientation

when cross-slip was not activated, showing no long dislocation segments along the torsion axis and that dislocation pile-ups occur
11

perpendicular to it.
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Fig. 12. Monopole locations showing the dislocation configurations on active slip systems at 𝛾𝑝surf = 0.21% with 𝐷 = 1000 nm and 𝜌0 = 6×1013m−2. (a) {111}⟨1̄01⟩,
(b) {11̄1}⟨011⟩, (c) {11̄1}⟨1̄01⟩, (d) {1̄1̄1}⟨11̄0⟩, (e) {1̄1̄1}⟨011⟩, (f) {1̄1̄1}⟨101⟩, (g) {1̄11}⟨110⟩. The dark colored monopoles denote dislocations that have velocity
magnitudes less than 20 m/s and that are essentially immobile.

Further details about the dislocation configuration are given in Fig. 12 for the 𝐷 = 1000 nm wire of Fig. 11c using the same
dislocation velocity scale. Here, dislocation monopoles on individual (active) slip systems are shown at 𝛾𝑝surf = 0.21%. The largest
dislocation density occurs on the {11̄1}⟨011⟩, 1̄1̄1⟨11̄0⟩, and 1̄11⟨110⟩ slip planes. Due to the high dislocation activity near the surface
of the wire, the fast-moving dislocations (red) lead to dislocations exiting the wire, inducing dislocation starvation. On other slip
planes, such as 11̄1⟨1̄01⟩, 1̄1̄1⟨011⟩, and 1̄1̄1⟨101⟩, there are trapped dislocations near the center of the wire, leading to dislocations
being immobile there.

5. Concluding remarks

A three-dimensional, small strain discrete dislocation plasticity framework for solving quasi-static finite body boundary value
problems has been presented that combines the monopole representation of dislocations with image fields that enforce the boundary
conditions. In this framework, both the overall plastic flow and the evolving dislocation structure are outcomes of the boundary value
problem solution. Torsional loading calculations were carried out for wires with diameters varying over three orders of magnitude
and for two values of the initial dislocation density. The specimen size dependence and the dislocation structures that develop were
investigated for fcc single crystal wires subject to torsional loading. The calculations indicate that:

• There is a strong size-dependence of the torque, normalized by the cube of the wire diameter, with the scaling exponent of
the size-dependence being dependent on specimen size and with a less strong dependence on initial dislocation density.

• There is a transition with increasing wire diameter from nucleation controlled to interaction controlled dislocation plasticity
with a strong size dependence in both these regimes. The interaction regime is dominated by the emergence of geometrically
necessary dislocations and dislocation pile-ups perpendicular to the axis of twist. For wires with a sufficiently large wire
diameter, plastic deformation in the wire is much less heterogeneous and the dependence on size is greatly reduced.

• The capabilities of the discrete dislocation plasticity framework developed here can be enhanced by incorporating topological
dislocation reactions leading to junction formation.

• The dislocation dynamics code used in the calculations was developed to explore the capabilities of the monopole representa-
tion. Computational efficiency can be much improved by parallelization of the code and by using a fast multipole method for
the long range dislocation interaction calculations.
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ppendix. The elastic field of dislocation monopoles

For completeness, we collect the monopole velocity and stress fields, Eq. (5), resulting from classical and regularized linear
elasticity.

A.1. Green’s function

The displacement field 𝐮(𝐱) of an infinite solid loaded by body forces 𝐟 (𝐱) is a solution of Navier’s equation

𝜕
𝜕𝑥𝑗

(

𝑐𝑖𝑗𝑘𝑙
𝜕𝑢𝑘
𝜕𝑥𝑙

(𝐱)
)

+ 𝑓𝑖(𝐱) = 0, (A.1)

where 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑘𝑙𝑖𝑗 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 are the elastic moduli of the solid. The Green’s function 𝐺𝑖𝑗 (𝐱) is the 𝑖th component of the elastic
field corresponding to a point load at the origin acting in the 𝑗th direction, i. e.,

𝜕
𝜕𝑥𝑗

(

𝑐𝑖𝑗𝑘𝑙
𝜕𝐺𝑘𝑚
𝜕𝑥𝑙

(𝐱)
)

+ 𝛿𝑖𝑚 𝛿(𝐱) = 0, (A.2)

where 𝛿(𝐱) is Dirac’s delta. For an isotropic elastic solid, the Green’s function follows explicitly as

𝐺𝑖𝑗 (𝐱) =
1

8𝜋𝜇

(

𝛿𝑖𝑗∇2𝑟 −
𝜆 + 𝜇
𝜆 + 2𝜇

𝜕2𝑟
𝜕𝑥𝑖𝜕𝑥𝑗

)

, (A.3)

where 𝑟 ∶= |𝐱|, ∇2 is the Laplacian and 𝜆 and 𝜇 are the Lamé constants.

.2. Displacement and stress fields

Consider a dislocation line in the form of a closed line 𝐶. The Burgers vector 𝑏𝑖(𝐱) can change value at branching points of 𝐶, but
t must be conserved according to Frank’s rule. Then, Mura’s formula (Mura (1963); cf. Hirth and Lothe (1982, eq. (4-12))) gives
he displacement gradient as

𝜕𝑢𝑚
𝜕𝑥𝑠

(𝐱) = ∮𝐶
𝑐𝑖𝑗𝑘𝑙

𝜕𝐺𝑚𝑘

𝜕𝑥′𝑙
(𝐱′ − 𝐱)e𝑗𝑠𝑛𝑏𝑖(𝐱′)𝑑𝑥′𝑛, (A.4)

hence the corresponding stress field follows from Hooke’s law as

𝜎𝑖𝑗 (𝐱) = 𝑐𝑖𝑗𝑘𝑙
1
2

(

𝜕𝑢𝑘
𝜕𝑥𝑙

(𝐱) +
𝜕𝑢𝑙
𝜕𝑥𝑘

(𝐱)
)

, (A.5)

and the displacement field follows by Burgers’ formula (cf. Hirth and Lothe (1982, eq. (4-6))) as

𝑢𝑚(𝐱) = −∫𝑆
𝑐𝑖𝑗𝑘𝑙

𝜕𝐺𝑚𝑘

𝜕𝑥′𝑙
(𝐱′ − 𝐱)𝑏𝑖(𝐱′) 𝑑𝑆𝑗 (𝐱′), (A.6)

where 𝑑𝑆𝑗 (𝐱) denotes the element of oriented area at 𝐱. We note that the evaluation of Eq. (A.6) requires explicit knowledge of the
slip surface 𝑆 and cannot be reduced to a line integral. By contrast, the velocity field due to a moving dislocation line does reduce
properly to a line integral. Thus, taking rates in Eq. (A.6) and applying Orowan’s relation we obtain

𝑢̇𝑚(𝐱) = −∮𝐶
𝑐𝑖𝑗𝑘𝑙

𝜕𝐺𝑚𝑘

𝜕𝑥′𝑙
(𝐱′ − 𝐱)e𝑗𝑝𝑞𝑏𝑖(𝐱′)𝑣𝑝(𝐱′) 𝑑𝑥𝑞(𝐱′), (A.7)

where 𝑣 (𝐱) denotes the velocity of the dislocation line 𝐶 at 𝐱.
13
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A.3. Monopole approximation

Approximating the dislocation distribution by a collection of monopoles and using the approximating property Eq. (1), the
classical integral expressions of the stress and velocity fields, Eqs. (A.4) and (A.7), become

𝜎𝑝𝑞(𝐱) =
𝑀
∑

𝑎=1
𝑐𝑝𝑞𝑚𝑠𝑐𝑖𝑗𝑘𝑙

𝜕𝐺𝑚𝑘

𝜕𝑥′𝑙
(𝐱𝑎 − 𝐱)e𝑗𝑠𝑛𝑏𝑎𝑖𝜉𝑎𝑛, (A.8)

and

𝑢̇𝑚(𝐱) = −
𝑀
∑

𝑎=1
𝑐𝑖𝑗𝑘𝑙

𝜕𝐺𝑚𝑘

𝜕𝑥′𝑙
(𝐱𝑎 − 𝐱)e𝑗𝑝𝑞𝑏𝑎𝑖𝑣𝑎𝑝 𝜉𝑎𝑞 , (A.9)

respectively, where 𝑣𝑎𝑝 ∶= (𝐯𝑎)𝑝 is the velocity of monopole 𝑎. Thus, the discrete stress and velocity fields follow as the sum of
monopole contributions, as surmised in Eq. (5) and expected from linearity.

A.4. Core regularization

The stresses 𝝈(𝐱) computed directly from linear elasticity as in Eq. (A.8) diverge as 𝐱 approaches one of the monopoles and
Eq. (A.8) cannot be used directly to evaluate the self-forces of the monopoles in Eq. (13). One way to overcome this difficulty is to
regularize linear elasticity and replace it by strain-gradient elasticity of the Mindlin type (Mindlin, 1964). A careful analysis (Deffo
et al., 2019) shows that this regularization is equivalent to replacing the Green’s function 𝐺 of conventional linear elasticity in
Eqs. (A.8) and (A.9) by a regularized Green’s function

𝐺𝜖
𝑖𝑗 (𝐱) = ∬ 𝐺𝑖𝑗 (𝐱 − 𝐱′ − 𝐱′′)𝜑𝜖(𝐱′)𝜑𝜖(𝐱′′) 𝑑𝑉 (𝐱′) 𝑑𝑉 (𝐱′′), (A.10)

where 𝜖 is commensurate with the crystal lattice parameter and

𝜑𝜖(𝐱) = 1
4𝜋𝜖2𝑟

e−𝑟∕𝜖 , 𝑟 ∶= |𝐱|, (A.11)

represents the core structure of the monopoles in Mindlin strain-gradient elasticity. For isotropic linear elasticity, Eq. (A.10) evaluates
explicitly to (Deffo et al., 2019)

𝐺𝜖
𝑖𝑗 (𝐱) =

1
8𝜋𝜇

(

∇2𝑟𝜖𝛿𝑖𝑗 −
𝜆 + 𝜇
𝜆 + 2𝜇

𝜕2𝑟𝜖

𝜕𝑥𝑖𝜕𝑥𝑗

)

, (A.12)

with

𝑟𝜖 ∶= (𝑟2 + 4𝜖2 − 𝜖(𝑟 + 4𝜖)e−𝑟∕𝜖)∕𝑟. (A.13)

The regularized Green’s function 𝐺𝜖
𝑖𝑗 (𝐱) is finite for 𝜖 > 0. It can be readily verified that 𝐺𝜖

𝑖𝑗 (𝐱) converges to 𝐺𝑖𝑗 (𝐱) in a distributional
sense as 𝜖 → 0. In particular, the regularized stresses and velocities converge pointwise to the corresponding linear elastic fields in
the same limit.
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