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Abstract

The non-Abelian ferromagnet recently introduced by the authors, consisting of atoms
in the fundamental representation of SU(N), is studied in the limit where N becomes
large and scales as the square root of the number of atoms n. This model exhibits ad-
ditional phases, as well as two different temperature scales related by a factor N/ln N.
The paramagnetic phase splits into a "dense" and a "dilute" phase, separated by a
third-order transition and leading to a triple critical point in the scale parameter n/N2

and the temperature, while the ferromagnetic phase exhibits additional structure, and
a new paramagnetic-ferromagnetic metastable phase appears at the larger tempera-
ture scale. These phases can coexist, becoming stable or metastable as temperature
varies. A generalized model in which the number of SU(N)-equivalent states enters
the partition function with a nontrivial weight, relevant, e.g., when there is gauge
invariance in the system, is also studied and shown to manifest similar phases, the
dense-dilute phase transition becoming second-order in the fully gauge invariant case.
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1 Introduction

Magnetic systems with higher internal SU(N) symmetry are enjoying a revival in

physics. Such systems have been considered in the context of ultracold atoms [1–6]

or of interacting atoms on lattice cites [7–13], and were also studied in the presence of

SU(N) magnetic fields [14–16].

We have recently constructed a model for ferromagnets with SU(N) degrees of

freedom which manifests an intricate and nontrivial phase structure [17]. At zero
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magnetic field the system has three critical temperatures (vs. only one for SU(2)), with

a crossover between metastable states. Spontaneous breaking of the global SU(N)

symmetry arises in the SU(N) → SU(N − 1)×U(1) channel at zero external magnetic

field and generalizes to other channels in the presence of non-Abelian magnetic fields.

Further, due to the presence of metastable states, the SU(N) system exhibits hysteresis

phenomena both in the magnetic field and in the temperature.

This raises the obvious question of whether a modification of the model and/or a

different dynamical regime of the model manifest novel features and phases, and this

is the topic of the present work. The modification we will consider involves weighing

the partition function by a general power of the number of states of each irreducible

component of the global SU(N) symmetry, thus modifying the entropy of each such

component (the original model corresponds to the power being 1). The new dynami-

cal regime we will consider is the one where the rank of the group N grows large. Non-

trivial modifications arise when the scaling is N ∼
√

n, with n the number of atoms

in the magnet (playing the role of the volume of the system at the thermodynamic

limit), generalizing and putting in a more physical context the infinite-temperature

case studied in [18]. The square root scaling implies that modestly large N (much

smaller than n) will give rise to new effects.

As we shall demonstrate, the above modified ferromagnet (for zero external mag-

netic field) develops new phases, splitting the paramagnetic phase of the finite-N fer-

romagnet into a "dilute" (more paramagnetic) and a "dense" (less paramagnetic) phase,

separated from each other by a third-order phase transition and from the ferromag-

netic phase by a zeroth-order transition (the free energy is discontinuous) and leading

to a triple critical point in the plane of the scale parameter N2/n and the temperature.

Further, an additional high temperature scale emerges, related to the lower one by a

factor of order N/ln N, in which the ferromagnetic phase acquires additional struc-

ture and a new "mixed" paramagnetic-ferromagnetic phase appears. These phases

can coexist over a range of parameters, the ferromagnetic one dominating thermody-

namically at lower temperatures, becoming metastable, and eventually disappearing

at significantly larger temperatures, while the mixed phase remains metastable at all

temperatures. These features persist for all weighting factors for SU(N)-equivalent

states, with the notable difference that the dense-dilute transition becomes second-

order in the "gauge invariant" limit in which the number of states of each irreducible

component drops from the partition function (its power becomes zero).
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The organization of the paper is as follows: In section 2 we present the essential

features of the model and summarize the group theory tools needed for its analy-

sis [19, 17]. In section 3 we analyze the dilute (most paramagnetic) phase and de-

rive its critical transition temperatures; in section 4 we perform the analysis of the

dense (less paramagnetic) phase and derive its critical temperatures; and in section 5

we analyze the ferromagnetic phase. In section 6 we study two special cases of the

weighting power for the states, the regular one fully taking into account all states,

as in standard ferromagnets, and the one with full gauge invariance between states

in the same irreducible component, and derive analytical expressions for their transi-

tion temperatures. In section 7 we perform the thermodynamic analysis of the various

phases, identify the emerging high temperature scale, uncover the "mixed" metastable

paramagnetic-ferromagnetic phase, and determine the order of phase transition be-

tween the various phases. Finally, in section 8 we present our conclusions.

2 The general model

We consider a set of n atoms, each carrying the fundamental representation of SU(N)

and interacting with ferromagnetic-type interactions. Denoting by jr,a the N × N-

dimensional generators of SU(N) in the fundamental representation acting on atom r

at position r⃗, the interaction Hamiltonian of the full system is

H =
n

∑
r,s=1

c⃗r,⃗s

N2−1

∑
a=1

jr,a js,a , (2.1)

where c⃗r,⃗s = c⃗r,⃗s is the strength of the interaction between atoms r and s. This Hamil-

tonian involves an isotropic quadratic coupling between the fundamental generators

of the n commuting SU(N) groups of the atoms. Assuming translation invariance

c⃗r,⃗s = c⃗r−⃗s, and also that the mean-field approximation is valid,1 each atom will inter-

act with the average of the SU(N) generators of the remaining atoms; that is,

∑
r⃗,⃗s

c⃗r−⃗s j⃗r,a j⃗s,a = ∑
r⃗

j⃗r,a ∑
s⃗

c⃗s j⃗r+⃗s,a ≃ ∑
r

jr,a

(
∑

s⃗
c⃗s

) 1
n

n

∑
s′=1

js′,a = − c
n

Ja Ja , (2.2)

1The validity of the mean field approximation is strongest in three dimensions, since every atom
has a higher number of near neighbors and the statistical fluctuations of their averaged coupling are
weaker, but is expected to also hold in lower dimensions.
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where we defined the total SU(N) generator

Ja =
n

∑
s=1

js,a (2.3)

and the effective mean coupling

c = −∑
s⃗

c⃗s . (2.4)

The minus sign is introduced such that ferromagnetic interactions, driving atom states

to align, correspond to positive c. Altogether, the effective interaction is proportional

to the quadratic Casimir of the total S(N) generators

H = − c
n

N2−1

∑
a=1

J2
a . (2.5)

Calculating the partition function involves decomposing the full Hilbert space of the

tensor product of n fundamentals of SU(N) into irreducible representations (irreps),

each of which has a fixed quadratic Casimir. This is most conveniently done in the

fermion momentum representation. Specifically, to each irrep with Young tableau

row lengths ℓ1 ⩾ ℓ2 ⩾ · · · ⩾ ℓN−1 we map a set of N distinct non-negative integers

k1 > k2 > · · · > kN such that

ki − kN = ℓi + N − i ,
N

∑
i=1

ki = n +
N(N − 1)

2
. (2.6)

If n < N, kN = 0, but for n ⩾ N all ki may become nonzero. We label each irrep with its

corresponding vector k = {k1, . . . , kN}. The relevant quantities for our ferromagnetic

model are:

• The dimension (number of states) dim(k) of the irrep labelled by k, given by

dim(k) =
∆(k)
N−1

∏
s=1

s!

, with ∆(k) =
N

∏
j>i=1

(ki − k j) . (2.7)

• The quadratic Casimir C2(k) of irrep k, given by

C2(k) =
1
2

N

∑
i=1

k2
i −

1
2

(
n
N

+
N − 1

2

)2

− N(N2 − 1)
24

. (2.8)
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• The multiplicity d(n; k) of the irrep k in the decomposition of n fundamentals, given

by [19]

d(n; k) =
n! ∆(k)

N

∏
i=1

ki!

. (2.9)

With the help of the above, the partition function of the model in temperature T = β−1,

consisting of the sum of the Boltzmann factors e−βH with H as is (2.5) over all Nn

states, can be written as an explicit sum over ki.

In what follows, we will consider a more general model in which each Boltzmann

factor is weighted by a power of the number of states dim(k) in each irrep. Omitting

the irrelevant additive constants in the Casimir (2.8), our generalized partition func-

tion is given by

Zw,n = ∑
k

m(w, n; k) exp
(

βc
2n ∑N

i=1 k2
i

)
,

N

∑
i=1

ki = n +
N(N − 1)

2
, (2.10)

where m(w, n; k) is the generalized thermodynamic multiplicity2

m(w, n; k) = dim(k)w−1d(n; k) =
n! ∆(k)w( N−1

∏
s=1

s!
)w−1 N

∏
i=1

ki!

. (2.11)

The parameter w assigns an exponential weight to the number of states of each irrep,

w = 2 corresponding to the standard thermodynamic ensemble. Other values of w

are relevant in specific contexts. In particular, w = 1 would correspond to a situa-

tion where SU(N) is a gauge group, and all states transforming in the same irrep are

gauge-equivalent and count as a single state. The case w < 1 is rather unphysical,

since in that case the thermodynamic contribution of an irrep would diminish with its

number of states. In what follows we are mostly interested in the cases w = 1 and

w = 2, but we keep the discussion general.

As explained in the introduction, when N2 and n are comparable, the phase struc-

ture of the model changes compared to the standard thermodynamic limit N2 ≪ n,

w = 2. What happens in general is that the unbroken (paramagnetic) phase of the

2This factor was introduced in [18] where the infinite temperature limit of our model was studied
and shown to have a rich structure depending on the value of w. A possible additional power in the
multiplicity d(n; k) can be absorbed into a redefinition of the remaining parameters of the model in the
thermodynamic limit.
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standard ferromagnet maps to a phase with a distribution of irreps parametrized by a

continuous density of the ki, while the broken (ferromagnetic) phase corresponds to a

continuous distribution plus one isolated ki, which turns out to be the largest one k1.

We call the first one "lumped" and the second one "disjoint" phases. The lumped (con-

tinuous) distribution can either saturate the density limit of 1 for a range of values of k

(corresponding to a set of adjacent ki), or never saturate it. We call the first one "dense"

and the second one "dilute" phases. At high temperatures, the disjoint distribution can

either correspond to a single-row symmetric irrep, or also have a lumped part corre-

sponding to nonzero lower Young tableau rows. We call the first one simply disjoint,

or symmetric, and the second one "lumped-disjoint", or "mixed" phases. Overall, we

have three possible phases at lower temperatures (the dilute, the dense, and the dis-

joint phases) and four possible phases at very high temperatures (the dilute, the dense,

the disjoint, and the lumped-disjoint phases), which can coexist. Later in the paper we

will analyze the various phases and derive their thermodynamic transitions.

3 Lumped dilute distributions

In the large-n, N limit it is possible and convenient to describe the set of vectors k in

terms of the density ρ(k) of the ki on the real positive axis. Writing the summand in

(2.11) as e−βFw,n , with F representing the free energy of configuration k, and using the

Stirling formula for factorials, we have (for details on passing to the continuum we

refer the reader to [18])

βFw,n[ρ(k)] =− w
2

ˆ ∞

0
dk
ˆ ∞

0
dk′ ρ(k)ρ(k′) ln |k − k′|

+

ˆ ∞

0
dk ρ(k)

(
k(ln k − 1)− βc

2n
k2
)
+ (w − 1)

N−1

∑
s=1

ln s! − ln n! ,

(3.1)

where the last two terms are constant and will be omitted in the subsequent analysis.

We will consider distributions ρ(k) that are everywhere differentiable, except at points

where ρ(k) becomes 0 or 1.

In the thermodynamic limit n ≫ 1, the sum (integral) over k will be dominated by its

largest term, that is, the term minimizing Fw,n, under the constraints

ˆ ∞

0
dk ρ(k) = N ,

ˆ ∞

0
dk k ρ(k) = n +

N2

2
, 0 ⩽ ρ(k) ⩽ 1 , (3.2)
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which fix the rank of the group SU(N) and the number of atoms n, and implement the

fact that the density of ki can neither be negative nor exceed one, since ki − ki+1 ⩾ 1.

These constraints already suggest the scaling N2 ∼ n. We thus define the rescaled

variable and parameters

x =
k
N

, t =
4n
N2 , T0 =

c
N

(3.3)

and keep t, T0 finite as n, N ≫ 1 (the coefficient 4 in t is included to conform with the

conventions of [18]). We also define a convenient temperature-dependent dimension-

less parameter

xT =
tT
4T0

. (3.4)

In terms of the above, the constraints become
ˆ ∞

0
dx ρ(x) = 1 ,

ˆ ∞

0
dx x ρ(x) =

t
4
+

1
2

, 0 ⩽ ρ(x) ⩽ 1 . (3.5)

Also, the functional (3.1) becomes

βFw,n[ρ(x)] = N2
[
− w

2

ˆ ∞

0
dx
ˆ ∞

0
dx′ ρ(x)ρ(x′) ln |x − x′|

+

ˆ ∞

0
dx ρ(x)

(
x(ln x − 1)− x2

2xT

)]
,

(3.6)

where we have neglected terms proportional to the constraints. We see that Fw,n is in-

deed of order N2, justifying the saddle point approximation. Enforcing the constraints

(3.5) through similarly scaled Lagrange multipliers λ, µ, we need to extremize

βFw,n[ρ(x)] + N2λ

(ˆ ∞

0
dx x ρ(x)− t

4
− 1

2

)
+ N2µ

(ˆ ∞

0
dx ρ(x)− 1

)
. (3.7)

Variation in ρ(x) gives

w
ˆ ∞

0
dx′ ρ(x′) ln |x − x′| = x(ln x − 1)− x2

2xT
+ λ x + µ . (3.8)

Further differentiating (3.8) with respect to x we obtain

w
ˆ ∞

0
dx′

ρ(x′)
x − x′

= ln x − x
xT

+ λ . (3.9)

The above equation must hold for x such that 0 < ρ(x) < 1.

7



From (3.8) we see that the system corresponds to the equilibrium configuration of a

large number N of particles with coordinates xi repelling each other with a logarithmic

potential w ln |xi − xj| inside an external potential Vλ(x) given by the right hand side

of (3.8), that is

Vλ(x) = x(ln x − 1)− x2

2xT
+ λ x + µ . (3.10)

Its derivatives

V′
λ(x) = ln x − x

xT
+ λ, V′′

λ (x) =
1
x
− 1

xT
, (3.11)

indicate that, if λ > λc, where

λc = 1 − ln xT , (3.12)

Vλ(x) has a minimum at a value x < xT and a maximum at x > xT given by the

solutions of

x eλ = ex/xT , (3.13)

while if λ < λc, Vλ(x) is monotonically decreasing, as shown in fig. 1. So, for the

potential to have a "well" able to retain particles, we need λ > λc. The solution of (3.9)

x

Vλ

λ > λc

x

Vλ

λ < λc

Figure 1: The potential Vλ(x) (shifted by the constant µ) for a generic value of λ > λc (left)
and λ < λc (right). It has a "rigid wall" at x = 0.

depends on whether the inequality constraint ρ(x) ⩽ 1 is saturated in a finite domain.

The dilute phase correspond to the constraint not be saturated. This also means that

the distribution ρ(x) does not reach the "wall" on the left at x = 0, since the infinite

potential there would force it to reach its saturation value ρ(x) = 1. Therefore, ρ(x)

is nonzero inside an interval 0 < a < x < b and vanishes outside (see fig. 2). Then

solving (3.9) becomes a standard single-cut Cauchy problem. We define the resolvent

u(z) = w
ˆ

dx
ρ(x)
z − x

, (3.14)

with z on the upper complex plane. Its real and imaginary parts on the real axis
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x

ρ(x)

a b

1

Figure 2: A typical shape of the distribution ρ(x) in the dilute phase.

reproduce ρ(x) and its Hilbert transform

u(x + iϵ) = w−
ˆ

dx′
ρ(x′)
x − x′

− iwπρ(x) . (3.15)

Therefore, a function that is analytic on the upper half plane and its real part on the

real axis equals ln x − x/xT + λ, as in (3.9), will equal u(z) up to an additive constant,

and its imaginary part will fix ρ(x). In standard fashion, we write

u(z) =
1

2πi

√
(z − a)(z − b)

˛
ds

ln s − s/xT + λ

(s − z)
√
(s − a)(s − b)

, (3.16)

where the contour winds in the clockwise direction around the cut of the square root

but does not include the singularity at z and the cut of the logarithm (see fig. 3)

0

z

a b Re(s)

Im(s)

Figure 3: Contour of integration in the s-plane. The original (magenta) contour around the
square root cut on (a, b) is pulled back to the two (cyan) contours around the pole at z and the
logarithm cut on (−∞, 0). In addition, there is the contribution of the circle at infinity, taken
clockwise, which is relevant for the linear in s term in the numerator of the integrand (3.16).

Pulling back the contour we pick up the pole at s = z and the integrals around the cut
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of the logarithm and infinity

u(z) = ln z − z
xT

+ λ

+
1
xT

√
(z − a)(z − b)−

√
(z − a)(z − b)

ˆ ∞

0

ds
(s + z)

√
(s + a)(s + b)

.
(3.17)

Performing the integration we get that

u(z) = ln z − z
xT

+ λ

+
i

xT

√
(z − a)(b − z)− i cos−1 2z − a − b

b − a
+ i cos−1 (a + b)z − 2ab

(b − a)z
.

(3.18)

For z = x real and between a and b (the region in which ρ(x) does not vanish) the

last three terms are purely imaginary (the square root factor multiplying the integral

provides a factor +i, since we assume that z approaches x from the upper-half complex

plane). Then, according to (3.15), we determine ρ(x) as

ρ(x) =
1

wπ

(
cos−1 2x − a − b

b − a
− cos−1 (a + b)x − 2ab

(b − a)x

)
−

√
(x − a)(b − x)

wπxT

=
2

wπ
cos−1

√
x +

√
ab/x

√
a +

√
b

− 1
wπxT

√
(x − a)(b − x) , a ⩽ x ⩽ b .

(3.19)

The second expression above makes clear that ρ(x) vanishes at x = a and x = b, and

it never reaches or exceeds 1 if w ⩾ 1 (as we assume). Plotting the density (3.19) we

indeed get a shape as in fig. 2 above. The parameters a, b and λ can be determined by

matching the asymptotics of u(z)

u(z) = wz−1
ˆ ∞

0
dx ρ(x) + wz−2

ˆ ∞

0
dx x ρ(x) +O

(
z−3)

= wz−1 + wz−2
(

t
4
+

1
2

)
+O

(
z−3) ,

(3.20)

where in the second line we used (3.5). We obtain the conditions

2w = (
√

b −
√

a)2 − (a − b)2

4xT
,

w(t + 2) =
2(b − a)2 + (

√
b −

√
a)4

4
− (a − b)(a2 − b2)

4xT
,

λ =
a + b
2xT

− 2 ln
√

a +
√

b
2

.

(3.21)
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To proceed, it is convenient to define two new parameters as

p =
(
√

a +
√

b)2

4xT
, q =

(
√

b −
√

a)2

4xT
, p > q > 0 , (3.22)

with inverse

a = xT(
√

p −√
q)2 , b = xT(

√
p +

√
q)2 . (3.23)

Then, the system (3.21) can be written more compactly as

2x̄T q(1 − p) = 1 ,

t̄ + 2 = 8x̄2
T q

(
p +

q
2
− pq − p2) ≡ g(p, q) ,

λ = p + q − ln(xT p) .

(3.24)

where

x̄T =
xT

w
=

tT
4wT0

, t̄ =
t + 2

w
− 2 , (3.25)

thus eliminating w from the equations for p, q. Note that the first equation in (3.24)

gives the stronger restriction 0 < q < p < 1 for p and q.

In order for the above picture to be valid we should have λ > λc, where λc was

defined in (3.12). This implies that

p − ln p > 1 − q . (3.26)

This is identically satisfied if (3.24) has real solutions. Indeed, since both p and q are

positive, the left hand side of the inequality has a minimum of 1 at p = 1, while the

right hand side is less than 1.

In addition, the density has to satisfy 0 ⩽ ρ(x) ⩽ 1. Obviously, since the first term

in (3.19) is bounded by unity and the second is negative, the density never exceeds

unity. Nevertheless the density can become negative for a range of values of x ∈ [a, b]

rendering the solution unacceptable. Demanding that the derivatives of ρ(x) at the

end points at x = a and x = b are positive and negative, respectively, and recalling

that b > a, we conclude that a necessary condition for having ρ(x) ⩾ 0 in the interval

x ∈ [a, b], is

xT >
1
2
(b +

√
ab) =⇒ p +

√
pq < 1 . (3.27)
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This condition is also sufficient for having ρ(x) ⩾ 0. Indeed, setting ρ′(x) = 0 gives

x2 − xT(1 + p + q)x + xT
2(p − q) = 0 , (3.28)

which has two real solutions for all values of the parameters in their range. Since ρ(x)

starts up with positive (negative) derivative at x = a (x = b), where it vanishes, it

cannot have two extrema between these values, and has just a single positive maxi-

mum. The condition (3.27) ensures that the largest root of (3.28), which corresponds

to a negative minimum of ρ(x), is larger than b and thus outside the range (a, b).

Solving for q the first equation in (3.24), the condition p > q requires

p− < p < p+ , x̄T > 2 , (3.29)

with

p± =
1 ±

√
1 − 2/x̄T

2
. (3.30)

Then (3.27) becomes

f (p) ≡ p +

√
p

2x̄T(1 − p)
− 1 < 0 . (3.31)

The function f (p) is increasing, and we can see that

f (p±) = ±
√

1 − 2
x̄T

. (3.32)

Therefore, (3.31) holds for

p− < p < p0 < p+ , x̄T > 2 , f (p0) = 0 , (3.33)

which is a refinement of (3.29). The value of p0 can be calculated analytically and

arises from a cubic equation with one real solution given by

p0 = 1 − 6−1/3ζ−1 + 6−2/3x̄−1
T ζ , ζ =

(√
6x̄3

T + 81x̄4
T − 9x̄2

T

)1/3
, (3.34)

and monotonically increases from 1/2 to 1 in the interval x̄T ∈ [2, ∞) and is always

bounded by p+.

Finally, the function g(p) = g(p, q(p)) defined in the second equation of (3.24), after
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eliminating q using (3.24), becomes

g(p) =
1 − 2p
(1 − p)2 + 4x̄T p . (3.35)

Moreover, since

g′(p) = 4x̄T −
2p

(1 − p)3 , (3.36)

we easily see that g′(p0) = 0. Since g′′(p) < 0 the function g(p) has a maximum at

p = p0. It is easily checked that g(p−) > 0 and therefore g(p) > 0 and increasing in

p ∈ [p−, p0]. Consequently, the second of (3.24) has a unique solution in p for t̄ in the

range

g(p−) < t̄ + 2 < g(p0) (3.37)

and no solutions outside this range, signaling a transition to different phases. For

g(p−) we may use the expression

g(p−) = 2
(

3x̄T − x̄2
T +

√
x̄T(x̄T − 2)3

)
. (3.38)

In addition, g(p0) can be computed to be

g(p0) =
4p2

0 − 3p0 + 1
(1 − p0)3 , (3.39)

where p0 is given by (3.34).

The condition t̄ + 2 > g(p−) in (3.37) derives from p > q, that is, a > 0. Saturating

it implies a = 0 and signals a transition to a dense phase, in which ρ(x) extends to

x = 0 and starts saturating to ρ(x) = 1. Therefore, t̄ + 2 = g(p−) identifies the

critical temperature Tc at which the transition happens.3 Working out the details of

this equation we get a second order algebraic equation for T whose positive solution

is the critical temperature

Tc = 2wT0
3t + 6 − 8w + w−1/2(4w − 2 − t

)3/2

t(t − 3w + 2)
,

3w − 2 ⩽ t ⩽ 4w − 2 (1 ⩽ t̄ ⩽ 2) ,

(3.40)

3Physically, to be in the dilute phase we should have T > Tc. This can also be seen algebraically by
expanding the left hand side of the inequality g(p−)− t̄ − 2 < 0 near T = Tc. To leading order this is

proportional to
(

g′(p−)
dp−
dx̄T

∣∣∣
Tc
+ 4p−

)
(T − Tc) < 0. The coefficient of T − Tc is negative and therefore

T > Tc as stated.
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where we have also used (3.25). The critical temperature Tc is monotonically de-

creasing with t, from Tc → ∞ as t → 3w − 2, consistent with the result of [17], to

Tc = 4wT0/(2w − 1) for t = 4w − 2. If particular, near t = 4w − 2, we have the

expansion

Tc = T0
4w

2w − 1
− T0

4w − 1
(2w − 1)2 (t − 4w + 2) + . . . . (3.41)

and near t = 3w − 2 the behavior

Tc = T0
4w2

3w − 2
1

t − 3w + 2
+ . . . . (3.42)

Finally, note that the corresponding critical value for b is

bc = 4w − 2
√

w
√

4w − 2 − t . (3.43)

It increases with t, from bc = 2w as t → 3w − 2, to bc = 4w for t = 4w − 2.

The condition t̄ + 2 < g(p0) in (3.37) derives from the positivity of the density ρ

and, when saturated, signals an instability: the distribution ρ(x) cannot be lumped

and, instead, one isolated ki moves over the hump of the potential to a large value of

k. Therefore, t̄ + 2 = g(p0) identifies another critical temperature Ts that marks the

onset of instability and the transition to a disjoint phase.4 Using (3.39) we have an

explicit expression of t in terms of Ts which is hard to invert. To proceed we recall that

2x̄T =
p0

(1 − p0)3 (3.44)

and reparametrize as

p0 =
s

s + 1
=⇒ 2x̄T = s(s + 1)2 . (3.45)

Note that, (3.44) and the first of (3.24) amount to saturating the constraint in (3.27).

Proceeding, the condition g(p0) = t̄ + 2 upon using (3.39) and (3.45) gives

s2(2s + 1) = t̄ + 1 , (3.46)

4Again for T > Ts we are in the dilute phase. This can be seen also be seen by expanding the right
hand side of the inequality g(p0) − t̄ − 2 > 0 near T = Ts. To leading order this is proportional to(

g′(p0)
dp0

dx̄T

∣∣∣
Ts
+ 4p0

)
(T − Ts) > 0. The coefficient of T − Ts is positive and therefore T > Ts as stated.
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with primary solution

s =
1
6

(
δ + δ−1 − 1

)
, δ =

(√
(54t̄ + 53)2 − 1 + 54t̄ + 53

)1/3

. (3.47)

Plugging in (3.45), gives the critical temperature Ts as

Ts = T0
w

12t

(
δ2 + 2δ + 2δ−1 + δ−2 + 12t̄ + 11

)
, t ⩾ 4w − 2 (t̄ ⩾ 2) . (3.48)

Note that, for t = 4w − 2, we have the expansion

Ts = T0
4w

2w − 1
− T0

t + 2 − 4w
(2w − 1)2 + . . . . (3.49)

Therefore, Ts joins Tc at the highest t for which Tc is defined albeit with a first deriva-

tive discontinuity as it can be seen by the expansions (3.41) and (3.49). On the other

hand, Ts(t) for t < 4w − 2 does not make sense, since it enters the region T < Tc in

which the lumped solution does not hold. For t → ∞, Ts slowly asymptotes to T0 as

Ts = T0 + 3T0

(w
4t

)1/3
+ . . . . (3.50)

4 Lumped dense distributions

Below the critical temperature Tc, the distribution ρ(x) touches x = 0 and the dilute

solution is not valid any more. A finite part of the distribution will condense to the

maximal value ρ = 1 near x = 0, and the equilibrium conditions for the remaining

ρ < 1 part are modified. Assuming that ρ(x) condenses for 0 < x < a, and vanishes

for x > a + b, we set

ρ(x) =

{
1 , 0 < x < a ,

ρ0(x − a) , a < x < a + b ,
(4.1)

and zero elsewhere, with a and b positive constants (see fig. 4). The constraints (3.5)

become

0 ⩽ ρ0(x) ⩽ 1 ,
ˆ b

0
dx ρ0(x) = 1 − a ,

ˆ b

0
dx x ρ0(x) =

t
4
+

(1 − a)2

2
. (4.2)

Substitution of ρ(x) in (3.6) yields, upon changing variable x → x + a,
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x

ρ(x)

a a+b

1

Figure 4: A typical shape of the distribution ρ(x) in the dense phase.

βFw,n[ρ0(x)] = N2
[
−w

2

ˆ ∞

0
dx
ˆ ∞

0
dx′ ρ0(x)ρ0(x′) ln |x − x′|

+

ˆ ∞

0
dx ρ0(x)

(
wx(ln x − 1)− x2

2xT

)
−(w − 1)

ˆ ∞

0
dx ρ0(x) (x + a)

(
ln(x + a)− 1

)]
,

(4.3)

where we omitted terms that are set to constants by the constraints. Implementing the

constraints (4.2) with appropriate Lagrange multipliers and minimizing the effective

action leads to the equilibrium equation

w
ˆ ∞

0
dx′ ρ0(x′) ln |x − x′| = wx(ln x − 1)− (w − 1)(x + a)

(
ln(x + a)− 1

)
− x2

2xT
+ λx + µ .

(4.4)

Taking the x-derivative we obtain the analog of (3.9), i.e.,

w
ˆ ∞

0
dx′

ρ0(x′)
x − x′

= w ln x − (w − 1) ln(x + a)− x
xT

+ λ , (4.5)

when ρ0(x) > 0. We see that now the equation for ρ0(x) has a two-logarithm potential,

given by the right hand side of (4.4) as

Vλ,w,a(x) = w x(ln x − 1)− (w − 1)(x + a)
(

ln(x + a)− 1
)
− x2

2xT
+ λx + µ , (4.6)

while for w = 1 the second logarithm drops out.
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To solve for ρ0(k), we define as before the resolvent

u0(z) = w
ˆ

dk
ρ0(k)
z − k

, (4.7)

reproducing ρ0(k) and its Hilbert transform as

u0(k + iϵ) = w−
ˆ

dk′
ρ0(k′)
k − k′

− iwπρ0(k) . (4.8)

In analogy to (3.16), we set

u0(z) =
1

2πi

√
z(z − b)

˛
ds

w ln s − (w − 1) ln(s + a) + λ − s/xT

(s − z)
√

s(s − b)
, (4.9)

where the contour winds in the clockwise direction around the cut of the square root

[0, b] but does not include the singularity at z nor the cuts of the logarithms (so it

"threads" the real line at k = 0, see fig. 5).

0

z

b−a Re(s)

Im(s)

Figure 5: Contour of integration in the s plane. The original (magenta) contour around the
(black) square root cut on (0, b) is pulled back to the two (cyan) contours around the pole at z
and the two (blue) logarithm cuts on (−∞,−a) and (−a, 0).

Pulling back the contour we pick up the pole at s = z and the integrals around the

cuts of the logarithms and around infinity, and obtain

u0(z) = w ln z − (w − 1) ln(z + a)− z
xT

+ λ +
1
xT

√
z(z − b)

−
√

z(z − b)
[

w
ˆ a

0
+

ˆ ∞

a

]
ds

(s + z)
√

s(s + b)
.

(4.10)

For z = x real and between 0 and b (the region in which ρ0(x) does not vanish) we

obtain for ρ0(x)

ρ0(x) =
√

x(b − x)
[ˆ a

0
+

1
w

ˆ ∞

a

]
ds

(s + x)
√

s(s + b)
− 1

πwxT

√
x(b − x) (4.11)
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and upon performing the integrals,

ρ0(x) =
2

wπ
cos−1

√
x
b
+

2(w − 1)
wπ

cos−1

√
(a + b)x
(a + x)b

− 1
πwxT

√
x(b − x) . (4.12)

The density ρ0(x) obeys ρ0(0) = 1 and ρ0(b) = 0. The parameters a, b and λ can be

related to N and n by matching the asymptotic expansion of u0(z)

u0(z) = wz−1
ˆ ∞

0
dx ρ0(x) + wz−2

ˆ ∞

0
dx x ρ0(x) +O

(
z−3)

= wz−1 (1 − a) + wz−2
(

t
4
+

(1 − a)2

2

)
+O

(
z−3) ,

(4.13)

obtained from (4.7,4.2) to those obtained from (4.9). We get

1 − a =
b
2
− w − 1

2w

(√
a + b −

√
a
)2

− b2

8wxT
,

t
2
+ (1 − a)2 =

3b2

8
+

w − 1
2w

(
−3b2

4
+ 2a2 + (b − 2a)

√
a(a + b)

)
− b3

8wxT
,

λ = 2(w − 1) ln
√

a +
√

a + b
2

− w ln
b
4
+

b
2xT

.

(4.14)

We note that, for a = 0, the equations (4.14) in the dense phase and (3.21) in the dilute

phase become identical, since b and λ are continuous at the transition between the two

phases, which happens at the critical temperature Tc in (3.40).

The second critical temperature Ts signaling the onset of instability occurs when

ρ0(x) in (4.12) develops a negative part. Its extrema, happening at ρ′0(x) = 0, satisfy

x2 +
(

a − b
2
− xT

)
x − a

(b
2
+ xT

)
− (w − 1)xT

√
a(a + b) = 0 . (4.15)

The smaller root x− is always negative and outside of the range of x [0, b]. The positive

root x+ can be inside the range and corresponds to a negative minimum. Stability is

ensured if x+ > b, giving the condition

2xT >
b
√

a + b√
a + b + (w − 1)

√
a

. (4.16)

The critical point is at x+ = b, which means that the above inequality is saturated,
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thus allowing to express the parameter a as

at criticality : a =
b(b − 2xT)2

(2wxT − b)
(
2(w − 2)xT + b

) , w ̸= 1 . (4.17)

Substituting the value (4.17) for a in the first two equations in (4.14) determines b and

Ts′ . The equations are of high order and, in general, can only be solved numerically.

It turns out that Ts′ joins Tc and Ts for the dilute case at t = 4w − 2, forming a triple

critical point on the (t, T)-plane, located at

Triple point : t = 4w − 2 , T =
4w

2w − 1
T0 . (4.18)

Moreover, it turns out that Ts and Ts′ have their first derivatives (but not necessarily

higher ones) continuous at t = 4w− 2 and therefore join smoothly at this point. Hence,

we may think of them as a single curve over the entire range of values of t, which we

will denote by Ts, having different functional forms on either side of t = 4w − 2 .

5 The disjoint phase

When T < Ts, either in the dilute or the dense lumped phase, the distribution develops

a negative part, signaling an instability. The stable configuration consists of a single

ki (the largest one) leaving the distribution and moving to a large value, as we shall

see. Since the ki are ordered, we take this to be k1. The remaining ki are treated using

a distribution ρ(k) as before.

It is clear that the contribution of the single isolated k1 to the equilibrium equation

for the remaining ki and their density ρ(k) is subleading in N. The only way that it

can influence the distribution is through the constraints (3.2), which become

ˆ ∞

0
dk ρ(k) = N − 1 ≃ N ,

ˆ ∞

0
dk k ρ(k) = n +

N2

2
− k1 . (5.1)

This implies that k1 must be of order N2, and we set

k1 = N2y , (5.2)

contrasted to ki = Nxi for the rest of the ki. The equilibrium equations for ρ(x) and y
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become
w

Nx − N2y
+ w
ˆ ∞

0
dx′

ρ(x′)
x − x′

= ln x − x
xT

+ λ (5.3)

and

w
ˆ ∞

0
dx

ρ(x)
Ny − x

= ln(Ny)− Ny
xT

+ λ , (5.4)

where we also displayed the subleading terms. In addition, the constraints for ρ(x)

become ˆ ∞

0
dx ρ(x) = 1 ,

ˆ ∞

0
dx x ρ(x) =

t
4
+

1
2
− y . (5.5)

From (5.3) we see that, indeed, y does not influence the equation for ρ, as the y-

dependent term is of order 1/N2. Keeping leading terms in N, (5.4) implies

λ = N
y
xT

, (5.6)

so that λ assumes a macroscopically large (of order N) positive value. This drives the

configuration for ρ deep into the dense phase, that is,5 (see fig. 6)

x

ρ(x)

1

1 N y

Figure 6: The distribution ρ(x) in the disjoint phase with one isolated x1 = Ny.

ρ(x) =

1 , 0 ⩽ x ⩽ 1 ,

0 , otherwise ,
(5.7)

and the second constraint in (5.5) gives

y =
t
4

. (5.8)

5That (5.7) and (5.8) are the solution to (5.3)-(3.5) to leading order in N also arises from the system
(4.14) in the lumped dense phase upon shifting t/2 → t/2 − 2y, which takes into account the presence
of the separate eigenvalue k1 that modifies (5.1) as compared to (3.2). For large λ the last of (4.14) implies
that b → 0. Then, the first two equations give (1 − a)2 + t/2 − y/2 +O(b2) = 0 and 1 − a +O(b) = 0,
which implies that a = 1 and y = t/4 as above and the distribution (4.1) becomes the one of (5.7).
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Therefore, the disjoint phase consists of a fully condensed distribution ρ(x) and a

single large isolated k1 = Nx1 = N2t/4 = n, the remaining ki ranging from 0 to

N − 2. The corresponding irrep is the fully symmetric one with a single row of length

n in its Young tableau, so we will refer to the disjoint phase as the symmetric phase.

We conclude by noting that, had we separated two or more large ki, e.g., k1 and k2, we

could not have fulfilled the equilibrium condition. In the situations above, k1 is sitting

at the top of the effective potential to leading order in N (to subleading order, slightly

to the left, stabilized by the repulsion of the lumped set ρ(x)). More than one ki would

repel each other and could not stabilize. This is in accordance with the findings of [17]

where it was shown that, for finite N, configurations with two or more rows in their

Young tableaux lead to instabilities.

The full phase diagram, obtained after deriving the corresponding phase transitions

in section 7, is depicted in fig. 7.

6 The special cases w = 1 and w = 2

As we mentioned in section 2 on the general model, the cases w = 1 and w = 2 are

special: w = 1 corresponds to simply enumerating irreducible components, while

w = 2 is the standard thermodynamic model where all states are counted with equal

weight. As demonstrated in [18] these values are also special from the mathematical

point of view: in the absence of the energy term (when T → ∞), they both admit

simple, explicit solutions for the equilibrium configuration and its parameters a, b.

Moreover, the dense-dilute phase transition in the parameter t is third order for w = 1,

and completely absent for w = 2, while for generic w > 1 it is fourth order. We

therefore examine the present model in these two special cases.

6.1 w = 1

In this case the density in the dense phase (4.12) specializes to

Dense : ρ0(x) =
2
π

cos−1
√

x
b
− 1

πxT

√
x(b − x) , 0 ⩽ x ⩽ b , (6.1)
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which obeys ρ0(0) = 1 and ρ0(b) = 0. This distribution remains in the physical range

0 ⩽ ρ0(x) ⩽ 1 for all values of x ∈ [0, b] as long as

2xT > b , (6.2)

which follows by setting w = 1 in (4.16). The equations determining the parameters

a, b and λ (4.14) simplify to

1 − a =
b
2
− b2

8xT
,

t
4
+

(1 − a)2

2
=

3b2

16
− b3

16xT
,

λ = − ln
b
4
+

b
2xT

.

(6.3)

This system can be solved for a and b by elimination, leading to a quadratic equation

for b2. The unique positive solution satisfying the condition (6.2) for the distribution

ρ0(x) to remain in the physical range, is given by b = 2xT

√
1 −

√
1 − 2t/xT

2. Then, a

and λ are obtained from the first and last equations in (6.3). We are mostly interested

in the expressions for the critical temperatures Tc and Ts which can be explicitly cal-

culated. The former is obtained by setting a = 0, which signals a transition to a dilute

phase. From (6.3) we obtain

Tc = 2T0
3t − 2 + (2 − t)3/2

t(t − 1)
, 1 ⩽ t ⩽ 2 , (6.4)

which of course is consistent with (3.40) for w = 1 as it should be. The other critical

temperature Ts is obtained by setting b to its critical value which, according to (6.2)

is at b = 2xT. The first equation in (6.3) fixes a = 1 − xT/2, and the second equation

determines the critical temperature as

Ts = T0

√
32
t

, t ⩽ 2 . (6.5)

The range of t is determined by demanding a ⩾ 0. For t = 2, indeed Ts = 4T0. Also,

T > Ts warrants that the expression for b given below (6.3) remains real.

For the dilute phase, ρ(x) is given by (3.19) for w = 1 which we reproduce for
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convenience here

Dilute : ρ(x) =
2
π

cos−1
√

x +
√

ab/x
√

a +
√

b
− 1

πxT

√
(x − a)(b − x) , a ⩽ x ⩽ b . (6.6)

The constants a, b, λ are determined by (3.21) for w = 1, with no substantial simplifi-

cation. The critical temperature for transition to the disjoint phase is given by (3.48)

for w = 1 and t̄ = t, that is

Ts =
T0

12t

(
δ2 + 2δ + 2δ−1 + δ−2 + 12t + 11

)
,

δ =

(√
(54t + 53)2 − 1 + 54t + 53

)1/3

, t ⩾ 2 .
(6.7)

Its value and first derivative (but not the higher ones) match those of Ts in the dense

phase (6.5) above for t = 2, the two curves essentially joining into one continuous

curve for all values of t.

6.2 w = 2

In this case a particular simplification and unification between the dense and dilute

phases arises. The density in the dense phase (4.12) specializes to

ρ0(x) =
1
π

cos−1 (1 +
√

1 + b/a)x − b
b
√

1 + x/a
− 1

2πxT

√
x(b − x) , 0 ⩽ x ⩽ b . (6.8)

It obeys ρ0(0) = 1 and ρ0(b) = 0, and remains in the physical range 0 ⩽ ρ0(x) ⩽ 1, for

all values of x ∈ [0, b] as long as

2xT > a + b −
√

a(a + b) , (6.9)

which follows by setting w = 2 in (4.16). The system of equations (4.14) becomes

4 =
(√

a + b +
√

a
)2

− b2

4xT
,

t
2
+ (1 − a)2 =

3b2

16
+

a2

2
+

b − 2a
4

√
a(a + b)− b3

16xT
,

λ =
b

2xT
− 2 ln

√
a + b −

√
a

2
.

(6.10)
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The density in the dilute phase (3.19) specializes to

ρ(x) =
1
π

cos−1
√

x +
√

ab/x
√

a +
√

b
− 1

2πxT

√
(x − a)(b − x) , a ⩽ x ⩽ b , (6.11)

which obeys ρ(a) = ρ(b) = 0, and remains in the physical range 0 ⩽ ρ(x) ⩽ 1 for all

values of x ∈ [a, b] as long as (3.27) holds. Repeated here for convenience this reads

2xT > b +
√

ab . (6.12)

The system of equations (3.21) becomes

4 = (
√

b −
√

a)2 − (b − a)2

4xT
,

2(t + 2) =
2(b − a)2 + (

√
b −

√
a)4

4
− (a − b)(a2 − b2)

4xT
,

λ =
a + b
2xT

− 2 ln
√

a +
√

b
2

.

(6.13)

The critical temperature Tc for transition between the two phases is given by (3.40) as

Tc = 4T0
3t − 10 + 2−1/2(6 − t

)3/2

t(t − 4)
, 4 ⩽ t ⩽ 6 . (6.14)

The two systems (6.10) and (6.13)), and the constraints (6.9) and (6.12), become, in

fact, identical upon using the p, q-parametrization:

Dense phase: a = xT(
√

p −√
q)2 , b = 4xT

√
pq , p < q ,

Dilute phase: a = xT(
√

p −√
q)2 , b = xT(

√
p +

√
q)2 , p > q .

(6.15)

Their common form is, upon combining the top two equations in (6.10),

xTq(1 − p) = 1 ,

2xT
2(q2 − 2pq(p + q − 1)

)
= t + 2 ,

λ = p + q − θ(q − p)(
√

p −√
q)2 − ln(xT p) ,

p +
√

pq < 1 ,

(6.16)

where θ is the Heaviside step function. For T > Tc the solution of (6.16) is for p > q,

while for T < Tc it is for p < q. So the transition is completely analytic, the only sign
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of nonanalyticity being the Heaviside step function in the expression for the Lagrange

multiplier λ. This will be relevant in the study of the order of the transition. The

critical temperature Ts for transition into the disjoint phase is given by (3.48) for w = 2,

which are now valid for both the dense and dilute phases. Specifically,

Ts =
T0

6t

(
δ2 + 2δ + 2δ−1 + δ−2 + 6t − 1

)
,

δ =

(√
(27t − 1)2 − 1 + 27t − 1

)1/3

, t ⩾ 0 .
(6.17)

This diverges at t = 0 as Ts ≃ T0
√

8/t and slowly asymptotes to Ts = T0 as t → ∞. At

the triple point, t = 6, Ts = Tc = 8T0/3. The plots of Tc, Ts are given in fig. 7.

7 Thermodynamics and phase transitions

The free energy F, internal energy U, and entropy S in each phase are related by the

standard thermodynamic relations

F = U − TS , U = −T2∂T

(
F
T

)
, S = −∂TF . (7.1)

The critical temperatures Tc and Ts define transition lines on the (t, T) plane, with

a triple point given in (4.18). To determine the order of these phase transitions, we

examine the thermodynamic quantities of each phase.

7.1 Transitions between the dilute and dense phases

For the dense and dilute cases, the expression (3.6) for the free energy in terms of the

distribution ρ(x) identifies the entropy and internal energy as

S = N2
[

w
2

ˆ ∞

0
dx
ˆ ∞

0
dx′ ρ(x)ρ(x′) ln |x − x′| −

ˆ ∞

0
dx ρ(x)x(ln x − 1)

]
,

U = −2N2 T0

t

ˆ ∞

0
dx x2ρ(x) ,

(7.2)

calculated at the equilibrium configuration ρ(x). Substituting the explicit expressions

(3.19) in the dilute case, or (4.12) in the dense phase, leads to some hard to evaluate in-

tegrals, even after using the equilibrium equation (3.8) to simplify S. However, U can
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be calculated from the asymptotic expansion of the resolvent u(z), as it is essentially

the second moment of the distribution. This will allow us to determine the order of

the dense-dilute phase transition. Note that both U and S, and consequently also F,

are of order N2.

For the lumped dilute phase, keeping one more term in the expansion (3.20), of

order z−3, we obtain

w
ˆ ∞

0
dx x2ρ(x) =

5(a3 + b3) + 3ab(a + b)− 2
√

ab(3a2 + 2ab + 3b2)

48

− (a − b)2(5a2 + 6ab + 5b2)

128xT
.

(7.3)

Similarly, for the lumped dense phase we obtain

w
ˆ ∞

0
dx x2ρ(x) =

w
3

a3 +
5b3

48
− 5b4

128xT
+

w − 1
24

√
a b3(11a + 3b + 9

√
a(a + b))

(
√

a +
√

a + b)3
, (7.4)

where the first term comes from the unit part of the distribution in (4.1) and the rest

from the nontrivial profile ρ0(x).

We need to expand the above expressions in the temperature near the phase boundary

at T = Tc, corresponding to a = 0. To do this, we expand a and b in T − Tc, which

can be done by perturbatively solving the first two equations in (3.21) and (4.14). This

expansion is qualitatively different for w = 1 and w > 1: in the generic case w > 1, the

two sets of equations allow for an expansion of
√

a and b in powers of T − Tc around

their critical values a = 0 and b = bc. However, for w = 1, the terms involving
√

a in

(4.14) drop, and the variables to expand in the dense phase are a and b. As we shall

see, this also affects the order of the transition. Hence, we treat separately the cases

w = 1 and w > 1.

7.1.1 w = 1: 2nd order phase transition

First we consider the dilute phase and the system (3.21) with w = 1. It turns out

that it suffices to keep terms of O(T − Tc) in the expansion of
√

a and b. We find the
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expansion

√
a =

1
4
√

2T0

t(1 −
√

2 − t)2

(2 −
√

2 − t)5/2
(T − Tc) + . . . ,

b = bc +
t(1 − t)(1 −

√
2 − t)

2(2 − t(1 −
√

2 − t))T0
(T − Tc) + . . . ,

(7.5)

from which the internal energy obtains as

Udil = U0 +
N2

4
(1 −

√
2 − t)2(T − Tc) + . . . , (7.6)

where the internal energy at T = Tc is

U0 = −5N2

12
Tc(t − 1) . (7.7)

This is negative, in accordance with (7.2), since approaching the critical curve T = Tc

requires that 1 ⩽ t ⩽ 2.

In the dense phase and the system (6.3) we keep terms of O(T − Tc) in the expan-

sion of a and b. We find that

a = − 1
2T0

t(1 −
√

2 − t)2

(2 −
√

2 − t)(4 − 3
√

2 − t)
(T − Tc) + . . . ,

b = bc +
(2 − 7t + t2)

√
2 − t + t(2 + 5t − 3t2)

(t2 − 4)(2 − 9t)T0
(T − Tc) + . . . ,

(7.8)

from which

Uden = U0 −
5N2

4

√
2 − t(1 −

√
2 − t)2

4 − 3
√

2 − t
(T − Tc) + . . . . (7.9)

Comparing (7.6) and (7.9) we see that there is a discontinuity in the first derivative of

the internal energy with respect to T at the critical temperature Tc. This corresponds

to a second order phase transition.

Note that the internal energy, as stated in (7.6) and (7.9), is an increasing (decreasing)

function of the temperature off the critical curve T = Tc for the dilute (dense) phase.
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7.1.2 w > 1: 3rd order phase transition

In this case we will need to expand to order O(T − Tc)2. For the dilute phase, we find

√
a =

b3/2
c T0

4tT2
c

(T − Tc) +
b3/2

c T0(2b3
c T3

0 − 7bct2T0T2
c + 4t3T3

c )

16t3T5
c (2bcT0 − tTc)

(T − Tc)
2 . . . ,

b = bc +
t(bc − 2w)

2(2bcT0 − tTc)
(T − Tc)

−
b2

c T0(14b2
c T2

0 − 21bctT0Tc + 8t2T2
c )

16T2
c (2bcT0 − tTc)3 (T − Tc)

2 + . . . ,

(7.10)

with the critical values Tc and bc given by (3.40) and (3.43). Then

Udil = U0 + N2 (bc − 2w)2

16w
(T − Tc)

− N2 bc(2 + t − 5w) + 4w2

8(4w − t − 2)Tc
(T − Tc)

2 + . . . ,

(7.11)

where the internal energy at T = Tc is

U0 = − 5
12

N2(t + 2 − 3w)Tc . (7.12)

Note that setting w = 1 in (7.12) recovers (7.7), and that, again, U0 < 0 in accordance

with (7.2).

For the dense phase the corresponding expansions are

√
a = − b3/2

c T0

4(w − 1)tT2
c
(T − Tc)

+ T0b3/2
c

8tTc(wT0 − (w − 1)2tTc) + T0bc(8wT0 + (10 − 26w + 13w2)tTc)

32(w − 1)2t2T4
c (2T0bc − tTc)

(T − Tc)
2 . . . ,

b = bc +
t(bc − 2w)

2(2bcT0 − tTc)
(T − Tc)− t(bc − 2w)

×
8(w − 1)2t2T2

c + 32w2T2
0 − 4w(8 − 14w + 7w2)tT0Tc − bcT0(8wT0 + (6 − 14w + 7w2)tTc)

16(w − 1)2(2bcT0 − tTc)3Tc

× (T − Tc)
2 + . . . .

(7.13)
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Then

Uden = U0 + N2 (bc − 2w)2

16w
(T − Tc)− N2w(2 + t − 3w)T0

× (2 + t)(4 + 5bc + 2t)− 4wbc(13 + 2t) + 4w2(bc(18 + t)− 8(1 + t)) + 16w3(2 − 2bc + t)
8t(bc − 6w)(2 + t − 4w)(w − 1)2T2

c

× (T − Tc)
2 . . . .

(7.14)

Comparing (7.11) and (7.14) we see that the first derivative of the internal energy is

continuous at T = Tc but there is a discontinuity in the second derivative. This corre-

sponds to a third order phase transition.

Also, unlike the w = 1 case, the internal energy is an increasing function of the tem-

perature off the critical curve T = Tc for both the dilute and dense phases. In addition,

it can be shown that the sign of the (T − T0)
2 term in both expressions for the internal

energy is negative. The phase diagram for temperatures T ∼ T0 is depicted in fig. 7.

3 w - 2    4 w - 2
t

T0

4 wT0
2 w - 1

T

Ts

Ts
Tc Dilute, Symmetric

Dense,
Symmetric

Symmetric

T ∼
N T0

ln N

Figure 7: Phase diagram in the t−T plane with a triple point intersection given by (4.18). Ts
asymptotes to T = T0 and t = 0, while Tc asymptotes to t = 3w − 2. The symmetric phase is
everywhere stable, while the dense and dilute lumped phases are metastable for T > Ts and
cease to exits for T < Ts. For high temperatures T ∼ T0N/ ln N as indicated in the gray area,
there is a nontrivial phase structure derived in section 7.2 and presented in fig. 9.

7.1.3 An alternative computation

The order of the dense-dilute transition can also be deduced from the Lagrange mul-

tiplier λ. Indeed, the discontinuity of derivatives on the (t, T) plane across the phase
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boundary T = Tc is the same irrespective of the direction in which we approach it. We

can, thus, examine the derivative along the direction tT=constant, which amounts to

keeping the parameter xT = tT/4T0 in the free energy F constant and differentiating

with respect to t. Since F does not involve t explicitly, we have(
∂F
∂t

)
xT

=

ˆ ∞

0
dx

δF[ρ(x)]
δρ(x)

∂ρ(x)
∂t

(using stationarity) = −N2T
(

λ

ˆ ∞

0
dx x

∂ρ(x)
∂t

+ µ

ˆ ∞

0
dx

∂ρ(x)
∂t

)
= −N2T

(
λ

∂

∂t

ˆ ∞

0
dx xρ(x) + µ

∂

∂t

ˆ ∞

0
dx ρ(x)

)
(using the constraints) = −N2T

4
λ .

(7.15)

From (3.21) in the dilute phase and (4.14) in the dense phase we see that λdil = λden

at the phase boundary a = 0. For w > 1 the first derivatives (∂λdil/∂t)xT and

(∂λden/∂t)xT at a = 0 are also the same. This can be checked explicitly for any w ̸= 1,

but it is easily seen from the form of λ for w = 2 in (6.16), in which the continuity of

the first derivatives arises from the fact that the step function is multiplied by a term

that vanishes quadratically as p → q. Using similar reasoning, the second deriva-

tives (∂2λdil/∂t2)xT and (∂2λden/∂t2)xT differ at a = 0, leading to a discontinuity in

(∂3F/∂t3)xT on the phase boundary and indicating a third-order phase transition. For

w = 1 the absence of the first term in the expression for λ in (4.14) leads to a discon-

tinuity already in the first derivative (∂λ/∂t)xT on the phase boundary and thus to a

discontinuity of (∂2F/∂t2)xT , indicating a second-order phase transition.

7.2 Transitions to the disjoint phase and large temperatures

For the disjoint phase, the free energy F and energy U can be calculated from the

ground state distribution (5.7) and the isolated k1 = N2y = N2t/4 = n. We see that

the contribution of the isolated k1 dominates, giving a free energy macroscopically

larger (of order N3) and an entropy macroscopically smaller (of order N ln N) than the
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ones in the other phases, namely6

Fdisj ≃ Udisj ≃ −T0N
2n

n2 = − t
8

N3T0 , Sdisj ≃ (w − 1)N ln N . (7.16)

Since the free energy of the lumped phases is of order N2, the transition at T = Ts

involves a jump in the free energy and is of zeroth order. This also means that, at

temperatures of order T0, the other two phases are metastable, since the disjoint phase

has a macroscopically lower free energy.

The metastability frontier at which the free energy of the disjoint and either the

dense or the dilute phase are equal would be at a macroscopically large temperature

T ∼ T0N/ ln N. As we shall see, at such temperatures a new phase appears, and the

phase diagram in fig. 7 acquires extra structure.

Assume a temperature of the above order, that is,

T = τ
N

ln N
T0 ≫ T0 , (7.17)

with τ a dimensionless parameter of order 1. Substituting this value in (5.4) and keep-

ing leading-order contributions leads to

λ =

(
4y
tτ

− 1
)

ln N +O(1) . (7.18)

We also note that the second constraint in (5.5) implies

0 < y ⩽
t
4

, (7.19)

since the integral of xρ(x) is at least 1/2.7

6These expressions follow from the exact formulae of section 2. For the fully symmetric irrep with

k1 = n + N − 1 and ki = N − i, i = 2, 3, . . . , N, (2.7) gives dim(k) =
(n + N − 1)!
n!(N − 1)!

∼ nN N−N ∼ NN ,

and (2.9) gives d(n, k) = 1, as it should since there is only one way to compose n fundamentals into a
single row. Then (2.10) yields U and the logarithm of (2.11) yields S.

7A proof of this statement goes as follows: From the fact that 0 < ρ(x) < 1, we deduce that

x >

ˆ x

0
dy ρ(y) ⇒

ˆ ∞

0
dx xρ(x) >

ˆ ∞

0
dx ρ(x)

ˆ x

0
dy ρ(y)

=
1
2

ˆ ∞

0
d
[ ˆ x

0
dy ρ(y)

]2
=

1
2

[ ˆ ∞

0
dy ρ(y)

]2
=

1
2

,

(7.20)

where we used the first constraint in (3.5). This bound arises from the corresponding discrete sum over
ki, where the singlet representation with ki = 0, 1, . . . , N−1 clearly provides the minimum value for the
sum ∑N

i=1 ki = N(N − 1)/2 ≃ N2/2, leading to the above bound in the continuum limit.
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The value of the Lagrange multiplier λ, and the properties of the configuration,

depend on the prefactor of ln N in (7.18). Specifically:

• τ > 4y/t: Then λ is large (∼ ln N) and negative. This destabilizes the equation

for the lumped part ρ(x) and leads to no solution. Since y ⩽ t/4, we conclude

that for τ > 1 there is no solution and the disjoint phase disappears.

• τ < 4y/t: Then λ is large (∼ ln N) and positive. This drives the configuration

for the lumped part ρ(x) deep into the dense phase, that is, to (5.7), forcing y to

the value y = 1/4. Therefore, for τ < 1 the disjoint phase exists as discussed in

detail in section 5.

• τ = 4y/t: Then λ becomes of order 1. Therefore, the equation for the lumped

part ρ(x) can have a nontrivial solution. In this case,

ˆ ∞

0
dx x ρ(x) =

t
4
+

1
2
− y =

t(1 − τ)

4
+

1
2
=

t̃
4
+

1
2

, t̃ = t(1 − τ) . (7.21)

Then, the equation for ρ(x), becomes the standard one but with a high temper-

ature as in (7.17) and an effective t̃ = (1 − τ)t, with the value of λ, which is

now of order 1, adjusting to the one reproducing the effective t̃.8 The solution

for the lumped part ρ(x) is given by the large-temperature limit of the solutions

found in sections 3 or 4 (depending on the value of t̃), and it is also calculated

in [18], which examined the infinite-temperature limit of the present model. This

constitutes a new phase, which exists for all 0 < τ < 1, consisting of a large

k1 = N2 t̃/4 = (1 − τ)n plus a nontrivial lumped part ρ.

Therefore, in the range 0 < τ < 1 there exist, a priori, three distinct phases: a lumped

one (y ≃ 0), corresponding to an SU(N) irrep with a distribution of row lengths of

order N in its Young tableau; a disjoint-lumped one (y = tτ/4), corresponding to an

irrep with one long row of order n ∼ N2 and a distribution of lower rows of order N;

and a disjoint one (y = t/4), corresponding to a symmetric irrep with a single row of

length n. The first (lumped) phase is of paramagnetic nature, the second (mixed) one

is partially ferromagnetic, and the last (symmetric) one is fully ferromagnetic.

To determine the global stability and metastability properties of the above phases

we need to compare their free energy:
8The O(1) part of λ is not fixed by (5.4) since it can be modified by adding subleading terms in the

temperature, or equivalently changing y by a subleading term.
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• The free energy of the disjoint phase is already calculated in (7.16), which we

reproduce here for convenience

Fdisj ≃ − t
8

N3T0 . (7.22)

• The free energy of the lumped phase at high temperatures T ≫ T0 is domi-

nated by the entropy, that is, Flump ≃ −TS. Further, at high temperatures the

entropy approaches a limiting value S∞ that can be obtained from the results in

this paper, but is also already calculated in [18]. Dropping subleading terms in

(3.86) and (3.87) of [18] we obtain, for both the dense and dilute lumped phases,

S∞ = n ln N = t
4 N2 ln N, which is the logarithm of the total number of states Nn

of the model for all values of w. Notably, S∞ is w-independent. Therefore, using

(7.17) we obtain

Flump ≃ −τ
t
4

N3T0 . (7.23)

• The free energy of the lumped-disjoint phase can be calculated in a similar way.

The end result consists of the free energy due to the entropy of the lumped part

−Tñ ln N, with ñ = n(1 − τ), plus the energy of the isolated k1 = N2y = τn,

U = −T0Nk2
1/(2n) = −τ2tT0N3/8. Altogether,

Flump-disj ≃ −τ(2 − τ)
t
8

N3T0 . (7.24)

Comparing the three expressions in (7.22)-(7.24) we see that the lumped-disjoint phase

is always metastable. In addition, the disjoint phase is globally stable and the lumped

phase is metastable for τ < 1/2, while their roles are reversed for 1/2 < τ < 1. For

τ > 1 only the lumped phase exists. As evident from (3.40) and fig. 7 (or from the

results of [18], relevant in the present high-temperature regime), the lumped phase is

in the dilute configuration for t > 3w − 2 and the dense one for t < 3w − 2.

The above picture admits a refinement. Indeed, the precise form of the disjoint

phase changes slightly at τ = 1/(w + 1). Comparing the free energy of the fully

symmetric irrep of length n, as in footnote 6, to that of a configuration with a number

of boxes s = O(1) in its lower rows and a top row of length n− s, a direct computation

using the exact formulae of section 2 yields a leading order change of free energy

∆F ≡ Fsdisj − Fdisj ≃ s
(

T0N − (w + 1)T ln N
)
= sN

(
T0 − (w + 1)τ

)
, (7.25)
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which is O(N), and expressed in terms of the relevant variable ∆x = s/N it is O(N2),

while the free energy itself is O(N3). Therefore, ∆F ≃ 0 to leading order in N, as ex-

pected from the fact that the disjoint is a local extremum. Nevertheless, this indicates

that for

τ >
1

w + 1
⇐⇒ T >

T0 N
(w + 1) ln N

, (7.26)

the fully symmetric irrep is unstable, the stable one being a "modified symmetric"

configuration with a small number s ≪ n ∼ N2 of boxes in lower rows. We call this

a "pseudo-phase transition," as all thermodynamic quantities are continuous across

τ = 1/(w+1) to leading order in N. For the distribution ρ, this corresponds to ρ(x)

deviating slightly from the step function form (5.7) near x = 1, developing a smooth

transition from ρ = 1 to ρ = 0. The exact shape of this transition may be of mathemat-

ical interest, but it is irrelevant for the thermodynamics of the model.

Similarly, by using the results of [18], or by referring to fig. 7, if the parameter t

of the model is below its large-temperature critical value, i.e. t < 3w − 2, then the

lumped part ρ in the lumped-disjoint phase will be in the dense configuration for all

τ. If, however, t > 3w − 2, then for t̃ < 3w − 2 the lumped part will be in the dense

phase, while for t̃ > 3w − 2 it will be in the dilute configuration; that is,

dilute-disjoint: 0 < τ < 1 − 3w − 2
t

,

dense-disjoint: 1 − 3w − 2
t

< τ < 1 .
(7.27)

Nevertheless, the two configurations have the same free energy to leading order in

N as a function of τ, so they do not constitute thermodynamically distinct phases

and this is another pseudo-phase transition. The free energies of all phases at large

temperature as a function of τ, and for t > 3w − 2, are depicted in figure 8. For

t < 3w − 2 the figure is similar, with the lumped part of the metastable mixed phase

being entirely in the dense configuration (the entire curve is in deep orange and the

line at τ = 1 − (3w − 2)/t missing.

The above results can be compared to those of [17], which examined the case w = 2

and finite N. The transition between the stable and metastable phases involved three

temperatures T0 < T1 < Tc: for T < T0 the ferromagnetic phase was stable and

the paramagnetic one unstable; for T0 < T < T1 the paramagnetic phase became

metastable; for T1 < T < Tc the ferromagnetic phase turned metastable and the para-
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τ0

-
1

8
N3 t T0

F

τ=1τ=1/2τ=1/(w+1) τ=1-(3w-2)/t

Figure 8: The free energy of the lumped (green), lumped-disjoint (orange), and disjoint (blue)
phases as a function of the scaled temperature τ and for t > 3w − 2. For τ < 1/(w + 1)
the disjoint phase is the symmetric irrep (deep blue), while for 1/(w + 1) < τ < 1 it has a
subleading number of boxes in lower rows (light blue). Likewise, for τ < 1 − (3w − 2)/t the
lumped part of the lumped-disjoint phase is in the dilute configuration (light orange), while
for 1 − (3w − 2)/t < τ < 1 it is in the dense configuration (deep orange). We have depicted
the case with t > 2(3w − 2). For 3w − 2 < t < 2(3w − 2) the second and third dashed vertical
lines are interchanged.

magnetic one became stable; and for T > Tc the ferromagnetic phase ceased to exist

and the paramagnetic one remained stable. For large N, the temperatures T1 and Tc

were found to behave as T1 ≃ Tc/2 ≃ N
ln N T0. These precisely match the values τ = 1

2

and τ = 1 in (7.17) which mark the temperatures for similar phase transitions in our

case. The modified structure of these phases, however, as well as the existence of the

metastable paramagnetic-ferromagnetic phase, were lost in the finite-N analysis.

The large-temperature phases on the t−T plane can be depicted by trading N for

the parameter t and the "volume" (number of atoms) n, and keeping n constant as we

vary t and T. In this parametrization, large temperatures (7.17) become

T = TL
τ√

t
, with TL = 4T0

√
n

ln n
, (7.28)

where we used ln n ≫ 1, ln t. Then the curve corresponding to τ = 1 marks a true

phase transition and the one corresponding to τ = 1
2 a metastability transition. The

curves for τ = 1/(3w − 2), t = 3w − 2, and τ = 1 − (3w − 2)/t separate phases with

qualitatively different features but thermodynamically represent pseudo-transitions,

as explained earlier. The full phase diagram is presented in fig. 9.
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Figure 9: The phase diagram for temperatures T ∼ TL at fixed number of atoms n. The
upper (red) curve T = TL/

√
t marks a true phase transition and the middle (green) curve

T = TL/2
√

t marks a metastability transition, while the remaining (orange, purple, gray)
curves represent pseudo-transitions. The various phases are:
dense-lumped: A,C (stable) G,K (metastable); dilute-lumped: B,D,F (stable) H,J,L,M (metastable)
modified symmetric: C,D,F (metastable) G,H,J (stable); fully symmetric: K,L,M (stable)
dense-disjoint: C,D,G,H,K,L (metastable); dilute-disjoint: F,J,M (metastable)
The shaded region near the t axis represents temperatures ∼T0 with phases depicted in fig. 7

8 Conclusions

The phase structure of the SU(N) ferromagnet at large N manifests qualitatively new

properties as compared to the finite-N case. The main novel features of the large-N

model are, first, the emergence of two distinct temperature scales, and second, the

appearance of additional phases and sub-phases. The two temperature scales are re-

lated by a scale factor of order N/ln N, the lower one being relevant to the stability

of the paramagnetic phases and the higher one to the stability of the ferromagnetic

phases. The appearance of additional phases occurs both within the paramagnetic

regime, which splits into two phases separated by a phase transition and leads to a

triple point, and the ferromagnetic phase, which can exhibit small deviations from the

fully symmetric irrep of the finite-N case, but also develops a second, thermodynam-

ically distinct metastable phase that deviates substantially from the symmetric irrep.

The element driving the emergence of new features in the model is the Vander-

monde term in the effective action (2.10, 2.11), which is thermodynamically suppressed

for finite N but becomes relevant at large N. This leads to a paramagnetic phase that
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corresponds to an irrep of SU(N) other than the singlet, which changes with the tem-

perature, and to generalized symmetry breaking patterns in the ferromagnetic phase.

Although the paramagnetic phases are metastable at low temperatures, and the

novel mixed paramagnetic-ferromagnetic phase is metastable at all temperatures, their

presence is physically significant. By Arrhenius’ law, the transition of a metastable

state to a fully stable one, when driven only by thermal fluctuations, is exponentially

suppressed and the transition time is exceedingly large. For all practical purposes,

metastable states are stable if left unperturbed, and only external perturbations (im-

purities, shaking the system etc.) can induce their decay. Our results, therefore, can

be physically relevant in the appropriate context.

Potential applications of the large-N, general-w model studied in this work extend

to any system where the number of degrees of freedom per atom N grows large and

becomes comparable to the square root of the number of atoms
√

n, thus making the

analysis in which the Vandermonde terms is neglected unreliable. Even for moder-

ately high N, the large-N results may better approximate the thermodynamics of the

model than the finite-N results, in cases where the two differ. Such situations can arise

either when N is relatively high, or when the number of atoms n is not very high,

which is the case in some experimentally prepared systems (for instance, in lattices

created with trapped ions, the number of sites is of order a few tens [20]).

The model could also be relevant to more exotic situations, such as the physics of

the quark-gluon plasma (for a review see, e.g., [21]), that is, a fluid of particles carrying

color degrees of freedom which are assumed to ferromagnetically interact.

An obvious next step in further analyzing the large-N model would be the addition

of external non-Abelian magnetic fields. Their inclusion in the finite-N model led

to a highly nontrivial phase diagram in the temperature-magentic field plane, with

several (meta)stable states and phase transitions appearing. In the large-N case, the

thermodynamic phase space would be enlarged into the three-dimensional T−t−B

space, B representing the magnetic field in a single direction of SU(N), potentially

leading to a very rich phase structure.

In addition, several possible generalizations of our model exist, similar to the ones

open in the finite-N case. A system of atoms each carrying an irrep of SU(N) other

than the fundamental, representing a case with reduced symmetry among the states

of the atom, would be interesting to consider. Alternatively, systems involving 3-atom

37



or higher interactions, which would manifest in the appearance of higher Casimirs in

the energy term, would be interesting to analyze in the large-N limit.

Finally, applications in matrix models and large-N Yang-Mills theories could also

be envisaged (see, e.g. [22–24] and [25–28]). The possible relevance of the ferromag-

netic term in the physics of microstates in two-dimensional black holes [29,30] as stud-

ied in [31,32] and more recently in [33,34], as well as in the deconfinement/Hagedorn

transition in large-N gauge theories [35–39] would be an interesting and important

issue. This and other related questions merit further investigation.
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