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Abstract—Reconfigurable intelligent surfaces (RIS) experience
considerable control overhead, particularly problematic in mobile
multi-user programmable wireless environments (PWEs). This
paper presents a strategy that dynamically excludes shadowed
RIS tiles from supporting non-line-of-sight mmWave commu-
nications, reducing overheads and enhancing RIS usage effi-
ciency. Spatio-temporal variations caused by crowd mobility
necessitate the dynamic adaption of this strategy. The primary
challenge lies in identifying optimal occasions for updating RIS
tile exclusion decisions, which must strike a balance between
improving achievable channel gain (performance) and power
consumption as well as controlling overhead (cost) associated
with decision updates. Given the absence of a general mmWave
channel model, this paper applies deep reinforcement learning
(DRL) for managing the RIS exclusion strategy. DRL caters to
the susceptibility of mmWave channels to concept drift, where
spatio-temporal variations in crowd mobility alter the probability
distribution of RIS channel gains and outages. To counter concept
drift and generate a universal RIS exclusion strategy for any
indoor mmWave environment, we propose an adaptive exclusion
update mechanism powered by DRL. This mechanism utilizes
hierarchical decision decomposition, reward signal embedding,
and a fusion of concept drift and temporal features due to crowd
mobility, enabling efficient adaptation to environmental changes.
Extensive cross-validation confirms the agent’s impressive gener-
alization ability, directly applicable to varied environments. This
adaptive mechanism, despite containing only 2, 300 learnable
parameters, achieves more than a two-fold increase in efficiency
relative to static exclusion timing methods. Furthermore, decision
execution, based on a low-cost RIS controller, only takes a few
tens of nanoseconds, showcasing practicality and efficiency.

Index Terms—Millimeter wave, programmable wireless envi-
ronments, reconfigurable intelligent surfaces, mobility, resource
allocation, deep reinforcement learning, concept drift, domain
generalization.

I. INTRODUCTION

THE next-generation wireless networks are envisioned
to have programmable channels that can achieve the

desired quality-of-service (QoS) for novel air interfaces such
as mmWave [1]. This programmable wireless environment
(PWE) can be achieved through the adoption of reconfigurable
intelligent surfaces (RISs) that operate in a near-passive man-
ner [2], [3]. RIS tiles are formed with several thin, inexpensive
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antennas or meta-surface arrays installed on walls that can
reshape or reflect incident waves to improve signal quality
while consuming minimal power [1], [4]. In practice, the
control optimization problem of RIS is highly nonconvex
and nonlinear [5], thus deep reinforcement learning (DRL)
is usually adopted to seek an optimal strategy for blockage-
aware handover [6], full-duplex security enhancement [7],
[8], beamforming design [9], [10], non-orthogonal multiple
access support [11], and edge computing [12]. The DRL
algorithms in [13] provided RIS system with strong resistance
against jamming and showed fast and smooth convergence
when training. In [14], it is found that the decoupling of the
continuous RIS configurations helps to learn faster in DRL.
All these control strategies require real-time mmWave band
RIS channel measurement and control signaling.

Recent studies underscore how RIS control overheads, sig-
naling, and power usage can restrict the potential benefits of
PWEs. In response, we propose strategies for minimizing these
overheads, principally by excluding shadowed, ineffective RIS
tiles. However, dynamic environments instigate concept drift
in RIS channel features due to user mobility and RIS spatial
distribution, necessitating timely updates of our RIS exclusion
strategy. Despite enhanced channel gain, frequent updates in-
crease signaling and power costs. This work thus highlights the
need for balancing overhead minimization and performance
optimization in PWEs amid significant crowd mobility.

This paper introduces a novel adaptive strategy that effec-
tively responds to such concept drifts and updates the RIS
exclusion decisions to strike a balance between improving
achievable channel gain (performance) and power consump-
tion as well as controlling overhead (cost). By employing a
minimal statistical window and strategically determining the
optimal time instant for decision updates, our objective is to
design a decision-making system that exhibits adaptability to
various situations. Through this adaptive strategy, we aim to
achieve superior RIS usage and control efficiency compared
to exhaustive methods in most cases, and potentially exceed
their capabilities.

A. Related Research and Challenges

1) Crowd mobility: Recent research studies have high-
lighted that the RIS control overheads can limit the expected
benefits of PWEs [15], [16]. These overheads scale with the
number of RIS tiles [16]. The presence of indoor mobile
users introduces time-varying shadows on RIS tiles, leading to
dynamic large-scale outage areas and posing significant chal-
lenges for RIS management. However, existing studies have
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Fig. 1. There are three folds of concept drift in an indoor mobile RIS system.
Here, we illustrate two rooms, in which the users are performing different
trajectories due to the different layouts. To enhance the efficiency of RIS
tile utilization, we exclude and deactivate some shadowed tiles from beam
reflection. As shown in each wall, the tiles outside the dashed-line confined
regions are excluded. In Room B, the user enters at time T1 and is located
at another position at time T2, which induces the channel gain of RIS tiles
on each wall to vary over time, and hence the exclusion area needs to change
along the mobility from the yellow dash-line the blue one. We conclude this
evolution of the RIS channel gain distribution on the wall as the temporal
concept drifts. Extrapolating with the same logic, we find the spatial concept
drifts between different walls in a room, and also the spatial-temporal concept
drifts between the walls in Room A and Room B. The existence of these
mobility-induced concept drifts hinders the effectiveness of machine learning-
based strategies.

overlooked the impact of mobility on RIS channels. Previous
research, such as [17] and [18], has shown that in indoor
scenarios, shadowing effects, channel gain statistics, and line-
of-sight (LoS) outage probabilities do not follow single-peak
or general probability distributions. In our recent work [19],
we proposed efficient strategies to reduce these overheads in
indoor PWEs by excluding the ineffective RIS tiles shadowed
due to user mobility and thus do not significantly improve
QoS. In dynamic environments with user mobility, there will
be concept drift in the RIS channel features, and the RIS exclu-
sion strategy should be dynamic where decisions are updated
over time. The update of exclusion improves the performance
in terms of achievable channel gain, while frequent updates
cost aggressive signaling overhead and power consumption.
As shown in Fig. 1, we will demonstrate three types of concept
drift in this work, which means the channel statistical feature
varies in three different scales.

The occurrence of concept drift in RIS channels can be
attributed to two prominent factors. Firstly, the wide spatial
distribution of RIS tiles results in significantly varied statistical
characteristics across different locations. Secondly, due to
considerable indoor mobility, user equipment (UE) experi-
ences notable displacements with respect to RIS tiles within
brief periods, which precipitates further temporal concept drift
in the distribution of RIS channels. The statistical analyses
provided in this paper substantiate these factors. Updating
the RIS exclusion strategy at a low rate causes performance
degradation due to the drift of channel statistics under mobility.
However, the dynamic decision update adds extra overhead to
refresh the exclusion strategy. In the layouts considered in
this work, updating the RIS exclusion in every frame (100
ms) would result in a control signal data rate of at least 60
kbit/s. Therefore, additional efforts are required to minimize

Fig. 2. The motivation and logic of this work. The shadowed RIS tiles are
excluded to reduce the required control overheads, where the first problem
is which tiles should be excluded given the estimation of RIS tile channel
gains. Because of the concept drifts caused by mobility, the exclusion strategy
should be updated over time. However, the aggressive updating raises the
control overhead, thus, the second problem is on which time slot the exclusion
decision should be updated such that the utilization of RIS tiles is enhanced
while the control overheads are suppressed. The key is to find a good time to
balance the adaptation to concept drift and the decision update overhead.

overheads and maximize the benefits of PWEs in the presence
of crowd mobility.

2) Strategy’s generalization ability: In DRL, bootstrapping
is a crucial aspect of the actor-critic framework, relying on
the Markov property of interactions between the environment
and the agent. Actor-critic enables policy gradient learning and
thus empowers the DRL agents for continuous action output.
A good Markov property ensures that the next state solely
depends on the current state and action, which is measured as
the first memory order of a Markov chain [20].

However, in the presence of crowd mobility, ensuring that
the current state contains sufficient information to predict the
future without relying on historical memories becomes chal-
lenging for RIS channels. Our previous works [21] and [22]
demonstrated that utilizing long short-term memory (LSTM)
neural networks to reconstruct the state sequence representa-
tion enhances the DRL performance in dynamic environments.
This is because, in indoor mobility scenarios, the observed
states possess a relatively high memory order, which means
the next state depends on several previous states and actions.
This makes the bootstrapping introduce significant biases in
policy value estimation [23]. Then, the LSTM leverages a long
channel history to predict the state one step further, which
reduces the memory order, therefore the value estimation bias
can be mitigated.

However, this method requires additional training and hard-
ware implementation complexity due to the involvement of
recurrent neural networks. Therefore, we need to find a more
efficient method for the improvement of Markov property,
which should be integrated inside the agents with low-cost
hardware.

Moreover, the environment layout and the user density are
dynamic in the real world, which causes a generalization
problem for learning-based methods. DRL suffers from poor
generalization ability owing to its sparse and delayed rewards
as well as high-dimensional state-action spaces [24]. Most of
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(a) Room layouts (b) Mobility generator

Fig. 3. (a) Illustration of the room layouts. Mobile users, holding UEs that connect with APs via mmWave communications, are considered in these scenarios.
The room layouts present 1, 500 RIS tiles on each wall to enable an indoor PWE [19]. (b) An illustration of our adopted mobility generation procedures [17],
[19].

the recent research using DRL to optimize wireless systems
trained and validated the agent in the same environment for
a fixed layout and fixed user density. This raises serious
questions on whether the DRL methods need refinements every
time encountering environmental changes. Recent solutions
incorporating domain knowledge with transfer learning [25]
or meta-learning techniques [26] include more learnable com-
ponents in agents and significantly increase the complexity
of hardware implementation. Hence, there is a need for an
efficient DRL algorithm that generalizes to the underlying
concept drift in mobile PWEs.

B. Contributions

In summary, the motivation and logic of this work are
illustrated in Fig. 2. We exclude the shadowed RIS tiles to
reduce the required control overheads. The first problem is
which tiles should be excluded given the estimation of RIS tile
channel gains. Moreover, due to the concept drifts caused by
mobility, the exclusion strategy should be updated over time.
A more frequent update means better tracking of mobility
features. However, the aggressive updating raises the control
overhead, thus, the second problem is on which time slot the
exclusion decision should be updated such that the utilization
of RIS tiles is enhanced while the control overheads are
suppressed. The key is to find a good time to balance the
adaptation to concept drift and the decision update overhead.
This is an NP-hard integer programming problem.

The DRL strategy proposed in this paper allows the agent
to determine the optimal time instant for dynamically ex-
cluding RIS tiles, effectively balancing performance improve-
ment and re-exclusion cost. This is achieved with minimal
observational data, utilizing only channel gain samples from
a single time slot. Once trained, the agent can readily adapt
to any environmental changes without transfer learning. This
paper makes several important contributions in constructing a
dynamic exclusion of RIS tiles that can generalize to different
environments, which can be summarized as follows:

• Hierarchical decision decomposition: This paper tackles
the dynamic exclusion of RIS tiles by decomposing
the problem into two parts. The first part utilizes the
DRL agent to determine the optimal time instant for
updating the exclusion strategy. The second part focuses
on selecting the tiles to exclude, which is proven to be

a convex problem, enabling the optimal solution to be
found efficiently via a single search. This decomposition
approach ensures optimality in each decision and allows
the agent to be implemented in low-cost hardware with
a minimal neural network size.

• Reward signal shaping for learning efficiency im-
provement: To address the problem of balancing exclu-
sion gains and costs in different environments, this paper
explores how to translate the optimization objective into
a reward signal. We introduce reward signal embedding,
which maps the gains and costs to a bounded scalar space.
The shaping of reward signals has been mathematically
and experimentally proven to enhance the trainability of
DRL.

• Fusion of concept drift and mobility: This paper
addresses the violation of the Markov assumption in
DRL by the fusion of channel drift events and mobility
temporal features. The proposed fusion state enhances the
Markovian property of the state sequence and reduces
bias in policy value estimation, leading to improved
stability during DRL training. It also allows the prediction
of concept drifts with simple observations across various
layouts.

• High generalization ability: Through extensive cross-
validations on generalization ability, the proposed DRL
strategy is proved to generalize to any environment based
on training on any wall in any layout. The channel gain
enhancement per strategy update of the proposed strategy
is nearly twice as high as the fixed update time instant
benchmark.

• Trade-off between complexity and performance: This
work explores the most suitable neural network size for
the agent as well as the most efficient DRL training
framework. The validated optimal agent requires only
about 2,304 learnable parameters. The execution for a
single decision takes 5 ns on field-programmable gate
arrays (FPGA), and 15 µs on reduced instruction-set
computer (RISC) chips.

The rest of this paper is organized as follows. Section
II presents the network model and concept drift in mobile
RIS channels. Section III formulates the problems on the
dynamic exclusion of RIS tiles. Section IV describes the
proposed DRL strategy. The numerical experiment results and
the associated discussion pertaining to the implementation of
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the dynamic RIS tile exclusion strategies are presented in
Section V. Conclusions are presented in Section VI.

II. EVIDENCE OF CONCEPT DRIFT CAUSED BY CROWD
MOBILITY

First, we introduce an indoor environment covered with
the RIS tiles operating at 28 GHz mmWave bands. Three
typical indoor scenarios are used for functional verification and
performance testing. Then, a brief discussion of the method of
generating mobile channel data is also provided. Finally, the
concept drift in the RIS channel under indoor crowd mobility
is examined for conventional channel modeling methods, and
the crucial challenge led by this drift is conveyed.

A. Indoor Programmable Wireless Environment

Three types of indoor layouts are considered:
• R1: There is only one meeting desk at the room center as

illustrated in Fig. 3(a). The desk size is 2m×2m×0.9m.
• R2: There are nine desks with separators at a height of

1.5m in total, which are evenly located in the room as
illustrated in Fig. 3(a). The desk size is 0.75m×1m.

• R3: There are nine desks (with the same size as in R2)
located along the sides of the wall, leaving the center of
the room empty, as illustrated in Fig. 3(a).

For all layouts, the room size is 5m × 5m × 3m, and there is
only one entrance centrally located at (2.5m, 0m). There are
four mmWave access points (APs) distributed evenly on the
ceiling plane.

RIS tiles are deployed over the four walls of the room. To
express the locations of the RIS tiles, each wall is described as
a grid with each square representing a location of one RIS tile.
At the 28 GHz mmWave band, a meta-surface-based RIS tile
dimension is expected to be roughly 10cm×10cm square [27]
such that the far-field condition holds for each tile. Hence, in
the layout shown in Fig. 3(a), it is expected to have more than
1, 500 RIS tile locations per wall.

B. Indoor Practical Mobility Generation

One to eight users will sequentially enter the room and move
around following the indoor mobility generator proposed in
[19], allowing for an examination of crowd mobility effects.
At high-frequency bands, the wireless channel is influenced by
the relative displacement between the transmitter and receiver,
making it dependent on UE trajectories, fading, and the spatial
relationship with non-transparent objects. Our recent work
[17] introduced a realistic indoor mobility model that captures
human mobility at macro and micro scales. The macro-scale
determines the departure time and destination point based on
a time-homogeneous semi-Markov renewal process, encom-
passing return regularity and bounded Lévy-walk behavior, as
shown in Fig. 3(b). Meanwhile, the micro-scale incorporates
details such as the shortest path, steering behavior, and UE
orientation during movement. The steering behavior influences
interactions among users and their surroundings, impacting
UE orientation. To validate the mobility model proposed
in [17], synthetic user trajectory data were compared with
measurements obtained using the Phyphox application.

Fig. 4. The Jensen-Shannon (JS) divergence of RIS channel gain distribution
between adjacent statistical windows under mobility over time. Five statistic
window update frequencies are considered as 5, 10, 20, 50, and 100. The JS
divergence is normalized over time. The results at walls S3 and S4 in the
room layouts R1 and R3 are illustrated.

C. Indoor mmWave Channel Gain

Each RIS tile is designed in a small size such that a far-
field path-loss feature could be applied [4]. The performance
of RIS as a reflector for receiving uplink (UL) and downlink
(DL) signals is identical within each separate band. Thus, for
simplicity, we assume that the antenna parameters of AP and
UE are the same. Consequently, DL (AP→ RIS → UE) and
UL (UE→ RIS → AP) exhibit very similar channel gains at
time slot t as

G(t) = GAP-RIS(t)Θ(t)GRIS-UE(t), (1)

where Θ describes the phase and reflection coefficient control
matrix of the RIS. Since the size of each RIS tile satisfies
the far-field condition, essentially, the beam of each RIS tile
can be independently controlled, or in other words, the control
matrix of each tile is independent. In this work, we assume
that the control matrix of each tile can be well-designed so
that the beam from each RIS tile tracks UE as a reflector, and
hence we can focus on the channel gain G(n, t) of each tile n.
The channel gain consists of both LoS and non-LoS (NLoS)
components as G = GLoS + GNLoS. For the reflected path
from an RIS tile to the receiver (UE or AP), it is assumed that
the NLoS component in the reflected link GRIS→UE/AP

NLoS can be
ignored compared to the LoS component GRIS→UE/AP

LoS in an
indoor environment [28]. However, in the link from AP/UE
to RIS, the NLoS component GUE/AP→RIS

NLoS cannot be ignored
as GUE/AP→RIS

NLoS would be in the same order of magnitude of
GUE/AP→RIS

LoS [28]. Furthermore, once an LoS or sub-reflected
ray is judged as blocked by any object (desks, another user,
or the user’s own body), the term GLoS = 0, and the only
reception belongs to GNLoS. The shadow area method [19] is
adopted as an efficient judgment of LoS blockages.

We note that examining the AP-UE link does not help us
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understand the pattern of RIS tiles being blocked. Our recent
work also indicates that the mobility of the UE and the user’s
body significantly contributes to the LoS outages in the AP-
RIS-UE link [17], [19]. Therefore, when considering which
RIS tiles are unnecessary, we focus on the AP-RIS-UE link.

D. Concept Drift in RIS Channel

There are three levels of concept drift in the context of
RIS channels with crowd mobility. The first level is temporal
concept drift, where mobility evolves over time, resulting in
significant variations in channel statistics across different time
periods. This fact can be observed in any sub-figure of Fig. 4,
where the Jensen-Shannon (JS) divergence of RIS channel
gain distribution between adjacent statistical windows changes
over time. A high divergence means serious concept drift. The
second level is spatial concept drift, where RIS channel evo-
lution patterns on different walls within the same environment
exhibit noticeable concept drift. This is due to the uneven
distribution caused by mobility constraints imposed by the
indoor layout. It can be seen in Fig. 4 through the comparison
of any two walls in the same room layout. The third level
is spatio-temporal concept drift, which arises from combining
different room layouts, resulting in varying spatial mobility
constraints. Additionally, the differences in room function also
lead to variations in mobility distribution over time. As a
result, the spatio-temporal characteristics of the RIS channels
exhibit significant concept drift as shown in Fig. 4. Therefore,
data-driven methods are essential to determine whether to
update strategies at each moment in order to address the drift in
channel characteristics. This challenging task cannot be easily
achieved through traditional model-driven approaches alone.

III. PROBLEM STATEMENT

We formulate the exclusion strategy of shadowed RIS tiles
balancing the QoS and the efficient utilization of RIS against
the concept drift in the channel due to mobility. The focus is
on maximizing the RIS channel gains over time among the
included RIS tiles. The expectation of the RIS channel gain
at tile n over time among all the UEs u and APs a can be
expressed as

Γ(n, t) = Eu,a [G(t, n|a, u)] , (2)

which is estimated in the first time slot of each frame. Within
each frame, large-scale fading caused by mobility and the
associated concept drift can be ignored since the duration of
each frame T is shorter than the coherence time of indoor
mobility [17]. We set each frame to be 100 ms, consisting of
10 time slots with an interval of 10 ms between each time
slot. Therefore, the channel gain expectation of each frame is
estimated based on the first 10 ms of data averaged over time.
Then, for a given tile n, the estimated average channel gain
over A APs and U UEs for a frame starting at time t with

one single time slot τ data is

Γ(n, t) = Et,u,a [G(t, n|a, u)] ,

=
1

TAU

∑
a

∑
u

∫ t+T

t

G(t, n|a, u) dt,

(T ≪ mobility coherent time),

≃ 1

τAU

∑
a

∑
u

∫ t+τ

t

G(t, n|a, u) dt.

(3)

A. Problem Definition of RIS Tile Exclusion

The optimization aims to balance the enhancement in chan-
nel gain averages due to the RIS tiles exclusion and the
utilization efficiency of the RIS tiles.

Problem 1. The effective RIS tile channel gain enhancement
metric η(t) measured at the first time slot t of each frame is

max
ρ(n,t)∈{0,1}

η(t) =
∑
N

ρ(n, t)
Γ(n, t)− En [Γ(n, t)]

En [Γ(n, t)]
, (4)

where ρ(n, t) is a binary decision variable such that ρ(n, t) =
0 means that RIS tile n is not involved in communication
support (i.e., excluded), otherwise ρ(n, t) = 1.

En [Γ(n, t)] means the averaged channel gain over all the
RIS tiles at time slot t, which is irrelevant to the exclusion
ρ(n, t). The second term

∑
N ρ(n, t)En [Γ(n, t)] corresponds

to the average channel gain among all the tiles without
the adoption of the exclusion strategy and the first term∑

N ρ(n, t)Γ(n, t) indicates the average channel gain when
the exclusion strategy is adopted. The order of magnitude
of Γ(n, t) will be different in various environments, hence,
we need to consider a ratio of channel gain enhancement by
considering 1

En[Γ(n,t)]
.

However, we cannot update the exclusion decision at each
time slot or frame as it costs aggressive control signaling,
which hinders the very motivation of tile exclusions due to the
cost of exclusion decision update into Problem 1. Therefore,
we break down the problem into two parts: one is to find
the optimal exclusion when the decision is updated as defined
in Problem 2, and the other is when to trigger such decision
updates as defined in Problem 3.

Problem 2. A global policy is pursued using a thresh-
old on the channel gain expectation, i.e., Γth(t) ∈ R ∩
[min Γ(n, t),maxΓ(n, t)]. Then, Problem 1 can be re-written
as

max
Γth(t)

η (t|Γth(t)) = (5)∑
N

1 (Γth(t) < Γ(n, t))
Γ(n, t)− En [Γ(n, t)]

En [Γ(n, t)]
,

s.t. Γth(t) ∈ [min Γ(n, t),maxΓ(n, t)].
(6)

The convexity and the optimal solution to the objective
function (5) are obtained as follows.
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Theorem 1. The optimal policy for the decision variable on
tile exclusion at each decision-making occasion is given by

ρ(n, t) = 1 (En [Γ(n, t)] < Γ(n, t)) , (7)

which means that the optimal strategy is to exclude the RIS
tiles whose channel gain is less than the average channel gain
among all tiles.

Proof. Let the tile index n be ordered such that Γ(n, t) is
monotonically decreasing. Therefore, it yields

∂

∂Γth(t)
η =

∂

∂Γth(t)

(
nth∑
n=1

Γ(n, t)

En [Γ(n, t)]
− nth

)
, (8)

where nth is the RIS tile index of which the channel gain
expectation is the closest to Γth(t) as

nth(t) = argmin
n∈N

∥Γth(t)− Γ(n, t)∥. (9)

Since Γ(n, t) is monotonically decreasing with respect to
n, the increment of nth(t) is inversely proportional to the
increment of Γth(t). Therefore, the following holds true

(8) =⇒ ∂

∂Γth(t)
η(t|Γth(t))

∝
nth−1∑
n=1

(
Γ(n, t)

En [Γ(n, t)]

)
− (nth − 1)

−

[
nth∑
n=1

(
Γ(n, t)

En [Γ(n, t)]

)
− nth

]

= − Γth(t)

En [Γ(n, t)]
+ 1.

(10)

Then, the objective function (5) is proven to be concave since

∂2

∂ (Γth(t))
2 η =

∂

∂Γth(t)

(
− Γth(t)

En [Γ(n, t)]
+ 1

)
= − 1

En [Γ(n, t)]
< 0.

(11)

Meanwhile, (10) has one and only one zero point, which is
also the optimal solution to Problem 2, i.e.,

Γth(t) = En [Γ(n, t)] . (12)

The complexity of reaching this optimal strategy is O(N).
After demonstrating the optimal choices for each decision
occasion, we have to optimize the time for decision updates.
Please also note that the solution in (12) implies we need to
estimate the average of RIS tile channel gain, which can be
obtained via the sparse sensors across the RIS tiles. We only
need to collect sensor readings from a few RIS tiles and use the
average to make exclusion decisions [5]. Hence, the accurate
channel impulse measurement is not required. Meanwhile, the
AP can also help to estimate this average channel gain through
the channel estimation in the link of AP-RIS-UE according
to our definition of channel gain in (1). The RIS channel
measurement is reused for beamforming, UE tracking, and
our proposed adaptive exclusion process.

Problem 3. The performance metric J considers the costs
incurred due to decision updates as

max
κ(t)∈{0,1},ρ(n,t)

J (κ, ρ) =
∑
t

η(t|ρ(t))− c(t|κ(t)) (13)

where κ(t0) = 1 indicates that at time slot t0, ρ(n, t0) is
updated following Γth(t0) = En [Γ(n, t0)], otherwise ρ(n, t)
is not updated from the previous decision; c(t|κ(t)) denotes
the cost of decision update, defined by the number of update
times.

The cost function can be measured using different methods,
such as signal throughput or switching energy consumption,
all of which exhibit a positive correlation with the number of
updates. Hence, to avoid inconsistencies in energy evaluations
across diverse systems, we simplify the approach in this paper
and consider the number of updates as the loss without loss
of generality. In this scheme, the cost signal for each frame
assigns a value of -1 if the decision is made to update the
policy; otherwise, it is zero. Under this setup, the exclusion
region on RIS would remain unchanged during the interval of
κ(t) = 0. The definition of c(t|κ(t)) should take into account
the trade-off between the update cost and η. This problem
is non-linear and non-convex, which is addressed by a novel
approach proposed in the next section.

As aforementioned, our goal is to balance the number of
included RIS tiles and the performance that can be achieved,
hence there is a channel capacity loss after excluding the
shadowed tiles. The upper bound of the loss is described in
Property 1.

Property 1. After exclusions of shadowed tiles on the surface
covered by N RIS tiles, the channel capacity would be reduced
by approximately log2

N∑
N ρ(n,t)+η(t) (bit/s/Hz).

Proof. According to the definition of η in (4), we have

η(t) =
1

En [Γ(n, t)]

∑
N

ρ(n, t)Γ(n, t)−
∑
N

ρ(n, t),

=⇒
∑
N

ρ(n, t)Γ(n, t) = En [Γ(n, t)]

(
η(t) +

∑
N

ρ(n, t)

)
,

(14)
where

∑
N ρ(n, t)Γ(n, t) means the achievable total channel

gain after exclusions, and
∑

N ρ(n, t) is the number of the
included RIS tiles. Assume a unit transmitting power at the AP
side, and the noise density of the receiver is n0. The achievable
total channel of all the N RIS tiles without exclusions as∑

N En [Γ(n, t)], the channel capacity loss is

Closs = log2

(
1 +

NEn [Γ(n, t)]

n0

)
− log2

(
1 +

(
∑

N ρ(n, t) + η(t))En [Γ(n, t)]

n0

)
= log2

(
n0 +NEn [Γ(n, t)]

n0 + (
∑

N ρ(n, t) + η(t))En [Γ(n, t)]

)
.

(15)
Considering n0 << NEn [Γ(n, t)], we obtain

Closs < log2
N∑

N ρ(n, t) + η(t)
(bit/s/Hz). (16)
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A higher η might cause a very low capacity loss, however,
the number of activated RIS tiles

∑
N ρ(n, t) is not linear with

respect to η. Therefore, if the exclusion strategy could optimize
the update time instant, the sacrifice in capacity would be low.
This point will be justified in the numerical experimentation.

IV. PROPOSED STRATEGY FOR UPDATING THE RIS
EXCLUSION DECISION

In the Problem 3, the optimal solution of decision variable
ρ has been proved in Theorem 1, whereas the decision update
solution of κ involves a highly non-linear and non-convex
optimization. The decision update strategy should learn to
adapt to the time-vary channel and make new decisions once
the concept drift is serious. We propose an adaptive decision
update strategy that can adapt to scenario changes, by utilizing
a minimal statistical window and optimal decision update time
instant. This adaptive strategy is capable of achieving, and in
many cases even surpassing the performance of exhaustive
methods.

A. Observation of Concept Drift in RIS Channels

The concept drift in RIS channel statistics can be de-
fined by the offset of current adopted decision Γth(t) from
the actual RIS sensed average channel gain En [Γ(n, t)] as
Γth(t)/En [Γ(n, t)]−1. Note that it equals to −∂η/∂Γth, which
means how the decision change would affect performance. In
the observation, what we need to characterize is how much
the performance will decrease when the decision remains un-
changed, and it is equivalent to the first derivative −∂η/∂Γth.
Thus, the observation of the concept drift is valued by

δ(t) =

(
−∂η(Γth(t))

∂Γth(t)

)2

=

(
1− Γth(t)

En [Γ(n, t)]

)2

, (17)

where the squaring operation allows the agent to disregard the
direction of concept drift. En [Γ(n, t)] is measured at the first
time slot of each frame, and the observation is updated after
the measurement of RIS channels.

B. Reward Signal Embedding

When it comes to DRL-based adaptive exclusion, the prior-
ity is to fine-tune the reward signal since it implies the learning
objective of agents. η requires mapping to a bounded scalar
space to accommodate different changes in various scenarios.
This calls for the reward shaping [29], which is a feasible way
to accelerate the convergence of training without changing the
original optimization objective. Since the aim is to overcome
concept drift, and η itself drifts with mobility, it is essential to
embed η into a stable and dense state space. To achieve this,
we employ the embedding technique, which involves coupling
η and c by embedding the two signals returned by RIS into the
reward space using a dense forward neural layer. The problem
concerning the agent reward r(t) is defined as follows in this
paper.

Problem 4. Reformulating Problem 3 for Reinforcement
Learning with shaped reward:

max
κ(t)

J (κ) = max
κ(t)

∑
t

r(t) (18)

= max
κ(t)

{∑
t

wkg (weη(t|Γth(t)))−
∑
t

κ(t)

}
,

where the weight for η is denoted as we, and the logistic
activation function is represented by g(·) to encounter the
impact of the disturbance caused by mobility. wk denotes the
weight of performance gain from decision updating strategy
compared to its cost.

When an update is triggered, the new ρ is set according to
the currently perceived channel gain mean, thereby reducing
the drift value of the current policy. As a result, η will increase,
with its specific value change determined by the environment.
Sometimes η can increase significantly, overshadowing the
presence of c, causing the agent to prefer continuous updates.
In certain environments, the change in η might be too small
compared with the value of c, leading the agent to rarely
update. These are ill-conditioned strategies. We propose using
activation functions to shape and restrict the reward to avoid
these ill-conditioned strategies. The logistic activation we use
is a commonly adopted nonlinear activation function, which
keeps the reward signal derivable and its gradient concerning
exclusion strategy follows the original objective, which is
proved in Theorem 2. To simplify the training process and
enable effective gradient back-propagation, we intentionally
set the value of we in a way that ensures η is mostly distributed
within the non-saturated region of the logistic function.

Theorem 2. The reward shaping process does not change the
objective of the original objective. The embedded η in the
reward signal is designed to align with the gradient direction
of the exclusion decision Γth(t).

Proof. We notice that

∂J (κ, ρ)

∂ρ(n, t)
∝ ∂r(t)

∂ρ(n, t)

∣∣∣∣
κ(t)=1

∝ ∂r(t)

∂Γth(t)

∣∣∣∣
κ(t)=1

. (19)

When the exclusion decision is updated, κ(t) = 1, however,
the contribution of the update cost is irrelevant to specific
Γth(t). Hence we have

∂r(t)

∂Γth(t)

∣∣∣∣
κ(t)=1

=
∂r(t)

∂η(t)

∂η(t)

∂Γth(t)

=
wkwee

−weη(Γth(t))

(1 + e−weη(Γth(t)))2︸ ︷︷ ︸
>0

(
1− Γth(t)

En [Γ(n, t)]

)
,

(20)
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and
∂2r(t)

∂Γth(t)2

∣∣∣∣
κ(t)=1

=
∂

∂Γth(t)

(
∂r(t)

∂η(t)

∂η(t)

∂Γth(t)

)
=

2wkw
2
e e

−2weη(Γth(t))

(1 + e−weη(Γth(t)))3︸ ︷︷ ︸
>0

(
Γth(t)

En [Γ(n, t)]
− 1

)
.

(21)
Therefore when Γth(t) > En [Γ(n, t)], J monotonically
decreases, when Γth(t) < En [Γ(n, t)], J monotonically
increases, and when Γth(t) = En [Γ(n, t)], J reaches a
stationary point, which is also the maximum of r(t) as well
as J (ρ|κ = 1).

This ensures that the training objective of the DRL agent
continues to encompass the original Problem 2 while simulta-
neously addressing the cost-related concern. By maintaining
consistency in the gradient direction, the agent is able to
strike a balance between considering the original problem and
mitigating the impact of costs. The utilization of the logistic
activation function causes η to have smaller values compared
to wk. As a result, when the decision to update the policy is
made, the corresponding reward is reduced to approximately
wk − 1, effectively offsetting the increase in η for that frame.
This mechanism ensures a balance between the gain in η
and the policy update reward. Excessive and frequent updates
result in negative rewards, nullifying the benefits brought by
the increase in η through re-exclusions. Similarly, untimely or
too few updates do not yield substantial gains in η, leading to
lower rewards as well.

C. Exclusion Update with Parameterized Stochastic Policy

First of all, consider the composition of the action space
of the exclusion decision update. To minimize the complexity
of the decision update actor network and enhance its ability
to generalize, the decision update actor does not differentiate
between distinct walls. Specifically, during training, the actor
solely relies on data from a single wall, but during testing and
validation, it is evaluated across different walls and layouts.
This methodology enables the actor to acquire a generalized
decision update policy that can be effectively applied to diverse
layouts.

The decision update action can be generated in two ways,
i.e., deterministic and probabilistic outputs. The deterministic
action gives a direct indication of re-exclusion at t. The prob-
abilistic outputs K(t) offer the likelihood of reconsidering the
RIS exclusion policy, rather than providing binary decisions.
Such probabilistic outputs are enabled by actor-critic DRL
frameworks. Once the probability reaches a threshold Pκ,th,
the agent generates an update indication κ = 1. Usually, this
soft decision makes the agents more suitable for a concept
drift task.

To adapt to concept drift, we enable the RIS agent to
produce parameterized outputs, specifically the mean µ(t) and
standard deviation σ(t) of a probability distribution. In this
paper, we create a continuous Gaussian update actor for this
goal since it is the continuous distribution with the maximum
entropy, which accelerates and stabilizes the training process.

By parameterizing the output, the agent can effectively cap-
ture and adapt to the changing dynamics and uncertainties
associated with concept drift. More specifically, the update
action is sampled from a parameterized Gaussian probability
distribution, allowing for the implementation of a stochastic
policy as

κ(t) = 1
(
K(t) ∼ N (µ(t), σ(t)2) ≥ Pκ,th

)
, (22)

where µ(t) and σ(t) are the parameterized output of the actor.
This means that the re-exclusion actions have a certain level
of randomness or variability, influenced by the parameters of
the Gaussian distribution. By adjusting these parameters, the
actor can control the exploration and exploitation trade-off in
the training stage.

D. Incorporating Mobility Feature and Markov Feature En-
hancement

Bootstrapping in DRL relies on the Markov property of
agent-environment interactions. However, when facing crowd
mobility perturbations, ensuring sufficient information in the
current state becomes challenging for RIS channels without
relying on past states. By representing observations with lower
memory order but better Markov property, we can reduce
value estimation biases induced by bootstrapping in DRL. In
this section, we aim to enhance the Markov property of the
channel observation representation while minimizing the size
of the needed neural network in DRL. This requires the use of
auxiliary signals related to temporal features associated with
mobility. Considering the semi-Markov property of macro-
scale mobility characteristics, especially the periodicity of
returns and the time correlation of Lévy walks, we project
the channel observations onto the mobility timer to fuse the
two processes as

s(t) = max
(
0,Ws [δ(t), t/tmax]

⊤
+ bs

)
(23)

where Ws and bs correspond to the weight and bias of
this state fusion layer optimized by DRL, max(·) denotes
the ReLU activation, δ(t) is the channel drift observation
according to (17), t is the timer, and tmax is an upper limit
of the timer t, which is set as the possible longest duration of
the trajectory in this room.

This approach enhances the Markov property by considering
the observation of channel drift as a key component of the state
space. The channel drift is influenced by both the exclusion
update actions and the inherent fluctuations of the channel.
However, the fluctuations of the channel itself are independent
of the exclusion update actions and are therefore irrelevant to
the decision-making process we are interested in. To illustrate
this, consider constructing a state transition matrix for channel
drift. We would observe that the probability values vary
significantly over time. When the exclusion is not updated,
the Markov order of observation state arises. However, after
executing an exclusion update action, the drift diminishes
considerably, making this component closely related to the
action. To enhance the Markov property, we project the
observation of drift onto the underlying temporal features of
mobility. This linkage, as described in Theorem 3, strengthens
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the Markov property of the observation state, improving its
ability to capture relevant information for decision-making.

Lemma 1. Define the order ω of a Markov chain s(t) as

ω(s(t)) = min
ω

(ω : P{s(t) | s(0), . . . , s(t− T )}

= P{s(t) | s(t− ωT ), . . . , s(t− T )}).
(24)

Consider a one-order process {t} and a high-order process
{δ} with ω({t}) = 1 and ω({δ}) > 1, respectively. The
process fusion operation (23) projects {δ} onto a timer, which
is equivalent to having a marginal distribution δt = {δ :
P{δ, t} > 0}, where P{δ, t} is the joint probability that
the channel drift is δ at time t. As such the fused state
s(t) = {(δt, t)} adheres to

P{(δt, t) | ((δ0, 0), . . . , (δt−T , t− T )}
= P{(δt, t) | (δt−ωT , t− ωT ), . . . , (δt−T ,t−T )}
= P{(δt, t) | (δt−T , t− T )},

(25)

which yields ω(s(t)) = 1.

Theorem 3. The DRL sample < s(t), κ(t), r(t), s(t + T ) >
belongs to a Markov decision reward process with an order
of 1.

Proof. When κ(t) = 1, the input of (23) at the next frame t+T
would be (0, (t + T )/tmax) with probability of 1. Otherwise,
the state would step into (δ(t+T ), (t+T )/tmax). The transient
from δ(t) to δ(t+ T ) varies during mobility, thus its order of
Markov chain would be high as ω(δ(t)) > 1. However, the
timer is stable and is a Markov process with the order of 1,
therefore, the coupled state space has a Markov order of 1 as
ω(s(t)) = 1 according to Lemma 1.

Please note that the projection of the channel drift process
onto a mobility timer is optimized through the DRL with (23).

E. Policy Gradient of Exclusion Decision and Training Dy-
namics

The system framework is briefly shown in Fig. 5. The
actor-critic architecture enables continuous action space with
policy gradient in temporal-differential learning, where the
actor network Θ outputs action K(t|Θ) based on the input
observation s(t), and the critic network φ evaluates the value
V (s(t)|φ) of the input observation when training. As for the
renew actor network Θ in Fig. 5, to ensure the optimization in
the policy space, rather than solely in the parameter space [30],
it is essential to relate the policy gradient towards maximizing
the policy advantage function [31] as

max
Θ′

Et [min (A(t),B(t))− αH(N (µΘ′(t), σΘ′(t)))] ,

(26)
where Θ′ denotes the new actor network after one-step train-
ing, α represents the positive weight of parametric Gaussian
policy entropy for balancing the exploitation and exploration.
Due to the involvement of trust-region optimization [30] and
maximum-entropy policy, the training framework we adopted
is similar to proximal policy optimizations (PPO) [31]. Given z
as the discount factor for rewards, w for the credit assignment

of returns, and ϵ as the clip factor, we list the following
components for the policy gradient [31]:

Surrogate advantage:

A(t) =
K(t|Θ′)

K(t|Θ)
A(t), (27)

Clipped advantage:

B(t) = max

(
min

(
K(t|Θ′)

K(t|Θ)
, 1 + ϵ

)
, 1− ϵ

)
A(t), (28)

Generalized advantage:

A(t) =

(t/T )−1∑
j=0

(zw)jD(t+ jT |Θ, φ), (29)

Temporal difference error:
D(t|Θ, φ) = r(t|Θ) + zV (s(t+ T )|φ)− V (s(t)|φ) , (30)
Policy entropy:

H(N (µΘ′(t), σΘ′(t))) =
1

2
ln(2πeσ2

Θ′). (31)

The generalized advantage is used to reduce the variance in
gradient estimation with zw as the eligibility trace [32]. As
shown in Fig. 5, the actor network captures both the channel
drift and mobility timer, which are then fused by a fully
connected layer (FCL) with a dimension of 2×Nfusion and
feed-forward to an FCL with a dimension of Nfusion ×Nfusion.
Next, these hidden features are mapped to the mean and
standard deviation of the Gaussian policy via two different
FCLs with a dimension of 1×Nfusion. The activation functions
of the neural outputs are ReLU, apart from the mean value
activated by tanh.

As for the critic network φ in Fig. 5, the training objective
is minimizing the value prediction error from real reward
samples, which corresponds to

min
φ

Et∥D(t|Θ, φ)∥2. (32)

As shown in Fig. 5, the critic network has a similar structure
as the actor network but outputs the policy value estimating
the expectation of upcoming returns. Both the current state
and the next state values are estimated. They are then used to
generate generalized advantage with reward samples.

Note that to ensure that the samples used for generating the
gradient are independent and identically distributed, we adopt
the experience reply technique [24], where the state-action-
reward-next state samples are buffered and randomly chosen
for generating the gradient.

V. RESULTS AND DISCUSSION

In this section, we will first examine how the fused state
space enhances the Markovian property of the observed chan-
nel drift sequence, thereby making the state representation
more compact and efficient. Then, we will focus on finding
an appropriate neural network size and selecting the lowest
complexity neural network from an acceptable set of per-
formances, which facilitates deployment on FPGA or RISC
hardware. The most important aspect is to test how different
training scenarios affect performance and whether the agent
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Fig. 5. The training framework and the system signaling diagram. This
illustration omits the experience reply in the training stage, where the
state-action-reward-next state samples are buffered and randomly chosen for
generating a gradient. The red blocks denote the decision update policy actor,
and the blue blocks depict the policy value estimator for training. The green
blocks confine the observation and reward signals. Γth is the tile exclusion
threshold in terms of the channel gain. EnΓth accounts for the average channel
gain over all RIS tile sensors. The drift is measured by (17). t is the mobility
timer normalized by the maximum trajectory duration tmax. The drift signal
and timer are fed into the state fusion layer in the agent to capture a dense
Markov observation space. The reward signal is reshaped by a non-linearly
mapping from the decision update cost c and the effective channel gain
enhancement metric η due to decision updates. Unless otherwise stated, all
neurons are fully connected and activated with ReLU.

can generalize to different scenarios. We will also compare
the fixed exclusion update interval method with other state-
of-the-art DRL methods.

A. Training and Hyper-parameter Setup

The training framework of PPO and our policy optimization
method are not sensitive to hyper-parameter selection. We
choose to start with the recommended setups [31] and fine-
tune them to adapt to our learning method. The setup of
hyper-parameters for agents includes: z = 0.99, w = 0.95,
ϵ = 0.2, α = 0.01, the batch size is 128, and the experience
horizon is 512. As for the actor and critic networks, the initial
learning rate is 0.01, the ADAM optimizer is leveraged, the
denominator offset is 1 × 10−8, the gradient decay factor is
0.9, the squared gradient decay factor is 0.999, and the ℓ2
regularization is adopted with a factor of 0.0001.

Regarding the training environment adhering to practical
mobility, we determine the following parameters based on real-
world measurements. The first key parameter is the displace-
ment exponent which indicates the power-law distribution of
destination selection. According to real-world measurements,
this exponent was found to be approximately 0.5. As for the
sojourn duration exponent featuring the power-law distribution
of residential interval decision, we assume it to be 1 since this
work only studies mobility impacts, and the detailed sojourn
behavior is thus irrelevant. UE rotation is usually transferred

Fig. 6. (a) and (c) show the partial auto-correlation function (PACF) of the
original channel drift space and the fused state space, where the PACF at a
lag of 1 corresponds to the fitness of the one-order Markov process. (b) and
(d) illustrate the transition probability among states, where the continuous
states are categorized into 16 levels for statistics. A good Markov property
for DRL means that the next state is only determined by the current state and
action. When reflected in the illustrations of (a) and (c), this property means
the PACF with a lag of 1 should approach 1, and the PACF with higher lags
should be as small as possible. When it comes to the transition among states
as illustrated in (d), most of the states transit to the adjacent states, making the
prediction of channel drift more accurate. In (b), the transition among states
is more random, and some of the states are hardly visited, which hinders the
learnability under such state sequences.

into the spherical coordinate system with the polar angle and
azimuth angle. The recent statistics [17] show that the polar
angle subjects to Laplace distribution while sitting with a mean
of 45.11 and a standard deviation of 7.84, and it follows
Gaussian when walking with a mean of 31.79 and a standard
deviation of 7.61.

There are 100 UE mobility trajectories used for training in
each layout, where the four walls in a room share the same
UE trajectories but generate their respective RIS channel data.
Another 100 UE mobility trajectories are utilized for validation
in each layout. Each trajectory is closed because there is only
one entrance and exit.

B. Markovian State Space

Ensuring a Markov decision process proves valuable in
enhancing learning efficiency. As depicted in Fig. 6(a), the
original observed drift signal at a specific time exhibits a
correlation of approximately 0.58 with the adjacent previous
observation and maintains a correlation of about 0.1 with the
observation lagged with 2 steps. This suggests a substantial
Markov order when viewed from another perspective, as
illustrated by the state transition matrix in Fig. 6(b). The
estimation of the order is based on the number of non-zero
elements in the eigenvectors of the state transition matrix,
taking into account the discretization of the continuous state
space for such analysis. Regardless of the number of levels into
which we divide the state space, the order is approximately
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Fig. 7. Different numbers of learnable parameters (including weights and biases) are tested in the validation environments among all the walls and layouts.
(a) The ratio of each number of learnable parameters achieving the best performance among the validation environment sets, and their corresponding returns,
i.e. the cumulative reward along a trajectory. (b) The performance contributed by each learnable parameter, where the number of learnable parameters is
normalized.

30% of the total number of states, indicating the existence of
long-range dependencies between states. Consequently, in the
face of such a state space, the agent requires a generalized
advantage estimator to capture the long-term dependencies of
state transitions, albeit at the expense of reducing the sample
efficiency of learning. This trade-off is necessary to effec-
tively handle the complexities introduced by the long-term
dependencies and ensure accurate estimation of the advantages
associated with different actions and state transitions.

The application of (23) yields a significant impact, as de-
picted in Fig. 6(c) and (d). The partial auto-correlation function
(PACF) of the fused state signal with the adjacent previous
time step improves to 0.97, indicating a strong correlation. At
the same time, the correlation with signals from earlier time
steps decreases to below 0.04. This transformation signifies
that the fused state signal now possesses strict Markovian
properties, where the current state contains all the necessary
information for decision-making without reliance on distant
past states. To ensure rigor, we further examine the order
of the Markov matrix. Fig. 6(d) illustrates more stable and
dense correlations between states, and regardless of the level
of quantization applied to the state space, the order of the
transition matrix remains at 1. This indicates that the fused
state signal, incorporating the mobility timer and channel drift
observations, effectively enhances the Markovian properties
of the state representation. In subsequent experiments, the
improved learning performance resulting from this enhanced
Markovian property will be clearly demonstrated, showcasing
the practical benefits of the proposed approach.

C. Number of Learnable Parameters

We aim to strike a balance between complexity and per-
formance to avoid imposing an excessive computational bur-
den on the energy-efficient RIS system while still achieving
performance improvements. Hence, we will focus on finding
an appropriate neural network size in a DRL agent, i.e., the
number of learnable parameters, with the lowest complexity
from a set of acceptable performance options to facilitate
deployment on FPGA or hardware with a reduced instruction
set.

We keep the structure unchanged, only the number of neu-
rons is adjustable. Therefore, the parameter counts in an agent
correspond to the number of neurons in the state fusion layer
Nfusion, ranging from 23 to 28 for the test, while the number
of layers in the forward neural network remains unchanged.
The computational cost of the actor network approximates to
O(8Nfusion + 2N2

fusion). The actor network will be leveraged
for validation after training. The critic network has a similar
structure but is only used for training, and its computational
cost also approximates to O(8Nfusion + 2N2

fusion). The room
layouts R1 to R3, and each four walls in the rooms are used
for the validations.

Generally, the number of learnable parameters in a neural
network is positively correlated with performance, as con-
firmed by Fig. 7. From Fig. 7(a), we observe that for every
4% improvement in the percentage of agents achieving the best
performance among all validation environments, the number
of learnable parameters needs to increase by approximately
4 times. Such a cost is significant when considering hard-
ware deployment. Fig. 7(b) provides more insights into the
contribution of each neuron to performance improvement. To
ensure comparability across a wide range of neuron counts, we
normalize the values. It can be observed that after exceeding
34, 100 learnable parameters, the increase in the number of
neurons no longer justifies the performance improvement.
In contrast, smaller neural networks with fewer learnable
parameters, such as 2, 304, are much more efficient.

In Fig. 7(b), the performance metric is divided by the num-
ber of learnable parameters. The performances both Nfusion =
32 and Nfusion = 64 is similar are shown in Fig. 7(a), indicating
that both agents have learned a comparable pattern for policy
update. However, Nfusion = 64 seems to have reached the
capacity limit at this neural network scale. To further enhance
performance, it is necessary to expand the neural network
scale, meaning increasing the number of learnable parameters.
Therefore, in Fig. 7(b), we see that the performance con-
tributed by each learnable parameter of Nfusion = 32 reaches
a peak, while Nfusion = 64 shows a decline due to the lack
of further performance improvements. Once the number of
parameters is increased beyond the performance bottleneck,
the performance contributed by each agent neuron decline
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becomes irredeemable.
In Fig. 7(b) (originally Fig. 5(b)), the performance metric

is divided by the number of learnable parameters. The perfor-
mances of both Nfusion = 32 and Nfusion = 64 are similar
as shown in Fig. 7(a), indicating that both have learned a
comparable pattern for policy update. However, Nfusion = 64
seems to have reached the capacity limit at this neural network
scale. To further enhance performance, it is necessary to
expand the neural network scale, meaning increasing the
number of learnable parameters. Therefore, in Fig. 7(b), we see
that the performance contributed by each learnable parameter
of Nfusion = 32 reaches a peak, while Nfusion = 64 shows a
decline due to the lack of further performance improvements.
Once the number of parameters is increased beyond the
performance bottleneck, the performance contributed by each
agent neuron decline becomes irredeemable.

Considering these observations, we choose to have 32
neurons in the state fusion layer, which corresponds to ap-
proximately 2, 304 learnable parameters. The computational
complexity of the deployed execution network on hardware ap-
proximates O(2304), requiring a floating-point computational
requirement of no less than 4, 608 FLOPs. With optimized
designs, computations of this scale can be performed in less
than 5 ns on platforms like JETSON TX2 or an FPGA with
28 nm process technology, while it may require at least 15
µs on a Raspberry Pi. However, these computations still fall
within the interval of a time slot as defined, ensuring real-time
performance, thus the requirement of our agent on hardware
has been reduced significantly.

D. Prediction Ability on Significant Channel Fluctuations

Next, we provide a detailed analysis of the performance
of the neural network with a suitable scale for hardware
deployment during the validation process. Fig. 8 illustrates
an example of the drift, decision update probability, and
cumulative reward of the actor network at various scales during
validation on wall S4 of layout R1.

In Fig. 8(a), it is evident that after the agent with Nfusion =
32 triggers a decision update, the observed drift stays at a low
level for a long duration, which reduces the demand of update
times. This can be attributed to its excellent learned decision
update time instant, as depicted in Fig. 8(b). The agent triggers
re-exclusion when the update probability is above 0.5. In this
trajectory, the agent with Nfusion = 32 chooses to update the
decision only three times, which is fewer compared to other
agents, yet achieves the highest cumulative reward, as shown
in Fig. 8(c). The agent with Nfusion = 8 performs the worst,
while the agent with Nfusion = 32 achieves the highest return.

In Fig. 8(d), the Jensen-Shannon (JS) divergence between
adjacent statistical time windows of different lengths is used
to characterize the degree of change in the distribution of
RIS channel gains between consecutive time intervals. The
agent with Nfusion = 32 tends to choose to update decisions
within the time window of a high JS divergence. The two
prominent peaks in Fig. 8(d) correspond to transitions in the
mobility phase, where the UEs reach their first destinations
and start to wander in the room, or prepare to leave the room

Fig. 8. The state, action, and return of the trained DRL agents with various
learnable parameter numbers validating in a trajectory of layout R1 on wall
S4. The state of the channel drift observation is shown in (a). The action
of the probability of updating the exclusion decision is shown in (b). The
cumulative reward at each time step is shown in (c). (d) demonstrates the JS
divergence of RIS channel gain distribution between adjacent decision update
intervals. In (a) to (c), the neuron numbers of the state fusion layer are tested
from 8 to 256. In (d), five statistic window update frequencies are considered
as 5, 10, 20, 50, and 100. The JS divergence is normalized over time.

[17]. However, such concept drift in terms of JS divergence
in each time interval cannot be predicted in advance precisely,
as it requires extensive data statistics and analysis. Any slight
changes in the layout or UE number fluctuations would impact
these statistics. This indicates that the DRL agents have
learned how to perceive or even predict the occurrence of
significant fluctuations in the channel evolution pattern.

Therefore, the algorithms that overly rely on data statistics
are inherently limited in their ability to counteract concept
drift in highly dynamic environments. However, our proposed
method, which eliminates excessive reliance on models and
statistics, can overcome these challenges, as we will demon-
strate in the following analysis.

E. Generalization Ability

The paper focuses on the generalization capability of the
proposed strategy, which is a challenging problem in DRL.
Fig. 9(a) illustrates the performance of the proposed strategy in
all training-validation environment combinations. Each layout
consists of four walls, resulting in a total of 12 sets of
environments used for training and validation. Fig. 9(a) shows
the equivalent η considering the cost of decision updates as
η̂ = − 1

we
ln
(

wktmax∑
t J (t) − 1

)
based on (18), which allows for

comparison with the fixed decision update timing method.
Overall, the agents do not achieve higher rewards when

the training and validation environments are the same, as
there is no significant increase in η along the diagonal.
However, the agents trained in the R1-S2 environment appear

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3402267

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.



13

Fig. 9. (a) The validation across all the layouts and walls, where
the channel data are labeled with {layout index}-{wall index}.
(b) The performance of the fixed decision update timing strategy under
each wall of each layout. (c) The ratio of each DRL training strategy
achieving the highest return, where the state and action pairs are en-
coded as {p (probabilistic output) or d (deterministic
output)}-{d (drift) t (if mobility timer is fused)}. In
(a) and (b), the performance is measured in terms of η converted with the
cost of re-exclusions. 100 traces are used for the validations in each room.

to perform poorly in all validation environments, including
when validated in the same training environment itself. R1-S2
corresponds to the wall with the entrance in the meeting room
layout, and this RIS channel evolution patterns under different
mobility trajectories exhibit significant variance, leading to
poor performance of the learned strategies. It is important
to note that not all walls with an entrance are suitable
for training the agents. For example, training on the wall
R2-S2 yields good performance in most of the validation
environments. Even in the exceptional cases of R1-S2 and
R2-S2, their advantages or disadvantages are relative and
limited. For instance, in the actual validation on wall R1-
S1, the performance difference between the agents trained
on R1-S2 and R2-S2 is only 0.01, which is a small gap.
Therefore, the agents are not sensitive to the differences
between the training and deployment environments, which is a
crucial result aligned with our motivation to learn to generalize
to any environment and overcome concept drift caused by
mobility. The optimal solution for non-learning methods could
be updating decisions whenever the JS divergence is high,
which is, however, infeasible to obtain in practice since the

Fig. 10. The spatial distribution of the user trajectories in the validation
dataset, where the frequency of each unit area being visited is calculated. In
addition, the spatial distribution of the RIS tile channel gain on the wall is
also demonstrated in R1, where the darker area has a lower average channel
gain, and the brighter area has a higher. R4 is an office room with nine desks
similar to R2 but with a four times larger size. The trajectory distribution
significantly varies across R1 to R4, which brings the spatial concept drift.
Nevertheless, the proposed DRL algorithm formulates a proper update timing
strategy that generalizes to all these walls with various sizes and layouts.

statistic requires long-duration channel sensing, in addition,
the update time instant needs a delicate JS threshold.

It is worth noting that the task the agents face is challenging,
as they need to select the optimal re-exclusion time instant
with minimal observed information. A good decision update
time instant can greatly reduce the drift of δ(t), decrease the
subsequent re-exclusion probability, and ultimately reduce the
overall decision update cost, which cannot be achieved by non-
learning methods.

Fig. 9(b) presents the results of the non-learning method,
i.e., the fixed timing method, applied through an exhaustive
search. In most environments, the best performance is achieved
when the update frequency is between 4 and 6 updates per
trajectory. More importantly, the proposed learning method
achieves the best performance with only 2 re-exclusions, while
the non-learning method requires 5 exclusion updates. This
highlights the advantage of the proposed learning method
in identifying the optimal renewal time instant. When ex-
amining the η gains achieved by each re-exclusion, they
can be estimated by η(t)/

∑
κ(t). Compared to the non-

learning method, the DRL strategy proposed in this paper
shows an improvement of 72.87%, 155.90%, and 112.59%
in the ratio of η to the number of decision updates in R1 to
R3, respectively. This improvement is significant, emphasizing
the agent’s ability to evaluate concept drift risks and identify
the optimal update time instant, as well as to generalize to
any scenario without the need for transfer learning. More
importantly, we validate that the achievable capacity loss is
very low after exclusions with our proposed DRL strategy.
From validation layout R1 to R3, the capacity losses of the
exclusive search method are 1.0659 bit/s/Hz, 1.0569 bit/s/Hz,
and 1.0405 bit/s/Hz, respectively. The capacity losses of the
proposed DRL method are 0.7013 bit/s/Hz, 0.6850 bit/s/Hz,
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and 0.6804 bit/s/Hz, respectively. This means we can save
about 65% capacity loss using the proposed DRL method
compared to the exclusive search method.

We also conduct a deeper analysis of the outcomes, incorpo-
rating 2 updates in the validation results of the proposed DRL
method and taking a comparison with the exhaustive search
method. Without considering the number of updates

∑
κ(t),

the average η performance enhancement of the proposed DRL
method reaches 43.67%, with 35.19% in R1, 54.10% in R2,
and 41.72% in R3 over the exhaustive search method. This
result provides an understanding of why the update timing is
crucial. When the proposed DRL method results in a policy
with fewer updates, it implies that the DRL agent has learned
to make better decisions regarding the update time instants,
which are aligned more closely with the occurrence of concept
drift. Consequently, this strategic timing allows the DRL
approach to secure a higher η performance. In contrast, the
exhaustive search method, even when the number of updates
is limited to match that of the DRL approach, struggles to
achieve a high reward since it cannot perceive the occurrence
of concept drift and precisely trigger the updates accordingly.

Compared to heuristic algorithms, such as the non-
dominated sorting genetic algorithm II (NSGA-II), the pro-
posed DRL method is inherently better equipped to address
dynamic, model-free, nonlinear, non-convex NP-hard integer
programming challenges within a vast policy-search space. In
this work, the search space for the exclusion update policy
grows exponentially to 2tmax/T , where tmax/T means the total
number of frames in the mobile trajectory. This exponential
growth renders heuristic algorithms less capable of effectively
exploring the solution space, as they tend to get trapped in
local optima. More importantly, heuristic algorithms are opti-
mized for a specific indoor layout, which significantly limits
their ability to generalize across varying rooms or layouts.
In contrast, the proposed DRL method is not constrained by
the vast policy spaces and the variability in the environment
since it is designed to overcome concept drift on a large
spatiotemporal scale.

The advantage of our generalization ability remains valid
when the size of the room changes. We validate this by
deploying an agent trained in R2 directly in a room four times
larger, R4 (10m × 10m), where the number of tiles in R4 is
double, as shown in Fig. 10. We present the spatial distribution
probability of UE trajectories in different environments. The
considerable differences between various layouts demonstrate
the challenges in achieving a highly generalizable strategy. In
R4, compared to the non-learning method, the DRL strategy
proposed in this paper shows an improvement of 125.77%
in the ratio of η to the number of decision updates. This
still represents a substantial enhancement, confirming the
advantage of the generalization ability of DRL even when
room sizes change. The reason why it can be generalized to
such entirely different sizes is that the state-action space we
have defined is completely decoupled from the layout sizes and
highly abstracted. In rooms of any size, the average value of
RIS channel gain can be directly calculated, which is precisely
what we need. In addition, different room shapes can lead
to significant changes in tile channel evolution, which could

greatly alter the underlying Markov process. Nevertheless, the
agents trained in this study could potentially serve as pre-
trained models for fine-tuning in these significantly different
environments.

We compared various state-of-the-art DRL training frame-
works, including PPO, TRPO, SAC, deep Q-network (DQN)
[24], deep deterministic policy gradient (DDPG) [33], and
twin delayed DDPG (TD3) [23]. The proposed DRL agent
is not limited to training with the PPO framework alone. In
fact, any DRL training framework that allows for stochastic
policy optimization can be applied, but their generalization
abilities are different. It should be noted that DQN includes a
max operation during policy evaluation, making it unable to
directly output probabilistic decisions. Additionally, only PPO
and SAC can incorporate the maximum entropy method, which
is important for capturing the uncertainty and exploration in
the policy. Fig. 9(c) demonstrates the effectiveness of the
proposed training framework (PPO) used in this paper. Among
the state-of-the-art DRL frameworks, the proposed strategy
has the highest ratio to gain the highest return in all the
validations. Moreover, in the scenarios where the proposed
strategy does not achieve the highest return, its disadvantage
from the highest value is trivial.

Remark: The framework proposed in this study has been
tested on three commonly used layouts, as mentioned in
[1], [34], [35]. However, it is important to note that the
proposed framework remains applicable to different layouts
by excluding idle RIS tiles and reducing controlling overhead.
The method presented in this paper is not limited by spatio-
temporal dimensions, as the mobility constraints of the RIS
channel exhibit scale-free statistics, as characterized in [36].

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper addresses the problem of dynamic RIS tile
exclusion operating in a mmWave band with DRL. The
methodology employs a dual-part strategy: a DRL-based de-
cision on timing updates to minimize redundant configuration
switching, and a convex problem approach for selecting tiles to
exclude, ensuring efficiency and optimality. The introduction
of a state fusion method improves the Markovian property
of the agent-environment interaction, stabilizing the DRL
training. Furthermore, the fused state enables the agent to
predict significant concept drift even with simple observations.
The validated generalizable DRL agent requires only 2, 304
learnable parameters, enhancing execution efficiency on FPGA
and RISC chips to nearly twice that of traditional fixed-timing
methods. It can be trained using the environment of any wall
in any layout and directly deployed in other environments.

In the future, we aim to further improve the perception
of concept drift and enhance generalization capabilities in
complex mobility environments. It is possible that a neural
network trained in a simple layout could serve as a pre-trained
model, which can be transferred to more complex environ-
ments, thereby reducing the need for detailed environmental
modeling. Our proposed framework can also be extended to
outdoor settings, allowing the learned strategies to deactivate
the RIS systems where there is strong LoS coverage or a long-
term absence of users.
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