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Abstract—Indoor people counting systems are used in security
monitoring, energy management, room resources adjustment,
market research, and smart homes. However, the existing radio-
frequency-based indoor people counting systems use a different
frequency than the utilized radio frequency communication
signal, which adds more costs for system deployment and
wastes the radio frequency resources. This paper introduces a
novel communication-aided terahertz (THz) sensing approach
for robust indoor people counting that utilizes the THz com-
munication downlink signal to sense the number of indoor
people. Leveraging the wireless THz communication downlink
signal, we propose a device-free, cost-effective, and non-intrusive
indoor people counting system. Our method employs a 1D
convolutional neural network (CNN) to process historical THz
downlink channel gain data and accurately estimate the number
of indoor occupants. The numerical results demonstrate the
effectiveness of the proposed approach, achieving a remarkable
99.5% accuracy in people counting indoors up to eight people.
The proposed model’s ability to maintain high accuracy in indoor
people counting across different numbers of users demonstrates
its effectiveness and robustness in capturing the occupancy
signature from the wireless THz downlink communication signal
in indoor environments. Also, the accuracy of the proposed
CNN time series classifier outperforms the random forest times
series classifier with the catch22 feature extractor by more than
10% without needing any feature extraction methods. To the
best of the authors’ knowledge, this study represents the first
investigation into indoor people counting in the THz frequency
band utilizing the THz downlink communication signal for
sensing the number of indoor occupants.

Index Terms—Indoor people counting, terahertz, deep learn-
ing, communication-aided sensing.

I. INTRODUCTION

Indoor people counting systems are increasingly used in
applications such as security monitoring, energy management,
room resources adjustment, market research, and smart homes
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[1]. Businesses benefit from this data by making informed
decisions, such as optimizing resource allocation, predicting
traffic trends, managing peak hours, and ensuring proper
customer-staff ratios [2]. Additionally, it helps maintain oc-
cupancy capacity limits in real-time, promoting compliance
with safety regulations like social distancing [3]. Also, indoor
people counting systems are essential for smart buildings,
enhancing their functionality and efficiency by providing real-
time data on the exact number of people [4].

Indoor people counting systems enables resource allocation
[S], safety [6], user experience enhancement [6], and energy
efficiency [4]. For example, indoor people counting systems
help optimize smart buildings’ heating, ventilation, and air
conditioning (HVAC) based on real-time occupancy informa-
tion, leading to energy savings and efficiency [4].

Indoor people counting systems can be categorized into
image-based and non-image-based systems [1]. Image-based
systems typically use cameras and computer vision algorithms
to count the number of people [7]. However, these systems
suffer from privacy concerns [8]. On the other hand, non-
image-based systems use technologies such as sensor-based
or radio-frequency-based to count people [9]. Sensor-based
methods involve various sensor combinations and require
significant installation and maintenance expenses [4]. Hence,
this paper focuses on non-image-based systems, especially
radio-frequency-based, as they are cost-effective and non-
intrusive [4].

The proposed method in [10] employs a support vector
machine algorithm based on the wireless fidelity (WiFi)
channel state information to count people. Ensemble learning
is proposed in [11] using the WiFi signals for people counting.
The proposed method in [12] utilizes a deep neural network
based on impulse radio ultrawideband radar signals for peo-
ple counting. Authors in [13] utilized a three-dimensional
convolutional neural network (CNN) based on millimeter-
wave (mmWave) signals for people counting. The proposed



method for people counting in [14] uses mmWave signals and
combines multiple target tracking with a classifier to distin-
guish and count individuals within groups. Previous studies
investigated people counting in frequency bands utilized in
5G networks and earlier. However, there is no investigation of
people counting in higher frequencies, such as the Terahertz
(THz) frequency band that will be utilized in 6G networks
[15]. Also, the existing radio-frequency-based indoor people
counting systems use a different frequency than the utilized
radio frequency communication signal, which adds more
costs for system deployment and wastes the radio frequency
resources.

To fill this gap, we investigate people counting feasibility
in the THz band. We propose an indoor people counting
system that does not rely on cameras or additional sensors,
which addresses privacy concerns and reduces installation and
maintenance costs. We leverage the THz wireless network
infrastructure for device-free, cost-effective, and non-intrusive
indoor people counting. Hence, the THz wireless network will
be used for both sensing and communication. To the best
of our knowledge, this work represents the first investigation
of the THz frequency band feasibility for counting people
indoors. We validate the effectiveness of the proposed indoor
people counting system through numerical simulations. The
simulation results demonstrate the robustness and accuracy of
the proposed indoor people counting system. The proposed
indoor people counting system achieves a remarkable accuracy
of 99.5% in counting up to eight people in the investigated
indoor layout.

The rest of this paper is outlined as follows. Section II
introduces the system model. Section III presents the pro-
posed indoor people counting system. Section IV shows the
numerical results. Section V concludes our findings.

II. SYSTEM MODEL

This section outlines the indoor layout, the user mobility
model, and the dynamic THz channel data generation.

A. Indoor Setup

We consider a standard meeting room with dimensions
of Sbmx5mx3m. The room is furnished with one meeting
table and eight chairs arranged as shown in Fig. 1. Four
THz access points (APs) installed on the ceiling support
wireless communication within the room, as shown in Fig. 1.
Mobile users within this room are modeled as cuboids with
dimensions of 1.8mx0.2mx0.45m. These users have a weight
of 70 kg and a speed of 2.1 m/s.

B. Mobility Model

This study uses a validated mobility model presented in
[16] and used in the literature [17] to accurately simulate
human movement within the indoor environment. The model
operates on two timescales, which are macro and micro
patterns. The macro pattern controls the user’s movement
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Fig. 1. Illustration of the indoor layout.
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Fig. 2. Framework to generate dynamic THz channel gain.

decisions, including the timing and destination of their next
move. It uses a semi-Markov renewal process incorporating
regular return patterns and truncated Levy-walk behavior for
unpredictable human motions. On the other hand, the micro
pattern addresses the specifics of user movement, such as the
shortest path to the destination, obstacle avoidance, and user
equipment (UE) orientation. The mobility model is illustrated
in Fig. 2. After generating the mobility traces, the user’s
position and the position of the serving THz AP are used
to determine channel blockage. The THz channel gain is
calculated based on the multi-ray THz channel propagation
model described in the following subsection.



C. Multi-ray Channel Propagation Model in the THz Band

This subsection outlines the multi-ray channel model that
simulates the THz electromagnetic wave propagation using ray
tracing techniques. The multi-ray channel model includes line-
of-sight, reflected, scattered, and diffracted paths. However,
diffracted paths can be disregarded in indoor THz environ-
ments since this phenomenon is significant only at lower
microwave frequencies [18]. Additionally, scattered paths can
be ignored due to the substantial losses they incur after
scattering [18]. Therefore, only the line-of-sight (LoS) and
reflection paths are considered. Hence, define the THz channel
gain, g(7), from the transmitter (AP) to the receiver (UE) as
[19]
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where ¢ is the speed of light, f is the frequency, r is the
distance between the transmitter and the receiver, k£ is the
medium absorption coefficient that depends on the utilized
frequency, 7 is the propagation delay, 7,5 represents the
LoS delay, 1i,s is one if there is a line-of-sight path or
zero otherwise, Nger is the number of reflected paths, r; is
the distance between the transmitter and the reflector, ro is
the distance between the reflector and the receiver, 6; is the
incident wave angle, n is the refractive index, o is the rough
surface height standard deviation, and 74, is the delay of the
p" reflected path.

III. THE PROPOSED COMMUNICATION-AIDED THZ
INDOOR PEOPLE COUNTING

This section introduces a novel approach for indoor people
counting, leveraging the unique properties of THz signals.
First, we investigate the feasibility of indoor people counting
in the THz band by examining the occupancy signature in
the THz channel gain. Hence, we introduce the proposed
indoor people counting system by formulating the problem of
indoor people counting in the THz band, introducing the data
preprocessing technique, and the proposed 1D CNN model
training.

A. Occupancy Signature in THz Channel Gain

This subsection investigates the feasibility of indoor people
counting in the THz band by examining the occupancy signa-
ture in the THz channel gain. Using the framework presented
in Fig. 2, we simulated the downlink THz channel gain over
1000 mobility traces for one person, two, three, and eight
people given the layout in Fig. 1.
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Fig. 3. The PDF vs. average THz channel gain.

Fig. 3 illustrates the probability density function (PDF)
of the average THz channel gain for scenarios with one
person, two, three, and eight people in the investigated indoor
layout. In Fig. 3, the x-axis represents the average THz
channel gain, while the y-axis represents the corresponding
PDF. Fig. 3 demonstrates that each specific number of people
follows a distinct distribution. Also, the pattern of the average
THz channel gain in the investigated indoor room layout
decreases with the increase in the number of people. This
signature/pattern can be leveraged to develop algorithms for
real-time monitoring of people count, where the THz channel
gain data is continuously analyzed to determine the exact
number of people.

B. Proposed People Counting System

Fig. 4 demonstrates the proposed indoor people counting
system. The system input consists of historical channel gain
data of the THz AP downlink signal. The input is preprocessed
to ensure that the data fed into the CNN is of high quality
and in a suitable format for analysis. The preprocessed data
is then input into a 1D CNN. The 1D CNN is responsible
for extracting occupancy information by identifying patterns
and features in the input data correlating with the number of
occupants. The system’s output is the estimated number of
people in the indoor environment. Hence, the downlink com-
munication signal of the THz AP is used to sense the existing
number of people on the indoor layout. The indoor people
counting problem formulation, the utilized data preprocessing,
and the proposed CNN-based indoor people counting model
are discussed in the following subsections.

1) Problem Formulation: We consider a wireless THz
network in a dynamic environment with mobile users in an
indoor room layout. Given a fixed window of N historical
wireless THz channel gain data points of the downlink signal,
denoted as {g(t1), g(t2), ..., g(tn)} collected at discrete time
instances t1,%s,...,tx, the task is to design a classification



model that, given a new THz channel gain data points of the
downlink signal, will correctly predict the class, i.e., number
of people, to which the new data points belong.

2) Data Preprocessing: In this study, we employed data
preprocessing to ensure the robustness and reliability of our
proposed deep learning (DL) model. We utilized a sliding
window approach to segment the THz channel gain time
series data into overlapping windows. This technique enhances
the DL model’s ability to capture temporal dependencies
and patterns within the data. Each window is treated as
an individual sample for subsequent processing. Also, each
sample was standardized to have a mean of zero and a standard
deviation of one. This standardization process ensures that all
features contribute equally to the model’s learning process and
helps accelerate the convergence during training.

3) ID CNN Model Training: The dataset was divided into
training and testing sets with a ratio of 80: 20. This split
ensures that the DL model is evaluated on a representative
subset of the data it has not seen during training, providing an
unbiased assessment of its performance. The training set was
further divided into training and validation sets with a ratio
of 80: 20. The validation set is used to fine-tune the model
and prevent overfitting, ensuring that the model generalizes
well to unseen data. We shuffled the window samples across
the dataset to eliminate any potential bias due to the order of
the samples and to achieve better generalization. The dataset
contains eight classes, each representing a unique number of
users. Each sample was assigned a class based on the ground
truth value. This class assignment is critical for the supervised
learning process, allowing the model to learn the mapping
between input features and the corresponding output classes.
The class labels were one-hot encoded. This transformation
converts the categorical class labels into a binary matrix
representation, which DL algorithms require.

The hyperparameters of the proposed DL model are op-
timized using random search. The number of convolutional
layers is dynamically selected between 1 to 5. The kernel
size is dynamically selected between 2 to 5. The number of
filters in each layer is dynamically selected between 64 to
512. The number of strides is dynamically selected between
1 to 3. The activation function is dynamically selected among
ReLU, tanh, and sigmoid.

The proposed DL model is a 1D CNN consisting of five
convolutional layers. The first layer consists of 512 filters, ker-
nel size of three, one stride, and ReLLU activation function. The
second layer consists of 320 filters, kernel size of four, one
stride, and tanh activation function. The third layer consists of
256 filters, kernel size of five, one stride, and tanh activation
function. The fourth layer consists of 128 filters, kernel size of
two, three strides, and tanh activation function. The fifth layer
consists of 512 filters, kernel size of two, two strides, and tanh
activation function. The output from the fifth convolutional
layer is then fed into a global average pooling 1D layer, which
reduces the spatial dimensions. Finally, a dense layer with
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Fig. 4. The proposed indoor people counting system.

eight neurons and a softmax activation function is employed
to predict the model’s output, representing the probabilities of
the eight possible classes.

The DL model undergoes 200 epochs of training with a
batch size of 32, using the Adam optimizer initialized at a
learning rate of 0.001. During training over 272, 000 samples,
20% of the data is reserved for validation to monitor the
model’s generalization capability. The learning rate is reduced
by 50% if no improvement in validation loss is observed for
three consecutive epochs. Furthermore, the training process
is terminated if there is no improvement in validation loss
for six consecutive epochs, thereby preventing overfitting and
conserving computational resources. This learning approach
not only aims to achieve optimal model accuracy but also
prevents overfitting and enhances the training efficiency by
dynamically adjusting the learning rate and preventing unnec-
essary training epochs.

IV. NUMERICAL RESULTS

This section evaluates the proposed indoor people counting
system. The frequency used during the THz dataset generation
is 0.142 THz, which is included in the THz frequency band
ranging from 0.1 to 10 THz [20]. Also, the window size
N is equal to 60. Each model’s training, validation, and
testing were implemented based on the TensorFlow framework
running with two AMD EPYC 9374F processors, each with
32 cores running at a base frequency of 3.85 GHz and 24 GB
of RAM.

Fig. 5 shows the CNN model’s loss of the training and
validation datasets for the proposed indoor people counting
system. From Fig. 5, the training loss steadily decreases and
approaches near zero after 15 epochs. This shows that the
model effectively minimizes errors in training data. Also, the
validation loss follows a similar decreasing trend, although it
is higher and fluctuates early on. It stabilizes around a low
value after 30 epochs, indicating the model is not overfitting.
The training and validation loss curves flatten out in the later
epochs, indicating convergence. The small gap between the
two losses after stabilization suggests good generalization.
The model shows good convergence, with stable accuracy and
low loss for training and validation datasets after around 30
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Fig. 5. The proposed CNN model’s loss of the training and validation datasets
for the proposed indoor people counting system.

epochs. No significant gap between training and validation
indicates that the model generalizes well without overfitting.

The confusion matrix in Fig. 6 demonstrates the CNN
model’s classification accuracy of the proposed indoor people
counting system. Each class has been tested with over 8500
samples. The matrix entries are normalized and presented as
percentages for more precise interpretation.

The high diagonal values in the confusion matrix indicate
the proposed system’s ability to estimate the number of
people in the indoor environment accurately. The minimal off-
diagonal values signify that misclassifications are rare. Over-
all, the results validate the effectiveness of the proposed indoor
people counting system, with each class achieving near-perfect
accuracy. With estimation accuracies exceeding 99.5% across
all classes, the proposed system is highly reliable and can
be effectively deployed in real-world scenarios for accurate
indoor people counting.

The classification report demonstrated in Table I contains
precision, recall, and Fl-score metrics for eight classes, with
each class tested against 8514 samples. The classification
report shows that the proposed CNN model performs well
across all classes, with high precision, recall, and F1-scores,
reflecting a robust and reliable classifier in estimating the
number of indoor people.

To better assess the proposed CNN classifier’s performance
in estimating the number of people indoors, we developed
a random forest time series classifier to compare it with the
proposed CNN classifier’s performance. The random forest
time series classifier has 100 individual decision trees, and
each decision tree makes an independent prediction about
the estimated number of people indoors. Then, the random
forest output will be the majority estimated number of people
predicted by the individual decision trees. The catch22 feature
extractor proposed in [21] extracts the features that will be fed
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Fig. 6. The confusion matrix of the proposed indoor people counting system.

TABLE 1
THE CLASSIFICATION REPORT OF THE PROPOSED CNN.

Class Precision Recall Fl-score Support
1 0.9964 0.9957 0.9960 8514
2 0.9964 0.9964 0.9964 8514
3 0.9974 0.9962 0.9968 8514
4 0.9966 0.9971 0.9968 8514
5 0.9969 0.9965 0.9967 8514
6 0.9953 0.9982 0.9968 8514
7 0.9950 0.9959 0.9954 8514
8 0.9978 0.9958 0.9968 8514

to the random forest classifier. In Table II, the performance is
evaluated in terms of accuracy, precision, recall, and F1-score
for estimating different numbers of people, ranging from one
to eight. Table II indicates that the proposed CNN outperforms
the random forest by more than 10% in terms of accuracy,
precision, recall, and F1-score. However, the training time of
the proposed CNN model is 23 times longer than that of the
random forest model, as shown in Table III.

TABLE 11
THE PERFORMANCE OF THE PROPOSED CNN VS. RANDOM FOREST IN
TERMS OF ACCURACY, PRECISION, RECALL, AND F1-SCORE.

Metric CNN Random Forest
Accuracy  0.9965 0.8889
Precision  0.9965 0.8894
Recall 0.9965 0.8889
F1-score 0.9965 0.8890




TABLE III
COMPLEXITY COMPARISON BETWEEN THE PROPOSED CNN AND THE
RANDOM FOREST IN TERMS OF TRAINING TIME.

Model Training Time (s)
CNN 16674
Random Forest 720

V. CONCLUSION

In this paper, we proposed an indoor people counting
system based on the wireless THz communication signal. The
proposed system is based on a 1D CNN time series classifier.
The input to the proposed CNN time series classifier is the
wireless THz channel gain of the THz AP downlink, whereas
the output is the estimated number of people in the indoor
layout. The numerical results demonstrate the effectiveness of
the proposed system in counting up to eight people indoors
with 99.5% accuracy. Also, we compared the performance of
the proposed CNN time series classifier with a random forest
time series classifier that uses catch22 feature extraction.
The numerical results indicate that the proposed CNN model
outperforms the random forest by more than 10% in terms of
accuracy, precision, recall, and F1-score. However, the training
time of the proposed CNN model is 23 times longer than that
of the random forest model.
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