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Abstract—Indoor people counting systems are used in security
monitoring, energy management, room resources adjustment,
market research, and smart homes. However, the existing radio-
frequency-based indoor people counting systems use a different
frequency than the utilized radio frequency communication
signal, which adds more costs for system deployment and
wastes the radio frequency resources. This paper introduces a
novel communication-aided terahertz (THz) sensing approach
for robust indoor people counting that utilizes the THz com-
munication downlink signal to sense the number of indoor
people. Leveraging the wireless THz communication downlink
signal, we propose a device-free, cost-effective, and non-intrusive
indoor people counting system. Our method employs a 1D
convolutional neural network (CNN) to process historical THz
downlink channel gain data and accurately estimate the number
of indoor occupants. The numerical results demonstrate the
effectiveness of the proposed approach, achieving a remarkable
99.5% accuracy in people counting indoors up to eight people.
The proposed model’s ability to maintain high accuracy in indoor
people counting across different numbers of users demonstrates
its effectiveness and robustness in capturing the occupancy
signature from the wireless THz downlink communication signal
in indoor environments. Also, the accuracy of the proposed
CNN time series classifier outperforms the random forest times
series classifier with the catch22 feature extractor by more than
10% without needing any feature extraction methods. To the
best of the authors’ knowledge, this study represents the first
investigation into indoor people counting in the THz frequency
band utilizing the THz downlink communication signal for
sensing the number of indoor occupants.

Index Terms—Indoor people counting, terahertz, deep learn-
ing, communication-aided sensing.

I. INTRODUCTION

Indoor people counting systems are increasingly used in

applications such as security monitoring, energy management,

room resources adjustment, market research, and smart homes

This material is based upon work supported by the National Science
Foundation (NSF) under Awards No. 2210251 and 2210252. Dataset gen-
eration was supported by the TNTech HPC cluster funded by NSF award
No. 2127188.

[1]. Businesses benefit from this data by making informed

decisions, such as optimizing resource allocation, predicting

traffic trends, managing peak hours, and ensuring proper

customer-staff ratios [2]. Additionally, it helps maintain oc-

cupancy capacity limits in real-time, promoting compliance

with safety regulations like social distancing [3]. Also, indoor

people counting systems are essential for smart buildings,

enhancing their functionality and efficiency by providing real-

time data on the exact number of people [4].

Indoor people counting systems enables resource allocation

[5], safety [6], user experience enhancement [6], and energy

efficiency [4]. For example, indoor people counting systems

help optimize smart buildings’ heating, ventilation, and air

conditioning (HVAC) based on real-time occupancy informa-

tion, leading to energy savings and efficiency [4].

Indoor people counting systems can be categorized into

image-based and non-image-based systems [1]. Image-based

systems typically use cameras and computer vision algorithms

to count the number of people [7]. However, these systems

suffer from privacy concerns [8]. On the other hand, non-

image-based systems use technologies such as sensor-based

or radio-frequency-based to count people [9]. Sensor-based

methods involve various sensor combinations and require

significant installation and maintenance expenses [4]. Hence,

this paper focuses on non-image-based systems, especially

radio-frequency-based, as they are cost-effective and non-

intrusive [4].

The proposed method in [10] employs a support vector

machine algorithm based on the wireless fidelity (WiFi)

channel state information to count people. Ensemble learning

is proposed in [11] using the WiFi signals for people counting.

The proposed method in [12] utilizes a deep neural network

based on impulse radio ultrawideband radar signals for peo-

ple counting. Authors in [13] utilized a three-dimensional

convolutional neural network (CNN) based on millimeter-

wave (mmWave) signals for people counting. The proposed



method for people counting in [14] uses mmWave signals and

combines multiple target tracking with a classifier to distin-

guish and count individuals within groups. Previous studies

investigated people counting in frequency bands utilized in

5G networks and earlier. However, there is no investigation of

people counting in higher frequencies, such as the Terahertz

(THz) frequency band that will be utilized in 6G networks

[15]. Also, the existing radio-frequency-based indoor people

counting systems use a different frequency than the utilized

radio frequency communication signal, which adds more

costs for system deployment and wastes the radio frequency

resources.

To fill this gap, we investigate people counting feasibility

in the THz band. We propose an indoor people counting

system that does not rely on cameras or additional sensors,

which addresses privacy concerns and reduces installation and

maintenance costs. We leverage the THz wireless network

infrastructure for device-free, cost-effective, and non-intrusive

indoor people counting. Hence, the THz wireless network will

be used for both sensing and communication. To the best

of our knowledge, this work represents the first investigation

of the THz frequency band feasibility for counting people

indoors. We validate the effectiveness of the proposed indoor

people counting system through numerical simulations. The

simulation results demonstrate the robustness and accuracy of

the proposed indoor people counting system. The proposed

indoor people counting system achieves a remarkable accuracy

of 99.5% in counting up to eight people in the investigated

indoor layout.

The rest of this paper is outlined as follows. Section II

introduces the system model. Section III presents the pro-

posed indoor people counting system. Section IV shows the

numerical results. Section V concludes our findings.

II. SYSTEM MODEL

This section outlines the indoor layout, the user mobility

model, and the dynamic THz channel data generation.

A. Indoor Setup

We consider a standard meeting room with dimensions

of 5m×5m×3m. The room is furnished with one meeting

table and eight chairs arranged as shown in Fig. 1. Four

THz access points (APs) installed on the ceiling support

wireless communication within the room, as shown in Fig. 1.

Mobile users within this room are modeled as cuboids with

dimensions of 1.8m×0.2m×0.45m. These users have a weight

of 70 kg and a speed of 2.1 m/s.

B. Mobility Model

This study uses a validated mobility model presented in

[16] and used in the literature [17] to accurately simulate

human movement within the indoor environment. The model

operates on two timescales, which are macro and micro

patterns. The macro pattern controls the user’s movement

Fig. 1. Illustration of the indoor layout.

Fig. 2. Framework to generate dynamic THz channel gain.

decisions, including the timing and destination of their next

move. It uses a semi-Markov renewal process incorporating

regular return patterns and truncated Levy-walk behavior for

unpredictable human motions. On the other hand, the micro

pattern addresses the specifics of user movement, such as the

shortest path to the destination, obstacle avoidance, and user

equipment (UE) orientation. The mobility model is illustrated

in Fig. 2. After generating the mobility traces, the user’s

position and the position of the serving THz AP are used

to determine channel blockage. The THz channel gain is

calculated based on the multi-ray THz channel propagation

model described in the following subsection.



C. Multi-ray Channel Propagation Model in the THz Band

This subsection outlines the multi-ray channel model that

simulates the THz electromagnetic wave propagation using ray

tracing techniques. The multi-ray channel model includes line-

of-sight, reflected, scattered, and diffracted paths. However,

diffracted paths can be disregarded in indoor THz environ-

ments since this phenomenon is significant only at lower

microwave frequencies [18]. Additionally, scattered paths can

be ignored due to the substantial losses they incur after

scattering [18]. Therefore, only the line-of-sight (LoS) and

reflection paths are considered. Hence, define the THz channel

gain, g(τ), from the transmitter (AP) to the receiver (UE) as

[19]
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where c is the speed of light, f is the frequency, r is the

distance between the transmitter and the receiver, k is the

medium absorption coefficient that depends on the utilized

frequency, τ is the propagation delay, τLoS represents the

LoS delay, 1LoS is one if there is a line-of-sight path or

zero otherwise, NRef is the number of reflected paths, r1 is

the distance between the transmitter and the reflector, r2 is

the distance between the reflector and the receiver, θi is the

incident wave angle, n is the refractive index, σ is the rough

surface height standard deviation, and τ
p
Ref is the delay of the

pth reflected path.

III. THE PROPOSED COMMUNICATION-AIDED THZ

INDOOR PEOPLE COUNTING

This section introduces a novel approach for indoor people

counting, leveraging the unique properties of THz signals.

First, we investigate the feasibility of indoor people counting

in the THz band by examining the occupancy signature in

the THz channel gain. Hence, we introduce the proposed

indoor people counting system by formulating the problem of

indoor people counting in the THz band, introducing the data

preprocessing technique, and the proposed 1D CNN model

training.

A. Occupancy Signature in THz Channel Gain

This subsection investigates the feasibility of indoor people

counting in the THz band by examining the occupancy signa-

ture in the THz channel gain. Using the framework presented

in Fig. 2, we simulated the downlink THz channel gain over

1000 mobility traces for one person, two, three, and eight

people given the layout in Fig. 1.

Fig. 3. The PDF vs. average THz channel gain.

Fig. 3 illustrates the probability density function (PDF)

of the average THz channel gain for scenarios with one

person, two, three, and eight people in the investigated indoor

layout. In Fig. 3, the x-axis represents the average THz

channel gain, while the y-axis represents the corresponding

PDF. Fig. 3 demonstrates that each specific number of people

follows a distinct distribution. Also, the pattern of the average

THz channel gain in the investigated indoor room layout

decreases with the increase in the number of people. This

signature/pattern can be leveraged to develop algorithms for

real-time monitoring of people count, where the THz channel

gain data is continuously analyzed to determine the exact

number of people.

B. Proposed People Counting System

Fig. 4 demonstrates the proposed indoor people counting

system. The system input consists of historical channel gain

data of the THz AP downlink signal. The input is preprocessed

to ensure that the data fed into the CNN is of high quality

and in a suitable format for analysis. The preprocessed data

is then input into a 1D CNN. The 1D CNN is responsible

for extracting occupancy information by identifying patterns

and features in the input data correlating with the number of

occupants. The system’s output is the estimated number of

people in the indoor environment. Hence, the downlink com-

munication signal of the THz AP is used to sense the existing

number of people on the indoor layout. The indoor people

counting problem formulation, the utilized data preprocessing,

and the proposed CNN-based indoor people counting model

are discussed in the following subsections.

1) Problem Formulation: We consider a wireless THz

network in a dynamic environment with mobile users in an

indoor room layout. Given a fixed window of N historical

wireless THz channel gain data points of the downlink signal,

denoted as {g(t1), g(t2), ..., g(tN )} collected at discrete time

instances t1, t2, ..., tN , the task is to design a classification



model that, given a new THz channel gain data points of the

downlink signal, will correctly predict the class, i.e., number

of people, to which the new data points belong.

2) Data Preprocessing: In this study, we employed data

preprocessing to ensure the robustness and reliability of our

proposed deep learning (DL) model. We utilized a sliding

window approach to segment the THz channel gain time

series data into overlapping windows. This technique enhances

the DL model’s ability to capture temporal dependencies

and patterns within the data. Each window is treated as

an individual sample for subsequent processing. Also, each

sample was standardized to have a mean of zero and a standard

deviation of one. This standardization process ensures that all

features contribute equally to the model’s learning process and

helps accelerate the convergence during training.

3) 1D CNN Model Training: The dataset was divided into

training and testing sets with a ratio of 80: 20. This split

ensures that the DL model is evaluated on a representative

subset of the data it has not seen during training, providing an

unbiased assessment of its performance. The training set was

further divided into training and validation sets with a ratio

of 80: 20. The validation set is used to fine-tune the model

and prevent overfitting, ensuring that the model generalizes

well to unseen data. We shuffled the window samples across

the dataset to eliminate any potential bias due to the order of

the samples and to achieve better generalization. The dataset

contains eight classes, each representing a unique number of

users. Each sample was assigned a class based on the ground

truth value. This class assignment is critical for the supervised

learning process, allowing the model to learn the mapping

between input features and the corresponding output classes.

The class labels were one-hot encoded. This transformation

converts the categorical class labels into a binary matrix

representation, which DL algorithms require.

The hyperparameters of the proposed DL model are op-

timized using random search. The number of convolutional

layers is dynamically selected between 1 to 5. The kernel

size is dynamically selected between 2 to 5. The number of

filters in each layer is dynamically selected between 64 to

512. The number of strides is dynamically selected between

1 to 3. The activation function is dynamically selected among

ReLU, tanh, and sigmoid.

The proposed DL model is a 1D CNN consisting of five

convolutional layers. The first layer consists of 512 filters, ker-

nel size of three, one stride, and ReLU activation function. The

second layer consists of 320 filters, kernel size of four, one

stride, and tanh activation function. The third layer consists of

256 filters, kernel size of five, one stride, and tanh activation

function. The fourth layer consists of 128 filters, kernel size of

two, three strides, and tanh activation function. The fifth layer

consists of 512 filters, kernel size of two, two strides, and tanh

activation function. The output from the fifth convolutional

layer is then fed into a global average pooling 1D layer, which

reduces the spatial dimensions. Finally, a dense layer with

Fig. 4. The proposed indoor people counting system.

eight neurons and a softmax activation function is employed

to predict the model’s output, representing the probabilities of

the eight possible classes.

The DL model undergoes 200 epochs of training with a

batch size of 32, using the Adam optimizer initialized at a

learning rate of 0.001. During training over 272, 000 samples,

20% of the data is reserved for validation to monitor the

model’s generalization capability. The learning rate is reduced

by 50% if no improvement in validation loss is observed for

three consecutive epochs. Furthermore, the training process

is terminated if there is no improvement in validation loss

for six consecutive epochs, thereby preventing overfitting and

conserving computational resources. This learning approach

not only aims to achieve optimal model accuracy but also

prevents overfitting and enhances the training efficiency by

dynamically adjusting the learning rate and preventing unnec-

essary training epochs.

IV. NUMERICAL RESULTS

This section evaluates the proposed indoor people counting

system. The frequency used during the THz dataset generation

is 0.142 THz, which is included in the THz frequency band

ranging from 0.1 to 10 THz [20]. Also, the window size

N is equal to 60. Each model’s training, validation, and

testing were implemented based on the TensorFlow framework

running with two AMD EPYC 9374F processors, each with

32 cores running at a base frequency of 3.85 GHz and 24 GB

of RAM.

Fig. 5 shows the CNN model’s loss of the training and

validation datasets for the proposed indoor people counting

system. From Fig. 5, the training loss steadily decreases and

approaches near zero after 15 epochs. This shows that the

model effectively minimizes errors in training data. Also, the

validation loss follows a similar decreasing trend, although it

is higher and fluctuates early on. It stabilizes around a low

value after 30 epochs, indicating the model is not overfitting.

The training and validation loss curves flatten out in the later

epochs, indicating convergence. The small gap between the

two losses after stabilization suggests good generalization.

The model shows good convergence, with stable accuracy and

low loss for training and validation datasets after around 30



Fig. 5. The proposed CNN model’s loss of the training and validation datasets
for the proposed indoor people counting system.

epochs. No significant gap between training and validation

indicates that the model generalizes well without overfitting.

The confusion matrix in Fig. 6 demonstrates the CNN

model’s classification accuracy of the proposed indoor people

counting system. Each class has been tested with over 8500
samples. The matrix entries are normalized and presented as

percentages for more precise interpretation.

The high diagonal values in the confusion matrix indicate

the proposed system’s ability to estimate the number of

people in the indoor environment accurately. The minimal off-

diagonal values signify that misclassifications are rare. Over-

all, the results validate the effectiveness of the proposed indoor

people counting system, with each class achieving near-perfect

accuracy. With estimation accuracies exceeding 99.5% across

all classes, the proposed system is highly reliable and can

be effectively deployed in real-world scenarios for accurate

indoor people counting.

The classification report demonstrated in Table I contains

precision, recall, and F1-score metrics for eight classes, with

each class tested against 8514 samples. The classification

report shows that the proposed CNN model performs well

across all classes, with high precision, recall, and F1-scores,

reflecting a robust and reliable classifier in estimating the

number of indoor people.

To better assess the proposed CNN classifier’s performance

in estimating the number of people indoors, we developed

a random forest time series classifier to compare it with the

proposed CNN classifier’s performance. The random forest

time series classifier has 100 individual decision trees, and

each decision tree makes an independent prediction about

the estimated number of people indoors. Then, the random

forest output will be the majority estimated number of people

predicted by the individual decision trees. The catch22 feature

extractor proposed in [21] extracts the features that will be fed

Fig. 6. The confusion matrix of the proposed indoor people counting system.

TABLE I
THE CLASSIFICATION REPORT OF THE PROPOSED CNN.

Class Precision Recall F1-score Support

1 0.9964 0.9957 0.9960 8514

2 0.9964 0.9964 0.9964 8514

3 0.9974 0.9962 0.9968 8514

4 0.9966 0.9971 0.9968 8514

5 0.9969 0.9965 0.9967 8514

6 0.9953 0.9982 0.9968 8514

7 0.9950 0.9959 0.9954 8514

8 0.9978 0.9958 0.9968 8514

to the random forest classifier. In Table II, the performance is

evaluated in terms of accuracy, precision, recall, and F1-score

for estimating different numbers of people, ranging from one

to eight. Table II indicates that the proposed CNN outperforms

the random forest by more than 10% in terms of accuracy,

precision, recall, and F1-score. However, the training time of

the proposed CNN model is 23 times longer than that of the

random forest model, as shown in Table III.

TABLE II
THE PERFORMANCE OF THE PROPOSED CNN VS. RANDOM FOREST IN

TERMS OF ACCURACY, PRECISION, RECALL, AND F1-SCORE.

Metric CNN Random Forest

Accuracy 0.9965 0.8889

Precision 0.9965 0.8894

Recall 0.9965 0.8889

F1-score 0.9965 0.8890



TABLE III
COMPLEXITY COMPARISON BETWEEN THE PROPOSED CNN AND THE

RANDOM FOREST IN TERMS OF TRAINING TIME.

Model Training Time (s)

CNN 16674

Random Forest 720

V. CONCLUSION

In this paper, we proposed an indoor people counting

system based on the wireless THz communication signal. The

proposed system is based on a 1D CNN time series classifier.

The input to the proposed CNN time series classifier is the

wireless THz channel gain of the THz AP downlink, whereas

the output is the estimated number of people in the indoor

layout. The numerical results demonstrate the effectiveness of

the proposed system in counting up to eight people indoors

with 99.5% accuracy. Also, we compared the performance of

the proposed CNN time series classifier with a random forest

time series classifier that uses catch22 feature extraction.

The numerical results indicate that the proposed CNN model

outperforms the random forest by more than 10% in terms of

accuracy, precision, recall, and F1-score. However, the training

time of the proposed CNN model is 23 times longer than that

of the random forest model.
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