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ABSTRACT In this paper, a space-air-ground quantum (SPARQ) network is developed as a means for
providing a seamless on-demand entanglement distribution. The node mobility in SPARQ poses significant
challenges to entanglement routing. Existing quantum routing algorithms focus on stationary ground nodes
and utilize link distance as an optimality metric, which is unrealistic for dynamic systems like SPARQ.
Moreover, in contrast to the prior art that assumes homogeneous nodes, SPARQ encompasses heterogeneous
nodes with different functionalities further complicates the entanglement distribution. To solve the entan-
glement routing problem, a deep reinforcement learning (RL) framework is proposed and trained using deep
Q-network (DQN) on multiple graphs of SPARQ to account for the network dynamics. Subsequently, an
entanglement distribution policy, third-party entanglement distribution (TPED), is proposed to establish
entanglement between communication parties. A realistic quantum network simulator is designed for
performance evaluation. Simulation results show that the TPED policy improves entanglement fidelity by
3% and reduces memory consumption by 50% compared with benchmark. The results also show that the
proposed DQN algorithm improves the number of resolved teleportation requests by 39% compared with
shortest path baseline and the entanglement fidelity by 2% compared with an RL algorithm that is based
on long short-term memory (LSTM). It also improved entanglement fidelity by 6% and 9% compared with
two state-of-the-art benchmarks. Moreover, the entanglement fidelity is improved by 15% compared with
DQN trained on a snapshot of SPARQ. Additionally, SPARQ enhances the average entanglement fidelity by
23.5% compared with existing networks spanning only space and ground layers.

INDEX TERMS SPARQ, quantum routing, entanglement distribution, entanglement fidelity, entanglement
swapping.

I. INTRODUCTION

QUANTUM information science can potentially revolu-
tionize various disciplines by addressing major chal-

lenges that are beyond the capabilities of classical comput-
ers. For instance, quantum computing will require a major
re-evaluation of security measures because current security
algorithms can be easily compromised by quantum comput-
ers. Although large quantum computers could solve certain
computational problems substantially faster than classical
computers [1], current quantum computers are still limited
in resources to outperform their classical counterparts in
practical applications. The development of large-scale quan-

tum computers equipped with a sufficient number of qubits
remains an open technological challenge that may be difficult
to achieve in the foreseeable future.

However, the potential of quantum computing can still be
achieved through distributed quantum computing paradigms
in which numerous quantum computers collaborate to tackle
a single problem. In distributed quantum computing, the
division of qubits across multiple quantum computers can
present challenges, particularly when multi-qubit gates, such
as the CNOT gate, are involved. Since the control and target
qubits may reside on different computers, they must be
physically co-located to perform the operation. To overcome
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this limitation, one of the techniques used is to teleport either
the control or target qubit to the other system, where the
gate operation can be performed, and then return it back
to its original system. However, executing a large circuit
in distributed quantum computing often requires frequent
teleportation of qubits between systems. This process of
teleporting qubits back and forth can lead to a reduction in
computation speed, throughput, and increased latency if it
is not carried out over an efficient network architecture. In
this paradigm, quantum entanglement plays a pivotal role
[2], serving as the fundamental resource for various quantum
communication protocols, such as teleportation and super-
dense coding. In order to establish entanglement between
two communication parties, entangled pairs are generated
and transmitted through quantum channels. These channels
suffer from losses that degrade the quality of the transmit-
ted entangled photons. To overcome this limitation, several
quantum repeaters can be used to perform entanglement
swapping and directly entangle the source and destination.
Subsequently, to enable distributed quantum computing, a
resilient quantum network that enables seamless and on-
demand entanglement distribution is required. Consequently,
the following key open questions need to be answered: (a)
What is the practical architecture for a near-term quantum
network in terms of the type of adopted links and node
functionality (sources of entanglement and repeaters)? (b)
How to successfully establish an end-to-end path to create
entanglement between two nodes, hence, supporting quan-
tum teleportation and superdense coding? The establishment
of such an end-to-end path can be performed with quantum
routing.

A. RELATED WORKS

Network Architecture: Existing research on quantum-
enabled space-air-ground networks is limited to quantum key
distribution (QKD) services and does not develop a practical
network architecture. The work in [3] and [4] presented
quantum-enabled space-air-ground integrated networks that
replace classical nodes with quantum nodes without covering
the functionalities of such nodes and the specifications of
the communication links. Furthermore, current space-ground
projects such as China’s Micius [5] and EuroQCI [6] are not
sufficient to achieve a fully functional quantum Internet. For
instance, Micius focuses only on QKD services. Although
EuroQCI aims to provide QKD and quantum communication
to member states, it heavily relies on satellites for com-
munication. However, satellite services are degraded during
bad weather conditions and may not always be available
hence leading to intermittent connectivity. In addition, the
considerable length of satellite links poses a potential risk of
degrading link quality. Therefore, the EuroQCI architecture
lacks the capability to facilitate on-demand entanglement
distribution. Hence, the network architecture question is still
open.

Entanglement Routing: Current research on quantum rout-

ing primarily focuses on ground-based networks. For in-
stance, the works in [7] and [8] proposed quantum routing
algorithms based on the expected end-to-end entanglement
rate. Also, the authors in [9] proposed a routing algorithm
for grid quantum networks that is based on link distance.
The work in [10] investigated the impact of quantum routing
algorithms on the key rate of QKD in grid quantum networks.
In [11], entanglement was used to add quantum features to
classical networks, and a shortest distance-based quantum
routing algorithm was proposed. The work in [12] developed
a shortest path quantum routing algorithm for handling mul-
tiple requests simultaneously. Moreover, two neural networks
are trained in [13] to maximize the number of served requests
within the network. The authors in [14] proposed a routing
algorithm that adopts end-to-end fidelity as a routing metric.
Additionally, the works in [15]–[19] used shortest path algo-
rithms to solve the quantum routing problem. The authors
in [20] developed a quantum routing algorithm for space-
ground networks, but it is specifically designed for QKD
services. Consequently, their algorithm may not effectively
handle teleportation requests, as it prioritizes secret key rates
as the optimality metric. Several factors restrict the appli-
cability of existing quantum routing algorithms [7]–[20] in
SPARQ: (a) utilizing the link distance to be the routing metric
is impractical in SPARQ due to the significant variation in
path lengths spanning three layers, (b) existing algorithms
require intensive computations, restricting their scalability in
large networks, (c) existing algorithm requires calculating
the optimal path for each communication request, leading
to delays that impede the on-demand entanglement distribu-
tion capabilities of SPARQ, and (d) existing algorithms are
designed for static networks, limiting their applicability in
SPARQ.

Entanglement Distribution: The work in [21] proposed a
scheme for entanglement generation called Midpoint-source
(MPS). This scheme utilizes a photon source positioned at
the midpoint of an optical channel to generate entanglement
between quantum dots. The receivers subsequently establish
local entanglement between the communication qubit and the
emitted photons with the help of Bell state measurement.
The scheme is designed to be less susceptible to losses
and to achieve the highest entanglement rate by repeatedly
attempting to produce Bell states. However, MPS operates
under the assumption of direct communication between par-
ties, without involving intermediate repeaters. Furthermore,
it primarily focuses on hardware aspects and lacks a specific
policy for nodes to follow.

Several efforts have been made to design entanglement
distribution policies. For instance, the work in [22] proposed
a genetic algorithm to discover an optimal policy for en-
tanglement generation and distribution. Despite its potential
optimality, this policy is computationally intensive and is
susceptible to delays. Alternatively, [23] employed a rein-
forcement learning (RL) agent to handle the task of entangle-
ment distribution. However, this method is limited to a linear
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repeater chain comprising a maximum of five nodes. Addi-
tionally, the work in [24] used dynamic programming and RL
to propose an entanglement distribution policy. The works in
[25] and [26] proposed policies for entanglement distribution
that are based on Markov decision processes. Moreover, the
work in [27] tackled the entanglement distribution challenge
by formulating it as a mixed-integer nonlinear programming
optimization problem, aiming to optimize the entanglement
generation rate. However, it is limited to small-scale quantum
networks. The work in [28] utilized exhaustive search tech-
niques to establish entanglement between two nodes while
meeting the specified quality of service requirement. This
is achieved through the manipulation of various parameters,
including the distance between adjacent nodes and the num-
ber of entanglement distillations conducted. However, using
the exhaustive search can be computationally expensive for a
large search space. Despite these research efforts, a common
limitation among existing studies [22]–[27] is the assump-
tion of uniform functionalities across network nodes which
restricts their applicability in SPARQ. This limitation arises
from the fact that not all nodes within SPARQ possess the
capability to generate entanglement. While some existing
work considers a heterogeneous network [27], it typically
assumes heterogeneity in network specifications, such as
varying distances, diverse applications, and various quality-
of-service requirements. In contrast, a more realistic assump-
tion of heterogeneity would be to consider the functionalities
and capabilities of the nodes. Additionally, determining the
optimal strategy for each communication request introduces
additional delays that scale with the number of nodes, re-
stricting their scalability in large networks like SPARQ.
Thus, there is a need for an entanglement distribution pol-
icy that establishes entanglement between communication
parties through a set of intermediate nodes. This policy
should specify the functionality of each intermediate node
as a source of entanglement and/or repeater in a way that
minimizes the number of entanglement swapping operations,
thereby improving the end-to-end entanglement quality and
reducing memory consumption by intermediate repeaters.
Also, this policy should consider network limitations such
as the incapability of ground nodes to serve as sources of
entanglement.

Quantum Network Simulator: Existing quantum network
simulators, such as QuNetSim [29], NetSquid [30], QDNS
[31], SQUANCH [32], SeQUeNCe [33], SimulaQron [34],
and SimQN [35] are primarily focused on ground networks
and terrestrial communications. However, to simulate large-
scale space-air-ground quantum networks like SPARQ, there
is a need for a quantum network simulator that consid-
ers satellites and their movements, high altitude platforms
(HAPs) and their locations, and various communication
channels such as fiber optical and free-space optical channels.

B. CONTRIBUTIONS

The main contribution of the paper is proposing a space-air-
ground quantum (SPARQ) network, which integrates satel-
lites, HAPs, and ground end-users to distribute entangle-
ments and create end-to-end on-demand entangled paths.
This approach introduces an air layer, shortening the links
within the entanglement path and enhancing the overall qual-
ity of communication links. Hence, SPARQ has the potential
to harness the global quantum Internet, enabling applications
such as distributed quantum computing, quantum communi-
cations, quantum sensing, and quantum security. SPARQ has
the potential to address the limitations of the prior works. To
achieve this overarching goal, our key contributions include:

• We propose the SPARQ network architecture, which
spans space, air, and ground layers. Furthermore, we
specify node functionalities such as practical sources
of entanglement, repeaters, and communication links.
SPARQ facilitates quantum teleportation and super-
dense coding within the emerging quantum Internet,
enabling the efficient realization of advanced network
applications like distributed quantum computing. Sim-
ulation results demonstrate the superior performance
of the proposed architecture compared to traditional
satellite-terrestrial networks, exhibiting a remarkable
improvement by 23.5% in the average end-to-end en-
tanglement fidelity.

• We propose a deep RL strategy to solve the entangle-
ment routing problem within the SPARQ network. The
deep RL agent is trained following a deep Q-network
(DQN) policy. Unlike the traditional DQN policies, our
proposed DQN agent is trained on the dynamic network
topology of SPARQ, enabling it to capture comprehen-
sive network graph states and develop an optimal policy
for real-time entanglement routing. Simulation results
showed that the proposed DQN algorithm achieves a
39% improvement in the number of resolved telepor-
tation requests compared to the shortest path baseline.
Additionally, it improves the average entanglement fi-
delity by 15% compared with another DQN algorithm
trained on a snapshot of SPARQ. Moreover, the pro-
posed DQN model achieves up to 9% improvement in
the average entanglement fidelity compared with state-
of-the-art benchmark algorithms. Also, the simulation
results show that the proposed DQN algorithm has
minimal overhead compared to all considered baselines.
The proposed DQN algorithm also significantly reduces
the time required to find the routing path, demonstrating
a substantial improvement in speed compared to state-
of-the-art algorithms.

• We propose a new policy for on-demand entanglement
distribution within SPARQ, called third-party entangle-
ment distribution (TPED). This policy is designed to
establish end-to-end entanglement between communi-
cation parties after determining the optimal routing path.
The TPED policy assigns functionalities to each node
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in the routing path to act as sources of entanglement
and/or repeaters in a way that minimizes the number of
entanglement swapping operations, while also consider-
ing network node limitations such as the incapability of
ground nodes to act as a source of entanglement. The
goal of TPED is to enhance the quality of established
end-to-end entanglement by reducing the number of
entangled pairs consumed by intermediate repeaters.
Simulation results demonstrate that TPED improved
the average entanglement fidelity while reducing the
memory consumption by 50% compared with a bench-
mark. The benchmark approach involved establishing
entanglement between adjacent nodes and subsequently
performing entanglement swapping to achieve direct
entanglement between the source and destination.

We conducted a comprehensive evaluation of the proposed
SPARQ architecture and algorithms by upgrading the QuNet-
Sim simulator and integrating it with Ansys Systems Tool
Kit (STK). This integration accounts for realistic space-air-
ground node behaviors and models. The rest of this paper
is organized as follows. Section II presents the proposed
SPARQ network architecture and the channel models. Sec-
tion III defines the quantum routing problem within SPARQ
and presents the proposed deep RL routing model for finding
the optimal end-to-end entanglement path. Section IV pro-
poses an on-demand entanglement distribution policy within
SPARQ. Section V presents the SPARQ simulator which is
used for performance evaluations, discusses the simulation
setup, and presents the simulation results. Conclusions are
drawn in Section VI.

II. SPARQ ARCHITECTURE AND CHANNEL MODEL
A. NETWORK LAYERS AND NODE FUNCTIONALITIES
As shown in the architecture of Fig. 1, the SPARQ network
spans three layers as follows:

• Space layer: This layer consists of a satellite constel-
lation equipped with quantum devices that can gen-
erate entangled states and manipulate qubits through
measurements and processing. We consider that the
satellites are positioned in a low earth orbit (LEO) at
an altitude of 500 km.

• Air layer: This layer consists of swarms of aerial ve-
hicles equipped with limited quantum capabilities, in-
cluding a restricted number of qubits for generating
entangled states and manipulating qubits through mea-
surements and processing. The deployment of the air
layer is motivated by the fact that satellite services may
experience interruptions due to bad weather conditions
and orbit limitations [3]. Additionally, aerial vehicles
can serve as relays between ground nodes and satellites,
extending communication range and enhancing link
quality. Consequently, this layer is deployed to address
network demands when satellite services are unavailable
and to bridge the communication gap between the space
and ground layers, contributing to the development of a

resilient network architecture. We use HAP drones at a
height of 50 km.

• Ground layer: This layer is composed of end-user quan-
tum nodes with limited quantum capabilities, allowing
them to measure and process qubits.

As mentioned earlier, it is necessary to distribute entan-
gled pairs among end users in order to enable quantum
communications within SPARQ. This process involves the
creation of entangled pairs and their transmission through
quantum channels. However, these channels are prone to
losses and transmitted photons decay rapidly as the transmis-
sion distance increases. To address this challenge, multiple
quantum repeaters can be adopted, allowing for entangle-
ment swapping and the extension of the entanglement range.
Consequently, the node functionalities in SPARQ can be
summarized as follows:

• Source of entanglement: These nodes are responsible for
the generation of entangled pairs, which are the fuel for
quantum networks. In SPARQ, satellites and HAPs are
used as sources of entanglement.

• Repeaters: These nodes are responsible for performing
entanglement swapping to enhance the quality of trans-
mitted photons over long distances. In SPARQ, satel-
lites, HAPs, and ground end-users can act as repeaters.

• End-users: These are the ground nodes. Entanglement
routing algorithms are employed to connect two com-
municating parties within the ground layer. The routing
path makes use of intermediate nodes to establish an
end-to-end entanglement connection between any two
ground nodes.

B. COMMUNICATION LINKS
Quantum communications can be realized through optical
fiber channels or free space optical (FSO) channels, both
technologies are adopted within SPARQ. Optical fiber of-
fers certain advantages, such as establishing a reliable and
uninterrupted connection between communicating parties.
Moreover, photons transmitted over fiber links are typically
unaffected by external factors such as background light or
bad weather conditions. However, optical fiber technolo-
gies limit the transmission of photons to a few hundred
kilometers due to issues such as polarization preservation,
random scattering, and optical attenuation. Conversely, FSO
technology outperforms fiber optical technology in terms of
losses because of the low atmospheric absorption [36]. In
addition, most of the transmission path for satellite-based
FSO communication remains unaffected by either absorption
or turbulence, as the atmospheric width is less than 10 km
[36]. It is worth noting that FSO channels are used for real
projects such as Micius [5] and are widely employed for
QKD in research [3], [4], [37]–[41]. Therefore, FSO channels
are adopted for communication between satellites, HAPs,
and between satellites or HAPs and end-users. On the other
hand, fiber optic channels are employed for communication
between ground end-users.
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FIGURE 1: Proposed architecture of SPARQ. FSO channels
are shown with green dashed lines and optical fiber channels
are shown with red solid lines. S, R, and U indicate a source
of entanglement, repeater, and end-user, respectively.

C. CHANNEL MODELS
We consider two channels in our SPARQ system: fiber optic
and FSO channels. In each channel, we consider transmissiv-
ity to address optical losses occurring during communication.
Thus, while transmitting quantum photons over a communi-
cation channel, their decay is determined by the calculated
transmissivity for that specific channel.

1) Fiber optical channels
For an attenuation coefficient α and transmission distance l,
the transmissivity of fiber optical channels given by [42]:

η = e−αl. (1)

2) FSO channels
The transmissivity of the FSO channel considers the total
optical loss that may occur in strong turbulence weather.
Specifically, the transmissivity η considers three optical
transmissivities as follows [43]:

η = ηltηeffηatm, (2)

where ηlt, ηeff, and ηatm present the transmissivity based on
turbulence, receiver efficiency, and atmospheric loss, respec-
tively. Herein, ηatm is modeled by the Beer-Lambert equation
[43]:

ηatm = e−α(λ,h0)z, α(λ, h0) = α0(λ)e
− h0

6600 , (3)

where z is the propagation path length, λ is the carrier
wavelength, h0 represents the altitude in meters, and α0(λ)
represents the extinction factor at sea level.

Furthermore, the transmissivity based on turbulence ηlt is
given by [43]:

ηlt = 1− e
−2a2

R
w2

lt , (4)

where aR is the aperture radius and wlt is the long-term beam
waist, which can be derived from [43]:

wlt = wz

√
1 +

4

3
qΛ, (5)

where wz is the diffraction beam waist, while the parameters
Λ and q are given by [43]:

Λ =
2z

kw2
z

, (6)

q = 0.74σ2 6
√
M,M = 35.05

z

kl20
, (7)

and l0 is the turbulence inner scale, z is the propagation path
length, k = 2π/λ is the wave number, and σ2 is the Raytov
variance, which is given by [43]:

σ2 = 2.25C2
nk

7
6 z

11
6 , (8)

where C2
n is the refractive index structure that is used to

characterize the atmospheric turbulence strength.
One characteristic of natural light is diffraction, a phe-

nomenon that continuously expands the beam waist of a wave
as it travels through free space. This phenomenon also leads
to a constant increase in the radius of curvature of the prop-
agating beam. We start with a Gaussian beam characterized
by an initial field spot size of w0, a carrier wavelength λ,
and an initial radius of curvatureR0. As the beam propagates
to a distance z where a receiver is positioned, free-space
diffraction results in an enlargement of the beam’s spot size
to [43]:

w2
z = w2

0

[(
1− z

R0

)2

+

(
z

zR

)2
]
, (9)

where zR = πw2
0/λ is the beam’s Rayleigh length.

3) Amplitude damping channel
The amplitude damping channel is a concept that describes
a type of quantum channel through which a quantum system
experiences a reduction in its amplitude or damping of its
state over time. This channel is used to model certain physical
processes that can cause the loss of quantum information or
the decay of quantum states. In quantum communication,
the amplitude damping channel can be used to model the
attenuation that can occur during transmission. We adopt
the amplitude damping channel to degrade the entanglement
quality based on the transmissivity η. Then, the amplitude
damping channel can be represented by the Kraus operator
as follows [44]–[46]:

K0 =

[
1 0
0
√
η

]
,K1 =

[
0
√
1− η

0 0

]
. (10)

The action of the amplitude damping channel on the den-
sity matrix ρ is given by:

ρ′ = K0ρK0
† +K1ρK1

†. (11)
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4) Entanglement Fidelity
Entanglement fidelity (Fe) is a metric used to quantify the
similarity between an ideal entangled state and the actual
state produced in a quantum system [47]. Here, we use
entanglement fidelity in order to measure the quality of the
final end-to-end entanglement created between the source
and the destination after going through all the channel losses
experienced by the intermediate nodes. Entanglement fidelity
is given by [48] and [47] as follows:

Fe =

(
Tr

(√√
ρ′ |ψ⟩ ⟨ψ|

√
ρ′
))2

, (12)

where ρ′ is the density matrix of the entangled state after
experiencing losses, as given by (11), and |ψ⟩ represents the
ideal entangled state. Here, |ψ⟩ is the maximally entangled
Bell state |00⟩+|11⟩√

2
.

In summary, considering factors such as node distances,
channel types, and environmental conditions, we calculate
the transmissivity, as captured by (1) and (2). This transmis-
sivity has a direct impact on the density matrix, as illustrated
in (11), which affects the quality of entanglement as captured
by the entanglement fidelity in (12). The entanglement fi-
delity will be used to evaluate our proposed routing strategy.
Leveraging entanglement fidelity as a metric to evaluate the
performance of a routing algorithm provides a quantitative
measure of the entanglement quality established between the
source and destination.

D. MOBILITY MODEL
The mobility of satellites results in continuous changes in
transmissivities, leading to dynamic connectivity and, conse-
quently, a dynamic network topology. The STK [49] simula-
tor is employed to model the mobility of satellites. Specif-
ically, the utilized satellites operate in LEO at an altitude
of 500 km, similar to the Micius satellite [5]. It is worth
noting that the STK simulator considers the Earth’s motion
in simulating satellite movement, thereby providing precise
satellite locations. The mobility of satellites has a significant
impact on the SPARQ network’s topology. For instance,
Fig. 2 provides a visual representation of various SPARQ
network topologies, illustrating how the network topology
changes as satellites move. Fig. 2 is created using the SPARQ
simulator, to be detailed in Section V-A, which uses realistic
satellite movements, hence, all of the parameters of this setup
are practical. As shown in Fig. 2, the mobility of satellites
has a significant impact on the SPARQ network’s topology.
This is because of the dynamic changes in transmissivities
during satellite movement. In some cases, transmissivities
may become too low, leading to node disconnections, while
in other scenarios, transmissivity can become high and nodes
get connected. For example, in Fig. 2a, all satellites are dis-
connected both from each other and all network nodes due to
low transmissivities. As satellites move, connectivity under-
goes continuous changes based on varying transmissivities.
Subsequently, in Fig. 2b, S1 establishes connections with S2,

A1, G2, and G3 because transmissivities between S1 and
these nodes become sufficiently high. However, in Fig. 2c, S1

is disconnected from S2, while maintaining connections with
A1, G2, and G3 due to the variable transmissivities. These
connections and disconnections are determined by a trans-
missivity threshold of 0.7 to support quantum teleportation
and superdense coding, as will be discussed in Section V-B.

III. QUANTUM ROUTING WITHIN SPARQ
A. PROBLEM DEFINITION
We represent the SPARQ network as a graph G = (V , E),
where V = {vxi }Vi=1 represents a set of V nodes where
x ∈ {s, a, g} denoting a space, air, and ground node, respec-
tively. Herein, E = {ei,j ; vxi , vxj ∈ V} represents the edges
connecting these nodes. Each edge ei,j can take the form of
an FSO or fiber channel based on the types of nodes vxi and
vxj . Suppose node vg

i wants to transmit qubits to node vg
j , and

there is no direct quantum channel between these two nodes,
or the direct channel yields poor transmissivity. This implies
that establishing an entangled pair directly between vg

i and
vg
j is not possible. In this scenario, an intermediate node vxb

that shares entangled pairs with both vg
i and vg

j , meaning that
{ei,b, eb,j} ∈ E , can act as a repeater performing entangle-
ment swapping to directly establish entanglement between vg

i

and vg
j . Therefore, the objective is to find the optimal routing

path, such that, via a sequence of intermediate repeaters,
a direct entanglement between communication nodes can
be established with the highest possible quality. Consider
the communication scenario involving the two end users
represented by the black circles in Fig. 1. In this case, there
are several path options, and here we highlight two potential
routes in yellow and black that indirectly connect these users.
Assume that entangled pairs are already distributed between
adjacent nodes. For the yellow and black route, each inter-
mediate node can act as a repeater performing entanglement
swapping to directly entangle the two end users. Thus, solv-
ing the routing problem involves choosing the optimal path
between these users based on a specific metric for optimality.
In SPARQ, the optimal path is defined as the sequence of
intermediate nodes that connects the source and destination
with the highest achievable entanglement quality. This is a
binary optimization problem, that is NP-hard. The dynamic
network topology of SPARQ, as discussed in Section II-D,
necessitates solving the routing problem in real-time. This is
infeasible because it is categorized as an NP-hard problem.
Thus an efficient solution is needed.

B. DEEP RL-BASED ROUTING STRATEGY
Deep RL is employed to determine the optimal route between
communication nodes in SPARQ. The deep RL agent is
trained using DQN. The use of deep RL and DQN for quan-
tum routing within the SPARQ network is motivated by the
following factors. Deep RL can simplify the solution of the
routing problem, which is NP-hard as discussed in Section
III-A, by learning through experience. In contrast, alterna-
tive approaches like stochastic optimization are impractical
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(a) (b) (c)

(d) (e) (f)

FIGURE 2: Illustration of different topologies of the same SPARQ network while satellites are moving. Ground nodes are
presented in green, satellite nodes are presented in black, and HAP nodes are presented in red. FSO channels are presented in
green dashed lines and optical fiber channels are presented in red solid lines. The shown node positions do not reflect the actual
position, instead, this is reflected by the edges and whether they are connected or disconnected.

in SPARQ due to involving intricate computations which
introduces significant delays. The requirement of computing
the optimal path for each communication request further
complicates the situation. Additionally, stochastic optimiza-
tion approaches may converge to local minima or maxima
rather than the global optimum. Furthermore, SPARQ ex-
hibits dynamic network topology and several topologies must
be captured during the training of the agent. DQN provides
the adaptability required to optimize routing decisions in
response to the dynamic network topology of SPARQ, en-
suring efficient entanglement distribution and high-quality
paths. A pivotal component of the DQN framework is the
experience buffer, strategically employed to enable the agent
to retain both past and recent experiences. This extensive
repository of experiences equips the agent with a comprehen-
sive understanding of the network dynamics. This compre-
hensive knowledge base and adaptability enable the routing
decisions to be optimized in real time. The objective of the
proposed DQN agent is to identify the most efficient path
for entanglement distribution between nodes, considering
the transmissivity between these nodes. We experimented
with different hyperparameters to find the optimal settings
that yield the best-performing model. We implemented the
proposed DQN algorithm using a neural network with four
fully connected layers. The input to the network consists of
the state space S of the RL environment, and the output is
the Q-values for each possible action. The architecture of the
proposed neural network is as follows:

• Input Layer: The input layer accepts a state representa-
tion vector, which is passed through a fully connected
layer. The rectified linear unit (ReLU) activation func-
tion is used to introduce non-linearity.

• Hidden Layers: Two hidden layers are implemented

with 128 neurons and 64 neurons, respectively. Also, the
ReLU activation function is employed.

• Output Layer: The output layer consists of neurons
equal in number to the possible actions in the environ-
ment, and its role is to produce the Q-values associated
with each action.

C. ENVIRONMENT AND STATE REPRESENTATION
The environment is represented by the dynamic network
graph of SPARQ. This network graph captures the current
state of the network at each episode. We represent the state
as a vector of transmissivities to adjacent nodes. Each node in
the network is characterized by its transmissivity vector. The
state vector is designed to have a fixed length, set to at least
accommodate the maximum number of possible neighbors
at any given node. For the cases in which a node has fewer
connections, the state vector is padded with zeros to keep the
fixed length. This vector serves as the state representation and
is the input to the DQN agent.

D. ACTION SPACE AND REWARD FUNCTION
In the proposed model, the action space covers the collection
of adjacent nodes to the current node. This signifies that at
any given state st, the agent selects an action at to visit
one of the neighboring nodes. However, if the agent is at
a ground node, its choice is constrained to prevent the next
node from also being a ground node. This restriction ensures
that two consecutive ground nodes do not appear in the
routing path. This is essential due to the limited capabilities
of ground nodes, which are unable to generate entangled
states. To determine the quality of the chosen action, we use
a reward function based on the transmissivity associated with
the selected action. This encourages the DQN agent to favor
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actions that lead to higher transmissivity, thus optimizing
the routing path for an efficient entanglement distribution
process. The reward function is described as:

r(s, a) =


min[ηi,j∀i, j ∈ P ] if agent reach destination

−1 if η ≤ 0.1

− 1
10×η otherwise

, (13)

where P is the path between the source and destination
nodes, which is an ordered list starting at the source and
ending at the destination. As shown in (13), the agent receives
a positive reward once reaching the destination. Otherwise,
for each step taken, it incurs a penalty that is inversely propor-
tional to the transmissivity of the chosen link. This means that
the agent receives a smaller penalty when choosing to pass
through a channel with high transmissivity, and vice versa.
Additionally, the penalty is scaled and normalized within the
range of 0.1 to 1. The agent incurs the minimum penalty
of 0.1 when selecting a link with a transmissivity of 1, and
it incurs the maximum penalty of 1 when selecting a link
with a transmissivity of 0.1 or lower. The second condition
of (13) ensures that the penalty does not exceed 1. The
reward function in (13) is designed to prevent the agent from
encountering cycles. Additionally, it encourages the agent
to find an optimal path with the least number of hops. A
transmissivity threshold is calculated based on acceptable
entanglement fidelity value according to the application as
will be shown in Section V-B.

E. TRAINING THE DQN AGENT
Q-learning is employed to train the RL agent. The agent
learns from experience by selecting an action a from the
action space A, this enables the agent to acquire knowledge
about the expected cumulative discounted reward Q(st, at),
which is known as the Q-value. In a given current state st,
the agents select an action at that offers the highest Q-value
from the entire set of feasible actions within its action space,
such that:

at = arg max
at∈A

Q(st+1, at). (14)

We adopted the Q-learning algorithm with experience replay
[50]. During training, an experience replay buffer was used
to store and sample experiences (state, action, reward, next
state) to break the temporal correlation in the data. The loss
function used for updating the Q-network was the mean
squared error loss between the predicted Q-values and the
target Q-values. We applied a target network, which was a
duplicate of the Q-network, to stabilize the learning process.
The target network parameters were updated periodically
to match those of the Q-network. The DQN was trained
using mini-batch stochastic gradient descent. The Q-values
are updated as follows:

Q(st, at) = (1− β)Q(st, at)

+ β

(
r(st, at) + γ max

at∈A
Q(st+1, at)

)
, (15)

where β is the learning rate, γ is the discount factor, st is the
current state, at is the action chosen by the agent, and r is the
reward function. We experimented with various hyperparam-
eters, including the discount factor (γ), exploration rate (ϵ),
batch size, and replay buffer size, to find the optimal settings
for our specific environment (see Appendix A).

The SPARQ network graph is dynamic as it experiences
changes in the positions and connectivity of satellites over
time. At each training episode, we update the environment to
capture the current state of the network graph. This ensures
that the DQN agent adapts to the dynamic network topology
of SPARQ. Simulation results indicate the superiority of
this approach compared to training the agent on a single
snapshot of SPARQ, as detailed in Section V. Our DQN agent
undergoes 500 training episodes, and the following steps are
performed for each episode:

1) The environment (network graph) is updated to reflect
the current state of the SPARQ network.

2) Edge features, represented by transmissivities, are trans-
formed into a vector at each node, forming node fea-
tures. This step allows us to represent the state space
and incorporate it into our DQN model.

3) The DQN agent is trained for 100 additional episodes
(mini-episodes) on the current graph.

This methodology outlines the approach used to design and
train the DQN agent for routing optimization within the
dynamic SPARQ network. It provides details of how the
model interacts with the environment, how state representa-
tions are created, and how the model’s policy is developed
to determine optimal routing paths based on transmissivities.
The proposed routing strategy is illustrated on the right side
of Fig. 3. We employ offline training to train our agent, and
once the training is complete, we deploy the agent at each
node in the network. At each node, the agent relies solely on
local information to determine the next node for entangle-
ment distribution. Therefore, there is no need for centralized
coordination. Specifically, the agent uses the transmissivities
to adjacent nodes to determine the encountered network
state and select the next node that maximizes the cumulative
reward. Given that satellite trajectories are periodic, this local
information effectively reflects the network state, enabling
the agent to optimize routing requests based on encountered
network states. Once the destination is reached, the selected
routing path is shared with each node involved to follow
an entanglement distribution policy. This decentralized ap-
proach eliminates the need for a central controller. Each node
is equipped with its own trained agent to make real-time
decisions based on local information, ensuring scalability and
feasibility in a dynamic SPARQ environment. Further details
on the dataset employed for training the DQN agent can be
found in Appendix B.

F. CONVERGENCE
The proposed DQN algorithm’s convergence is tracked by
observing the loss function during the training process. The
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FIGURE 3: Illustration of the proposed routing model and entanglement distribution strategy. The TPED policy is employed
here for entanglement distribution as it results in improved end-to-end entanglement quality, as will be detailed in Section V-D.

training is halted when the difference in loss between epochs
reaches a sufficiently low value (5×10−4) for 50 consecutive
epochs. Observing minimal differences between successive
epochs indicates stability in the learning process. When the
algorithm converges, the Q-network’s updates become pro-
gressively marginal, signifying that the model has learned a
stable policy.

G. COMPLEXITY
The time complexity of a deep RL algorithm with a state
space S , action space A, exploration rate ϵ, and discount
factor γ can be expressed as O(|S|2|A|/(ϵ3(1 − γ)3)) [51],
where |.| denotes the cardinality of a space. Here, considering
a SPARQ network with V nodes, the time complexity of
the proposed deeper RL algorithm is upper bounded by
O(V 3/(ϵ3(1−γ)3)), denoting polynomial complexity, which
is considered efficient.

IV. ENTANGLEMENT DISTRIBUTION WITHIN SPARQ
Once the routing path between the source and destination
is determined, the subsequent phase involves establishing
entanglement between them, utilizing intermediate nodes
according to a predefined policy. As mentioned earlier, ex-
isting entanglement distribution policies are not applicable
in SPARQ as they assume uniform functionalities across
network nodes. In SPARQ, not all network nodes possess
the capability to generate entanglement pairs. The intuitive
approach for entanglement distribution is to establish en-
tanglement between adjacent nodes, considering network
constraints such that satellites and HAPs can serve as sources

of entanglement, while ground nodes lack the ability to
generate entangled pairs. Intermediate nodes then execute
entanglement swapping operations to establish direct entan-
glement between the communication parties. However, this
approach leads to a degradation in the end-to-end entan-
glement shared between the source and destination. This is
because each entanglement swapping process degrades the
entanglement quality due to non-maximally entangled states
being shared between adjacent nodes [52]. Therefore, we
propose an entanglement distribution policy, namely TPED.
The TPED policy aims to minimize the number of entangled
pairs consumed by the intermediate repeaters. This policy
seeks to enhance the overall entanglement quality of the
end-to-end entangled pair established between the source
and destination. The idea of the proposed TPED policy is
based on keeping the source of entanglement outside the
routing path. Each source of entanglement can achieve this
by generating an entangled pair and sending one part to the
preceding node in the routing path, while the other part is sent
to the subsequent node. This allows for the adjacent nodes of
the source of entanglement to get entangled together directly.
The difference between the intuitive approach and the TPED
policy is shown in Fig. 4. In this figure, the entanglement
distribution process can be performed in different ways. For
instance, N1 can establish entanglement with S and N2,
then, N2 can establish entanglement with D. Now, we have
a chain of entanglement (S ←→ N1 ←→ N2 ←→ D)
between S and D as shown in Fig. 4b. By performing
entanglement swapping at nodes N1 and N2, S and D share
a direct entangled pair that can be used for communication.
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This approach requires creating three entangled pairs and
performing two swapping operations to establish entangle-
ment between S and D. In TPED, we consider generating
an entangled pair at N1, then sending half to S and the
other half toN2. Meanwhile,N2 establishes an entanglement
connection with D. Now, we have a chain of entanglement
(S ←→ N2 ←→ D) between S and D shown in Fig. 4c.
By performing entanglement swapping at nodes N2, S and
D share a direct entangled pair that can be used for com-
munication. This approach only requires two entangled pairs
and a single entanglement swapping operation to establish
entanglement between S and D.

The TPED assigns functionalities to each node along the
routing path to establish entanglement between communica-
tion parties while minimizing the number of entanglement
swaps. This approach also considers node limitations, such
as the inability of ground nodes to serve as sources of
entanglement. The TPED policy depends on the number of
nodes involved in the communication. If the number of nodes
in the routing path is odd, the policy will follow the following
steps:

1) Start from the first intermediate node, which is the node
after the source, to the last intermediate node, which is
the node before the destination. In an alternating pattern,
each node is marked as either a source of entanglement
or a repeater, respectively.

2) Each source of entanglement generates an entangled
pair and sends half to the preceding node and the other
half to the subsequent node of the routing path. Hence,
the preceding and the subsequent nodes are connected
by this source of entanglement.

3) Each repeater performs entanglement swapping to di-
rectly entangle the source and the destination.

If the number of hops is even, the policy designates one
intermediate node to serve a dual role, acting both as a source
of entanglement and as a repeater. This node is referred to as
the hybrid repeater. Meanwhile, the remaining intermediate
nodes continue to serve as either sources of entanglement or
repeaters. It is worth mentioning that the SPARQ network
limits the functionality of the ground nodes to either end-
node or repeaters. Therefore, ground nodes cannot be used as
a source of entanglement. Then, the policy goes as follows:

1) The initial step is to select the hybrid repeater, where
the role of the hybrid repeater is assigned only to either
the first or the last intermediate node of the routing path.
The selection is based on the type of the two nodes that
they connect in the routing path. One of these nodes
is a ground node (source or destination) and the other
can be ground, satellite, or HAP. The intermediate node
is selected as the hybrid repeater if it connects one
ground node (source or destination) with one source of
entanglement (satellite or HAP) in the routing path. In
cases where both the first and last intermediate nodes
are eligible for selection as the hybrid repeater, either of
them can be chosen. These restrictions on the choice of

the hybrid repeater allow the network nodes to follow a
deterministic policy during entanglement distribution.

2) Start from the first intermediate node to the last interme-
diate in the routing path. In an alternating pattern, each
node except for the hybrid repeater is marked as either a
source of entanglement or a repeater, respectively.

3) Each source of entanglement generates an entangled
pair and sends half to the preceding node and the other
half to the subsequent node of the routing path. Hence,
the preceding and the subsequent nodes are connected
by this source of entanglement. Also, the hybrid repeater
establishes entanglement with either the source or the
destination based on the selection of the hybrid repeater.

4) Each repeater and the hybrid repeater perform entan-
glement swapping to establish a direct entanglement
between the source and the destination.

The whole process with the proposed entanglement distribu-
tion based on the TPED policy is illustrated in Fig. 3.

V. SIMULATION RESULTS AND ANALYSIS
A. SPARQ SIMULATOR
Currently, quantum network simulators, such as QuNetSim
[29], NetSquid [30], QDNS [31], SQUANCH [32], Se-
QUeNCe [33], SimulaQron [34], and SimQN [35] primarily
focus on ground networks and terrestrial communications.
There is no existing quantum network simulator that can
be used to carry out SPARQ’s simulation. To bridge this
gap, we have upgraded the QuNetSim simulator to evaluate
the performance of the proposed SPARQ’s architecture and
the proposed routing model. This upgraded version of the
QuNetSim simulator is called SPARQ simulator. We chose
QuNetSim because it is easy to configure and upgrade, inte-
grates with multiple backends, and includes several built-in
protocols such as teleportation and entanglement swapping.
Also, it utilizes graphs to represent the network, supports
the creation of separate networks for classical and quantum
communications, and offers flexibility in developing and
testing routing algorithms for both classical and quantum net-
works. Here, we note that QuNetSim is an abstract quantum
network simulator, focusing more on higher-level quantum
networking protocols than on the detailed physical layer. As
a result, it lacks detailed modeling of specific hardware char-
acteristics, such as the imperfections and noise associated
with quantum repeaters, detectors, or entanglement sources.
Additionally, the simulator assumes perfect quantum mem-
ory, where quantum states can be stored without degradation.
Our SPARQ simulator integrates QuNetSim and STK [49]
to account for realistic space-air-ground node behaviors and
models. While QuNetSim already features an implementa-
tion of fiber optic channels, it lacks the implementation of
FSO channels. Hence, an FSO channel model was imple-
mented as described in Section II-C2. This implementation
involves creating a new class within the simulator for FSO
channels. This class holds the FSO channel properties, which
are configured using the constructor. Furthermore, a function
is defined within the class to calculate and store the trans-
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(a) (b) (c)

FIGURE 4: Two different policies to establish entanglement between the source node S and the destination node D, the
circles inside nodes represent an entanglement state. The color of the entanglement state represents the node with which an
entanglement state is shared. In this figure: (a) represents the network nodes and communication channels before establishing
entanglement, (b) represents the intuitive approach, and (c) represents the proposed TPED policy, where the role of N1 is to
generate an entangled pair and send one part to S and the other part to N2.

missivity according to (2). Additionally, various functions
are implemented to calculate the equations necessary for
determining the transmissivity. These functions are invoked
by the primary transmissivity calculation function. Notably,
the setter for the distance recalculates the transmissivity for
this channel. Therefore, adjusting the channel distance during
satellite motion results in updating the transmissivity. This
ensures the accurate computation of transmissivity for satel-
lite links during movement. Moreover, QuNetSim defines the
Host class for representing ground nodes within quantum
networks. We extended this class to include information
about node location such as latitude, longitude, and altitude.
Furthermore, new classes were implemented to model HAPs
and satellites within the proposed SPARQ network. These
classes extend the Host class and implement specific proper-
ties relevant to each host type. For example, the Satellite class
includes a movement list detailing the satellite’s successive
locations. Additionally, we define a thread for updating the
satellite’s location. This thread adjusts the satellite’s current
location to the next entry in the movement list. During
each step of satellite movement, the satellite updates the
distance to each connected node, which results in updated
transmissivity. Furthermore, new functions were defined to
degrade the quality of entangled states as described in (11),
and measure the quality of entanglement using the entan-
glement fidelity as defined by (12). Furthermore, the STK
simulator is used to simulate the movement of satellites. Each
satellite is created in its orbit, ensuring a uniform distribution
of orbits around the Earth. Subsequently, the simulation is
executed to model the movement of satellites throughout
one day, recording the location of each satellite at intervals
of every 30 seconds. These recorded locations are used to
generate movement sheets which include precise locations
of each satellite while moving including latitude, longitude,
and altitude. These movement sheets are then employed to
simulate satellite movements within the SPARQ simulator.
Specifically, when creating a satellite node within SPARQ,
the corresponding sheet for that satellite is converted to a
movement list. As the satellite navigates within the network,
its current location is continuously updated to the subsequent
entry in the movement list as described earlier.

FIGURE 5: Relationship between transmissivity and entan-
glement fidelity.

B. IDENTIFYING THE TRANSMISSIVITY THRESHOLD
In Section II-D, we indicated that a transmissivity threshold is
needed to decide the SPARQ topology, and hence, identify a
routing path following our proposed RL-based strategy. Here,
we conducted an experiment using the SPARQ simulator to
determine this transmissivity threshold that can be used for
quantum communication. This experiment aims to show the
relationship between the transmissivity and the entanglement
fidelity. To achieve this, we established different quantum
links with different transmissivity ranging from 0 to 1 in
a step of 0.01. Regardless of the node and communication
channel types, the entanglement fidelity remains consistent
for the same value of transmissivity, as described in (10) and
(11). Therefore, for simplicity, a scenario with two ground
nodes connected by a fiber optical channel is considered
in this experiment. To determine the channel’s parameters
that should be used to achieve the desired transmissivity
ranging from 0 to 1, we solve (1) setting the attenuation
coefficient α to 1 for simplicity. Hence, for each channel,
without loss of generality, the attenuation coefficient α is
set to 1, and the distance between the two nodes is set to
− ln(x), where x is the desired transmissivity. In this manner,
mobility is implicitly considered. Then, an entangled pair is
established across each link and the fidelity is measured for
each entanglement. The relationship is shown in Fig. 5.

As shown in Fig. 5, a transmissivity of 0.7 results in an

VOLUME 4, 2023 11

This article has been accepted for publication in IEEE Transactions on Quantum Engineering. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TQE.2024.3464572

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



FIGURE 6: Setup of the SPARQ network used for simula-
tion. Ground nodes are presented in green, satellite nodes are
presented in black, and HAP nodes are presented in red.

entanglement fidelity exceeding 90%, which can enable high-
fidelity teleportation and hence, exchanging quantum infor-
mation [53], [54]. Therefore, the transmissivity threshold
is set to 0.7. The transmissivity threshold is the limit that
determines whether transmissivity is sufficient for enabling
teleportation and, hence, allowing quantum communications.
It serves as a criterion for establishing connectivity between
nodes within SPARQ, determining whether they are effec-
tively connected or disconnected. A link is established be-
tween two nodes if its transmissivity is at least equal to the
specified threshold. For instance, during satellite movements,
transmissivities undergo continuous changes, leading to dy-
namic connections and disconnections of links based on the
transmissivity threshold.

C. SIMULATION SETUP

As a proof of concept, the proposed DQN-based routing strat-
egy is tested in a SPARQ network with 54 nodes, containing
24 ground nodes, 20 satellites, and 10 HAPs. The satellites
operate in LEO at an altitude of 500 km, similar to the Micius
satellite [5]. This altitude is chosen to maximize the satellites’
lifetime while minimizing signal loss [55]. The HAPs are
positioned at an altitude of 50 km, which is the maximum
flying altitude defined by the International Telecommunica-
tion Union (ITU) for HAPs, ranging from 20 to 50 km [56].
We selected the maximum altitude for HAPs to minimize the
length of satellite links, thereby enhancing link quality and
coverage. The simulation parameters used in our experiments
are summarized in Appendix A. The network setup is shown
in Fig. 6 where ground nodes are presented in green, satellite
nodes are presented in black, and HAP nodes are presented in
red. The node locations are randomly selected by generating
random latitude and longitude coordinates, ensuring through
the Geopy [57] library that the generated locations are not
over the sea. Moreover, some nodes are manually positioned
to bring them into proximity with other nodes, forming local
networks. Detailed information regarding the coordinates of
these nodes and the configuration of satellites is provided in

FIGURE 7: Average training loss of the proposed DQN
algorithm.

Appendix C. The network architecture is designed to have
several local networks separated by large distances across
several countries. Each local network contains a few ground
nodes connected using fiber optical channels. Communi-
cation links are established between ground nodes if the
transmissivity is at least 0.7. HAPs may exist to extend the
communication distance between network nodes and fulfill
teleportation requests whenever satellites are not in range.
Similarly, communication links are established among HAPs
and between HAPs and ground nodes if the transmissivity
is at least 0.7. Each satellite follows its orbital trajectory,
dynamically connecting and disconnecting from network
nodes based on the transmissivity threshold. Notably, this
architecture serves both classical and quantum data transmis-
sion, as quantum channels can be used for transmitting both
types of data [58]. We chose this architecture to simulate the
early-stage scenario of quantum networks where the quantum
nodes will be distributed across vast geographical areas. For
instance, IBM is working to establish quantum computers
across the globe, including locations such as Germany, Japan,
South Korea, and Canada in addition to existing quantum
computers in the United States [59]–[61].

D. SIMULATION RESULTS
Fig. 8 compares the performance of the proposed TPED
policy for on-demand entanglement distribution with the
intuitive approach. The time step reflects the movements of
the satellites. In this experiment, the communication parties
are chosen randomly from the ground nodes, the proposed
DQN algorithm is used to find the optimal routing path, and
each entanglement distribution policy is used separately to
establish on-demand end-to-end entanglement between the
communication parties. The entanglement fidelity is mea-
sured for each entangled pair established by each policy. The
experiment is repeated 100 times and the average is recorded
for each time step over 100 moves of satellites. As shown in
Fig. 8, the TPED policy outperforms the intuitive approach.
Specifically, the TPED policy achieved an average entangle-
ment fidelity of 0.988, while the intuitive approach achieved
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FIGURE 8: omparing the TPED policy with the intuitive
approach in terms of the average entanglement fidelity.

FIGURE 9: Comparing the TPED policy with the intuitive
approach in terms of the average memory consumption.

an average entanglement fidelity of 0.96. This means that
the TPED policy improved the average entanglement fidelity
by about 3% compared with the intuitive approach. This is
because TPED minimizes the number of utilized entangled
pairs and minimizes the number of entanglement swapping
operations performed. Furthermore, Fig. 9 compares the
TPED policy and the intuitive approach in terms of average
memory units consumed by intermediate repeaters. In the
scenario of Fig. 9, the source and destination nodes are
randomly selected from the ground nodes. Each policy is
then employed to distribute entanglement between the source
and destination, with the number of memory units consumed
by intermediate repeaters being recorded. The experiment is
repeated 100 times, and the average memory consumption is
calculated. This improvement is attributed to the efficiency
of the proposed TPED policy, which minimizes the number
of utilized entangled pairs. As shown in Fig. 9, the TPED
policy reduces memory consumption by 50%. As such, the
TPED policy will be adopted in all experiments.

Fig. 10 compares the proposed DQN algorithm with the
shortest path algorithm in terms of the average transmissivity

while satellites are moving. In this experiment, the shortest
path algorithm is selected as a baseline for performance eval-
uation due to its extensive use in the literature for addressing
the quantum routing problem [9]–[13], [15]–[19]. In order
to conduct this experiment, the source and destination are
chosen randomly from the ground nodes. Then, the proposed
DQN scheme is used to find the optimal path between
the source and the destination over 100 steps of satellites.
Also, the Dijkstra algorithm is used to find the shortest
path between the two parties involved in the communication.
The experiment is repeated 100 times and the average is
recorded. As shown in Fig. 10, the proposed DQN algorithm
outperforms the shortest path algorithm and is able to select
links with high transmissivity. This is because the shortest
path algorithm only focuses on link distance and does not
consider link quality. Furthermore, the proposed DQN algo-
rithm is compared with both the shortest path algorithm and
an LSTM-based RL algorithm in terms of the average fidelity
of the end-to-end entanglement shared between communica-
tion parties. The implemented LSTM-based RL architecture
comprises an LSTM layer with 64 neurons, followed by a
fully connected layer. This LSTM layer processes a state
representation vector, which is then passed into the fully con-
nected layer to generate Q-values. These Q-values represent
the expected cumulative rewards for different actions. It is
worth noting that the LSTM-based RL algorithm is trained
on the dynamic network topology of SPARQ, similar to
the proposed DQN algorithm. The corresponding results are
illustrated in Fig. 11 for the comparison with the shortest path
algorithm and in Fig. 12 for the comparison with the LSTM-
based RL algorithm. In order to obtain these results, the
communication parties are selected randomly from ground
nodes. Then, the proposed DQN, the shortest path, and the
LSTM-based RL algorithms are used to find the optimal
routing path over 100 satellite steps of satellites. Finally, the
TPED policy is used to distribute on-demand entanglement
between communication parties and the entanglement fidelity
is measured. This experiment is repeated 100 times and
the average entanglement fidelity is recorded in each time
step. As shown in Fig. 11, the proposed DQN algorithm can
distribute entangled pairs with the entanglement quality that
is essential for successful teleportation (fidelity > 0.9) most
of the time, while the shortest path algorithm fails to meet
this requirement most of the time. Specifically, the proposed
DQN algorithm is able to meet this requirement 100% of
the time, while the shortest path algorithm is only able to
meet this requirement 61% of the time. This indicates that the
proposed DQN algorithm improved the number of resolved
teleportation requests by 39% compared with the shortest
path algorithm. This is because the shortest path algorithm
prioritizes link distance over the link quality. Although both
the proposed DQN and the LSTM-based RL algorithms fol-
low the same pattern, the proposed DQN algorithm improves
the end-to-end entanglement fidelity by about 2% as shown
in Fig. 12. The comparable results can be attributed to the
utilization of the same foundational RL algorithm, with both
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FIGURE 10: Comparing the proposed DQN algorithm with
the shortest path algorithm in terms of the average transmis-
sivity.

FIGURE 11: Comparing the proposed DQN algorithm with
the shortest path algorithm in terms of the average entangle-
ment fidelity.

RL algorithms trained on the dynamic network topology
of SPARQ. The observed improvement can be attributed to
the effective utilization of the experience buffer mechanism,
which plays a pivotal role in the DQN’s outperformance of
the LSTM-based RL. It is worth mentioning that implement-
ing an experience buffer in the LSTM-based RL poses a
significant challenge due to the inherent nature of LSTM,
which necessitates the simultaneous input of multiple related
time steps. Furthermore, we have calculated the confidence
interval based on the normal distribution, and with 95%
confidence. We assert that the mean entanglement fidelity
of the teleportation request solved by the proposed DQN
algorithm falls within the range of 0.98 to 0.99.

Moreover, we compared the proposed DQN algorithm
with two benchmarks proposed in [10] and [20]. In this
comparison, the communication parties are randomly se-
lected from ground nodes, and each routing algorithm is
executed to find the optimal path between them over 100 time

FIGURE 12: Comparing the proposed DQN algorithm with
the LSTM-based RL algorithm in terms of the average entan-
glement fidelity.

FIGURE 13: Comparing the proposed DQN algorithm with
benchmarks [10] and [20] in terms of average entanglement
fidelity.

steps. Subsequently, the TPED policy is utilized to establish
entanglement between the source and destination, and the
resulting end-to-end entanglement fidelity is measured. This
process is repeated 100 times and the average entanglement
fidelity is calculated. As shown in Fig. 13, the proposed DQN
model outperforms both benchmarks. In particular, the DQN
algorithm improves the average entanglement fidelity by
about 6% and 9% compared with [10] and [20], respectively.
The enhancement over the benchmark proposed in [10] can
be attributed to the consideration of both link quality and the
number of hops in our DQN algorithm, whereas [10] solely
focuses on the number of hops. Similarly, the improvement
over the benchmark proposed in [20] can be attributed to the
joint consideration of link quality and the number of hops in
finding the optimal path in our DQN algorithm, while [20]
prioritizes the key rate.

In order to evaluate the overhead introduced by the pro-
posed DQN algorithm, we conducted an experiment to com-
pare the average time required for different algorithms to find
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FIGURE 14: Comparing the proposed DQN algorithm with
the shortest path algorithm and benchmark algorithms [10]
and [20] in terms of the average time required to find the
optimal path between communication parties.

the optimal path between a source and destination over 100
trials. As shown in Fig. 14, the proposed DQN algorithm
exhibits the lowest average time among all algorithms, with
an average time of approximately 3.94 milliseconds. This
highlights the efficiency of our DQN algorithm in optimizing
routing requests within SPARQ. In contrast, traditional meth-
ods such as the shortest path algorithm and the benchmarks
[10] and [20] require significantly more time, with their aver-
age times ranging from 90 to 93 milliseconds. This improve-
ment can be attributed to the efficiency of RL, which sim-
plifies the routing problem by learning through experience.
As mentioned earlier, the training of the DQN agent was
performed offline to ensure efficient real-time performance.
Additionally, the efficient representation of the system state
contributes to the agent’s efficiency, as it requires only local
knowledge to choose the next action. In contrast, bench-
mark algorithms require global knowledge, and they need to
calculate the routing path for each communication request.
The substantial reduction in simulation time achieved by our
DQN algorithm underscores its practical viability for real-
time routing optimization in dynamically changing network
environments like SPARQ.

Furthermore, the proposed DQN algorithm is compared
with another DQN algorithm trained in the same setup on
a single snapshot of the SPARQ network. This comparison
aims to highlight the significance of training the agent on
the dynamic network topology of SPARQ. Similarly, in this
experiment, the communication parties are chosen randomly
from ground nodes, and each DQN algorithm is applied to
find the optimal path between the communication parties
over 100 time steps. Finally, the TPED policy is used to
establish entanglement between the source and destination
and the entanglement fidelity is measured and recorded. This
experiment is repeated 100 times and the average entangle-
ment fidelity is calculated. As shown in Fig. 15, the DQN
algorithm that is trained on the dynamic network topology
outperforms the other algorithm trained on a static snapshot

FIGURE 15: Comparing two versions of the DQN algorithm:
one is trained on the dynamic network topology of SPARQ,
while the other is trained on a static snapshot of SPARQ.

of the SPARQ network. Specifically, the proposed DQN
algorithm achieves an average entanglement fidelity of 0.988,
while the other algorithm achieves an average entanglement
fidelity of 0.86, which indicates an improvement by about
15%. This is because training the agent on the dynamic
network topology allows the agent to capture all states of
the network graph and choose the optimal route based on the
encountered network state.

In order to highlight the importance of the air layer within
SPARQ, we trained another DQN algorithm to find the op-
timal routing path without the existence of the air layer. In
other words, the DQN algorithm is trained on a network that
spans only the space and the ground layers. Similarly, The
source and the destination are selected randomly from the
ground layer. To extend satellite coverage in the absence of
HAPs and facilitate the establishment of paths between com-
munication parties, we adjusted the transmissivity threshold
to 0.5. Each DQN algorithm is used to find the optimal
routing path within the corresponding network over 100 time
steps. Then, the TPED policy is used to establish entangle-
ment between the source and the destination, and the entan-
glement fidelity is measured. The average is calculated across
100 different trials and the results are presented in Fig. 16.
The proposed DQN algorithm in SPARQ achieves an average
entanglement fidelity of 0.988, while the architecture that
spans only satellite and ground layers achieves an average
entanglement fidelity of 0.8, which indicates an improvement
by 23.5%. As shown in Fig. 16, the performance of the
SPARQ network with the existence of the air layer is much
better than the performance without the air layer. This is
because of two reasons. Firstly, the air layers bridge the
considerable distance between satellite nodes and ground
nodes. Secondly, the air layer satisfies teleportation requests
when satellites are out of range.
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FIGURE 16: Comparing the SPARQ network performance
with a network that spans only space and ground layers.

E. DISCUSSION
The proposed SPARQ network and its associated algorithms
are evaluated across several key performance metrics, includ-
ing average entanglement fidelity, the number of resolved
teleportation requests, memory consumption, and the time
required to find a routing path between communication par-
ties. For instance, an experiment comparing SPARQ with a
network that spans only space and ground layers highlights
the critical role of the air layer. The inclusion of the air
layer in SPARQ achieves a 23.5% improvement in average
entanglement fidelity, underscoring its significant contribu-
tion to overall network performance. Within the SPARQ
architecture, the TPED policy improves average entangle-
ment fidelity by 3% compared to the intuitive approach. The
proposed DQN algorithm improves the fidelity compared to
state-of-the-art benchmarks while yielding significant gains
in other performance metrics. For instance, the proposed
TPED policy achieves a 50% reduction in memory con-
sumption, underscoring its efficiency in managing quantum
resources. Additionally, the proposed DQN algorithm en-
hances the number of resolved teleportation requests by 39%
compared to the shortest path baseline. Furthermore, the
proposed DQN algorithm also significantly reduces the time
required to find the routing path, demonstrating a substan-
tial improvement in speed over state-of-the-art algorithms,
thereby optimizing network routing and resource utilization.

VI. CONCLUSION
In this paper, we have proposed a space-air-ground quantum
network designed to enable quantum Internet applications in
the near term. SPARQ aims to allow on-demand and seamless
entanglement distribution, which enables applications such
as distributed quantum computing, quantum communica-
tions, quantum sensing, and quantum security. We have then
developed a DQN-based reinforcement learning algorithm to
efficiently solve the routing problem between communication
parties within SPARQ. Additionally, we have proposed an
entanglement distribution policy in order to establish on-
demand entanglement between communication parties. Fur-

thermore, we have upgraded an existing quantum network
simulator to carry out SPARQ’s simulation and evaluate
the performance of SPARQ, the proposed DQN algorithm,
and the entanglement distribution policies. Simulation results
show that the proposed TPED policy improved the average
end-to-end entanglement fidelity by 3% and reduced the
memory consumption by 50% compared with the intuitive
approach. The proposed DQN algorithm is compared with
the shortest path algorithm, an LSTM-based RL algorithm,
two state-of-the-art benchmark algorithms, and another DQN
algorithm that is trained on a static snapshot of SPARQ.
The proposed DQN algorithm demonstrated significant im-
provements across various algorithms. Compared with the
shortest path algorithm, it enhanced the number of resolved
teleportation requests by 39%. Additionally, in comparison
with an LSTM-based algorithm, it achieved a 2% increase
in average entanglement fidelity. Furthermore, when bench-
marked against two state-of-the-art algorithms, the proposed
DQN model improved the average fidelity by 6% and 9%,
respectively. Moreover, it showcased an average improve-
ment of 15% in end-to-end entanglement fidelity compared
to a DQN trained on a snapshot of SPARQ. Also, to high-
light the importance of the air layer, we have conducted
an experiment to compare the efficiency of SPARQ and
the network spanning only space and ground layers. The
results also show that communication within SPARQ is more
efficient when the air layer is included. SPARQ enhanced
the average end-to-end entanglement fidelity by 23.5% com-
pared with the network that spans only space and ground
layers. The attained entanglement fidelity has the potential
for improvement through entanglement purification but it
will consume additional quantum resources. However, we
leave the exploration of efficient entanglement purification to
future work. Additionally, future research may consider iden-
tifying optimal satellite trajectories to improve coverage and
connectivity between distant nodes. Moreover, future exten-
sions could improve the SPARQ simulator by incorporating
more realistic physical layer models that address hardware
imperfections, such as quantum memory decoherence and
deficiencies in quantum devices like repeaters and detectors.

.

APPENDIX A SIMULATION PARAMETERS

The attenuation coefficient is set to 0.15 dB/km for fiber
optical channels as it is used in [42]. The simulation param-
eters of the FSO channels are set as presented in [43]. The
learning rate β is set to 0.001, while the exploration rate (ϵ)
is initialized to be 1 and decays by 0.9995 until reaches 0.01.
The Adam optimizer is used to minimize the loss by updating
the weights of the neural network. The average training loss is
visualized in Fig. 7, where the average is calculated based on
all losses encountered during the 100 mini-episodes used to
train the model on the current network graph. The simulation
parameters are summarized in Table 1.
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TABLE 1: Simulation parameters.

Parameter Value
Number of satellites 20

Altitude of satellites 500 km
Number of HAPs 10

Flying height of HAPs 50 km
Number of ground nodes 24

Number of episodes 500

Number of mini-episodes 100

β 0.001

ϵ 1− 0.01

decay rate of ϵ 0.9995

γ 0.99

Optimizer Adam
Hidden layers 2

Number of neurons 64, 128

Activation function ReLU
Transmissivity Threshold 0.7

α 0.15 dB/km
ηeff 1
aR 5 m
R0 ∞

α0(λ) 5× 10−6m−1

l0 1 mm
w0 20 cm
λ 800 nm

APPENDIX B TRAINING DATASET
Our dataset is dynamically generated during the training
phase as the DQN agent interacts directly with the net-
work environment to learn from experience. To facilitate the
learning process, we simulate the SPARQ network before
the actual system is operational, allowing the agent to en-
counter different network graphs and learn optimal routing
policy. Transmissivities to adjacent nodes serve as a feature
for training and identifying the current network state. For
each graph, routing requests are randomly generated between
ground nodes, and the agent’s routing decisions lead to
either rewards or penalties. Starting from the source node,
the agent selects actions to visit one of the adjacent nodes,
and it continues until reaching the destination. Initially, the
agent takes random actions to explore diverse paths and
strategies for finding the optimal route for entanglement
distribution. As training progresses, the DQN agent uses the
received rewards to update its internal Q-values. The Q-
values represent the expected cumulative reward for taking
a particular action in a given state. Throughout training,
the exploration rate (ϵ) gradually decreases, leading to a
reduced dependence on random actions. Instead, the agent
increasingly prioritizes actions based on its learned policy.
This transition from exploration to exploitation occurs until
the agent converges toward a strategy for finding an effective
path for entanglement distribution. Here, we note that the
agent relies solely on local information to determine the
next action at each node. This local information, represented
by transmissivities to adjacent nodes, provides insight into

channel quality and connectivity. Since satellite trajectories
are relative and periodic, this local information effectively
represents the network state, enabling the agent to optimize
routing requests based on encountered network states.

Several key factors underscore the significance of this
dataset. Firstly, it enables the agent to interact with diverse
network topologies and configurations, reflecting the dy-
namic nature of SPARQ. This interaction with a wide range
of network scenarios ensures that the trained model can effec-
tively adapt to varying environmental conditions. Secondly, it
allows the agent to optimize routing requests between several
communication nodes at each network state during training.
Consequently, the dataset facilitates the development of a
comprehensive policy for identifying the optimal routing
path for entanglement distribution.

APPENDIX C NODES CONFIGURATIONS

The coordinates for the ground nodes are shown in Table
2, and the coordinates for the HAPs are listed in Table 3.
Furthermore, the orbital configurations of the satellites are
detailed in Table 4, including their inclination, right ascen-
sion of the ascending node (RAAN), and altitude. Notably,
these orbital configurations can be used in the STK simulator
to replicate the trajectories of the satellites.

TABLE 2: Coordinates of ground nodes.

Ground Nodes

(34.315,112.732) (34.336,112.736) (34.357,112.740)

(34.378,112.746) (34.399,112.750) (34.415,112.754)

(72.823,84.759) (72.844,84.765) (72.865,84.771)

(72.876,84.777) (−0.062,−60.266) (−0.083,−60.270)

(−0.103,−60.278) (−0.113,−60.285) (−0.126,33.812)

(−0.105,33.816) (59.561,102.211) (59.568,102.251)

(22.455,90.777) (22.434,90.774) (34.411,66.991)

(34.426,66.972) (60.064,77.805) (60.043,77.813)

TABLE 3: Coordinates of HAPs.

HAPs

(34.368,112.738) (−0.062,−60.266) (−0.162,−60.235)

(−0.105,33.832) (36.644,113.444) (34.418,66.979)

(60.044,77.848) (59.561,102.251) (75.834,84.763)

(22.485,90.777)
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TABLE 4: Satellites orbital configurations.

Satellites

Inclination (deg) RAAN (deg) Altitude (km)

36 126 500

54 126 500

105 126 500

36 233 500

72 304 500

108 15 500

125 53 500

144 91 500

0 0 500

18 158 500

73 158 500

90 160 500

127 160 500

144 160 500

163 160 500

0 200 500

18 228 500

55 300 500

90 13 500

162 160 500
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