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Abstract

We introduce a new class of sl>-triples in a complex simple Lie algebra g,
which we call magical. Such an sl>-triple canonically defines a real form and
various decompositions of g. Using this decomposition data, we explicitly
parametrize special connected components of the moduli space of Higgs
bundles on a compact Riemann surface X for an associated real Lie group,
hence also of the corresponding character variety of representations of w3 X
in the associated real Lie group. This recovers known components when
the real group is split, Hermitian of tube type, or SO, 4 with 1 < p < g,
and also constructs previously unknown components for the quaternionic
real forms of Eg¢, E7, Eg and F4. The classification of magical sle-triples is
shown to be in bijection with the set of ©-positive structures in the sense
of Guichard-Wienhard, thus the mentioned parametrization conjecturally
detects all examples of higher rank Teichmiiller spaces. Indeed, we discuss
properties of the surface group representations obtained from these Higgs
bundle components and their relation to ©-positive Anosov representations,
which indicate that this conjecture holds.
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1. Introduction

In this paper we introduce a new framework for special components in
moduli spaces of Higgs bundles. Via the nonabelian Hodge correspondence
these components are the analogs of higher rank Teichmiiller spaces in char-
acter varieties of surface group representations. The framework unifies pre-
viously described constructions for various types of real Lie groups, namely
split real groups, Hermitian groups of tube type, and SO, 4, and it establishes
the existence of new Teichmiiller-like spaces for quaternionic exceptional real
Lie groups.

Fix a closed orientable surface ¥ with genus g > 2 and fundamental
group m3. For any reductive Lie group G, the G-character variety X(G)
parametrizes conjugacy classes of reductive representations 713 — G. Recall
that the Teichmiiller space 7 of complex structures on X is realized as the set
of conjugacy classes of Fuchsian representations w13 — PSLoR. Moreover, T
defines an open and closed subset of X'(PSLyR) consisting entirely of discrete
and faithful representations. In the general setting, where PSLyR is replaced by
a reductive group G, there is a class of representations (introduced by Labourie
[61] and since studied by many authors; see [46], [56], [43]) called Anosov
representations which generalize many features of Fuchsian representations.
These representations define open subsets of the character variety consisting
entirely of discrete and faithful representations with many interesting geometric
and dynamical properties. Unlike 7 C X(PSL2R), the Anosov loci are not
necessarily closed, so do not automatically define connected components. In
cases where they do constitute such components, they define subsets of X' (G)
which are open, closed and consist entirely of discrete faithful representations.
Such spaces are called higher rank Teichmiiller spaces [76], [67].

One way of constructing Anosov representations is to post-compose a lift
of a representation in 7 with a homomorphism ¢, : SLoR — G. Up to con-
jugation, such homomorphisms are labeled by nilpotent elements e in the Lie
algebra of G. When G is a complex simple Lie group, there is a (unique, up to
conjugation) special homomorphism ¢, : SLoC — G, called principal, and the
restriction of ¢, to SLoR is contained in the split real form G® ¢ G [59]. In
[52], Hitchin used this to define connected components of X(G®) containing
te(T) — now called Hitchin components. Representations in Hitchin compo-
nents were shown to be Anosov by Labourie for PSL,R [61] and, with different
methods, by Fock—Goncharov [31] for general split groups. Other examples of
components of Anosov representations arise from so-called mazimal represen-
tations into Hermitian Lie groups [16], [17].

Recently, Guichard—Wienhard [47], [48] defined a generalization of Lusztig’s
theory of total positivity [64] called ©-positivity. Roughly, a parabolic sub-
group Pg C GR of a real Lie group GR has a ©O-positive structure if triples of
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pairwise disjoint transverse points in G¥ /Pg admit a cyclic order. For such
pairs (GR, Pg), it is possible to define a set of @-positive Anosov representa-
tions. This set is open in X' (GF) and conjectured to be closed [47], [48]. The
O-positive structures have been classified, leading to a list of possible higher
rank Teichmiiller spaces, which includes all the examples mentioned above as
well as two other possible families.

The Hitchin components were discovered in [52] using the nonabelian
Hodge correspondence, which defines a homeomorphism between the character
variety X(G) and the moduli space M(G) of polystable G-Higgs bundles on
a Riemann surface X with underlying surface ¥. In particular, using Higgs
bundles, Hitchin parametrized the Hitchin component by a vector space of
holomorphic differentials. The spirit of the current paper is similar, and Higgs
bundles will be our main focus. Due to the transcendental nature of this
correspondence, it is very difficult to characterize the notions of Anosov repre-
sentations and ©-positive structures in terms of Higgs bundles so we develop
in this paper a new Lie theoretic notion, called magical slo-triple in a complex
Lie algebra g, which is adapted to the language of Higgs bundles.

In one of our main results, we classify all such magical sly-triples and con-
firm that this classification establishes a bijection between them and ©-positive
structures. Furthermore, we prove properties about the resulting Higgs bun-
dles and find new connected components in moduli spaces M(GR) where GR is
a real Lie group determined by a magical sle-triple. We call these components
Cayley components (see Definition 7.3) because the construction generalizes a
similarly named construction in the case, where G is a Hermitian group of
tube type. Using the nonabelian Hodge correspondence to translate our results
into statements about character varieties, we show that these components con-
tain open sets of ©-positive Anosov representations and hence should describe
new higher rank Teichmiiller spaces.

We now give slightly more detailed statements of our results, starting with
a description of the magical sly-triples.

Let g be a complex simple Lie algebra and e € g be a nonzero nilpotent
element. By the Jacobson—Morozov theorem, e can be completed to a triple
{f, h,e} which generates a subalgebra of g isomorphic to sloC. This defines a
bijective correspondence between conjugacy classes of nonzero nilpotents and
conjugacy classes of sloC-subalgebras. Using the decomposition of g as an
slsC-module, we define a vector space involution

Oc:9—9,

which is +1Id on the trivial sloC-representation, —Id on the nonzero highest
weight spaces and — Id on f (see Section 2.1 for details). We call the sla-triple
{f,h,e} C g magical if o, is a Lie algebra involution.
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The involution o, was first defined by Hitchin for principal slo-triples. A
key point in his work was showing that the involution o, is a Lie algebra homo-
morphism [52, Prop. 6.1]. Generalizing the main results of [52], we show that
magical slo-triples determine components of character varieties which conjec-
turally describe all higher rank Teichmiiller components. The character vari-
eties in which these occur are determined by canonical real forms g® C g as-
sociated to magical triples { f, h,e} (see Definition 2.11). For principal triples,
the canonical real form is the split real form of g [52, Prop. 6.1].

THEOREM A (Theorem 8.8). Let G be a complex simple Lie group with Lie
algebra g and { f, h,e} C g be a magical sly-triple with canonical real form GR C
G. Let ¥ be a closed orientable surface of genus g > 2 and X (GR) be the G-
character variety of X.. Then, there exists a nonempty open and closed subset

P.(GR) c 2 (GR),

which contains t.(T) and does not contain representations which factor through
compact subgroups. Moreover, the centralizer of any representation p € Pe(GR)
is compact. In particular, there is no proper parabolic subgroup P® C GR such
that p : m % — PR < GR,

As mentioned above, the sets P.(G®) are constructed by applying the
nonabelian Hodge correspondence to Cayley components in the moduli space
M(GR) of GR-Higgs bundles. Briefly, a G®-Higgs bundle on a compact Rie-
mann surface X is a pair (€, ), where £ is a holomorphic principal bundle
on X and ¢ (the Higgs field) is a holomorphic section of an associated vector
bundle twisted by the holomorphic cotangent bundle K of X. (See Section 5.1
for more details.) We will also consider the moduli space M, (GR) of L-twisted
Higgs bundles, where the twisting line bundle K is replaced by a line bundle L.

The Cayley components in M (GR) are constructed from the Lie theoretic
data of a magical slo-triple. In addition to the real form g®, each magical slo-
triple {f,h,e} C g defines a real form g5 of the centralizer go of the semisimple
element A (see Definition 2.14). We call g% the Cayley real form. We also show
that a magical sly-triple {f, h, e} is principal (see Proposition 4.5) in a simple
subalgebra g(e) C g defined as the semisimple part of the double centralizer
of {f,h,e}, i.e., the centralizer of the centralizer of {f,h,e}. This defines a
decomposition of the Cayley real form (see Proposition 4.8) as

o = OR,
where g® is either zero or a simple real Lie algebra and r(e) = rk(g(e)) is the
rank of g(e). Hence we have a real Lie group
(1.1) GE =GR x (RT)"(®),
which we call the Cayley group. This additional structure imposed by the
existence of a magical sls-triple leads to a concrete description of these new
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connected components in terms of moduli spaces associated to the Cayley
group.

THEOREM B (Theorem 7.1). Let G be a complex simple Lie group with Lie
algebra g and {f, h,e} C g be a magical sly-triple with canonical real form G,
Let g(e) C g be the semisimple part of the double centralizer of {f,h,e} and
GR = GR x (R+)T(e) be the Cayley group. Let X be a compact Riemann surface
of genus g > 2 with canonical bundle K, and let M(GR) be the moduli space
of GR-Higgs bundles over X. Then there are a positive integer m. and a well
defined injective, open and closed map

r(e)
(1.2) T, : Mgmer1 (G @ 0K+ — M(GR),

where {l;} are the exponents of g(e) and Mym.+1(GR) is the moduli space
of K™t _twisted GR-Higgs bundles. Furthermore, every Higgs bundle in the
image of V. has nowhere vanishing Higgs field.

Remark 1.1. The connected components in the image of ¥, are the Cay-
ley components. The integer m. and the exponents of g(e) come from the
decomposition of g as an slbC-module. Namely, as an slbC-module, g =
Wo ® Waop,, @ @] ng , where Wy, is a direct sum of a certain number
of copies of the unique 1rredu01ble slsC-representation of dimension 2k+1. See
Lemma 5.7 for more details.

The map W, is a moduli space version of the global Slodowy slice map for
Higgs bundles constructed in [20]. However, it is nontrivial to show that when
{f,h,e} is magical the Slodowy map descends to an injective map on moduli
spaces. Our proof relies on our third main result, namely the classification of
magical slo-triples given in Theorem 3.1.

THEOREM C (Theorem 3.1 and Proposition 4.1). Let g be a simple com-
plex Lie algebra, and let g® C g be a real form. Then g® is the canonical real
form associated to a magical sla-triple if and only if it is one of the following:

(1) g is any type and g® is its split real form;
(2) g has type Asp_1, Bn, Cpn, Dy, Do, or E; and g® is Hermitian of tube

type, i.e., gk is one of the following:

(a) Sty p,

(b) s02, (With 2+p=2n+1),

(C) 5p2n

(d) so2, (Wlth 24+ p=nmn),

(e) 504n7 or

(f) the real form of E7 of Hermitian type;
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(3) g has type B, or D,, and g® is 50,4 withl <p<gqandp+qg=2n+1 or
p + q = 2n, respectively;
(4) g has type Eg, E7, Eg or Fy and g® is its quaternionic real form.

Remark 1.2. A real form g® is called quaternionic if its associated Rie-
mannian symmetric space is quaternionic Kahler, equivalently, the maximal
compact subalgebra has a simple factor isomorphic to sus. Up to isomor-
phism, there is a unique quaternionic real form of type Eg, E7, Eg and Fy; see
[57, App. C].

The proof of Theorem C uses the correspondence between nilpotents in
classical Lie algebras and partitions, and classification data of Dokovié [24, 25]
for exceptional Lie algebras.

While a magical sla-triple {f, h, e} C g defines a canonical real form g* C g,
the generators {f, h,e} are not real, i.e., f,h,e ¢ g~. We can obtain real sly-
triples using the so called Cayley transform (see Section 2.4). The Cayley
transform of a magical sla-triple, denoted by { f , iL, é}, has each of its generators
in the canonical real form g®. This allows us to relate magical triples to the
Guichard—Wienhard notion of O-positivity. Recall that a nilpotent element
é € g® determines a parabolic subgroup PIéR C GR. The four families of pairs
(GR, PE}) which arise from magical slo-triples are the following:

(1) GR-split and P¥ is the Borel subgroup;

(2) GR is a Hermitian group of tube type and P]§ is the maximal parabolic
associated to the Shilov boundary;

(3) G® is locally isomorphic to SO, , and P¥ stabilizes an isotropic flag of the
form

RcR2c..-c R cRIP ... c RPHITL c RPHY,

(4) GR is a quaternionic real form of Eg, E7, Eg or Fy, so that its restricted root
system is that of Fy, and P? is determined by the simple roots {a1, as},
where

F,: o—0o=%=0—>0 -
a1 a9 as Qy
Comparing this list with Guichard-Wienhard’s classification of ©-positive
structures gives the following theorem.

THEOREM D (Theorem 8.14). Let G be a complex simple Lie group and
GR c G be a real form. A pair (GR,PHG%) admits a ©-positive structure if and
only if Pﬂé = PE},
sly-triple with canonical real from GE.

where {f, il, ¢} c g® is the Cayley transform of a magical

Remark 1.3. Even though Theorem D results from observing that the
two classifications agree, a posteriori, more can be said about the link between
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positivity and magical slo-triples. Namely, the collection of invariant cones
arising from a positive structure is exactly the orbit of the nilpotent é by the
identity component of the Levi factor Lg. It would be interesting to develop
the link between these two perspectives further.

To further relate the open and closed sets P.(G®) from Theorem A with
O-positivity, we prove that each of the sets P.(GR) contains an open set of ©-
positive Anosov representations. As above, let g(e) C g be the semisimple part
of the double centralizer of a magical slo-triple {f, h,e}. The Lie algebra g(e)
defines a split subalgebra g(e)® of the canonical real form g®. Let G(e)® ¢ GR
be the connected subgroup with Lie algebra g(e)®. One special property of
magical sly-triples is that their GR-centralizer C® is compact. By construc-
tion, the groups G(e)® and C® commute, so we can form a G®-representation
by multiplying a G(e)R—representation with a CR-representation. In Proposi-
tion 8.11 we show that the sets P,(G®) contain representations of the form

(1.3) P = PHit * PR © T 5 — GR,

where ppj; : 11X — G(e)® is a G(e)R-Hitchin representation and pgr : w1 % — CR
is any representation. This allows us to prove the following theorem.

THEOREM E (Theorem 8.21). Let G be a simple complex Lie group with
Lie algebra g. Let {f,h,e} C g be a magical sly-triple with canonical real form
GR C G. Then the set of representations puit * pcr from (1.3) are ©-positive
Anosov representations. In particular, each of the sets P.(GR) c X (GR) from
Theorem A contains a nonempty open set of ©-positive Anosov representations.

Remark 1.4. In the case that the magical sly-triple {f, h,e} C g defines a
principal sloC-subalgebra, this theorem is due to Labourie [61] in type A and
Fock—Goncharov [31] in general. For Hermitian groups of tube type, it is due
to [16]; see also [17]. It is expected that the sets P.(GR) correspond exactly to
the sets of ©-positive Anosov representations in all cases.

Our results follow on from several projects focused on the enumeration
or understanding of distinguished components in the moduli spaces of Higgs
bundles, and hence in character varieties for surface groups.

Given that Higgs bundles consist of an underlying principal bundle to-
gether with a Higgs field, it is clear that the topological type of the principal
bundle is an invariant of connected components in the moduli space. Similarly,
for the character varieties, the topological type of the associated flat bundle
is also an invariant of the components. For complex reductive Lie groups [63],
[35], and also for compact groups [68], the components are fully classified by
these topological invariants. The count is more complicated for G¥-Higgs bun-
dles, where GR is a noncompact real form. Indeed, this was already evident
in Goldman’s component count for G®-character varieties where GR is a finite
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cover of PSLsR [39], and in Hitchin’s Higgs-bundle version for SLoR [51]. Since
then the enumeration and study of connected components in Higgs bundle
moduli space for other noncompact real forms has been extensively pursued;
for example, see [52], [40], [12], [66], [36], [32], [37], [15], [19], [3], [45], [4], [5], [6].

From one perspective, the starting point for the present work is the de-
scription of the Hitchin components in [52]. In particular, Hitchin proved The-
orems A and B above for the case in which the magical sly-triple {f, h,e} C g
defines a principal sloC-subalgebra, i.e., Case (1) of the Theorems C and D.
Indeed, in this case, the first factor in (1.1) equals the center of the group
(which is finite), and Hitchin’s description is recovered exactly by the map
(1.2). The opposite extreme, where the second factor in (1.1) is H°(K?), oc-
curs in Case (2) of the classification theorems. In this case Theorems A and B
recover results for G®-Higgs bundles when GR is of Hermitian tube type (see
[13] and [9]). In particular, the moduli space M gme+1(GR) x HO(K?) has
me = 1 and is then exactly the moduli space of K?2-twisted Higgs bundles for
the Cayley partner to GR, i.e., the space which describes components with
maximal Toledo invariant. The third case in Theorems C and D includes the
case investigated in [3] for G® = SO, 4, in which case the map (1.2) recovers
the description of the “exotic” components identified in [3], but now adds the
remaining locally isomorphic groups.

From a slightly different perspective, our results relate to a program initi-
ated by Hitchin to count connected components by a Morse-theoretic method
[51], [52]. Described more fully in Section 7.5, the method is based on a proper
function F' : M(G®) — R defined by the L?-norm of the Higgs field, and ex-
ploits the fact that proper functions attain their minima on closed sets. The
locus of local minima thus has at least as many components as the full moduli
space. Obvious minima of F, where the Higgs field is identically zero, lie on
components detected by the topological invariants of principal bundles. The
existence of other components — including the ones we study in this paper
— is detected by more subtle local minima. In Section 7.5 we identify such
minima coming from the components in the image of (1.2) and use this to
enumerate the components.

We end this introduction with some open questions, organized in a series
of conjectures, and a short discussion on what remains to be proven.

CONJECTURE.

(1) A representation p € X(GR) is ©-positive if and only if p is in one of the
spaces Po(GR) from Theorem A.

(2) A connected component of X(GR) is a higher rank Teichmiiller space if
and only if it is a connected component of one of the spaces P.(GR) from
Theorem A or GR is a Hermitian group of nontube type and the Toledo
mvariant 1s maximal.
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(3) All components of X(GR) which are not higher rank Teichmiiller spaces are
uniquely labeled by invariants which depend only on the topological type of
GR-bundles over X.

(4) Other than the components in the image of the Cayley map (1.2) and
the components with maximal Toledo invariant for Hermitian groups of
nontube type, the components of M(GR) are uniquely labeled by topological
invariants of GR-bundles over X.

We note that the first two conjectures are consistent with Guichard—
Wienhard’s conjecture that positivity provides the correct unifying framework
for higher rank Teichmiiller spaces [47]. Since the first version of this paper
was released, one direction of the first conjecture has been settled. Namely, all
representations in the spaces P.(GR) are ©-positive. This had already been es-
tablished for split groups [31], [61] and for Hermitian groups of tube type [18],
[17]. For groups locally isomorphic to SO, 4, Beyrer-Pozzetti recently proved
that the space of positive representations is closed [8], and hence all represen-
tations in P.(SO, ) are positive. Separately, Guichard-Labourie-Wienhard
proved that positive representations are closed in the space of representations
which do not factor through proper parabolic subgroups [44]. Hence, by The-
orem A, positive representations define components of the character variety,
namely the components P.(G®). Very recently, this has been shown with a
proof independent from the results of this paper in [7].

The Hermitian groups of nontube type are locally isomorphic to SU,, , with
p # q, SO3,, 5 and Eg 14 For such groups, there is not a notion of positivity;
however, representations with maximal Toledo invariant always factor through
a maximal tube type subgroup where they are positive. Hence, maximal repre-
sentations into such groups define higher rank Teichmiiller spaces [18]; see also
[12], [9]. Note that if (2) holds, then (3) and (4) are equivalent. The simple
groups for which all conjectures have been established are PSL,R by [52] and
[61], the Hermitian real forms locally isomorphic to SU,, and SOz 3 by [12],
[11], [34], [41] and [18], the groups locally isomorphic to SO,  for 2 < p < ¢
by [3] and [8], and groups locally isomorphic to SU3,, and Spy,, o, by [36], [37].
The noncompact real forms of simple groups which are missing are Sp,,R for
n > 2, 505, SOz, for n > 3, and all real forms of exceptional type.
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2. Nilpotents and magical sly-triples

Let g be a finite-dimensional complex simple Lie algebra and G be a
connected complex Lie group with Lie algebra g. For background on nilpotents
we mostly follow [21].

2.1. Nilpotents and sly-triples. An element e € g is called nilpotent if the
corresponding adjoint map

ade:g— g

is a nilpotent endomorphism. The nilpotent elements of g form a G-invariant
cone consisting of finitely many G-orbits. In fact, there is a unique nilpotent
orbit which is open and dense in the nilpotent cone, and elements in this orbit
are called principal nilpotents. For example, when G = SL,,C, nilpotent orbits
are in bijection with partitions of n by the Jordan decomposition theorem. In
this case, a principal nilpotent is conjugate to a full Jordan block.

By the Jacobson—Morozov theorem, every nonzero nilpotent element e € g
can be completed to a triple of nonzero elements {f, h,e} C g satisfying

(2.1) [h, €] = 2e, [h, f] = —2f and le, f] = h.

Moreover, if {f, h,e} and {f’, h,e} are two such triples, then f = f’. A triple
{f,h, e} of nonzero elements verifying the bracket relations (2.1) will be called
an sly-triple, and the subalgebra (f, h,e) C g will be called the sloC-subalgebra
associated to {f,h,e}. This defines a bijection between conjugacy classes of
nilpotents and conjugacy classes of slaC-subalgebras

(2.2) {e € g nonzero nilpotent}/G RN {¢:s,C — g}/G.
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An slp-triple {f, h,e} defines two decompositions of g, one as an slyC-
module, namely,

M
(2.3) gs=EPpw;,
=0

where W; is isomorphic to a direct sum of n; copies (with n; > 0) of the unique
irreducible (j + 1)-dimensional slyC-representation. By sla-data of {f, h,e} we
will mean the collection of pairs of nonnegative integers (j,n;) such that, for
each j > 0, the multiplicity n; of W; is positive (so we consider the pair (0, ng)
part of the slo-data even if ng = 0). Another decomposition of g determined
by {f, h,e} is given by adp-weight spaces,

l
(2.4) =P g,
j=—1
where g; = {z € g | ady(x) = jr}. Note that ade : g; — gj42 and ad;y :
gj — gj—2. The subalgebra @, g; is a parabolic subalgebra determined by
the nilpotent e.

Remark 2.1. A nilpotent e € g is called even if ady only has even eigen-
values, i.e., if g; = 0 for all j odd. The slyC-subalgebra (f,h,e) C g, for
an even nilpotent e, defines a subgroup of the adjoint group of G which is
isomorphic to PSL,C.

The centralizer ker(ad.) = V(e) = V C g of e decomposes into a direct
sum of highest weight spaces of each W},
(2.5) V=@V
Jj=0
where V; = W;Ng;. We have the following proposition (see Lemmas 3.4.5 and
3.7.3 of [21]).

PROPOSITION 2.2. The subspace V C g is a subalgebra such that Vo = Wy
is a reductive subalgebra and @ ;-0 V;j 1s a nilpotent subalgebra. In addition,
for each j, k, the subspace W; N gy C g is preserved by bracketing with Wy.

Remark 2.3.

(1) Note that Vp = Wy C g is the Lie subalgebra which centralizes the sloC-
subalgebra (f, h,e). We will often denote this subalgebra by ¢ = Wy C g.
(2) The affine space
f+VcCyg
is a slice of the adjoint action of G on g through the nilpotent f, which is
usually called a Slodowy slice [75]. Note that ¢ preserves the Slodowy slice.

2.2. Magical sly-triples. Let {f, h,e} C g be an sly-triple. Note that

M
s=PPwng o

§=0 k=0
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and that W; N g;_op = ad’}(Vj). Consider the map o, : g — g defined by the
linear extension of

T ifz e ‘/0,
(- 'z if x € ad}(V;) for some 0 <k < j and j > 0.

(2.6) oc(x) = {

This defines a vector space involution of g with o¢|y;, = —1Id for j > 0. On the
given slo-triple, we have o.(f) = —f, oe(h) = h and o.(e) = —e.

Definition 2.4. An sly-triple {f, h, e} will be called magical if the involu-
tion o¢ : g — g defined by (2.6) is a Lie algebra involution. We will also refer
to a nilpotent element e € g as magical if it belongs to a magical sla-triple.

Remark 2.5. Although the terminology was not used, Hitchin showed in
[52, Prop. 6.1] that a principal slo-triple is magical.

Remark 2.6. Note that if {f, h,e} C g is magical and contained in a
reductive subalgebra g’ C g, then {f, h,e} is magical in the subalgebra g'.

We will classify magical nilpotents in Section 3, and by (2.2) this will
be equivalent to classifying magical slo-triples. A key feature of principal sl,-
triples is that the subalgebra gg is a Cartan subalgebra. We now generalize
this to magical triples. For an sly-triple {f, h, e}, let Zay,, = Wapm,; Ngo. Thus,
we have a decomposition of gg as a c-module

M
(27) go=¢D @ ng]..
j=1

PROPOSITION 2.7. If{f, h,e} is a magical sla-triple, then [Zoy,, Zam;] Cc
for all mi, my;, and [Zam,, Zom;| = 0 if m; # m;.
Before giving the proof we recall some facts about sloC-representation

theory. Consider the decomposition (2.3) of g. The Lie bracket defines a
morphism of sloC-representations:

M

[, ]: Wom, @ Wop, — Wo @ @Wka.
k=1

According to the Clebsch-Gordan formula, the tensor product Wa,,, ® Wom,

decomposes as a direct sum of irreducible representations

2 min(m;,mj)

Pn;n
(2.8) Wom, ® ngj = @ (Szmi+2m]~f2l) 17
=0

where S% is the d*"-symmetric product of the standard slyC-representation Wj.
The projection onto the summand (S§?™i+2mi=20)®nin; i5 given by contracting
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I-times with the volume form on C2. If we represent S2¢ as homogeneous poly-
nomials in 21, 29 of degree 2d, the elements z € Z,,,, and y € Zom; are multiples
of 2{"z5" and z;nj z;n 7, respectively. Moreover, since the volume form is skew-
symmetric, contracting (20+1)-times 2] z5"* with z{nj z;n 7 gives zero. Thus, the
projection of the bracket [z,y] to Zay,, is zero when m; +m; = my + 1 mod 2.

Proof of Proposition 2.7. Suppose that {f, h,e} is magical. Let x € Zay,,,
Y € Zam;, and write [z,y] = 20 + > 2, where 29 € ¢ and 23, € Zay,,. Note that
oe(20) = 20 and 0.(2) = (=1)™Flz,. By assumption, we have o.([z,y]) =
[oe(x), 0c(y)], thus

20 =+ Z(—l)mk+lzk = (—1)mi+mj (ZO + Z Zk)
In particular, if m; +m; = mj;mod2, then z, = 0. It follows, by the above
discussion, that z; = 0 for all £ > 0. Thus,
[Z2mi, Z2mj] Cec

for all m;,m;. Moreover, by Schur’s Lemma, the projection of the bracket
[z,y] to Wy is zero unless the decomposition of Way,, @ Way,, has the trivial
representation Wy as a summand. But by (2.8) this only happens if m; = m;,
completing the proof. O

By Proposition 2.7, a magical slo-triple {f, h,e} defines a Lie algebra
involution 6. : go — go,
T if x € Wy,

M
—x ifxe EBngj.
j=1

Remark 2.8. Note that 6. and o.|y, are different since .(h) = —h and
oe(h) = h.

(2.9) Oc(x) =

2.3. The canonical real form associated to a magical nilpotent. In this
section we mainly follow [1, §3]. A real form of the complex Lie group G is
defined to be the fixed point set G” of an anti-holomorphic involution

7:G— G.

We will sometimes refer to the involution 7 itself as a real form. Note that even
though G is connected, the real form G may not be connected. For example,
SOp,q C SOp44C is a real form which has two components whenever p or ¢ is
nonzero. If the fixed point set G” C G is compact, the real form is said to be
compact. Such real forms exist and are unique up to conjugation.

A holomorphic involution ¢ : G — G is called a Cartan involution for
a real form 7 if o7 = 70 and, in addition, o7 is a compact real form of G.
Given a real form 7, a Cartan involution ¢ for 7 exists and is unique up
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to conjugation by the identity component (G7)® € G™. Conversely, given a
holomorphic involution o, there exists a real form 7, unique up to conjugation
by (G?)Y, such that o is a Cartan involution for 7.

The following proposition will be useful (cf. [1, Th. 3.13]).

PROPOSITION 2.9. Let G’ C G be a reductive subgroup. If o : G — G
is a holomorphic involution of G with o(G') = G’ and 7q: is a real form of
G’ such that o|q is a Cartan involution for Tq/, then there exists a real form
7: G — G with o a Cartan involution for T such that T|q = 7qr. Conversely,
if 7+ G = G is a real form of G with 7(G') = G’ and og is a Cartan
involution for T|qs, then there exists a Cartan involution o : G — G for T such
that o|qr = oqr.

An involution o : G — G induces an involution « : g — g, and the Lie
algebra of the fixed-point group G is the fixed-point subalgebra g%. Moreover,
if & : G — G is holomorphic or anti-holomorphic, then « : g — g is complex
linear or conjugate-linear, respectively. In the latter case, g¢ is a real form
of g, ie., g*®@C=g.

Remark 2.10. An involution of the Lie algebra g does not always integrate
to an involution of the group G. However, every inner involution of g integrates
to G. Also, when G is an adjoint group or simply connected, every Lie alge-
bra involution integrates to G. Whenever we are dealing with Lie algebra
involutions, we will always assume G is a Lie group for which the involution
integrates.

Now fix a real form 7 of G, and let ¢ be a Cartan involution for 7. Denote
the fixed-point groups by GR = G™ and H = G?. Then

HR = HNGR

is a maximal compact subgroup of both G¥ and H. Furthermore, the associated
Lie algebra involution o : g® — g® defines an HR-invariant decomposition of
g® into +1-eigenspaces
g“ = omF,

called a Cartan decomposition. The associated H-invariant decomposition g =
h & m will be referred to as the complexified Cartan decomposition.

Now we go back to our setting. Since the definition of a magical sls-triple
involves a complex linear involution of g, there is a canonical real form of g
associated to each such triple.

Definition 2.11. Let {f,h,e} C g be a magical sly-triple and o : g — g
be the associated Lie algebra involution. Let 7. : ¢ — g be a real form such
that o, is a Cartan involution (2.6). The Lie algebra g® = g™ will be called
the canonical real form of g associated to {f, h,e}.
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Remark 2.12. The slyC-subalgebra s = (f, h,e) spanned by the magical
slg-triple is o.-stable. Moreover, o.|s is a Cartan involution for the conjugate
linear involution 7, : 5§ — s defined by

(2.10) 7s(h) = —h, Ts(e) = f and T(f) =e.

Since §7* is isomorphic to slbR, we can choose the canonical real form 7. : g — g
such that the magical slyC-subalgebra defines a subalgebra of g® isomorphic
to sloR.

Definition 2.13. Let {f,h,e} C g be a magical sly-triple and 0. : g — g
be the associated Lie algebra involution (2.6). Let 7. : g — g be a real form
such that o, is a Cartan involution. Let G be a connected complex Lie group
with Lie algebra g such that o, integrates to an involution o, : G — G and
let 7. : G — G be the anti-holomorphic involution integrating 7.. We define
the canonical real form GR of G associated to e to be the fixed-point group

G™ C G.

The Lie algebra of the canonical real form G is the canonical real form
g® of Definition 2.11. The complex linear Lie algebra involution 6. : go — go
defined in (2.9) also associates a real form to a magical sly-triple.

Definition 2.14. Let {f, h, e} be a magical sla-triple, go be the centralizer
of h and 6. : go— go be the Lie algebra involution from (2.9). Let 79 : go— go be
a real form, such that 6, is a Cartan involution for 79. The Lie algebra g’ C go
will be called the Cayley real form of gy associated to e and denoted by g%.

Remark 2.15. Note that 0| = o¢|. = Id : ¢ — ¢ is a Cartan involution for
a compact real form 7 of ¢. Thus, by Proposition 2.9, we can assume that the
canonical real form 7. : g — g and the Cayley real form 7y : gg — go are such
that 7.|c = 7c = 70|. In particular, the centralizer ¢™ of the sl;R-subalgebra
s’ C g" is compact (where s = (f, h,e)).

2.4. Real nilpotents and the Sekiguchi correspondence. The classification
of magical sls-triples will use the classification of nilpotent elements in real
Lie algebras and the Sekiguchi correspondence. Fix a real form 7 : G — G,
a Cartan involution ¢ : G — G for 7, and write GR = G7, H = G and
g = h & m for the complexified Cartan decomposition. In this section, we will
refer to slo-triples in g as slo-triples, to distinguish them from slsR-triples in
GR, which will also appear.

The Sekiguchi correspondence gives a one-to-one correspondence between
GR-conjugacy classes of nilpotents in g® and H-conjugacy classes of nilpotents
in m:

(2.11) {é € g® nonzero nilpotent}/GR — {e € m nonzero nilpotent}/H.

It was proven independently in [70] and [23].
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We now describe the correspondence in more detail and refer the reader
to [21, Ch. 9] and [1, §6.1] for further details. The Jacobson-Morozov theorem
also holds over R. Namely, every nonzero nilpotent é € g® can be completed to
an sloR-triple {f, h, é}, such that f h,écg® \ {0} satisfy the bracket relations
(2.1). Moreover, this defines a bijection on conjugacy classes

{é € g® nonzero nilpotent}/GR PN {¢:sbR — g®}/GE.

Following [21, Ch. 9.4], an slsR-triple {f, h, ¢} c g® is called a Cayley triple if
o(f) = —é, 0(é) = —f and o(h) = —h. Using Proposition 2.9, one can show
that every sloR-triple is (G®)%-conjugate to a Cayley triple. On the other
hand, an slo-triple {f, h,e} is called a normal triple if o(f) = —f, o(h) = h
and o(e) = —e. Note that every magical sly-triple is a normal triple with
respect to the Cartan involution (2.6).

The Cayley transform defines a bijection between Cayley triples in g® and
normal triples in g by

~ : Cayley triples Normal triples
{foh ey —— (5(f + e~ ih),i(e — f), 5(f + e+ ih)},

with inverse given by

(2.12) ~7!': Normal triples Cayley triples

Remark 2.16. We will refer to both v and 4! as the Cayley transform.
Note that ~ takes the standard generators of sloR to those of su; 1, and hence
is defined by conjugating by the Mobius transformation identifying the upper
half plane with the Poincaré disk.

For the proof of the following see, for instance, [21, Th. 9.5.1].

ProproSITION 2.17. The Cayley transform provides the bijection of the
Sekiguchi correspondence (2.11).

Definition 2.18. Let g® be a real form of g with Cartan involution o. A
Cayley triple {f,h,é} C g® is magical if its Cayley transform y({f, h,é}) C g
is magical and, moreover, gf is the canonical real form of y({f, h,é}). A
nilpotent é € g® will be called magical if it belongs to a magical Cayley triple.

Let { f , ﬁ, ¢} C g® be a Cayley triple and ¢® C g be its centralizer. Simi-
larly, let ¢ C g be the centralizer of its Cayley transform {y(f),v(h),v(é)} C g.
It is straightforward to check that ¢® ® C = c.

Recall that V' (y(é)) = ker(ad,()) C g denotes the centralizer of the nilpo-
tent y(é) € g.
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PROPOSITION 2.19. Let {f, h,é} C g& be a Cayley triple. Then {f, h,é}
is magical if and only if & C H® and dim(h NV (y(é))) = dim(c).

Proof. It {f,h,é} C g® is magical, then FQC = ¢ C h and V(v(é))Nh = ¢
by Definition 2.4. Conversely, if ¢® C h® and dim(h NV (y(é))) = dim(c), then
the Cartan involution o satisfies (2.6). Indeed, o is a Lie algebra involution
which preserves V(y(é)). Moreover, o equals Id on ¢, equals —Id on the

~

nontrivial highest weight spaces, and also o(v(f)) = —v(f). O

The first point of Proposition 2.19 says that the centralizer of a magical
Cayley triple is compact. For the dimension of h N V(y(é)) we will use the
following result.

PROPOSITION 2.20 ([60, Prop. 5]). The dimension of hNV (y(€é)) is given
by

dim(h 1 V(5(6))) = 5 ( dim(V(3(2))) + dim(H) — dim(m)).

3. Classification of magical slo-triples

In this section we classify (conjugacy classes of) magical sly-triples in
complex simple Lie algebras g. For classical Lie algebras, we use a classification
of nilpotents using signed Young diagrams. For exceptional Lie algebras, we
use results of Dokovi¢ in [24], [25].

3.1. The classification theorem. There is a complete invariant of conju-
gacy classes of nilpotent elements of g (and hence of sly-triples) called the
weighted Dynkin diagram. We briefly recall how this works and refer the
reader to [21, §3.5] for more details. Recall that the Dynkin diagram of g is a
diagram associated to a Cartan subalgebra a C g and a choice of simple roots
IT={ai,...,okg} C a*. Its nodes are labeled by the simple roots .

Consider an sly-triple {f,h,e} C g. Since h is semisimple, there exists
a Cartan subalgebra a C g containing h. Furthermore, we may choose a set
of simple roots II = {a1,...,amg} C a* so that a;(h) > 0 for all 4. In fact,
the properties of sla-representation theory imply that «;(h) € {0,1,2}. The
weighted Dynkin diagram associated to the sly-triple {f, h,e} C g is defined to
be the Dynkin diagram of (g, a,II), where the node associated to the simple
root «; is labeled by the integer «;(h). Note that an sly-triple is even (see
Remark 2.1) if and only if every node is labeled with either a 0 or a 2. It turns
out that if two sla-triples in g have the same weighted Dynkin diagram, then
they are conjugate. However, not every Dynkin diagram whose nodes have
labels in {0, 1,2} is the weighted Dynkin diagram of an sly-triple.

Here is one of the cornerstones of this paper: the classification of magical
slo-triples.
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THEOREM 3.1. Let g be a simple complex Lie algebra. Then an sly-triple
{f,h,e} C g is magical if and only if the associated weighted Dynkin diagram
1s one of the following:

(1) g is any type and every node is labeled with a 2;
(2) g has type Aan—1, By, Cpn, Dy, Doy, or Er with weighted Dynkin diagrams

(077}
Ay 11 0—0O0—O0O—0-0—0 B,: 0—0--0—0==0
0 0 0 2 0 0 0

2 0 0 0 0
0
Cp: 00000 D, : oo
0o 0 0 0 2 2 0 0 0 0 0
0 2
Doigni1y: o—o-- Dygn): o0—o--
0o 0 0 0 0 2 0 0 0 0 0 0

(3) g has type By, or D,, with weighted Dynkin diagrams

Qp—1 Qp—1 0
B,: o—o0o-0—0-0—0==0 :Dn: O——<)~~O——<}~~O——<X::Z
2 2 2 0 0 0 0 2 2 2 0 0 0 0

where 1l <p<n—1 for B, and 1 <p <n—2 for Dy;
(4) g has type Eg, E7, Eg or F4q with weighted Dynkin diagrams

0 0 2 0 0 2 2 0 0 0 0
o—o—io—o—o—o—o
Eg : Fy: O0—0=<¢=0—0
0 0 0 0 0 2 2 0 0 2 2

The following is an immediate corollary.

COROLLARY 3.2. FEvery magical sla-triple {f,h,e} C g is even. In par-
ticular, if g = b @ m is the £1-eigenspace of the Lie algebra involution (2.6),

d d
then ¢ = ker(h SN m) and moreover ads(m) SN ad?c (m) is an isomorphism.

3.2. The proof. We now prove Theorem 3.1. Let g® C g be a real form
of a complex simple Lie algebra and g = h & m be a complexified Cartan
decomposition. Let {f, h,e} C g be a normal sly-triple, and let ¢ C g be its
g-centralizer. We will classify (conjugacy classes of) magical slo-triples of g
among the normal ones. This will be done via the corresponding real notions
of Definition 2.18 by the Sekiguchi correspondence and using Propositions 2.19
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and 2.20. We will actually prove the theorem by classifying (conjugacy classes
of) magical nilpotents in g (see (2.2)).

We start with the exceptional case. In [24] and [25], Dokovi¢ computes the
dimensions dim(h N ¢) and dim(h NV (e)) for all real forms g* of simple excep-
tional Lie algebras. By Proposition 2.19, the normal triple {f, h, e} is magical
if and only if these dimensions are both equal to the dimension of ¢® C pR.

Proof of Theorem 3.1 for exceptional Lie algebras. For gf C g a real form
of inner type, the nilpotent orbits (thus the conjugacy classes of nilpotents)
are listed in tables VI-XV of [24]. The first column of each table lists the
associated weighted Dynkin diagram of g, the fourth column lists the dimension
of NV (e), the fifth column lists the dimension of hN¢, and the last column lists
the isomorphism class of ¢®. For the two outer real forms of ¢g, the weighted
Dynkin diagram is column 1 of Tables VI and VII of [25], while the dimensions
of hNV(e) and hN¢ are columns 9 and 10 of Table VI and columns 12 and 13
of Table VII.

Table 1 of Section 9 summarizes this information for inner real forms of g;
note that the real forms fZQO and ey 4 do not admit magical nilpotents. For
the two outer real forms of ¢g, there is only one magical nilpotent. Namely,
the real form ey 6 has no magical nilpotents and there is one magical nilpotent
in the split real form ¢8 (Table VII, row 20 of [25]). In this case, the weighted
Dynkin diagram is that of Case (1) of Theorem 3.1 and ¢® = 0. O

We now move to the case of real forms of classical Lie algebras. Conjugacy
classes of nilpotent endomorphisms of C" are in bijective correspondence with
partitions of n. Namely, if n = >, r;-i is a partition of n, with r; > 0 the mul-
tiplicity of 4, then the nilpotent endomorphism associated to this partition is

JEr
(31) € = . )
) .

where J; is the standard 7 x ¢ Jordan block. Notethat n =n-1=1+1+---+1
corresponds to the zero nilpotent whereas n = 1-n = n corresponds to the
principal nilpotent.

The following proposition classifies conjugacy classes of nilpotents in sl,,C,
$0,C and sp,,,C. For a proof, see [21, Ch. 5.1].

PropPOSITION 3.3. Let G be a connected complex simple Lie group with
Lie algebra g.
o For g = sl,C, G-conjugacy classes of nilpotents are in bijective correspon-
dence with partitions of n.
o For g = s02,+1C, G-conjugacy classes of nilpotents are in bijective corre-
spondence with partitions of 2n+1 = 32?1 ri -1, where r; is even whenever

1 1S even.
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o For g = sp,,C, G-conjugacy classes of nilpotents are in bijective correspon-
dence with partitions of 2n = 1221 r; -1, where r; is even whenever i is odd.
o For g =500,C, G-conjugacy classes of nilpotents are in bijective correspon-
dence with partitions of 2n = 21221 r; - 1, where r; is even whenever i is
even, except that there are two classes associated to partitions which have

r; = 0 for all i odd.

Note that the above proposition is independent of the choice of G under
the given conditions, since the any two choices are related by a quotient by
central elements.

Given a partition n = ;" r; -1, define the dual partition by n =377, s;,
where s; = 37 ;. The following proposition describes the centralizer of a
nilpotent and the centralizing subalgebra of an associated sloC-subalgebra; see
[21, Ch. 6.1].

PROPOSITION 3.4. Let g be s1,,C, s0,,C or sp,,,C. Let e € g be a nilpotent
element with corresponding partition n = > i r; - i and dual partition n =
> =185, with 2m = n for sp,,,C. Finally, let V(e) = ker(ade) C g be the
centralizer of e and ¢ be the centralizer of an associated sloC-subalgebra. Then
dim(V (e)) and ¢ are characterized as follows:

g s(,C 50,C P9, C
dim(V(e)) | Yjqs; -1 3OO0 18T =D ioda i) 3000187+ D i0ad i)
¢ 5(@?:1 g[r,,(c) @i—even 5]377@ @ @i—odd5onc @i—odd 5pr,(c D @i—even 507“i(c

The different noncompact real forms g® C g of the Lie algebras sl,,C, s0,,C,
§Ps,,C are described in Table 2 of Section 9. We follow [21, Ch. 9.3] for the
classification of nilpotents in these real forms. In s[,R and su3 ,, such classi-
fication can be phrased in terms of partitions. For the remaining real forms
in the mentioned table, it can be phrased in terms of signed Young diagrams.
Recall that partitions of n are described by Young diagrams. We will use the
convention that the Young diagram associated to a partition n = > ;7 - ¢
has r; rows of length i. A signed Young diagram is a Young diagram in which
each box is decorated with a + or — sign and these signs alternate along each
row. The signature of a signed Young diagram is (p, ¢) if there are p plus signs
and ¢ minus signs. Given a signed Young diagram, for each sub-diagram of
rows of length ¢, let p; denote the number of rows with leftmost box labeled +
and g; denote the number of rows with leftmost box labeled —. The following
proposition collects a set of propositions proved in Section 9.3 of [21].

PropPOSITION 3.5. The classification of conjugacy classes of nilpotent el-
ements in classical real Lie algebras reads as follows:

o SL,R-conjugacy classes of nilpotents in sl,R are in one-to-one correspon-
dence with partitions n = Y i r; - i, except thal there are two orbits
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associated to partitions with r; = 0 for all i odd. The centralizer of an
associated slaR-subalgebra is isomorphic to s(@;-; gl R).

o SU3,,-conjugacy classes of nilpotents in su3,, are in one-to-one correspon-
dence with partitions m = > ;> r; -i. The centralizer of an associated
slaR-subalgebra is isomorphic to s(PiL, u3,,)-

e SU, 4-conjugacy classes of nilpotents in su,, are in one-to-one correspon-
dence with signed Young diagrams of signature (p,q). The centralizer of an
associated slaR-subalgebra is isomorphic to s(@Di i Up,.q; )-

e SO, 4-conjugacy classes of nilpotents in so, are in one-to-one correspon-
dences with signed Young diagrams of signature (p,q) where even rows oc-
cur with even multiplicity and have their leftmost boxes labeled with +, ex-
cept that there are two orbits for diagrams in which all rows have even
length. The centralizer of an associated slaR-subalgebra is isomorphic to
@i—even sppiJrqiR @ @i—odd 50p;,q;-

e SO3,,-conjugacy classes of nilpotents in s03,, are in one-to-one correspon-
dence with signed Young diagrams of size m and any signature in which
rows with odd length have their leftmost boxes labeled with a +. The cen-
tralizer of an associated slaR-subalgebra is isomorphic to @; even 5P2p, 2¢; ©
Di-odd 5935, +4,):

o Sp,y,,R-conjugacy classes of nilpotents in sp,,,R are in one-to-one corre-
spondence with signed Young diagrams of size 2m of any signature where
odd rows occur with even multiplicity and have their leftmost boxes labeled
with +. The centralizer of an associated sloR-subalgebra is isomorphic to
@i—odd 5ppi+qiR D @i-even 50p;,q; -

° Sp2p72q—conjugacy classes of nilpotents in §Pop 04 are in one-lto-one corre-
spondence with signed Young diagrams of signature (p,q) in which even
rows have their leftmost boxes labeled +. The centralizer of an associated
sloR-subalgebra is isomorphic to @; odd 5P2p; 2¢; © Pi-even 503(pi+£1i)'

Remark 3.6. For the classical Lie algebras other than suj,  , so3 . P2y 24
the partition of the associated nilpotent orbit in the complexification g corre-
sponds to the Young diagram obtained by forgetting the signs. For su3, , so3 |
$Pop 94> the partition of the associated nilpotent orbit in g corresponds to the

Young diagram obtained doubling every row and forgetting the signs.

We now classify magical nilpotent elements for classical real forms in terms
of signed Young diagrams and partitions.

THEOREM 3.7. Let g be a real form of a classical complex simple Lie
algebra g. A nilpotent é € g® is magical if and only if it is one of the following
cases:

(1) g® = sl,R and the associated Young diagram has one row of length n;
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(2) gt = 50pptr1 OT git = $0,41,p and the signed Young diagram has one row
of length 2p + 1;

(3) gt = 50, , and the signed Young diagram has one row of length 2p — 1 and
one row of length 1;

(4) g® = sp,, R and the signed Young diagram has one row of length 2m;

(5) g® = sum, $05,,,5P0,R and the signed Young diagram has m-rows of
length 2 and the leftmost boxes are either all labeled + or all labeled —;

(6) gRgsopﬁq and the signed Young diagram has one row of length 2 min{p, ¢}
— 1 and (|g — p| + 1)-rows of length 1, where the labels of the length 1 row
are the same and opposite the label of the leftmost box of the row of length
2min{p, q} — 1.
Remark 3.8. In the first four cases, g® is split and we have the principal

nilpotent. Case (5) corresponds to Lie algebras which are Hermitian of tube

type, and the same holds in (6) if p =2 or ¢ = 2.

Proof. Let g® be a real form of a classical complex simple Lie algebra g
and g = h @& m be a Cartan decomposition. By Propositions 2.19 and 2.20
a nilpotent é € g® is magical if and only if the centralizer of an associated
slyR-subalgebra ¢® is compact and

(3.2) 2dim(c® @ C) — dim(V (v(¢))) — dim(h) + dim(m)

vanishes. Now we use Proposition 3.5 together with this criterion to detect
magical nilpotents in gX.

For g® = s[,R, ® = (@7, ol,,R). So c® is compact if and only if the
partition is n = 1 - n, i.e., the corresponding Young diagram has just one row
of length n. So we are left with this corresponding nilpotent é (namely, vy(é)
is the principal nilpotent). In this case, ¢® = 0. Moreover, the dual partition
is n = n -1 so Proposition 3.4, together with Table 2 of Section 9, show that
—dim(V(y(é))) —dim(h) + dim(m) = —n+1+n—1 = 0. Hence (3.2) is equal
to zero, so é € sl,R is magical, proving (1).

The remaining cases will be dealt with by a similar argument, where in
each case we use Proposition 3.5 to identify ¢® and then Proposition 3.4 and
Table 2 of Section 9 to compute (3.2).

For g* = suj,,, & = (@, u3,,) is compact if and only if r,, = 1 and
r; = 0 for i # m, so that ¢® = su} = suy. We are then left with the nilpotent
in é € suj,, whose corresponding nilpotent (under the Cayley transform) in
g = sly,,C is given by the partition 2m = 2 - m. Its dual partition is 2m =
Z?Zl sj, with s; = 2 for 1 < j < m and s; = 0 otherwise. Then (3.2) equals
6 — 6m. Hence the nilpotent € € suj,, can only be magical if m = 1. But suj
is compact and thus has no nonzero nilpotent elements (recall that magical
nilpotents are nonzero by definition), so é is not magical. We conclude that
suj,. does not admit magical nilpotents.
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Now consider the case of g% = su,,. Then ¢® = s(@? 7, ,.), which is
compact if and only if p; = 0 or ¢; = 0 for each i. The associated nilpotent in
sl,44C corresponds to the partition p+ ¢ = Zf;rf r; -1, where r; = p; + q;. We
see that (3.2) is given by

p+q p+q

(3.3) 2> =Y si—(¢-p),
=1 =1

with p4¢ = S7F%s; the corresponding dual partition. We want to understand
when (3.3) vanishes.
First assume r; = 0. Using s; = 7; + s;4+1 twice, (3.3) can be rewritten as

pHg—1 p+q

2 2

—4 Z TiSit1 — Zé’i —(g—p)"
i=2 i=3

If r; # 0 for some ¢ > 2, then this expression is strictly negative, therefore the
corresponding partition does not correspond to a magical nilpotent in su,, ,. If
79 is the only nonzero r;, the previous expression equals —(g — p)?, hence (3.3)
vanishes if and only if p = ¢. So the nonzero nilpotent determined by that
partition is magical and corresponds to Case (5) for g = s, .

Now suppose r; # 0. Since the Jordan block Jy is a 1 x 1 zero matrix,
a nilpotent é € su,, with r; # 0 is contained in a subalgebra isomorphic to
Sl 4 (in case 71 = p1) or sup 4, (in case 11 = ¢1). In this subalgebra, é
has no ri-term. If it is magical, then by the above argument we must have
r; =0 for i > 2 and ¢ — p = +ry. Thus, (3.3) is given by

2 2 2 2 2 2
2r{ +2r5 —r{ = 2rireg — 15 —ry — 1] = —21r1712.

This is zero if and only if 71 = 0 or 79 = 0, but we are assuming r # 0 and if
ro = 0 then é is the zero nilpotent. So there are no magical nilpotents in su, ,
other than the one detected in the previous paragraph.

Now consider g* = s0,,4. Then ¢ = @;_oven 59, 4, RODi-0dd 59p,¢;- This
is compact if and only if p; + ¢; = 0 for ¢ even and either p; =0 or ¢; = 0 for ¢
odd. The partition of the associated nilpotent in so,.,Cis p+q =S "Tr; -4,
where r; = p; + ¢; with p;,¢; under the stated conditions. Then twice the

quantity (3.2) is equal to

p+q p+q p+q

(3.4) 2> P => =Y si+p+a—(q—p)’
=1 =1 =1

First assume that r; = 0. If only one ry is nonzero, then p 4+ q = rp - k
and (¢ —p)? = r}, because in this case the odd number 7y equals the signature
+(p — q). Therefore (3.4) simplifies to ri(k — 1)(rx — 1). Since r = 0, this is
zero if and only if r, = 1 and thus £ = p + ¢ and k is odd. This proves that
Case (2) of the theorem is a magical nilpotent for soj 11 if the leftmost box is
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labeled — and s0p41, if the leftmost box is labeled +. Still assuming r; = 0,
and using again that s; = r; + s;+1, (3.4) can be rewritten as

p+g—1 p+q p+q

—4 Z r¢8i+1—253—zri+p+q—(q—p)2-
=2 =3 =1

If at least two r; are nonzero, then p + ¢ = Zf;q_l s; (because r,4, = 0) and
—4 Zfigil risit1 + 282 < 0. Such a nilpotent is not a magical one because

pt+q-—1 p+q ptq
-4 Z TiSi41 — ZS? —Zri +p+q—(¢—p)°
i=2 i=3 i=1
pt+q—1 p+q
<-4 Z risi+1+232—2nf(qu)2<0.
i=2 i=1

Now assume 71 # 0. As in the su, ,-case, the nilpotent é is contained
in a subalgebra isomorphic to so,_,, 4 or s0, ., and has no ri-term. If é
is magical, by the above argument, the partition must be of the form p + ¢
=ry-1+1-(2min{p, ¢} —1). Since the signature of the signed Young diagram is
(p, q), if the leftmost box of the row of length 2min{p, ¢} — 1 is labeled +, then
each row of length 1 is labeled — and vice versa. This means that (¢ — p)? =
(1 —71)2%. In this case (3.4) is given by
212 +2 -7 —1—(r1 +1)* = (2min{p, ¢} —2) + 71 +2min{p,q} —1 — (1 —r1)%
This expression always vanishes, proving Case (6) of the theorem.

For g® = 503, we have that ¢® = @, cven P2y, 2¢: DDioda 5o;(pi+qi). This
is compact if and only if p; + ¢; = 0 for all ¢ odd and either p, =0 or ¢; =0
for all ¢ even. So we are left with nilpotents é € so3,,, whose partition of the
corresponding nilpotent in s09,,C is (cf. Remark 3.6) 2m = Y/ (2r;) - 4, with
r; = p; + ¢; verifying these conditions. Then twice the quantity (3.2) is given
by

m m m
(3.5) 2> (2r)°+2> 2 — > 57 —2m,
i=1 i=1 i=1

where s; = 37", 2r;. Since r1 = 0 and s; = 2r; + 8i41, (3.5) is given by

m—1 m m
—4 Z 2r;Siy1 + 2 Z 2r; — Z 57 — 2m.
=2 =1 =3

If r; is nonzero for ¢ > 2, then the above expression is negative and the nilpotent
is not magical. If ry is the only nonzero r;, then (3.5) equals 4r9 — 2m. This
is zero if and only if 7o = % with 5 an integer. In such a case the nilpotent é

is magical, proving the part of Case (5) regarding so3, .
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Now consider g® = sp,,,,R. We have that
R
¢ = @ sppi+QiR@ @ 50p;,qi»
i-odd i-even

so it is compact if and only if p; + ¢; = 0 for ¢ odd and either p; =0 or ¢; =0
for all ¢ even, so we are left with nilpotents under these conditions. Write
2m = 2122"”1 r; - i for the partition of the associated nilpotents (by the Cayley
transform) in sp,,,C, where r; = p; + ¢; satisfy the previous constrains. Again,
twice the quantity (3.2) equals

2m 2m 2m
(3.6) 2> 1P —2) ri— Y s+ 2m,
i=1 =1 i=1

where s; = 232 rj. Since 1 = 0 and s; = 7; + s;4+1, (3.6) can be rewritten as

2m—1 2m 2m
—4 E TiSi+1 — E 512 -2 E r; + 2m.
=2 =3 =1

Similarly to the previous cases, if at least two r; are nonzero, then this expres-
sion is negative so the corresponding nilpotents are not magical. If 2m = ry - k,
then (3.6) is given by (2 — k)ri — 2ry + 2m, which is zero if and only if k = 2
or k = 2m. This proves Case (4) and completes the proof of Case (5).

Finally, let us consider gf = $Pop 94 in which case we know that R =
Di-odd 5P2p; 29, DDi-even sog(p#qi), which is compact if and only if p;+¢; = 0 for
every i even and either p; = 0 or ¢; = 0 for all i odd. Let 2p+2q = S0 0 2r; i
be the partition of the associated nilpotents in spy,,5,C (see Remark 3.6),
where each r; = p; + ¢; verifies the previous conditions. Then we have that
twice the number (3.2) is given by

p+q p+q p+q

(3.7) 2> (2r)*+ ) 2ri— > 57 —2p—20—4(¢—p)°,
=1 =1 =1

7

where s; = Z?Zq 2r;. If 11 =0, then (3.7) can be rewritten as

p+q p+q—1 p+q

2273- -4 Z 2riSit1 — Zs? —2p —2q — 4(q — p)*.
i=1 =2 1=3

This expression is always negative, hence no magical nilpotents arise with
ry = 0. As in previous cases, if r; # 0, then the nilpotent must lie in a
subalgebra isomorphic to §py,_ o, 2, O §Pa, 949y, and have r1 = 0 in that
subalgebra. Moreover, if {f, h, e} is magical in spy, 5, then it is magical in the
subalgebra (see Remark 2.6). But the previous argument says that there is no
magical nilpotent in such a setting. Hence spy, 5, does not admit any magical
nilpotents, and this completes the proof. [l
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It remains to translate the partition classification of Theorem 3.7 into the
weighted Dynkin diagram classification of Theorem 3.1. The algorithm for
doing this goes as follows. Let a C g be the Cartan subalgebra of diagonal
matrices, and choose the simple roots such that the positive root spaces cor-
respond to upper triangular matrices. Given a (signed) Young diagram from
Theorem 3.7, let e € g be the associated nilpotent given by (3.1). Complete
e to an sly-triple {f, h, e} such that h is a diagonal matrix. Finally, conjugate
{f,h,e} so that the eigenvalues of h are decreasing and compute a;(h). We
will sketch this process for one case; see [21, Chs. 3.6, 5.3] for more details.

Completing a nilpotent e € sl,,C to an sly-triple { f, h, e} with h diagonal
requires doing this for each Jordan block J. Such an sly-triple {f, h,e} is

given by
0 k—1 01
p1 0 k-3 o
) ) N 0 1 )
HE—1 0 1—k 0

where y1;=7j(k—j). Now consider Case (6) of Theorem 3.7 with p<q. Then the

resulting semisimple element h is diagonal with entries {2p —2,2p—4,...,2 —
2p,0,...,0}. Rearranging the matrix so that the eigenvalues are decreasing
yields

{(2p—2,2p—4,...,2,0,...,0,—2,—4,...,2 — 2p}.

Using [21, Lemma 5.3.3] when p + ¢ is odd and [21, Lemma 5.3.4] when p + ¢
is even, we conclude that the associated weighted Dynkin diagram is given by
Case (3) of Theorem 3.1. We leave the remaining cases to the reader.

4. Explicit data and real forms for magical sl,-triples

Associated to a given magical slo-triple {f, h,e} C g, in this section we
explicitly exhibit the sloC-module and adj-weight space decompositions (2.3)
and (2.4), the associated canonical real form of g of Definition 2.11 and the
Cayley real form of gg of Definition 2.14. We also show that the magical sls-
triple {f,h,e} C g arises from a principal slp-triple in a simple subalgebra
g(e) C g, defined as the semisimple part of the double centralizer of {f, h,e}.
Finally, we deduce the detailed Lie theoretic information for magical sls-triples
in Case (4) of Theorem 3.1.

4.1. sly-data. Recall from Definition 2.11 that a magical triple {f, h, e} of
g determines a canonical real form g® via the involution o, : g — g. Note that
the canonical real form of a magical sly-triple follows from Theorem 3.7 for the
classical cases and [24] for the exceptional cases.

PROPOSITION 4.1. The canonical real forms g8 C g associated to magical
slo-triples are given as follows:
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(1) In Case (1) of Theorem 3.1, g® is the split real form

g A, B, Cn D, |Es|E7|Es|Fs|Go
g% | sl 1R | 505041 | 5PonR | 505, | €Q [ e | ¢S | 1 | o3

(2) In Case (2) of Theorem 3.1, g® is the Hermitian Lie algebra of tube type
given by

g A2n71 Bn Cn Dn D2n E7

R —25
g SUppn | 5022n—1 5p2nR 5022n—2 SOZn ¢7

(3) In Case (3) of Theorem 3.1 with g = sonC, g® = s0, y_p.
(4) In Case (4) of Theorem 3.1, g® is the quaternionic real form of g

g | Ee¢| Er | Eg | Fy

R .2 | .5 .24 | o4
g €6 | €7 | %s fa

Let a C g be a Cartan subalgebra and denote the root space decomposition

by
g=ad @ Ja,
aEA
where A C a*\{0} is the set of roots and go ={y € g | ad,(y)=a(z)yVaxca} is
the root space of @ € A. Choosing a set of simple roots Il = {a, ..., g} C A
splits the roots into positive and negative roots A = ATUA™, where AT (resp.
A7) consists of roots azzzg a;o; with a; €Z=o (resp. a; € Z<g) for all i.
Let {f,h,e} be an sly-triple, with h € a and a;(h) > 0 for all o; € II
The element A acts on a root space g, with weight Efi’i a;a;(h), where a =
Zfﬁ a;a;. Thus, the adj-weight space decomposition (2.4) of g is given by
s=Pa,
JEZ

where g; is a direct sum of root spaces g, with a = Zigl a;a; and j =

i’i a;a;(h) if 7 # 0, and g is the direct sum of a and the set of root spaces
go With a = Zfﬁ a;a; such that 0 = Z;g a;ai;(h), ie.,
(41) go=ad @ Ja and g5 = @ gouj;éo‘

a(h)=0 a(h)=j

We record the Lie algebra gg of a magical nilpotent. This follows im-
mediately from (4.1) and from the weighted Dynkin diagram classification of
Theorem 3.1.

PRrROPOSITION 4.2. The subalgebra go C g associated to a magical sla-triple
in g is described as follows:

(1) In Case (1) of Theorem 3.1, go = CPrke,
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(2) In Case (2) of Theorem 3.1,

g A2n71 Bn Cn Dn D2n E7

go | slLCPsl,CPHC | 509, 1CHC | s[,CPDC | 509, 2CHC |5, CHC|egpC '

(3) In Case (3) of Theorem 3.1 with g = soNC, then go = CP~! @ s0n_2,12C.
(4) In Case (4) of Theorem 3.1,

g Es E7 Es Fy
go 5[3(C @5[3@ D Cz E[G(C S5 (CQ ¢g D (C2 5[3@ ©® CQ

The slaC-module decomposition g = @; W from (2.3) can be deduced
from the adp-weight space decomposition. Namely,

(4.2) n; = dim(g;) — dim(g;2).
Recall that the sly-data of a magical nilpotent is determined by the collection
of pairs of nonnegative integers {(mj,nj)}jM:O such that, for each j > 1, the

multiplicity noy,; of Way,; is positive. Thus, the slaC-module decomposition
of a magical nilpotent is given by

M
j=1
PROPOSITION 4.3. The sla-data of a magical sla-triple {f, h,e} is given
as follows:

(1) In Case (1) of Theorem 3.1, the set of {m;} is given by

A, :{0,1,2,...,n} B,:{0,1,3,...,2n—-1}| C,:{0,1,3,...,2n—1}
Dn:1{0,1,3,....2n—3,n— 1} | Bg:{0,1,4,5,7,8,11} | Er: {0,1,5,7,9,11,13, 17} |.
Es: {0,1,7,11,13,17,19,23,29} | F4:{0,1,5,7,11} Gy : {0,1,5)

For all cases, ng =0 and Nom,; = 1, with the exception that ngn,_o = 2 for
Da,.
(2) In Case (2) of Theorem 3.1, {m;} = {0,1} and ng and ny are given as

follows:

g A2n—1 Bn Cn Dn D2n E7

2 2 n(n —1) 2
ng | n®—1|2n"—5n+3 ——— 2n° —Tn+6 | n(2n+1) | 52
1
no | n? om — 1 n(”;) m—2 |n@n-1)]|27
(3) In Case (3) of Theorem 3.1, we have {m;} = {0,1,3,...,2p — 3,p — 1}

and

N —2p+2 p even and m;=p—,
(N —2p)(N —2p+1)

2

ng = and nom; = N—-2p+1 poddandmj=p—1,

1 otherwise,
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where N = 2n+ 1 in type By, and N = 2n in type D,,.
(4) In Case (4) of Theorem 3.1, {m;} = {0,1,3,5}, no =1, niop = 1 and ng

and ng are given as follows:

g |Es | Er | Eg | Fy4
ng| 8 |21 52| 3
ng| 8 |14 126 | 5

Proof. For Case (1), all the nodes of the Dynkin diagram have label 2,
and hence the nilpotent e € g is principal. We have that ng = 0 since the
g-centralizer of a principal slp-triple is trivial. The integers m; with ngy,; > 0
are the exponents of g (see [21, Ch. 4]).

For Case (2), there is one root ajs with label 2 and all other roots are
labeled 0. Moreover, if >  a;a; is the expression of the highest root, then
apyr = 1. Thus, the ady-weight space decomposition is g = g_o @ go P go and
the sloC-module decomposition is g = Wy @ W,. We have dim(gg) = no + no
and dim(g) = 3n2 + ng, hence ny = w.

We compute the cases of As, 1 and leave the rest to the reader. For the
Ay, 1 weighted Dynkin diagram, we have gg = sl,,_1C & C @ sl,,_1C. Hence,

ng = (4”2_1)_52712_2)_1 =n? and no = dim(g) — 3ng = n? — 1.

For Case (3), B,, and D,, are similar. We will prove the B,-case and leave
D,, to the reader. The proof is by induction, showing that

Qp—2 Qp—1
B,-1: o—o0-0—0-0—0=0 = B,: o—o--0—0--0—0==0"
2 2 2 0 0 0 0 2 2 2 0 0 0 0

The base case was proven in Case (2). Let a = Y77 aja; be a positive root

. s s p—1 . 3

in By,. The root space of a is in g, Sy the 2 ijl aj-eigenspace of ady,.
The set of roots with a; = 0 defines a subsystem of type B,_1, with

corresponding subalgebra s02,_1C C g. On the other hand, there are 2n — 1

positive roots in B,, with a1 # 0, namely,

{@‘:Z%} U {%ZﬁnwLZOék} -
Jj=1 ie{l,...,n} k=i i€{n,...,2}

7

We have

c 92i 1< p—2, 4 C g2p—2 P
g 3 - an g i
g gop—2 p—1<i<n K O2p-242(p—i) 2

N IN
NN

]
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In particular, for j > 0, we have

) dim(ggj N 502n71(C) +34+2n—-2p j=p-—-1,
dlm(ggj) =

Set 0oy, = dim(g2m; Ns02,1C) —dim(g2m ;12N s02,1C). Using (4.2) we have

dim(go; N s02,—1C) + 1 otherwise.

2n—2p+2 my=p-—1,

2p—2n—2 m;=p-—2,
Mam; = O2m; 14 | mj = 2p—3
0 otherwise.

The result for B,,_; gives the values of 6y, i Thus, we have ng=(2n+ 1 —2p)
“(n—p+1), ngm;=1form; € {1,3,...,2p -3} \ {p— 1} and

2n —2p+3 peven,
"2 Y9 _op 42 podd.

Finally, we refer to the diagrams in Section 9.2 to prove Case (4). In
these diagrams, the circles denote the positive roots and the integer labels
correspond the adp-eigenvalue on the root space. For Eg, we have dim(gg) =
2 + dim(e) =80, and

dim(glo) = 1, dlm(gg) = 1, dlm(gg) = 27, dlm(g4) = 27, dlm(gg) = 28.

Thus, the nonzero ngmj’s are nig = 1, ng = 26, no = 1 and ng = 52. This
settles the Eg case. The other cases, Eg, E7 and Fy4, are left to the reader. [

4.2. The centralizer ¢ and its centralizer. The next description of the cen-
tralizer ¢ of a magical sly-triple {f, h,e} C g follows, for classical Lie algebras,
from the partition classification of magical nilpotents of Theorem 3.7 and [21,
Th. 6.1.3]. For the exceptional Lie algebras, ¢ is the complexification of the
last column in the tables of [24]; see Table 1 of Section 9.

PROPOSITION 4.4. The centralizer ¢ C g of a magical sla-triple is given
as follows:
(1) in Case (1) of Theorem 3.1, ¢ = 0;
(2) in Case (2) of Theorem 3.1,
g
¢

Aanl B Cn Dy, Doy, E7 .
s0,C | 02,—2C | 50,,C | 502,3C | 5p5,C | f4 |’

(3) in Case (3) of Theorem 3.1 with g = sonC, ¢ = son_2,11C;
(4) in Case (4) of Theorem 3.1,

g| E¢ | Er | Eg| Fy
¢ | sl3C | spsC | 4 | 503C
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We now show that a magical sly-triple { f, h,e} C g arises from a principal
slp-triple in a simple subalgebra g(e) C g.

PROPOSITION 4.5. Let {f,h,e} C g be a magical sly-triple and ¢ C g be
the centralizer of { f,h,e}. Then the centralizer of ¢ is the direct sum 3(¢)&®g(e),
where 3(c) is the center of ¢ and g(e) C g is a simple subalgebra such that
{f,h,e} is a principal sla-triple of g(e). The subalgebra 3(¢) & g(e) is described
as follows:

e For Case (1) of Theorem 3.1, g(e) = g and 3(¢) = 0.

e For Case (2) of Theorem 3.1, g(e) = (f, h,e) = slbC and 3(c) = {0}, unless
g = s505C, in which case 3(¢) = ¢ = C.

e For Case (3) of Theorem 3.1, g(e) = s02,—1C C sonyC = g and 3(¢c) = 0,
unless g = s02,41C, in which case 3(¢) = ¢ = C.

e For Case (4) of Theorem 3.1, g(e) = Lie(Ga)! and 3(c) = 0.

Proof. First we identify the listed subalgebras g(e) and show they cen-
tralize ¢, then we establish 3(c¢) @ g(e) is the centralizer of ¢. The first part is
obvious in Cases (1) and (2).

For Case (3) of Theorem 3.1, the magical nilpotent e € soxC corresponds
to the Young diagram with one row of length 2p — 1 and N — 2p + 1-rows
of length 1, by Case (6) of Theorem 3.7. This corresponds to principally
embedding e in s02,_1C followed by the embedding s02,_1C C sonyC. In this
case, the centralizer ¢ of {f, h, e} is isomorphic to son_2,11C. The centralizer
of g(e) = s09,_1C is also isomorphic to son_2,+1C and contains the centralizer
of {f, h,e}. Thus ¢ centralizes g(e).

For Case (4) of Theorem 3.1, we use the classification of nilpotents by
Bala—Carter’s theory (see [21, §8]). Very briefly, G-conjugacy classes of nilpo-
tents in g are in bijective correspondence with G-conjugacy classes of pairs
(I,py). Here, [ C g is the Levi factor of a parabolic subalgebra of g and p; C [ is
the parabolic subalgebra of [ associated to a so-called distinguished nilpotent of
the semisimple part [[, [] of [, i.e., one which does not belong to any proper Levi
subalgebra of [[, []. In particular, the principal nilpotent in [[, [] is distinguished
and corresponds to the Borel subalgebra of [.

In the tables of [21, §8.4], the label of the nilpotent has the form X (a;),
where X is the type of the associated Levi [ and a; is the number of simple
roots in a Levi of p;. The notation Xy (ag) = Xy is used and, in this case, the
associated distinguished nilpotent of [ is principal. The labels of the weighted
Dynkin diagrams of the magical nilpotents from Case (4) of Theorem 3.1 are
Bs for g = §f4 and Dy for g = ¢g, ey, eg. Thus, the magical nilpotent in Fy

1We use the notation Lie(Gz) for the Lie algebra of the exceptional group G since go
denotes the weight 2 space of ad,.
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arises from the principal nilpotent in s07C C f4 and the magical nilpotents in
type E; arise from a principal nilpotent in s0gC C ¢; for i = 6,7, 8.

Now, a principal nilpotent in s07C or s0gC is induced by a principal nilpo-
tent in a subalgebra isomorphic of type Go, Lie(Gz2) C s07C C s0gC. More
precisely, for a principal slo-triple {f, h,e} C s07C C s0gC, the slosC-module
decomposition is

Wao @ We @ Wi,

where the multiplicity ng of Wy is 1 for so7C and 2 for sogC, and
Lie(Ga) = W @ Wiy,

Recall from Proposition 4.3 that the magical slo-triple in g = f4, ¢g, e7, esg of
Case (4) of Theorem 3.1 induces the sl;C-module decomposition

g=Wo® Wy Wgs @ Wi,

and we have g(e) = Wy @ Wi = Lie(Ga).

To complete the proof we claim that ¢ centralizes Wo & W19. We have
Wy = (f,h,e) and hence ¢ commutes with W5. The multiplicity of nig is 1.
Hence Z19 = W19 N go is 1-dimensional and ¢ acts by a character on Z19. But
¢ has no nontrivial characters by Proposition 4.4. The space Wig is generated
by the action of Wy on Zjg, so ¢ centralizes g(e) = Wy & Wh.

Finally we argue that 3(c) @ g(e) is equal to the centralizer of ¢. By Propo-
sition 4.4,

(4.3) go=C"ag

where 7(e) = rk(g(e)) and g = go,ss C go is the semisimple part of gg. More-
over, ¢ C g is the complexification of the maximal compact subalgebra of g. By
construction, g(e) Ngo = C7(©). Since § has a trivial center, the centralizer of ¢
in g coincides with the center of ¢. From Proposition 4.4, 3(¢) = 0 except when
¢ = 502C = C. So the intersection of the centralizer of ¢ with go is g(e) & 3(c).
Let z be an arbitrary element of the centralizer of ¢, and write x = )" xg; for
X € g2;. Since [c, g;] C g; we must have [z}, ¢] = 0 for all 5. For j > 0, we have
[c,adgc zj] =0 and adjc zj € go N (g(e)), and for j < 0, we have [¢,ad’(z;)] =0
and ad? z; € go N (g(e)). Since {f,h,e} C g(e), we conclude that z; € g(e) for
all j # 0. Hence, 3(c) @ g(e) is the centralizer of c. O

The following proposition is immediate from Propositions 4.3 and 4.5 (and
the proof).

PROPOSITION 4.6. Let {f,h,e} C g be a magical sly-triple and g =
@jj‘io Wom,; be the sloC-module decomposition.
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o For Case (3) of Theorem 3.1, we have

((p—1
YA p odd,
j=1
3(6) = 505, 1C =
(Wap—2Ngle)) ® @ Waj—2 p even.
=138

e For Case (4) of Theorem 3.1, g(e) = Lie(Gg) = Wa @ Why.

Finally, we prove the following lemma, which will be useful in the next
section.

LEMMA 4.7. Let {f, h,e} Cg be a magical sla-triple and G be a connected
Lie group with Lie algebra g, such that the involution o. in (2.6) integrates
to G. Let C C G be the centralizer of {f,h,e}. Then C centralizes the sub-
algebra g(e) C g described in Proposition 4.5.

Proof. In cases (1) and (2) of Theorem 3.1, this is immediate, since C is
the center of G in Case (1) and g(e) = {f, h,e} in Case (2). For cases (3)
and (4), note that we have [c, g(e)] = 0 by Proposition 4.5. Thus, we must
understand how the group of components mo(C) acts on g(e). Note that it
suffices to show that C acts trivially when G is simply connected.

For G simply connected and e € g a nilpotent, the fundamental group of
the G-orbit G- e C g is given by the components of C (see [21, Lemma 6.1.1]),

(G- e) = m(C).

For Case (4) of Theorem 3.1, m1(G - e) is trivial (see [21, §8.4]). Thus, C is
connected and we conclude that C acts trivially on g(e).

For Case (3), we have m1(G - e) = mo(C) = Z/2Z [21, §6.1]. The SONC-
centralizer of {f, h,e} also has two connected components since it is given by
S(01C x On—2p+1C) = On_2p+1C [21, Th. 6.1.3]. Thus, it suffices to prove
that the SOnC-centralizer of {f,h,e} also centralizes g(e). In this case, we
have that g(e) C g is 509, 1C C sonC, and the SO nC-centralizer of sog,_1C
is S(O1C x On—_2p+1C). Thus, C centralizes g(e). O

4.3. The Cayley real form. By Proposition 4.2 the subalgebra g9 C g
associated to a magical sly-triple has the form

g0=C"“ag=gNgle)®s.

Recall that it has a special real form — the Cayley real form — denoted by
g% and defined in Definition 2.14.
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ProproSITION 4.8. Let g% C go be the Cayley real form associated a mag-
ical sly-triple {f,h,e} C g. Then

9 =R @ g¥,

where g C § is the real form with complexified mazimal compact subalgebra
¢ Cg. Thus,

(1) for Case (1) of Theorem 3.1, gk = R™k¢;
(2) for Case (2) of Theorem 3.1,

g A2n—l Bn Cn Dn D2n E7
X |R®sl,C | R®s012, 2 | ROsL,R | RB 5019, 3 | ROsub, | RDes 0

(3) for Case (3) of Theorem 3.1, g& 2 RP™1 @ 501 N_gpt1;
(4) for Case (4) of Theorem 3.1,

EG E7 Eg Fy
g5 [R2@sl3C | RZ @ suf | RZD e ™® | RZps3R

Proof. The Cayley real form is the real form of gg with the property that
the complexification of the maximal compact subalgebra is ¢. The classification
follows from Proposition 4.4. O

Remark 4.9. Note that, in all of the cases, each Zom, with nom; = 1
contributes with an R-factor to g§. In Case (2), the R-factor of g§ is given
by (h), the real span of h, and in Case (3), with p even, an additional R-factor
arises from g(e) N Zap—o.

Let g® C g be any real form of a complex reductive Lie algebra, with
complexified Cartan decomposition g = h @ m. Recall that the real rank of g®
is defined to be the maximal dimension of a subalgebra a C m such that the
direct sum of a with its h-centralizer is a Cartan subalgebra of g.

From Propositions 4.1 and 4.8, a simple comparison of the real ranks (see,
for instance, Appendices C.3 and C.4 of [57]) proves the next result.

PROPOSITION 4.10. Let {f,h,e} C g be a magical sla-triple. Then the
real rank of the canonical real form g& equals the real rank of the Cayley real
form gﬂg.

We will also need the notion of the Cayley group G%.

Definition 4.11. Let {f, h,e} C g be a magical sly-triple with Cayley real
form gf = (RT)"(®) @ g®. Let G be a connected Lie group with Lie algebra g
such that the involution o, from (2.6) integrates to an involution o, : G — G.
Let GR C G be the canonical real form and C C G be the centralizer of
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{f,h,e}. Then the Cayley group of {f,h,e} and G is the group
GE = (R)"© x GE,

where GR is the real Lie group with Lie algebra §® and maximal compact
CnGR.

Remark 4.12. In general, the complexification of the maximal compact of
the Cayley group G%R is GZNC=HNC. For a principal sly-triple, C=Z(G) C G
is the center of G and g = 0. Thus GR = Z(GR) is the center of G¥. In
particular, C # C N H in general. For example, when G = SL,,C and {f, h, e}
is a principal slo-triple, C = Z/nZ is the center of SL,,C but the center of the
canonical real form SL,R is either Z/27Z or trivial.

4.4. Lie theory structure for magical nilpotents in exceptional Lie alge-
bras. Let {f, h,e} C g be a magical sly-triple from Case (4) of Theorem 3.1.
In this section we will study the structure of the magical sly-triple in more
detail. The root poset diagrams in Section 9.2 will be important, so they are
frequently referenced in this discussion. In these diagrams, the labeling of a
line connecting a positive root § to a higher positive root v corresponds to the
simple root o for which v = 3+ a;. The labeling of every line can be deduced
from the labeling of the leftmost line of each row.

Recall that the sloC-module decomposition (2.3) is g = Wy ® Wy @ W5 @
Wio, the Z-grading (2.4) is g = @?:,5 g2; and the subalgebra g(e) C g de-
scribed in Proposition 4.5 is g(e) = Lie(Ga) = Wy @ Wip. The complexified
Cartan decomposition of the involution o, : g — g is g = h @& m, where
(4.4)

h=9gs®g-1DgDgaDgs and m=g_10Dg—6Dg—2D g2 D go D Guo-

Each of the weight spaces go; with j # 0 is a direct sum of root spaces as
in (4.1). From the diagrams in Section 9.2, it is clear that the weight spaces
g+2 decompose as a direct sum of two go-representations,

(4.5) g2 = g% ® 014,

where gg is the root space of the simple root & in the diagrams in Section 9.2,
and g4, is the direct sum of root spaces in g3 C g+2 with 8 # £a. We can
then decompose f € g_2 and e € gy as

(4.6) f=f+F and e=-¢ep+e,

where ¢y, f, and €, f are the projections of e and f onto gft2 and g+, respec-
tively. Define further h = [¢, f].

LEMMA 4.13. Each of the terms f, fy, € and ey in (4.6) is nonzero.



838 BRADLOW, COLLIER, GARCIA-PRADA, GOTHEN, and OLIVEIRA

Proof. The sloC-module decomposition g=Wy ® Wy & W @ Wig implies
that ady : gio— gs and ady : g6 — g4 are isomorphisms. The map ady : g10— gs
is equal to ad 7 since gg and g1 are root spaces which differ by the root &. So f
cannot be zero. On the other hand, ads : g6 — g4 is given by ady, since g4 and
g6 are both a direct sum of root spaces gg, where 8 has the form 8 = > n;a;
and the coefficient of & is 1. So again f, # 0. Similar arguments imply é # 0

and ep # 0. (]

Note that & is a red root labeled with a 2 in Section 9.2. Denote by
{p1, B2, B3} the other red root spaces which are still labeled with a 2. We
claim that {&, f1, B2, O3} are a Dy-system with

Bs
Dy:
61 a BQ .

Since there is an action of the symmetric group on three letters on the roots of
Dy, the choice of which §; corresponds to which root space in gg is irrelevant.

LEMMA 4.14. The root spaces associated to the red roots in the diagrams
of Section 9.2 form a subalgebra isomorphic to sogC.

Proof. The proof is by direct computation. The positive roots of Dy are

(4.7) {&, B1, B2, Bs} U {07 + Z nzﬂz} U{2a; + 81 + B2 + B3}

n;€{0,1}

Using the expression of 8; in terms of the simple roots of g, one checks that
{&, p1, B2, P} satisty the relations of a Dy root system and that no other linear
combinations of {&, 51, B2, B3} define roots in g. From the diagrams Section 9.2,
it is clear that &+ 3; is a root, but none of 3; + 3;, & — 8; or 3; — 3; is a root.
Any other linear combination of &, 31, 82, 83 will have the coefficient of & being
nonzero and a coefficient n; > 2. All such roots in g are listed in the tables in
[57, App. C.2] and one checks that the only expressions which are roots of g
are in (4.7).2 O

Recall that the coroot h, associated to a root o € a* is defined by h, =

*

2<aa—a>, where o* € a satisfies (a*,z) = a(z) for all z € a. Let Ay C a* denote
a set of positive roots with simple roots {1, ..., i)}, and let {f, ha,, e}

be slp-triples with e; € go, and f; € g—o,. This data determines a principal

2Note that in the notation of 9.2, & = ai,as for g = e7,es, respectively, while in the
notation of [57, App. C.2], & = a7, as for g = e7, ¢s, respectively.
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slo-triple {f, h,e} C g given by

rk(g) rk(g) rk(g)
h=> ha=Y riha, €= \rie, f=> rifi
acAt =1 i=1 i=1

For the simple roots {&, 1, 82, B3} of Dy, the above construction yields
3 3 3
(4.8) {f h,e} = {\/ﬁfﬁ\/éZfﬁj, 12hd+62hﬁj,\/ﬁed+\/ézeﬁj}.
j=1 j=1 j=1

LEMMA 4.15. A principal slo-triple {f, h,e} C s0sC C g in the sogC-
subalgebra from Lemma 4.14 is a magical sla-triple in g from Case (4) of
Theorem 3.1.

Proof. Consider the simple roots {&, 1, 82, 53} of Dy and the principal
sly given above. We must show that the numbers a;(h) match the weighted
Dynkin diagrams from Case (4) of Theorem 3.1. Let «; be a simple root of g
which is not in {1, 52, 83}. Then «; is orthogonal to &, and

3 3
a; (12% - 62115].) = o <6Zhﬂj>.
j=1 j=1

If o; is orthogonal to each f3;, then a;(h) = 0. For g = ey, eg, respectively,
the simple roots {a4, s, a7}, {a2, a3, a4, a5} are orthogonal to each f;. For
the remaining simple roots «; ¢ {&, f1, B2, B3}, there is a unique f; such that
«; + B; is a root and there is a unique Sx # 5; such that —q; + B is a root.
Hence

(o, Br) 12 (o, Br)

(B, B1) (Brs Br)-

Since the roots, 8;, Bk, a; + £ and a; — B have the same length, we have
ai(ﬁ) = 0. Finally, if ;1 is the simple root which is also a simple root of g,
then &(h) = 2 and S;(h) = 2. Thus, the weighted Dynkin diagram of {f, h, &}
corresponds to a magical sla-triple from Case (4) of Theorem 3.1. O

3
i <12hd +6) hﬁj> = 6a;(hg,) + 6a;(hg,) = 12
j=1

LEMMA 4.16. Let {f,h,e} C g be a magical sly-triple from Case (4) in
Theorem 3.1. Then ga Cg(e) is a simple root space for g(e) associated to a long
root and {(ep) Cg(e) is a simple root space for g(e) associated to a short root.

Proof. This follows from the fact that Lie(Gy) C s0gC and a principal
slo-triple in Lie(Ggz) is also principal in sogC. Using the decomposition (4.8),
we have e, = V/12(eg, + ep, + €p,) and é = V6es. A direct computation
shows that {€,e,} generate the positive roots of Lie(Gz) with highest root
2 [ens [ews en, 1] -
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Remark 4.17. For Case (4) of Theorem 3.1, this gives a direct proof that
the sum Wy @ Wig in the slbC-module decomposition of g is a subalgebra
isomorphic to Lie(Ga).

Recall that the canonical real form g® associated to {f, h,e} is the quater-
nionic real form of g. Thus, h = slbC P, where b’ is spgC, slgC, 5015C and e7
when g is f4, ¢, ¢7, eg, respectively.

LEMMA 4.18. The decomposition b = sloC @ b/ is given by

(4.9) sLbC=g_s® [g-s,08 s and h = g-4® [g-1,04] B g4

Proof. Tt is clear that § = g_4 @ [g_4, g4] ® g4 is a subalgebra and g_g @
[9-s,0s] @ gs is a subalgebra isomorphic to sloC. Note that [gig,g+4] = 0
since there is not a weight-12 summand of the grading. Using the root poset
diagrams in Section 9.2, gig and gi4 are direct sums of root spaces g, with
a = £1& + 3,25 ni;. This implies that [gs,g-4] = 0 and [g—s,04] = 0
since [gs, 9—4] C g4 and [g_s, g94] C g—4. Now the Jacobi identity implies that
[0, 9-5 © [gs, 9-s] ® gs] = 0. O

LEMMA 4.19. Consider the decomposition h = sloC @b from (4.9) and
the decomposition of m from (4.4) and (4.5). Then m decomposes as

g0 ® g9 @ 05 B g-a
m= @
gia ® g% @ 9-6 D g-10
where the rows are §’-invariant and the columns are slosC-invariant.
Proof. Observe that g+4, g+6, g+8, g—g are direct sums root spaces g,
with o = ), n;a, where the coefficient of the simple root & is &1 and g419 is
the root space for £a& + v where gg is the root space for the root ~. Thus, the

rows are preserved by bracketing with g44 and the columns are preserved by
bracketing with gis. (|

Finally, we deduce some bracket relations which will be useful later.

LEMMA 4.20. Let {f,h,e} C g be a magical sly-triple from Case (4) of
Theorem 3.1, and let g = Wy & Wy & Ws & Wi be the slsC-module decom-
position. Let f = f, + f and e = e, + € be the decompositions (4.6) and
Vs = ker(ade |wy). Then, for any ¢ € Vg,

(4.10) ad}, () #0 € g-s,

(4.11) ad}(¢) = [fo, [f, Lfv, @11] = [[fs, £, Lfor 91,
(4.12) adg, o f = [fo f1,

(4.13) ad}, |, f = ad}, (f) +3ad}(¢) + adj o ady, (f).
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Proof. Equation (4.10) follows directly from Lemma 4.16 and the bracket
relations in Lie(Gg). For equation (4.11), we have

ad}(¢) = [fo + . o + [, Lo + F, 1.
Since ad g = 0 C g4, [f,¢] =0, and so

ad}(¢) = [fo Lo, [for O] + [F, [F s Ufor @11) + [F [fos Los S11] + Lo LS, [, 011

We will show that the first three terms are zero. Recall that gg is a direct sum
of root spaces g, where the coefficient of & is 1. Thus,

[fo, [f5,0]] € 05 and [f,[fp, 0] C g5.
Since [g%,, g=a) = 0, the first two terms are zero. For the third term, note that
ad?cb(Vﬁ) C ga is the projection of adff(Vg) onto gg. But gz C Wy @ Wi by
Lemma 4.16 and adfc(VG) N Wa @ Wig = 0. Hence ad?cb(gi)) =0 for ¢ € Vg, and

ad}(¢) = [fv, [f. Lo, S11]-

The Jacobi identity and ad%, (¢) = 0 imply [fs, [f, [fo, 6]]] = [[fs. f1, [fs, 0]]-
Equation (4.12) follows since [g_g, g¢] = 0. For (4.13), we have

ad}, () = [fo + &, [fo + &, Lo, f1]]
since [f, ¢] = 0. Thus,

ad%, .y = ad® (F) + [fos [0, U FIN] + (65 Lo Ui 1] + ad2([fis F1)-

The middle two terms are in gg. Using the Jacobi identity and [f, ¢] = 0, we
have

[fo, [P, [fes F1I] + [, [fo, [fe, f1]
= —fo, [ &, £oll] = [[for £1, (&, Fol] = [fos [Lfor £, 8]
= Ufo: [F [for O] + [Ufor J1, [For G1) + [fss [F, Lfos 1]
= 3ad}(9),
by (4.11). O

As a result of the above discussion, we have the following proposition.
Recall that a nonzero nilpotent is magical if it belongs to a magical sla-triple.

PROPOSITION 4.21. The nilpotent [fy, f] C g—4 is a magical nilpotent in

b’ of the type of Case (2) of Theorem 3.1, and [fv, [fv, [fb, f]]] is @ magical (i.e.,
nonzero) nilpotent in slyC.

Remark 4.22. Note that [g°,,g%] C go is isomorphic to [gs,g_4], thus
{fs,[en, fol, en} C g% @ [g5, 6% 5] @ gb is a magical nilpotent from Case (2) of
Theorem 3.1.
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We also need to understand the group H and its action on m. Let G and
H’ be the simply connected groups with Lie algebras g and b’, respectively.
From the description of the Lie algebras h’ above, H' is SpsC, SLgC, Spin;5C,
E7 when g is f4, ¢, ¢7, es, respectively. The group H C G is a quotient

H= (H/ X SLQC)/ZQ,

where Zy has generator (¢/, ug) for i/ € H and py € SLoC are the unique order
two elements of the center.

As an H-representation, m is the tensor product m = V' ® V5, where V5 is
the standard representation of SLyC and V” is an irreducible H'-representation
known as a minuscule representation. The decomposition b’ =g_4®[g_4, g4]Pg4
defines a maximal parabolic subgroup P’ C H' with Lie algebra [g_4, g4]®g4. In
fact, V' is the irreducible representation associated to the Pliicker embedding
of H'/P" — P(V"); that is, H' /P’ is isomorphic to the unique closed H'-orbit in
P(V'). For example, when H' = SLgC, V' = A3CS is the third exterior product
of the standard representation of SLgC and SLgC/P’ is the Grassmannian
of three planes in C5. When §’ = ¢7, then V' is the unique irreducible Eq-
representation of dimension 56.

The following result describes the H'-orbit structure of P(V”’). We refer
the reader to the work of Landsberg—Manivel, specifically [62, §5.3]. For the
case H' = SLgC, this orbit structure was described in [27]. For SpgC and
Spin;,C, some aspects of the orbit structure are described in [54], and for E
in [49].

PROPOSITION 4.23. Consider the action of H on P(V') described above.
There are four H'-orbits, 01,09, O3, O4. Moreover, the following facts com-
pletely characterize O1, O3, Oy:

(1) Oy is closed and isomorphic to H' /P,

(2) O3 has codimension one and O3 is the tangent variety of H'/P’;

(3) p € O3 if and only if p is contained in a unique tangent line of H' /P,
(4) Oy is open.

In the decomposition of m given by Lemma 4.19, the subspace g5 ®© g°, @
g_¢ D g_10 is H-invariant and hence isomorphic to the representation V’. The
following proposition will be used in the next section.

PROPOSITION 4.24. Consider the H'-invariant subspace of m given by
95 © 9% 06D g-10-

(1) The point (£,0,0,0) € ga @ g° 5 ® g_6 D g_10 defines a point in the closed
orbit in P(ga ® g o ©g_6 D g_10) whose stabilizer is the parabolic subgroup
P’ of H' with Lie algebra [g—a4,g4] @ 4.
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(2) For all p € C, a point (ué, f,0,0) defines a point in the codimension-
one orbit of P(gs ® g° o ® g6 © g_10) whose stabilizer is contained in the
parabolic P’.

Proof. Write a point in §" as (z,y,2) € g_4 P [g—4, 94] & g4, and consider
(6,0,0,0) € V' = ga ©g’» © g_6Dg_10. The bracket is given by

[(.%',y, 2)7 (év 0, 070)] = (A(y)é, [Q?, é}v 0, 0)7

where A(y) € C and where [r,é] € g°, is zero if and only if 2 = 0. Thus,
the H'-stabilizer [€,0,0,0] € P(V') is the parabolic subgroup P’ C H' with Lie
algebra [g_4, g4] © 4.

For the second point, we first analyze the case u = 0. Note that ady, :
g_4 — g_g is an isomorphism and dim(g”,) = dim(g_g). Thus,

dlm(P(V/)) = dim(g4 D g_4) +1= dim(h') — dim([g4, g_4]) + 1.
So [0, f»,0,0] € P(V’) is in the codimension-one orbit O3 if and only if
dim({w € b’ | [w, fo] = Afp for some X € C}) = dim([g_4, g4])-

To show this, write w = (z,y,2) € g—4® [g—4, 4] @ g4. Then the bracket [w, f]
is given by
[(‘Tv Y, Z)a fb] = ([27 fb]7 [y7 fb]7 [ZL‘, fb]7 O) € V/'

Since ady, : g4 — g4 is surjective and ady, : g4 — g_¢ is an isomorphism, the
space of (x,0,2) € b’ with ad(, o) fo = Mfp has dimension dim(gs) — 1.

Recall that [f, f] € g_4 is a magical nilpotent from Case (2) of Theo-
rem 3.1. For y € [g_4,04], we decompose [g_4,04] = [[f, f5],94] ® ¢. Then
ady, : [[f, fo], 94] — g%, is an isomorphism, so there is a one-dimensional sub-
space of [[f, f3], 94] which acts on f, by scalar multiplication. Since [c, f3] = 0,
we have

dim({w € b’ | [w, fp] = \fp for some A € C})
= dim(g4) — 1 + 1 + dim(c) = dim([g_4, g4])-

By the above computation, the Lie algebra of the stabilizer of [0, f;,0,0] €
P(V') is contained in [g_4, g4] D g4, which is the Lie algebra of P’. To show that
the stabilizer of [0, f;,0,0] is indeed contained in P’, we use the description of
the codimension-one orbit O3 of Proposition 4.23. Namely, there is a unique
projective line £ C P(V’) which is tangent to the closed orbit H'/P’ and passes
through [0, f5,0,0]. This line is given by

(X)) = [é,\fp,0,0] € P(V).

Since the tangent line is unique, the action of the stabilizer of [0, f3,0,0] on ¢
must fix the intersection of ¢ with the closed orbit, which is given by [¢(0)] =
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[€,0,0,0]. Since the stabilizer of é is P/, we conclude that the stabilizer of
[0, f5,0,0] is contained in P’.

Finally, since ady, : g4 — ga is surjective and [fs, g4] = 0, for every p € C,
there is x € g4 such that Adexp(a)(0, f5,0,0) = (1€, f3,0,0). Thus, [ué, fy,0,0]
and [0, fp,0,0] are in the same H’-orbit. Moreover, since the stabilizers of
[1€, fp,0,0] and [0, fp, 0, 0] are conjugate via exp(z) € P/, we conclude that the
stabilizer of [ué, fp,0,0] is contained in P’; completing the proof. O

5. Higgs bundles and the Cayley map

From now on, X will denote a fixed compact Riemann surface of genus
g = 2, with canonical bundle K. All geometric objects we will consider are
over X. Let H be a complex reductive Lie group.

5.1. Higgs bundles. Let £&g — X be a holomorphic principal H-bundle.
Given a holomorphic action of H on a space Y, we denote the associated fiber
bundle by &u[Y] = (€u x Y)/H, where (2,9)-g = (z-g,97"' -y). When V
is a vector space, Eg[V] is a holomorphic vector bundle, and when H acts by
group homomorphisms on a complex Lie group G, then E4[G] is a holomorphic
principal G-bundle.

Definition 5.1. Let G be a complex reductive Lie group, V be a complex
vector space with a holomorphic G-action and L be a holomorphic line bundle
on X. An L-twisted (G,V)-Higgs pair is a pair (€g, @) consisting of a holo-
morphic G-bundle &g — X and a holomorphic section ¢ € H°(Eg[V] ® L).
The section ¢ is called the Higgs field.

There is a natural C*-action on the set of L-twisted (G, V')-Higgs pairs
given by

Our main objects of interest, Higgs bundles, are a particular class of Higgs
pairs.

Definition 5.2. Let GR C G be a real form of a complex semisimple Lie
group G. Let H® ¢ GR be a maximal compact subgroup, H C G be its
complexification and g = h & m be a complexified Cartan decomposition. An
L-twisted GR-Higgs bundle is an L-twisted (H,m)-Higgs pair (€q, ©).

We will denote the set of L-twisted GR-Higgs bundles by H1(G®). When
the twisting line bundle L is the canonical bundle K, we will refer to a K-
twisted GR-Higgs bundle simply as a GR-Higgs bundle and write H (GF) =
H(GR).

Let Ey be the smooth underlying bundle of a holomorphic bundle &y.
The gauge group Gy of smooth bundle automorphisms of Ey acts on Hp(GF)
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by pulling back the holomorphic structure and pulling back the Higgs field. In
particular, if (€, ¢) is an L-twisted Higgs bundle and g € G (Fn), then

g ¢ = Ady(p).
The automorphism group of an L-twisted Higgs bundle (£, ¢) is the group of
holomorphic gauge transformations g of &y such that Ady(¢) = ¢.

Ezample 5.3. Here are some relevant examples of Higgs bundles:

e The complex group G can be regarded as a real form of G x G. In this situa-
tion H = G, m = g, and an L-twisted G-Higgs bundle is thus a pair (g, ),
where £g is a holomorphic principal G-bundle and ¢ € H°(Egg] ® L).

e For GR = RT, an L-twisted GR-Higgs bundle is just a holomorphic section
w of L.

e For GF = PSR, we have HEX C* and m=m~ @m* = (f) @ (e) = Ca C.
To be consistent with later notation, we set H = T for GR = PSLyR. The
adjoint action of T on m is given by

(52) A (fa 6) = ()‘_lfv )\6),
where A € T.

e For G® = SLyR, we have H = C*, m = (f) @ (e) and the action of H is
A (fa 6) = ()‘_2f7 )‘26)'

Definition 5.4. The uniformizing Higgs bundle for the compact Riemann
surface X is the PSLoR-Higgs bundle (&7, f), where Ep is the frame bundle of
the canonical bundle K — X and f € H(E[(f)]® K) = H°(O) is a constant
nonzero section.

Remark 5.5. Since deg(K) = 2¢g—2 is even, the uniformizing PSLoR-Higgs
bundle (&, f) lifts to an SLyR-Higgs bundle (v, f), where & is the frame
bundle of one of the 229 square roots K 3 of the canonical bundle. We will call
such a Higgs bundle a [lift of the uniformizing Higgs bundle of X. Using the
standard representation of SLyC on C2, an SLoC-Higgs bundle is a holomorphic
rank 2 bundle V' with trivial determinant and a holomorphic bundle map ¢ :
V — V ® K. For a lift of the uniformizing Higgs bundle, we have

(V.0)= (K2 @K 2,(90): K3 @K 2 » K: 9 K3).

Given two Lie groups Hi, Hs and holomorphic principal Hy, Ho-bundles
&n,, €n, respectively, the fiber product &, X x &n, is a holomorphic principal
(H; x Ha)-bundle. When H;,Hs C H are commuting subgroups, the multipli-
cation map m : Hy x Hy — H is a group homomorphism and (&u, X x &n,)[H]
is a holomorphic principal H-bundle. This is analogous to twisting a vector
bundle by a line bundle. We will use the notation

(5.3) (Emy * Em,)[H] = (En, xx Eny)[H]-
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5.2. The Cayley map. We first describe the global Slodowy slice construc-
tion of [20] for an arbitrary even nilpotent e € g. When e € g is a magical
nilpotent (recall from Corollary 3.2 that every magical nilpotent is even) this
leads to GR-Higgs bundles, where G® is the canonical real form associated to
the corresponding magical sls-triple.

Let e € g be an even nilpotent, {f, h,e} C g be an associated sla-triple and
G be a connected Lie group with Lie algebra g. Let S C G be the connected
subgroup with Lie algebra the sloC-subalgebra s = (f, h,e) and C C G be the
centralizer of { f, h,e}. When S = PSLsC, let (£, f) be the uniformizing Higgs
bundle of X, and when S = SLyC, let (&7, f) be a lift of the uniformizing Higgs
bundle of X to SLsR. The embedding T < S < G defines a holomorphic G-
bundle £g = E7[G| by extension of structure group.

Given a holomorphic C-bundle &¢ — X, consider the holomorphic G-
bundle

SG = (5@ * 5T)[G]
with the notation (5.3). Since C and T preserve the subspaces g; "1 W; C g

(in particular, the highest weight subspaces Vj; cf. (2.5)) and also (f) C g, the
adjoint bundle £g[g] decomposes as

Ealo] = (o * En)la] = EP (€ * €n)lgj),

JET

and (Ec + &1)[V;] C (Ec * E1)]g;] and (Ec ~ E1)[(f)] C (Ec * E1)[g—2] define
holomorphic subbundles. Moreover, since C acts trivially on (f),

(EcxEn(H = E[(N)] = K,

by (5.2). Therefore, from a holomorphic C-bundle £¢ and from sections ¢; €
HO((Ec* Er)[Vj] ® K), we define the G-Higgs bundle

(5.4) (Ea,p) = ((Ec*ET)G], f+do+ d1+ -+ dn)-

Recall that Zom, = Wam, N go. We have that go = Wy & @I, Zom,
and, since e is even, ad}nj : Vom,; — Zom; is an isomorphism. Thus, viewing
f as a holomorphic section of (Ec * E1)[g] ® K, we have an isomorphism of
holomorphic vector bundles

ad}”j D (Eox &) [Vam,] ® K = 0 Zom,] ® Kt

where we have used the fact that T acts trivially on Za,,, to identify Ec[Zom;]®
K™t with (Eg * Er)[Zam,] ® K™

Now let B.(G) denote the set of tuples ((Ec, ¢0); Ymys- -, Ymy ), Where
(€c, ¢o) is a holomorphic C-Higgs bundle and ¢y, € H°(Ec[Zom,] @ K™
By the above discussion, the Higgs bundles of the form (5.4) can be described
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by the map
(5.5)
U, : B.(G) H(G)

(8C7¢077[)m17"'7¢m1\7) — ((SC*ET)[GLJC+¢O +¢m1 + +¢mN>

where ¢, € H((Ec*E1)[Vam,] ® K) and 1y,; = ad?lj (¢m;). We will refer to
this map as the Slodowy map; see also [20].

Note that the map W, is equivariant for the action of the C-gauge group G¢.
More precisely, if ¢ € Go, then g x Idt € Gg is a G-gauge transformation of
(Ec *E7)[G], and

/\176(9 . (5C7 ¢071/}m17 sy me)) = g*IdT '/\:[76(507 ¢0:7/1m17 ... 71/}7711\1)-

LEMMA 5.6. Let e € g be a magical nilpotent and GR c G be the canon-
ical real form. Then the Higgs bundle V.(Ec, ¢o, Ymys- - Ymy) from (5.5) is
contained in H(GR) if and only if o = 0 and the bundle Ec reduces to C N H.

Proof. Let g = hdm be the complexified Cartan decomposition of the real
form g®, hence given by o.. By the definition of a magical nilpotent, h € b,
c=WoCh, Vo, Cmand f € m. Thus,

(o x&r)[G] = (Ec * &) H[G]

if and only if £c 2 Eoru[C], and f+¢o+dm, + -+ Pmy € H'((EcxEr) MR K)
if and only if ¢g = 0. U

Given a magical sly-triple { f, h, e} C g, recall the subalgebra g(e) C g from
Proposition 4.5 and the Cayley real form g§ =R@g g® from Proposition 4.8.
The Cayley group is defined to be the real Lie group G% = (]RJF)’"(e) x GR,
where GR is the real Lie group with Lie algebra §® and maximal compact
C N GF (see Definition 4.11). Recall from Proposition 4.3 that the slp-data of
a magical slp-triple has at most one m; > 0 with dim(Za,,,) > 1.

LEMMA 5.7. Let {f, h,e} C g be a magical sly-triple with sly-data {mj}j]\il,

and let g(e) C g be the subalgebra from Proposition 4.5. Then there is a natural
identification

r(e)
{2 € Bo(G) | We(x) € H(GH)} ¢ Hyomert (GF) x [ Hyety 1 (RT).
j=1

Here me is zero in Case (1) of Theorem 3.1 and is the unique positive m; with
dim(Zay, ) > 1 otherwise. The integers {l;} are the exponents of g(e), which are

{mj}j]vil Cases (1), (2) and (3) with p-even of Theorem 3.1,
{i;} = {mj}j]\il \{p—1} Case (3) p-odd of Theorem 3.1,
{mj}j]\il \ {3} Case (4) of Theorem 3.1.
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Remark 5.8. Recall that Hp(RT) = H(L), so

r(e) r(e)
HKmC+1 >< HHKZJ+1 7'[ch+1 >< HHO Kl +1)
Jj=1

Let Z(GR) be the center of GR. In Case (1) of Theorem 3.1, H gme+1(GR) is
the finite set of Z(G®)-bundles on X so the value of m,. is unimportant.

Proof. By Lemma 4.7, C acts trivially on g(e) N go. When nay,; = 1, we
have Zop,, C g(e) and thus ¢y, € H(Ec(Zam,) @ K™it) = HO(K™it1). This
proves Case (1).

From Proposition 4.6, we see that for Case (3) with p odd and Case (4),
we have g(e) N Zay,, = {0} and g = ¢® Zay,,.. Thus, (Ec, ¥m, ) is a KMe-twisted
GR-Higgs bundle whenever £c reduces to CNH. Thus, for Case (3) with p-odd
and Case (4), the result follows.

For Case (2) and Case (3) with p-even, we have Z,, Ng(e) = C, by
Propositions 4.5 and 4.6. Thus Zs,,, decomposes C-invariantly as Zs,,, = Com,
where the C-factor is g(e) N Zay,, and g = ¢ @ m is the Cartan decomposition
giving the real form g&. Hence

EclZom. | ® Kmetl o2 gmetl g Eclm] ® Kmetl:

Thus: <5C7 wmc> = (€Ca dme+1 @qzmc% where dm.+1 € HO(KmC+1) and (807 QLmC)
is a GR-Higgs bundle whenever £ reduces to C N H. O

To summarize, from a magical sly-triple {f, h,e} C g, the Slodowy map
(5.5) defines a map

\If Hch+1 >< H/HKIJ'H —) H(GR)

given by
N ~ ~ r(e)
(56) \I/e((gC7 wmc)a q1y--- 7Q7“(e)) = <€C *5T[H]7 f + (Z)mc + Z q])7
=1

where GF is the canonical real form of e; here ¢y, = ad ™ (tm,) and ¢; €
HO(K%+*1). Note that by a slight abuse of notation, we have left the isomor-
phism of line bundles ad;lj implicit and denoted the image of ¢; by the same
symbol.

We will refer to the map (5.6) as the Cayley map since it generalizes the
Cayley correspondence of [9] which concerns Case (2) of Theorem 3.1. In the
subsequent sections we will show that the Cayley map actually preserves the
polystability conditions, hence descends to a map on moduli spaces, which will
be injective, with open and closed image.
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Remark 5.9. Note that everything we just described also holds when the
line bundle K is replaced by another twisting line bundle L — X. So there
is a similarly defined Cayley map; for the L-twisted version, one takes &t to
be the holomorphic frame bundle of L when S = PSLyC and &1 to be the
holomorphic frame bundle of a square root of L when S 22 SL,C. In particular,
when S 2 SL,C, the degree of L must be even.

5.3. The Cayley map is injective on gauge orbits. In this section we prove
the Cayley map is injective on gauge orbits. We will use the following lemma.

LEMMA 5.10. Let {f, h,e} C g be an sly-triple and g = @,z 95 be the
associated Z-grading. Let P C G be the parabolic subgroup with Lie algebra
p = @j>00;, and let z,2" € V = ker(ade). If an element g € P satisfies
Ady(f +z) = f+a, then g € C, with C C G the centralizer of {f, h,e}.

Proof. Since z € p, we have Ady(x) € p. Thus, Ady(f+z) = f+2' implies
Adgy(f) = f. The intersection of the centralizer of f with Pis C. Sog € C. O

PROPOSITION 5.11. Let {f, h,e} C g be a magical sla-triple, and let
Vet Hyemert (GF) x [THD H 1 (RY) —— H(GF)
be the Cayley map from (5.6). Then two points

/\ﬁe((gCﬂHaz/N}mC%QIv"'7%"(6)) and /\ﬁe((gémH,T/ch),q/l,---,q;(e)>

are in the same H-gauge orbit if and only if (Ecnm, Ym,) and (SémH,zZJ;nc) are
in the same C N H-gauge orbit and moreover q; = q} for all j.

Proof. We will prove Proposition 5.11 for each case of Theorem 3.1. Note
that it suffices to prove the result for the adjoint group Gaq. Indeed, consider a
general G and let 7 : G — Gaq be the covering. An H-gauge transformation g :
EcxEr[H] — EL*Er[H] induces a gauge transformation between the associated
bundles for the adjoint group, and if the induced gauge transformation is valued
in 7(C N H), then g must be valued in C N H. The C N H-gauge group acts
trivially on the differentials g;, so if g is valued in CNH, then ¢; = qg- for all j.

Case (1) was proven in [52] using the Hitchin section and moduli spaces.
Alternatively, suppose ¢ : Ecnu * ET[H] — £ * Er[H] is a holomorphic gauge
transformation such that

rk(g)

rk(g)
Ad (143 )=+ Y4
j=1 j=1

The Lie algebra bundle decomposes as Ecnu * E1(g] @ K = @ Ecnu * E1(g; N
Wom,] ® K with each summand Ecqp * E1[g; N Wop,| ® K =2 K7+l Since g is
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holomorphic, we have

Ad, <@ECQH*(€T[gj] ®K> C @5CNH*ST[QJ'] ® K.

Jj=0 Jj=0

Hence g is valued in the intersection of H with the parabolic subgroup associ-
ated to @;-(g;. Thus, g is valued in CNH by Lemma 5.10.

For Case (2) of Theorem 3.1, the Z-grading is g = g_2 ® go @ g2 with
b = go. Hence, any gauge transformation g : Ec * E7[H] — &G * Ep[H] is valued
in the intersection of H with parabolic subgroup associated to go ® go. By
Lemma 5.10, g is valued in C N H.

For Case (3), Proposition 5.11 was proven in [3, Lemma 4.6] when G =
SONG, ie., for GR = SOpq- As a result, we focus on G = PSONC. For
N-odd, SOyC = PSOyNC and we are done. For N-even, the centralizer C
of the magical slo-triple is On_2,4+1C for G = SONC and On_2,+1C/ = 1d
for G = PSONC (see [21, Th. 6.1.3]). But N even implies On_2p+1C/ =
Id = SOn_2p+1C. Since every SOn_2p4+1C-bundle lifts to a On_2,+1C-bundle,
every PSONC-Higgs bundle in the image of ¥, lifts to an SOnC-Higgs bundle
in the image of 0.

For Case (4), we use holomorphicity and Proposition 4.24 in order to
be able to apply Lemma 5.10. Recall that the space m decomposes as in
Lemma 4.19. Write the Higgs field as

(a6 ¢3 & f
(5.7) ]“rq2+¢3+6]6—(q2 50 0),
where the rows are sections of Ec % (g0 © g6 ® g5 @ g-a) ® K and Ec %
Etlga ® g% 5 ® g6 ® g10) ® K, respectively. Recall also that g = slbC @ b =
g-8DPg-a1DgoD gs D gs.

Consider a holomorphic gauge transformation g : EcxEp[H] — EL*Er[H].
We have ¢ E1[g_g] = K~*, thus holomorphicity implies

Adg(Ec % E[g-4 @ go ® g4 ® gs]) C EG * E[g—a B 9o B g4 P gs)-

Hence g is valued in the parabolic of P C H with Lie algebra g_4 ® go ® g4 ® gs.
The action of P on m preserves the top row of (5.7). If it preserves the image
of ., we have the gauge transformation

ag (a6 ¢ & FY_ (@ o5 (@) f
\N@ f 0 0 @& fo 0 0]

By Proposition 4.24, the gauge transformation ¢ is valued in the parabolic of
H with Lie algebra gg & g4 & gs. Thus, Lemma 5.10 implies g is valued in
CnNH. 0

We have the following immediate corollary.
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COROLLARY 5.12. Let ((Ecnm, zﬁmc), q1,- -, 4r(e)) be in the domain of the
Cayley map (5.6). Then the automorphism group of ((Ecnm, @mc), Q- Qr(e))
is equal to the automorphism group of ﬁe((&’cmH,ﬁmc), qiy- -5 Qr(e))-

6. Moduli spaces of Higgs bundles

6.1. Stability conditions and moduli spaces. In this section we introduce
the moduli space of L-twisted Higgs bundles, recall some of its features and
discuss related objects. For this section, we fix a compact Riemann surface X
with genus g > 2. We start by recalling the notions of (semi,poly)stability and
the moduli spaces for Higgs pairs. See [33] for more details. Let G be a complex
reductive Lie group with Lie algebra g, equipped with a nondegenerate G-
invariant C-bilinear pairing (-, -). Let K® C G be a maximal compact subgroup
with Lie algebra £X.

An element s € i€® defines a parabolic subgroup P, and a Levi subgroup
Ls of G by taking

Ps={ge G| e*ge™ is bounded as t — oo} C G,
Ly ={g€G|e®ge " =g forall t} C P,.

Also, given a holomorphic representation p : G — GL(V'), we have the sub-
spaces

Vi = {v € V| p(e"¥)v is bounded as t — oo},

(6.1) 0 .
Ve ={veV|pe’)v=uvforall t} C V.

Here, V; C V is Ps-invariant and VSO C Vs is Lg-invariant. For the adjoint
representation Ad : G — GL(g), we have that g C g, are the Lie algebras
[y C ps of Ly C P,. Since (s, [ps,ps]) = 0, the element s € it® defines the
character of pg

Xs = (s,—) :ps — C.

Given a holomorphic G-bundle £z, we define the degree of a structure
group reduction from G to P4 using Chern—Weil theory and the character ys.
Let L§ = K®NL, be a maximal compact subgroup of Ly; the inclusion L§ C Ly
is a homotopy equivalence. Now suppose &p, C &g is a reduction of £g to
Ps. There is a further reduction &z C Ep, which is unique up to homotopy.
Consider a connection A on & ¢ with curvature Fa € Q*(Ez [1]). Then xs(Fa)
is a 2-form on X with values in i/R. Define the degree of the reduction p, C Eg
to be the real number

deg(Ep,) = % /X o(Fa).
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Let dp : g — gl(V) be the differential of p and 3® be the center of €¥.
Consider the orthogonal decomposition 3® = ker(dpr)@ker(dp‘ﬁR)L, and define

£ = 5, + ker(dp) ™,

where €5, is the semisimple part of €. Thus € = £ + ker(dpjz). We are now
ready to define a-stability notions for o € i3%.

Definition 6.1. Let o € i3%. An L-twisted (G, V)-Higgs pair (£g, ) is

e a-semistable if for any s € i¢® and any holomorphic reduction &p, C &g
such that ¢ € H(Ep,[Vs] ® L), we have deg(&p,) > (a, s).

e «-stable if for any s € iE]E and any holomorphic reduction &p, C &g such
that ¢ € H(Ep,[Vs] ® L), we have deg(Ep,) > (a, s).

e a-polystable if it is a-semistable and whenever s € €% and Ep, C &g is a
holomorphic reduction with deg(€p,) = (a, s), there is a further holomorphic
reduction &£, C Ep, such that p € HO(EL, [VO ® L).

Remark 6.2. In this paper, the case @ # 0 will only appear in very
specific situations, therefore we will refer to 0-(semi,poly)stability simply as
(semi,poly)stability. It is clear that the (semi,poly)stability of a Higgs pair is
preserved by the action of gauge group and the C*-action from (5.1).

Remark 6.3. Consider an L-twisted G-Higgs bundle (g, ¢) for a semi-
simple Lie group G. Using the adjoint representation, we can form the Higgs
vector bundle (£g[g],ad,). In this case, O-polystability of (g, ) is equiva-
lent to the polystability criterion involving degrees of invariant subbundles.
Namely, (£g, ) is O-polystable if and only if for any holomorphic subbundle
V C Ealg] with ad,(V) C V ® L, we have deg(V) < 0 and furthermore, if
deg(V) = 0, then (Eclgl,ady) splits as a direct sum of stable Higgs vector
bundles of degree 0. This follows from the Hitchin—Kobayashi correspondence
(see Section 6.4).

Remark 6.4. Let G; — G2 be a covering and (£g,,¢) be a Ga-Higgs
bundle which lifts to an Gi-Higgs bundle (g, , ¢), i-e., £q,(Ga) = Eg,. Then
(Ea,, ) is polystable if and only if (€g,, ¢) is polystable. Indeed, any holomor-
phic parabolic reduction £p, C £g, induces a holomorphic parabolic reduction
Ep,(Ge) C &g, and any holomorphic parabolic reduction Ep, C g, lifts to a
reduction &p; C &g, .-

The following result will be useful. For a proof, see [33, §2.10].

PROPOSITION 6.5. Suppose that (Eg, ) is a strictly polystable L-twisted
(G, V)-Higgs pair. Then there exist an s € i®, a holomorphic reduction &, C
Eq with deg(&p,) = 0 and p € HO(&L, (VY) ® L) such that (EL,, ) is stable as
an L-twisted (Ls, V0)-Higgs pair.
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We will only need to consider the moduli space for L-twisted GR-Higgs
bundles over X, where GF is a real form of G. Denote it by M (GF). We
define it as the space of gauge orbits of polystable L-twisted GR-Higgs bundles

My (GF) = HP*(GF) /G,
where HP*(G®) < Hp(GR) is the subset of polystable L-twisted GX-Higgs
bundles.

In order to endow My, (GR) with a topology, suitable Sobolev completions
must be used in standard fashion; see [29], where a detailed adaptation to
Higgs bundles is studied in the case G = GL,,C. Then the orbits of the Gy-
action on Hz(G®)P* are closed in the space of semistable G®-Higgs bundles,
thus the moduli space M (GF) becomes a Hausdorff topological space. If
H3 (GR) C HP°(G®) denotes the subset of stable Higgs bundles, then H5 (G¥)
is open in H5°(GE). The stable objects thus define an open subset of My (G®).

Remark 6.6. A GIT construction of M, (GR) (actually in the more general
setting of Higgs pairs) may be found in [69], from which is clear that M (GR)
parametrizes S-equivalence classes of semistable L-twisted GF-Higgs bundles.
This construction generalizes the construction of the moduli space of GR-Higgs
bundles by Ramanathan [68] when G® is compact and Simpson [73], [74] when
G® is complex reductive. (See also Nitsure [65] for GR = GL,,C.)

6.2. Local structure of the moduli spaces. We now recall some deformation
theory for Higgs bundles; for more details, see [10] and [33]. Fix a holomorphic
line bundle L on X, and let (£, ) be an L-twisted GR-Higgs bundle. The
double complex of sheaves

(6.2) C* (& 0) + Enlh] —2 Enm] © L

governs infinitesimal deformations of (&, ). Thus, when (€y, ¢) is polystable,
(6.2) encodes the local structure of the moduli space My (G®) near the point
defined by (€n, ¢). The complex (6.2) defines a long exact sequence in hyper-
cohomology:

(6.3)

0 — HO(C* (€1, ) —— HO(Exalh]) ~—2s HO(Exa[m] © L) — H(C* (&, o))

d
L> H'(Enlh]) — H' (Ealm] ® L) — H2(C*(&, ) —— 0.
We have the following proposition; see [33, Lemma 2.25 and Prop. 3.8].

PROPOSITION 6.7. If the L-twisted GR-Higgs bundle (Ex, @) is polystable,
then its automorphism group Aut(Ex, @) is a complex reductive group which is
identified with a closed subgroup of the automorphisms of the fiber (Ex(x), p(x))
for any x € X. The zeroth hypercohomology group H°(C*®(En,¢)) is the Lie
algebra of Aut(Ey, ¢).
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Note that the automorphism group Aut(&£y, ) acts on HY(C*(Ey,¢)).
Using standard slice methods of Kuranishi (see [58, Ch. 7.3] for details for
the moduli space of holomorphic bundles), a neighborhood of the isomorphism
class of a polystable Higgs bundle (£x,¢) in M (GF) is given by

k1(0) J Aut(Ex, @),

where x : H' (C®*(En, ) — H2(C*(En,¢)) is the so-called Kuranishi map.
When H?(Eq, @) = 0, a neighborhood of the isomorphism class of (Ex, ) in
M L(GR) is isomorphic to

(6.4) HY(C*(En, ¢)) /) Aut(Ex, ).

We will use the following result in Section 7 to prove that for the Higgs bundles
considered there, the corresponding H? vanishes. Therefore, we have no need
to recall the construction of the Kuranishi map.

PROPOSITION 6.8. Let GR C G be a real form of a complex semisimple Lie
group G, and let L be a holomorphic line bundle with deg(L) > 2g—2. Then for
any polystable L-twisted GX-Higgs bundle (Ex, @), we have H2(C*(Ex, )) = 0.

Proof. Tt suffices to prove the statement for the L-twisted G-Higgs bundle
(€, )= (En[G], ¢) since there is an inclusion H2(C*®(Ey, ¢)) CHA(C*(Ea, ¢)).
Since (£q, ¢) is semistable, any subbundle V C £g[g] with ad, (V) = 0 satisfies
deg(V) < 0 by Remark 6.3.

Suppose 0 # H2(C*(Eq,¢)). By Serre duality, H?(C*(Eq,¢)) is isomor-
phic to the dual of H° of the complex

ad; R Idg
e

C*(Ecp) @K : Eqlg]* @ LT'K Ealo]" @ K.

The Killing form on g identifies £g[g]* with £g[g] and ad, with —ady, so the

complex

ol @ LMK 281K, el K

has nonzero H°. Thus, there is a nonzero s € H°(Eglg] ® L™ 1K) such that
—ady(s) = 0. Let M C Eg[g]® L~ 1K be the holomorphic line bundle generated
by s, and note that deg(M) > 0. However, M ® LK1 C &glg] satisfies
ad,(M @ LK~1) = 0. So, by semistability of (£, ¢),

0 < deg(M) < deg(M @ LK) 0.
This contradiction implies H?(C*(Eg, )) = 0. O

6.3. The Hitchin map. A fundamental ingredient in the theory of Higgs
bundles is the Hitchin map [53]. We briefly explain this in the setting of
L-twisted GR-Higgs bundles for a simple real Lie group G¥; see [38], [53], [26]
for more details.
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Consider the GIT quotient map x : m — m / H. Note that x is C*-equi-
variant with respect to the standard scaling action of C* on m and the action of
C* on m /H induced by the action of C* on the graded ring C[m]" of H-invariant
polynomial functions on m. Namely, if p € C[m]" is homogeneous, the C*-
action on m // H is determined by ¢ - p = t98®)p. Let £ be the holomorphic
C*-bundle associated to L, and consider the rank r vector bundle £[m / H]
associated to £ via the C*-action on m / H. The quotient map x : m — m /H
defines an H-invariant map m ® L — L[m / H]. By H-invariance this defines
the Hitchin map:

(6.5) h: ML(G®) = BL(G®) = H*(L[m /H])),  h(Exn,¢) = x(9),

where the space Br,(GR) is called the Hitchin base.

Choosing a homogeneous basis (x1,...,x,) of the ring C[m]" defines an
isomorphism of m / H = C" given by z — (x1(x),...,xr(z)). If the degree
Xj I8 mj + 1 with m} < --- < my, then the nonnegative integers m; are
the exponents of the real Lie algebra g¥; see, for example, [38, Prop. 4.4].
By definition, they are the exponents of the complex Lie algebra obtained by
complexifying the maximal split subalgebra of g®. (If g® is complex, these are
its exponents appearing in Case (1) of Proposition 4.3.)

Any choice of such homogeneous basis (1, ..., x) defines an isomorphism

(6.6) HO(L[m JH]) — @ HOL™H), 20 (xa(z),-..,x (@)
j=1

Using this basis, we obtain the more familiar description of the Hitchin map

h: M(GR) — @ HOL™™Y),  h(En,0) = (x1(9),- - xr(9))-
J=1

For complex Lie groups and L = K, the Hitchin map h has many special
features; most notably it is an algebraic completely integrable system [53]. The
property we will use to prove that the Cayley map is closed, is that the Hitchin
map (6.5) is proper; this is true for arbitrary groups and twistings. This follows
from [65, Th. 6.1] for GL,,C and from the fact that the moduli space M (GR)
admits a finite (and hence proper) map to My (GL,C) for some n in such a
way that the Hitchin map of My (GR) is the restriction of the Hitchin map in
M (GL,C).

PROPOSITION 6.9. The Hitchin map h : Mp(GF) — Br(GR) from (6.5)
1S proper.

6.4. The Hitchin—Kobayashi correspondence. Finally, we consider an equa-
tion for a special metric associated to general L-twisted polystable (G, V')-Higgs
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pairs. Let G be a complex reductive Lie group, and fix a maximal compact sub-
group KR € G and a KR-invariant Hermitian inner-product on V so that dp :
E® — (V) is the associated unitary representation. Let (g, ) be an L-twisted
(G, V)-Higgs pair. Fix a metric hy on the line bundle L. A metric on &g is by
definition a reduction of structure group h of £g to KX. Fix a metric h, and let
E}, C &g be the associated K®-bundle. The Hermitian inner-product on V and
the metric hz, on L induce a Hermitian metric h® hz, on the bundle E;[V]® L.
For ¢ € HY(Eg[V] ® L), we can make sense of the following expression:

(6.7) plp) = dp ( 5P @ ‘:Dh®hL>a

where we identify i@ ® ¢™®"r with a section of Ej(u(V))*. Hence u(p) de-
fines a section of Ej(€®)*. Using the nondegenerate pairing, we view u(y) as
a section of FEj,(€%).

Remark 6.10. The action of K® on V is Hamiltonian, and the expression
for v in (6.7) is a bundle version of the moment map for the action.

Now fix a Kéhler form w on X. Given a metric h on &g, there is a unique
connection (the Chern connection) which is compatible with the holomorphic
structure and the metric reduction. The Hitchin—Kobayashi correspondence
states the following.

THEOREM 6.11 ([33, Th. 2.24]). An L-twisted (G, V)-Higgs pair (g, ¢)
is a-polystable if and only if there is a metric h on Eg solving

(6.8) Fp + p(o)w = —iaw,
where Fy, € Q*(EL[bR]) denotes the curvature of the Chern connection of h.

Remark 6.12. The existence of solutions h of (6.8) is independent of the
choice of hyr. Also, equation (6.8) implies that o depends on the fixed Kéhler
form w. If one chooses a different Kahler form w’, then a solution of (6.8) will
still be a solution for the corresponding equation with ' for a different o/'.
This means that to check for the existence of solutions of (6.8), we can fix
any w, and we will always work with it.

When now specialize to the case of Higgs bundles and Higgs pairs arising
from Z/nZ-gradings of g. Let 7 : g — g be the compact real-form associated
to KR c G, and let (,-) be a nondegenerate G-invariant complex bilinear
form. The form (z, —7(y)) is a KR-invariant positive definite Hermitian inner
product on g. In this case, the moment map p : g — (E8)* — €® is given by
(@) = [o, —7(2)]

Given a metric h on &g and a metric hy, on L, 7 defines an involution 7, :
En(g) ® L— Ep(g)®L. Thus, for L-twisted G-Higgs bundles, equation (6.8) is

Fy+ [, —ma(9)lw = —icw.
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When L = K, we can view the Higgs field as a (1,0)-form valued in Ej(g).
In this case, we can use 7 and conjugation on 1-forms to define the involution
7t QYO (Ey(g)) — Q%Y(Ey(g)). Solving (6.8) is equivalent to solving
(6.9) Fy + [, =mn(p)] = —ia.

Remark 6.13. When a = 0, equation (6.9) is usually referred to as the
Hitchin equations or the self-duality equations. In this case, the Hitchin—

Kobayashi correspondence was proven by Hitchin for G = SLyC [51] and by
Simpson in general [72].

Remark 6.14. The uniformizing PSLyR-Higgs bundle (Et, ¢) from Exam-
ple 5.3 (and any lift of it to SLaR) is O-stable. Since &t is the frame bundle
of K~!, any metric on &t defines a metric on the surface; the metric solving
(6.9) has constant curvature [51].

Finally, suppose G C G is a 7-invariant subgroup with maximal compact
subgroup KR=GNKRand V C gisa G-invariant vector subspace of g such
that (-,-)|y is nondegenerate. In this case, the moment map equations for
the action of K® on V is given by orthogonally projecting [z, —7(x)] onto the
Lie algebra €& c &, For example, the quiver bundle equations of [2] are an
example of this. An important special case of this occurs when the orthogonal
projection £8 — £® does not loose any information, i.e., when [V, —7 (V)] C €&,
In this case, when o = 0, a solution to (G, V')-Higgs pair equations also solves
the G-Higgs bundle equations. Thus, if (£, ) is an 0-polystable L-twisted
(G, V)-Higgs pair, then the associated G-Higgs bundle (€¢(G), ¢) obtained by
extending the structure group is polystable as a G-Higgs bundle.

For example, consider a Z/nZ-grading ¢ = @jcz/nz 85, i-e, 85,0 C
§j+kmodn- The connected subgroup GO C G with Lie algebra go acts on
each summand g;. The compact involution 7 : g — g can be chosen so that
7(9;) = §—jmodn- By the above discussion, we have the following proposition,
which was first observed by Simpson [71, Prop. 6.3] in the context of vector
bundles.

PROPOSITION 6.15. Let (&, ) be a 0-polystable L-twisted (Go, 61)-Higgs
pair. Then the L-twisted G-Higgs bundle (5@0 [G], @) is polystable as a Higgs
bundle.

7. The generalized Cayley correspondence

In this section we prove that the Cayley map ¥, from (5.6) descends to
an injective map on moduli spaces which is open and closed, thus proving
Theorem B from the introduction. For this section, {f, h, e} will be a magical
sla-triple, S C G will be the associated connected subgroup, C C G will be its
centralizer and GR C G will be the associated canonical real form. Recall that
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H C G is the complexification of the maximal compact HX ¢ GE. To simplify
notation, throughout this section we denote C N H simply by C.3

7.1. Generalized Cayley correspondence and direct consequences. Recall
from (5.6) that the Cayley map is given by

Vet Hpemert (GF) x TTHD Hpey 0 (RY) ———————— H(GR),

((5C71/;mc)7q17 v )qT(e)) — (gc *ET[HL f + (Z;mc + Z;‘(:ez q])v

where (&, f) is the uniformizing PSLoR (resp. SLoR) Higgs bundle if S =
PSLyC (resp. S = SLoC). There is a natural notion of stability on the domain
of the Cayley map since it is a product of Higgs bundle spaces. Moreover,
every ¢; € HO(KUT!) = H 1,41 (RT) is polystable. Hence a point

r(e)
((Ecy¥Vm.),q1y- - - ,qr(e)) € Hyme+1 (GR) X H %Klj+1 (RJr)
j=1

is polystable if and only if (Ec, 1/~1mc) € Hyeme+1(GR) is polystable.

THEOREM 7.1. The Cayley map U, descends to an injective map on mod-
uli spaces,
r(e)
(7.1) Ue s Myomess (GF) x T Mot +1(RT) — M(GF),
j=1
which is open and closed.
We also refer to U, as the Cayley map.

COROLLARY 7.2. The image of the Cayley map V. is a union of connected
components of M(GR) isomorphic to Mgme+1(GR) x H;g M ;41 (RY). Ev-
ery GR-Higgs bundle (€, ) in the image of the Cayley map has nowhere
vanishing Higgs field .

Definition 7.3. We refer to the connected components in the image of the
Cayley map as the Cayley components in M(GR).

Remark 7.4. For Case (2) of Theorem 3.1, the Cayley map generalizes the
Cayley correspondence of [9], [32], [40] for Higgs bundles for Hermitian groups
of tube type with maximal Toledo invariant. As a result, we refer to the isomor-
phism defined by the Cayley map as the generalized Cayley correspondence.
For Case (1) of Theorem 3.1, the Cayley map recovers the Hitchin section of
[52] for split real groups. In fact, for all cases, when the C}R—Higgs bundle
(&c, @ch) is trivial, the Cayley map recovers the Hitchin section for the split
subgroup G(e)® C G® with Lie algebra g(e)®. Finally, for GE = SO, , with

3Note that in fact CN H = C except for the split real forms SL,R and Eg.
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2 < p < ¢, the Cayley map recovers the connected components of M(SO, )
parametrized in [3], [19].

Remark 7.5. When G® C G is a split real form with Lie algebra sp,,R,
505, n41 OF the quaternionic real form of §4, there are two magical slo-triples,
one from Case (1) of Theorem 3.1 and one from Case (2), Case (3) or Case
(4), respectively. Note that these are the only cases where the semisimple part
GR ¢ GH§ of the Cayley group is split and contains a unique magical slo-triple.
For these groups, the Cayley map for Case (1) of Theorem 3.1 is obtained by
iterating the Cayley maps. For example, when GR is the quaternionic real
form of Fy, we have the following diagram:

HO(KQ) o HO(KG) o) HO(KS) @ HO(K12)

4 \Ile,l R
Idewk) . M(GF),
e, 4

HY(K?) ® H°(K%) ® M ga(SL3R)

where W, ; is the Cayley map from Case (1) of Theorem 3.1, ¥, 4 is the Cayley
map from Case (4) of Theorem 3.1 and \Ifff is the K*-twisted version of the
Cayley map from Case (1) of Theorem 3.1 for SL3R.

Even though the Hitchin components are all smooth and contractible, this
is not a general feature for the connected components defined by the gener-
alized Cayley correspondence. Nevertheless, in the process of proving The-
orem 7.1, we show in Proposition 7.11 that for Higgs bundles in the image
of the Cayley map, the second hypercohomology group H?(C*®(Ey,p)) van-
ishes. As a result, H'(C*®(Ex, ¢)) J Aut(Ex, ) is a local model for the moduli
space M(GR) around (&g, ). It follows immediately that M(GR) is locally
irreducible around (&y, ). Hence, we have the following:

COROLLARY 7.6. Every Cayley component in M(GR) is locally irreducible
and irreducible.

The proof of Theorem 7.1 is broken into three parts. In Section 7.2 we
prove that the Cayley map is well defined and injective. Then in Section 7.3
we prove that the Cayley map is open and in Section 7.4 that it is closed.

7.2. The Cayley map descends to moduli spaces. We first prove that the
Cayley map descends to an injective map of moduli spaces.

THEOREM 7.7. If

r(e)
((€C7wmc)7 qi--- 7Q7’(e)) € HchJrl (GR) X H HKlj+1 (R+)
j=1
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is stable (resp. polystable), then @e((é’c,ﬂmc),ql, oy qr(e)) 8 a stable (resp.
polystable) GR-Higgs bundle. In particular, the Cayley map (7.1) is well de-
fined.

Remark 7.8. By Remark 5.9, the Cayley map can be defined for L-twisted
Higgs bundles. The proof of Theorem 7.7 given below also applies to this
setting when deg(L) > 0.

The difficult step in the proof of Theorem 7.7 is proving the next lemma.
LEMMA 7.9. If (£c,tm,) € Hme+1(GR) is stable (resp. polystable), then

o~

the GR-Higgs bundle \I/e((é’c,&mc),o, ...,0) is stable (resp. polystable).
Before proving Lemma 7.9, we will prove Theorem 7.7 assuming Lemma 7.9.

Proof of Theorem 7.7 assuming Lemma 7.9. First note that the map is
injective by Proposition 5.11. The idea of the proof that the map is well defined
is similar to Hitchin’s proof [52] that the image of the Hitchin section consists
of stable Higgs bundles. First assume (£c,vm,) is stable. Since stability is
preserved by the C*-action,

e((Ecy Mm, ), 0, ...,0) = (Ec * Ep[H], f + Adm,)
is a stable GR-Higgs bundle for all A € C* by Lemma 7.9. Since stability is
open,

r(e)
‘Ije((g()a ¢mc)> t1q1, - - - 7tr(e)Q’r(e)) = (‘SC * 5T[H]7 f + ¢mc + thQj>
j=1
is stable for sufficiently small ¢; € R. Thus, (EcxEr[H], )\Q(f—i-d;mc—i-z;g tjq;))
is stable for all A € C*.
Let gy : & — &1 be the holomorphic gauge transformation which acts on
f by gr-f = A72f. Then Idg. gy acts on EcxEr[ga;] ® K with eigenvalue A%/,
Since stability is also preserved by the gauge group,

r(e)
(Idee *92) - <5c * Er[H], N2 (f + G, + Z%‘%’))
=1

(e)
_ (gc *gT[H]yf + )\2mc+2q~5mc + Z)\Qlj+2tjqj>

j=1
- :I]\e((gCa >‘2mc+21/;mc)7 )‘2l1+2t1q17 ey )‘2lr(e)+2t7"(€)q7“(6))

is stable for all A € C*. Thus, V.((&c, 1/;mc), q1,---Gr(e)) is stable.
If (G, m, ) is strictly polystable, then We(Ec, ¥, ) = (Ec*Er[H], f+ bm,)
is a strictly polystable GR-Higgs bundle by Lemma 7.9. Suppose that s € ih®

and that &p, C EcxEr[H] is a holomorphic reduction to the parabolic P, with
deg(&p,) = 0 and such that f + ¢,,, € H(Ep,[ms] ® K). By the definition
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of polystability there is a further holomorphic reduction &, C Ep, such that
f+ bm, € H'(EL, MY ® K). We claim that this implies s € ¢. Indeed, write
s = Y s2j, where so; is the projection of s onto the graded piece go;, and
suppose k is the smallest j with so; # 0. If v € gay,,, then the 2k — 2-graded
piece of [s, f +v] is [sak, f]. Since {f, h,e} is magical, ker(ady) Nh = ¢. Thus,
[s2k, f] = 0 implies s € ¢.

By Proposition 6.5, there are s € ih® and a holomorphic reduction &L, C
EcxEr[H] with f + ¢y, € HO(EL, [m] ® K) such that (E1,, f + ¢m,) is a stable
G®-Higgs bundles. Here G¥ is the real form of the G-centralizer of s associated
to the complexified Cartan decomposition g0 = Iy & mY. Since s € ¢ and
[c,g(e)] = 0, it follows that /\I\/e((c‘,’c,z/;mc),ql, .. r(e)) 18 a GE-Higgs bundle.
Openness and C*-invariance of stability implies (Il\e((é’c,ﬁmc),ql, e Gr(e)) 18
a stable GX-Higgs bundle and hence a polystable G*-Higgs bundle. U

We will prove Lemma 7.9 in each of the four cases of magical nilpotents
from Theorem 3.1. The result is immediate for Case (1), it was proven in [9]
for Case (2), and for Case (3), the result was proven in [3] for G = SOyC. Our
proof in Case (4) relies on the details of the proof of Case (2) so we outline the
proof of [9].

Proof of Lemma 7.9 Case (1). For Case (1) of Theorem 3.1, C is the cen-
ter of GR and ¢,,,, = 0. Thus, /\176(50, bm.,0,...,0) = (& *x&r[H], f). Thisis a
polystable Higgs bundle since the solution metric for (Et, f) induces a solution
to the GR-Higgs bundle equations. It is stable since a principal nilpotent is not
contained in the Levi subalgebra of any proper parabolic subalgebra of g. [

Proof of Lemma 7.9 Case (3). For Case (3) of Theorem 3.1 with G =
SONC (and hence G® = SO, y_p), Lemma 7.9 was proven in [3, Lemma
4.5]. Roughly, m. + 1 = p, and there is a Z/2pZ-grading g = € g; such
that (Ec * ST[C}O], [+ qZ;p,l) is a (Gg, g1)-Higgs pair. This pair is shown to be
polystable, and Proposition 6.15 is applied. By Remark 6.4, it suffices to show
that every PSOyC-Higgs bundle in the image of W, lifts to a SOxC-Higgs
bundle in the image of ¥,. This was shown in Section 5.3. O

Proof of Lemma 7.9 Case (2). The proof for Case (2) is the result of Lem-
mas 5.5, 5.6 and 5.7 of [9]. We outline the argument here in the notation of
the current article. In this case, m, = 1 and H = Gy C G is the centralizer of
h € g.

Let (£c,11) be a stable (resp. polystable) KZ2-twisted GR-Higgs bundle.
By [9, Lemma 5.5, (¢ x Er[H],11) is an a-stable (resp. a-polystable) K2-
twisted H-Higgs bundle for a = % € 3(h). This is proven using equations. Next
one proves a finite dimensional GIT result ([9, Lemma 5.6]) for the magical
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nilpotent f € g_o. Namely, if s € ih and f € g_o, then (h,s) > 0, and if
equality holds, then f € 992,3-

Now consider We(Eq,¢1) = (Ec x E[H], f + ¢1), where adf(¢p1) = 1 €
HY(Ec * E[go] ® K?) = HY(Ec[h] @ K2). Let s € ih® and Ep, C Ec * E[H]
be a holomorphic reduction such that f + ¢; € H%(Ep,[ms] ® K). Since P
preserves the splitting m = g_o @ go, we have f € H°(Ep, [g-2s]®K) and ¢ €
HOY(Ep,[g2,s)®K). Hence ¢y = [f, 1] € H(Ep,[hs]® K?). We have deg(€p,) >
(&, s) by Lemma 5.5 and (%, s) > 0 by Lemma 5.6. Thus, deg(p,) > (%, s) >0.

If deg(&p,) = 0, then f € gg% and there is a holomorphic reduction
EL, C Ep, such that ¥ = [f,¢1] € H°(EL,[Y] ® K2). Note that [s,¢1] = 0
since ady : g2 — go is injective and

0= [Sv [f7 ¢1H = _[¢17 [87 f]] - [f? [¢1; SH = [fa [Sv ¢1H
Hence f + ¢1 € H°(EL, [mY] ® K) and /\178(80,1#1) is a polystable GR-Higgs
bundle. ]

Before proving Case (4) below, we recall some relevant notions from pre-
vious sections. Let {f,h,e} C g be a magical sly-triple from Case (4) of
Theorem 3.1. Recall from Section 4.4 that m. = 3, ¢3 = ¢3 and the Z-
grading is given by g = @?:_5 g2;. Moreover, g_o decomposes go-invariantly
as g-o=9g-4D g’lQ, where & is the simple root in the diagrams in Section 9.
Consider the Z/4Z-grading given by g = ;cz/4z 8;, Where

g0 = g—s ® go @ gs, g1 =0-10 D g—2 D g,
g2 =04 O g4, 93 = g—6 D g2 D g1o-

By (4.4), the complexified Cartan decomposition g = hdm of the canonical real
form satisfies h = go® g2 and m = g1 @ g3. Recall from (4.9) that h = h' ®slC,
and note that go = b @ slC. Let Gy C Go C G be the connected subgroups
with Lie algebras gg C go, respectively. The adjoint action of Gy and Go
preserve the spaces g; and g;, respectively. Moreover, by Lemma 4.19, g;
decomposes Go—invariantly as

(7.2) §1=(9-a D g-10) @ (8°2 D g6)-
Consider the K*-twisted GR®-Higgs bundle (Ec,13), and recall
Ue((Ec,13),0,0) = (Eo* Ex[H], f + ¢3),
where ad}(¢3) = 3. Since Cx T C G and f + ¢3 € H%(Ec * Ep[a1] ® K),
(Egy» ®) = (Ec* Ex[Gal, f + ¢3)
is a K-twisted (Go, §1)-Higgs pair. Using the decomposition (7.2) we write
© = (fy+¢3) & (f+0) € H(E, [0%2  go] © K) ® H'(Eg, [9-6 © 9-10] © K).
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This implies that adj, | 4,(f) € HO(EGO [§2] ® K?). Recall from (4.12) that

ady,+s(f) = [f5, f] € g—4 is a magical nilpotent in h’ from Case (2) of Theo-
rem 3.1. Since the splitting go = g_4 @ g4 is Go—invariant,

(7.3) adj, 145 f = [fo, f] € HO(Eg [8-a] ® K?).
) Also, § = ad?}b+¢3(f) € HO((‘J@O [do] ® K*). Thus, (g, 0) is a K*twisted
Go-Higgs bundle. Moreover, the decomposition gy = hf, @ sloC gives
0 =0 &0, € H(E [hy] © K*) & HO (&, [slCl ® K*).
The bracket relations of Lemma 4.20 now imply
(7.4) ' = 313 and 02 = ad? (f) + ad3, oady, (f).
In particular, 6 is in the K*-twisted SLyC-Hitchin section.

Proof of Lemma 7.9 Case (4). Suppose that (£c,13) is a polystable K*-
twisted GR-Higgs bundle. To show that W.((Ec,3),0,0) is a polystable GR-
Higgs bundle, it suffices to show that (Ec x ST(GO), f + ¢3) is a polystable
(Go, g1)-Higgs pair by Proposition 6.15.

Consider the (Go, §1)-Higgs pair (g, @) = (Ec x Er(Go), f + ¢3). Let
PI§ - C'ro be a compact real form with Lie algebra 6%%. Fix s € ifA]HO%, and let
P, c Go be the corresponding parabolic. Since go = hj @ slbC, we can write
s = s’ 4 sy, where s’ € hj and sy € sl,C. Let Ep, C &g, be a holomorphic
reduction such that ® € H°(Ep,[g1,s] ® K). Note that the inclusions Ps C Py
and Py C Py, define holomorphic reductions &p, C &p, C &y and &p, C
&p,, C &y, We are interested in showing

deg(€p,) = deg(Ep,,) + deg(Ep,,) = 0.
Since Gy preserves the splitting (7.2), we have
(7.5)  fo+¢3 € H(Ep,[1,s] ® K) and feHEp,[61s] ® K) .
Thus, ad?cb+¢3 (fl=0¢ HO(EGO [§0,s] ® K?*), and using the decomposition (7.4),
0" = 33 € HO(E‘GO[%,S'] ® K%) and 02 € HO(SGO [s1,Cs,] @ K*).
Since 65 is in the K*-twisted Hitchin section, we have

deg(é'pSQ) >0

with equality if and only if s5 = 0.
To show that deg(€p,,) > 0, we use an argument similar to the proof of
Case (2) of Theorem 3.1. Write h = h' + ha, where b’ € b and hy € sl,C are
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both nonzero, and let T/, Ty C H be the subgroups generated by exp(th') and
exp(ths). The Go-bundle E1(Gy) is given by

Er(Go) = E % En,(Go).

Fix the Kéahler form w associated to the hyperbolic metric uniformizing the
Riemann surface X, so that Fg = —iw.
Since 05 is in the PSLoC-Hitchin section, there is a metric A1, on &, so
that
FhT2 + [02, —7(02)]w = 0.
Let hp be the uniformizing metric on &1/, and take ht = hy x hr,. Since
(Ec, 313) is polystable, there is a metric hc on E¢ such that
Fhe + [B3, =7 (3¢)]w = 0.
Thus, hc * hr, * h defines a metric on EGO which satisfies
FhC*th*hT/ + [3¢3, —7(393)]w + [f2, —T(02)|w = FhT’ = —idwh/
for some positive constant A. The exact value of A is not important. Hence,
(£, 33+ 02) is an a=Ah/-polystable K L twisted Go-Higgs bundle, and thus
deg(Ep,) = deg(Ep,,) + deg(Ep,,) = deg(Ep,) = (NI, 5').

Note that ady, 1, (f) = [fb. f] € H(Ep, [9-4,¢] ® K?) by (7.5) and (7.3).
Since [fy, f] C g—4 is a magical nilpotent in b’ corresponding to Case (2) of
Theorem 3.1, the finite dimensional GIT result [9, Lemma 5.5] applies and gives
(AR, s') > 0 with equality if and only if [f, f] € 9(1475/- Thus, deg(&p,) > 0.

So far we have shown that (&g ,®) is a semistable (Go, 1)-Higgs pair.
Suppose deg(&p,) = 0. Then deg(€p,,) = 0 and deg(€p,) = 0, and hence
s9 = 0. The a-polystable of the K*-twisted Go-Higgs bundle (£¢,»0) implies
there is a holomorphic reduction &, C €p, such that 6 € H(€r,[g ] ® K*).
In particular, 13 € H°(&L, [Q&S] ® K*). Since the splitting g_5 © g%, @ ge is
ho-invariant and s = s’ € by, we have

feHEr[015] @ K), fi € H'(Ep,[01,5] © K) and 3 € H(Ep,[G1,5] @ K).
Thus,

[fo, f1 € HO(Ep,[g-1] ® K?) and [fo, #3] € HO(Ep, [g4,s] @ K?).

&
We have 0 = deg(&p,) = (s,h’) > 0, thus the finite dimensional GIT lemma
implies [fbuf] € HO(SLs[g(iél,s] ® K2) By (413)7 Y3 = [[fb:f]7[fb7¢3“7 and
hence [fy, ¢3] € HO(Er,[g] ] ® K?). Finally, since f, fv, and ¢3 are each in
HO(Ep, [31,,] © K), we have

feHELR ) K), f,e H(EL[),]®K) and ¢3 € H(EL,[3) ] ® K).

Hence (EcxE1[Go], f+ ¢3) is a 0-polystable K-twisted (Go, §1)-Higgs pair. [
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7.3. The Cayley map is open. We now prove that the Cayley map is open.
Recall the deformation complex and description of the local structure of the
moduli space from Section 6.2. By Corollary 3.2, ker(ads : h — m) = ¢ and
ady : adf(m) — ad?c (m) is an isomorphism. Hence we have C x T-invariant
splittings

(7.6) h=cdads(m) and m= Vm@adfc(m),

where Vin = @50 Vam, is the set of highest weight spaces in m.
Recall that the Cayley map (7.1) is defined by

\Ile(gCa 1/)) = ((80 * gT)[H]a f + (P)a

where ¢ € @;o0 H(Ec[Zam;] @ K™t and ¢ € HO(Ec x Ep[Va] ® K) is
determined by 1 using the isomorphisms ad?j 2 (o x &) [Vam;l ® K —
EclZam,] ® K™it1. The deformation complex for (Ec, 1) is

d

e Ecld — @ clZom,) @ K™,
7>0

On the other hand, since [c, f + V] C Vi, the deformation complex for
\I’e(gCa ¢) is

ady a

(" 5)

O3+ Ecle)(Ernec)lady(m)] s (Erxco) [Val e Ka(Erréo) ad?(m) 2 K,
where we have used the fact that T acts trivially on ¢ to identify (Ec*E1)[c] =
Eclc], and o and f are defined by post composing adsi, : (£c * Er)[ads] —
(EcxE7)[m] ® K with the projection onto the (Ec* E1)[Vim] ® K and (Ec * Er)
: [adfc (m)] ® K, respectively.

The Cayley map induces a short exact sequence of complexes

0— C; — C3 — C5,/C — 0,
such that the quotient complex is isomorphic to
C3,/CE : (Ec* En)ladp(m)] 2 (€ » Ep)[add(m)] ® K.

PROPOSITION 7.10. The quotient complex C3,/C¢ has trivial hypercoho-
mology. In particular,

H*(C¢) = H*(C3,)-
Proof. 1t suffices to show that the map
B: (Ec*Er)[ads(m)] — (Ec * Ep)[ad}(m)] @ K

is an isomorphism. First, ady : (€c x E1)[adf(m)] — (Ec * ET)[ad?c(m)] ® K
induces an isomorphism of holomorphic bundles. Since v € Vin C @509
for any v € Vi, the composition of ads, : ads(m) — m with projection onto
ad?c (m) is injective and hence also defines an isomorphism ads(m) — ad?c(m).
Thus, 3 is an isomorphism and C3,/C¢ has trivial hypercohomology. ([
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We can now prove that the second hypercohomology of the complexes Cg
and C3, vanishes.

PROPOSITION 7.11. Suppose (Ec,v) is a polystable object in the domain
of Ue. Then
0 = H*(C¢(Ec, v)) = B (C3,(Pe(Ec, ¥))) = 0.
Proof. Since the domain of the Cayley map is identified with a product
of moduli spaces of L-twisted Higgs bundles with deg(L) > 2g — 2, Proposi-

tion 6.8 implies that H?(C&(Ec,v)) = 0. Now, Proposition 7.10 implies that
HE(C3,(W. (Ec, 1)) = 0. O

Remark 7.12. Note that isomorphism of hypercohomology groups and
vanishing of H? in this general context is much cleaner than the one in [3,
§4.2] for GF = SO,,q, which took several pages. This is a reflection of the
power of the magical slo-triple perspective.

We can now prove that the Cayley map is open.

PropoSITION 7.13. The Cayley map
r(e)
Ue s Myomesr (GF) x T HO(K ) — M(GF)
j=1
is open. In particular, its image is open in M(GR).
Proof. Let (Ec, ) be a point in the domain of the W.. By Proposition 7.11
and (6.4), local neighborhoods of (£c,v) and V.(Eq, ) are respectively iso-
morphic to

H'(C¢(Ec,v)) /| Aut(Ec, ) and H'(C3(Ye(Ec,))) [ Aut(Pe(Ec, ).
By Proposition 7.10, ¥, induces an isomorphism
HY(Ca(Ec, ¥)) = HY(CR(We(Ec, 1))
which is Aut(Ec, 1)-equivariant. By Corollary 5.12 we have Aut(Ec,) =

Aut(V(Ec,v)). Thus, the Cayley map induces a local isomorphism and hence
is open. ([l

7.4. The Cayley map is closed. Recall from Remark 2.3 that the Slodowy
slice f 4+ ker(ad.) = f +V C g is a slice for the adjoint action of G. We have
an Adp invariant decomposition V = ¢ @ V, and f + V4, is a slice through f
for the H-action in m. Moreover, f + Vi, decomposes Adc-invariantly as

M
(7.7) f4 Vo =f+ED Vom,,
j=1

where C-acts trivially on every summand except Va,,,. Recall that the Cayley
real form g? is a real form of gy and has complexified Cartan decomposition
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g0 = ¢ D Zy, where we define*

M
Zo = P Zom;-
j=1

There is a C-equivariant isomorphism . : Zy, — f 4 Vi, induced by the C-equi-
variant isomorphisms ad;nj : Vom; = Zom, -

Let x :m — m / H and x¢ : Zn — Zm /J/ C be the adjoint quotient maps,
and let x : f+ Vi — m / H be the restriction of x to f+ V. The composition
Xe © Ve : Zm — m /) H defines a map

(7.8) Ye:Zm[/C—m/)H
such that
(7.9) Ye © XC = Xe © Ve-

Recall that by choosing a homogeneous basis of invariant polynomials, m / H
and Zy, // C are identified with affine spaces of dimension the real rank of g®
and g%, respectively. Thus, by Proposition 4.10, m / H and Z,, J/ C have the
same dimension.

PROPOSITION 7.14. Let {f,h,e} C g be a magical sla-triple. Then x. :
f+Va—m/H and e : Zyn ) C — m JH are flat and surjective, thus faithfully
flat. Moreover, . has finite fibers.

Proof. By [60, Th. 9], every fiber of the surjective morphism y : m — m /H
has pure dimension equal to dim(m) — dim(m / H). Since both m and m / H
are affine spaces, the so called “miracle flatness theorem” implies that y. is
flat; see, for example [50, Exercise I11.10.9] or [30, p. 158].

On the other hand, the orbit map p : H x (f + Vi) — m is smooth,
and hence flat since f + V4, is a slice for the H-action on m. Thus, x o p :
H x (f + Va) = m // H is also flat. However, this morphism factors through
f + Vi, so that we have a commutative diagram

Hx (f+ V) Fsm—2 > m/H,

i~ | A

f4Va

where pry is the canonical projection. Since both x o p and pry are flat, the
morphism x. : f + Vi = m J/ H is flat too by [42, Cor. 2.2.11].

As in [75, §7.4], to show that y. is surjective, we show that it is equivariant
with respect to a C*-action with positive weights. Choose a basis (p1,...,pr)

4Note that Zn is not a subset of m.
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of H-invariant polynomials on m which are homogeneous of degree m/, ..., m/.
This identifies m / H with C", via [y] — (p1(y),...,pr(y)) for y € m. We have
(7.10) Xe(ty) = (P™pi(y), .- 2" pr(y))-

Now consider the C*-action on f + Vi, by

M M
(7.11) t- (f+2v2mj> = [+ Py,
j=1 j=1

where Vam; € Vom;. There is an element g € T C H so that

M M M
Adg (tzf + ZtZUQm]-> _ f + ZthjJrQUQmj =t1- (f —+ Z’Ugmj> .
j=1 j=1 7=1

Since the polynomials p; are H-invariant, the map xe : f + Vin — m J/ H is
equivariant with respect to the C*-actions (7.11) and (7.10).

Now, flatness implies x. : f 4+ Vim — m / H is open, so its image is an
open set U C m // H containing 0 = x.(f). By C*-equivariance, it follows that
U must be C*-invariant. Since the weights of the C*-action are positive, we
conclude that U = m // H, and thus x is surjective.

For the map ., surjectivity follows immediately from surjectivity of xe.
To prove flatness we use a similar argument as above. The argument for flatness
of x : m—m // H also applies to x¢ : Zm — Zm // C, thus xc is flat. Hence, both
XeOoWe =7e0Xc and xc are flat. Thus, again by [42, Cor. 2.2.11], ~, is flat as well.
Finally, a faithfully flat morphism between affine spaces of the same dimension
has finite fibers. So 7. has finite fibers since dim(Zy, / C) = dim(m / H). O

Remark 7.15. Note that the proof that x. : f + Vim — m J/ H is flat and
surjective holds for general normal slo-triples {f, h,e} C h @ m.

The global version of the above picture is given by taking the Hitchin
maps from Section 6.3 on the domain and target of the Cayley map W, defined
in (7.1). Let K be the holomorphic frame bundle of K. The Hitchin base on
the domain is

r(e)

Be = Beme+1 (GF) x [ HO(KY ) = @5 HO(K™ 4 [ Zam, ) C)),

j=1 §>0
because Bgme+1(GR) = HO(K™+1[Zy,,. / C]) by the definition of the group
GR (see Definitions 4.11 and 2.14) and where we used the isomorphism (6.6) to
identify HO(K4*1) with HO(K™i [ Zyy, ]) for each j # ¢ (see also Lemma 5.7),
as well as the fact that C acts trivially on Z;,,; precisely when j # c. The
Hitchin base for M(GR) is B(GR) = H(KC[m J H]). Let hc and h be the
respective Hitchin maps. From the previous discussion, we conclude that the
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Cayley map V. is compatible with the Hitchin maps he and h in the sense of
the next proposition.

PRrROPOSITION 7.16. There is a commutative diagram

Memes1 (GR) x H;(ei HO(KU+1) e M(GR)

(7.12) h{ hJ

BC B(GR)a

where ' is a proper map.

Proof. particular, By Proposition 7.14, the map v, : Zn / C — m J H
defines a proper map

T.:Be — B(G"),
and the commutativity of the diagram follows from (7.9). O

Remark 7.17. We expect that the map I'. is an isomorphism, but for our
purposes, being proper is sufficient.

We now complete the proof of Theorem 7.1 by showing the Cayley map
is closed.

PROPOSITION 7.18. The image Im(W¥.) of the Cayley map V. is closed in
M(GR).

Proof. Consider a sequence x,, = W.(y,) which diverges in Im(¥.). In
particular, y,, diverges in the domain of the Cayley map. Since the maps h¢
and I'c in the diagram (7.12) are proper, we conclude that he(y,) diverges in
Be and Te(he(yy)) diverges in the Hitchin base B(GR) of M(GF). Since the
diagram (7.12) commutes and the Hitchin map h is proper, we conclude that
1, diverges in M(GF). Hence the image of W, is closed in M(GR). O

7.5. Remarks on local minima of energy and components. The connected
components of the moduli spaces of GR-Higgs bundles have been subject to an
extensive study through the last three decades (see, for example, [51], [52], [40],
[12], [13], [66], [35], [19]). Most of the works dealt with G¥ in a case-by-case
basis, and the main tool, pioneered by Hitchin [51, 52], to detect and count
such components was the Hitchin function defined by taking the L?-norm of
the Higgs field. Namely, the L?-norm of the Higgs field with respect to the
metric solving the Hitchin equations (6.9) defines a proper function on the
moduli space

(7.13) FiME) R, (Eme) /X el
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Since proper maps attain their minimum on every closed set, we have an in-
equality
|mo(M(GE))| < |mo(local min of F)|.

Remark 7.19. The strategy is then to classify local minima of F' and show
that each component of the local minimum defines a component of M (GR).
There is an obvious global minimum which occurs when the Higgs field ¢ is
identically zero. The component count of the global minimum is then given
by the component count of the moduli space of polystable H-bundles. By
[68], the number of such components is determined by the number of different
topological types of H-bundles.

We briefly recall the local minimum criterion for stable Higgs bundles
whose second hypercohomology H? vanishes; see, for example, the appendix
of [3] for details. The local minima of F' are, in particular, fixed points of the
C*-action on M(GR). If (£m, ) is a stable C*-fixed point with ¢ # 0, then
there are a Z-grading g = @ ez bh; & m; and a holomorphic Ho-bundle &y,
where Hy C H is the connected with Lie algebra hg, such that

&, [H] =~ &y and p e HO(SHO [m_l] ® K).
As a result, for all j, the Higgs field ¢ defines a map
(714) adw : SHO [f)]] — gHo [mj,l] ® K.

If the stable G®-Higgs bundle (&g, ) is such that H2(C*(Ex, )) = 0, then it
is a local minimum of F' if and only if ady, : €, [h;] =, Eny[mj—1] ® K is an
isomorphism for all j < 0; see [14, §3.4] and [12, Rem. 4.16].

Recall from Corollary 3.2 that if {f,h,e} C g is a magical slo-triple,
then ady : h; — m;_1 is injective for all j < 0. This implies that the GR-
Higgs bundle U.(Ec) = (Ec * Er[H], f) defines a local minimum of the Hitchin
function.

PROPOSITION 7.20. Let {f,h,e} C g be a magical sla-triple and C C H be
its H-centralizer. Then the GR-Higgs bundle (Ec*E[H], f) is a local minimum
of the Hitchin function F'.

Since the image of the Cayley map W, is a union of connected components
of the moduli space M(GR), it is natural to ask how many components those
are. Of course that number equals the number of connected components of
the moduli space M gmc+1(GR). This question has been studied whenever
GR is one of the classical groups corresponding to Cases (1), (2) and (3) of
Theorem 3.1.

The classification of local minima of the Hitchin function (7.13) also ap-
plies to L-twisted Higgs bundles when deg(L) > 2g — 2, the only difference
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being that a metric on L must be fixed to make sense of the L?-norm. More-
over, all the results of [3, App. 1] hold for L-twisted GR-Higgs bundles. To
count the components in the image of the Cayley map, one first classifies the
stable local minima of the L-twisted Hitchin function Fy, : My (GF) — R and
then the polystable local minima. As in the K-twisted case, the crucial com-
putation to detect the stable local minima among the C*-fixed points is [14,
Lemma 3.11] (see also [12, Rem. 4.16]). These results can be easily adapted
the L-twisted setup. Consider the L-twisted version of (7.14),

(7.15) adQP : 5HO [f)]] — EHO [m]-_l] ® L.

PROPOSITION 7.21. Ifdeg(L) > 2g — 2, then a stable L-twisted G®-Higgs
bundle (En,p) with ¢ # 0 is a local minimum of the Hitchin function Fr, if
and only if (7.15) is an isomorphism for every j < 0.

Recall from Proposition 6.5 that a strictly polystable GR-Higgs bundle
admits a Jordan—Hélder reduction to a stable GR—Higgs bundle for a subgroup
GR < GR. Such a subgroup GR is independent of the twisting line bundle
[33, §2.10]. So the identification of strictly polystable local minima of Fp, is
done by identifying stable local minima for Fy, in M(GR) and then checking if
such minima still define local minima in M(G®). Using Proposition 7.21 and
the minima classification in the literature, we arrive at the following count of
Cayley components, i.e., of connected components in the image of the Cayley
map, for Case (4) of Theorem 3.1.

PROPOSITION 7.22. Let G be a complex simple Lie group of type Fy4, Eg,

or E7 and GR C G be the quaternionic real form. Let ¥, be the Cayley map
from Theorem 7.1. Then,

Im(W.))| =3 for G of type Fu;

|mo(Im(We))| =1 for G the simply connected group of type Eg;
Im(,))

|mo(Im(We))
Im(,))

= 3 for G the adjoint group of type Eg;
1 for G the simply connected group of type Er;

e o o o o
|
)
NN S S

|
|
| =2 for G the adjoint group of type Er.

Proof. Suppose GR is a quaternionic real form of the simply connected
group of type Fy, Eg, E7 or Eg. By Proposition 4.8, the semisimple part GR of
the Cayley group GHC{ is SL3R, SL3C, SUg and Eg %6 respectively. For F and
Es, the adjoint group is simply connected, but for Eg and E7, the fundamental
group of the adjoint group is Z/37Z and Z/27, respectively, and GR is PSL3C
and PSUg, respectively. The number of connected components of the image
of the Cayley map ¥, is equal to the number of connected components of the
moduli space M g4 (GRF).

For GR=SL3R, the number of connected components of Mg (SL3R) is 3.
This was computed in [52] by showing that the only nonzero local minima
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of the Hitchin function arises from Case (1) of Theorem 3.1. These methods
can easily be adapted to the K*-twisted situation and no extra local minima
arise. Thus, |mo(Im(¥,))| = 3 for G of type F4. Similarly, when G is SL3C
or PSL3C, there are no nonzero local minima of the Hitchin function by [35]
and the number of components is 1 or 3, respectively. These methods also
generalize directly to the K*-twisted situation and give the desired component
count. Finally, for GR = SU%, it is shown in [36, Prop. 4.6] that there are no
nonzero local minima of the Hitchin function. This computation also applies to
GR = PSU;. These techniques also generalize immediately to the K*-twisted
case and give the desired component counts. (I

Remark 7.23. When G has type Eg, we expect the image of the Cayley
map W, to be connected since the maximal compact of the Cayley group has
type Fyq which is simply connected, and hence has only one topological type.
In general, it is expected that the Cayley map is the only source of connected
components of the moduli space of GR-Higgs bundles which are not labeled
by topological invariants of GR-bundles. This has been proven for the real
groups SL,R [52], [39], U, 4 [12], [11], PGL,R [66], SU3,, [36], SO, 4 with p =1
or 2 < p < q [3], SOz3 [41], [34] and Spy, 5, [37]. Moreover, when there is
a Cayley map for these groups, the number of connected components in the
image of the Cayley map is counted.

8. Positive surface group representations

In this section we deduce properties of the surface group representations
associated to Higgs bundles in the image of the Cayley map via the nonabelian
Hodge correspondence.

For this section, G is a complex simple Lie group and G® C G is a real
form. We fix a maximal compact subgroup H® ¢ GR with complexification H,
and we consider the Cartan decomposition gf = h® @ m® and its complexifi-
cation g=h e m.

8.1. Surface group representations. Let X be a compact smooth oriented
surface, without boundary, and let m > be its fundamental group. Consider
the space Hom(m 3, G®) of all representations of 7% — GF. The group GR
acts on Hom(m ¥, G®) by conjugation. Recall that a representation 7% — G
is called reductive if its composition with the adjoint representation of G¥ in g®
decomposes as a direct sum of irreducible representations. Let Hom™ (m %, GR)
be the GF-invariant subspace consisting of reductive representations.

Definition 8.1. The GR-character variety X(G®) of mX is defined as the
orbit space

X(GR) = Hom™ (m 2, GR)/GE.
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Example 8.2. Let SR be PSLyR or SLoR. The space of Fuchsian repre-
sentations Fuch(S®) C X(S®) is defined to be the subset of conjugacy classes
of faithful representations ppuch : m% — S¥ with discrete image. The space
Fuch(PSLaR) defines two connected components of X'(PSL2R) [39] and is in
one-to-one correspondence with the Teichmiiller space of isotopy classes of
marked Riemann surface structures on the surface 3. with either of its orienta-
tions. Every Fuchsian representation p € Fuch(PSLyR) lifts to a representation
PFuch € Fuch(SLoR). There are 229 such lifts and each lift lies in a distinct
connected component of X' (SLaR).

If g® is the Lie algebra of GF and e € g® is a nonzero nilpotent, the
inclusion of the associated slyR-subalgebra in g® induces an embedding . :
SR — GR, which in turn defines a map on character varieties

(8.1) te : Fuch(S®) — x(G®).

Such maps define ways to deform the Teichmiiller space of ¥ inside the char-
acter variety X' (GR). We will call the set t.(Fuch(S®)) the Fuchsian locus.

The following theorem links the GR-character variety and the GR-Higgs
bundle moduli space and is known as the nonabelian Hodge correspondence. It
was proven by Hitchin [51], Donaldson [28], Corlette [22] and Simpson [72] in
various generalities (see also [33]).

THEOREM 8.3. Let X be a closed oriented surface of genus g > 2 and
GR be a real semisimple Lie group. For each Riemann surface structure X
on X, there is a homeomorphism between the moduli space M(GR) of GR-
Higgs bundles on X and the GR-character variety X (GF).

One direction of the nonabelian Hodge correspondence is given by consid-
ering solutions to the Hitchin equations (6.9). Namely, given a polystable GR-
Higgs bundle (Ey, ¢), there is a metric h on &y such that Fy + [¢, —m,(p)] = 0,
where F}, is the curvature of the Chern connection Aj associated to h. If
Ej, C &y is the associated H®-bundle, then the connection D = Ay, + ¢ — 7(¢0)
defines a flat connection on the smooth G®-bundle Ej,[G®]. The flat connection
D defines the associated reductive representation p : 7% — GE.

For the other direction, let p : ¥~ — GR be a reductive representation
and consider the associated GR-bundle with flat connection D,,

EpzflxpGR,

where ¥ is the universal cover of . Each metric h on E, defines a decomposi-
tion of the flat connection D, = Ay +W¥, where A, preserves the metric. Fixing
a Riemann surface structure X on X allows us to decompose Ap and ¥ into
(1,0) and (0,1)-parts. If Ej, C E, is the H®-bundle associated to h, then the
(0,1)-part of Ay defines a holomorphic structure on the H-bundle Ej,[H] and
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the (1,0)-part of ¥ defines a section of Ej[m|® K. By Corlette’s Theorem [22],
there is a metric h on E, (the harmonic metric) which defines a polystable
GR-Higgs bundle

(Ex,¢) = ((ER[H], A)Y), T0).

Note that for complex groups G, we have H = G and the underlying smooth
bundle of g is E, = Ey[G].

Definition 8.4. Let G be a complex reductive Lie group, let GR c G bea
real form, and let G® ¢ GR be a reductive subgroup. Let H € H C G be the
complexifications of maximal compact subgroups of GR c GR and g=bHedm
and § = h @ th be associated complexified Cartan decompositions with t C m.

e A representation p : m ¥ — GE factors through GR if p = Lo p, where
prmE — GR and ¢ : GR — GR is the inclusion.

e A GF-Higgs bundle (&, ¢) reduces to a GR-Higgs bundle (&g, ) if there is
a holomorphic H-subbundle &y C Eu such that ¢ € HO(Ey[m] @ K).

The following is an immediate consequence of the nonabelian Hodge cor-
respondence.

PROPOSITION 8.5. A reductive representation p : m% — GR factors
through a reductive subgroup GE c GR if and only if the associated GR-Higgs
bundle (&x, @) reduces to a GR-Higgs bundle. In particular, p factors through
a compact subgroup if and only if the Higgs field o is identically zero.

The centralizer of a representation p : m1% — GF is the reductive subgroup

Zar(p) ={g € G* | g-p(7)-g~" = p(y) for all y € m T}

The double centralizer Zgr(Zgr(p)) C GE is reductive, and by construction,
p factors through Zqr(Zgr(p))-

PROPOSITION 8.6. Let G be a complex reductive Lie group, and let p : m%
— G be a reductive representation. Then the centralizer Zg(p) of p is naturally
a subgroup of the automorphism group of the associated G-Higgs bundle.

Proof. Set G = Zq(Zg(p)), and write p = ¢ o jp, where p : m ¥ — G. The
flat bundle E, is given by E;[G]. Thus, the associated G-Higgs bundle (&g, ¢)
reduces to a G—Higgs bundle

(€a, ) = (E¢lGl, »).

Any element g € Zg(p) defines a constant gauge transformation g of the flat
bundle E, = E;[G]. Since G and G are complex, this defines a gauge transfor-
mation of the resulting G-Higgs bundle. But the constant gauge transformation
g acts trivially on (€ [G], ¢) and hence defines an element of Aut(E[G], ). O
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PROPOSITION 8.7. Let (En, ) be a GR-Higgs bundle and (Ex[G],¢) be
the G-Higgs bundle obtained by extension of structure group. If the second
hypercohomology group H?(C*(En,¢)) from (6.3) vanishes, then we have an
isomorphism

H(C*(&n, ) = H(C*(€n[C], ¢))-
In particular, we have an isomorphism of the Lie algebras
aut(&y, @) = aut(Ex[Gl, ).
Proof. Serre duality for the complex C*(Eu[G], ¢) yields an isomorphism
HY(C*(&nlG], ¢)) = H(C*(Eu, v)) © HX(C* (En, 9))*;
see [33, Cor. 3.16]. So H?(C*(Ey, ¢)) = 0 implies
H(C*(&n([G], ) = H(C*(En, ¢))- 0
We are now set up to prove Theorem A from the introduction.

THEOREM 8.8. Let G be a complex simple Lie group with Lie algebra g
and {f,h,e} C g be a magical sly-triple with canonical real form G® C G. Let
) be a closed orientable surface of genus g > 2 and X (GR) be the GR-character
variety. Then, there exists a nonempty open and closed subset

P.(GR) c 2 (GR),

such that every p € P.(GR) has a compact centralizer and does not factor
through a compact subgroup. Moreover, the components P.(GR) contain the

Fuchsian locus defined by {f,h,e},
te(Fuch(S®)) ¢ P.(GF),

where 1, : SR < GR is the subgroup associated to the slyR-subalgebra defined
by {f, h,e}.

Remark 8.9. The components P.(GF) ¢ X(GF) are obtained by apply-
ing the nonabelian Hodge correspondence to the components defined by the
Cayley map V¥, from Theorem 7.1. For the magical slp-triples from Case (1)
of Theorem 3.1, the components P, (GR) are the spaces of Hitchin representa-
tions, and the above theorem was proven by Hitchin in [52]. For the magical
triples from Case (2) of Theorem 3.1, the components P.(GR) are the spaces of
maximal representations, and most aspects of the above theorem were proven
in [9]. For Case (3), the statement was proven in [3].

Since the center of a proper parabolic P® G is not compact, the
following is immediate.

COROLLARY 8.10. If p is any representation in P.(GR), then there is no
proper parabolic subgroup PR C GR such that p factors through PR,
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Proof of Theorem 8.8. By Theorem 7.1, the image of the Cayley map ¥,
defines nonempty connected components of the moduli space M(GR). Ap-
plying the nonabelian Hodge correspondence to these components defines an
nonempty, open and closed subset P.(GR) of the G®-character variety X' (G®).
Since the Higgs field in the image of the Cayley map is never zero, the associ-
ated representations never factor through compact subgroups.

By construction of the Cayley map, when &¢ is the trivial C-bundle and
all sections &mc and ¢; are zero, the resulting Higgs bundle reduces to the
uniformizing S®-Higgs bundle for the Riemann surface X. Applying the non-
abelian Hodge correspondence to this point defines a point in the Fuchsian
locus ¢¢(Fuch(S®)). Actually, t.(Fuch(S®)) corresponds, under the nonabelian
Hodge correspondence, to

V. ({((€c,0),g2,0,...,0) | & trivial, g € H(K?)}).

Thus, P.(GR) contains the Fuchsian locus defined by the magical sly-triple.
Finally we show that the centralizer is compact. Let p: m3 — GE be a

representation in such a component, and let Zgr(p) C G be its centralizer.

Considering the induced complex representation p : m ¥ — GR C G, we have

Zar(p) = Za(p) N GF.

It suffices to show that the Lie algebra 3.z (p) C g® is contained in h®. By
Propositions 6.7 and 5.11, the automorphism group Aut(&y, ) is identified
with a closed subgroup of C, and hence aut(&y, ¢) C ¢. Thus,

3c(p) C aut(En[Gl, ) = aut(En, ) C .

Since gf N¢ = ® c hR, we conclude that the centralizer Zgr(p) of p is

compact. O

Points in the domain of the Cayley map (7.1) are given by

r(e)

((gc,izmc),ql, e ,qr(e)) € Mch-H(GR) X HHO(Klj+1).
j=1

When &mc = 0, the associated Higgs bundle reduces to a G(e)® x+ C*-Higgs
bundle, where G(e)® ¢ GR is the connected group with Lie algebra g(e)® and
CR is the compact real form of C. Moreover, by construction of the Cayley
map, the Higgs field of the associated Higgs bundle is in the image of the Cayley
map for the magical slp-triple in g(e) from Case (1) of Theorem 3.1. Hence, the
associated representations p : m % — GF are of the form p = ppy; * poz, where
phit : MY — G(e)® is a Hitchin representation into G(e)® and per : 12 — CR
is any representation into the compact group CR. In particular, we have the
following proposition.
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PROPOSITION 8.11. Each of the sets P(GR) contains all representations
of the form
— . R R R
p = puit * pcr : M2 — G(e)" x C* C GT,
where piy : ™Y — G(e)® is any G(e)®-Hitchin representation and pcr
mY — CR is any CR-representation.

8.2. Positive Anosov representations. Anosov representations were intro-
duced by Labourie in [61] and have many interesting geometric and dynamic
properties, generalizing convex cocompact representations into rank-one Lie
groups. Important examples of Anosov representations include Fuchsian rep-
resentations, quasi-Fuchsian representations, Hitchin representations into split
real groups and maximal representations into Lie groups of Hermitian type.
We will briefly recall the important points for our applications and refer the
reader to [61], [46], [43], [56] for more details.

Let GR be a real semisimple Lie group, P® ¢ GR be a proper parabolic
subgroup and L® ¢ GF be a Levi subgroup of PR, If Pﬂfpp is the opposite par-
abolic of PR, then L* = PR P]flfpp and the homogeneous space G® /LR is real-
ized as the unique open G®-orbit in GR /PR x G®/ PE)Rpp. The pairs of elements

(z,y) € GR/PR x GR/ Pﬂ(fpp which lie in this open orbit are called transverse.

Definition 8.12. Let 3 be a closed orientable surface of genus g > 2. Let
012 be the Gromov boundary of the fundamental group 3. Topologically
Osom X = RP'. A representation p : m % — GR s PR_Anosov if there exists
a unique continuous boundary map &, : 9om ¥ — GR/P® which satisfies the
following properties:

e Equivariance: {(v-z) = p(7y) - £(z) for all v € m ¥ and all x € Om1S.

e Transversality: for all distinct x,y € 071 S the generalized flags {(z) and
&(y) are transverse.

e Dynamics preserving: see [61], [46], [43], [56] for the precise notion.

The map &, will be called the PR-Anosov boundary curve.

An important property of Anosov representations is that they are stable;
that is, they define an open set of the character variety [61]. However, in
general, the set of Anosov representations is not closed. For example, the set
of Anosov representations in the PSLoC-character variety is the open set of
quasi-Fuchsian representations, which is not closed. On the other hand, the
set of Hitchin representations in split real groups and the set of maximal rep-
resentations in Hermitian Lie groups do define sets of Anosov representations
which are both open and closed in the character variety. For both of these
cases, the representations satisfy an additional positivity property [61], [31],
[16]. These notions have been unified into the notion of ©-positive Anosov
representations by Guichard-Wienhard [47], [48], which we now briefly recall.
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Let PR c GR be a parabolic subgroup, L® ¢ PR be a Levi subgroup
and UR c PR be the unipotent radical. The Lie algebra p® decomposes Ad; z-
invariantly as p® = R @u®. Moreover, the nilpotent Lie algebra u® decomposes
into irreducible LR-representations

uR: @ us.

Bes(I®)

The parabolic subgroup P¥ is determined by fixing a restricted root system
A of a maximal R-split torus of GF and then choosing a subset © C A of
simple roots. To each simple root 3; € ©, there is a corresponding irreducible
LR-representation ug; .

Definition 8.13 ([47, Def. 4.2]). A pair (GE, P¥) admits a ©-positive struc-
ture if, for all 8; € O, the Lg—representation space ug; has an (Lg)o—invariant
acute convex cone cg)j, where (Lﬂé)o denotes the identity component of Lﬂé.

The set of pairs (G, P§) which admit a positive structure were classified
in [47, Th. 4.3], and we now relate this classification with the classification of
magical slp-triples given in Theorem 3.1. Fix a magical sly-triple {f, h,e} C g,
and let g = h @& m be the complexified Cartan decomposition defined by the
involution o, from (2.6). Fix an involution 7. : g — g which commutes with o.
Recall that 7, defines the canonical real form g® associated to the magical slo-
triple. Recall also from Section 2.4 that {f, h,e} is a normal sly-triple and its
Cayley transform v~ 1({f, h,e}) = {f, h, €} is a Cayley triple (see (2.12)) which
is a magical sloR-triple of g®. In particular, the nonzero nilpotent é belongs
to g® and hence it determines a parabolic subgroup PE} C GR of the canonical
real form. Comparing the two classification yields the following theorem.

THEOREM 8.14. A pair (GX, PE) admits a ©-positive structure if and only
if there is a magical sloR-triple {f, h,é} C g® such that (GX,Pg) = (G¥, PE).
In particular, there are four such families:

(1) GR-split and P§ is the Borel subgroup.

(2) GR is a Hermitian group of tube type and Pﬂé 1s the mazimal parabolic
associated the Shilov boundary.

(3) GR is locally isomorphic to SOy and Pﬂé stabilizes an isotropic flag of the
form

RCR*cC---cRP CcRIT C ... c RPFITL C RPHY,
(4) GR is a quaternionic real form of Eg, E7, Eg or Fy, so that its restricted
root system is that of Fa, and © = {a1, a2}, where

F,: O0—O0=%=0—o0 -

a1 a2 a3 Qg
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Proof. By [47, Th. 4.3], the set of pairs (GR, Pg) which admit a ©-positive
structure are given by the above list. The correspondence with magical slo-
triples follows from Theorem 3.1 and Proposition 4.1. U

Remark 8.15. The cones in Cases (1) and (2) are the only relevant cones.
For Case (1), we have ug, =R for all j and the cone is R™ C R. For Case (2),
the cones are related to the causal structure on the Shilov boundary (see [55]).
For example, when GR = SU,, n, the positive cone is the set of positive definite
(nxn)-matrices inside the set of all (nxn)-matrices, and for G® = SO o, the
cone is the light cone in RHV=3. For Case (3), there are p—2 cones isomorphic
to RT € R and one isomorphic to the cone in Case (2) for SOg4_pi1. For
Case (4), there are two invariant cones. One is R* C R corresponding to the
simple root space & from (4.5), and the other is isomorphic to the cone in Case
(2) for SpgR, SUs 3, SO}, and E- % for GR given by the quaternionic real form
of Fy, Eg¢, E7 and Eg, respectively.

For pairs (G®,P§) which admit a ©-positive structure, there is a distin-
guished semigroup Ug 4+ C Ug of the unipotent radical [47, Th. 4.5], which
allows one to define a notion of positively ordered triples in G¥/ Pﬂé; as fol-
lows. Since the group GR acts transitively on the space of transverse points in
GR /PR any two points z,y € GR/PIE; can be mapped to the points (z4,z_)
associated to Pg and ngopp, respectively.

Definition 8.16 ([47, Def. 4.6]). Let z1,z_ € G®/P§ be the points asso-
ciated to Pﬂé and Pgopp, respectively. A point xy which is transverse to z, is
the image of z_ under a unique element uy € U§. The triple (x4, zo,z_) is
positive if ug € Uﬂé 4

With respect to the orientation on O I', we say that a triple of pairwise
distinct points (a, b, c) is a positive triple if the points appear in this order.

Definition 8.17 ([47, Def. 5.3]). Suppose that the pair (G¥,Pg) admits a
O-positive structure. Then a Pﬂé-AHOSOV representation p : ¥ — GR is ©-
positive if the Anosov boundary curve & : Opom ¥ — GR/ Pﬂé sends positively
ordered triples in d,,m S to positive triples in G®/ Pﬂg.

Remark 8.18. As mentioned in the introduction, Guichard—Wienhard con-
jecture that the set ©-positive Anosov representations is an open and closed
subset of X'(G®). This conjecture aims to characterize connected components
of the character variety consisting entirely of discrete and faithful represen-
tations as precisely those arising from positive Anosov representations. Such

components are now commonly referred to as higher rank Teichmiiller spaces
(cf. [47]).
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The construction of the positive semigroup Ug 4+ C Ug is defined by ex-
ponentiating certain combinations of elements in the cones ¢z, C ug,. Namely,
there is a certain Weyl group We, and if wg = gy, - - - 0;

, 1s an expression for

the longest word in Weg, it defines the map
Fo oy c%il X e X C%i, — Ug ; Fo, oy (Vig, - vi) = exp(vs,) - exp(vy,),

where c%ij is the interior of cg;, - By [47, Th. 4.5], the semigroup Ug 4+ C Uﬂé is
given by
Ug+ = Fo,, 0, (c%i1 X - X c%il).

Recall from Proposition 4.5 that if {f, h,e} C g is a magical sly-triple and
¢ C g isits centralizer, then we denoted the semisimple part of the centralizer of
¢ by g(e) C g. For magical triples, we showed that g(e) is simple and {f, h,e} C
g(e) is a principal slp-triple in g(e). The next result relates the Weyl group We
with the Weyl group of g(e) for each one of positive families from Theorem 8.14.

PROPOSITION 8.19. Let {f,h,e} C g be a magical sla-triple with canonical
real form GR, and let g(e) C g be the semisimple part of the double centralizer
of {f,h,e}. Then the relevant Weyl group We used to define the semigroup
Ug,—i— is the Weyl group of g(e). In particular,

(1) For Case (1) of Theorem 8.14, g(e) = g and We is the Weyl group of g.
(2) For Case (2) of Theorem 8.14, g(e) = (f, h,e) and We is the Weyl group

Of sl C.

(3) For Case (3) of Theorem 8.14, g(e) = s09,_1C and We is the Weyl group

Of 502p_1(C.

(4) For Case (4) of Theorem 8.14, g(e) = Lie(G2) and We is the Weyl group

Of Lie(Gg).

Recall that the canonical real form 7. : g — g associated to a magical
slo-triple {f, h,e} preserves the subalgebra g(e) @ ¢, and the fixed point set
defines a subalgebra

ae)® @ & c gt
Here g(e)® is the split real form of g(e) and contains the Cayley transform

{f, h, é} of {f, h,e}, and ¢® is the compact real form of ¢. This defines an
embedding of the connected subgroup with Lie algebra g(e)®

v: G(e)® — GE,

Moreover, the intersection of the parabolic Pg = Pz € GR defined by é with
G(e)R is the Borel subgroup B of G(e)®. As a result, there are two important
semigroups appearing: the semigroup Ug’ L C Ug coming from ©O-positivity
for {f,h,e} C g, and the semigroup UE + C UR ¢ BE coming from ©-positivity
of {f,h,e} C g(e) from Case (1) of Theorem 8.14.
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PROPOSITION 8.20. Let {f,h,e} C g be a magical sla-triple with canonical
real form g®, and consider the parabolic Po C G and the Borel subgroup BR C
G(e)R. Then the inclusion . : B — Pg induces an inclusion of the positive
Semigroups

L:UI§+—>UH§7+.

Proof. For Case (1) of Theorem 8.14, there is nothing to prove since g(e)
= g. For Case (2) of Theorem 8.14, g(e) = {f, h,e} and the semigroup is just
the exponential of the positive cone 6%1' In this case the Cayley transform é of
e is contained in the cone, and hence exp(té) is contained in 6%1 for ¢ > 0. For
Case (3) of Theorem 8.14, the statement was proven in [19] for GR = SO, 11
and the proof for SO, , is identical; see [3, §7.2].

Finally we focus on Case (4) of Theorem 8.14. Note that there are two
simple roots ag, s ¢ ©, and the Lg—invariant decomposition u§3 oul , is areal
version of the decomposition go = g5 @ gs in (4.5). Recall from Remark 8.15
that the two cones ¢y C Uq, and cq, C Uq, are described as follows: co, C Uq,
is Rt C R and cqy C Uq, is the cone from Case (2) for the Lie algebras spgR,
su33, 507 and e, 25, with g]R equal to the quaternionic real forms of f4, ¢g, e7
and eg, respectively.

We claim that the Cayley transform é of the magical nilpotent e is con-

0
o

factor u]§3 eu
Since the projection of é onto u
), Cult . Recall from Remark 4.22 that {fy, [fs, €], €} is a magical slo-triple
from Case (2). Since the Cayley transform of e, is contained in the cone from

, x ¢ . First note, that the projections éq, and é,, of é onto each

R
Q4

tained in ¢
are nonzero since the parabolic pﬂé) = p]§ is determined by é.

R , 18 nonzero, we conclude that it is in the cone

Case (2), the projection of é onto u,, is contained in the cone cgg C Uqy- Now,
the Weyl group We is the Weyl group of g(e)®, thus that of Lie(Gs), and g(e)®
is the split real form of Gg. Moreover, the projections é,, and é,, generate
the nilpotent part of the Borel subalgebra b¥ C g(e)®. Hence, the inclusion
¢ : BE — P induces an inclusion ¢ : UE L= Ug 4 (]

As in [19, Th. 7.13], we can now prove that for a magical sly-triple
{f,h,e} C g with canonical real form G¥, the set of representations in P.(G*)
described by Proposition 8.11 are ©-positive Anosov representations. Using
openness of ©-positive Anosov representations, we conclude from this that the
union of connected components P.(GF) contains an open set of O-positive
Anosov representations.

THEOREM 8.21. Let G be a simple complex Lie group with Lie algebra g.
Let {f h,e} C g be a magical sla-triple with canonical real form G® C G. Then
the set of representations puitxpcr from Proposition 8.11 are ©-positive Anosov
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representations. In particular, each of the sets Po(GR) ¢ X(GR) from Theo-
rem 8.8 contains a nonempty open set of O-positive Anosov representations.

Proof. Consider a G(e)R-Hitchin representation ppy : Mm% — G(e)R.
Since ppjt, is a ©-positive Anosov representation for Case (1) of Theorem 8.14,
the Anosov boundary curve

Epmie * OooT1 X — G(e)R/B]f

sends positive triples in J,m1 Y to positive triples of transverse points in
G(e)®/BE. The inclusion ¢ : G(e)® — GR induces a representation ¢ o pp;
and an Anosov boundary curve

10 Ep ¢ Osom X — G(e)®/BE — GF/PE.

By Proposition 8.20, ¢ o &, also sends positive triples in ds,m X to positive
triples of transverse points in G(e)®/BE, and hence ¢ o ppj; is a ©-positive
Anosov representation.

The centralizer of ¢ o pp;; is CR, so is compact. Since multiplication by an
element in the compact part of the centralizer does not change the boundary
curve and does not affect the Anosov property, the boundary curve ¢ o &, is
also the Anosov boundary curve for the representation p = (1opmit) *pcr, where
pcr : % — CR is any representation into the compact group C®. Therefore,
all representations from Proposition 8.11 are ©-positive Anosov representa-
tions. Since the set of ©-positive Anosov representations is open, each of the

spaces P.(GR) contain an open set of O-positive Anosov representations. [

Remark 8.22. By Corollary 8.10, none of the representations in P.(GR)
factors through a proper parabolic subgroup of GR. This fact should be im-
portant in proving that in fact every connected component of P.(GR) which
contains the ©-positive Anosov representations described in Theorem 8.21 con-
sists entirely of ©-positive Anosov representations. There are known examples
of components in P.(G®) which do not contain the locus described in Theo-
rem 8.21, namely for the group SO, ,+1 [19]. However, each of these compo-
nents lie in a component of P.(SO, p+2) which does contain representations
in the locus of Theorem 8.21. In fact, one expects that all ©-positive Anosov
representations do not factor through proper parabolic subgroups. This gives
further evidence that the space of @-positive Anosov representations is exactly
described by the space P.(GR), and thus that the higher rank Teichmiiller
spaces coincide precisely with the spaces P.(GR).
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9. Diagrams and tables

9.1. Tables.
real form | table in [24] | row(s) | Columns 4 & 5 | ¢® [ weighted Dynkin diagram
93 VI 5 0 0 Theorem 3.1 Case (1)
1 VII 19 3 503 Theorem 3.1 Case (4)
1 VII 26 0 0 Theorem 3.1 Case (1)
i, 20 VIIT — — — —
e2 IX 23 8 sug | Theorem 3.1 Case (4)
o 12 X — — — —
el XI 93,94 0 0 Theorem 3.1 Case (1)
er” XIT 22 21 spg | Theorem 3.1 Case (4)
I XIII 6,7 52 f,°| Theorem 3.1 Case (2)
¢S X1V 115 0 0 Theorem 3.1 Case (1)
eg XV 21 52 f,°% | Theorem 3.1 Case (4)

Table 1. Table of magical triples for inner real forms of excep-
tional Lie algebras

g R Description dimm — dim b
s[,C s R traceless (n x n) R-matrices n—1
slp14C sup, | traceless (p+ ¢q) x (p + ¢) C-matrices which are skew-adjoint 1—(q—p)?
w.r.t. a nondegenerate signature (p,¢) Hermitian form
sl C sud m x m H-matrices with purely imaginary trace —2m—1
50p44C 50p4 (p+q) X (p+ q) R-matrices which are skew-adjoint %(p +q—(q-p)?)
w.r.t. a nondegenerate signature (p,q) symmetric form
509,C 505, (m x m) H-matrices which are skew-adjoint -m
w.r.t. a nondegenerate skew-Hermitian form
P2, C | 89, (R) (2m x 2m) R-matrices which are skew-adjoint m
w.r.t. a nondegenerate skew-symmetric form
Popt24C | 5Popog (m x m) H-matrices which are skew-adjoint —p—q—2(q—p)?
w.r.t. a nondegenerate signature (p,¢) Hermitian form

Table 2. Table of noncompact real forms of classical simple Lie algebras
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9.2. Weighted root poset for magical nilpotents in Eg, E7, Eg and Fy4.

: 2
Fi: O, (2) ©) , : &
ay [e5)] Qs gy =
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9.3. Notation. The following is a nonexhaustive list of the notation used
throughout the paper. We consider an sla-triple { f, h, ¢} in a finite-dimensional
complex simple Lie algebra g and a complex connected Lie group G with Lie

Zom; =Wam,Ngo
gle) C g

r(e) = rk(g(e))
el

algebra g.
s={(f,h,e) subalgebra of g generated by {f, h, e}; see Remark 2.12.
g= @]-Vio W; decomposition of g into irreducible sly-modules; see (2.3).
0=P;-_9; adp-weight space decomposition of g; see (2.4).
V=V(e) centralizer of e in g; see p. 813.
V=@,V decomposition into highest weight spaces V; = W; Ng; in

W;; see (2.5).

c=Wo =V, subalgebra which centralizes (f, h,e) C g; see Remark 2.3.

weight zero subspace of the sly-module Wa,,; see (2.7).

semisimple part of double centralizer of magical (f,h,e);
see Proposition 4.5.

rank of g(e); see (4.3).

exponents of g(e); see Lemma 5.7.

g C go semisimple part of go; see (4.3).

Oc:9—9 magical involution associated to (f, h,e) C g; see (2.6).

gf Cyg canonical real form with o, as Cartan involution; see Def-
inition 2.11.

g=hdm complex Cartan decomposition defined by o.; see p. 816.

g® =R pmk real Cartan decomposition defined by o.; see p. 816.

O : 9o — 9o Cayley involution associated to magical { f, h, e}; see (2.9).

95 C go Cayley real form of gy with 6. as Cartan involution; see
Definition 2.14.

gt C g semisimple part of g&; see Proposition 4.8.

g=cdm Cartan decomposition given by restriction to g of Cayley
involution 6,; see p. 848.

ScG connected subgroup with Lie algebra s; see p. 846.

ccaG centralizer in G of (f, h,e) C g (with Lie algebra c); see
Lemma 4.7.

HcG fixed-point group for o; see p. 816.

GRcaG canonical real group associated to magical {f, h,e}; see
Definition 2.13.

HR = HNGE maximal compact subgroup of GF; see p. 816.

G§ Cayley group associated to magical {f, h,e} and G; see
Definition 4.11.

GR c G} semisimple part of Cayley group; see Definition 4.11.

Er, f) uniformizing Higgs bundle; see Definition 5.4.

(En, * En,)[H]
v,
U

e

star product H-bundle for commuting subgroups Hy, Ho C
H; see (5.3).

Cayley map on configuration space; see (5.6).

Cayley map on moduli space; see (7.1).
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