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Abstract

We introduce a new class of sl2-triples in a complex simple Lie algebra g,

which we call magical. Such an sl2-triple canonically defines a real form and

various decompositions of g. Using this decomposition data, we explicitly

parametrize special connected components of the moduli space of Higgs

bundles on a compact Riemann surface X for an associated real Lie group,

hence also of the corresponding character variety of representations of π1X

in the associated real Lie group. This recovers known components when

the real group is split, Hermitian of tube type, or SOp,q with 1 < p 6 q,

and also constructs previously unknown components for the quaternionic

real forms of E6, E7, E8 and F4. The classification of magical sl2-triples is

shown to be in bijection with the set of Θ-positive structures in the sense

of Guichard–Wienhard, thus the mentioned parametrization conjecturally

detects all examples of higher rank Teichmüller spaces. Indeed, we discuss

properties of the surface group representations obtained from these Higgs

bundle components and their relation to Θ-positive Anosov representations,

which indicate that this conjecture holds.
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1. Introduction

In this paper we introduce a new framework for special components in

moduli spaces of Higgs bundles. Via the nonabelian Hodge correspondence

these components are the analogs of higher rank Teichmüller spaces in char-

acter varieties of surface group representations. The framework unifies pre-

viously described constructions for various types of real Lie groups, namely

split real groups, Hermitian groups of tube type, and SOp,q, and it establishes

the existence of new Teichmüller-like spaces for quaternionic exceptional real

Lie groups.

Fix a closed orientable surface Σ with genus g > 2 and fundamental

group π1Σ. For any reductive Lie group G, the G-character variety X (G)

parametrizes conjugacy classes of reductive representations π1Σ → G. Recall

that the Teichmüller space T of complex structures on Σ is realized as the set

of conjugacy classes of Fuchsian representations π1Σ→ PSL2R. Moreover, T
defines an open and closed subset of X (PSL2R) consisting entirely of discrete

and faithful representations. In the general setting, where PSL2R is replaced by

a reductive group G, there is a class of representations (introduced by Labourie

[61] and since studied by many authors; see [46], [56], [43]) called Anosov

representations which generalize many features of Fuchsian representations.

These representations define open subsets of the character variety consisting

entirely of discrete and faithful representations with many interesting geometric

and dynamical properties. Unlike T ⊂ X (PSL2R), the Anosov loci are not

necessarily closed, so do not automatically define connected components. In

cases where they do constitute such components, they define subsets of X (G)

which are open, closed and consist entirely of discrete faithful representations.

Such spaces are called higher rank Teichmüller spaces [76], [67].

One way of constructing Anosov representations is to post-compose a lift

of a representation in T with a homomorphism ιe : SL2R → G. Up to con-

jugation, such homomorphisms are labeled by nilpotent elements e in the Lie

algebra of G. When G is a complex simple Lie group, there is a (unique, up to

conjugation) special homomorphism ιe : SL2C → G, called principal, and the

restriction of ιe to SL2R is contained in the split real form GR ⊂ G [59]. In

[52], Hitchin used this to define connected components of X (GR) containing

ιe(T ) — now called Hitchin components. Representations in Hitchin compo-

nents were shown to be Anosov by Labourie for PSLnR [61] and, with different

methods, by Fock–Goncharov [31] for general split groups. Other examples of

components of Anosov representations arise from so-called maximal represen-

tations into Hermitian Lie groups [16], [17].

Recently, Guichard–Wienhard [47], [48] defined a generalization of Lusztig’s

theory of total positivity [64] called Θ-positivity. Roughly, a parabolic sub-

group PΘ ⊂ GR of a real Lie group GR has a Θ-positive structure if triples of
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pairwise disjoint transverse points in GR/PΘ admit a cyclic order. For such

pairs (GR,PΘ), it is possible to define a set of Θ-positive Anosov representa-

tions. This set is open in X (GR) and conjectured to be closed [47], [48]. The

Θ-positive structures have been classified, leading to a list of possible higher

rank Teichmüller spaces, which includes all the examples mentioned above as

well as two other possible families.

The Hitchin components were discovered in [52] using the nonabelian

Hodge correspondence, which defines a homeomorphism between the character

variety X (G) and the moduli space M(G) of polystable G-Higgs bundles on

a Riemann surface X with underlying surface Σ. In particular, using Higgs

bundles, Hitchin parametrized the Hitchin component by a vector space of

holomorphic differentials. The spirit of the current paper is similar, and Higgs

bundles will be our main focus. Due to the transcendental nature of this

correspondence, it is very difficult to characterize the notions of Anosov repre-

sentations and Θ-positive structures in terms of Higgs bundles so we develop

in this paper a new Lie theoretic notion, called magical sl2-triple in a complex

Lie algebra g, which is adapted to the language of Higgs bundles.

In one of our main results, we classify all such magical sl2-triples and con-

firm that this classification establishes a bijection between them and Θ-positive

structures. Furthermore, we prove properties about the resulting Higgs bun-

dles and find new connected components in moduli spacesM(GR) where GR is

a real Lie group determined by a magical sl2-triple. We call these components

Cayley components (see Definition 7.3) because the construction generalizes a

similarly named construction in the case, where GR is a Hermitian group of

tube type. Using the nonabelian Hodge correspondence to translate our results

into statements about character varieties, we show that these components con-

tain open sets of Θ-positive Anosov representations and hence should describe

new higher rank Teichmüller spaces.

We now give slightly more detailed statements of our results, starting with

a description of the magical sl2-triples.

Let g be a complex simple Lie algebra and e ∈ g be a nonzero nilpotent

element. By the Jacobson–Morozov theorem, e can be completed to a triple

{f, h, e} which generates a subalgebra of g isomorphic to sl2C. This defines a

bijective correspondence between conjugacy classes of nonzero nilpotents and

conjugacy classes of sl2C-subalgebras. Using the decomposition of g as an

sl2C-module, we define a vector space involution

σe : g −→ g,

which is + Id on the trivial sl2C-representation, − Id on the nonzero highest

weight spaces and − Id on f (see Section 2.1 for details). We call the sl2-triple

{f, h, e} ⊂ g magical if σe is a Lie algebra involution.
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The involution σe was first defined by Hitchin for principal sl2-triples. A

key point in his work was showing that the involution σe is a Lie algebra homo-

morphism [52, Prop. 6.1]. Generalizing the main results of [52], we show that

magical sl2-triples determine components of character varieties which conjec-

turally describe all higher rank Teichmüller components. The character vari-

eties in which these occur are determined by canonical real forms gR ⊂ g as-

sociated to magical triples {f, h, e} (see Definition 2.11). For principal triples,

the canonical real form is the split real form of g [52, Prop. 6.1].

Theorem A (Theorem 8.8). Let G be a complex simple Lie group with Lie

algebra g and {f, h, e} ⊂ g be a magical sl2-triple with canonical real form GR ⊂
G. Let Σ be a closed orientable surface of genus g > 2 and X (GR) be the GR-

character variety of Σ. Then, there exists a nonempty open and closed subset

Pe(GR) ⊂ X (GR),

which contains ιe(T ) and does not contain representations which factor through

compact subgroups. Moreover, the centralizer of any representation ρ ∈ Pe(GR)

is compact. In particular, there is no proper parabolic subgroup PR ⊂ GR such

that ρ : π1Σ→ PR ↪→ GR.

As mentioned above, the sets Pe(GR) are constructed by applying the

nonabelian Hodge correspondence to Cayley components in the moduli space

M(GR) of GR-Higgs bundles. Briefly, a GR-Higgs bundle on a compact Rie-

mann surface X is a pair (E , ϕ), where E is a holomorphic principal bundle

on X and ϕ (the Higgs field) is a holomorphic section of an associated vector

bundle twisted by the holomorphic cotangent bundle K of X. (See Section 5.1

for more details.) We will also consider the moduli spaceML(G
R) of L-twisted

Higgs bundles, where the twisting line bundle K is replaced by a line bundle L.

The Cayley components inM(GR) are constructed from the Lie theoretic

data of a magical sl2-triple. In addition to the real form gR, each magical sl2-

triple {f, h, e} ⊂ g defines a real form gRC of the centralizer g0 of the semisimple

element h (see Definition 2.14). We call gRC the Cayley real form. We also show

that a magical sl2-triple {f, h, e} is principal (see Proposition 4.5) in a simple

subalgebra g(e) ⊂ g defined as the semisimple part of the double centralizer

of {f, h, e}, i.e., the centralizer of the centralizer of {f, h, e}. This defines a

decomposition of the Cayley real form (see Proposition 4.8) as

gRC = g̃R ⊕ R
r(e),

where g̃R is either zero or a simple real Lie algebra and r(e) = rk(g(e)) is the

rank of g(e). Hence we have a real Lie group

(1.1) GR
C = G̃R × (R+)r(e),

which we call the Cayley group. This additional structure imposed by the

existence of a magical sl2-triple leads to a concrete description of these new
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connected components in terms of moduli spaces associated to the Cayley

group.

Theorem B (Theorem 7.1). Let G be a complex simple Lie group with Lie

algebra g and {f, h, e} ⊂ g be a magical sl2-triple with canonical real form GR.

Let g(e) ⊂ g be the semisimple part of the double centralizer of {f, h, e} and

GR
C = G̃R×(R+)r(e) be the Cayley group. Let X be a compact Riemann surface

of genus g > 2 with canonical bundle K , and let M(GR) be the moduli space

of GR-Higgs bundles over X . Then there are a positive integer mc and a well

defined injective, open and closed map

(1.2) Ψe :MKmc+1(G̃R)×
r(e)⊕

j=1

H0(K lj+1) −→M(GR),

where {lj} are the exponents of g(e) and MKmc+1(G̃R) is the moduli space

of Kmc+1-twisted G̃R-Higgs bundles. Furthermore, every Higgs bundle in the

image of Ψe has nowhere vanishing Higgs field.

Remark 1.1. The connected components in the image of Ψe are the Cay-

ley components. The integer mc and the exponents of g(e) come from the

decomposition of g as an sl2C-module. Namely, as an sl2C-module, g =

W0 ⊕ W2mc ⊕
⊕r(e)

j=1W2lj , where W2k is a direct sum of a certain number

of copies of the unique irreducible sl2C-representation of dimension 2k+1. See

Lemma 5.7 for more details.

The map Ψe is a moduli space version of the global Slodowy slice map for

Higgs bundles constructed in [20]. However, it is nontrivial to show that when

{f, h, e} is magical the Slodowy map descends to an injective map on moduli

spaces. Our proof relies on our third main result, namely the classification of

magical sl2-triples given in Theorem 3.1.

Theorem C (Theorem 3.1 and Proposition 4.1). Let g be a simple com-

plex Lie algebra, and let gR ⊂ g be a real form. Then gR is the canonical real

form associated to a magical sl2-triple if and only if it is one of the following :

(1) g is any type and gR is its split real form ;

(2) g has type A2n−1, Bn, Cn, Dn, D2n, or E7 and gR is Hermitian of tube

type, i.e., gR is one of the following :

(a) sun,n,

(b) so2,p (with 2 + p = 2n+ 1),

(c) sp2nR,

(d) so2,p (with 2 + p = n),

(e) so∗4n, or

(f) the real form of E7 of Hermitian type;
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(3) g has type Bn or Dn and gR is sop,q with 1 < p < q and p+ q = 2n+ 1 or

p+ q = 2n, respectively ;

(4) g has type E6, E7, E8 or F4 and gR is its quaternionic real form.

Remark 1.2. A real form gR is called quaternionic if its associated Rie-

mannian symmetric space is quaternionic Kähler, equivalently, the maximal

compact subalgebra has a simple factor isomorphic to su2. Up to isomor-

phism, there is a unique quaternionic real form of type E6, E7, E8 and F4; see

[57, App. C].

The proof of Theorem C uses the correspondence between nilpotents in

classical Lie algebras and partitions, and classification data of Doković [24, 25]

for exceptional Lie algebras.

While a magical sl2-triple {f, h, e}⊂g defines a canonical real form gR⊂g,

the generators {f, h, e} are not real, i.e., f, h, e /∈ gR. We can obtain real sl2-

triples using the so called Cayley transform (see Section 2.4). The Cayley

transform of a magical sl2-triple, denoted by {f̂ , ĥ, ê}, has each of its generators

in the canonical real form gR. This allows us to relate magical triples to the

Guichard–Wienhard notion of Θ-positivity. Recall that a nilpotent element

ê ∈ gR determines a parabolic subgroup PR

ê ⊂ GR. The four families of pairs

(GR,PR

ê ) which arise from magical sl2-triples are the following:

(1) GR-split and PR

ê is the Borel subgroup;

(2) GR is a Hermitian group of tube type and PR

ê is the maximal parabolic

associated to the Shilov boundary;

(3) GR is locally isomorphic to SOp,q and PR

ê stabilizes an isotropic flag of the

form

R ⊂ R
2 ⊂ · · · ⊂ R

p−1 ⊂ R
q+1 ⊂ · · · ⊂ R

p+q−1 ⊂ R
p+q;

(4) GR is a quaternionic real form of E6, E7, E8 or F4, so that its restricted root

system is that of F4, and PR

ê is determined by the simple roots {α1, α2},
where

F4 :
α1 α2 α3 α4

.

Comparing this list with Guichard–Wienhard’s classification of Θ-positive

structures gives the following theorem.

Theorem D (Theorem 8.14). Let G be a complex simple Lie group and

GR ⊂ G be a real form. A pair (GR,PR
Θ) admits a Θ-positive structure if and

only if PR
Θ = PR

ê , where {f̂ , ĥ, ê} ⊂ gR is the Cayley transform of a magical

sl2-triple with canonical real from GR.

Remark 1.3. Even though Theorem D results from observing that the

two classifications agree, a posteriori, more can be said about the link between



CAYLEY CORRESPONDENCES AND HIGHER TEICHMÜLLER SPACES 809

positivity and magical sl2-triples. Namely, the collection of invariant cones

arising from a positive structure is exactly the orbit of the nilpotent ê by the

identity component of the Levi factor LΘ. It would be interesting to develop

the link between these two perspectives further.

To further relate the open and closed sets Pe(GR) from Theorem A with

Θ-positivity, we prove that each of the sets Pe(GR) contains an open set of Θ-

positive Anosov representations. As above, let g(e) ⊂ g be the semisimple part

of the double centralizer of a magical sl2-triple {f, h, e}. The Lie algebra g(e)

defines a split subalgebra g(e)R of the canonical real form gR. Let G(e)R ⊂ GR

be the connected subgroup with Lie algebra g(e)R. One special property of

magical sl2-triples is that their GR-centralizer CR is compact. By construc-

tion, the groups G(e)R and CR commute, so we can form a GR-representation

by multiplying a G(e)R-representation with a CR-representation. In Proposi-

tion 8.11 we show that the sets Pe(GR) contain representations of the form

(1.3) ρ = ρHit ∗ ρCR : π1Σ −→ GR,

where ρHit : π1Σ→G(e)R is a G(e)R-Hitchin representation and ρCR : π1Σ→CR

is any representation. This allows us to prove the following theorem.

Theorem E (Theorem 8.21). Let G be a simple complex Lie group with

Lie algebra g. Let {f, h, e} ⊂ g be a magical sl2-triple with canonical real form

GR ⊂ G. Then the set of representations ρHit ∗ ρCR from (1.3) are Θ-positive

Anosov representations. In particular, each of the sets Pe(GR) ⊂ X (GR) from

Theorem A contains a nonempty open set of Θ-positive Anosov representations.

Remark 1.4. In the case that the magical sl2-triple {f, h, e} ⊂ g defines a

principal sl2C-subalgebra, this theorem is due to Labourie [61] in type A and

Fock–Goncharov [31] in general. For Hermitian groups of tube type, it is due

to [16]; see also [17]. It is expected that the sets Pe(GR) correspond exactly to

the sets of Θ-positive Anosov representations in all cases.

Our results follow on from several projects focused on the enumeration

or understanding of distinguished components in the moduli spaces of Higgs

bundles, and hence in character varieties for surface groups.

Given that Higgs bundles consist of an underlying principal bundle to-

gether with a Higgs field, it is clear that the topological type of the principal

bundle is an invariant of connected components in the moduli space. Similarly,

for the character varieties, the topological type of the associated flat bundle

is also an invariant of the components. For complex reductive Lie groups [63],

[35], and also for compact groups [68], the components are fully classified by

these topological invariants. The count is more complicated for GR-Higgs bun-

dles, where GR is a noncompact real form. Indeed, this was already evident

in Goldman’s component count for GR-character varieties where GR is a finite
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cover of PSL2R [39], and in Hitchin’s Higgs-bundle version for SL2R [51]. Since

then the enumeration and study of connected components in Higgs bundle

moduli space for other noncompact real forms has been extensively pursued;

for example, see [52], [40], [12], [66], [36], [32], [37], [15], [19], [3], [45], [4], [5], [6].

From one perspective, the starting point for the present work is the de-

scription of the Hitchin components in [52]. In particular, Hitchin proved The-

orems A and B above for the case in which the magical sl2-triple {f, h, e} ⊂ g

defines a principal sl2C-subalgebra, i.e., Case (1) of the Theorems C and D.

Indeed, in this case, the first factor in (1.1) equals the center of the group

(which is finite), and Hitchin’s description is recovered exactly by the map

(1.2). The opposite extreme, where the second factor in (1.1) is H0(K2), oc-

curs in Case (2) of the classification theorems. In this case Theorems A and B

recover results for GR-Higgs bundles when GR is of Hermitian tube type (see

[13] and [9]). In particular, the moduli space MKmc+1(G̃R) × H0(K2) has

mc = 1 and is then exactly the moduli space of K2-twisted Higgs bundles for

the Cayley partner to GR, i.e., the space which describes components with

maximal Toledo invariant. The third case in Theorems C and D includes the

case investigated in [3] for GR = SOp,q, in which case the map (1.2) recovers

the description of the “exotic” components identified in [3], but now adds the

remaining locally isomorphic groups.

From a slightly different perspective, our results relate to a program initi-

ated by Hitchin to count connected components by a Morse-theoretic method

[51], [52]. Described more fully in Section 7.5, the method is based on a proper

function F :M(GR) → R defined by the L2-norm of the Higgs field, and ex-

ploits the fact that proper functions attain their minima on closed sets. The

locus of local minima thus has at least as many components as the full moduli

space. Obvious minima of F , where the Higgs field is identically zero, lie on

components detected by the topological invariants of principal bundles. The

existence of other components — including the ones we study in this paper

— is detected by more subtle local minima. In Section 7.5 we identify such

minima coming from the components in the image of (1.2) and use this to

enumerate the components.

We end this introduction with some open questions, organized in a series

of conjectures, and a short discussion on what remains to be proven.

Conjecture.

(1) A representation ρ ∈ X (GR) is Θ-positive if and only if ρ is in one of the

spaces Pe(GR) from Theorem A.

(2) A connected component of X (GR) is a higher rank Teichmüller space if

and only if it is a connected component of one of the spaces Pe(GR) from

Theorem A or GR is a Hermitian group of nontube type and the Toledo

invariant is maximal.
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(3) All components of X (GR) which are not higher rank Teichmüller spaces are

uniquely labeled by invariants which depend only on the topological type of

GR-bundles over Σ.

(4) Other than the components in the image of the Cayley map (1.2) and

the components with maximal Toledo invariant for Hermitian groups of

nontube type, the components ofM(GR) are uniquely labeled by topological

invariants of GR-bundles over Σ.

We note that the first two conjectures are consistent with Guichard–

Wienhard’s conjecture that positivity provides the correct unifying framework

for higher rank Teichmüller spaces [47]. Since the first version of this paper

was released, one direction of the first conjecture has been settled. Namely, all

representations in the spaces Pe(GR) are Θ-positive. This had already been es-

tablished for split groups [31], [61] and for Hermitian groups of tube type [18],

[17]. For groups locally isomorphic to SOp,q, Beyrer–Pozzetti recently proved

that the space of positive representations is closed [8], and hence all represen-

tations in Pe(SOp,q) are positive. Separately, Guichard–Labourie–Wienhard

proved that positive representations are closed in the space of representations

which do not factor through proper parabolic subgroups [44]. Hence, by The-

orem A, positive representations define components of the character variety,

namely the components Pe(GR). Very recently, this has been shown with a

proof independent from the results of this paper in [7].

The Hermitian groups of nontube type are locally isomorphic to SUp,q with

p 6= q, SO∗
2n+2 and E−14

6 . For such groups, there is not a notion of positivity;

however, representations with maximal Toledo invariant always factor through

a maximal tube type subgroup where they are positive. Hence, maximal repre-

sentations into such groups define higher rank Teichmüller spaces [18]; see also

[12], [9]. Note that if (2) holds, then (3) and (4) are equivalent. The simple

groups for which all conjectures have been established are PSLnR by [52] and

[61], the Hermitian real forms locally isomorphic to SUp,q and SO2,3 by [12],

[11], [34], [41] and [18], the groups locally isomorphic to SOp,q for 2 < p < q

by [3] and [8], and groups locally isomorphic to SU∗
2n and Sp2p,2q by [36], [37].

The noncompact real forms of simple groups which are missing are Sp2nR for

n > 2, SO∗
2n, SO2,n for n > 3, and all real forms of exceptional type.
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the Instituto de Ciencias Matemáticas (ICMAT), that he visited in the course

of preparation of this paper.

2. Nilpotents and magical sl2-triples

Let g be a finite-dimensional complex simple Lie algebra and G be a

connected complex Lie group with Lie algebra g. For background on nilpotents

we mostly follow [21].

2.1. Nilpotents and sl2-triples. An element e ∈ g is called nilpotent if the

corresponding adjoint map

ade : g −→ g

is a nilpotent endomorphism. The nilpotent elements of g form a G-invariant

cone consisting of finitely many G-orbits. In fact, there is a unique nilpotent

orbit which is open and dense in the nilpotent cone, and elements in this orbit

are called principal nilpotents. For example, when G = SLnC, nilpotent orbits

are in bijection with partitions of n by the Jordan decomposition theorem. In

this case, a principal nilpotent is conjugate to a full Jordan block.

By the Jacobson–Morozov theorem, every nonzero nilpotent element e ∈ g

can be completed to a triple of nonzero elements {f, h, e} ⊂ g satisfying

(2.1) [h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

Moreover, if {f, h, e} and {f ′, h, e} are two such triples, then f = f ′. A triple

{f, h, e} of nonzero elements verifying the bracket relations (2.1) will be called

an sl2-triple, and the subalgebra 〈f, h, e〉 ⊂ g will be called the sl2C-subalgebra

associated to {f, h, e}. This defines a bijection between conjugacy classes of

nilpotents and conjugacy classes of sl2C-subalgebras

(2.2) {e ∈ g nonzero nilpotent}/G oo
1−1

// {φ : sl2C→ g}/G.
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An sl2-triple {f, h, e} defines two decompositions of g, one as an sl2C-

module, namely,

(2.3) g =
M⊕

j=0

Wj ,

whereWj is isomorphic to a direct sum of nj copies (with nj > 0) of the unique

irreducible (j+1)-dimensional sl2C-representation. By sl2-data of {f, h, e} we
will mean the collection of pairs of nonnegative integers (j, nj) such that, for

each j > 0, the multiplicity nj of Wj is positive (so we consider the pair (0, n0)

part of the sl2-data even if n0 = 0). Another decomposition of g determined

by {f, h, e} is given by adh-weight spaces,

(2.4) g =
l⊕

j=−l

gj ,

where gj = {x ∈ g | adh(x) = jx}. Note that ade : gj → gj+2 and adf :

gj → gj−2. The subalgebra
⊕

j>0 gj is a parabolic subalgebra determined by

the nilpotent e.

Remark 2.1. A nilpotent e ∈ g is called even if adh only has even eigen-

values, i.e., if gj = 0 for all j odd. The sl2C-subalgebra 〈f, h, e〉 ⊂ g, for

an even nilpotent e, defines a subgroup of the adjoint group of G which is

isomorphic to PSL2C.

The centralizer ker(ade) = V (e) = V ⊂ g of e decomposes into a direct

sum of highest weight spaces of each Wj ,

(2.5) V =
⊕

j>0

Vj ,

where Vj =Wj ∩gj . We have the following proposition (see Lemmas 3.4.5 and

3.7.3 of [21]).

Proposition 2.2. The subspace V ⊂ g is a subalgebra such that V0 =W0

is a reductive subalgebra and
⊕

j>0 Vj is a nilpotent subalgebra. In addition,

for each j, k, the subspace Wj ∩ gk ⊂ g is preserved by bracketing with W0.

Remark 2.3.

(1) Note that V0 = W0 ⊂ g is the Lie subalgebra which centralizes the sl2C-

subalgebra 〈f, h, e〉. We will often denote this subalgebra by c =W0 ⊂ g.

(2) The affine space

f + V ⊂ g

is a slice of the adjoint action of G on g through the nilpotent f , which is

usually called a Slodowy slice [75]. Note that c preserves the Slodowy slice.

2.2. Magical sl2-triples. Let {f, h, e} ⊂ g be an sl2-triple. Note that

g =
M⊕

j=0

j⊕

k=0

Wj ∩ gj−2k



814 BRADLOW, COLLIER, GARCÍA-PRADA, GOTHEN, and OLIVEIRA

and that Wj ∩ gj−2k = adkf (Vj). Consider the map σe : g → g defined by the

linear extension of

(2.6) σe(x) =

®

x if x ∈ V0,
(−1)k+1x if x ∈ adkf (Vj) for some 0 6 k 6 j and j > 0.

This defines a vector space involution of g with σe|Vj = − Id for j > 0. On the

given sl2-triple, we have σe(f) = −f , σe(h) = h and σe(e) = −e.

Definition 2.4. An sl2-triple {f, h, e} will be called magical if the involu-

tion σe : g→ g defined by (2.6) is a Lie algebra involution. We will also refer

to a nilpotent element e ∈ g as magical if it belongs to a magical sl2-triple.

Remark 2.5. Although the terminology was not used, Hitchin showed in

[52, Prop. 6.1] that a principal sl2-triple is magical.

Remark 2.6. Note that if {f, h, e} ⊂ g is magical and contained in a

reductive subalgebra g′ ⊂ g, then {f, h, e} is magical in the subalgebra g′.

We will classify magical nilpotents in Section 3, and by (2.2) this will

be equivalent to classifying magical sl2-triples. A key feature of principal sl2-

triples is that the subalgebra g0 is a Cartan subalgebra. We now generalize

this to magical triples. For an sl2-triple {f, h, e}, let Z2mj
=W2mj

∩ g0. Thus,
we have a decomposition of g0 as a c-module

(2.7) g0 = c⊕
M⊕

j=1

Z2mj
.

Proposition 2.7. If {f, h, e} is a magical sl2-triple, then [Z2mi
, Z2mj

]⊂c

for all mi,mj , and [Z2mi
, Z2mj

] = 0 if mi 6= mj .

Before giving the proof we recall some facts about sl2C-representation

theory. Consider the decomposition (2.3) of g. The Lie bracket defines a

morphism of sl2C-representations:

[ , ] :W2mi
⊗W2mj

−→W0 ⊕
M⊕

k=1

W2mk.

According to the Clebsch–Gordan formula, the tensor product W2mi
⊗W2mj

decomposes as a direct sum of irreducible representations

(2.8) W2mi
⊗W2mj

∼=
2min(mi,mj)⊕

l=0

(
S2mi+2mj−2l

)⊕ninj
,

where Sd is the dth-symmetric product of the standard sl2C-representationW1.

The projection onto the summand (S2mi+2mj−2l)⊕ninj is given by contracting
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l-times with the volume form on C
2. If we represent S2d as homogeneous poly-

nomials in z1, z2 of degree 2d, the elements x ∈ Z2mi
and y ∈ Z2mj

are multiples

of zmi
1 zmi

2 and z
mj

1 z
mj

2 , respectively. Moreover, since the volume form is skew-

symmetric, contracting (2l+1)-times zmi

1 zmi

2 with z
mj

1 z
mj

2 gives zero. Thus, the

projection of the bracket [x, y] to Z2mk
is zero when mi +mj = mk + 1mod 2.

Proof of Proposition 2.7. Suppose that {f, h, e} is magical. Let x ∈ Z2mi
,

y ∈ Z2mj
, and write [x, y] = z0+

∑
zk, where z0 ∈ c and zk ∈ Z2mk

. Note that

σe(z0) = z0 and σe(zk) = (−1)mk+1zk. By assumption, we have σe([x, y]) =

[σe(x), σe(y)], thus

z0 +
∑

(−1)mk+1zk = (−1)mi+mj
(
z0 +

∑
zk
)
.

In particular, if mi +mj = mk mod2, then zk = 0. It follows, by the above

discussion, that zk = 0 for all k > 0. Thus,

[Z2mi
, Z2mj

] ⊂ c

for all mi,mj . Moreover, by Schur’s Lemma, the projection of the bracket

[x, y] to W0 is zero unless the decomposition of W2mi
⊗W2mj

has the trivial

representation W0 as a summand. But by (2.8) this only happens if mi = mj ,

completing the proof. �

By Proposition 2.7, a magical sl2-triple {f, h, e} defines a Lie algebra

involution θe : g0 → g0,

(2.9) θe(x) =





x if x ∈W0,

−x if x ∈
M⊕

j=1

Z2mj
.

Remark 2.8. Note that θe and σe|g0 are different since θe(h) = −h and

σe(h) = h.

2.3. The canonical real form associated to a magical nilpotent. In this

section we mainly follow [1, §3]. A real form of the complex Lie group G is

defined to be the fixed point set Gτ of an anti-holomorphic involution

τ : G −→ G.

We will sometimes refer to the involution τ itself as a real form. Note that even

though G is connected, the real form Gτ may not be connected. For example,

SOp,q ⊂ SOp+qC is a real form which has two components whenever p or q is

nonzero. If the fixed point set Gτ ⊂ G is compact, the real form is said to be

compact. Such real forms exist and are unique up to conjugation.

A holomorphic involution σ : G → G is called a Cartan involution for

a real form τ if στ = τσ and, in addition, στ is a compact real form of G.

Given a real form τ , a Cartan involution σ for τ exists and is unique up



816 BRADLOW, COLLIER, GARCÍA-PRADA, GOTHEN, and OLIVEIRA

to conjugation by the identity component (Gτ )0 ⊂ Gτ . Conversely, given a

holomorphic involution σ, there exists a real form τ , unique up to conjugation

by (Gσ)0, such that σ is a Cartan involution for τ .

The following proposition will be useful (cf. [1, Th. 3.13]).

Proposition 2.9. Let G′ ⊂ G be a reductive subgroup. If σ : G → G

is a holomorphic involution of G with σ(G′) = G′ and τG′ is a real form of

G′ such that σ|G′ is a Cartan involution for τG′ , then there exists a real form

τ : G→ G with σ a Cartan involution for τ such that τ |G′ = τG′ . Conversely,

if τ : G → G is a real form of G with τ(G′) = G′ and σG′ is a Cartan

involution for τ |G′ , then there exists a Cartan involution σ : G→ G for τ such

that σ|G′ = σG′ .

An involution α : G → G induces an involution α : g → g, and the Lie

algebra of the fixed-point group Gα is the fixed-point subalgebra gα. Moreover,

if α : G → G is holomorphic or anti-holomorphic, then α : g → g is complex

linear or conjugate-linear, respectively. In the latter case, gα is a real form

of g, i.e., gα ⊗ C ∼= g.

Remark 2.10. An involution of the Lie algebra g does not always integrate

to an involution of the group G. However, every inner involution of g integrates

to G. Also, when G is an adjoint group or simply connected, every Lie alge-

bra involution integrates to G. Whenever we are dealing with Lie algebra

involutions, we will always assume G is a Lie group for which the involution

integrates.

Now fix a real form τ of G, and let σ be a Cartan involution for τ . Denote

the fixed-point groups by GR = Gτ and H = Gσ. Then

HR = H ∩GR

is a maximal compact subgroup of both GR and H. Furthermore, the associated

Lie algebra involution σ : gR → gR defines an HR-invariant decomposition of

gR into ±1-eigenspaces
gR = hR ⊕mR,

called a Cartan decomposition. The associated H-invariant decomposition g =

h⊕m will be referred to as the complexified Cartan decomposition.

Now we go back to our setting. Since the definition of a magical sl2-triple

involves a complex linear involution of g, there is a canonical real form of g

associated to each such triple.

Definition 2.11. Let {f, h, e} ⊂ g be a magical sl2-triple and σe : g → g

be the associated Lie algebra involution. Let τe : g → g be a real form such

that σe is a Cartan involution (2.6). The Lie algebra gR = gτe will be called

the canonical real form of g associated to {f, h, e}.
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Remark 2.12. The sl2C-subalgebra s = 〈f, h, e〉 spanned by the magical

sl2-triple is σe-stable. Moreover, σe|s is a Cartan involution for the conjugate

linear involution τs : s→ s defined by

(2.10) τs(h) = −h, τs(e) = f and τs(f) = e.

Since sτs is isomorphic to sl2R, we can choose the canonical real form τe : g→ g

such that the magical sl2C-subalgebra defines a subalgebra of gR isomorphic

to sl2R.

Definition 2.13. Let {f, h, e} ⊂ g be a magical sl2-triple and σe : g → g

be the associated Lie algebra involution (2.6). Let τe : g → g be a real form

such that σe is a Cartan involution. Let G be a connected complex Lie group

with Lie algebra g such that σe integrates to an involution σe : G → G and

let τe : G → G be the anti-holomorphic involution integrating τe. We define

the canonical real form GR of G associated to e to be the fixed-point group

Gτe ⊂ G.

The Lie algebra of the canonical real form GR is the canonical real form

gR of Definition 2.11. The complex linear Lie algebra involution θe : g0 → g0
defined in (2.9) also associates a real form to a magical sl2-triple.

Definition 2.14. Let {f, h, e} be a magical sl2-triple, g0 be the centralizer

of h and θe : g0→g0 be the Lie algebra involution from (2.9). Let τ0 : g0→g0 be

a real form, such that θe is a Cartan involution for τ0. The Lie algebra gτ00 ⊂g0
will be called the Cayley real form of g0 associated to e and denoted by gRC .

Remark 2.15. Note that θe|c = σe|c = Id : c→ c is a Cartan involution for

a compact real form τc of c. Thus, by Proposition 2.9, we can assume that the

canonical real form τe : g → g and the Cayley real form τ0 : g0 → g0 are such

that τe|c = τc = τ0|c. In particular, the centralizer cτc of the sl2R-subalgebra

sτe ⊂ gτe is compact (where s = 〈f, h, e〉).
2.4. Real nilpotents and the Sekiguchi correspondence. The classification

of magical sl2-triples will use the classification of nilpotent elements in real

Lie algebras and the Sekiguchi correspondence. Fix a real form τ : G → G,

a Cartan involution σ : G → G for τ , and write GR = Gτ , H = Gσ and

g = h⊕m for the complexified Cartan decomposition. In this section, we will

refer to sl2-triples in g as sl2-triples, to distinguish them from sl2R-triples in

GR, which will also appear.

The Sekiguchi correspondence gives a one-to-one correspondence between

GR-conjugacy classes of nilpotents in gR and H-conjugacy classes of nilpotents

in m:

(2.11) {ê ∈ gR nonzero nilpotent}/GR oo
1−1

// {e ∈ m nonzero nilpotent}/H.

It was proven independently in [70] and [23].
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We now describe the correspondence in more detail and refer the reader

to [21, Ch. 9] and [1, §6.1] for further details. The Jacobson–Morozov theorem

also holds over R. Namely, every nonzero nilpotent ê ∈ gR can be completed to

an sl2R-triple {f̂ , ĥ, ê}, such that f̂ , ĥ, ê ∈ gR \{0} satisfy the bracket relations

(2.1). Moreover, this defines a bijection on conjugacy classes

{ê ∈ gR nonzero nilpotent}/GR oo
1−1

// {φ : sl2R→ gR}/GR.

Following [21, Ch. 9.4], an sl2R-triple {f̂ , ĥ, ê} ⊂ gR is called a Cayley triple if

σ(f̂) = −ê, σ(ê) = −f̂ and σ(ĥ) = −ĥ. Using Proposition 2.9, one can show

that every sl2R-triple is (GR)0-conjugate to a Cayley triple. On the other

hand, an sl2-triple {f, h, e} is called a normal triple if σ(f) = −f , σ(h) = h

and σ(e) = −e. Note that every magical sl2-triple is a normal triple with

respect to the Cartan involution (2.6).

The Cayley transform defines a bijection between Cayley triples in gR and

normal triples in g by

γ : Cayley triples // Normal triples

{f̂ , ĥ, ê} � // {12(f̂ + ê− iĥ), i(ê− f̂), 12(f̂ + ê+ iĥ)},

with inverse given by

(2.12) γ−1 : Normal triples // Cayley triples

{f, h, e} � // {12(f − e+ ih), i(f + e), 12(f − e− ih)}.

Remark 2.16. We will refer to both γ and γ−1 as the Cayley transform.

Note that γ takes the standard generators of sl2R to those of su1,1, and hence

is defined by conjugating by the Möbius transformation identifying the upper

half plane with the Poincaré disk.

For the proof of the following see, for instance, [21, Th. 9.5.1].

Proposition 2.17. The Cayley transform provides the bijection of the

Sekiguchi correspondence (2.11).

Definition 2.18. Let gR be a real form of g with Cartan involution σ. A

Cayley triple {f̂ , ĥ, ê} ⊂ gR is magical if its Cayley transform γ({f̂ , ĥ, ê}) ⊂ g

is magical and, moreover, gR is the canonical real form of γ({f̂ , ĥ, ê}). A

nilpotent ê ∈ gR will be called magical if it belongs to a magical Cayley triple.

Let {f̂ , ĥ, ê} ⊂ gR be a Cayley triple and cR ⊂ gR be its centralizer. Simi-

larly, let c ⊂ g be the centralizer of its Cayley transform {γ(f̂), γ(ĥ), γ(ê)} ⊂ g.

It is straightforward to check that cR ⊗ C = c.

Recall that V (γ(ê)) = ker(adγ(ê)) ⊂ g denotes the centralizer of the nilpo-

tent γ(ê) ∈ g.
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Proposition 2.19. Let {f̂ , ĥ, ê} ⊂ gR be a Cayley triple. Then {f̂ , ĥ, ê}
is magical if and only if cR ⊂ hR and dim(h ∩ V (γ(ê))) = dim(c).

Proof. If {f̂ , ĥ, ê} ⊂ gR is magical, then cR⊗C = c ⊂ h and V (γ(ê))∩h = c

by Definition 2.4. Conversely, if cR ⊂ hR and dim(h ∩ V (γ(ê))) = dim(c), then

the Cartan involution σ satisfies (2.6). Indeed, σ is a Lie algebra involution

which preserves V (γ(ê)). Moreover, σ equals Id on c, equals − Id on the

nontrivial highest weight spaces, and also σ(γ(f̂)) = −γ(f̂). �

The first point of Proposition 2.19 says that the centralizer of a magical

Cayley triple is compact. For the dimension of h ∩ V (γ(ê)) we will use the

following result.

Proposition 2.20 ([60, Prop. 5]). The dimension of h∩V (γ(ê)) is given

by

dim(h ∩ V (γ(ê))) =
1

2

(
dim(V (γ(ê))) + dim(h)− dim(m)

)
.

3. Classification of magical sl2-triples

In this section we classify (conjugacy classes of) magical sl2-triples in

complex simple Lie algebras g. For classical Lie algebras, we use a classification

of nilpotents using signed Young diagrams. For exceptional Lie algebras, we

use results of Doković in [24], [25].

3.1. The classification theorem. There is a complete invariant of conju-

gacy classes of nilpotent elements of g (and hence of sl2-triples) called the

weighted Dynkin diagram. We briefly recall how this works and refer the

reader to [21, §3.5] for more details. Recall that the Dynkin diagram of g is a

diagram associated to a Cartan subalgebra a ⊂ g and a choice of simple roots

Π = {α1, . . . , αrk g} ⊂ a∗. Its nodes are labeled by the simple roots αi.

Consider an sl2-triple {f, h, e} ⊂ g. Since h is semisimple, there exists

a Cartan subalgebra a ⊂ g containing h. Furthermore, we may choose a set

of simple roots Π = {α1, . . . , αrk g} ⊂ a∗ so that αi(h) > 0 for all i. In fact,

the properties of sl2-representation theory imply that αi(h) ∈ {0, 1, 2}. The

weighted Dynkin diagram associated to the sl2-triple {f, h, e} ⊂ g is defined to

be the Dynkin diagram of (g, a,Π), where the node associated to the simple

root αi is labeled by the integer αi(h). Note that an sl2-triple is even (see

Remark 2.1) if and only if every node is labeled with either a 0 or a 2. It turns

out that if two sl2-triples in g have the same weighted Dynkin diagram, then

they are conjugate. However, not every Dynkin diagram whose nodes have

labels in {0, 1, 2} is the weighted Dynkin diagram of an sl2-triple.

Here is one of the cornerstones of this paper: the classification of magical

sl2-triples.
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Theorem 3.1. Let g be a simple complex Lie algebra. Then an sl2-triple

{f, h, e} ⊂ g is magical if and only if the associated weighted Dynkin diagram

is one of the following :

(1) g is any type and every node is labeled with a 2;

(2) g has type A2n−1, Bn, Cn, Dn, D2n, or E7 with weighted Dynkin diagrams

A2n−1 :
0 0 0 2

αn

0 0 0
Bn :

2 0 0 0 0

Cn :
0 0 0 0 2

Dn :
2 0 0 0 0

0

0

D2(2n+1) :
0 0 0 0 0 2

0
D2(2n) :

0 0 0 0 0 0

2

E7 :
0 0 0 0 0 2

0

(3) g has type Bn or Dn with weighted Dynkin diagrams

Bn :
2 2 2

αp−1

0 0 0 0
Dn :

2 2 2

αp−1

0 0 0

0

0

where 1 < p < n− 1 for Bn and 1 < p < n− 2 for Dn;

(4) g has type E6, E7, E8 or F4 with weighted Dynkin diagrams

E6 :
0 0 2 0 0

2

E7 :
2 2 0 0 0 0

0

E8 :
0 0 0 0 0 2 2

0

F4 :
0 0 2 2

The following is an immediate corollary.

Corollary 3.2. Every magical sl2-triple {f, h, e} ⊂ g is even. In par-

ticular, if g = h ⊕ m is the ±1-eigenspace of the Lie algebra involution (2.6),

then c = ker(h
adf−−→ m) and moreover adf (m)

adf−−→ ad2f (m) is an isomorphism.

3.2. The proof. We now prove Theorem 3.1. Let gR ⊂ g be a real form

of a complex simple Lie algebra and g = h ⊕ m be a complexified Cartan

decomposition. Let {f, h, e} ⊂ g be a normal sl2-triple, and let c ⊂ g be its

g-centralizer. We will classify (conjugacy classes of) magical sl2-triples of g

among the normal ones. This will be done via the corresponding real notions

of Definition 2.18 by the Sekiguchi correspondence and using Propositions 2.19
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and 2.20. We will actually prove the theorem by classifying (conjugacy classes

of) magical nilpotents in g (see (2.2)).

We start with the exceptional case. In [24] and [25], Doković computes the

dimensions dim(h∩ c) and dim(h∩ V (e)) for all real forms gR of simple excep-

tional Lie algebras. By Proposition 2.19, the normal triple {f, h, e} is magical

if and only if these dimensions are both equal to the dimension of cR ⊂ hR.

Proof of Theorem 3.1 for exceptional Lie algebras. For gR ⊂ g a real form

of inner type, the nilpotent orbits (thus the conjugacy classes of nilpotents)

are listed in tables VI–XV of [24]. The first column of each table lists the

associated weighted Dynkin diagram of g, the fourth column lists the dimension

of h∩V (e), the fifth column lists the dimension of h∩c, and the last column lists

the isomorphism class of cR. For the two outer real forms of e6, the weighted

Dynkin diagram is column 1 of Tables VI and VII of [25], while the dimensions

of h∩V (e) and h∩ c are columns 9 and 10 of Table VI and columns 12 and 13

of Table VII.

Table 1 of Section 9 summarizes this information for inner real forms of g;

note that the real forms f−20
4 and e−14

6 do not admit magical nilpotents. For

the two outer real forms of e6, there is only one magical nilpotent. Namely,

the real form e−26
6 has no magical nilpotents and there is one magical nilpotent

in the split real form e66 (Table VII, row 20 of [25]). In this case, the weighted

Dynkin diagram is that of Case (1) of Theorem 3.1 and cR = 0. �

We now move to the case of real forms of classical Lie algebras. Conjugacy

classes of nilpotent endomorphisms of Cn are in bijective correspondence with

partitions of n. Namely, if n =
∑n

i=1 ri·i is a partition of n, with ri > 0 the mul-

tiplicity of i, then the nilpotent endomorphism associated to this partition is

(3.1) e =

(
J
⊕r1
1

. . .

J⊕rn
n

)
,

where Ji is the standard i× i Jordan block. Note that n = n ·1 = 1+1+ · · ·+1

corresponds to the zero nilpotent whereas n = 1 · n = n corresponds to the

principal nilpotent.

The following proposition classifies conjugacy classes of nilpotents in slnC,

sonC and sp2mC. For a proof, see [21, Ch. 5.1].

Proposition 3.3. Let G be a connected complex simple Lie group with

Lie algebra g.

• For g = slnC, G-conjugacy classes of nilpotents are in bijective correspon-

dence with partitions of n.

• For g = so2n+1C, G-conjugacy classes of nilpotents are in bijective corre-

spondence with partitions of 2n+1 =
∑2n+1

i=1 ri · i, where ri is even whenever

i is even.
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• For g = sp2nC, G-conjugacy classes of nilpotents are in bijective correspon-

dence with partitions of 2n =
∑2n

i=1 ri · i, where ri is even whenever i is odd.

• For g = so2nC, G-conjugacy classes of nilpotents are in bijective correspon-

dence with partitions of 2n =
∑2n

i=1 ri · i, where ri is even whenever i is

even, except that there are two classes associated to partitions which have

ri = 0 for all i odd.

Note that the above proposition is independent of the choice of G under

the given conditions, since the any two choices are related by a quotient by

central elements.

Given a partition n =
∑n

i=1 ri ·i, define the dual partition by n =
∑n

j=1 sj ,

where sj =
∑n

i=j ri. The following proposition describes the centralizer of a

nilpotent and the centralizing subalgebra of an associated sl2C-subalgebra; see

[21, Ch. 6.1].

Proposition 3.4. Let g be slnC, sonC or sp2mC. Let e ∈ g be a nilpotent

element with corresponding partition n =
∑n

i=1 ri · i and dual partition n =∑n
j=1 sj , with 2m = n for sp2mC. Finally, let V (e) = ker(ade) ⊂ g be the

centralizer of e and c be the centralizer of an associated sl2C-subalgebra. Then

dim(V (e)) and c are characterized as follows :

g slnC sonC sp2mC

dim(V (e))
∑n

j=1 s
2
j − 1 1

2(
∑n

j=1 s
2
j −

∑
i-odd ri)

1
2(
∑n

j=1 s
2
j +

∑
i-odd ri)

c s(
⊕n

i=1 glriC)
⊕

i-even spriC⊕
⊕

i-odd soriC
⊕

i-odd spriC⊕
⊕

i-even soriC

.

The different noncompact real forms gR ⊂ g of the Lie algebras slnC, sonC,

sp2mC are described in Table 2 of Section 9. We follow [21, Ch. 9.3] for the

classification of nilpotents in these real forms. In slnR and su∗2m, such classi-

fication can be phrased in terms of partitions. For the remaining real forms

in the mentioned table, it can be phrased in terms of signed Young diagrams.

Recall that partitions of n are described by Young diagrams. We will use the

convention that the Young diagram associated to a partition n =
∑n

i=1 ri · i
has ri rows of length i. A signed Young diagram is a Young diagram in which

each box is decorated with a + or − sign and these signs alternate along each

row. The signature of a signed Young diagram is (p, q) if there are p plus signs

and q minus signs. Given a signed Young diagram, for each sub-diagram of

rows of length i, let pi denote the number of rows with leftmost box labeled +

and qi denote the number of rows with leftmost box labeled −. The following

proposition collects a set of propositions proved in Section 9.3 of [21].

Proposition 3.5. The classification of conjugacy classes of nilpotent el-

ements in classical real Lie algebras reads as follows :

• SLnR-conjugacy classes of nilpotents in slnR are in one-to-one correspon-

dence with partitions n =
∑n

i=1 ri · i, except that there are two orbits
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associated to partitions with ri = 0 for all i odd. The centralizer of an

associated sl2R-subalgebra is isomorphic to s(
⊕n

i=1 glriR).

• SU∗
2m-conjugacy classes of nilpotents in su∗2m are in one-to-one correspon-

dence with partitions m =
∑m

i=1 ri · i. The centralizer of an associated

sl2R-subalgebra is isomorphic to s(
⊕m

i=1 u
∗
2ri

).

• SUp,q-conjugacy classes of nilpotents in sup,q are in one-to-one correspon-

dence with signed Young diagrams of signature (p, q). The centralizer of an

associated sl2R-subalgebra is isomorphic to s(
⊕n

i=1 upi,qi).

• SOp,q-conjugacy classes of nilpotents in sop,qare in one-to-one correspon-

dences with signed Young diagrams of signature (p, q) where even rows oc-

cur with even multiplicity and have their leftmost boxes labeled with +, ex-

cept that there are two orbits for diagrams in which all rows have even

length. The centralizer of an associated sl2R-subalgebra is isomorphic to⊕
i-even sppi+qiR⊕

⊕
i-odd sopi,qi .

• SO∗
2m-conjugacy classes of nilpotents in so∗2m are in one-to-one correspon-

dence with signed Young diagrams of size m and any signature in which

rows with odd length have their leftmost boxes labeled with a +. The cen-

tralizer of an associated sl2R-subalgebra is isomorphic to
⊕

i-even sp2pi,2qi ⊕⊕
i-odd so

∗
2(pi+qi)

.

• Sp2mR-conjugacy classes of nilpotents in sp2mR are in one-to-one corre-

spondence with signed Young diagrams of size 2m of any signature where

odd rows occur with even multiplicity and have their leftmost boxes labeled

with +. The centralizer of an associated sl2R-subalgebra is isomorphic to⊕
i-odd sppi+qiR⊕

⊕
i-even sopi,qi .

• Sp2p,2q-conjugacy classes of nilpotents in sp2p,2q are in one-to-one corre-

spondence with signed Young diagrams of signature (p, q) in which even

rows have their leftmost boxes labeled +. The centralizer of an associated

sl2R-subalgebra is isomorphic to
⊕

i-odd sp2pi,2qi ⊕
⊕

i-even so
∗
2(pi+qi)

.

Remark 3.6. For the classical Lie algebras other than su∗2m, so
∗
2m, sp2p,2q,

the partition of the associated nilpotent orbit in the complexification g corre-

sponds to the Young diagram obtained by forgetting the signs. For su∗2m, so
∗
2m,

sp2p,2q, the partition of the associated nilpotent orbit in g corresponds to the

Young diagram obtained doubling every row and forgetting the signs.

We now classify magical nilpotent elements for classical real forms in terms

of signed Young diagrams and partitions.

Theorem 3.7. Let gR be a real form of a classical complex simple Lie

algebra g. A nilpotent ê ∈ gR is magical if and only if it is one of the following

cases :

(1) gR ∼= slnR and the associated Young diagram has one row of length n;
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(2) gR ∼= sop,p+1 or gR ∼= sop+1,p and the signed Young diagram has one row

of length 2p+ 1;

(3) gR ∼= sop,p and the signed Young diagram has one row of length 2p− 1 and

one row of length 1;

(4) gR ∼= sp2mR and the signed Young diagram has one row of length 2m;

(5) gR ∼= sum,m, so∗4m, sp2mR and the signed Young diagram has m-rows of

length 2 and the leftmost boxes are either all labeled + or all labeled −;
(6) gR∼=sop,q and the signed Young diagram has one row of length 2min{p, q}
− 1 and (|q − p|+ 1)-rows of length 1, where the labels of the length 1 row

are the same and opposite the label of the leftmost box of the row of length

2min{p, q} − 1.

Remark 3.8. In the first four cases, gR is split and we have the principal

nilpotent. Case (5) corresponds to Lie algebras which are Hermitian of tube

type, and the same holds in (6) if p = 2 or q = 2.

Proof. Let gR be a real form of a classical complex simple Lie algebra g

and g = h ⊕ m be a Cartan decomposition. By Propositions 2.19 and 2.20

a nilpotent ê ∈ gR is magical if and only if the centralizer of an associated

sl2R-subalgebra cR is compact and

(3.2) 2 dim(cR ⊗ C)− dim(V (γ(ê)))− dim(h) + dim(m)

vanishes. Now we use Proposition 3.5 together with this criterion to detect

magical nilpotents in gR.

For gR = slnR, c
R = s(

⊕n
i=1 glriR). So cR is compact if and only if the

partition is n = 1 · n, i.e., the corresponding Young diagram has just one row

of length n. So we are left with this corresponding nilpotent ê (namely, γ(ê)

is the principal nilpotent). In this case, cR = 0. Moreover, the dual partition

is n = n · 1 so Proposition 3.4, together with Table 2 of Section 9, show that

− dim(V (γ(ê)))− dim(h)+dim(m) = −n+1+n− 1 = 0. Hence (3.2) is equal

to zero, so ê ∈ slnR is magical, proving (1).

The remaining cases will be dealt with by a similar argument, where in

each case we use Proposition 3.5 to identify cR and then Proposition 3.4 and

Table 2 of Section 9 to compute (3.2).

For gR = su∗2m, cR = s(
⊕m

i=1 u
∗
2ri

) is compact if and only if rm = 1 and

ri = 0 for i 6= m, so that cR = su∗2 = su2. We are then left with the nilpotent

in ê ∈ su∗2m whose corresponding nilpotent (under the Cayley transform) in

g = sl2mC is given by the partition 2m = 2 · m. Its dual partition is 2m =∑2m
j=1 sj , with sj = 2 for 1 6 j 6 m and sj = 0 otherwise. Then (3.2) equals

6− 6m. Hence the nilpotent ê ∈ su∗2m can only be magical if m = 1. But su∗2
is compact and thus has no nonzero nilpotent elements (recall that magical

nilpotents are nonzero by definition), so ê is not magical. We conclude that

su∗2m does not admit magical nilpotents.
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Now consider the case of gR = sup,q. Then cR = s(
⊕p+q

i=1 upi,qi), which is

compact if and only if pi = 0 or qi = 0 for each i. The associated nilpotent in

slp+qC corresponds to the partition p+ q =
∑p+q

i=1 ri · i, where ri = pi + qi. We

see that (3.2) is given by

(3.3) 2

p+q∑

i=1

r2i −
p+q∑

i=1

s2i − (q − p)2,

with p+q =
∑p+q

i=1 si the corresponding dual partition. We want to understand

when (3.3) vanishes.

First assume r1 = 0. Using si = ri+ si+1 twice, (3.3) can be rewritten as

−4
p+q−1∑

i=2

risi+1 −
p+q∑

i=3

s2i − (q − p)2.

If ri 6= 0 for some i > 2, then this expression is strictly negative, therefore the

corresponding partition does not correspond to a magical nilpotent in sup,q. If

r2 is the only nonzero ri, the previous expression equals −(q− p)2, hence (3.3)
vanishes if and only if p = q. So the nonzero nilpotent determined by that

partition is magical and corresponds to Case (5) for gR = sum,m.

Now suppose r1 6= 0. Since the Jordan block J1 is a 1 × 1 zero matrix,

a nilpotent ê ∈ sup,q with r1 6= 0 is contained in a subalgebra isomorphic to

sup−r1,q (in case r1 = p1) or sup,q−r1 (in case r1 = q1). In this subalgebra, ê

has no r1-term. If it is magical, then by the above argument we must have

ri = 0 for i > 2 and q − p = ±r1. Thus, (3.3) is given by

2r21 + 2r22 − r21 − 2r1r2 − r22 − r22 − r21 = −2r1r2.
This is zero if and only if r1 = 0 or r2 = 0, but we are assuming r1 6= 0 and if

r2 = 0 then ê is the zero nilpotent. So there are no magical nilpotents in sup,q
other than the one detected in the previous paragraph.

Now consider gR = sop,q. Then cR =
⊕

i-even sppi+qiR⊕
⊕

i-odd sopi,qi . This

is compact if and only if pi + qi = 0 for i even and either pi = 0 or qi = 0 for i

odd. The partition of the associated nilpotent in sop+qC is p+ q =
∑p+q

i=1 ri · i,
where ri = pi + qi with pi, qi under the stated conditions. Then twice the

quantity (3.2) is equal to

(3.4) 2

p+q∑

i=1

r2i −
p+q∑

i=1

ri −
p+q∑

i=1

s2i + p+ q − (q − p)2.

First assume that r1 = 0. If only one rk is nonzero, then p + q = rk · k
and (q− p)2 = r2k, because in this case the odd number rk equals the signature

±(p− q). Therefore (3.4) simplifies to rk(k − 1)(rk − 1). Since r1 = 0, this is

zero if and only if rk = 1 and thus k = p + q and k is odd. This proves that

Case (2) of the theorem is a magical nilpotent for sop,p+1 if the leftmost box is
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labeled − and sop+1,p if the leftmost box is labeled +. Still assuming r1 = 0,

and using again that si = ri + si+1, (3.4) can be rewritten as

−4
p+q−1∑

i=2

risi+1 −
p+q∑

i=3

s2i −
p+q∑

i=1

ri + p+ q − (q − p)2.

If at least two ri are nonzero, then p+ q =
∑p+q−1

i=1 si (because rp+q = 0) and

−4∑p+q−1
i=2 risi+1 + 2s2 < 0. Such a nilpotent is not a magical one because

− 4

p+q−1∑

i=2

risi+1 −
p+q∑

i=3

s2i −
p+q∑

i=1

ri + p+ q − (q − p)2

6 −4
p+q−1∑

i=2

risi+1 + 2s2 −
p+q∑

i=1

ri − (q − p)2 < 0.

Now assume r1 6= 0. As in the sup,q-case, the nilpotent ê is contained

in a subalgebra isomorphic to sop−r1,q or sop,q−r1 and has no r1-term. If ê

is magical, by the above argument, the partition must be of the form p + q

= r1 ·1+1·(2min{p, q}−1). Since the signature of the signed Young diagram is

(p, q), if the leftmost box of the row of length 2min{p, q}−1 is labeled +, then

each row of length 1 is labeled − and vice versa. This means that (q − p)2 =

(1− r1)2. In this case (3.4) is given by

2r21 +2− r1− 1− (r1+1)2− (2min{p, q}− 2)+ r1+2min{p, q}− 1− (1− r1)2.

This expression always vanishes, proving Case (6) of the theorem.

For gR = so∗2m, we have that cR =
⊕

i-even sp2pi,2qi⊕
⊕

i-odd so
∗
2(pi+qi)

. This

is compact if and only if pi + qi = 0 for all i odd and either pi = 0 or qi = 0

for all i even. So we are left with nilpotents ê ∈ so∗2m whose partition of the

corresponding nilpotent in so2mC is (cf. Remark 3.6) 2m =
∑m

i=1(2ri) · i, with
ri = pi + qi verifying these conditions. Then twice the quantity (3.2) is given

by

(3.5) 2
m∑

i=1

(2ri)
2 + 2

m∑

i=1

2ri −
m∑

i=1

s2i − 2m,

where si =
∑m

j=i 2rj . Since r1 = 0 and si = 2ri + si+1, (3.5) is given by

−4
m−1∑

i=2

2risi+1 + 2
m∑

i=1

2ri −
m∑

i=3

s2i − 2m.

If ri is nonzero for i > 2, then the above expression is negative and the nilpotent

is not magical. If r2 is the only nonzero ri, then (3.5) equals 4r2 − 2m. This

is zero if and only if r2 =
m
2 with m

2 an integer. In such a case the nilpotent ê

is magical, proving the part of Case (5) regarding so∗2m.
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Now consider gR = sp2mR. We have that

cR =
⊕

i-odd

sppi+qiR⊕
⊕

i-even

sopi,qi ,

so it is compact if and only if pi + qi = 0 for i odd and either pi = 0 or qi = 0

for all i even, so we are left with nilpotents under these conditions. Write

2m =
∑2m

i=1 ri · i for the partition of the associated nilpotents (by the Cayley

transform) in sp2mC, where ri = pi+ qi satisfy the previous constrains. Again,

twice the quantity (3.2) equals

(3.6) 2
2m∑

i=1

r2i − 2
2m∑

i=1

ri −
2m∑

i=1

s2i + 2m,

where si =
∑2m

j=i rj . Since r1 = 0 and si = ri + si+1, (3.6) can be rewritten as

−4
2m−1∑

i=2

risi+1 −
2m∑

i=3

s2i − 2
2m∑

i=1

ri + 2m.

Similarly to the previous cases, if at least two ri are nonzero, then this expres-

sion is negative so the corresponding nilpotents are not magical. If 2m = rk ·k,
then (3.6) is given by (2− k)r2k − 2rk + 2m, which is zero if and only if k = 2

or k = 2m. This proves Case (4) and completes the proof of Case (5).

Finally, let us consider gR = sp2p,2q, in which case we know that cR =⊕
i-odd sp2pi,2qi⊕

⊕
i-even so

∗
2(pi+qi)

, which is compact if and only if pi+qi = 0 for

every i even and either pi = 0 or qi = 0 for all i odd. Let 2p+2q =
∑p+q

i=1 2ri · i
be the partition of the associated nilpotents in sp2p+2qC (see Remark 3.6),

where each ri = pi + qi verifies the previous conditions. Then we have that

twice the number (3.2) is given by

(3.7) 2

p+q∑

i=1

(2ri)
2 +

p+q∑

i=1

2ri −
p+q∑

i=1

s2i − 2p− 2q − 4(q − p)2,

where si =
∑p+q

j=i 2rj . If r1 = 0, then (3.7) can be rewritten as

p+q∑

i=1

2ri − 4

p+q−1∑

i=2

2risi+1 −
p+q∑

i=3

s2i − 2p− 2q − 4(q − p)2.

This expression is always negative, hence no magical nilpotents arise with

r1 = 0. As in previous cases, if r1 6= 0, then the nilpotent must lie in a

subalgebra isomorphic to sp2p−2r1,2q or sp2p,2q−2r1 and have r1 = 0 in that

subalgebra. Moreover, if {f, h, e} is magical in sp2p,2q, then it is magical in the

subalgebra (see Remark 2.6). But the previous argument says that there is no

magical nilpotent in such a setting. Hence sp2p,2q does not admit any magical

nilpotents, and this completes the proof. �
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It remains to translate the partition classification of Theorem 3.7 into the

weighted Dynkin diagram classification of Theorem 3.1. The algorithm for

doing this goes as follows. Let a ⊂ g be the Cartan subalgebra of diagonal

matrices, and choose the simple roots such that the positive root spaces cor-

respond to upper triangular matrices. Given a (signed) Young diagram from

Theorem 3.7, let e ∈ g be the associated nilpotent given by (3.1). Complete

e to an sl2-triple {f, h, e} such that h is a diagonal matrix. Finally, conjugate

{f, h, e} so that the eigenvalues of h are decreasing and compute αi(h). We

will sketch this process for one case; see [21, Chs. 3.6, 5.3] for more details.

Completing a nilpotent e ∈ slnC to an sl2-triple {f, h, e} with h diagonal

requires doing this for each Jordan block Jk. Such an sl2-triple {f, h, e} is

given by




Ñ
0
µ1 0

. . .
. . .

µk−1 0

é

,

Ñ
k−1

k−3
. . .

1−k

é

,

(
0 1
. . .

. . .
0 1

0

)
 ,

where µj=j(k−j). Now consider Case (6) of Theorem 3.7 with p6q. Then the

resulting semisimple element h is diagonal with entries {2p− 2, 2p− 4, . . . , 2−
2p, 0, . . . , 0}. Rearranging the matrix so that the eigenvalues are decreasing

yields

{2p− 2, 2p− 4, . . . , 2, 0, . . . , 0,−2,−4, . . . , 2− 2p}.
Using [21, Lemma 5.3.3] when p+ q is odd and [21, Lemma 5.3.4] when p+ q

is even, we conclude that the associated weighted Dynkin diagram is given by

Case (3) of Theorem 3.1. We leave the remaining cases to the reader.

4. Explicit data and real forms for magical sl2-triples

Associated to a given magical sl2-triple {f, h, e} ⊂ g, in this section we

explicitly exhibit the sl2C-module and adh-weight space decompositions (2.3)

and (2.4), the associated canonical real form of g of Definition 2.11 and the

Cayley real form of g0 of Definition 2.14. We also show that the magical sl2-

triple {f, h, e} ⊂ g arises from a principal sl2-triple in a simple subalgebra

g(e) ⊂ g, defined as the semisimple part of the double centralizer of {f, h, e}.
Finally, we deduce the detailed Lie theoretic information for magical sl2-triples

in Case (4) of Theorem 3.1.

4.1. sl2-data. Recall from Definition 2.11 that a magical triple {f, h, e} of
g determines a canonical real form gR via the involution σe : g→ g. Note that

the canonical real form of a magical sl2-triple follows from Theorem 3.7 for the

classical cases and [24] for the exceptional cases.

Proposition 4.1. The canonical real forms gR ⊂ g associated to magical

sl2-triples are given as follows :
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(1) In Case (1) of Theorem 3.1, gR is the split real form

g An Bn Cn Dn E6 E7 E8 F4 G2

gR sln+1R son,n+1 sp2nR son,n e66 e77 e88 f44 g22
.

(2) In Case (2) of Theorem 3.1, gR is the Hermitian Lie algebra of tube type

given by

g A2n−1 Bn Cn Dn D2n E7

gR sun,n so2,2n−1 sp2nR so2,2n−2 so∗4n e−25
7

.

(3) In Case (3) of Theorem 3.1 with g = soNC, gR ∼= sop,N−p.

(4) In Case (4) of Theorem 3.1, gR is the quaternionic real form of g

g E6 E7 E8 F4

gR e26 e−5
7 e−24

8 f44
.

Let a ⊂ g be a Cartan subalgebra and denote the root space decomposition

by

g = a⊕
⊕

α∈∆

gα,

where ∆⊂a∗\{0} is the set of roots and gα={y ∈ g | adx(y)=α(x)y ∀x∈a} is
the root space of α ∈ ∆. Choosing a set of simple roots Π = {α1, . . . , αrk g} ⊂ ∆

splits the roots into positive and negative roots ∆ = ∆+t∆−, where ∆+ (resp.

∆−) consists of roots α=
∑rk g

i=1 aiαi with ai∈Z>0 (resp. ai∈Z60) for all i.

Let {f, h, e} be an sl2-triple, with h ∈ a and αi(h) > 0 for all αi ∈ Π.

The element h acts on a root space gα with weight
∑rk g

i=1 aiαi(h), where α =∑rk g
i=1 aiαi. Thus, the adh-weight space decomposition (2.4) of g is given by

g =
⊕

j∈Z

gj ,

where gj is a direct sum of root spaces gα with α =
∑rk g

i=1 aiαi and j =∑rk g
i=1 aiαi(h) if j 6= 0, and g0 is the direct sum of a and the set of root spaces

gα with α =
∑rk g

i=1 aiαi such that 0 =
∑rk g

i=1 aiαi(h), i.e.,

(4.1) g0 = a⊕
⊕

α(h)=0

gα and gj =
⊕

α(h)=j

gα, j 6= 0.

We record the Lie algebra g0 of a magical nilpotent. This follows im-

mediately from (4.1) and from the weighted Dynkin diagram classification of

Theorem 3.1.

Proposition 4.2. The subalgebra g0 ⊂ g associated to a magical sl2-triple

in g is described as follows :

(1) In Case (1) of Theorem 3.1, g0 ∼= C
⊕ rk g.
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(2) In Case (2) of Theorem 3.1,

g A2n−1 Bn Cn Dn D2n E7

g0 slnC⊕ slnC⊕ C so2n−1C⊕ C slnC⊕ C so2n−2C⊕ C sl2nC⊕ C e6 ⊕ C
.

(3) In Case (3) of Theorem 3.1 with g = soNC, then g0 = C
p−1⊕ soN−2p+2C.

(4) In Case (4) of Theorem 3.1,

g E6 E7 E8 F4

g0 sl3C⊕ sl3C⊕ C
2 sl6C⊕ C

2 e6 ⊕ C
2 sl3C⊕ C

2 .

The sl2C-module decomposition g =
⊕

j Wj from (2.3) can be deduced

from the adh-weight space decomposition. Namely,

(4.2) nj = dim(gj)− dim(gj+2).

Recall that the sl2-data of a magical nilpotent is determined by the collection

of pairs of nonnegative integers {(mj , nj)}Mj=0 such that, for each j > 1, the

multiplicity n2mj
of W2mj

is positive. Thus, the sl2C-module decomposition

of a magical nilpotent is given by

g = c⊕
M⊕

j=1

W2mj .

Proposition 4.3. The sl2-data of a magical sl2-triple {f, h, e} is given

as follows :

(1) In Case (1) of Theorem 3.1, the set of {mj} is given by

An : {0, 1, 2, . . . , n} Bn : {0, 1, 3, . . . , 2n− 1} Cn : {0, 1, 3, . . . , 2n− 1}
Dn : {0, 1, 3, . . . , 2n− 3, n− 1} E6 : {0, 1, 4, 5, 7, 8, 11} E7 : {0, 1, 5, 7, 9, 11, 13, 17}
E8 : {0, 1, 7, 11, 13, 17, 19, 23, 29} F4 : {0, 1, 5, 7, 11} G2 : {0, 1, 5}

.

For all cases, n0 = 0 and n2mj
= 1, with the exception that n4n−2 = 2 for

D2n.

(2) In Case (2) of Theorem 3.1, {mj} = {0, 1} and n0 and n2 are given as

follows :

g A2n−1 Bn Cn Dn D2n E7

n0 n2 − 1 2n2 − 5n+ 3
n(n− 1)

2
2n2 − 7n+ 6 n(2n+ 1) 52

n2 n2 2n− 1
n(n+ 1)

2
2n− 2 n(2n− 1) 27

.

(3) In Case (3) of Theorem 3.1, we have {mj} = {0, 1, 3, . . . , 2p − 3, p − 1}
and

n0=
(N − 2p)(N − 2p+ 1)

2
and n2mj

=





N − 2p+ 2 p even and mj=p−,
N − 2p+ 1 p odd and mj=p− 1,

1 otherwise,
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where N = 2n+ 1 in type Bn and N = 2n in type Dn.

(4) In Case (4) of Theorem 3.1, {mj} = {0, 1, 3, 5}, n2 = 1, n10 = 1 and n0
and n6 are given as follows :

g E6 E7 E8 F4

n0 8 21 52 3

n6 8 14 26 5

.

Proof. For Case (1), all the nodes of the Dynkin diagram have label 2,

and hence the nilpotent e ∈ g is principal. We have that n0 = 0 since the

g-centralizer of a principal sl2-triple is trivial. The integers mj with n2mj
> 0

are the exponents of g (see [21, Ch. 4]).

For Case (2), there is one root αM with label 2 and all other roots are

labeled 0. Moreover, if
∑
aiαi is the expression of the highest root, then

aM = 1. Thus, the adh-weight space decomposition is g = g−2 ⊕ g0 ⊕ g2 and

the sl2C-module decomposition is g = W0 ⊕W2. We have dim(g0) = n0 + n2
and dim(g) = 3n2 + n0, hence n2 =

dim(g)−dim(g0)
2 .

We compute the cases of A2n−1 and leave the rest to the reader. For the

A2n−1 weighted Dynkin diagram, we have g0 = sln−1C⊕ C⊕ sln−1C. Hence,

n2 =
(4n2−1)−(2n2−2)−1

2 = n2 and n0 = dim(g)− 3n2 = n2 − 1.

For Case (3), Bn and Dn are similar. We will prove the Bn-case and leave

Dn to the reader. The proof is by induction, showing that

Bn−1:
2 2 2

αp−2

0 0 0 0
Bn:

2 2 2

αp−1

0 0 0 0

.=⇒

The base case was proven in Case (2). Let α =
∑n

j=1 ajαj be a positive root

in Bn. The root space of α is in g
2
∑p−1
j=1 aj

, the 2
∑p−1

j=1 aj-eigenspace of adh.

The set of roots with a1 = 0 defines a subsystem of type Bn−1, with

corresponding subalgebra so2n−1C ⊂ g. On the other hand, there are 2n − 1

positive roots in Bn with a1 6= 0, namely,

{
βi =

i∑

j=1

αj

}

i∈{1,...,n}

∪
{
γi = βn +

n∑

k=i

αk

}

i∈{n,...,2}

.

We have

gβi ⊂
®
g2i i 6 p− 2,

g2p−2 p− 1 6 i 6 n
and gγi ⊂

®
g2p−2 p 6 i 6 n,

g2p−2+2(p−i) 2 6 i 6 p− 1.
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In particular, for j > 0, we have

dim(g2j) =

®
dim(g2j ∩ so2n−1C) + 3 + 2n− 2p j = p− 1,

dim(g2j ∩ so2n−1C) + 1 otherwise.

Set θ2mj
= dim(g2mj

∩so2n−1C)−dim(g2mj+2∩so2n−1C). Using (4.2) we have

n2mj
= θ2mj

+





2n− 2p+ 2 mj = p− 1,

2p− 2n− 2 mj = p− 2,

1 mj = 2p− 3,

0 otherwise.

The result for Bn−1 gives the values of θ2mj
. Thus, we have n0=(2n+1− 2p)

· (n− p+ 1), n2mj
=1 for mj ∈ {1, 3, . . . , 2p− 3} \ {p− 1} and

n2p−2 =

®
2n− 2p+ 3 p even,

2n− 2p+ 2 p odd.

Finally, we refer to the diagrams in Section 9.2 to prove Case (4). In

these diagrams, the circles denote the positive roots and the integer labels

correspond the adh-eigenvalue on the root space. For E8, we have dim(g0) =

2 + dim(e6)=80, and

dim(g10) = 1, dim(g8) = 1, dim(g6) = 27, dim(g4) = 27, dim(g2) = 28.

Thus, the nonzero n2mj
’s are n10 = 1, n6 = 26, n2 = 1 and n0 = 52. This

settles the E8 case. The other cases, E6, E7 and F4, are left to the reader. �

4.2. The centralizer c and its centralizer. The next description of the cen-

tralizer c of a magical sl2-triple {f, h, e} ⊂ g follows, for classical Lie algebras,

from the partition classification of magical nilpotents of Theorem 3.7 and [21,

Th. 6.1.3]. For the exceptional Lie algebras, c is the complexification of the

last column in the tables of [24]; see Table 1 of Section 9.

Proposition 4.4. The centralizer c ⊂ g of a magical sl2-triple is given

as follows :

(1) in Case (1) of Theorem 3.1, c = 0;

(2) in Case (2) of Theorem 3.1,

g A2n−1 Bn Cn Dn D2n E7

c slnC so2n−2C sonC so2n−3C sp2nC f4
;

(3) in Case (3) of Theorem 3.1 with g = soNC, c ∼= soN−2p+1C;

(4) in Case (4) of Theorem 3.1,

g E6 E7 E8 F4

c sl3C sp6C f4 so3C
.
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We now show that a magical sl2-triple {f, h, e} ⊂ g arises from a principal

sl2-triple in a simple subalgebra g(e) ⊂ g.

Proposition 4.5. Let {f, h, e} ⊂ g be a magical sl2-triple and c ⊂ g be

the centralizer of {f, h, e}. Then the centralizer of c is the direct sum z(c)⊕g(e),
where z(c) is the center of c and g(e) ⊂ g is a simple subalgebra such that

{f, h, e} is a principal sl2-triple of g(e). The subalgebra z(c)⊕ g(e) is described

as follows :

• For Case (1) of Theorem 3.1, g(e) = g and z(c) = 0.

• For Case (2) of Theorem 3.1, g(e) = 〈f, h, e〉 ∼= sl2C and z(c) = {0}, unless
g ∼= so5C, in which case z(c) = c ∼= C.

• For Case (3) of Theorem 3.1, g(e) ∼= so2p−1C ⊂ soNC = g and z(c) = 0,

unless g ∼= so2p+1C, in which case z(c) = c ∼= C.

• For Case (4) of Theorem 3.1, g(e) ∼= Lie(G2)
1 and z(c) = 0.

Proof. First we identify the listed subalgebras g(e) and show they cen-

tralize c, then we establish z(c) ⊕ g(e) is the centralizer of c. The first part is

obvious in Cases (1) and (2).

For Case (3) of Theorem 3.1, the magical nilpotent e ∈ soNC corresponds

to the Young diagram with one row of length 2p − 1 and N − 2p + 1-rows

of length 1, by Case (6) of Theorem 3.7. This corresponds to principally

embedding e in so2p−1C followed by the embedding so2p−1C ⊂ soNC. In this

case, the centralizer c of {f, h, e} is isomorphic to soN−2p+1C. The centralizer

of g(e) = so2p−1C is also isomorphic to soN−2p+1C and contains the centralizer

of {f, h, e}. Thus c centralizes g(e).
For Case (4) of Theorem 3.1, we use the classification of nilpotents by

Bala–Carter’s theory (see [21, §8]). Very briefly, G-conjugacy classes of nilpo-

tents in g are in bijective correspondence with G-conjugacy classes of pairs

(l, pl). Here, l ⊂ g is the Levi factor of a parabolic subalgebra of g and pl ⊂ l is

the parabolic subalgebra of l associated to a so-called distinguished nilpotent of

the semisimple part [l, l] of l, i.e., one which does not belong to any proper Levi

subalgebra of [l, l]. In particular, the principal nilpotent in [l, l] is distinguished

and corresponds to the Borel subalgebra of l.

In the tables of [21, §8.4], the label of the nilpotent has the form XN (ai),

where XN is the type of the associated Levi l and ai is the number of simple

roots in a Levi of pl. The notation XN (a0) = XN is used and, in this case, the

associated distinguished nilpotent of l is principal. The labels of the weighted

Dynkin diagrams of the magical nilpotents from Case (4) of Theorem 3.1 are

B3 for g = f4 and D4 for g = e6, e7, e8. Thus, the magical nilpotent in F4

1We use the notation Lie(G2) for the Lie algebra of the exceptional group G2 since g2

denotes the weight 2 space of adh.
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arises from the principal nilpotent in so7C ⊂ f4 and the magical nilpotents in

type Ei arise from a principal nilpotent in so8C ⊂ ei for i = 6, 7, 8.

Now, a principal nilpotent in so7C or so8C is induced by a principal nilpo-

tent in a subalgebra isomorphic of type G2, Lie(G2) ⊂ so7C ⊂ so8C. More

precisely, for a principal sl2-triple {f, h, e} ⊂ so7C ⊂ so8C, the sl2C-module

decomposition is

W2 ⊕W6 ⊕W10,

where the multiplicity n6 of W6 is 1 for so7C and 2 for so8C, and

Lie(G2) ∼=W2 ⊕W10.

Recall from Proposition 4.3 that the magical sl2-triple in g = f4, e6, e7, e8 of

Case (4) of Theorem 3.1 induces the sl2C-module decomposition

g =W0 ⊕W2 ⊕W6 ⊕W10,

and we have g(e) =W2 ⊕W10
∼= Lie(G2).

To complete the proof we claim that c centralizes W2 ⊕W10. We have

W2 = 〈f, h, e〉 and hence c commutes with W2. The multiplicity of n10 is 1.

Hence Z10 = W10 ∩ g0 is 1-dimensional and c acts by a character on Z10. But

c has no nontrivial characters by Proposition 4.4. The space W10 is generated

by the action of W2 on Z10, so c centralizes g(e) =W2 ⊕W10.

Finally we argue that z(c)⊕g(e) is equal to the centralizer of c. By Propo-

sition 4.4,

(4.3) g0 = C
r(e) ⊕ g̃,

where r(e) = rk(g(e)) and g̃ = g0,ss ⊂ g0 is the semisimple part of g0. More-

over, c ⊂ g̃ is the complexification of the maximal compact subalgebra of g̃. By

construction, g(e)∩ g0 = C
r(e). Since g̃ has a trivial center, the centralizer of c

in g̃ coincides with the center of c. From Proposition 4.4, z(c) = 0 except when

c = so2C = C. So the intersection of the centralizer of c with g0 is g(e)⊕ z(c).

Let x be an arbitrary element of the centralizer of c, and write x =
∑
x2j for

x2j ∈ g2j . Since [c, gj ] ⊂ gj we must have [xj , c] = 0 for all j. For j > 0, we have

[c, adjf xj ] = 0 and adjf xj ∈ g0 ∩ (g(e)), and for j < 0, we have [c, adje(xj)] = 0

and adje xj ∈ g0 ∩ (g(e)). Since {f, h, e} ⊂ g(e), we conclude that xj ∈ g(e) for

all j 6= 0. Hence, z(c)⊕ g(e) is the centralizer of c. �

The following proposition is immediate from Propositions 4.3 and 4.5 (and

the proof).

Proposition 4.6. Let {f, h, e} ⊂ g be a magical sl2-triple and g =⊕M
j=0W2mj

be the sl2C-module decomposition.
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• For Case (3) of Theorem 3.1, we have

g(e) ∼= so2p−1C =





p−1⊕

j=1

W4j−2 p odd,

(W2p−2 ∩ g(e))⊕
p−1⊕

j=1,j 6= p
2

W4j−2 p even.

• For Case (4) of Theorem 3.1, g(e) ∼= Lie(G2) =W2 ⊕W10.

Finally, we prove the following lemma, which will be useful in the next

section.

Lemma 4.7. Let {f, h, e}⊂g be a magical sl2-triple and G be a connected

Lie group with Lie algebra g, such that the involution σe in (2.6) integrates

to G. Let C ⊂ G be the centralizer of {f, h, e}. Then C centralizes the sub-

algebra g(e) ⊂ g described in Proposition 4.5.

Proof. In cases (1) and (2) of Theorem 3.1, this is immediate, since C is

the center of G in Case (1) and g(e) = {f, h, e} in Case (2). For cases (3)

and (4), note that we have [c, g(e)] = 0 by Proposition 4.5. Thus, we must

understand how the group of components π0(C) acts on g(e). Note that it

suffices to show that C acts trivially when G is simply connected.

For G simply connected and e ∈ g a nilpotent, the fundamental group of

the G-orbit G · e ⊂ g is given by the components of C (see [21, Lemma 6.1.1]),

π1(G · e) = π0(C).

For Case (4) of Theorem 3.1, π1(G · e) is trivial (see [21, §8.4]). Thus, C is

connected and we conclude that C acts trivially on g(e).

For Case (3), we have π1(G · e) = π0(C) = Z/2Z [21, §6.1]. The SONC-

centralizer of {f, h, e} also has two connected components since it is given by

S(O1C × ON−2p+1C) ∼= ON−2p+1C [21, Th. 6.1.3]. Thus, it suffices to prove

that the SONC-centralizer of {f, h, e} also centralizes g(e). In this case, we

have that g(e) ⊂ g is so2p−1C ⊂ soNC, and the SONC-centralizer of so2p−1C

is S(O1C×ON−2p+1C). Thus, C centralizes g(e). �

4.3. The Cayley real form. By Proposition 4.2 the subalgebra g0 ⊂ g

associated to a magical sl2-triple has the form

g0 = C
r(e) ⊕ g̃ = g0 ∩ g(e)⊕ g̃.

Recall that it has a special real form — the Cayley real form — denoted by

gRC and defined in Definition 2.14.
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Proposition 4.8. Let gRC ⊂ g0 be the Cayley real form associated a mag-

ical sl2-triple {f, h, e} ⊂ g. Then

gRC
∼= R

r(e) ⊕ g̃R,

where g̃R ⊂ g̃ is the real form with complexified maximal compact subalgebra

c ⊂ g. Thus,

(1) for Case (1) of Theorem 3.1, gRC
∼= R

rk g;
(2) for Case (2) of Theorem 3.1,

g A2n−1 Bn Cn Dn D2n E7

gR
C

R⊕ slnC R⊕ so1,2n−2 R⊕ slnR R⊕ so1,2n−3 R⊕ su∗
2n

R⊕ e−26

6

;

(3) for Case (3) of Theorem 3.1, gRC
∼= R

p−1 ⊕ so1,N−2p+1;

(4) for Case (4) of Theorem 3.1,

g E6 E7 E8 F4

gRC R
2 ⊕ sl3C R

2 ⊕ su∗6 R
2 ⊕ e−26

6 R
2 ⊕ sl3R

.

Proof. The Cayley real form is the real form of g0 with the property that

the complexification of the maximal compact subalgebra is c. The classification

follows from Proposition 4.4. �

Remark 4.9. Note that, in all of the cases, each Z2mj
with n2mj

= 1

contributes with an R-factor to gRC . In Case (2), the R-factor of gRC is given

by 〈h〉, the real span of h, and in Case (3), with p even, an additional R-factor

arises from g(e) ∩ Z2p−2.

Let gR ⊂ g be any real form of a complex reductive Lie algebra, with

complexified Cartan decomposition g = h⊕m. Recall that the real rank of gR

is defined to be the maximal dimension of a subalgebra a ⊂ m such that the

direct sum of a with its h-centralizer is a Cartan subalgebra of g.

From Propositions 4.1 and 4.8, a simple comparison of the real ranks (see,

for instance, Appendices C.3 and C.4 of [57]) proves the next result.

Proposition 4.10. Let {f, h, e} ⊂ g be a magical sl2-triple. Then the

real rank of the canonical real form gR equals the real rank of the Cayley real

form gRC .

We will also need the notion of the Cayley group GR
C .

Definition 4.11. Let {f, h, e} ⊂ g be a magical sl2-triple with Cayley real

form gRC = (R+)r(e) ⊕ g̃R. Let G be a connected Lie group with Lie algebra g

such that the involution σe from (2.6) integrates to an involution σe : G→ G.

Let GR ⊂ G be the canonical real form and C ⊂ G be the centralizer of
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{f, h, e}. Then the Cayley group of {f, h, e} and G is the group

GR
C = (R+)r(e) × G̃R,

where G̃R is the real Lie group with Lie algebra g̃R and maximal compact

C ∩GR.

Remark 4.12. In general, the complexification of the maximal compact of

the Cayley group GR
C is Gσe∩C=H∩C. For a principal sl2-triple, C=Z(G)⊂G

is the center of G and g̃R = 0. Thus G̃R = Z(GR) is the center of GR. In

particular, C 6= C ∩ H in general. For example, when G = SLnC and {f, h, e}
is a principal sl2-triple, C = Z/nZ is the center of SLnC but the center of the

canonical real form SLnR is either Z/2Z or trivial.

4.4. Lie theory structure for magical nilpotents in exceptional Lie alge-

bras. Let {f, h, e} ⊂ g be a magical sl2-triple from Case (4) of Theorem 3.1.

In this section we will study the structure of the magical sl2-triple in more

detail. The root poset diagrams in Section 9.2 will be important, so they are

frequently referenced in this discussion. In these diagrams, the labeling of a

line connecting a positive root β to a higher positive root γ corresponds to the

simple root αj for which γ = β+αj . The labeling of every line can be deduced

from the labeling of the leftmost line of each row.

Recall that the sl2C-module decomposition (2.3) is g =W0 ⊕W2 ⊕W6 ⊕
W10, the Z-grading (2.4) is g =

⊕5
j=−5 g2j and the subalgebra g(e) ⊂ g de-

scribed in Proposition 4.5 is g(e) ∼= Lie(G2) = W2 ⊕W10. The complexified

Cartan decomposition of the involution σe : g→ g is g = h⊕m, where

(4.4)

h = g−8 ⊕ g−4 ⊕ g0 ⊕ g4 ⊕ g8 and m = g−10 ⊕ g−6 ⊕ g−2 ⊕ g2 ⊕ g6 ⊕ g10.

Each of the weight spaces g2j with j 6= 0 is a direct sum of root spaces as

in (4.1). From the diagrams in Section 9.2, it is clear that the weight spaces

g±2 decompose as a direct sum of two g0-representations,

(4.5) g±2 = gb±2 ⊕ g±α̃,

where gα̃ is the root space of the simple root α̃ in the diagrams in Section 9.2,

and gb±2 is the direct sum of root spaces in gβ ⊂ g±2 with β 6= ±α̃. We can

then decompose f ∈ g−2 and e ∈ g2 as

(4.6) f = fb + f̃ and e = eb + ẽ,

where eb, fb and ẽ, f̃ are the projections of e and f onto gb±2 and g±α̃, respec-

tively. Define further h̃ = [ẽ, f̃ ].

Lemma 4.13. Each of the terms f̃ , fb, ẽ and eb in (4.6) is nonzero.
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Proof. The sl2C-module decomposition g=W0 ⊕W2 ⊕W6 ⊕W10 implies

that adf : g10→g8 and adf : g6→g4 are isomorphisms. The map adf : g10→g8

is equal to adf̃ since g8 and g10 are root spaces which differ by the root α̃. So f̃

cannot be zero. On the other hand, adf : g6 → g4 is given by adfb since g4 and

g6 are both a direct sum of root spaces gβ , where β has the form β =
∑
niαi

and the coefficient of α̃ is 1. So again fb 6= 0. Similar arguments imply ẽ 6= 0

and eb 6= 0. �

Note that α̃ is a red root labeled with a 2 in Section 9.2. Denote by

{β1, β2, β3} the other red root spaces which are still labeled with a 2. We

claim that {α̃, β1, β2, β3} are a D4-system with

D4:
β1 α̃ β2 .

β3

Since there is an action of the symmetric group on three letters on the roots of

D4, the choice of which βi corresponds to which root space in gb2 is irrelevant.

Lemma 4.14. The root spaces associated to the red roots in the diagrams

of Section 9.2 form a subalgebra isomorphic to so8C.

Proof. The proof is by direct computation. The positive roots of D4 are

(4.7) {α̃, β1, β2, β3} ∪
ß
α̃+

∑

ni∈{0,1}

niβi

™
∪ {2α̃1 + β1 + β2 + β3}.

Using the expression of βi in terms of the simple roots of g, one checks that

{α̃, β1, β2, β3} satisfy the relations of a D4 root system and that no other linear

combinations of {α̃, β1, β2, β3} define roots in g. From the diagrams Section 9.2,

it is clear that α̃+ βi is a root, but none of βi + βj , α̃− βi or βi− βj is a root.

Any other linear combination of α̃, β1, β2, β3 will have the coefficient of α̃ being

nonzero and a coefficient ni > 2. All such roots in g are listed in the tables in

[57, App. C.2] and one checks that the only expressions which are roots of g

are in (4.7).2 �

Recall that the coroot hα associated to a root α ∈ a∗ is defined by hα =

2 α∗

〈α,α〉 , where α
∗ ∈ a satisfies 〈α∗, x〉 = α(x) for all x ∈ a. Let ∆+ ⊂ a∗ denote

a set of positive roots with simple roots {α1, . . . , αrk(g)}, and let {fi, hαi , ei}
be sl2-triples with ei ∈ gαi and fi ∈ g−αi . This data determines a principal

2Note that in the notation of 9.2, α̃ = α1, α8 for g = e7, e8, respectively, while in the

notation of [57, App. C.2], α̃ = α7, α8 for g = e7, e8, respectively.
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sl2-triple {f, h, e} ⊂ g given by

h =
∑

α∈∆+

hα =

rk(g)∑

i=1

rihαi , e =

rk(g)∑

i=1

√
riei, f =

rk(g)∑

i=1

√
rifi.

For the simple roots {α̃, β1, β2, β3} of D4, the above construction yields

(4.8) {f, h, e} =
{
√
12fα̃+

√
6

3∑

j=1

fβj , 12hα̃+6
3∑

j=1

hβj ,
√
12eα̃+

√
6

3∑

j=1

eβj

}
.

Lemma 4.15. A principal sl2-triple {f, h, e} ⊂ so8C ⊂ g in the so8C-

subalgebra from Lemma 4.14 is a magical sl2-triple in g from Case (4) of

Theorem 3.1.

Proof. Consider the simple roots {α̃, β1, β2, β3} of D4 and the principal

sl2 given above. We must show that the numbers αi(h) match the weighted

Dynkin diagrams from Case (4) of Theorem 3.1. Let αi be a simple root of g

which is not in {β1, β2, β3}. Then αi is orthogonal to α̃, and

αi

(
12hα̃ + 6

3∑

j=1

hβj

)
= αi

(
6

3∑

j=1

hβj

)
.

If αi is orthogonal to each βj , then αi(h̃) = 0. For g = e7, e8, respectively,

the simple roots {α4, α5, α7}, {α2, α3, α4, α5} are orthogonal to each βj . For

the remaining simple roots αi /∈ {α̃, β1, β2, β3}, there is a unique βl such that

αi + βl is a root and there is a unique βk 6= βl such that −αi + βk is a root.

Hence

αi

(
12hα̃ + 6

3∑

j=1

hβj

)
= 6αi(hβl) + 6αi(hβk) = 12

〈αi, βl〉
〈βl, βl〉

+ 12
〈αi, βk〉
〈βk, βk〉.

Since the roots, βl, βk, αi + βl and αi − βk have the same length, we have

αi(h̃) = 0. Finally, if β1 is the simple root which is also a simple root of g,

then α̃(h̃) = 2 and β1(h̃) = 2. Thus, the weighted Dynkin diagram of {f̃ , h̃, ẽ}
corresponds to a magical sl2-triple from Case (4) of Theorem 3.1. �

Lemma 4.16. Let {f, h, e} ⊂ g be a magical sl2-triple from Case (4) in

Theorem 3.1. Then gα̃⊂g(e) is a simple root space for g(e) associated to a long

root and 〈eb〉⊂g(e) is a simple root space for g(e) associated to a short root.

Proof. This follows from the fact that Lie(G2) ⊂ so8C and a principal

sl2-triple in Lie(G2) is also principal in so8C. Using the decomposition (4.8),

we have eb =
√
12(eβ1 + eβ2 + eβ3) and ẽ =

√
6eα̃. A direct computation

shows that {ẽ, eb} generate the positive roots of Lie(G2) with highest root

[ẽ, [eb, [eb, [eb, ẽ]]]]. �
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Remark 4.17. For Case (4) of Theorem 3.1, this gives a direct proof that

the sum W2 ⊕ W10 in the sl2C-module decomposition of g is a subalgebra

isomorphic to Lie(G2).

Recall that the canonical real form gR associated to {f, h, e} is the quater-
nionic real form of g. Thus, h ∼= sl2C⊕h′, where h′ is sp6C, sl6C, so12C and e7
when g is f4, e6, e7, e8, respectively.

Lemma 4.18. The decomposition h = sl2C⊕ h′ is given by

(4.9) sl2C = g−8 ⊕ [g−8, g8]⊕ g8 and h′ = g−4 ⊕ [g−4, g4]⊕ g4.

Proof. It is clear that h′ = g−4 ⊕ [g−4, g4]⊕ g4 is a subalgebra and g−8 ⊕
[g−8, g8] ⊕ g8 is a subalgebra isomorphic to sl2C. Note that [g±8, g±4] = 0

since there is not a weight-12 summand of the grading. Using the root poset

diagrams in Section 9.2, g±8 and g±4 are direct sums of root spaces gα with

α = ±1α̃ +
∑

αi 6=α̃ niαi. This implies that [g8, g−4] = 0 and [g−8, g4] = 0

since [g8, g−4] ⊂ g4 and [g−8, g4] ⊂ g−4. Now the Jacobi identity implies that

[h′, g−8 ⊕ [g8, g−8]⊕ g8] = 0. �

Lemma 4.19. Consider the decomposition h = sl2C ⊕ h′ from (4.9) and

the decomposition of m from (4.4) and (4.5). Then m decomposes as

m =

g10 ⊕ g6 ⊕ gb2 ⊕ g−α̃

⊕
g+α̃ ⊕ gb−2 ⊕ g−6 ⊕ g−10,

where the rows are h′-invariant and the columns are sl2C-invariant.

Proof. Observe that g±4, g±6, g±8, g−α̃ are direct sums root spaces gα
with α =

∑
i niα, where the coefficient of the simple root α̃ is ±1 and g±10 is

the root space for ±α̃± γ where g8 is the root space for the root γ. Thus, the

rows are preserved by bracketing with g±4 and the columns are preserved by

bracketing with g±8. �

Finally, we deduce some bracket relations which will be useful later.

Lemma 4.20. Let {f, h, e} ⊂ g be a magical sl2-triple from Case (4) of

Theorem 3.1, and let g = W0 ⊕W2 ⊕W6 ⊕W10 be the sl2C-module decom-

position. Let f = fb + f̃ and e = eb + ẽ be the decompositions (4.6) and

V6 = ker(ade |W6). Then, for any φ ∈ V6,

ad3fb(f̃) 6= 0 ∈ g−8,(4.10)

ad3f (φ) = [fb, [f̃ , [fb, φ]]] = [[fb, f̃ ], [fb, φ]],(4.11)

adfb+φ f̃ = [fb, f̃ ],(4.12)

ad3fb+φ f̃ = ad3fb(f̃) + 3 ad3f (φ) + ad2φ ◦ adfb(f̃).(4.13)



CAYLEY CORRESPONDENCES AND HIGHER TEICHMÜLLER SPACES 841

Proof. Equation (4.10) follows directly from Lemma 4.16 and the bracket

relations in Lie(G2). For equation (4.11), we have

ad3f (φ) = [fb + f̃ , [fb + f̃ , [fb + f̃ , φ]]].

Since adf̃ g6 = 0 ⊂ g4, [f̃ , φ] = 0, and so

ad3f (φ) = [fb, [fb, [fb, φ]]] + [f̃ , [f̃ , [fb, φ]]] + [f̃ , [fb, [fb, φ]]] + [fb, [f̃ , [fb, φ]]].

We will show that the first three terms are zero. Recall that g6 is a direct sum

of root spaces gα where the coefficient of α̃ is 1. Thus,

[fb, [fb, φ]] ⊂ gα̃ and [f̃ , [fb, φ]] ⊂ gb2.

Since [gb±2, g∓α̃] = 0, the first two terms are zero. For the third term, note that

ad2fb(V6) ⊂ gα̃ is the projection of ad2f (V6) onto gα̃. But gα̃ ⊂ W2 ⊕W10 by

Lemma 4.16 and ad2f (V6) ∩W2 ⊕W10 = 0. Hence ad2fb(φ) = 0 for φ ∈ V6, and

ad3f (φ) = [fb, [f̃ , [fb, φ]]].

The Jacobi identity and ad2fb(φ) = 0 imply [fb, [f̃ , [fb, φ]]] = [[fb, f̃ ], [fb, φ]].

Equation (4.12) follows since [g−α̃, g6] = 0. For (4.13), we have

ad3fb+φ(f̃) = [fb + φ, [fb + φ, [fb, f̃ ]]]

since [f̃ , φ] = 0. Thus,

ad3fb+φ = ad3fb(f̃) + [fb, [φ, [fb, f̃ ]]] + [φ, [fb, [fb, f̃ ]] + ad2φ([fb, f̃ ]).

The middle two terms are in g0. Using the Jacobi identity and [f̃ , φ] = 0, we

have

[fb, [φ, [fb, f̃ ]]] + [φ, [fb, [fb, f̃ ]]]

= −[fb, [f̃ , [φ, fb]]]− [[fb, f̃ ], [φ, fb]]− [fb, [[fb, f̃ ], φ]]

= [fb, [f̃ , [fb, φ]]] + [[fb, f̃ ], [fb, φ]] + [fb, [f̃ , [fb, φ]]]

= 3 ad3f (φ),

by (4.11). �

As a result of the above discussion, we have the following proposition.

Recall that a nonzero nilpotent is magical if it belongs to a magical sl2-triple.

Proposition 4.21. The nilpotent [fb, f̃ ] ⊂ g−4 is a magical nilpotent in

h′ of the type of Case (2) of Theorem 3.1, and [fb, [fb, [fb, f̃ ]]] is a magical (i.e.,

nonzero) nilpotent in sl2C.

Remark 4.22. Note that [gb−2, g
b
2] ⊂ g0 is isomorphic to [g4, g−4], thus

{fb, [eb, fb], eb} ⊂ gb−2 ⊕ [gb2, g
b
−2] ⊕ gb2 is a magical nilpotent from Case (2) of

Theorem 3.1.
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We also need to understand the group H and its action on m. Let G and

H′ be the simply connected groups with Lie algebras g and h′, respectively.

From the description of the Lie algebras h′ above, H′ is Sp6C, SL6C, Spin12C,

E7 when g is f4, e6, e7, e8, respectively. The group H ⊂ G is a quotient

H = (H′ × SL2C)/Z2,

where Z2 has generator (µ
′, µ2) for µ

′ ∈ H′ and µ2 ∈ SL2C are the unique order

two elements of the center.

As an H-representation, m is the tensor product m = V ′⊗ V2, where V2 is

the standard representation of SL2C and V ′ is an irreducible H′-representation

known as aminuscule representation. The decomposition h′=g−4⊕[g−4, g4]⊕g4
defines a maximal parabolic subgroup P′ ⊂ H′ with Lie algebra [g−4, g4]⊕g4. In
fact, V ′ is the irreducible representation associated to the Plücker embedding

of H′/P′ → P(V ′); that is, H′/P′ is isomorphic to the unique closed H′-orbit in

P(V ′). For example, when H′ = SL6C, V
′ = Λ3

C
6 is the third exterior product

of the standard representation of SL6C and SL6C/P
′ is the Grassmannian

of three planes in C
6. When h′ = e7, then V ′ is the unique irreducible E7-

representation of dimension 56.

The following result describes the H′-orbit structure of P(V ′). We refer

the reader to the work of Landsberg–Manivel, specifically [62, §5.3]. For the

case H′ = SL6C, this orbit structure was described in [27]. For Sp6C and

Spin12C, some aspects of the orbit structure are described in [54], and for E7

in [49].

Proposition 4.23. Consider the action of H′ on P(V ′) described above.

There are four H′-orbits, O1,O2,O3,O4. Moreover, the following facts com-

pletely characterize O1,O3,O4:

(1) O1 is closed and isomorphic to H′/P′;

(2) O3 has codimension one and O3 is the tangent variety of H′/P′;

(3) p ∈ O3 if and only if p is contained in a unique tangent line of H′/P′;

(4) O4 is open.

In the decomposition of m given by Lemma 4.19, the subspace gα̃⊕ gb−2⊕
g−6⊕ g−10 is H′-invariant and hence isomorphic to the representation V ′. The

following proposition will be used in the next section.

Proposition 4.24. Consider the H′-invariant subspace of m given by

gα̃ ⊕ gb−2 ⊕ g−6 ⊕ g−10.

(1) The point (ẽ, 0, 0, 0) ∈ gα̃ ⊕ gb−2 ⊕ g−6 ⊕ g−10 defines a point in the closed

orbit in P(gα̃⊕ gb−2⊕ g−6⊕ g−10) whose stabilizer is the parabolic subgroup

P′ of H′ with Lie algebra [g−4, g4]⊕ g4.
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(2) For all µ ∈ C, a point (µẽ, fb, 0, 0) defines a point in the codimension-

one orbit of P(gα̃ ⊕ gb−2 ⊕ g−6 ⊕ g−10) whose stabilizer is contained in the

parabolic P′.

Proof. Write a point in h′ as (x, y, z) ∈ g−4 ⊕ [g−4, g4]⊕ g4, and consider

(ẽ, 0, 0, 0) ∈ V ′ = gα̃ ⊕ gb−2 ⊕ g−6 ⊕ g−10. The bracket is given by

[(x, y, z), (ẽ, 0, 0, 0)] = (λ(y)ẽ, [x, ẽ], 0, 0),

where λ(y) ∈ C and where [x, ẽ] ∈ gb−2 is zero if and only if x = 0. Thus,

the H′-stabilizer [ẽ, 0, 0, 0] ∈ P(V ′) is the parabolic subgroup P′ ⊂ H′ with Lie

algebra [g−4, g4]⊕ g4.

For the second point, we first analyze the case µ = 0. Note that adfb :

g−4 → g−6 is an isomorphism and dim(gb−2) = dim(g−6). Thus,

dim(P(V ′)) = dim(g4 ⊕ g−4) + 1 = dim(h′)− dim([g4, g−4]) + 1.

So [0, fb, 0, 0] ∈ P(V ′) is in the codimension-one orbit O3 if and only if

dim({w ∈ h′ | [w, fb] = λfb for some λ ∈ C}) = dim([g−4, g4]).

To show this, write w = (x, y, z) ∈ g−4⊕ [g−4, g4]⊕g4. Then the bracket [w, fb]

is given by

[(x, y, z), fb] = ([z, fb], [y, fb], [x, fb], 0) ∈ V ′.

Since adfb : g4 → gα̃ is surjective and adfb : g−4 → g−6 is an isomorphism, the

space of (x, 0, z) ∈ h′ with ad(x,0,z) fb = λfb has dimension dim(g4)− 1.

Recall that [f̃ , fb] ∈ g−4 is a magical nilpotent from Case (2) of Theo-

rem 3.1. For y ∈ [g−4, g4], we decompose [g−4, g4] = [[f̃ , fb], g4] ⊕ c. Then

adfb : [[f̃ , fb], g4]→ gb−2 is an isomorphism, so there is a one-dimensional sub-

space of [[f̃ , fb], g4] which acts on fb by scalar multiplication. Since [c, fb] = 0,

we have

dim({w ∈ h′ | [w, fb] = λfb for some λ ∈ C})
= dim(g4)− 1 + 1 + dim(c) = dim([g−4, g4]).

By the above computation, the Lie algebra of the stabilizer of [0, fb, 0, 0] ∈
P(V ′) is contained in [g−4, g4]⊕g4, which is the Lie algebra of P′. To show that

the stabilizer of [0, fb, 0, 0] is indeed contained in P′, we use the description of

the codimension-one orbit O3 of Proposition 4.23. Namely, there is a unique

projective line ` ⊂ P(V ′) which is tangent to the closed orbit H′/P′ and passes

through [0, fb, 0, 0]. This line is given by

`(λ) = [ẽ, λfb, 0, 0] ⊂ P(V ′).

Since the tangent line is unique, the action of the stabilizer of [0, fb, 0, 0] on `

must fix the intersection of ` with the closed orbit, which is given by [`(0)] =
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[ẽ, 0, 0, 0]. Since the stabilizer of ẽ is P′, we conclude that the stabilizer of

[0, fb, 0, 0] is contained in P′.

Finally, since adfb : g4 → gα̃ is surjective and [fα̃, g4] = 0, for every µ ∈ C,

there is x ∈ g4 such that Adexp(x)(0, fb, 0, 0) = (µẽ, fb, 0, 0). Thus, [µẽ, fb, 0, 0]

and [0, fb, 0, 0] are in the same H′-orbit. Moreover, since the stabilizers of

[µẽ, fb, 0, 0] and [0, fb, 0, 0] are conjugate via exp(x) ∈ P′, we conclude that the

stabilizer of [µẽ, fb, 0, 0] is contained in P′, completing the proof. �

5. Higgs bundles and the Cayley map

From now on, X will denote a fixed compact Riemann surface of genus

g > 2, with canonical bundle K. All geometric objects we will consider are

over X. Let H be a complex reductive Lie group.

5.1. Higgs bundles. Let EH → X be a holomorphic principal H-bundle.

Given a holomorphic action of H on a space Y , we denote the associated fiber

bundle by EH[Y ] = (EH × Y )/H, where (x, y) · g = (x · g, g−1 · y). When V

is a vector space, EH[V ] is a holomorphic vector bundle, and when H acts by

group homomorphisms on a complex Lie group G, then EH[G] is a holomorphic

principal G-bundle.

Definition 5.1. Let G be a complex reductive Lie group, V be a complex

vector space with a holomorphic G-action and L be a holomorphic line bundle

on X. An L-twisted (G, V )-Higgs pair is a pair (EG, ϕ) consisting of a holo-

morphic G-bundle EG → X and a holomorphic section ϕ ∈ H0(EG[V ] ⊗ L).
The section ϕ is called the Higgs field.

There is a natural C∗-action on the set of L-twisted (G, V )-Higgs pairs

given by

(5.1) λ · (E , ϕ) = (E , λϕ).
Our main objects of interest, Higgs bundles, are a particular class of Higgs

pairs.

Definition 5.2. Let GR ⊂ G be a real form of a complex semisimple Lie

group G. Let HR ⊂ GR be a maximal compact subgroup, H ⊂ G be its

complexification and g = h ⊕ m be a complexified Cartan decomposition. An

L-twisted GR-Higgs bundle is an L-twisted (H,m)-Higgs pair (EH, ϕ).

We will denote the set of L-twisted GR-Higgs bundles by HL(G
R). When

the twisting line bundle L is the canonical bundle K, we will refer to a K-

twisted GR-Higgs bundle simply as a GR-Higgs bundle and write HK(GR) =

H(GR).

Let EH be the smooth underlying bundle of a holomorphic bundle EH.
The gauge group GH of smooth bundle automorphisms of EH acts on HL(G

R)
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by pulling back the holomorphic structure and pulling back the Higgs field. In

particular, if (EH, ϕ) is an L-twisted Higgs bundle and g ∈ GH(EH), then

g · ϕ = Adg(ϕ).

The automorphism group of an L-twisted Higgs bundle (EH, ϕ) is the group of

holomorphic gauge transformations g of EH such that Adg(ϕ) = ϕ.

Example 5.3. Here are some relevant examples of Higgs bundles:

• The complex group G can be regarded as a real form of G×G. In this situa-

tion H = G, m = g, and an L-twisted G-Higgs bundle is thus a pair (EG, ϕ),
where EG is a holomorphic principal G-bundle and ϕ ∈ H0(EG[g]⊗ L).
• For GR = R

+, an L-twisted GR-Higgs bundle is just a holomorphic section

ϕ of L.

• For GR = PSL2R, we have H ∼= C
∗ and m = m− ⊕m+ = 〈f〉 ⊕ 〈e〉 ∼= C⊕ C.

To be consistent with later notation, we set H = T for GR = PSL2R. The

adjoint action of T on m is given by

(5.2) λ · (f, e) = (λ−1f, λe),

where λ ∈ T.

• For GR = SL2R, we have H ∼= C
∗, m = 〈f〉 ⊕ 〈e〉 and the action of H is

λ · (f, e) = (λ−2f, λ2e).

Definition 5.4. The uniformizing Higgs bundle for the compact Riemann

surface X is the PSL2R-Higgs bundle (ET, f), where ET is the frame bundle of

the canonical bundle K → X and f ∈ H0(ET[〈f〉]⊗K) ∼= H0(O) is a constant

nonzero section.

Remark 5.5. Since deg(K) = 2g−2 is even, the uniformizing PSL2R-Higgs

bundle (ET, f) lifts to an SL2R-Higgs bundle (ET′ , f), where ET′ is the frame

bundle of one of the 22g square roots K
1
2 of the canonical bundle. We will call

such a Higgs bundle a lift of the uniformizing Higgs bundle of X. Using the

standard representation of SL2C on C
2, an SL2C-Higgs bundle is a holomorphic

rank 2 bundle V with trivial determinant and a holomorphic bundle map Φ :

V → V ⊗K. For a lift of the uniformizing Higgs bundle, we have

(V,Φ) =
Ä
K

1
2 ⊕K− 1

2 , ( 0 0
1 0 ) : K

1
2 ⊕K− 1

2 → K
3
2 ⊕K 1

2

ä
.

Given two Lie groups H1,H2 and holomorphic principal H1,H2-bundles

EH1 , EH2 respectively, the fiber product EH1 ×X EH2 is a holomorphic principal

(H1 × H2)-bundle. When H1,H2 ⊂ H are commuting subgroups, the multipli-

cation map m : H1 ×H2 → H is a group homomorphism and (EH1 ×X EH2)[H]

is a holomorphic principal H-bundle. This is analogous to twisting a vector

bundle by a line bundle. We will use the notation

(5.3) (EH1 ? EH2)[H] = (EH1 ×X EH2)[H].
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5.2. The Cayley map. We first describe the global Slodowy slice construc-

tion of [20] for an arbitrary even nilpotent e ∈ g. When e ∈ g is a magical

nilpotent (recall from Corollary 3.2 that every magical nilpotent is even) this

leads to GR-Higgs bundles, where GR is the canonical real form associated to

the corresponding magical sl2-triple.

Let e ∈ g be an even nilpotent, {f, h, e} ⊂ g be an associated sl2-triple and

G be a connected Lie group with Lie algebra g. Let S ⊂ G be the connected

subgroup with Lie algebra the sl2C-subalgebra s = 〈f, h, e〉 and C ⊂ G be the

centralizer of {f, h, e}. When S ∼= PSL2C, let (ET, f) be the uniformizing Higgs

bundle of X, and when S ∼= SL2C, let (ET, f) be a lift of the uniformizing Higgs

bundle of X to SL2R. The embedding T ↪→ S ↪→ G defines a holomorphic G-

bundle EG = ET[G] by extension of structure group.

Given a holomorphic C-bundle EC → X, consider the holomorphic G-

bundle

EG = (EC ? ET)[G]

with the notation (5.3). Since C and T preserve the subspaces gj ∩Wi ⊂ g

(in particular, the highest weight subspaces Vj ; cf. (2.5)) and also 〈f〉 ⊂ g, the

adjoint bundle EG[g] decomposes as

EG[g] = (EC ? ET)[g] =
⊕

j∈Z

(EC ? ET)[gj ],

and (EC ? ET)[Vj ] ⊂ (EC ? ET)[gj ] and (EC ? ET)[〈f〉] ⊂ (EC ? ET)[g−2] define

holomorphic subbundles. Moreover, since C acts trivially on 〈f〉,

(EC ? ET)[〈f〉] ∼= ET[〈f〉] ∼= K−1,

by (5.2). Therefore, from a holomorphic C-bundle EC and from sections φj ∈
H0((EC ? ET)[Vj ]⊗K), we define the G-Higgs bundle

(5.4) (EG, ϕ) = ((EC ? ET)[G], f + φ0 + φ1 + · · ·+ φN ).

Recall that Z2mj
= W2mj

∩ g0. We have that g0 = W0 ⊕
⊕M

j=1 Z2mj

and, since e is even, ad
mj

f : V2mj
→ Z2mj

is an isomorphism. Thus, viewing

f as a holomorphic section of (EC ? ET)[g] ⊗ K, we have an isomorphism of

holomorphic vector bundles

ad
mj

f : (EC ? ET)[V2mj
]⊗K

∼=−−−→ EC[Z2mj
]⊗Kmj+1,

where we have used the fact that T acts trivially on Z2mj
to identify EC[Z2mj

]⊗
Kmj+1 with (EC ? ET)[Z2mj

]⊗Kmj+1.

Now let Be(G) denote the set of tuples ((EC, φ0), ψm1 , . . . , ψmN
), where

(EC, φ0) is a holomorphic C-Higgs bundle and ψmj
∈ H0(EC[Z2mj

] ⊗Kmj+1).

By the above discussion, the Higgs bundles of the form (5.4) can be described
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by the map

(5.5)
“Ψe : Be(G) // H(G)

(EC, φ0, ψm1 , . . . , ψmN
) �

// ((EC ? ET)[G], f + φ0 + φm1 + · · ·+ φmN
)

where φmj
∈ H0((EC ? ET)[V2mj

]⊗K) and ψmj
= ad

mj

f (φmj
). We will refer to

this map as the Slodowy map; see also [20].

Note that the map“Ψe is equivariant for the action of the C-gauge group GC.
More precisely, if g ∈ GC, then g ? IdT ∈ GG is a G-gauge transformation of

(EC ? ET)[G], and

“Ψe(g · (EC, φ0, ψm1 , . . . , ψmN
)) = g ? IdT ·“Ψe(EC, φ0, ψm1 , . . . , ψmN

).

Lemma 5.6. Let e ∈ g be a magical nilpotent and GR ⊂ G be the canon-

ical real form. Then the Higgs bundle “Ψe(EC, φ0, ψm1 , . . . , ψmN
) from (5.5) is

contained in H(GR) if and only if φ0 = 0 and the bundle EC reduces to C∩H.

Proof. Let g = h⊕m be the complexified Cartan decomposition of the real

form gR, hence given by σe. By the definition of a magical nilpotent, h ∈ h,

c =W0 ⊂ h, V2mj
⊂ m and f ∈ m. Thus,

(EC ? ET)[G] ∼= (EC ? ET)[H][G]

if and only if EC ∼= EC∩H[C], and f+φ0+φm1+· · ·+φmN
∈ H0((EC?ET)[m]⊗K)

if and only if φ0 = 0. �

Given a magical sl2-triple {f, h, e} ⊂ g, recall the subalgebra g(e) ⊂ g from

Proposition 4.5 and the Cayley real form gRC = R
r(e)⊕ g̃R from Proposition 4.8.

The Cayley group is defined to be the real Lie group GR
C = (R+)r(e) × G̃R,

where G̃R is the real Lie group with Lie algebra g̃R and maximal compact

C ∩GR (see Definition 4.11). Recall from Proposition 4.3 that the sl2-data of

a magical sl2-triple has at most one mj > 0 with dim(Z2mj
) > 1.

Lemma 5.7. Let {f, h, e} ⊂ g be a magical sl2-triple with sl2-data {mj}Mj=1,

and let g(e) ⊂ g be the subalgebra from Proposition 4.5. Then there is a natural

identification

{x ∈ Be(G) | “Ψe(x) ∈ H(GR)} ←→ HKmc+1(G̃R)×
r(e)∏

j=1

H
Klj+1(R+).

Here mc is zero in Case (1) of Theorem 3.1 and is the unique positive mj with

dim(Z2mj
)>1 otherwise. The integers {lj} are the exponents of g(e), which are

{lj} =





{mj}Mj=1 Cases (1), (2) and (3) with p-even of Theorem 3.1,

{mj}Mj=1 \ {p− 1} Case (3) p-odd of Theorem 3.1,

{mj}Mj=1 \ {3} Case (4) of Theorem 3.1.
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Remark 5.8. Recall that HL(R
+) ∼= H0(L), so

HKmc+1(G̃R)×
r(e)∏

j=1

H
Klj+1(R+) ∼= HKmc+1(G̃R)×

r(e)∏

j=1

H0(K lj+1).

Let Z(GR) be the center of GR. In Case (1) of Theorem 3.1, HKmc+1(G̃R) is

the finite set of Z(GR)-bundles on X so the value of mc is unimportant.

Proof. By Lemma 4.7, C acts trivially on g(e) ∩ g0. When n2mj
= 1, we

have Z2mj
⊂ g(e) and thus ψmj

∈ H0(EC(Z2mj
)⊗Kmj+1) = H0(Kmj+1). This

proves Case (1).

From Proposition 4.6, we see that for Case (3) with p odd and Case (4),

we have g(e)∩Z2mc = {0} and g̃ = c⊕Z2mc . Thus, (EC, ψmc) is a K
mc-twisted

G̃R-Higgs bundle whenever EC reduces to C∩H. Thus, for Case (3) with p-odd
and Case (4), the result follows.

For Case (2) and Case (3) with p-even, we have Z2mc ∩ g(e) ∼= C, by

Propositions 4.5 and 4.6. Thus Z2mc decomposes C-invariantly as Z2mc=C⊕m̃,

where the C-factor is g(e) ∩ Z2mc and g̃ = c⊕ m̃ is the Cartan decomposition

giving the real form g̃R. Hence

EC[Z2mc ]⊗Kmc+1 ∼= Kmc+1 ⊕ EC[m̃]⊗Kmc+1.

Thus, (EC, ψmc) = (EC, qmc+1⊕ψ̃mc), where qmc+1 ∈ H0(Kmc+1) and (EC, ψ̃mc)

is a G̃R-Higgs bundle whenever EC reduces to C ∩H. �

To summarize, from a magical sl2-triple {f, h, e} ⊂ g, the Slodowy map

(5.5) defines a map

“Ψe : HKmc+1(G̃R)×
r(e)∏

j=1

H
Klj+1(R+) −→ H(GR)

given by

(5.6) “Ψe((EC, ψ̃mc), q1, . . . , qr(e)) =

Å
EC ? ET[H], f + φ̃mc +

r(e)∑

j=1

qj

ã
,

where GR is the canonical real form of e; here φ̃mc = ad−mc

f (ψ̃mc) and qj ∈
H0(K lj+1). Note that by a slight abuse of notation, we have left the isomor-

phism of line bundles ad
−lj
f implicit and denoted the image of qj by the same

symbol.

We will refer to the map (5.6) as the Cayley map since it generalizes the

Cayley correspondence of [9] which concerns Case (2) of Theorem 3.1. In the

subsequent sections we will show that the Cayley map actually preserves the

polystability conditions, hence descends to a map on moduli spaces, which will

be injective, with open and closed image.
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Remark 5.9. Note that everything we just described also holds when the

line bundle K is replaced by another twisting line bundle L → X. So there

is a similarly defined Cayley map; for the L-twisted version, one takes ET to

be the holomorphic frame bundle of L when S ∼= PSL2C and ET to be the

holomorphic frame bundle of a square root of L when S ∼= SL2C. In particular,

when S ∼= SL2C, the degree of L must be even.

5.3. The Cayley map is injective on gauge orbits. In this section we prove

the Cayley map is injective on gauge orbits. We will use the following lemma.

Lemma 5.10. Let {f, h, e} ⊂ g be an sl2-triple and g =
⊕

j∈Z gj be the

associated Z-grading. Let P ⊂ G be the parabolic subgroup with Lie algebra

p =
⊕

j>0 gj , and let x, x′ ∈ V = ker(ade). If an element g ∈ P satisfies

Adg(f + x) = f + x′, then g ∈ C, with C ⊂ G the centralizer of {f, h, e}.
Proof. Since x ∈ p, we have Adg(x) ∈ p. Thus, Adg(f+x) = f+x′ implies

Adg(f) = f . The intersection of the centralizer of f with P is C. So g ∈ C. �

Proposition 5.11. Let {f, h, e} ⊂ g be a magical sl2-triple, and let

“Ψe : HKmc+1(G̃R)×∏r(e)
j=1HKlj+1(R+) // H(GR)

be the Cayley map from (5.6). Then two points

“Ψe((EC∩H, ψ̃mc), q1, . . . , qr(e)) and “Ψe((E ′C∩H, ψ̃
′
mc

), q′1, . . . , q
′
r(e))

are in the same H-gauge orbit if and only if (EC∩H, ψ̃mc) and (E ′C∩H, ψ̃
′
mc

) are

in the same C ∩H-gauge orbit and moreover qj = q′j for all j.

Proof. We will prove Proposition 5.11 for each case of Theorem 3.1. Note

that it suffices to prove the result for the adjoint group GAd. Indeed, consider a

general G and let π : G→ GAd be the covering. An H-gauge transformation g :

EC?ET[H]→ E ′C?ET[H] induces a gauge transformation between the associated

bundles for the adjoint group, and if the induced gauge transformation is valued

in π(C ∩ H), then g must be valued in C ∩ H. The C ∩ H-gauge group acts

trivially on the differentials qj , so if g is valued in C∩H, then qj = q′j for all j.

Case (1) was proven in [52] using the Hitchin section and moduli spaces.

Alternatively, suppose g : EC∩H ? ET[H] → E ′C ? ET[H] is a holomorphic gauge

transformation such that

Adg

Å
f +

rk(g)∑

j=1

qj

ã
= f +

rk(g)∑

j=1

q′j .

The Lie algebra bundle decomposes as EC∩H ? ET[g] ⊗K ∼=
⊕ EC∩H ? ET[gj ∩

W2mi
]⊗K with each summand EC∩H ? ET[gj ∩W2mi

]⊗K ∼= Kj+1. Since g is
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holomorphic, we have

Adg

Å⊕

j>0

EC∩H ? ET[gj ]⊗K
ã
⊂
⊕

j>0

EC∩H ? ET[gj ]⊗K.

Hence g is valued in the intersection of H with the parabolic subgroup associ-

ated to
⊕

j>0 gj . Thus, g is valued in C ∩H by Lemma 5.10.

For Case (2) of Theorem 3.1, the Z-grading is g = g−2 ⊕ g0 ⊕ g2 with

h = g0. Hence, any gauge transformation g : EC ? ET[H]→ E ′C ? ET[H] is valued
in the intersection of H with parabolic subgroup associated to g0 ⊕ g2. By

Lemma 5.10, g is valued in C ∩H.

For Case (3), Proposition 5.11 was proven in [3, Lemma 4.6] when G =

SONC, i.e., for GR ∼= SOp,q. As a result, we focus on G = PSONC. For

N -odd, SONC = PSONC and we are done. For N -even, the centralizer C

of the magical sl2-triple is ON−2p+1C for G = SONC and ON−2p+1C/ ± Id

for G = PSONC (see [21, Th. 6.1.3]). But N even implies ON−2p+1C/ ±
Id ∼= SON−2p+1C. Since every SON−2p+1C-bundle lifts to a ON−2p+1C-bundle,

every PSONC-Higgs bundle in the image of Ψ̂e lifts to an SONC-Higgs bundle

in the image of Ψ̂e.

For Case (4), we use holomorphicity and Proposition 4.24 in order to

be able to apply Lemma 5.10. Recall that the space m decomposes as in

Lemma 4.19. Write the Higgs field as

(5.7) f + q2 + φ3 + q6 =

Ç
q6 φ3 qb2 f̃

q̃2 fb 0 0

å
,

where the rows are sections of EC ? ET[g10 ⊕ g6 ⊕ gb2 ⊕ g−α̃] ⊗ K and EC ?

ET[gα̃ ⊕ gb−2 ⊕ g−6 ⊕ g10] ⊗K, respectively. Recall also that g = sl2C ⊕ h′ =

g−8 ⊕ g−4 ⊕ g0 ⊕ g4 ⊕ g8.

Consider a holomorphic gauge transformation g : EC ?ET[H]→ E ′C ?ET[H].
We have EC ? ET[g−8] ∼= K−4, thus holomorphicity implies

Adg(EC ? ET[g−4 ⊕ g0 ⊕ g4 ⊕ g8]) ⊂ E ′C ? ET[g−4 ⊕ g0 ⊕ g4 ⊕ g8].

Hence g is valued in the parabolic of P ⊂ H with Lie algebra g−4⊕g0⊕g4⊕g8.

The action of P on m preserves the top row of (5.7). If it preserves the image

of Ψ̂e, we have the gauge transformation

Adg

Ç
q6 φ3 qb2 f̃

q̃2 fb 0 0

å
=

Ç
q′6 φ′3 (qb2)

′ f̃

q̃′2 fb 0 0

å
.

By Proposition 4.24, the gauge transformation g is valued in the parabolic of

H with Lie algebra g0 ⊕ g4 ⊕ g8. Thus, Lemma 5.10 implies g is valued in

C ∩H. �

We have the following immediate corollary.
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Corollary 5.12. Let ((EC∩H, ψ̃mc), q1, . . . , qr(e)) be in the domain of the

Cayley map (5.6). Then the automorphism group of ((EC∩H, ψ̃mc), q1, . . . , qr(e))

is equal to the automorphism group of “Ψe((EC∩H, ψ̃mc), q1, . . . , qr(e)).

6. Moduli spaces of Higgs bundles

6.1. Stability conditions and moduli spaces. In this section we introduce

the moduli space of L-twisted Higgs bundles, recall some of its features and

discuss related objects. For this section, we fix a compact Riemann surface X

with genus g > 2. We start by recalling the notions of (semi,poly)stability and

the moduli spaces for Higgs pairs. See [33] for more details. Let G be a complex

reductive Lie group with Lie algebra g, equipped with a nondegenerate G-

invariant C-bilinear pairing 〈·, ·〉. Let KR ⊂ G be a maximal compact subgroup

with Lie algebra kR.

An element s ∈ ikR defines a parabolic subgroup Ps and a Levi subgroup

Ls of G by taking

Ps = {g ∈ G | etsge−ts is bounded as t→∞} ⊂ G,

Ls = {g ∈ G | etsge−ts = g for all t} ⊂ Ps.

Also, given a holomorphic representation ρ : G → GL(V ), we have the sub-

spaces

Vs = {v ∈ V | ρ(ets)v is bounded as t→∞},
V 0
s = {v ∈ V | ρ(ets)v = v for all t} ⊂ Vs.

(6.1)

Here, Vs ⊂ V is Ps-invariant and V 0
s ⊂ Vs is Ls-invariant. For the adjoint

representation Ad : G → GL(g), we have that g0s ⊂ gs are the Lie algebras

ls ⊂ ps of Ls ⊂ Ps. Since 〈s, [ps, ps]〉 = 0, the element s ∈ ikR defines the

character of ps

χs := 〈s,−〉 : ps −→ C.

Given a holomorphic G-bundle EG, we define the degree of a structure

group reduction from G to Ps using Chern–Weil theory and the character χs.

Let LR
s = KR∩Ls be a maximal compact subgroup of Ls; the inclusion LR

s ⊂ Ls

is a homotopy equivalence. Now suppose EPs ⊂ EG is a reduction of EG to

Ps. There is a further reduction ELR
s
⊂ EPs which is unique up to homotopy.

Consider a connection A on ELR
s
with curvature FA ∈ Ω2(ELR

s
[lRs ]). Then χs(FA)

is a 2-form on X with values in iR. Define the degree of the reduction EPs ⊂ EG
to be the real number

deg(EPs) =
i

2π

∫

X

χs(FA).
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Let dρ : g → gl(V ) be the differential of ρ and zR be the center of kR.

Consider the orthogonal decomposition zR = ker(dρ|zR)⊕ker(dρ|zR)⊥, and define

kRρ = kRss + ker(dρ|zR)
⊥,

where kRss is the semisimple part of kR. Thus kR = kRρ +ker(dρ|zR). We are now

ready to define α-stability notions for α ∈ izR.
Definition 6.1. Let α ∈ izR. An L-twisted (G, V )-Higgs pair (EG, ϕ) is

• α-semistable if for any s ∈ ikR and any holomorphic reduction EPs ⊂ EG
such that ϕ ∈ H0(EPs [Vs]⊗ L), we have deg(EPs) > 〈α, s〉.
• α-stable if for any s ∈ ikRρ and any holomorphic reduction EPs ⊂ EG such

that ϕ ∈ H0(EPs [Vs]⊗ L), we have deg(EPs) > 〈α, s〉.
• α-polystable if it is α-semistable and whenever s ∈ ikR and EPs ⊂ EG is a

holomorphic reduction with deg(EPs) = 〈α, s〉, there is a further holomorphic

reduction ELs ⊂ EPs such that ϕ ∈ H0(ELs [V 0
s ]⊗ L).

Remark 6.2. In this paper, the case α 6= 0 will only appear in very

specific situations, therefore we will refer to 0-(semi,poly)stability simply as

(semi,poly)stability. It is clear that the (semi,poly)stability of a Higgs pair is

preserved by the action of gauge group and the C
∗-action from (5.1).

Remark 6.3. Consider an L-twisted G-Higgs bundle (EG, ϕ) for a semi-

simple Lie group G. Using the adjoint representation, we can form the Higgs

vector bundle (EG[g], adϕ). In this case, 0-polystability of (EG, ϕ) is equiva-

lent to the polystability criterion involving degrees of invariant subbundles.

Namely, (EG, ϕ) is 0-polystable if and only if for any holomorphic subbundle

V ⊂ EG[g] with adϕ(V) ⊂ V ⊗ L, we have deg(V) 6 0 and furthermore, if

deg(V) = 0, then (EG[g], adϕ) splits as a direct sum of stable Higgs vector

bundles of degree 0. This follows from the Hitchin–Kobayashi correspondence

(see Section 6.4).

Remark 6.4. Let G1 → G2 be a covering and (EG2 , ϕ) be a G2-Higgs

bundle which lifts to an G1-Higgs bundle (EG1 , ϕ), i.e., EG1(G2) = EG2 . Then

(EG2 , ϕ) is polystable if and only if (EG1 , ϕ) is polystable. Indeed, any holomor-

phic parabolic reduction EPs ⊂ EG1 induces a holomorphic parabolic reduction

EPs(G2) ⊂ EG2 and any holomorphic parabolic reduction EPs ⊂ EG2 lifts to a

reduction EP′
s
⊂ EG1 .

The following result will be useful. For a proof, see [33, §2.10].

Proposition 6.5. Suppose that (EG, ϕ) is a strictly polystable L-twisted

(G, V )-Higgs pair. Then there exist an s ∈ ikR, a holomorphic reduction ELs ⊂
EG with deg(ELs) = 0 and ϕ ∈ H0(ELs(V 0

s )⊗L) such that (ELs , ϕ) is stable as

an L-twisted (Ls, V
0
s )-Higgs pair.



CAYLEY CORRESPONDENCES AND HIGHER TEICHMÜLLER SPACES 853

We will only need to consider the moduli space for L-twisted GR-Higgs

bundles over X, where GR is a real form of G. Denote it by ML(G
R). We

define it as the space of gauge orbits of polystable L-twisted GR-Higgs bundles

ML(G
R) = Hps

L (GR)/GH,
where Hps

L (GR) ⊂ HL(G
R) is the subset of polystable L-twisted GR-Higgs

bundles.

In order to endowML(G
R) with a topology, suitable Sobolev completions

must be used in standard fashion; see [29], where a detailed adaptation to

Higgs bundles is studied in the case G = GLnC. Then the orbits of the GH-
action on HL(G

R)ps are closed in the space of semistable GR-Higgs bundles,

thus the moduli space ML(G
R) becomes a Hausdorff topological space. If

Hs
L(G

R) ⊂ Hps
L (GR) denotes the subset of stable Higgs bundles, then Hs

L(G
R)

is open in Hps
L (GR). The stable objects thus define an open subset ofML(G

R).

Remark 6.6. A GIT construction ofML(G
R) (actually in the more general

setting of Higgs pairs) may be found in [69], from which is clear thatML(G
R)

parametrizes S-equivalence classes of semistable L-twisted GR-Higgs bundles.

This construction generalizes the construction of the moduli space of GR-Higgs

bundles by Ramanathan [68] when GR is compact and Simpson [73], [74] when

GR is complex reductive. (See also Nitsure [65] for GR = GLnC.)

6.2. Local structure of the moduli spaces. We now recall some deformation

theory for Higgs bundles; for more details, see [10] and [33]. Fix a holomorphic

line bundle L on X, and let (EH, ϕ) be an L-twisted GR-Higgs bundle. The

double complex of sheaves

(6.2) C•(EH, ϕ) : EH[h]
adϕ

// EH[m]⊗ L
governs infinitesimal deformations of (EH, ϕ). Thus, when (EH, ϕ) is polystable,
(6.2) encodes the local structure of the moduli spaceML(G

R) near the point

defined by (EH, ϕ). The complex (6.2) defines a long exact sequence in hyper-

cohomology:

(6.3)

0 // H
0(C•(EH, ϕ)) // H0(EH[h])

adϕ
// H0(EH[m]⊗ L) // H

1(C•(EH, ϕ))

// H1(EH[h])
adϕ

// H1(EH[m]⊗ L) // H
2(C•(EH, ϕ)) // 0.

We have the following proposition; see [33, Lemma 2.25 and Prop. 3.8].

Proposition 6.7. If the L-twisted GR-Higgs bundle (EH, ϕ) is polystable,
then its automorphism group Aut(EH, ϕ) is a complex reductive group which is

identified with a closed subgroup of the automorphisms of the fiber (EH(x), ϕ(x))
for any x ∈ X . The zeroth hypercohomology group H

0(C•(EH, ϕ)) is the Lie

algebra of Aut(EH, ϕ).
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Note that the automorphism group Aut(EH, ϕ) acts on H
1(C•(EH, ϕ)).

Using standard slice methods of Kuranishi (see [58, Ch. 7.3] for details for

the moduli space of holomorphic bundles), a neighborhood of the isomorphism

class of a polystable Higgs bundle (EH, ϕ) inML(G
R) is given by

κ−1(0) � Aut(EH, ϕ),

where κ : H
1(C•(EH, ϕ)) → H

2(C•(EH, ϕ)) is the so-called Kuranishi map.

When H
2(EH, ϕ) = 0, a neighborhood of the isomorphism class of (EH, ϕ) in

ML(G
R) is isomorphic to

(6.4) H
1(C•(EH, ϕ)) � Aut(EH, ϕ).

We will use the following result in Section 7 to prove that for the Higgs bundles

considered there, the corresponding H
2 vanishes. Therefore, we have no need

to recall the construction of the Kuranishi map.

Proposition 6.8. Let GR ⊂ G be a real form of a complex semisimple Lie

group G, and let L be a holomorphic line bundle with deg(L) > 2g−2. Then for

any polystable L-twisted GR-Higgs bundle (EH, ϕ), we have H
2(C•(EH, ϕ)) = 0.

Proof. It suffices to prove the statement for the L-twisted G-Higgs bundle

(EG, ϕ)=(EH[G], ϕ) since there is an inclusion H
2(C•(EH, ϕ))⊂H

2(C•(EG, ϕ)).
Since (EG, ϕ) is semistable, any subbundle V ⊂ EG[g] with adϕ(V) = 0 satisfies

deg(V) 6 0 by Remark 6.3.

Suppose 0 6= H
2(C•(EG, ϕ)). By Serre duality, H2(C•(EG, ϕ)) is isomor-

phic to the dual of H0 of the complex

C•(EG, ϕ)∗ ⊗K : EG[g]∗ ⊗ L−1K
ad∗ϕ⊗ IdK−−−−−−→ EG[g]∗ ⊗K.

The Killing form on g identifies EG[g]∗ with EG[g] and ad∗ϕ with − adϕ, so the

complex

EG[g]⊗ L−1K
− adϕ⊗ IdK−−−−−−−→ EG[g]⊗K

has nonzero H
0. Thus, there is a nonzero s ∈ H0(EG[g] ⊗ L−1K) such that

− adϕ(s) = 0. LetM ⊂ EG[g]⊗L−1K be the holomorphic line bundle generated

by s, and note that deg(M) > 0. However, M ⊗ LK−1 ⊂ EG[g] satisfies

adϕ(M ⊗ LK−1) = 0. So, by semistability of (EG, ϕ),

0 6 deg(M) < deg(M ⊗ LK−1) 6 0.

This contradiction implies H2(C•(EG, ϕ)) = 0. �

6.3. The Hitchin map. A fundamental ingredient in the theory of Higgs

bundles is the Hitchin map [53]. We briefly explain this in the setting of

L-twisted GR-Higgs bundles for a simple real Lie group GR; see [38], [53], [26]

for more details.
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Consider the GIT quotient map χ : m → m � H. Note that χ is C∗-equi-

variant with respect to the standard scaling action of C∗ on m and the action of

C
∗ on m�H induced by the action of C∗ on the graded ring C[m]H of H-invariant

polynomial functions on m. Namely, if p ∈ C[m]H is homogeneous, the C
∗-

action on m � H is determined by t · p = tdeg(p)p. Let L be the holomorphic

C
∗-bundle associated to L, and consider the rank r vector bundle L[m � H]

associated to L via the C
∗-action on m�H. The quotient map χ : m→ m�H

defines an H-invariant map m ⊗ L → L[m � H]. By H-invariance this defines

the Hitchin map:

(6.5) h :ML(G
R)→ BL(GR) = H0(L[m � H]), h(EH, ϕ) = χ(ϕ),

where the space BL(GR) is called the Hitchin base.

Choosing a homogeneous basis (χ1, . . . , χr) of the ring C[m]H defines an

isomorphism of m � H
∼=−−→ C

r given by x 7→ (χ1(x), . . . , χr(x)). If the degree

χj is m′
j + 1 with m′

1 < · · · < m′
r, then the nonnegative integers m′

i are

the exponents of the real Lie algebra gR; see, for example, [38, Prop. 4.4].

By definition, they are the exponents of the complex Lie algebra obtained by

complexifying the maximal split subalgebra of gR. (If gR is complex, these are

its exponents appearing in Case (1) of Proposition 4.3.)

Any choice of such homogeneous basis (χ1, . . . , χr) defines an isomorphism

(6.6) H0(L[m � H])
∼=−−→

r⊕

j=1

H0(Lm′
j+1), x 7→ (χ1(x), . . . , χr(x)).

Using this basis, we obtain the more familiar description of the Hitchin map

h :ML(G
R) −→

r⊕

j=1

H0(Lm′
j+1), h(EH, ϕ) = (χ1(ϕ), . . . , χr(ϕ)).

For complex Lie groups and L = K, the Hitchin map h has many special

features; most notably it is an algebraic completely integrable system [53]. The

property we will use to prove that the Cayley map is closed, is that the Hitchin

map (6.5) is proper; this is true for arbitrary groups and twistings. This follows

from [65, Th. 6.1] for GLnC and from the fact that the moduli spaceML(G
R)

admits a finite (and hence proper) map to ML(GLnC) for some n in such a

way that the Hitchin map ofML(G
R) is the restriction of the Hitchin map in

ML(GLnC).

Proposition 6.9. The Hitchin map h :ML(G
R) → BL(GR) from (6.5)

is proper.

6.4. The Hitchin–Kobayashi correspondence. Finally, we consider an equa-

tion for a special metric associated to general L-twisted polystable (G, V )-Higgs
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pairs. Let G be a complex reductive Lie group, and fix a maximal compact sub-

group KR ⊂ G and a KR-invariant Hermitian inner-product on V so that dρ :

kR → u(V ) is the associated unitary representation. Let (EG, ϕ) be an L-twisted
(G, V )-Higgs pair. Fix a metric hL on the line bundle L. A metric on EG is by

definition a reduction of structure group h of EG to KR. Fix a metric h, and let

Eh ⊂ EG be the associated KR-bundle. The Hermitian inner-product on V and

the metric hL on L induce a Hermitian metric h⊗hL on the bundle Eh[V ]⊗L.
For ϕ ∈ H0(EG[V ]⊗ L), we can make sense of the following expression:

(6.7) µ(ϕ) = dρ∗
(
− i

2
ϕ⊗ ϕ∗

h⊗hL

)
,

where we identify iϕ ⊗ ϕ∗h⊗hL with a section of Eh(u(V ))∗. Hence µ(ϕ) de-

fines a section of Eh(k
R)∗. Using the nondegenerate pairing, we view µ(ϕ) as

a section of Eh(k
R).

Remark 6.10. The action of KR on V is Hamiltonian, and the expression

for µ in (6.7) is a bundle version of the moment map for the action.

Now fix a Kähler form ω on X. Given a metric h on EG, there is a unique

connection (the Chern connection) which is compatible with the holomorphic

structure and the metric reduction. The Hitchin–Kobayashi correspondence

states the following.

Theorem 6.11 ([33, Th. 2.24]). An L-twisted (G, V )-Higgs pair (EG, ϕ)
is α-polystable if and only if there is a metric h on EG solving

(6.8) Fh + µ(ϕ)ω = −iαω,
where Fh ∈ Ω2(Eh[h

R]) denotes the curvature of the Chern connection of h.

Remark 6.12. The existence of solutions h of (6.8) is independent of the

choice of hL. Also, equation (6.8) implies that α depends on the fixed Kähler

form ω. If one chooses a different Kähler form ω′, then a solution of (6.8) will

still be a solution for the corresponding equation with ω′ for a different α′.

This means that to check for the existence of solutions of (6.8), we can fix

any ω, and we will always work with it.

When now specialize to the case of Higgs bundles and Higgs pairs arising

from Z/nZ-gradings of g. Let τ : g → g be the compact real-form associated

to KR ⊂ G, and let 〈·, ·〉 be a nondegenerate G-invariant complex bilinear

form. The form 〈x,−τ(y)〉 is a KR-invariant positive definite Hermitian inner

product on g. In this case, the moment map µ : g → (kR)∗ → kR is given by

µ(x) = [x,−τ(x)].
Given a metric h on EG and a metric hL on L, τ defines an involution τh :

Eh(g)⊗L→Eh(g)⊗L. Thus, for L-twisted G-Higgs bundles, equation (6.8) is

Fh + [ϕ,−τh(ϕ)]ω = −iαω.
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When L = K, we can view the Higgs field as a (1, 0)-form valued in Eh(g).

In this case, we can use τ and conjugation on 1-forms to define the involution

τh : Ω1,0(Eh(g))→ Ω0,1(Eh(g)). Solving (6.8) is equivalent to solving

(6.9) Fh + [ϕ,−τh(ϕ)] = −iα.
Remark 6.13. When α = 0, equation (6.9) is usually referred to as the

Hitchin equations or the self-duality equations. In this case, the Hitchin–

Kobayashi correspondence was proven by Hitchin for G = SL2C [51] and by

Simpson in general [72].

Remark 6.14. The uniformizing PSL2R-Higgs bundle (ET, ϕ) from Exam-

ple 5.3 (and any lift of it to SL2R) is 0-stable. Since ET is the frame bundle

of K−1, any metric on ET defines a metric on the surface; the metric solving

(6.9) has constant curvature [51].

Finally, suppose Ĝ ⊂ G is a τ -invariant subgroup with maximal compact

subgroup K̂R = Ĝ ∩KR and V ⊂ g is a Ĝ-invariant vector subspace of g such

that 〈·, ·〉|V is nondegenerate. In this case, the moment map equations for

the action of K̂R on V is given by orthogonally projecting [x,−τ(x)] onto the

Lie algebra k̂R ⊂ kR. For example, the quiver bundle equations of [2] are an

example of this. An important special case of this occurs when the orthogonal

projection kR → k̂R does not loose any information, i.e., when [V,−τ(V )] ⊂ k̂R.

In this case, when α = 0, a solution to (Ĝ, V )-Higgs pair equations also solves

the G-Higgs bundle equations. Thus, if (EĜ, ϕ) is an 0-polystable L-twisted

(Ĝ, V )-Higgs pair, then the associated G-Higgs bundle (EĜ(G), ϕ) obtained by

extending the structure group is polystable as a G-Higgs bundle.

For example, consider a Z/nZ-grading g =
⊕

j∈Z/nZ ĝj , i.e., [ĝj , ĝk] ⊂
ĝj+kmodn. The connected subgroup Ĝ0 ⊂ G with Lie algebra ĝ0 acts on

each summand ĝj . The compact involution τ : g → g can be chosen so that

τ(ĝj) = ĝ−jmodn. By the above discussion, we have the following proposition,

which was first observed by Simpson [71, Prop. 6.3] in the context of vector

bundles.

Proposition 6.15. Let (EĜ0
, ϕ) be a 0-polystable L-twisted (Ĝ0, ĝ1)-Higgs

pair. Then the L-twisted G-Higgs bundle (EĜ0
[G], ϕ) is polystable as a Higgs

bundle.

7. The generalized Cayley correspondence

In this section we prove that the Cayley map Ψe from (5.6) descends to

an injective map on moduli spaces which is open and closed, thus proving

Theorem B from the introduction. For this section, {f, h, e} will be a magical

sl2-triple, S ⊂ G will be the associated connected subgroup, C ⊂ G will be its

centralizer and GR ⊂ G will be the associated canonical real form. Recall that
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H ⊂ G is the complexification of the maximal compact HR ⊂ GR. To simplify

notation, throughout this section we denote C ∩H simply by C.3

7.1. Generalized Cayley correspondence and direct consequences. Recall

from (5.6) that the Cayley map is given by

“Ψe : HKmc+1(G̃R)×∏r(e)
j=1HKlj+1(R+) // H(GR),

((EC, ψ̃mc), q1, . . . , qr(e))
�

// (EC ? ET[H], f + φ̃mc +
∑r(e)

j=1 qj),

where (ET, f) is the uniformizing PSL2R (resp. SL2R) Higgs bundle if S ∼=
PSL2C (resp. S ∼= SL2C). There is a natural notion of stability on the domain

of the Cayley map since it is a product of Higgs bundle spaces. Moreover,

every qj ∈ H0(K lj+1) = H
Klj+1(R+) is polystable. Hence a point

((EC, ψ̃mc), q1, . . . , qr(e)) ∈ HKmc+1(G̃R)×
r(e)∏

j=1

H
Klj+1(R+)

is polystable if and only if (EC, ψ̃mc) ∈ HKmc+1(G̃R) is polystable.

Theorem 7.1. The Cayley map Ψ̂e descends to an injective map on mod-

uli spaces,

(7.1) Ψe :MKmc+1(G̃R)×
r(e)∏

j=1

M
Klj+1(R+) −→M(GR),

which is open and closed.

We also refer to Ψe as the Cayley map.

Corollary 7.2. The image of the Cayley map Ψe is a union of connected

components ofM(GR) isomorphic toMKmc+1(G̃R)×∏r(e)
j=1MKlj+1(R+). Ev-

ery GR-Higgs bundle (EH, ϕ) in the image of the Cayley map has nowhere

vanishing Higgs field ϕ.

Definition 7.3. We refer to the connected components in the image of the

Cayley map as the Cayley components inM(GR).

Remark 7.4. For Case (2) of Theorem 3.1, the Cayley map generalizes the

Cayley correspondence of [9], [32], [40] for Higgs bundles for Hermitian groups

of tube type with maximal Toledo invariant. As a result, we refer to the isomor-

phism defined by the Cayley map as the generalized Cayley correspondence.

For Case (1) of Theorem 3.1, the Cayley map recovers the Hitchin section of

[52] for split real groups. In fact, for all cases, when the G̃R-Higgs bundle

(EC, ψ̃mc) is trivial, the Cayley map recovers the Hitchin section for the split

subgroup G(e)R ⊂ GR with Lie algebra g(e)R. Finally, for GR = SOp,q with

3Note that in fact C ∩H = C except for the split real forms SLnR and E6
6.
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2 6 p 6 q, the Cayley map recovers the connected components of M(SOp,q)

parametrized in [3], [19].

Remark 7.5. When GR ⊂ G is a split real form with Lie algebra sp2nR,

son,n+1 or the quaternionic real form of f4, there are two magical sl2-triples,

one from Case (1) of Theorem 3.1 and one from Case (2), Case (3) or Case

(4), respectively. Note that these are the only cases where the semisimple part

G̃R ⊂ GR
C of the Cayley group is split and contains a unique magical sl2-triple.

For these groups, the Cayley map for Case (1) of Theorem 3.1 is obtained by

iterating the Cayley maps. For example, when GR is the quaternionic real

form of F4, we have the following diagram:

H0(K2)⊕H0(K6)⊕H0(K8)⊕H0(K12)

Ψe,1
++

Id⊕ΨK
4

e,1

��

M(GR),

H0(K2)⊕H0(K6)⊕MK4(SL3R)

Ψe,4
33

where Ψe,1 is the Cayley map from Case (1) of Theorem 3.1, Ψe,4 is the Cayley

map from Case (4) of Theorem 3.1 and ΨK4

e,1 is the K4-twisted version of the

Cayley map from Case (1) of Theorem 3.1 for SL3R.

Even though the Hitchin components are all smooth and contractible, this

is not a general feature for the connected components defined by the gener-

alized Cayley correspondence. Nevertheless, in the process of proving The-

orem 7.1, we show in Proposition 7.11 that for Higgs bundles in the image

of the Cayley map, the second hypercohomology group H
2(C•(EH, ϕ)) van-

ishes. As a result, H1(C•(EH, ϕ)) � Aut(EH, ϕ) is a local model for the moduli

space M(GR) around (EH, ϕ). It follows immediately that M(GR) is locally

irreducible around (EH, ϕ). Hence, we have the following:

Corollary 7.6. Every Cayley component inM(GR) is locally irreducible

and irreducible.

The proof of Theorem 7.1 is broken into three parts. In Section 7.2 we

prove that the Cayley map is well defined and injective. Then in Section 7.3

we prove that the Cayley map is open and in Section 7.4 that it is closed.

7.2. The Cayley map descends to moduli spaces. We first prove that the

Cayley map descends to an injective map of moduli spaces.

Theorem 7.7. If

((EC, ψ̃mc), q1, . . . , qr(e)) ∈ HKmc+1(G̃R)×
r(e)∏

j=1

H
Klj+1(R+)
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is stable (resp. polystable), then “Ψe((EC, ψ̃mc), q1, . . . , qr(e)) is a stable (resp.

polystable) GR-Higgs bundle. In particular, the Cayley map (7.1) is well de-

fined.

Remark 7.8. By Remark 5.9, the Cayley map can be defined for L-twisted

Higgs bundles. The proof of Theorem 7.7 given below also applies to this

setting when deg(L) > 0.

The difficult step in the proof of Theorem 7.7 is proving the next lemma.

Lemma 7.9. If (EC, ψ̃mc) ∈ HKmc+1(G̃R) is stable (resp. polystable), then

the GR-Higgs bundle “Ψe((EC, ψ̃mc), 0, . . . , 0) is stable (resp. polystable).

Before proving Lemma 7.9, we will prove Theorem 7.7 assuming Lemma 7.9.

Proof of Theorem 7.7 assuming Lemma 7.9. First note that the map is

injective by Proposition 5.11. The idea of the proof that the map is well defined

is similar to Hitchin’s proof [52] that the image of the Hitchin section consists

of stable Higgs bundles. First assume (EC, ψ̃mc) is stable. Since stability is

preserved by the C
∗-action,

“Ψe((EC, λψ̃mc), 0, . . . , 0) = (EC ? ET[H], f + λφ̃mc)

is a stable GR-Higgs bundle for all λ ∈ C
∗ by Lemma 7.9. Since stability is

open,

“Ψe((EC, ψ̃mc), t1q1, . . . , tr(e)qr(e)) =

(
EC ? ET[H], f + φ̃mc +

r(e)∑

j=1

tjqj

)

is stable for sufficiently small tj ∈ R. Thus, (EC?ET[H], λ2(f+φ̃mc+
∑r(e)

j=1 tjqj))

is stable for all λ ∈ C
∗.

Let gλ : ET → ET be the holomorphic gauge transformation which acts on

f by gλ ·f = λ−2f . Then IdEC ?gλ acts on EC ?ET[g2j ]⊗K with eigenvalue λ2j .

Since stability is also preserved by the gauge group,

(IdEC ?gλ) ·
(
EC ? ET[H], λ2

(
f + φ̃mc +

r(e)∑

j=1

tjqj

))

=

(
EC ? ET[H], f + λ2mc+2φ̃mc +

r(e)∑

j=1

λ2lj+2tjqj

)

= “Ψe((EC, λ2mc+2ψ̃mc), λ
2l1+2t1q1, . . . , λ

2lr(e)+2tr(e)qr(e))

is stable for all λ ∈ C
∗. Thus, Ψe((EC, ψ̃mc), q1, . . . , qr(e)) is stable.

If (EC, ψ̃mc) is strictly polystable, then “Ψe(EC, ψ̃mc) = (EC?ET[H], f+φ̃mc)

is a strictly polystable GR-Higgs bundle by Lemma 7.9. Suppose that s ∈ ihR
and that EPs ⊂ EC ? ET[H] is a holomorphic reduction to the parabolic Ps with

deg(EPs) = 0 and such that f + φ̃mc ∈ H0(EPs [ms] ⊗ K). By the definition
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of polystability there is a further holomorphic reduction ELs ⊂ EPs such that

f + φ̃mc ∈ H0(ELs [m0
s] ⊗K). We claim that this implies s ∈ c. Indeed, write

s =
∑
s2j , where s2j is the projection of s onto the graded piece g2j , and

suppose k is the smallest j with s2j 6= 0. If v ∈ g2mc , then the 2k − 2-graded

piece of [s, f + v] is [s2k, f ]. Since {f, h, e} is magical, ker(adf ) ∩ h = c. Thus,

[s2k, f ] = 0 implies s ∈ c.

By Proposition 6.5, there are s ∈ ihR and a holomorphic reduction ELs ⊂
EC ?ET[H] with f + φ̃mc ∈ H0(ELs [m0

s]⊗K) such that (ELs , f + φ̃mc) is a stable

GR
s -Higgs bundles. Here G

R
s is the real form of the G-centralizer of s associated

to the complexified Cartan decomposition g0s = ls ⊕ m0
s. Since s ∈ c and

[c, g(e)] = 0, it follows that “Ψe((EC, ψ̃mc), q1, . . . , qr(e)) is a GR
s -Higgs bundle.

Openness and C
∗-invariance of stability implies “Ψe((EC, ψ̃mc), q1, . . . , qr(e)) is

a stable GR
s -Higgs bundle and hence a polystable GR-Higgs bundle. �

We will prove Lemma 7.9 in each of the four cases of magical nilpotents

from Theorem 3.1. The result is immediate for Case (1), it was proven in [9]

for Case (2), and for Case (3), the result was proven in [3] for G = SONC. Our

proof in Case (4) relies on the details of the proof of Case (2) so we outline the

proof of [9].

Proof of Lemma 7.9 Case (1). For Case (1) of Theorem 3.1, C is the cen-

ter of GR and φ̃mc = 0. Thus, “Ψe(EC, φ̃mc , 0, . . . , 0) = (EC ?ET[H], f). This is a
polystable Higgs bundle since the solution metric for (ET, f) induces a solution

to the GR-Higgs bundle equations. It is stable since a principal nilpotent is not

contained in the Levi subalgebra of any proper parabolic subalgebra of g. �

Proof of Lemma 7.9 Case (3). For Case (3) of Theorem 3.1 with G =

SONC (and hence GR = SOp,N−p), Lemma 7.9 was proven in [3, Lemma

4.5]. Roughly, mc + 1 = p, and there is a Z/2pZ-grading g =
⊕

ĝj such

that (EC ? ET[Ĝ0], f + φ̃p−1) is a (Ĝ0, ĝ1)-Higgs pair. This pair is shown to be

polystable, and Proposition 6.15 is applied. By Remark 6.4, it suffices to show

that every PSONC-Higgs bundle in the image of Ψ̂e lifts to a SONC-Higgs

bundle in the image of Ψ̂e. This was shown in Section 5.3. �

Proof of Lemma 7.9 Case (2). The proof for Case (2) is the result of Lem-

mas 5.5, 5.6 and 5.7 of [9]. We outline the argument here in the notation of

the current article. In this case, mc = 1 and H = G0 ⊂ G is the centralizer of

h ∈ g.

Let (EC, ψ1) be a stable (resp. polystable) K2-twisted G̃R-Higgs bundle.

By [9, Lemma 5.5], (EC ? ET [H], ψ1) is an α-stable (resp. α-polystable) K2-

twisted H-Higgs bundle for α = h
2 ∈ z(h). This is proven using equations. Next

one proves a finite dimensional GIT result ([9, Lemma 5.6]) for the magical
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nilpotent f ∈ g−2. Namely, if s ∈ ih and f ∈ g−2,s, then 〈h, s〉 > 0, and if

equality holds, then f ∈ g0−2,s.

Now consider Ψe(EC, ψ1) = (EC ? ET[H], f + φ1), where adf (φ1) = ψ1 ∈
H0(EC ? ET[g0] ⊗ K2) = H0(EC[h] ⊗ K2). Let s ∈ ihR and EPs ⊂ EC ? ET[H]
be a holomorphic reduction such that f + φ1 ∈ H0(EPs [ms] ⊗ K). Since Ps

preserves the splitting m = g−2⊕g2, we have f ∈ H0(EPs [g−2,s]⊗K) and φ1 ∈
H0(EPs [g2,s]⊗K). Hence ψ1 = [f, φ1] ∈ H0(EPs [hs]⊗K2). We have deg(EPs) >
〈h2 , s〉 by Lemma 5.5 and 〈h2 , s〉 > 0 by Lemma 5.6. Thus, deg(EPs)>〈h2 , s〉>0.

If deg(EPs) = 0, then f ∈ g0−2,s and there is a holomorphic reduction

ELs ⊂ EPs such that ψ1 = [f, φ1] ∈ H0(ELs [h0s] ⊗ K2). Note that [s, φ1] = 0

since adf : g2 → g0 is injective and

0 = [s, [f, φ1]] = −[φ1, [s, f ]]− [f, [φ1, s]] = [f, [s, φ1]].

Hence f + φ1 ∈ H0(ELs [m0
s] ⊗ K) and “Ψe(EC, ψ1) is a polystable GR-Higgs

bundle. �

Before proving Case (4) below, we recall some relevant notions from pre-

vious sections. Let {f, h, e} ⊂ g be a magical sl2-triple from Case (4) of

Theorem 3.1. Recall from Section 4.4 that mc = 3, φ̃3 = φ3 and the Z-

grading is given by g =
⊕5

j=−5 g2j . Moreover, g−2 decomposes g0-invariantly

as g−2 = g−α̃ ⊕ gb−2, where α̃ is the simple root in the diagrams in Section 9.

Consider the Z/4Z-grading given by g =
⊕

j∈Z/4Z ĝj , where

ĝ0 = g−8 ⊕ g0 ⊕ g8, ĝ1 = g−10 ⊕ g−2 ⊕ g6,

ĝ2 = g−4 ⊕ g4, ĝ3 = g−6 ⊕ g2 ⊕ g10.

By (4.4), the complexified Cartan decomposition g = h⊕m of the canonical real

form satisfies h = ĝ0⊕ ĝ2 and m = ĝ1⊕ ĝ3. Recall from (4.9) that h = h′⊕sl2C,

and note that ĝ0 = h′0 ⊕ sl2C. Let G0 ⊂ Ĝ0 ⊂ G be the connected subgroups

with Lie algebras g0 ⊂ ĝ0, respectively. The adjoint action of G0 and Ĝ0

preserve the spaces gj and ĝj , respectively. Moreover, by Lemma 4.19, ĝ1

decomposes Ĝ0-invariantly as

(7.2) ĝ1 = (g−α̃ ⊕ g−10)⊕ (gb−2 ⊕ g6).

Consider the K4-twisted G̃R-Higgs bundle (EC, ψ3), and recall

Ψ̂e((EC, ψ3), 0, 0) = (EC ? ET[H], f + φ3),

where ad3f (φ3) = ψ3. Since C ? T ⊂ G0 and f + φ3 ∈ H0(EC ? ET[ĝ1]⊗K),

(EĜ0
,Φ) = (EC ? ET[Ĝ0], f + φ3)

is a K-twisted (Ĝ0, ĝ1)-Higgs pair. Using the decomposition (7.2) we write

Φ = (fb + φ3)⊕ (f̃ + 0) ∈ H0(EĜ0
[gb−2 ⊕ g6]⊗K)⊕H0(EĜ0

[g−α̃ ⊕ g−10]⊗K).
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This implies that adfb+φ3(f̃) ∈ H0(EĜ0
[ĝ2] ⊗ K2). Recall from (4.12) that

adfb+φ3(f̃) = [fb, f̃ ] ∈ g−4 is a magical nilpotent in h′ from Case (2) of Theo-

rem 3.1. Since the splitting ĝ2 = g−4 ⊕ g4 is Ĝ0-invariant,

(7.3) adfb+φ3 f̃ = [fb, f̃ ] ∈ H0(EĜ0
[g−4]⊗K2).

Also, θ = ad3fb+φ3
(f̃) ∈ H0(EĜ0

[ĝ0]⊗K4). Thus, (EĜ0
, θ) is a K4-twisted

Ĝ0-Higgs bundle. Moreover, the decomposition ĝ0 = h′0 ⊕ sl2C gives

θ = θ′ ⊕ θ2 ∈ H0(EĜ0
[h′0]⊗K4)⊕H0(EĜ0

[sl2C]⊗K4).

The bracket relations of Lemma 4.20 now imply

(7.4) θ′ = 3ψ3 and θ2 = ad3fb(f̃) + ad2φ3
◦ adfb(f̃).

In particular, θ2 is in the K4-twisted SL2C-Hitchin section.

Proof of Lemma 7.9 Case (4). Suppose that (EC, ψ3) is a polystable K4-

twisted G̃R-Higgs bundle. To show that Ψ̂e((EC, ψ3), 0, 0) is a polystable GR-

Higgs bundle, it suffices to show that (EC ? ET(Ĝ0), f + φ3) is a polystable

(Ĝ0, ĝ1)-Higgs pair by Proposition 6.15.

Consider the (Ĝ0, ĝ1)-Higgs pair (EĜ0
,Φ) = (EC ? ET(Ĝ0), f + φ3). Let

ĤR
0 ⊂ Ĝ0 be a compact real form with Lie algebra ĥR0 . Fix s ∈ iĥR0 , and let

Ps ⊂ Ĝ0 be the corresponding parabolic. Since ĝ0 = h′0 ⊕ sl2C, we can write

s = s′ + s2, where s
′ ∈ h′0 and s2 ∈ sl2C. Let EPs ⊂ EĜ0

be a holomorphic

reduction such that Φ ∈ H0(EPs [ĝ1,s]⊗K). Note that the inclusions Ps ⊂ Ps′

and Ps ⊂ Ps2 define holomorphic reductions EPs ⊂ EPs′ ⊂ EĜ0
and EPs ⊂

EPs2 ⊂ EĜ0
We are interested in showing

deg(EPs) = deg(EPs′ ) + deg(EPs2 ) > 0.

Since Ĝ0 preserves the splitting (7.2), we have

(7.5) fb + φ3 ∈ H0(EPs [ĝ1,s]⊗K) and f̃ ∈ H0(EPs [ĝ1,s]⊗K) .

Thus, ad3fb+φ3
(f̃) = θ ∈ H0(EĜ0

[ĝ0,s]⊗K4), and using the decomposition (7.4),

θ′ = 3ψ3 ∈ H0(EĜ0
[h′0,s′ ]⊗K4) and θ2 ∈ H0(EĜ0

[sl2Cs2 ]⊗K4).

Since θ2 is in the K4-twisted Hitchin section, we have

deg(EPs2 ) > 0

with equality if and only if s2 = 0.

To show that deg(EPs′ ) > 0, we use an argument similar to the proof of

Case (2) of Theorem 3.1. Write h = h′ + h2, where h
′ ∈ h′0 and h2 ∈ sl2C are
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both nonzero, and let T′,T2 ⊂ H be the subgroups generated by exp(th′) and

exp(th2). The Ĝ0-bundle ET(Ĝ0) is given by

ET(Ĝ0) = ET′ ? ET2(Ĝ0).

Fix the Kähler form ω associated to the hyperbolic metric uniformizing the

Riemann surface X, so that FK = −iω.
Since θ2 is in the PSL2C-Hitchin section, there is a metric hT2 on ET2 so

that
FhT2

+ [θ2,−τ(θ2)]ω = 0.

Let hT′ be the uniformizing metric on ET′ , and take hT = hT′ ? hT2 . Since

(EC, 3ψ3) is polystable, there is a metric hC on EC such that

FhC
+ [3ψ3,−τ(3ψ)]ω = 0.

Thus, hC ? hT2 ? hT′ defines a metric on EĜ0
which satisfies

FhC?hT2
?hT′ + [3ψ3,−τ(3ψ3)]ω + [θ2,−τ(θ2)]ω = FhT′ = −iλωh′

for some positive constant λ. The exact value of λ is not important. Hence,

(EĜ0
, 3ψ3 + θ2) is an α=λh

′-polystable K4-twisted Ĝ0-Higgs bundle, and thus

deg(EPs) = deg(EPs′ ) + deg(EPs2 ) > deg(EP′
s
) > 〈λh′, s′〉.

Note that adfb+φ3(f̃) = [fb, f̃ ] ∈ H0(EPs′ [g−4,s′ ]⊗K2) by (7.5) and (7.3).

Since [fb, f̃ ] ⊂ g−4 is a magical nilpotent in h′ corresponding to Case (2) of

Theorem 3.1, the finite dimensional GIT result [9, Lemma 5.5] applies and gives

〈λh′, s′〉 > 0 with equality if and only if [fb, f̃ ] ∈ g0−4,s′ . Thus, deg(EPs) > 0.

So far we have shown that (EĜ0
,Φ) is a semistable (Ĝ0, ĝ1)-Higgs pair.

Suppose deg(EPs) = 0. Then deg(EPs2 ) = 0 and deg(EPs′ ) = 0, and hence

s2 = 0. The α-polystable of the K4-twisted Ĝ0-Higgs bundle (EĜ0
, θ) implies

there is a holomorphic reduction ELs ⊂ EPs such that θ ∈ H0(ELs [ĝ00,s]⊗K4).

In particular, ψ3 ∈ H0(ELs [ĝ00,s] ⊗K4). Since the splitting g−α̃ ⊕ gb−2 ⊕ g6 is

h′0-invariant and s = s′ ∈ h′0, we have

f̃ ∈ H0(EPs [ĝ1,s]⊗K), fb ∈ H0(EPs [ĝ1,s]⊗K) and φ3 ∈ H0(EPs [ĝ1,s]⊗K).

Thus,

[fb, f̃ ] ∈ H0(EPs [g−4,s]⊗K2) and [fb, φ3] ∈ H0(EPs [g4,s]⊗K2).

We have 0 = deg(EPs) > 〈s, h′〉 > 0, thus the finite dimensional GIT lemma

implies [fb, f̃ ] ∈ H0(ELs [g0−4,s] ⊗ K2). By (4.13), ψ3 = [[fb, f̃ ], [fb, φ3]], and

hence [fb, φ3] ∈ H0(ELs [g04,s] ⊗ K2). Finally, since f̃ , fb, and φ3 are each in

H0(EPs [ĝ1,s]⊗K), we have

f̃ ∈ H0(ELs [ĝ01,s]⊗K), fb ∈ H0(ELs [ĝ01,s]⊗K) and φ3 ∈ H0(ELs [ĝ01,s]⊗K).

Hence (EC ?ET[Ĝ0], f+φ3) is a 0-polystable K-twisted (Ĝ0, ĝ1)-Higgs pair. �
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7.3. The Cayley map is open. We now prove that the Cayley map is open.

Recall the deformation complex and description of the local structure of the

moduli space from Section 6.2. By Corollary 3.2, ker(adf : h → m) = c and

adf : adf (m) → ad2f (m) is an isomorphism. Hence we have C ? T-invariant

splittings

(7.6) h = c⊕ adf (m) and m = Vm ⊕ ad2f (m),

where Vm =
⊕

j>0 V2mj
is the set of highest weight spaces in m.

Recall that the Cayley map (7.1) is defined by

Ψe(EC, ψ) = ((EC ? ET)[H], f + ϕ),

where ψ ∈ ⊕j>0H
0(EC[Z2mj

] ⊗ Kmj+1) and ϕ ∈ H0(EC ? ET[Vm] ⊗ K) is

determined by ψ using the isomorphisms ad
mj

f : (EC ? ET)[V2mj
] ⊗ K →

EC[Z2mj
]⊗Kmj+1. The deformation complex for (EC, ψ) is

C•
C : EC[c]

adψ−−−→
⊕

j>0

EC[Z2mj
]⊗Kmj+1.

On the other hand, since [c, f + Vm] ⊂ Vm, the deformation complex for

Ψe(EC, ψ) is

C•
H : EC[c]⊕(ET?EC)[adf (m)]

Å
adϕ α
0 β

ã

−−−−−−→ (ET?EC)[Vm]⊗K⊕(ET?EC)[ad2f (m)]⊗K,
where we have used the fact that T acts trivially on c to identify (EC ?ET)[c] ∼=
EC[c], and α and β are defined by post composing adf+ϕ : (EC ? ET)[adf ] →
(EC ? ET)[m]⊗K with the projection onto the (EC ? ET)[Vm]⊗K and (EC ? ET)
· [ad2f (m)]⊗K, respectively.

The Cayley map induces a short exact sequence of complexes

0 −→ C•
C −→ C•

H −→ C•
H/C

•
C −→ 0,

such that the quotient complex is isomorphic to

C•
H/C

•
C : (EC ? ET)[adf (m)]

β−−→ (EC ? ET)[ad2f (m)]⊗K.
Proposition 7.10. The quotient complex C•

H/C
•
C has trivial hypercoho-

mology. In particular,

H
•(C•

C)
∼= H

•(C•
H).

Proof. It suffices to show that the map

β : (EC ? ET)[adf (m)]→ (EC ? ET)[ad2f (m)]⊗K
is an isomorphism. First, adf : (EC ? ET)[adf (m)] → (EC ? ET)[ad2f (m)] ⊗ K
induces an isomorphism of holomorphic bundles. Since v ∈ Vm ⊂

⊕
j>0 gj ,

for any v ∈ Vm, the composition of adf+v : adf (m) → m with projection onto

ad2f (m) is injective and hence also defines an isomorphism adf (m) → ad2f (m).

Thus, β is an isomorphism and C•
H/C

•
C has trivial hypercohomology. �
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We can now prove that the second hypercohomology of the complexes C•
C

and C•
H vanishes.

Proposition 7.11. Suppose (EC, ψ) is a polystable object in the domain

of Ψe. Then

0 = H
2(C•

C(EC, ψ)) = H
2(C•

H(Ψe(EC, ψ))) = 0.

Proof. Since the domain of the Cayley map is identified with a product

of moduli spaces of L-twisted Higgs bundles with deg(L) > 2g − 2, Proposi-

tion 6.8 implies that H
2(C•

C(EC, ψ)) = 0. Now, Proposition 7.10 implies that

H
2(C•

H(Ψe(EC, ψ))) = 0. �

Remark 7.12. Note that isomorphism of hypercohomology groups and

vanishing of H
2 in this general context is much cleaner than the one in [3,

§4.2] for GR = SOp,q, which took several pages. This is a reflection of the

power of the magical sl2-triple perspective.

We can now prove that the Cayley map is open.

Proposition 7.13. The Cayley map

Ψe :MKmc+1(G̃R)×
r(e)∏

j=1

H0(K lj+1)→M(GR)

is open. In particular, its image is open inM(GR).

Proof. Let (EC, ψ) be a point in the domain of the Ψe. By Proposition 7.11

and (6.4), local neighborhoods of (EC, ψ) and Ψe(EC, ψ) are respectively iso-

morphic to

H
1(C•

C(EC, ψ)) � Aut(EC, ψ) and H
1(C•

H(Ψe(EC, ψ))) � Aut(Ψe(EC, ψ)).

By Proposition 7.10, Ψe induces an isomorphism

H
1(C•

C(EC, ψ)) ∼= H
1(C•

H(Ψe(EC, ψ)))
which is Aut(EC, ψ)-equivariant. By Corollary 5.12 we have Aut(EC, ψ) =

Aut(Ψe(EC, ψ)). Thus, the Cayley map induces a local isomorphism and hence

is open. �

7.4. The Cayley map is closed. Recall from Remark 2.3 that the Slodowy

slice f + ker(ade) = f + V ⊂ g is a slice for the adjoint action of G. We have

an AdH invariant decomposition V = c ⊕ Vm, and f + Vm is a slice through f

for the H-action in m. Moreover, f + Vm decomposes AdC-invariantly as

(7.7) f + Vm = f +
M⊕

j=1

V2mj
,

where C-acts trivially on every summand except V2mc . Recall that the Cayley

real form gRC is a real form of g0 and has complexified Cartan decomposition
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g0 = c⊕ Zm, where we define4

Zm =
M⊕

j=1

Z2mj
.

There is a C-equivariant isomorphism ψe : Zm→f +Vm induced by the C-equi-

variant isomorphisms ad
mj

f : V2mj
→ Z2mj

.

Let χ : m→ m � H and χC : Zm → Zm � C be the adjoint quotient maps,

and let χe : f +Vm → m�H be the restriction of χ to f +Vm. The composition

χe ◦ ψe : Zm → m � H defines a map

(7.8) γe : Zm � C→ m � H

such that

(7.9) γe ◦ χC = χe ◦ ψe.

Recall that by choosing a homogeneous basis of invariant polynomials, m � H

and Zm � C are identified with affine spaces of dimension the real rank of gR

and gRC , respectively. Thus, by Proposition 4.10, m � H and Zm � C have the

same dimension.

Proposition 7.14. Let {f, h, e} ⊂ g be a magical sl2-triple. Then χe :

f+Vm → m�H and γe : Zm�C→ m�H are flat and surjective, thus faithfully

flat. Moreover, γe has finite fibers.

Proof. By [60, Th. 9], every fiber of the surjective morphism χ : m→ m�H

has pure dimension equal to dim(m) − dim(m � H). Since both m and m � H

are affine spaces, the so called “miracle flatness theorem” implies that χe is

flat; see, for example [50, Exercise III.10.9] or [30, p. 158].

On the other hand, the orbit map µ : H × (f + Vm) → m is smooth,

and hence flat since f + Vm is a slice for the H-action on m. Thus, χ ◦ µ :

H × (f + Vm) → m � H is also flat. However, this morphism factors through

f + Vm, so that we have a commutative diagram

H× (f + Vm) m m � H,

f + Vm

pr2

µ χ

χe

where pr2 is the canonical projection. Since both χ ◦ µ and pr2 are flat, the

morphism χe : f + Vm → m � H is flat too by [42, Cor. 2.2.11].

As in [75, §7.4], to show that χe is surjective, we show that it is equivariant

with respect to a C
∗-action with positive weights. Choose a basis (p1, . . . , pr)

4Note that Zm is not a subset of m.
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of H-invariant polynomials on m which are homogeneous of degree m′
1, . . . ,m

′
r.

This identifies m � H with C
r, via [y] 7→ (p1(y), . . . , pr(y)) for y ∈ m. We have

(7.10) χe(t
2y) = (t2m

′
1p1(y), . . . , t

2m′
rpr(y)).

Now consider the C
∗-action on f + Vm by

(7.11) t ·
(
f +

M∑

j=1

v2mj

)
= f +

M∑

j=1

t2+2mjv2mj
,

where v2mj
∈ V2mj

. There is an element g ∈ T ⊂ H so that

Adg

(
t2f +

M∑

j=1

t2v2mj

)
= f +

M∑

j=1

t2mj+2v2mj
= t ·

(
f +

M∑

j=1

v2mj

)
.

Since the polynomials pj are H-invariant, the map χe : f + Vm → m � H is

equivariant with respect to the C
∗-actions (7.11) and (7.10).

Now, flatness implies χe : f + Vm → m � H is open, so its image is an

open set U ⊂ m �H containing 0 = χe(f). By C
∗-equivariance, it follows that

U must be C
∗-invariant. Since the weights of the C

∗-action are positive, we

conclude that U = m � H, and thus χm
e is surjective.

For the map γe, surjectivity follows immediately from surjectivity of χe.

To prove flatness we use a similar argument as above. The argument for flatness

of χ : m→m�H also applies to χC : Zm→Zm �C, thus χC is flat. Hence, both

χe◦ψe=γe◦χC and χC are flat. Thus, again by [42, Cor. 2.2.11], γe is flat as well.

Finally, a faithfully flat morphism between affine spaces of the same dimension

has finite fibers. So γe has finite fibers since dim(Zm � C) = dim(m � H). �

Remark 7.15. Note that the proof that χe : f + Vm → m � H is flat and

surjective holds for general normal sl2-triples {f, h, e} ⊂ h⊕m.

The global version of the above picture is given by taking the Hitchin

maps from Section 6.3 on the domain and target of the Cayley map Ψe defined

in (7.1). Let K be the holomorphic frame bundle of K. The Hitchin base on

the domain is

BC = BKmc+1(G̃R)×
r(e)∏

j=1

H0(K lj+1) ∼=
⊕

j>0

H0(Kmj+1[Z2mj
� C]),

because BKmc+1(G̃R) = H0(Kmc+1[Z2mc � C]) by the definition of the group

G̃R (see Definitions 4.11 and 2.14) and where we used the isomorphism (6.6) to

identifyH0(K lj+1) withH0(Kmj+1[Z2mj
]) for each j 6= c (see also Lemma 5.7),

as well as the fact that C acts trivially on Z2mj
precisely when j 6= c. The

Hitchin base for M(GR) is B(GR) = H0(K[m � H]). Let hC and h be the

respective Hitchin maps. From the previous discussion, we conclude that the
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Cayley map Ψe is compatible with the Hitchin maps hC and h in the sense of

the next proposition.

Proposition 7.16. There is a commutative diagram

(7.12)

MKmc+1(G̃R)×∏r(e)
j=1H

0(K lj+1)
Ψe

//

hC

��

M(GR)

h
��

BC
Γe

// B(GR),

where Γe is a proper map.

Proof. particular, By Proposition 7.14, the map γe : Zm � C → m � H

defines a proper map

Γe : BC −→ B(GR),

and the commutativity of the diagram follows from (7.9). �

Remark 7.17. We expect that the map Γe is an isomorphism, but for our

purposes, being proper is sufficient.

We now complete the proof of Theorem 7.1 by showing the Cayley map

is closed.

Proposition 7.18. The image Im(Ψe) of the Cayley map Ψe is closed in

M(GR).

Proof. Consider a sequence xn = Ψe(yn) which diverges in Im(Ψe). In

particular, yn diverges in the domain of the Cayley map. Since the maps hC
and Γe in the diagram (7.12) are proper, we conclude that hC(yn) diverges in

BC and Γe(hC(yn)) diverges in the Hitchin base B(GR) of M(GR). Since the

diagram (7.12) commutes and the Hitchin map h is proper, we conclude that

xn diverges inM(GR). Hence the image of Ψe is closed inM(GR). �

7.5. Remarks on local minima of energy and components. The connected

components of the moduli spaces of GR-Higgs bundles have been subject to an

extensive study through the last three decades (see, for example, [51], [52], [40],

[12], [13], [66], [35], [19]). Most of the works dealt with GR in a case-by-case

basis, and the main tool, pioneered by Hitchin [51, 52], to detect and count

such components was the Hitchin function defined by taking the L2-norm of

the Higgs field. Namely, the L2-norm of the Higgs field with respect to the

metric solving the Hitchin equations (6.9) defines a proper function on the

moduli space

(7.13) F :M(GR) −→ R, (EH, ϕ) 7→
∫

X

||ϕ||2.



870 BRADLOW, COLLIER, GARCÍA-PRADA, GOTHEN, and OLIVEIRA

Since proper maps attain their minimum on every closed set, we have an in-

equality

|π0(M(GR))| 6 |π0(local min of F )|.

Remark 7.19. The strategy is then to classify local minima of F and show

that each component of the local minimum defines a component of M(GR).

There is an obvious global minimum which occurs when the Higgs field ϕ is

identically zero. The component count of the global minimum is then given

by the component count of the moduli space of polystable H-bundles. By

[68], the number of such components is determined by the number of different

topological types of H-bundles.

We briefly recall the local minimum criterion for stable Higgs bundles

whose second hypercohomology H
2 vanishes; see, for example, the appendix

of [3] for details. The local minima of F are, in particular, fixed points of the

C
∗-action on M(GR). If (EH, ϕ) is a stable C

∗-fixed point with ϕ 6= 0, then

there are a Z-grading g =
⊕

j∈Z hj ⊕ mj and a holomorphic H0-bundle EH0 ,

where H0 ⊂ H is the connected with Lie algebra h0, such that

EH0 [H]
∼= EH and ϕ ∈ H0(EH0 [m−1]⊗K).

As a result, for all j, the Higgs field ϕ defines a map

(7.14) adϕ : EH0 [hj ] −→ EH0 [mj−1]⊗K.

If the stable GR-Higgs bundle (EH, ϕ) is such that H2(C•(EH, ϕ)) = 0, then it

is a local minimum of F if and only if adϕ : EH0 [hj ]
∼=−−→ EH0 [mj−1] ⊗K is an

isomorphism for all j < 0; see [14, §3.4] and [12, Rem. 4.16].

Recall from Corollary 3.2 that if {f, h, e} ⊂ g is a magical sl2-triple,

then adf : hj → mj−1 is injective for all j < 0. This implies that the GR-

Higgs bundle Ψe(EC) = (EC ? ET[H], f) defines a local minimum of the Hitchin

function.

Proposition 7.20. Let {f, h, e} ⊂ g be a magical sl2-triple and C ⊂ H be

its H-centralizer. Then the GR-Higgs bundle (EC?ET[H], f) is a local minimum

of the Hitchin function F .

Since the image of the Cayley map Ψe is a union of connected components

of the moduli spaceM(GR), it is natural to ask how many components those

are. Of course that number equals the number of connected components of

the moduli space MKmc+1(G̃R). This question has been studied whenever

GR is one of the classical groups corresponding to Cases (1), (2) and (3) of

Theorem 3.1.

The classification of local minima of the Hitchin function (7.13) also ap-

plies to L-twisted Higgs bundles when deg(L) > 2g − 2, the only difference
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being that a metric on L must be fixed to make sense of the L2-norm. More-

over, all the results of [3, App. 1] hold for L-twisted GR-Higgs bundles. To

count the components in the image of the Cayley map, one first classifies the

stable local minima of the L-twisted Hitchin function FL :ML(G
R)→ R and

then the polystable local minima. As in the K-twisted case, the crucial com-

putation to detect the stable local minima among the C
∗-fixed points is [14,

Lemma 3.11] (see also [12, Rem. 4.16]). These results can be easily adapted

the L-twisted setup. Consider the L-twisted version of (7.14),

(7.15) adϕ : EH0 [hj ] −→ EH0 [mj−1]⊗ L.
Proposition 7.21. If deg(L) > 2g− 2, then a stable L-twisted GR-Higgs

bundle (EH, ϕ) with ϕ 6= 0 is a local minimum of the Hitchin function FL if

and only if (7.15) is an isomorphism for every j < 0.

Recall from Proposition 6.5 that a strictly polystable GR-Higgs bundle

admits a Jordan–Hölder reduction to a stable ĜR-Higgs bundle for a subgroup

ĜR ⊂ GR. Such a subgroup ĜR is independent of the twisting line bundle

[33, §2.10]. So the identification of strictly polystable local minima of FL is

done by identifying stable local minima for FL inM(ĜR) and then checking if

such minima still define local minima inM(GR). Using Proposition 7.21 and

the minima classification in the literature, we arrive at the following count of

Cayley components, i.e., of connected components in the image of the Cayley

map, for Case (4) of Theorem 3.1.

Proposition 7.22. Let G be a complex simple Lie group of type F4, E6,

or E7 and GR ⊂ G be the quaternionic real form. Let Ψe be the Cayley map

from Theorem 7.1. Then,

• |π0(Im(Ψe))| = 3 for G of type F4;

• |π0(Im(Ψe))| = 1 for G the simply connected group of type E6;

• |π0(Im(Ψe))| = 3 for G the adjoint group of type E6;

• |π0(Im(Ψe))| = 1 for G the simply connected group of type E7;

• |π0(Im(Ψe))| = 2 for G the adjoint group of type E7.

Proof. Suppose GR is a quaternionic real form of the simply connected

group of type F4, E6, E7 or E8. By Proposition 4.8, the semisimple part G̃R of

the Cayley group GR
C is SL3R, SL3C, SU

∗
6 and E−26

6 , respectively. For F4 and

E8, the adjoint group is simply connected, but for E6 and E7, the fundamental

group of the adjoint group is Z/3Z and Z/2Z, respectively, and G̃R is PSL3C

and PSU∗
6, respectively. The number of connected components of the image

of the Cayley map Ψe is equal to the number of connected components of the

moduli spaceMK4(G̃R).

For G̃R=SL3R, the number of connected components ofMK(SL3R) is 3.

This was computed in [52] by showing that the only nonzero local minima
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of the Hitchin function arises from Case (1) of Theorem 3.1. These methods

can easily be adapted to the K4-twisted situation and no extra local minima

arise. Thus, |π0(Im(Ψe))| = 3 for G of type F4. Similarly, when G̃R is SL3C

or PSL3C, there are no nonzero local minima of the Hitchin function by [35]

and the number of components is 1 or 3, respectively. These methods also

generalize directly to the K4-twisted situation and give the desired component

count. Finally, for G̃R = SU∗
6, it is shown in [36, Prop. 4.6] that there are no

nonzero local minima of the Hitchin function. This computation also applies to

G̃R = PSU∗
6. These techniques also generalize immediately to the K4-twisted

case and give the desired component counts. �

Remark 7.23. When G has type E8, we expect the image of the Cayley

map Ψe to be connected since the maximal compact of the Cayley group has

type F4 which is simply connected, and hence has only one topological type.

In general, it is expected that the Cayley map is the only source of connected

components of the moduli space of GR-Higgs bundles which are not labeled

by topological invariants of GR-bundles. This has been proven for the real

groups SLnR [52], [39], Up,q [12], [11], PGLnR [66], SU∗
2n [36], SOp,q with p = 1

or 2 < p 6 q [3], SO2,3 [41], [34] and Sp2p,2q [37]. Moreover, when there is

a Cayley map for these groups, the number of connected components in the

image of the Cayley map is counted.

8. Positive surface group representations

In this section we deduce properties of the surface group representations

associated to Higgs bundles in the image of the Cayley map via the nonabelian

Hodge correspondence.

For this section, G is a complex simple Lie group and GR ⊂ G is a real

form. We fix a maximal compact subgroup HR ⊂ GR with complexification H,

and we consider the Cartan decomposition gR = hR ⊕ mR and its complexifi-

cation g = h⊕m.

8.1. Surface group representations. Let Σ be a compact smooth oriented

surface, without boundary, and let π1Σ be its fundamental group. Consider

the space Hom(π1Σ,G
R) of all representations of π1Σ → GR. The group GR

acts on Hom(π1Σ,G
R) by conjugation. Recall that a representation π1Σ→ GR

is called reductive if its composition with the adjoint representation of GR in gR

decomposes as a direct sum of irreducible representations. Let Hom+(π1Σ,G
R)

be the GR-invariant subspace consisting of reductive representations.

Definition 8.1. The GR-character variety X (GR) of π1Σ is defined as the

orbit space

X (GR) = Hom+(π1Σ,G
R)/GR.
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Example 8.2. Let SR be PSL2R or SL2R. The space of Fuchsian repre-

sentations Fuch(SR) ⊂ X (SR) is defined to be the subset of conjugacy classes

of faithful representations ρFuch : π1Σ → SR with discrete image. The space

Fuch(PSL2R) defines two connected components of X (PSL2R) [39] and is in

one-to-one correspondence with the Teichmüller space of isotopy classes of

marked Riemann surface structures on the surface Σ with either of its orienta-

tions. Every Fuchsian representation ρ ∈ Fuch(PSL2R) lifts to a representation

ρ̃Fuch ∈ Fuch(SL2R). There are 22g such lifts and each lift lies in a distinct

connected component of X (SL2R).

If gR is the Lie algebra of GR and e ∈ gR is a nonzero nilpotent, the

inclusion of the associated sl2R-subalgebra in gR induces an embedding ιe :

SR → GR, which in turn defines a map on character varieties

(8.1) ιe : Fuch(S
R)→ X (GR).

Such maps define ways to deform the Teichmüller space of Σ inside the char-

acter variety X (GR). We will call the set ιe(Fuch(S
R)) the Fuchsian locus.

The following theorem links the GR-character variety and the GR-Higgs

bundle moduli space and is known as the nonabelian Hodge correspondence. It

was proven by Hitchin [51], Donaldson [28], Corlette [22] and Simpson [72] in

various generalities (see also [33]).

Theorem 8.3. Let Σ be a closed oriented surface of genus g > 2 and

GR be a real semisimple Lie group. For each Riemann surface structure X

on Σ, there is a homeomorphism between the moduli space M(GR) of GR-

Higgs bundles on X and the GR-character variety X (GR).

One direction of the nonabelian Hodge correspondence is given by consid-

ering solutions to the Hitchin equations (6.9). Namely, given a polystable GR-

Higgs bundle (EH, ϕ), there is a metric h on EH such that Fh+[ϕ,−τh(ϕ)] = 0,

where Fh is the curvature of the Chern connection Ah associated to h. If

Eh ⊂ EH is the associated HR-bundle, then the connection D = Ah +ϕ− τ(ϕ)
defines a flat connection on the smooth GR-bundle Eh[G

R]. The flat connection

D defines the associated reductive representation ρ : π1Σ→ GR.

For the other direction, let ρ : π1Σ → GR be a reductive representation

and consider the associated GR-bundle with flat connection Dρ,

Eρ = Σ̃×ρ G
R,

where Σ̃ is the universal cover of Σ. Each metric h on Eρ defines a decomposi-

tion of the flat connection Dρ = Ah+Ψ, where Ah preserves the metric. Fixing

a Riemann surface structure X on Σ allows us to decompose Ah and Ψ into

(1, 0) and (0, 1)-parts. If Eh ⊂ Eρ is the HR-bundle associated to h, then the

(0, 1)-part of Ah defines a holomorphic structure on the H-bundle Eh[H] and
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the (1, 0)-part of Ψ defines a section of Eh[m]⊗K. By Corlette’s Theorem [22],

there is a metric h on Eρ (the harmonic metric) which defines a polystable

GR-Higgs bundle

(EH, ϕ) = ((Eh[H], A
0,1
h ),Ψ1,0).

Note that for complex groups G, we have H = G and the underlying smooth

bundle of EG is Eρ = Eh[G].

Definition 8.4. Let G be a complex reductive Lie group, let GR ⊂ G be a

real form, and let ĜR ⊂ GR be a reductive subgroup. Let Ĥ ⊂ H ⊂ G be the

complexifications of maximal compact subgroups of ĜR ⊂ GR and g = h ⊕ m

and ĝ = ĥ⊕ m̂ be associated complexified Cartan decompositions with m̂ ⊂ m.

• A representation ρ : π1Σ → GR factors through ĜR if ρ = ι ◦ ρ̂, where

ρ̂ : π1Σ→ ĜR and ι : ĜR → GR is the inclusion.

• A GR-Higgs bundle (EH, ϕ) reduces to a ĜR-Higgs bundle (EĤ, ϕ) if there is

a holomorphic Ĥ-subbundle EĤ ⊂ EH such that ϕ ∈ H0(EĤ[m̂]⊗K).

The following is an immediate consequence of the nonabelian Hodge cor-

respondence.

Proposition 8.5. A reductive representation ρ : π1Σ → GR factors

through a reductive subgroup ĜR ⊂ GR if and only if the associated GR-Higgs

bundle (EH, ϕ) reduces to a ĜR-Higgs bundle. In particular, ρ factors through

a compact subgroup if and only if the Higgs field ϕ is identically zero.

The centralizer of a representation ρ : π1Σ→ GR is the reductive subgroup

ZGR(ρ) = {g ∈ GR | g · ρ(γ) · g−1 = ρ(γ) for all γ ∈ π1Σ}.

The double centralizer ZGR(ZGR(ρ)) ⊂ GR is reductive, and by construction,

ρ factors through ZGR(ZGR(ρ)).

Proposition 8.6. Let G be a complex reductive Lie group, and let ρ : π1Σ

→ G be a reductive representation. Then the centralizer ZG(ρ) of ρ is naturally

a subgroup of the automorphism group of the associated G-Higgs bundle.

Proof. Set Ĝ = ZG(ZG(ρ)), and write ρ = ι ◦ ρ̂, where ρ̂ : π1Σ→ Ĝ. The

flat bundle Eρ is given by Eρ̂[G]. Thus, the associated G-Higgs bundle (EG, ϕ)
reduces to a Ĝ-Higgs bundle

(EG, ϕ) = (EĜ[G], ϕ).

Any element g ∈ ZG(ρ) defines a constant gauge transformation g of the flat

bundle Eρ = Eρ̂[G]. Since G and Ĝ are complex, this defines a gauge transfor-

mation of the resulting G-Higgs bundle. But the constant gauge transformation

g acts trivially on (EĜ[G], ϕ) and hence defines an element of Aut(EĜ[G], ϕ). �
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Proposition 8.7. Let (EH, ϕ) be a GR-Higgs bundle and (EH[G], ϕ) be

the G-Higgs bundle obtained by extension of structure group. If the second

hypercohomology group H
2(C•(EH, ϕ)) from (6.3) vanishes, then we have an

isomorphism

H
0(C•(EH, ϕ)) ∼= H

0(C•(EH[G], ϕ)).

In particular, we have an isomorphism of the Lie algebras

aut(EH, ϕ) ∼= aut(EH[G], ϕ).

Proof. Serre duality for the complex C•(EH[G], ϕ) yields an isomorphism

H
0(C•(EH[G], ϕ)) ∼= H

0(C•(EH, ϕ))⊕H
2(C•(EH, ϕ))∗;

see [33, Cor. 3.16]. So H
2(C•(EH, ϕ)) = 0 implies

H
0(C•(EH[G], ϕ)) ∼= H

0(C•(EH, ϕ)). �

We are now set up to prove Theorem A from the introduction.

Theorem 8.8. Let G be a complex simple Lie group with Lie algebra g

and {f, h, e} ⊂ g be a magical sl2-triple with canonical real form GR ⊂ G. Let

Σ be a closed orientable surface of genus g > 2 and X (GR) be the GR-character

variety. Then, there exists a nonempty open and closed subset

Pe(GR) ⊂ X (GR),

such that every ρ ∈ Pe(GR) has a compact centralizer and does not factor

through a compact subgroup. Moreover, the components Pe(GR) contain the

Fuchsian locus defined by {f, h, e},
ιe(Fuch(S

R)) ⊂ Pe(GR),

where ιe : SR ↪→ GR is the subgroup associated to the sl2R-subalgebra defined

by {f, h, e}.

Remark 8.9. The components Pe(GR) ⊂ X (GR) are obtained by apply-

ing the nonabelian Hodge correspondence to the components defined by the

Cayley map Ψe from Theorem 7.1. For the magical sl2-triples from Case (1)

of Theorem 3.1, the components Pe(GR) are the spaces of Hitchin representa-

tions, and the above theorem was proven by Hitchin in [52]. For the magical

triples from Case (2) of Theorem 3.1, the components Pe(GR) are the spaces of

maximal representations, and most aspects of the above theorem were proven

in [9]. For Case (3), the statement was proven in [3].

Since the center of a proper parabolic PR ⊂ GR is not compact, the

following is immediate.

Corollary 8.10. If ρ is any representation in Pe(GR), then there is no

proper parabolic subgroup PR ⊂ GR such that ρ factors through PR.
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Proof of Theorem 8.8. By Theorem 7.1, the image of the Cayley map Ψe

defines nonempty connected components of the moduli space M(GR). Ap-

plying the nonabelian Hodge correspondence to these components defines an

nonempty, open and closed subset Pe(GR) of the GR-character variety X (GR).

Since the Higgs field in the image of the Cayley map is never zero, the associ-

ated representations never factor through compact subgroups.

By construction of the Cayley map, when EC is the trivial C-bundle and

all sections ψ̃mc and qj are zero, the resulting Higgs bundle reduces to the

uniformizing SR-Higgs bundle for the Riemann surface X. Applying the non-

abelian Hodge correspondence to this point defines a point in the Fuchsian

locus ιe(Fuch(S
R)). Actually, ιe(Fuch(S

R)) corresponds, under the nonabelian

Hodge correspondence, to

Ψe

({
((EC, 0), q2, 0, . . . , 0) | EC trivial, q2 ∈ H0(K2)

})
.

Thus, Pe(GR) contains the Fuchsian locus defined by the magical sl2-triple.

Finally we show that the centralizer is compact. Let ρ : π1Σ → GR be a

representation in such a component, and let ZGR(ρ) ⊂ GR be its centralizer.

Considering the induced complex representation ρ : π1Σ→ GR ⊂ G, we have

ZGR(ρ) = ZG(ρ) ∩GR.

It suffices to show that the Lie algebra zgR(ρ) ⊂ gR is contained in hR. By

Propositions 6.7 and 5.11, the automorphism group Aut(EH, ϕ) is identified

with a closed subgroup of C, and hence aut(EH, ϕ) ⊂ c. Thus,

zG(ρ) ⊂ aut(EH[G], ϕ) = aut(EH, ϕ) ⊂ c.

Since gR ∩ c = cR ⊂ hR, we conclude that the centralizer ZGR(ρ) of ρ is

compact. �

Points in the domain of the Cayley map (7.1) are given by

((EC, ψ̃mc), q1, . . . , qr(e)) ∈MKmc+1(G̃R)×
r(e)∏

j=1

H0(K lj+1).

When ψ̃mc = 0, the associated Higgs bundle reduces to a G(e)R ∗ CR-Higgs

bundle, where G(e)R ⊂ GR is the connected group with Lie algebra g(e)R and

CR is the compact real form of C. Moreover, by construction of the Cayley

map, the Higgs field of the associated Higgs bundle is in the image of the Cayley

map for the magical sl2-triple in g(e) from Case (1) of Theorem 3.1. Hence, the

associated representations ρ : π1Σ→ GR are of the form ρ = ρHit ∗ ρCR , where

ρHit : π1Σ→ G(e)R is a Hitchin representation into G(e)R and ρCR : π1Σ→ CR

is any representation into the compact group CR. In particular, we have the

following proposition.
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Proposition 8.11. Each of the sets Pe(GR) contains all representations

of the form

ρ = ρHit ∗ ρCR : π1Σ −→ G(e)R ∗ CR ⊂ GR,

where ρHit : π1Σ → G(e)R is any G(e)R-Hitchin representation and ρCR :

π1Σ→ CR is any CR-representation.

8.2. Positive Anosov representations. Anosov representations were intro-

duced by Labourie in [61] and have many interesting geometric and dynamic

properties, generalizing convex cocompact representations into rank-one Lie

groups. Important examples of Anosov representations include Fuchsian rep-

resentations, quasi-Fuchsian representations, Hitchin representations into split

real groups and maximal representations into Lie groups of Hermitian type.

We will briefly recall the important points for our applications and refer the

reader to [61], [46], [43], [56] for more details.

Let GR be a real semisimple Lie group, PR ⊂ GR be a proper parabolic

subgroup and LR ⊂ GR be a Levi subgroup of PR. If PR
opp is the opposite par-

abolic of PR, then LR = PR ∩PR
opp and the homogeneous space GR/LR is real-

ized as the unique open GR-orbit in GR/PR×GR/PR
opp. The pairs of elements

(x, y) ∈ GR/PR ×GR/PR
opp which lie in this open orbit are called transverse.

Definition 8.12. Let Σ be a closed orientable surface of genus g > 2. Let

∂∞π1Σ be the Gromov boundary of the fundamental group π1Σ. Topologically

∂∞π1Σ ∼= RP
1. A representation ρ : π1Σ → GR is PR-Anosov if there exists

a unique continuous boundary map ξρ : ∂∞π1Σ → GR/PR which satisfies the

following properties:

• Equivariance: ξ(γ · x) = ρ(γ) · ξ(x) for all γ ∈ π1Σ and all x ∈ ∂∞π1S.
• Transversality: for all distinct x, y ∈ ∂∞π1S the generalized flags ξ(x) and

ξ(y) are transverse.

• Dynamics preserving: see [61], [46], [43], [56] for the precise notion.

The map ξρ will be called the PR-Anosov boundary curve.

An important property of Anosov representations is that they are stable;

that is, they define an open set of the character variety [61]. However, in

general, the set of Anosov representations is not closed. For example, the set

of Anosov representations in the PSL2C-character variety is the open set of

quasi-Fuchsian representations, which is not closed. On the other hand, the

set of Hitchin representations in split real groups and the set of maximal rep-

resentations in Hermitian Lie groups do define sets of Anosov representations

which are both open and closed in the character variety. For both of these

cases, the representations satisfy an additional positivity property [61], [31],

[16]. These notions have been unified into the notion of Θ-positive Anosov

representations by Guichard–Wienhard [47], [48], which we now briefly recall.
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Let PR ⊂ GR be a parabolic subgroup, LR ⊂ PR be a Levi subgroup

and UR ⊂ PR be the unipotent radical. The Lie algebra pR decomposes AdLR-

invariantly as pR = lR⊕uR.Moreover, the nilpotent Lie algebra uR decomposes

into irreducible LR-representations

uR =
⊕

β∈z(lR)∗

uβ .

The parabolic subgroup PR is determined by fixing a restricted root system

∆ of a maximal R-split torus of GR and then choosing a subset Θ ⊂ ∆ of

simple roots. To each simple root βj ∈ Θ, there is a corresponding irreducible

LR-representation uβj .

Definition 8.13 ([47, Def. 4.2]). A pair (GR,PR
Θ) admits a Θ-positive struc-

ture if, for all βj ∈ Θ, the LR
Θ-representation space uβj has an (LR

Θ)0-invariant

acute convex cone cΘβj , where (LR
Θ)0 denotes the identity component of LR

Θ.

The set of pairs (GR,PR
Θ) which admit a positive structure were classified

in [47, Th. 4.3], and we now relate this classification with the classification of

magical sl2-triples given in Theorem 3.1. Fix a magical sl2-triple {f, h, e} ⊂ g,

and let g = h ⊕ m be the complexified Cartan decomposition defined by the

involution σe from (2.6). Fix an involution τe : g→ g which commutes with σe.

Recall that τe defines the canonical real form gR associated to the magical sl2-

triple. Recall also from Section 2.4 that {f, h, e} is a normal sl2-triple and its

Cayley transform γ−1({f, h, e}) = {f̂ , ĥ, ê} is a Cayley triple (see (2.12)) which

is a magical sl2R-triple of gR. In particular, the nonzero nilpotent ê belongs

to gR and hence it determines a parabolic subgroup PR

ê ⊂ GR of the canonical

real form. Comparing the two classification yields the following theorem.

Theorem 8.14. A pair (GR,PR
Θ) admits a Θ-positive structure if and only

if there is a magical sl2R-triple {f̂ , ĥ, ê} ⊂ gR such that (GR,PR
Θ) = (GR,PR

ê ).

In particular, there are four such families :

(1) GR-split and PR
Θ is the Borel subgroup.

(2) GR is a Hermitian group of tube type and PR
Θ is the maximal parabolic

associated the Shilov boundary.

(3) GR is locally isomorphic to SOp,q and PR
Θ stabilizes an isotropic flag of the

form

R ⊂ R
2 ⊂ · · · ⊂ R

p−1 ⊂ R
q+1 ⊂ · · · ⊂ R

p+q−1 ⊂ R
p+q.

(4) GR is a quaternionic real form of E6, E7, E8 or F4, so that its restricted

root system is that of F4, and Θ = {α1, α2}, where
F4 :

α1 α2 α3 α4

.
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Proof. By [47, Th. 4.3], the set of pairs (GR,PΘ) which admit a Θ-positive

structure are given by the above list. The correspondence with magical sl2-

triples follows from Theorem 3.1 and Proposition 4.1. �

Remark 8.15. The cones in Cases (1) and (2) are the only relevant cones.

For Case (1), we have uβj
∼= R for all j and the cone is R+ ⊂ R. For Case (2),

the cones are related to the causal structure on the Shilov boundary (see [55]).

For example, when GR = SUn,n, the positive cone is the set of positive definite

(n×n)-matrices inside the set of all (n×n)-matrices, and for GR = SO2,N−2, the

cone is the light cone in R
1,N−3. For Case (3), there are p−2 cones isomorphic

to R
+ ⊂ R and one isomorphic to the cone in Case (2) for SO2,q−p+1. For

Case (4), there are two invariant cones. One is R
+ ⊂ R corresponding to the

simple root space α̃ from (4.5), and the other is isomorphic to the cone in Case

(2) for Sp6R, SU3,3, SO
∗
12 and E−25

7 for GR given by the quaternionic real form

of F4, E6, E7 and E8, respectively.

For pairs (GR,PR
Θ) which admit a Θ-positive structure, there is a distin-

guished semigroup UR
Θ,+ ⊂ UR

Θ of the unipotent radical [47, Th. 4.5], which

allows one to define a notion of positively ordered triples in GR/PR
Θ as fol-

lows. Since the group GR acts transitively on the space of transverse points in

GR/PR, any two points x, y ∈ GR/PR
Θ can be mapped to the points (x+, x−)

associated to PR
Θ and PR

Θ,opp, respectively.

Definition 8.16 ([47, Def. 4.6]). Let x+, x− ∈ GR/PR
Θ be the points asso-

ciated to PR
Θ and PR

Θ,opp, respectively. A point x0 which is transverse to x+ is

the image of x− under a unique element u0 ∈ UR
Θ. The triple (x+, x0, x−) is

positive if u0 ∈ UR
Θ,+.

With respect to the orientation on ∂∞Γ, we say that a triple of pairwise

distinct points (a, b, c) is a positive triple if the points appear in this order.

Definition 8.17 ([47, Def. 5.3]). Suppose that the pair (GR,PR
Θ) admits a

Θ-positive structure. Then a PR
Θ-Anosov representation ρ : π1Σ → GR is Θ-

positive if the Anosov boundary curve ξ : ∂∞π1Σ → GR/PR
Θ sends positively

ordered triples in ∂∞π1S to positive triples in GR/PR
Θ.

Remark 8.18. As mentioned in the introduction, Guichard–Wienhard con-

jecture that the set Θ-positive Anosov representations is an open and closed

subset of X (GR). This conjecture aims to characterize connected components

of the character variety consisting entirely of discrete and faithful represen-

tations as precisely those arising from positive Anosov representations. Such

components are now commonly referred to as higher rank Teichmüller spaces

(cf. [47]).
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The construction of the positive semigroup UR
Θ,+ ⊂ UR

Θ is defined by ex-

ponentiating certain combinations of elements in the cones cβj ⊂ uβj . Namely,

there is a certain Weyl group WΘ, and if wΘ = σi1 · · ·σil is an expression for

the longest word in WΘ, it defines the map

Fσi1 ···σil
: c0βi1

× · · ·× c0βil −→ UR
Θ ; Fσi1 ···σil

(vi1 , . . . , vil) = exp(vi1) · · · exp(vil),

where c0βij
is the interior of cβil . By [47, Th. 4.5], the semigroup UR

Θ,+ ⊂ UR
Θ is

given by

UR
Θ,+ = Fσi1 ···σil

(c0βi1
× · · · × c0βil ).

Recall from Proposition 4.5 that if {f, h, e} ⊂ g is a magical sl2-triple and

c ⊂ g is its centralizer, then we denoted the semisimple part of the centralizer of

c by g(e) ⊂ g. For magical triples, we showed that g(e) is simple and {f, h, e} ⊂
g(e) is a principal sl2-triple in g(e). The next result relates the Weyl groupWΘ

with the Weyl group of g(e) for each one of positive families from Theorem 8.14.

Proposition 8.19. Let {f, h, e} ⊂ g be a magical sl2-triple with canonical

real form GR, and let g(e) ⊂ g be the semisimple part of the double centralizer

of {f, h, e}. Then the relevant Weyl group WΘ used to define the semigroup

UR
Θ,+ is the Weyl group of g(e). In particular,

(1) For Case (1) of Theorem 8.14, g(e) = g and WΘ is the Weyl group of g.

(2) For Case (2) of Theorem 8.14, g(e) = 〈f, h, e〉 and WΘ is the Weyl group

of sl2C.

(3) For Case (3) of Theorem 8.14, g(e) ∼= so2p−1C and WΘ is the Weyl group

of so2p−1C.

(4) For Case (4) of Theorem 8.14, g(e) ∼= Lie(G2) and WΘ is the Weyl group

of Lie(G2).

Recall that the canonical real form τe : g → g associated to a magical

sl2-triple {f, h, e} preserves the subalgebra g(e) ⊕ c, and the fixed point set

defines a subalgebra

g(e)R ⊕ cR ⊂ gR.

Here g(e)R is the split real form of g(e) and contains the Cayley transform

{f̂ , ĥ, ê} of {f, h, e}, and cR is the compact real form of c. This defines an

embedding of the connected subgroup with Lie algebra g(e)R

ι : G(e)R −→ GR.

Moreover, the intersection of the parabolic PΘ = Pê ⊂ GR defined by ê with

G(e)R is the Borel subgroup BR
e of G(e)R. As a result, there are two important

semigroups appearing: the semigroup UR
Θ,+ ⊂ UR

Θ coming from Θ-positivity

for {f, h, e} ⊂ g, and the semigroup UR
e,+ ⊂ UR

e ⊂ BR
e coming from Θ-positivity

of {f, h, e} ⊂ g(e) from Case (1) of Theorem 8.14.
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Proposition 8.20. Let {f, h, e} ⊂ g be a magical sl2-triple with canonical

real form gR, and consider the parabolic PΘ ⊂ G and the Borel subgroup BR
e ⊂

G(e)R. Then the inclusion ι : BR
e → PR

Θ induces an inclusion of the positive

semigroups

ι : UR
e,+ −→ UR

Θ,+.

Proof. For Case (1) of Theorem 8.14, there is nothing to prove since g(e)

= g. For Case (2) of Theorem 8.14, g(e) = {f, h, e} and the semigroup is just

the exponential of the positive cone c0β1
. In this case the Cayley transform ê of

e is contained in the cone, and hence exp(tê) is contained in c0β1
for t > 0. For

Case (3) of Theorem 8.14, the statement was proven in [19] for GR = SOp,p+1

and the proof for SOp,q is identical; see [3, §7.2].

Finally we focus on Case (4) of Theorem 8.14. Note that there are two

simple roots α3, α4 /∈ Θ, and the LR
Θ-invariant decomposition uRα3

⊕uRα4
is a real

version of the decomposition g2 = gb2 ⊕ gα̃ in (4.5). Recall from Remark 8.15

that the two cones cα3 ⊂ uα3 and cα4 ⊂ uα4 are described as follows: cα4 ⊂ uα4

is R+ ⊂ R and cα3 ⊂ uα3 is the cone from Case (2) for the Lie algebras sp6R,

su3,3, so
∗
12 and e−25

7 , with gR equal to the quaternionic real forms of f4, e6, e7
and e8, respectively.

We claim that the Cayley transform ê of the magical nilpotent e is con-

tained in c0α3
× c0α4

. First note, that the projections êα3 and êα4 of ê onto each

factor uRα3
⊕ uRα4

are nonzero since the parabolic pRΘ = pRê is determined by ê.

Since the projection of ê onto uRα4
is nonzero, we conclude that it is in the cone

c0α4
⊂ uRα4

. Recall from Remark 4.22 that {fb, [fb, eb], eb} is a magical sl2-triple

from Case (2). Since the Cayley transform of eb is contained in the cone from

Case (2), the projection of ê onto uα3 is contained in the cone c0α3
⊂ uα3 . Now,

the Weyl groupWΘ is the Weyl group of g(e)R, thus that of Lie(G2), and g(e)R

is the split real form of G2. Moreover, the projections êα3 and êα4 generate

the nilpotent part of the Borel subalgebra bRe ⊂ g(e)R. Hence, the inclusion

ι : BR
e → PR

Θ induces an inclusion ι : UR
e,+ → UR

Θ,+. �

As in [19, Th. 7.13], we can now prove that for a magical sl2-triple

{f, h, e} ⊂ g with canonical real form GR, the set of representations in Pe(GR)

described by Proposition 8.11 are Θ-positive Anosov representations. Using

openness of Θ-positive Anosov representations, we conclude from this that the

union of connected components Pe(GR) contains an open set of Θ-positive

Anosov representations.

Theorem 8.21. Let G be a simple complex Lie group with Lie algebra g.

Let {f, h, e} ⊂ g be a magical sl2-triple with canonical real form GR ⊂ G. Then

the set of representations ρHit∗ρCR from Proposition 8.11 are Θ-positive Anosov
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representations. In particular, each of the sets Pe(GR) ⊂ X (GR) from Theo-

rem 8.8 contains a nonempty open set of Θ-positive Anosov representations.

Proof. Consider a G(e)R-Hitchin representation ρHit : π1Σ → G(e)R.

Since ρHit is a Θ-positive Anosov representation for Case (1) of Theorem 8.14,

the Anosov boundary curve

ξρHit : ∂∞π1Σ −→ G(e)R/BR
e

sends positive triples in ∂∞π1Σ to positive triples of transverse points in

G(e)R/BR
e . The inclusion ι : G(e)R → GR induces a representation ι ◦ ρHit

and an Anosov boundary curve

ι ◦ ξρHit : ∂∞π1Σ −→ G(e)R/BR
e ↪→ GR/PR

Θ.

By Proposition 8.20, ι ◦ ξρHit also sends positive triples in ∂∞π1Σ to positive

triples of transverse points in G(e)R/BR
e , and hence ι ◦ ρHit is a Θ-positive

Anosov representation.

The centralizer of ι ◦ ρHit is C
R, so is compact. Since multiplication by an

element in the compact part of the centralizer does not change the boundary

curve and does not affect the Anosov property, the boundary curve ι ◦ ξρHit is

also the Anosov boundary curve for the representation ρ = (ι◦ρHit)∗ρCR , where

ρCR : π1Σ→ CR is any representation into the compact group CR. Therefore,

all representations from Proposition 8.11 are Θ-positive Anosov representa-

tions. Since the set of Θ-positive Anosov representations is open, each of the

spaces Pe(GR) contain an open set of Θ-positive Anosov representations. �

Remark 8.22. By Corollary 8.10, none of the representations in Pe(GR)

factors through a proper parabolic subgroup of GR. This fact should be im-

portant in proving that in fact every connected component of Pe(GR) which

contains the Θ-positive Anosov representations described in Theorem 8.21 con-

sists entirely of Θ-positive Anosov representations. There are known examples

of components in Pe(GR) which do not contain the locus described in Theo-

rem 8.21, namely for the group SOp,p+1 [19]. However, each of these compo-

nents lie in a component of Pe(SOp,p+2) which does contain representations

in the locus of Theorem 8.21. In fact, one expects that all Θ-positive Anosov

representations do not factor through proper parabolic subgroups. This gives

further evidence that the space of Θ-positive Anosov representations is exactly

described by the space Pe(GR), and thus that the higher rank Teichmüller

spaces coincide precisely with the spaces Pe(GR).
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9. Diagrams and tables

9.1. Tables.

real form table in [24] row(s) Columns 4 & 5 cR weighted Dynkin diagram

g22 VI 5 0 0 Theorem 3.1 Case (1)

f44 VII 19 3 so3 Theorem 3.1 Case (4)

f44 VII 26 0 0 Theorem 3.1 Case (1)

f−20
4 VIII — — — —

e26 IX 23 8 su3 Theorem 3.1 Case (4)

e−14
6 X — — — —

e77 XI 93, 94 0 0 Theorem 3.1 Case (1)

e−5
7 XII 22 21 sp6 Theorem 3.1 Case (4)

e−25
7 XIII 6, 7 52 f−52

4 Theorem 3.1 Case (2)

e88 XIV 115 0 0 Theorem 3.1 Case (1)

e−24
8 XV 21 52 f−52

4 Theorem 3.1 Case (4)

Table 1. Table of magical triples for inner real forms of excep-

tional Lie algebras

g gR Description dimm− dim h

slnC slnR traceless (n× n) R-matrices n− 1

slp+qC sup,q traceless (p+ q)× (p+ q) C-matrices which are skew-adjoint 1− (q − p)2
w.r.t. a nondegenerate signature (p, q) Hermitian form

sl2mC su∗2m m×m H-matrices with purely imaginary trace −2m− 1

sop+qC sop,q (p+ q)× (p+ q) R-matrices which are skew-adjoint 1
2(p+ q − (q − p)2)

w.r.t. a nondegenerate signature (p, q) symmetric form

so2mC so∗2m (m×m) H-matrices which are skew-adjoint −m
w.r.t. a nondegenerate skew-Hermitian form

sp2mC sp2m(R) (2m× 2m) R-matrices which are skew-adjoint m

w.r.t. a nondegenerate skew-symmetric form

sp2p+2qC sp2p,2q (m×m) H-matrices which are skew-adjoint −p− q − 2(q − p)2
w.r.t. a nondegenerate signature (p, q) Hermitian form

Table 2. Table of noncompact real forms of classical simple Lie algebras
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9.2. Weighted root poset for magical nilpotents in E6, E7, E8 and F4.

F4 :
α1 α2 α3 α4 = α̃
0 0 2 2

0 2 4α2

2 2 4α3

2 4 4
α2

2 4 6

α1

4 6α4

6 6α3

6α2

6
α2

8
α3

10
α4

E6 :
α1 α2 α3 α5 α6

α4 = α̃

0 0 2 0 0

2

0 2 4 2 0α2

2 4 2 4 2α3

4 2 4 2 4
α4

4 2 6 4α5

6 4 6
α3

6 6 6

α2

6 6α6

6α5

8
α3

10
α4

E7 :
α1 = α̃ α2 α3 α5 α6 α7

α4

2 2 0 0 0 0

0

4 2 0 0 0 0α2

4 2 2 0 0 0α3

4 4 2 2 0 0
α4

4 4 2 2 2 0α5

4 4 4 2 2
α3

6 4 4 2 2

α2

6 4 4 2α6

6 6 4 2
α5

6 6 4

α3

6 6 6

α4

6 6α7

6 6α6

6α5

6
α3

8
α2

10
α1

E8 :
α1 α2 α3 α5 α6 α7 α8 = α̃

α4

0 0 0 0 0 2 2

0

0 0 0 0 0 2 4α2

0 0 0 0 0 2 4α3

0 0 0 0 0 2 4
α4

0 0 0 0 2 2 4α5

0 0 2 0 2 4 4
α3

0 0 2 0 4 2 4

α2

0 0 2 4 2 4α6

0 2 2 4 2 4
α5

0 2 4 2 4 4

α3

0 2 2 4 4 6

α4

2 2 4 4 6α7

2 4 2 4 6
α6

2 4 4 6
α5

2 4 6 6

α3

2 4 6 6

α2

2 4 6 6

α1

4 6 6α8

6 6 6α7

6 6α6

6 6α5

6 6α3

6 6

α2

6α4

6
α3

6
α5

6
α6

8
α7

10
α8
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9.3. Notation. The following is a nonexhaustive list of the notation used

throughout the paper. We consider an sl2-triple {f, h, e} in a finite-dimensional

complex simple Lie algebra g and a complex connected Lie group G with Lie

algebra g.
s = 〈f, h, e〉 subalgebra of g generated by {f, h, e}; see Remark 2.12.

g =
⊕M

j=0Wj decomposition of g into irreducible sl2-modules; see (2.3).

g =
⊕l

j=−l gj adh-weight space decomposition of g; see (2.4).

V = V (e) centralizer of e in g; see p. 813.

V =
⊕

j>0 Vj decomposition into highest weight spaces Vj = Wj ∩ gj in

Wj ; see (2.5).

c =W0 = V0 subalgebra which centralizes 〈f, h, e〉 ⊂ g; see Remark 2.3.

Z2mj
=W2mj

∩g0 weight zero subspace of the sl2-module W2mj
; see (2.7).

g(e) ⊂ g semisimple part of double centralizer of magical 〈f, h, e〉;
see Proposition 4.5.

r(e) = rk(g(e)) rank of g(e); see (4.3).

l1, . . . , lr(e) exponents of g(e); see Lemma 5.7.

g̃ ⊂ g0 semisimple part of g0; see (4.3).

σe : g→ g magical involution associated to 〈f, h, e〉 ⊂ g; see (2.6).

gR ⊂ g canonical real form with σe as Cartan involution; see Def-

inition 2.11.

g = h⊕m complex Cartan decomposition defined by σe; see p. 816.

gR = hR ⊕mR real Cartan decomposition defined by σe; see p. 816.

θe : g0 → g0 Cayley involution associated to magical {f, h, e}; see (2.9).
gR
C
⊂ g0 Cayley real form of g0 with θe as Cartan involution; see

Definition 2.14.

g̃R ⊂ gR
C

semisimple part of gR
C
; see Proposition 4.8.

g̃ = c⊕ m̃ Cartan decomposition given by restriction to g̃ of Cayley

involution θe; see p. 848.

S ⊂ G connected subgroup with Lie algebra s; see p. 846.

C ⊂ G centralizer in G of 〈f, h, e〉 ⊂ g (with Lie algebra c); see

Lemma 4.7.

H ⊂ G fixed-point group for σe; see p. 816.

GR ⊂ G canonical real group associated to magical {f, h, e}; see

Definition 2.13.

HR = H ∩GR maximal compact subgroup of GR; see p. 816.

GR

C
Cayley group associated to magical {f, h, e} and G; see

Definition 4.11.

G̃R ⊂ GR

C
semisimple part of Cayley group; see Definition 4.11.

(ET, f) uniformizing Higgs bundle; see Definition 5.4.

(EH1
? EH2

)[H] star product H-bundle for commuting subgroups H1,H2 ⊂
H; see (5.3).

“Ψe Cayley map on configuration space; see (5.6).

Ψe Cayley map on moduli space; see (7.1).
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