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HOLOMORPHIC CURVES IN THE 6-PSEUDOSPHERE AND
CYCLIC SURFACES

BRIAN COLLIER AND JEREMY TOULISSE

ABSTRACT. The space H%2 of vectors of norm —1 in R%3 has a natural pseudo-
Riemannian metric and a compatible almost complex structure. The group of
automorphisms of both of these structures is the split real form G5. In this
paper we consider a class of holomorphic curves in H*2 which we call alter-
nating. We show that such curves admit a so called Frenet framing. Using this
framing, we show that the space of alternating holomorphic curves which are
equivariant with respect to a surface group is naturally parameterized by cer-
tain G5-Higgs bundles. This leads to a holomorphic description of the moduli
space as a fibration over Teichmiiller space with a holomorphic action of the
mapping class group. Using a generalization of Labourie’s cyclic surfaces, we
then show that equivariant alternating holomorphic curves are infinitesimally

rigid.
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1. INTRODUCTION

The pseudohyperbolic space H*? is the set of vectors of norm —1 in a real vector
space equipped with a nondegenerate quadratic form of signature (4,3). There is a
natural signature (4,2) pseudo-Riemannian metric on H*2. Multiplication in the
split octonion algebra defines a nonintegrable almost complex structure on H*?2
which is compatible with the pseudo-Riemannian metric. This is the noncompact
analogue of the famous almost complex structure on the 6-sphere. The group which
preserves this structure is the split real Lie group G) of type Gs. In this paper, we
consider a class of J-holomorphic curves in H*? which we call alternating. Similar to
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6466 B. COLLIER AND J. TOULISSE

parameterized curves in R3, holomorphic curves in H*? generically admit a Frenet
framing. The alternating condition concerns the signature of the subbundles in the
Frenet framing, and can be equivalently described using cyclic Higgs bundles. We
focus especially on alternating holomorphic curves which are preserved by a surface
group, and describe the resulting moduli space.

Let X be a closed oriented surface of genus g > 2. For a real semisimple Lie group
G, the character variety X' (X, G) is the space of G-conjugacy classes of reductive
group homomorphisms 71(3) — G from the fundamental group of ¥ into G. For
some Lie groups, the character variety has distinguished connected components
which generalize many features of the Teichmiiller space of . Such components will
be called higher rank Teichmiiller spaces. These spaces have been studied in detail
by a variety of authors from various perspectives, see for example [14, 18,30, 36].

When the rank of G is two, the relevant Lie groups are locally isomorphic to
SL(3,R), SO(2,n) and Gj; the relevant spaces are known as the Hitchin components
for SL(3,R), SO(2, 3) and G}, and the space of maximal representations for SO(2, n).
Each of these spaces admits a mapping class group invariant complex analytic
parameterization as a fibration over the Teichmiiller space of . This was described
independently by Loftin [24] and Labourie [20] for SL(3,R) and Labourie [19] for
Hitchin components; for maximal representations it was described by Alessandrini
and the first author [2] and Tholozan and the authors [7].

The complex analytic description has two inputs, a parameterization of the
spaces using Higgs bundles on a fixed Riemann surface and the uniqueness of a
71 (X)-invariant minimal surface in the Riemannian symmetric space of the group.
A central tool in the rank 2 analysis is the restriction to a set of Higgs bundles which
have a cyclic group symmetry. When the rank of the group is at least 3, the relevant
Higgs bundles do not necessarily have a cyclic symmetry. In fact, Markovi¢, Sag-
man and Smillie recently showed that, in rank at least 3, there are representations
in higher rank Teichmiiller spaces which have multiple 71 (3¥)-invariant minimal
surface in the Riemannian symmetric space [25,26,31]. Among other things, this
breakthrough suggests that representations arising from cyclic Higgs bundles de-
serve special attention.

For SL(3,R) Hitchin representations, the uniqueness of the minimal surface was
deduced from the uniqueness of an invariant affine sphere. Similarly, for SO(2,n)
maximal representations, the uniqueness of the minimal surface follows from the
uniqueness of an invariant maximal spacelike surface in the pseudohyperbolic space
H?"~!. In both cases, these surfaces characterize the appropriate higher rank
Teichmiiller space. That is, they only exist for representations in the SL(3,R)-
Hitchin component or for maximal SO(2, n)-representations, respectively. In [4],
Baraglia pioneered the use of cyclic Higgs bundles to study Hitchin representations
in rank 2. In particular, he recovered the affine sphere description for SL(3,R) and
proved that Hitchin representations into Gj define equivariant holomorphic curves
I X — H*2.

The equivariant holomorphic curves constructed by Baraglia satisfy the alter-
nating condition defined in this paper. However, we prove that preserving an alter-
nating holomorphic curve in H*? does not characterize the G, Hitchin component.
As a result, the theory of alternating holomorphic curves identifies representations
7m1(X) — G} which are not Hitchin representations but share some features with
Hitchin representations. This is similar to what happens for SO(2,3). Namely,
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SO(2, 3) Hitchin representations are maximal, and so preserve a maximal space-
like surface in H?2, but this does not characterize SO(2,3) Hitchin representations
since there are non-Hitchin maximal SO(2, 3) representations. Unlike the SO(2, 3)
situation, the only higher rank Teichmiiller space for the group G} is the Hitchin
component. In particular, little is known about the non-Hitchin G} representations
which preserve an alternating holomorphic curve. It would be interesting to deter-
mine whether these G, representations are Anosov, and to study the uniqueness
properties of the alternating holomorphic curves.

1.1. Alternating holomorphic curves. Let S be an oriented surface, and
(H*2,J) be the almost complex manifold described above. An immersion f : S —
H*?2 is called a holomorphic curve if the image of the tangent bundle is J-invariant.
This induces a Riemann surface structure on S. As mentioned above, holomorphic
curves in H*? generically admit a Frenet framing. We say that f : S — H*2
is alternating if the tangent bundle of S is positive definite and the image of the
second fundamental form is negative definite. It turns out that when the second
fundamental form is nonzero, its image defines a subbundle of rank two, see §3.4
for details. Alternating holomorphic curves are in particular maximal spacelike
surfaces.

By construction, the Frenet framing defines a lift to a homogeneous space X
which we call the cyclic space. Surfaces in X arising from the Frenet lift of alter-
nating holomorphic curves are very particular and define what we call a;-cyclic
surfaces, a slight generalization of the cyclic surfaces introduced by Labourie in
[19]. A holomorphic interpretation of the Frenet framing defines a special type of
cyclic G4 harmonic bundle on the Riemann surface induced by f. That is, a cyclic
G,-Higgs bundles equipped with a cyclic harmonic metric, see §4.5.

To establish a 1-1 correspondence between isomorphism classes of these objects,
it is necessary to consider equivariant alternating holomorphic curves. Such objects
are pairs (p, f), where p : m1(S) — G} is a representation and f : S — H*%? is an
alternating holomorphic curve which is p-equivariant. There are natural notions of
isomorphisms in this setting.

Theorem A. Let S be an oriented surface. Then the Frenet lift defines a one-to-
one correspondence between isomorphism classes of

(1) equivariant alternating holomorphic curves in H*2,
(2) equivariant aq-cyclic surfaces in X, and
(3) Gh cyclic harmonic bundles of the form (25).

Remark 1.1. Note that Theorem A does not assume the surface S is compact. This
is why we have G)-harmonic bundles rather than polystable G,-Higgs bundles. In
particular, the induced Riemann surfaces could be biholomorphic to the complex
plane. Existence of cyclic harmonic metrics has recently been studied by Li and
Mochizuki [23].

Now consider a closed oriented surface ¥ of genus g > 2. The set of equivalence
classes of equivariant alternating holomorphic curves (p, f) is denoted by

H(X) = {(p, f) equivariant alternating holomorphic curves}/ ~,

where the equivalence is given by the natural action of G x Diffy(2). The mapping
class group Mod(X) of ¥ naturally acts on H(X). Furthermore, forgetting the map
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6468 B. COLLIER AND J. TOULISSE

f, and taking the induced Riemann surface structure of f define Mod(X)-equivariant
maps to the Gj-character variety and the Teichmiiller space of 3

Hol

H(E) —— X(%,G))

|
7(®)

For closed surfaces, isomorphism classes of G5-cyclic harmonic bundles on a fixed
Riemann surface X = (X,]) are identified with isomorphism classes of polystable
Gj-cyclic Higgs bundles. In Theorem 5.4, we parameterize isomorphism classes of
polystable G,-Higgs bundles which arise from equivariant alternating holomorphic
curves. Combining this description with Simpson’s construction of the moduli space
of Higgs bundles in families [34] (see also [2]) leads to a complex analytic structure

on H(X).

Theorem B. The moduli space H(X) has the structure of a complex analytic space.
With respect to this structure, the mapping class group Mod(X) acts analytically
and the projection map w: H(X) — T(X) is a surjective analytic map with smooth
fibers. Moreover, the space H(X) decomposes as

HE) = I Ha®),
de{0,-- 696}
where Hq(X) has complex dimension d + 8g — 8. The fiber of m : Ha(X) — T(X)
over a Riemann surface X is

o a rank (2d—g+1) holomorphic vector bundle over the (6g—6—d)-symmetric
product of X when g < d < 6g — 6, and

e a bundle over an H (X, Zsy)-cover of the 2d-symmetric product of X whose
fiber is (C>975=4\ {0})/ £ 1d when 0 < d < g — 1.

For the extremal values d = 6g — 6 and d = 0, the image of the holonomy map
can be classified. When d = 6g — 6, the space Hgg—6 — T(X) is a holomorphic
vector bundle whose fibers over a Riemann surface X are holomorphic differentials
of degree 6. In this case, the holonomy map establishes a diffeomorphism with
the Gh-Hitchin component. When d = 0, the space Ho(X) has 229 connected
components, and the image of the holonomy map consists of all representations
p : m(¥) — G, which factor through the nonsplit Zs-extension of SL(3,R) and
whose SL(3,R)-factor is a Hitchin representation, see §5.5 for more details. For
0 < d < 6g — 6, the representations in the image of the holonomy map have not
been studied previously.

Holomorphic curves in the almost complex 6-sphere were first studied by Bryant
in [5]. His work can be thought of as an analogue of our Higgs bundle description of
alternating holomorphic curves in H%2, where the main difference is that we work
in the equivariant case and noncompact symmetric spaces instead of with compact
Riemann surfaces and compact symmetric spaces. In [12], Eschenburg and Vlachos
prove that a holomorphic curve in S° is contained in S? (the totally geodesic case),
a totally geodesic hypersurface S® C S, or spans the entire sphere (generic case).
Equivariant alternating holomorphic curves in H*? witness the same phenomenon.
They either span H*? or are in a totally geodesic H*>? C H*2, the latter case only
occurs in Ho(X). Furthermore, for 0 < d < g — 1, the components Hq(X) contain
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natural degenerations of alternating holomorphic curves which lie in totally geodesic
copies of the hyperbolic disc.

Finally, we study the infinitesimal properties of the holonomy map Hol : H(X) —
X (2, Gh). Specifically, we show that alternating holomorphic curves are infinitesi-
mally rigid.

Theorem C. Fort € (—¢,¢), let (pg, fi) be a smooth path of equivariant alternating
curves such that [po] = 0 in the tangent space Tipo) X (X, Gy). Then, att =0, (py, fi)
is tangent to the (G x Diffo(X))-orbit through (po, fo)-

To prove Theorem C, we show that Labourie’s proof of infinitesimal rigidity of
the cyclic surfaces arising from Hitchin representations into split rank 2 Lie groups
can be adapted to our more general setting. In the process, we streamline many
of the main ideas and computations of [19]. A general theory of cyclic surfaces
and infinitesimal rigidity will appear in [8]. Theorem C should be thought of as
saying the holonomy map is an immersion. In particular, for a representation p in
the image of Hol, p-equivariant alternating holomorphic curves do not come in one
parameter families. In the case of G)-Hitchin representations, infinitesimal rigidity
is enough to prove global uniqueness of the equivariant alternating holomorphic
curve, this is not the case for the components Hq(X) when 0 < d < 6g — 6.

1.2. Related results. While this paper was being written, some analogous results
were proved. In [28], Nie studies equivariant alternating surfaces in H?? for (p, q) =
(2k,2k) or (2k,2k — 2). The name alternating in this paper was chosen because
of Nie’s work. Using different techniques, he proves an infinitesimal rigidity result
analogous to Theorem C under some assumptions. For H*2, Nie’s results apply to a
subset of SO(4, 3) representations. Interestingly, the intersection of this subset with
Gj-representations is exactly the set of G5-Hitchin representations. In particular,
the overlap of the Nie’s results with Theorem C is exactly the case originally covered
by Labourie [19].

In [13], Evans studies holomorphic curves in H*? when the underlying surface
is biholomorphic to the complex plane. The holomorphic curves he considers are
alternating and, in many aspects, analogous to those equivariant for a Hitchin rep-
resentation. It would be interesting if similar analysis applies to general alternating
holomorphic curves from the complex plane.

1.3. Organization of the paper. In §2, we recall different constructions of the
split octonions and define the group Gj. The almost-complex structure on H42, the
notion of alternating holomorphic curves and their Frenet framings are introduced
in §3. In §4, we recall the theory of G-Higgs bundle and G-harmonic bundle, then
specifying to the case of G = G, and prove the equivalence between equivariant
holomorphic bundles and certain G, cyclic harmonic bundles. In §5, we parameter-
ize the moduli spaces Hq(X) and establish properties of the extremal cases. In §6,
we develop the notion of cyclic surfaces and prove Theorem C.

2. SPLIT OCTONIONS AND THE LIE GROUP G}

In this section we discuss the algebra of split octonions and some of its properties.
We refer the reader to [3,11] for more details. We start with the quaternions and
split quaternions.
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6470 B. COLLIER AND J. TOULISSE

2.1. Quaternions and split quaternions. Recall that the quaternions are the
real associative algebra H generated as an R-vector space by {1, j,d, e} with the
relations’

jP=d?>=e?=-1 and j-d=—-d-j=e.

On the other hand, the split quaternions are the real associative algebra H’ gener-
ated as an R-vector space by {1, j, 0, e} with the relations

j2==82=—-e=-1 and jrd==-0-j=e¢e
We have a vector space decomposition
H =R ¢ S(H) and H=Re M),

where R is the span of the unit 1 and & is the span of the remaining generators.
These spaces are the +1-eigenspaces of the conjugation involution x — Z. The
projection onto the eigenspaces is given by taking real and imaginary parts @ =
R(x) + S(z), where

R(z) = 3(z+7T) and S(x) = s(x —7) .

SIS

On the imaginary spaces S(H) and $(H'), taking real and imaginary parts of
the product define nondegenerate symmetric bilinear forms (-, ) with respective
signatures (0, 3) and (2, 1), and a skew symmetric product x. Namely, for z1, x5 in
S(H) or S(H')

(x1,22) = R(21 - 2) and 21 X x9 = (21 - 22) .
Combining these structures defines volume forms Q on $(H) and S(H') defined by
Q(z1,22,73) = (T1 X T2, 73).

In both cases, the group of algebra automorphisms acts trivially on the real
part, and so acts on imaginary subspace. Hence, the groups Aut(H) and Aut(H')
respectively act on $(H) and S(H') preserving (-, ), x and Q. Thus,

Aut(H) < SO(3) and Aut(H') < SO(2,1).

In fact, Aut(H) = SO(3) and Aut(H’) is the identity component SOy(2,1) of
SO(2,1).

2.2. The split octonions from split quaternions. The split octonions Q' can
be described by the Cayley-Dickson process on H' or H. Both perspectives will be
useful but we start with the split quaternion description.

Definition 2.1. The split octonions Q' are the real algebra with underlying vector
space H' ® H' equipped with the product

(1) O=HeoH with (z1,y1) (z2,92)= (21 -T2 —To-Y1,Y2-T1+y1-T2) .

The group G} is defined to be the group of algebra automorphisms of Q'. It is the
split real form of the exceptional complex simple Lie group GS.

IWe do not use 4, j, k since we will need i for complexified objects. Our convention is that
Greek letters square to +1 and Roman letters square to —1.
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We will write £ = (0,1) € O', and write a split octonion z = (z,y) as z = z + y.
Note that ¢2 = —1 and that, for any y € S(H'), we have

yl=y-£L=(y,0)-(0,1)=(0,y) = —L-y.

Nonassociativity of the product can be seen by considering (j-9)-£ and j- (- ¥)
since

(j:0)-£=(e0)-(0,1)=¢€ and j-(0-£)=(4,0)-(0,0) =(0,—€) = —el.

However, one checks that any subalgebra generated by two elements of Q' is asso-
ciative. In particular, for any z1, 22 € O’ we have

(2) z1 (Zl . ZQ) = (21 . Zl) *Z2.
We have a decomposition Q' = R& 3(0'), where R is the span of the unit 1 and
$(0') = S(H') @ H'. These are the +1-eigenspaces of the conjugation involution
z=c+yYylr——z=17—yl.
Since any two distinct generators {j,d, €, ¢, j¢,0¢, el} of F(OQ') anticommute, for all
z1, 22 € 3(0’) we have
21'2’2:32'51 = Z92"Z1.

There is a nondegenerate symmetric bilinear form and a skew symmetric product
defined by

1
<21,ZQ> = %(21 . 2,'2) = 5(21 - 29 +Zl . ZQ)

1
and 2y X 29 =5(21 - 22) = 5(21 2o — 71 - 23).

Let g be the quadratic form on I(Q’) associated to (-,-). Some immediate conse-
quences of these definitions of (3(0'), q, x) are:

Lemma 2.2.

e The signature of q is (4,3) and {j,0,¢€, £, jt,5¢,el} is an orthonormal basis.

o 21,29 € S(Q) are orthogonal if and only if z1 X z9 = 21 - 23.

o 3(0) =S(MH) @ H is an orthogonal splitting, and the restriction of q to
S(H') and H' has signature (2,1) and (2,2), respectively.

o For 21,20 € S(H') and wy,we € H', we have

21 X 29 € S(H) 21 x wy; € H and wy X wy € S(H).
o There is a three form Q € A3(S(Q')*) defined by
(3) 9(21722,23) = <Zl X 22723>.

Remark 2.3. The algebra structure on Q' is fully determined by (3(Q'), q, x) since
for ay,as € R and 21, 20 € S(0') we have

(a1 + z1) - (ag + 22) = aras + (21, 22) + asz1 + a129 + 21 X 29.

The group G acts trivially on the real part. Hence, G5 acts on 3(Q') preserving
q, x and Q. Since the algebraic structure of @' is fully encoded in (3(Q'), q, X),
G}, has the following description.
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Proposition 2.4. The group G, is isomorphic to the group of linear transforma-
tions of I(Q') which preserve q and x. Such an automorphism also preserves §Q.
Derivations of x defines the Lie algebra

g5 = {X € End(S(Q)) | X(21 X 22) = (X (21) X 22) + (21 X X(22))
for all 21,20 € 3(O')}.
In particular, G < O(3(0'),q) = 0(4,3) and g, C s0(4,3).

It follows from [11, Lemma 4.2] that there is a unique Gj-invariant volume form
vol € A7($(0)*) such that

(4) (z1,29) vol = 1, QA 1, QN Q

for all 21,z € (0Q'). Hence G < SO(4,3). Explicitly, in the basis {f1, -, fr} =
{j,0,€,£,jL,0¢,el}, we have

Q= 6[ff/\(fz*Afék—fZAfg—/\ngf?)+f5A(fZ/\f§+f§/\f%k)+f§A(fZAf?—f§/\f§) ;
and one checks vol = — T ff A f3 A+ A f3

Lemma 2.5. The subgroup of G}, which preserves the splitting S(Q') = S(H') ¢ H
is isomorphic to SO(2,2).

Proof. Let g = (g1 @ g2) be an element of G} which preserves the splitting S(H') @
H'. Since G} preserves the quadratic form q, (g1,92) € O(S(H'),q) x O(H/, q).
Observe that the restriction of the 3-form Q from (3) to A3(S(H')) is nonzero.
Since G, preserves € and the volume form from (4), we conclude that (g1,¢92) €
SO(S(H'),q) x SO(H', q).

To conclude the proof, G, preserves the product x and

j=¥Lxje, 0=4L€xd and e=10xel.
Hence, any go € SO(H', q) uniquely determines g; € SO(S(H'), q). O

2.3. Split octonions from quaternions. The split octonions can also be defined
using the quaternions:

(5) O =HeH with (al,b1)~(a2,b2):(a1~a2+52-b1,b2~a1+b1-62).

We will write (a,b) = a + b\, where A = (0,1). Note that \? = +1.
An isomorphism between these two presentations of Q' is given by

(6) {Lju 67 Eaémjéa 567 EE} — {Ljv 6)\7d)\, d7 €7j)\, )‘}

In this presentation, (OQ') = S(H) @ H, and the restrictions of q to the sum-
mands $(H) and H have signatures (0,3) and (4, 0), respectively.

Lemma 2.6. Let K be the subgroup of G which preserves the splitting S(Q') =
S(H) @ H. Then we have

K=~ SO(H, q) = SO(4).
Proof. Analogous to the proof of Lemma 2.5. O
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Remark 2.7. The exterior product decomposes as A%(I(0')) = A%(S(H)) @ S(H) @
H & A?H. The restriction, x to $(H) ® H is zero while the restrictions to the other
summands give maps

><|A2§(]HI) : Azg(H) — %(H) and X|A2H cA’H — %(H)

The first map is an isomorphism. The second map defines an isomorphism between
the vector space AiH of self-dual two forms on H with respect to qg and the volume
form A A (JA) A (dX) A (eX) and S(H).

2.4. Complexification of S(0'). Let I(OQ')¢ denote the complexification of I(Q’)
and we will denote the complex linear extensions of q and x by the same symbol.
Elements of I(0Q')¢ will be written w + iz where w, z € (0Q’).

The following basis {f_3, f_2, -+, f3} of F(Q)¢ will be used often:

(7)

1 . 1 | N N o 1 .
(\/5((5( + ief), ﬁ(f +ij0), \/5((5 + ie), 4, \/5(5 ie), \/ﬁ(f ijf), \/5(56 16()) :
The multiplication table of this basis is given by

col xrow | f_3 = fo1 fo f1 f2 /3

= 0 0 0 —if_3 | =V2fa | —V2f_1 | —ifo
= 0 0 —V2f 5| if 0 —ifo | V2h
[ 0 | V2fs 0 if 1 ifo 0 V2fs
Jo if-s | —ifoo | —ifoa 0 if1 ifo —ifs
bil V2f s 0 —ifo —if1 0 V2f; 0
fa V2f 1| ifo 0 —ifs | —V2fs 0 0
/3 ifo | =V2fi| —V2fa | ifs 0 0 0

The quadratic form q and the endomorphism Jy,(-) = fo x (-) are given by

1 i
-1 —i

q= -1 and Jy = 0

1 —i

Remark 2.8. Note that span(f_1, fo, f1) equals to S(H')¢ and span(f_s, f—2, f2, f3)
equals Hf.. With respect to the isomorphism S(H') @ H' — S(H) ¢ H given by (6),
we have

span(f_z, fo, f2) = S(H)c and span(f_s, f-1, f1, f3) = Hc .

3. HOLOMORPHIC CURVES IN THE 6-PSEUDOSPHERE

Consider a smooth, connected and oriented surface S. In this section we intro-
duce the notion of an alternating holomorphic curve in H*2. These curves have a
naturally defined Frenet framing which is used to give a holomorphic description of
alternating holomorphic curves in Theorem 3.24. We start by introducing relevant
homogeneous spaces.
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3.1. Pseudospheres. Consider a real vector space V equipped with a non-degener-
ate quadratic form @ of signature (p,q). The signature (p — 1, q) pseudosphere is
defined as

SP1 = {2 € V,Q(2) = 1}.
The tangent space to SP~19 at a point z is naturally identified with
T.SP M ={z €V, (z,x) =0} = 2+

In particular, the quadratic form @ restricts to a signature (p — 1,¢q) pseudo-
Riemannian metric g on SP~1% on which O(V, Q) acts by isometries. The following
is classical, but we include the proof for completeness.

Lemma 3.1. The pseudo-Riemannian manifold (SP~19,g) has constant sectional
curvature +1. In particular, for any vector fields X,Y,Z on SP~19 the Riemann
curvature R satisfies

R(X,Y)Z =g(V,Z2)X — g(X, Z)Y.

Proof. Consider the trivial vector bundle SP~1¢ x V over SP~1:¢ and denote by D
the trivial connection. For any p € SP~1:¢ we have a splitting

V =T,S" 1@ Rp,

and the connection D decomposes as < _B) where the tensors IT and B are

adjoint to each other and satisfy b
II(X,Y)=g(X,Y), B(X,f)=fX.
Since D is flat, Gauss’ equation gives
0=RY(X,Y)Z-g(Y,2)X +g(X,2)Y.
The result follows. O
Similarly, the signature (p,q — 1) pseudohyperbolic space is the quadric
HP ! = {2 € V,Q(2) = —1}.

In the same way as for the pseudosphere, H??~! inherits a signature (p,q — 1)
pseudo-Riemannian metric g of curvature —1.

Remark 3.2. Changing the quadratic form from @) to —Q defines an anti-isometry
between HP9~! and S?~'P. As a result we will also refer to HP?~! as a pseudo-
sphere.

We will consider (V,Q) = (3(0Q'),q) with q(z) = z - z. Since q has signature
(4,3), the relevant pseudospheres are H*2 and S*2. The product x on I(0Q’) will
induce extra Gh-invariant structures on H*? and S33.

3.2. The space H*2. Consider the left multiplication map
(9) L: $(0') —— End(3(0"))
2L, tw— 2z Xw

For z € H*2, the kernel of L. is spanned by z and, since the form 2 from (3) is skew

symmetric, the image of L, is 2. In particular, L, restricts to an endomorphism
of T,H*2.
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Lemma 3.3. Let J : TH*2? — TH*? be the endomorphism defined by J, = Lz|zL :

T.H*? — T,H*2. Then J defines a Gy-invariant almost complex structure on H*?2
which is compatible with the metric g.

Proof. As J is constructed using the Gj-invariant product x on (Q'), J is Gb-
invariant. Since T,H*? = 2z, we have J,(w) = z x w = z-w. By (2), J is an
almost complex structure:

Pw) =z (z-w)=(z-2) - w=—w.

To see that J preserves the metric g, we compute

z. w2 = q_(’LU),

where we used that z,w span an associative subalgebra of O’ and z - w = 2z X w =
—w - 2. (]

qU:(w)) = (z-w) - (z-w) = 2- (w-2) - w) = =z ((z-w) -w) = =2

We now show that J is not integrable by computing VJ, where V is the Levi-
Civita connection of H*2. Since the map L from (9) is linear, its covariant derivative
using the trivial flat connection D on &(Q') is given by

(DxL)(Y) = X(2) x Y (2),

where X, Y are vector fields on $(Q’). Since the Levi-Civita connection V on H*?2
is induced by D and J is the restriction of L to H*2, we obtain

(10) (Vxd).(Y) = (X(2) x Y(2)"

where ( )ZL is the orthogonal projection of (Q') onto z+.

Lemma 3.4. For any z in H*? and any nonzero w in T,H*2, the restriction of
X to the complex line span(w, J,(w)) is zero.

Proof. Since z,w span an associative subalgebra of Q’, we have

J.(w) xw= ((z~w)-w)zL = (z (w'w))zL = (q(w)z)z =0.

Consider now the nondegenerate 2-form w on H*? defined by

Since J is nonintegrable, dw # 0. In fact, dw is the restriction of the three form Q
from (3) to H*2.

Lemma 3.5. Let W, X,Y be vector fields on H*2. Then
do(W, X,Y)=Q(W, X,)Y) =g(W x X,Y).
Proof. By the definition of the exterior derivative, 3dw (W, X,Y") is given by
Ww(X,Y)) - X(w(W,Y)+Y(w(W, X)) — w([W, X],Y)
+w(W) Y], X) —w([X,Y],W).
By definition we have
W(w(X,Y))=W(gJX,Y)) =g(VwJ)X,Y) + g(J(Vw X),Y) + g(JX, Vi Y).
Using equation (10) we have
W(gJX,Y))=QW, X, V) +w(Vw X,Y) + w(X,ViY).
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As the Levi-Civita connection is torsion free, adding the terms gives
1
O

Considering dw as a complex 3-form on (H*2 J), we can decompose it into
types:

dw=0+C+(+0,
where 6 has type (3,0) and ¢ has type (2,1).

Lemma 3.6. The (3,0)-form 6 is nowhere zero and the (2,1)-form ¢ is identically
zero.

Proof. The transitive action of G on H*%? preserves J and = dw, and hence
preserves type decomposition of dw. Thus, it suffices to compute 6 and { at a
point.

The imaginary octonion z = j has norm —1 and hence j € H*2. Recall the basis
{f_3,--, f3} of F(Q')C from (7). The complexified tangent space is given by

TSH*? = j- ® C = span(f_3, f-2, f-1, f1, f2, f3).

The quadratic forms q and J; : T;C»H‘L’2 — T;CH‘L2 are given by (8). In particular,
J acts with eigenvalue +i on f_3, f1, fo and eigenvalue —i on f_o, f_1, f3.
To see the form 6 is nonzero at j € H*? we compute

gj(ff3,f17f2) =Q(f-3, f1,f2) = (f-3 X f1, [2) = _\/§<f72;f2> =2

For (;, it suffices to consider Q(f,, f, fc), where a < b € {-3,1,2} and ¢ €
{-2,—-1,3}. We have

foa X fi==V2f_o, fo3xfo=—V2f_1 and fix fo=V2fs,

which are all orthogonal to span(f_q, f_1, f3). Hence (; = 0. O

Recall that the canonical bundle of H*? is the determinant of the holomorphic
cotangent bundle of H*2. Its sections are complex (3,0)-forms. Since 6 is never
vanishing, we get

Corollary 3.7. The (3,0)-form 0 defines a trivialization of the canonical bundle
of (H*2.J).

Corollary 3.8. The G)-stabilizer of a point z € H*? is isomorphic to SU(2,1).

Proof. For z € H*2, the stabilizer Stabg, (z) preserves the signature (2,1) her-
mitian form h, = g, +iw.. Since G also preserves the volume form 6 A 6, we
have Stabg, (2) < SU(2,1). Equality follows from connectedness of SU(2,1) and a
dimension count. Namely, dim(H*?) = 6 and dim(Gj) = 14, so dim(Stabg, (z)) =
8 = dim(SU(2,1)). O
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3.3. The space S>3. Recall that an almost paracomplex structure on a manifold
M is an endomorphism ) : TM — TM such that ¥? = Id and dim(ker(Id — 1)) =
dim(ker(Id + ¢)). A pseudo-Riemannian metric g on M is compatible with v if
1 is an anti-isometry of g. Such a g must have neutral signature and the distri-
butions D* = ker(¢) F Id) define a pair of transverse half dimensional isotropic
subspace. The subgroup of O(n,n) which preserves a pair of transverse half di-
mensional isotropic subspaces is isomorphic to GL(n,R), where the corresponding
representations on DT and D~ are dual to each other.

For each z € S*2, the multiplication map (9) defines an endomorphism of L, :
T,S33 — T,833.

Lemma 3.9. Let ¢ : TS?? — TS33 be the endomorphism defined by 1), = L, :
T.S33 — T.S33. Then ¢ defines a Gh-invariant paracomplex structure on S33
which is compatible with the metric g.

Proof. The proof is analogous to the proof of Lemma 3.3 with the exception that
for 2z € 3 we have z - 2z = +1. O

Each point 2z € S3? defines two transverse isotropic 3-planes DF C 2+ C I(0).
The antipodal map on S33 exchanges Dt and D~. Denote the quotient of S33
by the antipodal map by P (3(0")) (that is, P (3(0")) is the space of positive
definite lines in (0Q’)).

Lemma 3.10. The restriction of the 3-form € to the distribution DT is nowhere
zero.

Proof. The action Gj on S33 is transitive and preserves the three form €. Hence,
it suffices to compute € at any point of S*3. In particular, the imaginary octonion
§ has norm +1. Hence, § € S33 and ¢5 =6 x (-) : §+ — §+.

Using the notation z = x + yf from §2.2 we compute

§-(G—€)=—e+j, 6-(+60) =50+ and & (jl—+el)=el+ jL.

Thus, Df = span(j—e, (+6¢, jl+el). As (j—e)- ((+6€) = 2(jl—el), the restriction
of Q to D; is given by
Q(j — e, L+ 50,50+ €l) = 2(j0 — el, jl + el) = —4.

We conclude that 25 is nonzero. O

Corollary 3.11. The G)-stabilizer of a point z € S>3 is isomorphic to SL(3,R).

Proof. For z € 833, the stabilizer Stabg, (2) preserves the distributions Do D;.
Since Gy preserves the 3-form Q, and Q|+ is nonzero, we have Stabg, () < SL(D]).
As in Corollary 3.8, equality follows from connectedness of SL(3, R) and a dimension
count. g

Remark 3.12. Since the antipodal map exchanges the + distributions, the G-
stabilizer of a point in [z] € P4 (3(0')) is isomorphic to the unique nonsplit exten-
sion

1 — SL(3,R) — SL(3,R) — Zs.
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3.4. Alternating holomorphic curves into H*2. Let S be a connected oriented
surface.

Definition 3.13. A holomorphic curve in H*? is an immersion f: S — (H*2 J)
such that the tangent bundle of S is J-invariant, that is
J(df(TS)) = df(TS),

and the corresponding action of J on TS is orientation preserving.

Given a holomorphic curve f, there is a unique complex structure j on S such
that

df oj=Jodf.

We will refer to j as the induced complex structure.

Lemma 3.14. Holomorphic curves into H*? are analytic.

Proof. Since G} acts analytically on H*2, the almost-complex structure J depends
analytically on the base point. Moreover, holomorphic curves into H*?2 are solution
to the Cauchy-Riemann equation df oj = J o df, which is a non-linear elliptic
equation. The result then follows from the main result of [27]: solutions to non-
linear elliptic equations with analytic coefficients are analytic. ]

Given a holomorphic curve f from S into H*2, the pullback bundle f*TH?*? is
equipped with the pullback metric, connection and complex structure that we still
denote by g,V and J respectively.

A holomorphic curve f is called spacelike if the induced metric on S is Riemann-
ian. In this case, identifying TS with df(TS) C f*TH*2, there is g-orthogonal
splitting

ffTH*? =TS @ (TS)*.
Since the almost complex structure J is compatible with the metric g, this splitting
is J-invariant. The second fundamental form of f is the 1-form
I € Q'(S, Hom(TS, (TS)™))
defined by
(X,Y) = (VxY)™*.
Recall that IT is symmetric and that f is totally geodesic if and only if 1T = 0.
Lemma 3.15. Let f : S — H*? be a spacelike holomorphic curve with induced
complex structure j and second fundamental form II. Then for any vector fields
X, Y on S, we have
I((X),Y) = (X, j(Y)) = JA(X, Y)).
Proof. By definition we have
: 1 1

M(X,j(V)) = (Vx @) = (Vx)(0) +I(Tx)) "
Since X and Y are contained in the complex line, Lemma 3.4 implies X x Y = 0.
Thus, (VxJ)(Y) = 0 by equation (10). Since J is compatible with the metric, we
have

(X, j(Y)) = (J(VxY))" =I(VxY)" = JIX,Y)).

Since II is symmetric, we have

JAX,Y)) = JALY, X)) = I(Y,j(X)) = T((X),Y).
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Proposition 3.16. Let f be a spacelike holomorphic curve which is not totally
geodesic. Then

(1) f has vanishing mean curvature, and
(2) there is a unique J-invariant rank 2 subbundle NS C (TS)* such that the
image of 11 lies in NS.

We will call the bundle NS the normal bundle of f.

Proof. Let (X7, X3) be alocal orthonormal framing of T'S with j(X;) = X5. Lemma
3.15 gives

(X, Xo) = II(X3,j(X1)) = J(IL(X2, X1)) = J*(IN(X1, X7)) = —I1(X1, X3).

In particular, the trace of II vanishes, and so the mean curvature of f is zero.

For item (2), there is an open set U C S on which the image of IT has maximal di-
mension. Locally, the image of I is spanned by {I1( X7, X1), I1(X7, X3), [I(Xa, X2)}.
The image of IT has rank 2 on U since II(X;, X7) = —II(Xo, X52) = —=J(II( X1, X2))
and f is not totally geodesic.

We claim that U is dense. If U were not dense, there would be an open set on
which the rank of IT is 0, meaning that f(S) would be totally geodesic on some
open space. But holomorphic curves in H*? are analytic by Lemma 3.14, so f(S)
would be totally geodesic everywhere. Thus the image of II defines a complex line
bundle on a dense open set, which thus extends to a complex line bundle NS on
S. |

We now define the notion of an alternating holomorphic curve in H*2.

Definition 3.17. An alternating holomorphic curve is a holomorphic curve f :
S — H*? which is spacelike, not totally geodesic, and has negative-definite normal
bundle NS.

We define the binormal bundle BS of an alternating holomorphic map f to be
the rank two bundle

BS = (TS @& NS)* .
Hence, an alternating holomorphic curve defines an orthogonal splitting
f*TH*? = TS @ NS @ BS.
Since J preserves g, T'S and NS, J also preserves the binormal bundle BS.

Remark 3.18. In [28], Nie defines the notion of an A-surface in H??. Such sur-
faces are assumed to be spacelike and have rank two “higher” normal bundles with
alternating signature. In particular, for A-curves in H*? the image of the second
fundamental form II is assumed to define a rank two subbundle which is assumed

to be negative definite. Thus, alternating holomorphic curves define A-surfaces in
H2,

3.5. Frenet framing. The trivial bundle 3(0’) = H*? x $(0') — H*? has a
tautological section o which defines a splitting S(0') = R @ TH*2, where o(x) =
(1,0). In this splitting, the metric gg@) = —1 @ gys2, and the trivial connection

D decomposes as
d 1~

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6480 B. COLLIER AND J. TOULISSE

where V is the Levi-Civita connection on H*2, 1 € Q!(H*? Hom(R, TH*?2)) is the
identity and 1* is the adjoint with respect to the metric gg(or). By construction,
the product with the tautological section o defines the almost complex structure J
on TH*?2,
(1,0) x (u,v) = (0,J(v)).

Given a map f : S — H*2, let (E,D,g, x) denote the pullback of the trivial
bundle ¥(Q), the trivial connection D, the signature (4,3) metric gg(o/) and the
product x : A23(0Q’) — I(0Q'). We have the following decompositions

d df*
_ * 4,2 _ — *
E=Re f*TH>*, D= <df f*V> and g=—-1® f'gyga-=.
The map f is identified with the pullback of the tautological section f*o : S — R,
and (1,0) x (u,v) = (0, f*J(v)).
Definition 3.19. When f : S — H*? is an alternating holomorphic curve, £ =
F*S(0Q') decomposes as
(11) E=ReTSeNS®BS.
We call this decomposition, the Frenet framing of f.

In the Frenet framing, the metric decomposes as g = —1 ® g1 ® gn D &g,
where 1 ® gr ® (—gn) ® g is positive definite, and the almost complex structure
decomposes as J = Jp & Jn @ Jg. In particular,

(12) (1,0,0,0) x (a,t,n,b) = (0,I7(t),In(n), I5(D)).
Also, in the Frenet framing the connection D decomposes as

d 1* 0 0

1 vt S, o0

0o o vN S;|°

0 0 1III VB

(13) D=

where:

e VI, VN VB are metric connections on (TS, gr,Jr), (NS, —gn,JIn),
(BS, gg,JB), respectively; they are unitary with respect to the induced
hermitian metrics.
1 € QYR,TS) is the identity between the tangent bundle of S and TS =
df(TS) C f*TH*?.
II € Q'(S,Hom(TS,NS)) is the second fundamental form of f.
e 111 € Q'(S,Hom(NS, BS)) will be called the third fundamental form of f.
Sy € Q1(S,Hom(NS, TS)) and S3 € Q' (S, Hom(BS,NS)) satisfy

_gN(II(Xv Y),I/) = gT(K 52(Xa V)) and gB(III(Xa V)aﬂ) = _gN(Va SS(Xaﬂ))v

where X,Y are vector fields on S and v, 3 are sections of NS and BS,
respectively.

Lemma 3.20. If « is the 1-form 11, 111, Sy, or Ss, then d¥ a is equal to zero.

Proof. Recall that dY« is the 2-form satisfying
dVa(X,Y) = Vx(a(Y)) = Vy(a(X)) = a([X, Y]).

Let us prove the result for a equal to ITI, the computations for II, Sy and Sj
are similar. This follows from the Codazzi equations in this context. As H*?2
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has constant sectional curvature (see Lemma 3.1), its curvature tensor R satisfies
R(X,Y)(v) = 0. Hence,

0=7p(R(X,Y)r) =7m(VxVyv —VyVxv —Vxyp).
A computation using the Frenet framing (13) shows
m(VxVyv) = II(X, Vi¥v) + VE(III(Y, v)).
Thus,
0 =I(X, Viv) + VE(IIL(Y, v)) — TTI(Y, VYv) — VEIII(X,v)) — TI([X, Y], v)
= (VNBII)(Y, v) — (VYBI)(X, v) — III([X,Y],v) =d¥  HI(X,Y)(v),
where VB is the induced connection on Hom(NS, BS). O
Lemma 3.21. The tensor ITII(-,11(-, -)) is symmetric.
Proof. Let XY, Z be vector fields on S. Since II(Y,Z) = II(Z,Y), it suffices to

compute
(X, 1(Y, Z)) — (Y, 1I(X, Z)) = 75 (VxVyZ — VyVx Z)
=mp(RV(X,Y)Z + Vx v Z).

Since V is the pull-back of a constant curvature metric, RV (X,Y)Z € Q°(S,TS).
Moreover, V(xy)Z € Q°(S, TS @ NS) so 7 (RV(X, Y)Z + V[X’Y]Z) =0. |

3.6. Complexified Frenet framing. Let f : S — H*? be an alternating holo-

morphic curve, and let X = (S,]j) be the Riemann surface defined by the induced

complex structure. The complexification of the Frenet framing of f is given by
Ec :Q@T/@TH@N/@N“@B/@B”,

where T¢S = T/ @ T” is the decomposition of the complexification of TS into =i-
eigenspaces of the complex linear extension of Jr, similarly N¢S = N’ @ N” and
BcS =B ®B".
Lemma 3.22. In the complezified Frenet framing, the product X satisfies the fol-
lowing properties:
(1) For the section so = (1,0,---,0) of Ec, the endomorphism so X (-) is given
by
so % (+) = diag(0, +i, —i, +i, —1, +H, —i).
(2) For a sections ' = (t',n',0') of T ® N ® B’ and s = (t",n", V") of
T @ N" @ B”, we have
s x s =t xt" 40 xn +0 x b =—i(gh(t, t") +gk(n',n") + g5, b"))so.
(3) The product defines isomorphisms T @ B’ 2 N’ and T @ B” =2 N’.
Proof. The first point follows from equation (12) and the definitions of the =+i-

eigenspaces. The remaining points follow Lemma 3.6 and the fact that g€(so, s¢) =
—1. O

The complex linear extension Il¢ € Q' (Hom (T’ & T”,N’ & N”)) is given by
1T
Tle = =,
© <11” i
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where II' € Q!(Hom(T’,N")), II” € Q(Hom(T’,N”)), and II' and TI" are the
conjugate maps. The tensors IIl¢, (S2)c, and (S3)c have analogous decompositions.

Proposition 3.23. With the above notation, we have

(1) " =0 and S¥ =0, and
(2) for any vector field X on S and sections v, 8 of N', B, respectively we have

1" (X,v) = —3(X x v) and SY(X,B)=—3(X xB).

Proof. Note that II"” = 0 if and only if IloJp = Jx oIL. So the first item is a direct
consequence of Lemma 3.15 and the duality between Sy and II.

For the second item, denote the orthogonal projection onto BS by 7g, note that
mp commutes with J. By definition, III(X,v) = mp(Vxv), and

1" (X, v) = %(IIIC(X, V) +iJ(Ie (X, v))).

Using equation (10), J(v) = iv and J o mg = mg o J, we have

(e (X, v)) = Il (X, Jv)) = I(re((VxI)(v) + I (Vxv)))
= J(?TB(X X Z/)) — III([j(X, l/).

Thus II"(X,v) = 1J(m5(X x v)). By Lemma 3.22, X x v € B” since X € TS and
v € N'. Hence III"(X,v) = —%(X x v). The computation for S5 now follows from
duality between IIT and Ss. |

The hermitian metric on (TS, gr,J7) induces a hermitian metric At @ h1/ on
T’ @ T”. The complex linear extension of V7 induces hermitian connections V'
and VT on T/ and T”, respectively. The (0,1)-part of these connections defines
holomorphic structures dy and O~ on T/ and T”, respectively. Let 7 and T denote
the associated holomorphic line bundles on the Riemann surface X. Since T and
T are isotropic with respect to g%, the hermitian metric defines an isomorphism
between 7 and the dual holomorphic line bundle 7 ~'; under this identification

(ToT,.et) = (T@T‘l, ((1) é))

Repeating the above discussion for the bundles N¢.S and B¢ S, we obtain hermitian
holomorphic line bundles N, =%, B and B~! whose underlying smooth bundles are
respectively N, N” B’ and B”. In particular, the (0, 1)-part of the complex linear
extension of the metric connections d, VT, VN, VB defines a holomorphic structure
513@ on E¢ which holomorphically decomposes as

(14) E=(Ec,0p,)=0xaToT 'aNaN 'aBoB!,

where Ox is the trivial holomorphic line bundle. With respect to this decomposi-
tion, the complex linear extension of the positive definite metric and the Hermitian
metric are given by

(1@gT@(—gN)@gB)C_1@<(1) é)@(g é)@((l) é)

h=ho®hr ®hi' @ hy ®hy' & hs @ hg'.
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As the isomorphisms 7! 22 7, N=! = N and B~! = B are given by the Hermitian
metric, the second form decomposes as

L (e
c=\urr ary- )
where (II')*#, (IT")** are the Hermitian adjoints of II' and II”. The tensors, ¢,

(S2)c and (S3)c decompose similarly.
In the complex Frenet framing, the flat connection D decomposes as follows.

Theorem 3.24. Let f : S — H*?2 be an alternating holomorphic curve and X =
(S.]) be the induced Riemann surface. Let (E,D) = (f*S(0Q'), f*D) be the pullback
of the trivial bundle with trivial connection on H*2. Then, with respect to the
complezified Frenet framing

E=0xoTaeT 'oNeN ' eBaB!,
the flat connection D decomposes as
d 1 1 0 0 0 0
1 V., 0 B*r 0 0 0
1% 0 V, 0 Ié] 0 0

(15) p=|o 58 0 v 0 & a= |,
0 0 B* 0 Vo oa 6
0 0 0 & o™ Vh 0
0 0 0 a & 0 V.
B
where
e 1 € QM9 (Hom(Ox,T)) is the identity between T'X and Of(T'X) = T C
fH(TcH?),

B € QL0 (Hom(T,N)) is holomorphic,

e § € QY9(Hom(N, B)) is holomorphic,

a € QY9 (Hom(B,N 1)) is nonzero, holomorphic and given by a(b)(Y) =
%b x Y, for any section b of B and vector field Y.

o 1% [B*n §*r and " are the hermitian adjoints of 1,5,5 and o, respec-
tively.

Remark 3.25. The line bundles 7 and 7 ~! are the holomorphic tangent and cotan-
gent bundles of the Riemann surface X, respectively. Dropping the immersion as-
sumption in the definition of an alternating holomorphic curves would give the same
type of framing with 7 replaced by T ® Op, where D C X is the divisor where the
differential 0f vanishes.

Proof. The flat connection in the Frenet framing is given by complex linearly ex-
tending the expression (13). The term I¢ € Q'(Hom(Ox, T @®T 1)) is the identifi-
cation of de(T'S@®T”S) =TT ! C f*TcH*?. As f is a holomorphic immersion,
Ic=1¢€ QLO(Hom((’)X,T)).

For the second fundamental form Il¢, II” = 0 by Proposition 3.23. The tensor
B is IT'; it is a (1,0)-form by Lemma 3.15. Namely,

(Y, t') = %(II@(Kt’) LTI (Y, ) = %(HC(Y, ¥ —ATIe((V), ),

and IT'(Y, ') vanishes when j(Y) = —iY. Lemma 3.20 implies 3 is holomorphic.
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The tensor « is III¢; it has type (1,0) since T” x N’ = 0. The tensor § is III.
Generically on the Riemann surface, we have III'(Y,v) = III'(Y,I'(Z, 7)), for T a
section of 7. By Lemma 3.21

1T (Y, v) = IV (Y, 11 (Z, 7)) = 11T (Z, 1T (Y, 7).

Hence, IIT" is a (1,0)-form since I is a (1,0)-form. Lemma 3.20 implies § is
holomorphic. To conclude, note that (S3)c and (S3)c are given by

=)0 ) (o) e =) (5 20 0)
O

The group G5 acts on the set of alternating holomorphic curves by (g f)(z) =
g - f(z). This action does not change the induced Riemann surface, but it can
change the Frenet framing of Theorem 3.24 slightly. Namely, if (£,k) and (£, h)
are the holomorphic bundles with induced hermitian metrics associated to f and
g - f, respectively, then f*g defines an isomorphism (€, h) = (é,iL) Under this
isomorphism, the holomorphic tangent bundles are the same and the holomorphic
normal and binormal bundles are identified (N hy) = (N, iLN) and (B,hg) =

(l?, fzé). Since such an isomorphism preserves the product, and the product iden-
tifies N = B~1T 1, the space of such identifications is a U(1)-torsor. Under such
an isomorphism, there is A € U(1) such that the associated holomorphic sections
(a, B,8) from (15) are changed by

(16) (o, B,8) = (c, \B, \726).

4. HIGGS BUNDLES AND EQUIVARIANT ALTERNATING HOLOMORPHIC CURVES

Fix a Riemann surface X = (5,]j) and denote its holomorphic cotangent bundle
by K. We do not assume X is compact until §5. In this section we introduce
the basics of Higgs bundles and harmonic bundles that are relevant to this paper.
We then explain how certain Gj-cyclic harmonic bundles determine and are deter-
mined by alternating holomorphic curves which are equivariant with respect to a
representation p : m (S) — G,. We start by recalling some Lie theory.

4.1. Cartan decompositions. Every semisimple real Lie group G has a maxi-
mal compact subgroup K which is unique up to conjugation, and G is homotopy
equivalent to K. A choice of maximal compact subgroup defines a Lie algebra in-
volution # : g — g called a Cartan involution. The +1-eigenspace of the Cartan
involution is the Lie algebra ¢ of the maximal compact K and the (—1)-eigenspace
p is the subspace perpendicular to & with respect to the Killing form. Hence a
choice of maximal compact defines a Cartan decomposition g = € ® p. A Cartan
decomposition satisfies the bracket relations

e8] C 8, [e,p] Cp and p.pl CE.
Complexifying, defines the complezified Cartan decomposition gc = €c @ pc.

Remark 4.1. If Gy < G is a reductive subgroup, then we can choose a maximal
compact K < G such that Ko = Gy N K is a maximal compact of Gg. Conversely, if
Ko < Go is a maximal compact subgroup, we can extend it to a maximal compact
subgroup K < G, see for example [1, §3].
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If (E,q) is a 7-dimensional real vector space equipped with a signature (4, 3)
quadratic form, then the maximal compact of SOg(FE, q) = SOy (4, 3) is isomorphic
to SO(4) x SO(3). A choice of maximal compact is given by choosing an orthogonal
splitting £ = U @ V such that the restrictions qy and qy of q to U and V have
signature (4,0) and (0,3), respectively. With respect to this splitting, the Lie
algebra so0(4, 3) is

s0(4,3)

_x_ (A t_ =1 T
=¢X= n B |A€50(U,qU)vBeﬁo(vaqV)vnEHom(UaV)an =—qy 7 qv -

Thus, the Cartan decomposition of so(4,3) is
(17) 50(4,3) = (so(U,qu) ®so(V,qv)) & Hom(U, V).

By Lemma 2.6, the maximal compact subgroup of G} is isomorphic to SO(4). A
choice of maximal compact is given by choosing a decomposition $(Q’) = S(H) D H,
where the multiplication is given by (5). The corresponding Cartan decomposition
of g4 is then given by intersecting with the Cartan decomposition of so(4,3) =
50(3(0’), q). Specifically, if

(3(0'),q) = (H,qr) @ (I(H), asm) = (U,qv) @ (V,av),
then the Cartan decomposition of g} is given by g, = € @ p, where

- {X _ (A B) A€ so(Usau), B € so(Voay),

X(z1 X 29) = X(21) X 22 + 21 XX(Z2)}a

1
p= {X _ (,7 " ) = —a Ty, X (21 % 22) = X (1) % 22 + 21 X<22>} .

4.2. Higgs bundles definitions. Let X = (5,]j) be a Riemann surface. Fix a
maximal compact subgroup K < G and consider the Cartan decomposition g = £¢®p
of the Lie algebra of G. Let K¢ < G¢ be the complexification of K and denote the
complexified Cartan decomposition by gc = €c @ pc. Note that K¢ acts on pc;
given a principal K¢-bundle P — X, let P[pc| denote the associated vector bundle
P Xk, pc with fiber pc.

Definition 4.2. With the above notation, a G-Higgs bundle on X is a pair (P, ®),
where

e P is a holomorphic principal K¢-bundle over X and
e & is a holomorphic section of P[pc] ® K called the Higgs field.

If we fix the underlying smooth Kc-bundle P, then two G-Higgs bundles (P, @)
and (P’,®’) are isomorphic if they differ by the action of the Kc-gauge group.
That is, if there is a smooth bundle isomorphism of P which defines a holomorphic
isomorphism (P, ®) = (P, ®@').

A complex group Gg is a real form of G¢ x G¢. In this case, K¢ = Ge and pe = gc,
and a Gc-Higgs bundle is a pair (P, ®), where P is a holomorphic G¢-bundle on
X and ® is a holomorphic section of the adjoint bundle Plgc] ® K. Using faithful
representations of G¢, we can work with vector bundles. We give a few relevant
examples:
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Example 1. An SL(n,C)-Higgs bundle on X is a tuple (&, volg, ®), where

e £ — X is a holomorphic vector bundle of rank n,
e volg : A"E — Ox is a holomorphic isomorphism, and
e & is a holomorphic section of End(£) ® K with tr(®) = 0.

Similarly, an SO(n,C)-Higgs bundle is an SL(n,C)-Higgs bundle equipped with a
nondegenerate holomorphic section Qg of the symmetric power S2£* such that
®TQs + Qe® = 0, where Q¢ is viewed as an isomorphism Qg : £ — £* and
T . & =5 £ K.

Example 2. The complexified Cartan decomposition of s0(4, 3) is given by com-
plexifying (17). An SOq(4,3)-Higgs bundle is thus a tuple (U, Qy,voly,V,Qvy,
voly, n), where

o (U,Qu,voly) and (V, Qy,voly) are respectively rank 4 and 3 holomorphic
vector bundles equipped with holomorphic orthogonal structures @y, Qv
and volume forms vol, voly, and

e n:U — V®K is a holomorphic bundle map.

The associated SO(7, C)-Higgs bundle is (£, volg, Qg, @) = (UDV, voly A voly, Qu®
—Qy, ®), where for nf = Qz;l on’ o Qy we have

T
(18) @_(2 %):L{@V%(U@V)@blc.
We now describe G5-Higgs bundles. Recall that g C s0(S(0Q'),q) = so(4, 3)
is the subalgebra of derivations of ($(Q'), x). We will suppress the volume forms
from the notation.

Definition 4.3. A G)-Higgs bundle on X is an SO¢(4,3)-Higgs bundle (U, Qu,
V,Qy,n) equipped with a holomorphic bundle map x : A2(V @ U) — V & U such
that
o (V, ®U,, %) = (S(H)c ® He, x) for every p € X, and
o O(sxt)=P(s) xt+sx P(t), where ® is given by (18) and s, are any
sections of U & V.

Remark 4.4. By Remark 2.7, this implies that x|z : A2 — V defines a holo-
morphic isomorphism between V and the self-dual part Aiu of the second exterior
product.

Remark 4.5. Consider the flat connection D arising from an alternating holomor-
phic curve. Using the notation of Theorem 3.24 (£, x,®) is a G)-Higgs bundle,
where ® is the (1,0)-part of D — V.

4.3. An example. The Higgs bundles relevant to this paper have the additional
property that the bundle will have a holomorphic reduction to the maximal torus.
This means that the vector bundle decomposes as a direct sum of holomorphic line
bundles. Specifically,

(19) E=L 3PLIDLABLDLLD LD L3,

where each £; is holomorphic a line bundle. We furthermore impose £_; = L !
and £y = O. With respect to the splitting (19), a Higgs field ® : £ — £ ® K can
be written as a 7 X 7-matrix whose entries are holomorphic sections of appropriate
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line bundles. We will consider Higgs fields of the form

€= ERK,

—~

DO

(=)

N~—

A

I
oo oo oL o
SO oo WO o
SO O OO O
OO OO OO
OWOoO OO oo
Qoo ocoo >
S OO OO ;MmO

where «, 3,7, are holomorphic sections of L3L o/, LoL 1K, L1LoK and
L_3L 5K, respectively. To avoid writing 7 x 7 matrices, we will represent such
an object by

[ 4§

// Lo Ls .

=L Lo Lo Lo L Ly

(21) (£,9):

Since tr(®) = 0 and A€ is trivializable, (€, ®) is an SL(7,C)-Higgs bundle.
In fact, this example defines an SOy (4, 3)-Higgs bundle (U, Qu, V, Qv,n), where

e U=L 3DPL1DLDL3and V:ACfQ@ACo@EQ,
e (Jy, Qy are orthogonal structures on U and V defined by

1 1
Qu = U - U and Qy = 1 V=V
) 1
a 0 0 ¢
en=10 v 0 0]:U—=>VRK.
0048 0

For this example to be a G,-Higgs bundle, we need a holomorphic map
x:NUDV) = USBV,

such that (U, ® V,, x) = (S(H)c ® He, x) for each p € X. This implies V = AU,
and hence we have £L_o = L 3L and Lo = L3L£_1. We will define a product as
in the complex Frenet framing (14) of an alternating holomorphic curve. If we fix
L_o =L _3Lq, then an isomorphism is determined by a nonzero complex number

3
EL 3L — L o=L_3L4.

As Lo = O, let s9 = 1 € H(Ly) be the constant section. Let s_3,5_; be
local nowhere vanishing holomorphic sections of L£_3,L_1, respectively, and let
s3, 81 be the corresponding dual sections of L3, L. Finally, set so = s3 ® s_1 and
S_9 = s_3 ® s1. With this setup, for £ € C*, we define the product x to have the
same multiplication as that of {f_3,..., f3} of I(Q')¢ from (7) where the —/2 is
replaced by &. Namely
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col X row S_3 S_9 S_1 S0 S1 So S3
S_3 0 0 0 —iS_3 58_2 §8_1 —iSo
S_2 0 0 5873 1872 0 —iSO —581
S_1 0 —§8_3 0 iS_l iSQ 0 —§82
So i873 —iS,Q —1871 0 iSl iSQ —i83
S1 —§8_2 0 —iSo —iSl 0 —583 0
So —5871 180 0 —iSQ 583 0 0
S3 iSo §51 582 183 0 0 0

Lemma 4.6. With the above choice of product x : A2(U ®V) — U BV, the Higgs
bundles (20) is a Gy-Higgs bundle if and only if we have the following equation in
HO(’C 2y Hom(ﬁ,g, Efg))

(2) o) = ~(s0) % (),

where so =1 € HY(X, Ly) is a trivializing unit section. In particular, o = %7.

Proof. To be a G)-Higgs bundle, the Higgs field ® must be a derivation. We com-
pute ®(so x s_3) = ®(s9) X 5_3 + 59 X P(s_3) implies a(s_3) = —57(s0) X 5_3.
Indeed,

D(s0) X s_3+ 50 X P(s_3) = v(s0) X s_3 —ia(s_3),

while ®(sg x s_3) = i®(s_3) = ia(s_3). To see this is the only condition on
the Higgs field, one computes ®(s, X sp) and P(s,) X sp + s4 x P(b) using the
multiplication table (7), we leave this to the reader.

The condition o = %”y follows from the multiplication table s_g xs1 = £s_3® 51
and equation (22). O

Remark 4.7. Note that if £L_o = £L_3£7 and « is a scalar multiple of , then we
can define a product x making a Higgs bundle of the form (21) a G5-Higgs bundle.

4.4. Harmonic bundles. A G-harmonic bundle is a G-Higgs bundle equipped with
a metric which solves a PDE related to the flatness of a connection. We will focus
on the vector bundle description.

Definition 4.8. An SL(n,C)-harmonic bundle on X is an SL(n,C)-Higgs bundle
(€, ®) equipped with a hermitian metric h which induces the trivial metric on A™E
and satisfies the Hitchin equations

(23) Fy +[®,27] =0,

where F}, is the curvature of the Chern connection Vj, of h and ®* is the hermitian
adjoint of ®.

Let (E,h) be a smooth bundle unitary bundle. Two harmonic bundles (€, ®, h)
and (&',®',h) on (E,h) are isomorphic if they differ by unitary bundle automor-
phism.

Given an SL(n,C)-harmonic bundle (£,®,h), the Hitchin equations (23) are
equivalent to the flatness of the connection

D=V,+ o+ 0"
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Hence an SL(n,C)-harmonic bundle defines a (conjugacy class of) representation
p : m(X) = SL(n,C) such that E =~ X x, C*. Given a representation p :
m(X) — SL(n,C), a metric h, on the flat bundle X X, C™ can be interpreted
as a p-equivariant map to the Riemannian symmetric space:

h,: X = SL(n,C)/SU(n).

A metric h, is called harmonic if, for every compact subset K C X , it is a critical
point of the energy

1
Exlhy) = 5 [ 1dhyP-

This makes sense since, for two dimensional domains, the energy only depends on
the conformal structure of the domain. It turns out that a metric h solves the
Hitchin equations (23) if and only if the p-equivariant map h,, is harmonic.

For SL(n,C)-Higgs bundles which have extra structures related to being a G-
Higgs bundle, the harmonic metric h is assumed to be compatible with these struc-
tures, i.e., the Chern connection Vj, has holonomy in the compact group K < K,
and hence the associated flat connection D has holonomy in G. In terms of har-
monic maps, the associated harmonic map factors through a copy of the symmetric
space G/K C SL(n,C)/SU(n). For example, a hermitian metric h on £ is compatible
with a nondegenerate symmetric bilinear from Q¢ if there exists a conjugate linear
involution X : & — &€ such that h(eq,e2) = Q(er, A(ez)). In particular, viewing h
as an isomorphism H : & — " and Q¢ as an isomorphism @ : & — £*, we have
A=Q 'oH;hence HoQ 'oH=Q.

An SOy (4, 3)-harmonic metric on an SOg(4,3)-Higgs bundle (U, Qy,V,Qv,n)
consists of two hermitian metrics hy, hy on U,V which are compatible with Q/, Qv,
respectively. Note that the associated flat bundle E decomposes as £ = U @ V,
where U C U and V' C V. Moreover, Qulu ® (—Qv)|v defines a parallel metric on
E of signature (4, 3).

For an SOy (4, 3)-Higgs bundle which is a G5-Higgs bundle, the quadratic form
@y is determined by @, and the product x.

Definition 4.9. A G)-harmonic metric on a G,-Higgs bundle (U, Qu, V, Qy, X, ) is
a pair of compatible metrics hy, hy on U, V, respectively, such that the involutions
Ay, Ay satisfy

Av(ur X uz) = Ay (u1) x Ay(uz).

Remark 4.10. Note that the flat bundle E associated to a Gh-harmonic bundle
decomposes as E = U®V and has a parallel product x : A2E — E which identifies
the fibers with (0’).

4.5. Cyclic Higgs and harmonic bundles. The explicit Higgs bundles consid-
ered in §4.3 have additional symmetries which make them 6-cyclic Higgs bundles.

Definition 4.11. An SL(n,C)-Higgs bundle (&, ®) is called k-cyclic if there is a
holomorphic splitting € = & @ - - - @ & such that ®(&;) C £;41 ® K, where i + 1 is
taken mod k. The splitting £ =& @ --- @ & will be called the cyclic splitting.

Definition 4.12. An SL(n, C)-harmonic bundle (£, ®, h) is called a k-cyclic har-
monic bundle if (£, @) is k-cyclic and the cyclic splitting is orthogonal with respect
to the metric h.
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Two k-cyclic Higgs bundles (1 ®- - -@®&, @) and (€] ®- - -BE;,, ') are isomorphic
if there is a holomorphic bundle automorphism which identifies &£; = 5]4 for all j
and ® and ®’. Similarly, two k-cyclic harmonic bundles are isomorphic if such an
isomorphism is unitary. We note that cyclic Higgs bundles and cyclic harmonic
bundles have a cyclic group symmetry. Namely, if (£, ®) is a k-cyclic Higgs bundle,
consider the unitary holomorphic bundle automorphism

g = diag(¢Idg,, ¢ dg,, ..., " * M dg, ) : E1@ - BE = E1 D D,

where ( is a primitive k" root of unity and a is chosen so that det(g) = 1. Then g
acts on ® by

g~fI):gflo<I>og:C-<I>.

Remark 4.13. When X is compact, polystability of the above Higgs bundles au-
tomatically implies the existence of cyclic harmonic metrics, see Proposition 5.3.
When X is noncompact, see [21,22] for results regarding the existence and unique-
ness of cyclic harmonic metrics.

Lemma 4.14. The Higgs bundles from (21) are 6-cyclic with cyclic splitting
E1DEDEDELDEDE=(Ls®DL3)BLoBL 1 DLID L & Lo,
Moreover, if h is a cyclic SOg(4, 3)-harmonic metric, then h =h_3®h_o®--- ®

ha @ hs where hy is a hermitian metric on L, and h_, = h;l.
Proof. The Higgs bundle is 6-cyclic since rearranging the summands from (21)

yields
C

//\

3D L3 Lo Lo . Lo Ly .
(e 6) B v vy B

Recall that this is SO¢(4, 3)-Higgs bundle, with Y = L_3® L_1 & L1 & L3,
V=L & LyP Ly and quadratic forms

1 1

(24) Qu = E and Qy = 1
1 1

L Lo .

Thus, an SOg(4, 3)-cyclic harmonic metric hyy @ hy is diagonal in the cyclic split-
ting. The condition that Ay = Q;,l o hy and Ay = Q;l o hy are conjugate linear
involutions of U and V), respectively, implies that the metric on £_3 & L3 splits as
h_3 @ hsz, where h;l = h_3, and that the metric h; on L; satisfies hj_l =h_;. O

Lemma 4.15. When L_o = L_3L7 and « is a scalar multiple of v, a Gh-cyclic
harmonic metric is an SOq(4, 3)-cyclic harmonic metric where the metric h_o on
L_5 is h_3hi and the metric ho on Lo is hsh_1.

Proof. Recall from Lemma 4.6 that when £ o = £ 3£ and o = %7, the Higgs
bundle under consideration is a G5-Higgs bundle with respect to the product given
by s_3 X s1 = &s_3®s1. Thus, the conjugate linear involutions \y; = Q;,l o hy and
v =Qy, Lo hy associated to a G,-harmonic metric satisfies

)\u(’ul) X )\z,[(’dg) = Av(ul X ’U,Q),
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for all uy,us € U. Using the metric decomposition from Lemma 4.14, we have

Mi(s—3) X Ay(s1) = h_3hi153 x s_1 = h_3h1&£(53 ® 5_1),

Av(s—3 x 81) = Ap(€(s-3 ® 51)) = h—28(s3 ® 5-1).
Hence, h_o = h_ghy and ho = hgh_;. O

We now deduce a decomposition of the flat bundle associated to these Gj-cyclic
harmonic bundles which is analogous to [7, Theorem 2.33]. Let D = Vj, + ® + &*
be the associated flat connection. Since the metric is diagonal, in the splitting
E=LyPLLBLLBL DL 5P L_35D L3, the connection D decomposes as
in (15) of Theorem 3.24 where T is replaced with £1, A is replaced by Lo, B is
replaced with £_3, and 1 and 1* are replaced with a and «*. The associated G-
flat bundle Ep C & is the fixed point locus of the antilinear involution A : & — &
defined by h(u,v) = Q(u, A(v)). The bundle Ep decomposes as Ep = U@V, where
UCL 3PLADLLDL3sand V C LD Ly D Lo.

Proposition 4.16. The flat bundle Ep of a Gy-cyclic harmonic bundle of the form
(21) decomposes as

EDZKEBUl@VYI@U%

where £ C Lo and V1 C L_o ® Lo are negative definite subbundles of rank 1 and 2
respectively, and Uy C L_1 ® L1 and Us C L_3 & L3 are positive definite rank 2
subbundles.

Proof. The complex bilinear forms @y, and @y are given by (24). Since the metric
h is diagonal, in the splitting € = Lo @ (L1 B L1) D (L2 D L2) ® (L_35® L3), the
involution A is given by

— hy —ho hs
A= ho® (%‘1 )@ (—hg‘l )@ (hgl >

where hj(w) : £; — L£_; is the antilinear map defined by h;(w)(w’) = hj(w,w’).
O

4.6. Cyclic harmonic bundles and equivariant alternating holomorphic
maps. We now establish a 1-1 correspondence between isomorphism classes of
certain G)-cyclic harmonic bundles and equivariant alternating holomorphic curves.
Fix a basepoint zg € S and let 71(S) = 71(S,20) denote the fundamental group

of S. Fix also a universal covering S — S and a lift Zy of the basepoint. We will
suppress the basepoints from the notation.

Definition 4.17. An equivariant alternating holomorphic curve on S is a pair
(p, f) consisting of a representation p : m(S) — G, and an alternating holomorphic
curve f : S — H*%2 which is p-equivariant, that is, f(y-z) = ply) - f(z) for all
z €S and all v € m(S).

When S is simply connected an alternating holomorphic curve is of course the
same as an equivariant alternating holomorphic curve. For example, (S, ]) could be
isomorphic to the complex plane as in [13]. Note that the Riemann surface structure
X = (§ ,j) induced by an equivariant alternating holomorphic curve (p, f) descends
to a Riemann surface structure X = (.5,]).
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Definition 4.18. Two equivariant alternating holomorphic curves (p1, f1) and
(p2, f2) are isomorphic if there exists g € G} and ¢ € Diff(.S) such that

(p1, f1) = (Adg o p2, (g f2) 0 ¥),
where 1 is the pullback of ¥ to S.
Remark 4.19. Since Diffy(S) acts freely on the space of complex structures on S,

two equivariant holomorphic curves (p1, f1) and (p2, f2) which induce the same
Riemann surface X are isomorphic if and only if there is g € G such that

(p1, f1) = (Adg 0 p2,9 - f2).

For the discussion below, let B be a holomorphic line bundle on X, and consider a
G,-cyclic harmonic bundle (£, x, @, h) of the form (21) with £L_5 = Band £ = K,
and assume [ is nonzero. The Higgs bundle is written schematically as

0 )
—1 -1 -1 -1
(5 B BK KOk Bk B

Here the map 1 : O — K~! ® K is the identity and —% B = BK e K is
determined by the product x. Namely, for a section b of B and sg = 1 € H°(0O),
we have . .

i i
Proposition 4.20. Two Gy-cyclic harmonic bundles of the form (25) determined
by (B, B,6) and (B',3',68") are isomorphic if and only if (B, 3,0) = (B, \3,\~26)
for some XA € U(1).

Proof. Such an isomorphism is given by a diagonal unitary gauge transformation
g which has det(g) = 1, preserves the orthogonal structures @y, and @y and the
product. As a result

g =diag(\ At L A AT,

where A, u € U(1). Such a gauge transformation preserves the map 1 : K — O®K if
and only if u = 1. Hence, such a gauge transformation acts on (3,4) by 8+ A713
and & — \24. |

Theorem 4.21. There is a 1-1 correspondence between isomorphism classes of
equivariant alternating holomorphic curves with induced Riemann surface X and
isomorphism classes of Gy-cyclic harmonic bundles of the form (25) on X.

Proof. One direction essentially follows from the description of the complex Frenet
framing in Theorem 3.24. As in §3.6, let (E, x, D) be the pullback of the trivial
3(0')-bundle and connection on H*? by f to X. Recall the Frenet framing of f
induces a decomposition £ = R&TS@G&NS@®BS which is orthogonal with respect to
a positive definite metric g = 1@ gr @ (—gn) @ gp. By Theorem 3.24, the complex
Frenet framing of f defines a holomorphic structure £ on E¢ which decomposes as

E=0@K'ekeB 'KeBK 'eBaB !,

where we have written X! instead of 7 and N' = B~'K. This splitting is or-
thogonal with respect to the induced hermitian metric h, and ® = (D — V)0 is
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holomorphic. In particular, (£, x,®,h) defines a Gj-cyclic harmonic bundle. Re-
arranging the summands of the splitting, the cyclic Higgs bundle on X has the
desired form. Everything descends to X by equivariance. By (16) and Proposition
4.20, two equivariant holomorphic curves which induce the Riemann surface X are
isomorphic if and only if the associated G)-cyclic harmonic bundles are isomorphic.

We now construct an isomorphism class of equivariant alternating holomorphic
curves from a Gj-cyclic harmonic bundle of the form (25). By Proposition 4.16, the
bundle Ep C £ decomposes as £ B U &V, & Us. Where £ C O is a negative definite
line subbundle. Moreover, £ is the span of the section sp =1: X — O C &, and so
so(z) is a vector in Fp of norm —1.

The pullback Ep of Ep to the universal covering is trivialized by parallel trans-
port by D. In this trivialization, the pullback of so defines a p-equivariant map
to the space of norm —1-vectors in the fiber over the base point E;,. Choosing
an identification of (E;CO, x) = S(Q') defines an equivariant curve f : X — H%2.
By construction, the complex Frenet framing of f is the decomposition of the flat
connection D in the splitting O@K @K @B 'K@BK '@ B®B~!. In particular,
f is an alternating holomorphic curve. Changing the identification with (Q') gives
isomorphic equivariant alternating holomorphic curves. O

5. MODULI SPACES FOR COMPACT SURFACES

Fix a closed surface ¥ with genus g > 2, and let X denote a Riemann surface
structure on Y. In this section we prove Theorem 5.4 which gives a holomorphic de-
scription of the G5-Higgs bundles which arise from equivariant holomorphic curves
on Y with induced Riemann surface X. In particular, the associated moduli space
has many connected components. Then, in Theorem 5.9, we describe the mod-
uli space of equivariant alternating holomorphic curves on X, where the induced
Riemann surface is allowed to vary, as a complex analytic space with a surjective
holomorphic map to the Teichmiiller space of ¥ and with a holomorphic action of
the mapping class group; here the fibers are described by Theorem 5.4. Finally, we
describe how some of the connected components correspond to Hitchin representa-
tions for the groups G and SL(3,R), and discuss the totally geodesic case in §5.7.
We start by recalling the moduli space of Higgs bundles on a compact Riemann
surface and the nonabelian Hodge correspondence.

5.1. Moduli spaces for fixed Riemann surface. To form the moduli space of
Higgs bundles on X, we need the notion of stability. An SL(n,C)-Higgs bundle
(€,®) on X is called

e semistable if, for every proper holomorphic subbundle F C & such that
O(F) C F® K, we have deg(F) <0,

e stable if it is semistable and the above inequality is always strict, and

e polystable if it is a direct sum of stable Higgs bundles of degree 0, that is,
E=&@ - @& and, for all i, deg(&;) =0, ©(&;) C & @ K and (&, Plg,)
is a stable Higgs bundle.

Theorem 5.1 was proven by Nitsure [29] and Simpson [34].

Theorem 5.1. There is a quasi-projective variety M(X,SL(n,C)), called the mod-
uli space of SL(n,C)-Higgs bundles, whose points parametrize isomorphism classes
of polystable SL(n, C)-Higgs bundles on a compact Riemann X .
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There are appropriate notions of stability for G-Higgs bundles and associated
moduli spaces M(X,G), see [15,34]. When G is complex reductive, the moduli
space M(X,G) is quasi-projective.

Since (poly)stability is preserved by scaling the Higgs field by A € C*, there is a
natural algebraic C*-action on the moduli space M(X,G). The fixed point set of
any subgroup of C* thus defines an algebraic subvariety.

Theorem 5.2 relates the notion of stability to the existence of a harmonic metric.
It was proven by Hitchin [16] for n = 2 and Simpson [33] in general.

Theorem 5.2. Let X be a compact Riemann surface of genus g > 2. An SL(n,C)-
Higgs bundle (€, ®) on X is polystable if and only if there is a hermitian metric
h on & solving the Hitchin equations (23). In particular, (€, ®,h) is an SL(n,C)-
harmonic bundle and SL(n, C)-harmonic bundles define polystable Higgs bundles.

For G-Higgs bundles on compact Riemann surfaces, a similar theorem holds.
Namely, if (P, ®) is a G-Higgs bundle, then it is polystable if and only if there
is a metric h such that (P,®,h) is a G-harmonic bundle. This correspondence is
usually called the Kobayashi—Hitchin correspondence. For SL(n,C)-Higgs bundles
which have extra structures related to being a G-Higgs bundle, the metric solving
the Hitchin equations is compatible with these structures, see [15] for details.

For k-cyclic Higgs bundles on compact Riemann surfaces, we have the following
result of Simpson which implies that polystable k-cyclic Higgs bundles on a compact
Riemann surface are automatically k-cyclic harmonic bundles.

Proposition 5.3 ([32]). Let (€, ®) be a k-cyclic Higgs bundle with € = &1+ - -®Ej.
Then (E,®) is stable if and only if for all proper holomorphic subbundles F =
Fi@ - @F, CE with F; C & and ®(F) C FRK, we have deg(F) < 0. Moreover,
when (€, ®) is stable, the splitting & @ --- ® & is orthogonal with respect to the
hermitian metric h solving the Hitchin equations (23).

A representation p : 71 (X) — G is called reductive if postcomposing p with the
adjoint representation of G decomposes as a direct sum of irreducible representa-
tions. The moduli space of G-conjugacy classes of representations m1(X) — G is
called the character variety and denoted by

X(2,G) = Hom™ (7, (%), G)/G.
Corlette’s theorem [9] (proven by Donaldson [10] for SL(2,C)) asserts that given
a representation p : m (X) — G, there exists a p-equivariant harmonic map h, :

X =G /K if and only if p is reductive. Combining Corlette’s theorem with the
Kobayashi—Hitchin correspondence defines a real analytic isomorphism between the
moduli space of G-Higgs bundles on X, the moduli space of G-harmonic bundles on
X and the G-character variety. This is called the nonabelian Hodge correspondence.

5.2. Moduli spaces of holomorphic curves for compact Riemann surfaces.
For a compact Riemann surface X, denote the set of isomorphism classes of equi-
variant alternating holomorphic curves (p, f) with induced Riemann surface X by

H(X)
={(p, f)equiv. alt. holomorphic curves with induced complex structure X }/G5.

By the nonabelian Hodge correspondence and Theorem 4.21, H(X) is in 1-1 cor-
respondence with the isomorphism classes of polystable G,-Higgs bundles on X of
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the form
h) 5
//_\1 -1 -1
(26) B\__%BIC ‘EMK%O%’C . B~K | B,

where B is a holomorphic line bundle, 3 € HO(B7'K3)\ {0}, 1: 0 - K1 ® K is
the identity, and —1 : B — BK~! ® K is defined by —1(b) = —1 - 1(s9) x b, where
so =1 € H°(O). This correspondence gives H(X) a complex analytic structure.
The degree of the line bundle B defines a continuous map deg : H(X) — Z. In
particular,
H(X) = [ Ha(X),

deZ

where H4(X) = deg™'(d). The spaces H4(X) are parameterized as follows.

Theorem 5.4. Let X be a compact Riemann surface of genus g > 2.

(1) If g < d < 69 — 6, then Hqa(X) is biholomorphic to a rank (2d — g + 1)
holomorphic vector bundle over the (6g — 6 — d)-symmetric product of X .
(2) If0 < d < g—1, then Ha(X) is biholomorphic to bundle over a H (X, Zs)-
cover of the 2d-symmetric product of X whose fiber is (C>9~5-4\ {0})/£1d.
(3) Ifd ¢ {0,...,69 — 6}, then Hqa(X) is empty.

Remark 5.5. The upper bound on d follows immediately from the assumption that
B € H°(B~1K3) \ {0} while the lower bound comes from polystability. To prove
first two points, we parameterize the isomorphism classes of G,-Higgs bundles of
the form (26) which are polystable. The proof gives explicit descriptions of the
fibrations over the appropriate symmetric product.

Proposition 5.6 describes when the associated SL(7, C)-Higgs bundle is polystable.

Proposition 5.6. For a G,-Higgs bundle of the form (26), let d = deg(BB). Then
0<d<6g—6, and,
e for g <d<6g—6, the associated SL(7,C)-Higgs bundle is stable,
o for 0 <d<g—1, the associated SL(7,C)-Higgs bundle is polystable if and
only if § # 0, in which case it is stable,
e for d =0, the associated SL(7,C)-Higgs bundle is polystable if and only if
0 # 0, in which case it is strictly polystable.

Proof. Recall that the SL(7,C)-Higgs bundles are 6-cyclic with cyclic splitting
BoB hHeBK 'eKkeoOaoK 'eB K.

By Proposition 5.3, to test stability of the SL(7,C)-Higgs bundle it suffices to
consider invariant subbundles compatible with the cyclic splitting.

When 6 = 0, B! @ B~'K is such an invariant bundle. If d < g — 1, then the
degree of B~ @ B~ is positive and invariant so the underlying Higgs bundle is
unstable, while for d = g — 1, B~ @ B7'K is a degree zero invariant subbundle
which does not have an invariant complement, so the SL(7, C)-Higgs bundle is not
polystable. Hence, the Higgs bundles with § = 0 are polystable if and only if
d > g — 1, in which case they are stable.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6496 B. COLLIER AND J. TOULISSE

When § # 0, the only invariant subbundle is the degree —d kernel of
(27) (-5 &) :BeB = (BK K.

Hence, when 0 < d < 6g — 6 and § # 0, the associated SL(7,C)-Higgs bundle is
stable.

Finally, when d = 0, § € H°(B?) \ {0} defines an isomorphism B = B~!. Denote
the kernel of (27) by Z. Since § # 0, Z C B ® B! is an orthogonal subbundle
which is isomorphic to B. Hence, taking the orthogonal complement, we obtain a
new splitting B&B~! =2 THT+. In this splitting the SL(7, C)-Higgs bundle is given
by (£,®) = (Z@&,08 '), where (', P’) is the 6-cyclic Higgs bundle

P — ~1 —1 -1 L
(28) (&, = BK . :IC\T)'O 1 K , B7K : I,
where € is the restriction of (27) to Z1. Since € # 0, the cyclic Higgs bundle (£, @)
is stable, and hence (&, ®@) is strictly polystable. O

Remark 5.7. Note that in the case 0 < d < g — 1, the SL(7,C)-Higgs bundle
associated to the above G-Higgs bundle is polystable when § = 0. Such Higgs
bundles define equivariant holomorphic curve f : X — H*2 which are totally
geodesic.

Proof of Theorem 5.4. Denote the set of degree n line bundles on X by Pic"(X)
and the n'" symmetric product by Sym”(X). Taking the divisor div(c) defines
a biholomorphism between Sym™(X) and the space of pairs (N, [o]), where N €
Pic"(X) and [0] € P(H°(N)).

First consider the case when d = deg(B) satisfies g < d < 6g — 6. The proof is
similar to Hitchin’s parameterization of the components of M(X,PSL(2,R)) with
nonzero Euler number in [16]. By Proposition 4.20 and Proposition 5.6, we have

Hd(X) = {(87676)}/ ™~
where B € Pic’(X), 8 € HY(B~'K?) \ {0} and § € HO(B?), and (B,3,0) ~
(B, A3, A726) for A € C*. Define the bundle 7 : ) — Sym®~6~4(X) by 7=1(D) =
HO(K%(-2D)). Since d > g, Riemann-Roch and Serre duality imply dim(7~!(D))

=2d — (g —1). Hence, Y — Sym®~07%(X) is a rank 2d — (g — 1) vector bundle.
There is a well defined injective map

U Hg(X) —— )Y
(B, 8, 6)] —— (div(8), 8%)
Moreover, the map ¥ is surjective. Indeed, a point (D, 8) € ) determines (£, [5]),
where 8 € P(H?(L)) with div(8) = D and 0 € H°(K%(—2D)). Consider B =
LK e Pic’(X), since 6 is degree six holomorphic differential which vanishes
on 2D, it can be written as § = 325 for § € H°(B?). The result follows since

holomorphic bijections are biholomorphisms.
Now assume 0 < d < g — 1. By Proposition 4.20 and Proposition 5.6, we have

Ha(X) ={(B, 8,0)}/ ~,
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where B € Pict(X), 8 € HO(B~1K3)\ {0}, 0 € H°(B?)\ {0}, and (B,,8) ~
(B, AB,A728) for A € C*. Note that dim(H"(B~'K3)) =59 — 5 — d.

Recall that the set of square roots of an even degree line bundle over X is an
H'(S,Zsy)-torsor. The 2d-symmetric product Sym??(X) thus has an H'(X,Zs)-

—2d
cover Sym2 (X) which parameterizes pairs (B, [8]), where B € Pic*(X) and [4] €
P(H°(B2) \ {0}). There is a well defined injective map

0: HiyX)—— Sfyﬁqzd(x) x HO(KS),
(B, 8,0)] —— ((8B, [9]), 89) -

Let W denote the image of ©. Projection onto the first factor defines a surjective

map 7 : W — S/y?nQd(X). The fiber 7=1((B,[d])) consists of all nonzero holo-
morphic sections of K8 which are squares of sections B~1K? and vanish on div(§).
In other words, the fiber is the image of the quadratic map H°(B~1K3)\ {0} —
H°(B72K%) ¢ H°(K®) defined by 8 +— 3. In particular, it is biholomorphic to
(CP9=5=4\ {0})/ £+ 1d. O

Remark 5.8. By Remark 5.7, when 0 < d < g — 1 and 8 = 0, the resulting Higgs
bundles are also polystable. By the above proof, the space of such Higgs bundles

—2d
is biholomorphic the quotient of a rank (59 — 5 — d) vector bundle over Sym (X)
by the fiberwise action of +Id.

5.3. Varying the Riemann surface. The moduli space H(X) of equivariant al-
ternating holomorphic curves on ¥ is defined by

H(X) = {(p, f)equivariant alternating holomorphic curve }/ ~,

where (f1,p1) ~ (f2,p2) if there is g € G} and ¢ € Diffy(X) such that (p1, f1) =
(Adg o pa, (g f2) 0 ¥).

Recall that the Teichmiiller space T(X) of ¥ is the quotient of the space of
complex structures on ¥ which are compatible with the orientation by the group
Diffy(X). Taking the induced Riemann surface of an equivariant holomorphic curve
defines a surjective map

T HE) —— T (D).
[(p; /)] —— (S, )]

Recall also that the mapping class group Mod(X) of 3 is the quotient Mod(X) =
Diff *(X)/Diffo(X). The mapping class group acts naturally on H(¥) and T (%),
and the map 7 is equivariant with respect to these actions.

Finally, recall that a complex analytic set is a subset V' C C™ which is locally
the zero set of a finite number of holomorphic functions. A holomorphic function
on an open set U C V is the restriction of a holomorphic function defined on a
neighborhood of U in C™. This defines a structure sheaf Oy on V and we call
a complex analytic space a ringed space (A, O4) which is locally isomorphic to an
analytic set equipped with its structure sheaf. A morphism of ringed space between
complex analytic space is called a holomorphic map.

Theorem 5.9. The moduli space H(X) has the structure of a complex analytic
space. With respect to this structure, the mapping class group Mod(X) acts holomor-
phically and the projection to Teichmiiller space m : H(X) — T(X) is a surjective
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holomorphic map. Moreover,

e = I Ha®

de{o,...,6g—6}

where, for each X € T(X), Ha(X) N7~ 1(X) is biholomorphic to the space Hq(X)
from Theorem 5.4.

Proof. Recall from §4 that there is a one-to-one correspondence between points in
H(X) and pairs of points (X, (£, ®)) where X € T(X) and (&, ®) € M(%,GS) is a
stable G§-Higgs bundles of the form of equation (25).

Consider the space

M(Eng) = H M(X, Gg)>

XeT (%)

where M(X,GS) is the moduli space of poly-stable GS-Higgs bundles over X.
Since GS is a complex reductive algebraic group G, building on the construc-
tion of Simpson [35], it was proven in [2, Theorem 7.5] that M(X,GS) has a
Mod(X)-invariant complex analytic structure such that the natural projection map
7 M(2,GS) — T(X) is holomorphic and 7~(X) is biholomorphic to M(X, GS).

The C*-action on each M(X,GS) yields a C*-action on M(X, GS) which is ana-
Iytic by [35]. Given a primitive 6" root of unity ¢, the set of fixed points M(%, GS)¢
is thus analytic. To conclude the proof, observe that being of the form (25) is an
open condition in the space of 6-cyclic G5-Higgs bundles. Since open subsets of
analytic spaces are analytic, the result follows. |

Remark 5.10. Simpson explained to us a proof that the restriction of the projection
7 M(X,GS) — T(X) to stable Higgs bundles is a flat family. This implies in
particular that the total space M(X,GS), and hence H(X), is smooth. Since the
technical aspects of the proof are not inline with the main points of this paper, we
decided not to include it here. Smoothness will be explicitly addressed in [8].

5.4. The case d = 6g — 6. Recall that a Fuchsian representation is a morphism
p : m(X) — PSL(2,R) arising as the holonomy of a hyperbolic structure on X
(compatible with the orientation). The space of Fuchsian representations defines a
connected component of the character variety X' (X, PSL(2,R)) which is naturally
identified with the Teichmdiller space T (X).

For G¢ a complex semisimple Lie group of adjoint type, there is a special embed-
ding PSL(2,C) — G¢ called the principal embedding. The restriction of the princi-
pal embedding to PSL(2,R) defines an embedding into the split real form G of G¢.
Hence, postcomposing Fuchsian representations with the principal embedding de-
fine representations p : m1(X) — G. In [17], Hitchin used Higgs bundles on a fixed
Riemann surface to parameterize the connected component Hit(X,G) C X (%, G)
containing such representations by a vector space of holomorphic differentials. As
a result, Hit(X2, G) is called the Hitchin component and representations in it are
called G-Hitchin representations.

Denote the vector bundle of degree 6 holomorphic differentials by p : Qg(X) —
T(%), ie., p~H(X) = H°(KS). For the case d = 6g — 6, we have the following
description of Heg—(X).
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Theorem 5.11. The space 7 : Heg—6(E) = T(X) is biholomorphic to the vector
bundle p : Q¢ — T(X). Moreover, the points of Heg—6(X) correspond to isomor-
phism classes of alternating holomorphic curves (p, f) with p a G,-Hitchin repre-
sentation.

Proof. For a fixed Riemann surface X, the space Hgg—6(X) is parameterized by
isomorphism classes of G5-Higgs bundles of the form (26) with deg(B) = 6g — 6.
Such Higgs bundles are determined by triples (B, 3,d), where B € Pic®~%(X),
B € HY(B71K?)\ {0} and 6 € H(B?). Since deg(B) = 6g — 6 and 3 # 0,
we have B = K3, and hence § € H°(K%). Furthermore, by Theorem 5.4, fixing
B =1¢€ H°B 1K?) determines the isomorphism class of such a Higgs bundle.
Under the nonabelian Hodge correspondence, such Higgs bundles define G-Hitchin
representations, see [17]. We conclude the proof by noting that the fiber of 7 :
Heg—6(X) = T(X) is defined by the holomorphic section § € H°(K®) by Theorem
5.4. O

Remark 5.12. In [19], Labourie proved that the natural map He,—¢(X) — Hit(3, G5)
is a diffeomorphism. A dimension count implies that H4(X) — X(X, G5) maps onto
a connected component of X(3, G)) if and only if d = 6g — 6. In §6 we will discuss
the local structure of the map Hq(X) — X(X, G5) for general d.

5.5. The case d = 0. Recall that elements w € H*(X,Zs) correspond to represen-
tations p,, : m1(X) — Zo, and also to holomorphic line bundles Z,, on a Riemann
surface such that Z2 = 0. Given w and a Riemann surface X, an w-twisted holo-
morphic cubic differential is a holomorphic section of K3 @ Z,,. We denote the
vector bundle of w-twisted holomorphic cubic differentials over Teichmiiller space
by Qf. For the case d = 0, we have the following description of Ho(X).

Lemma 5.13. The space 7 : Ho(Z) = T(X) decomposes as

o) = [ H®.

wEH(X,Z2)

where HE (X) is biholomorphic to the quotient of the complement of the zero section
of QF by £1d.

Proof. For a fixed Riemann surface X, the space Ho(X) is parameterized by iso-
morphism classes of G5-Higgs bundles of the form (26) with deg(B) = 0. Such Higgs
bundles are determined by triple (B, 8, 9), where B € PicO(X), B e H(B~1K3)\{0}
and 6 € HY(B?)\ {0}. Since § # 0, B?> = Ox. Hence H'(X,Zy) parameterizes
the choices for B, and this gives the decomposition into components Hg (X). Note
that 3 is an w-twisted holomorphic cubic differential since 3 € H°(B~'K?) and
B~ = B. By the proof of Theorem 5.4, fixing § € H°(B?) determines the isomor-
phism class of the Higgs bundle up to § — —3. Hence, H§ (X) is the biholomorphic
to the quotient of the complement of the zero section of Q% by +Id. |

We now describe the equivariant holomorphic curves in H{(X) in more detail.
Recall from §3.3 that S33 is the space of vectors in R*3 of norm 1 and P (R*3)
is the space of positive definite lines in R*3. The group G} acts transitively on
both 823 and P (R*3), and the stabilizers of a point are respectively isomorphic
to SL(3,R) and the nonsplit extension

1-SL(3,R) = SL(3,R) & 7, — 1.
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Since taking orthogonal complements defines a bijection between points in P, (R*3)
and totally geodesic copies of H*? in H*?, the G)-stabilizer of an H*>? c H*? is
isomorphic to S/I(S,R). Finally, note that given a representation p : m (%) —
g[(?),R), we get

e an induced Zs-representation p, = @ o p: w1 (X) = Za, and
e an SL(3,R)-representation p : ker(p,) — SL(3,R).

Theorem 5.14. For w € H'(X,Zs), the isomorphism class of an equivariant al-
ternating holomorphic curve [p, f] lies in HE (X) if and only if f(32) is contained in
a unique totally geodesic copy of H>? inside H*? and

p=10p:m(S) = SL(3,R) = G,

where ¢ : §I(3, R) — G} is given by the stabilizer of the unique H32 containing f(3),
and p:m(2) — g[(S, R) has the property that the induced Zo-representation is p,,
and the associated SL(3,R) representation p : ker(p,) — SL(3,R) is an SL(3,R)-
Hitchin representation which is not Fuchsian.

Remark 5.15. Note that an equivariant holomorphic curve [p, f] lies in a totally
geodesic copy of H>? c H*? if and only if the representation fixes a positive
definite line in R*3, and that this is equivalent to p factoring through the stabilizer
of a positive definite line.

Proof. First suppose [p, f] € H§. Let X be the induced Riemann surface and Z the
holomorphic line bundle on X associated to w. As in the proof of Proposition 5.6,
the SL(7, C)-Higgs bundle associated to [p, f] is strictly polystable and isomorphic
to (£,®) 2 (Z®E&',0® P'), where Z = B is an orthogonal subbundle of B @& B~}
defined by the kernel of (27) and (£, ®') is given by (28). Note that (£, ®’) defines
an O(3, 3)-Higgs bundle, and that (£, ®) defines an S(O(1) x O(3, 3))-Higgs bundle.
This implies the SOg(4, 3) representations p associated via the nonabelian Hodge
correspondence fix a positive definite line in R*3. Hence, the image of f lies in the
totally geodesic copy of H*? c H*? associated to the positive definite line bundle
T and p factors through the stabilizer of a positive definite line in R*3.

Since B = Z, the Zo-factor of the representation p is given by the w € H (3, Zs)
determined by B. As T and I+ are both isomorphic to 3, the Higgs bundle (£, @)
from (28) can be written as

First consider the case Z = O. In this case the p,, is the trivial representation
and p is an SL(3,R)-representation. Consider the following injective holomorphic
bundle maps

br: KepOpKt—0 &
(x,y,2) ——— (£2z,2,y, 2, £, Ty)
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The images of 6+ define holomorphic subbundles 7 C £’ such that & = F @ F_.
The bundles F4 are both ®’-invariant since

(04 (2,y,2)) = B(£2,2,y, 2, +w, +y) = (£(1), £8(2), 1(z), 1(y), B(2), £1(x))
= 9i(¢i(xvyvz))v

where

0 0 £p
p+=11 0 0 |ecEndkaOak HeKk.

01 0
Moreover, (Fyi,¢+) is the SL(3,R)-Higgs bundles in the Hitchin component de-
scribed by the cubic differential +0, see [17]. Hence, when w = 0, the representa-
tion p : m(3) — §\L(3,R)—factors through an SL(3,R)-Hitchin representation. As
S is assumed to be nonzero, p is not Fuchsian.

When w # 0, the Zs-representation p,, is nontrivial. However, the pullback of
the Higgs bundle to the connected double cover X,, — X defines a point in H3(X,,).
Hence the restriction of p to the kernel of p,, is an SL(3,R)-Hitchin representation
which is not Fuchsian. _

Conversely, let [p, f] be an equivariant holomorphic curve such that f(X) lies in
a totally geodesic subspace H*? C H*?. Let W be the normal bundle of H32 in
H*2, . If we denote by M the orthogonal of TS @ NY. inside F*TH32, then f*
and M descend respectively to real line bundles W and M on X. Thus we have
that BY. = W & M is topologically trivial, and so has degree 0. Thus, [p, f] defines
a point in Hg. O

5.6. Link with affine spheres. The theory of Hitchin representations in SL(3,R)
is intimately linked with the theory of affine spheres in R3. Namely, Loftin [24]
and Labourie [20] proved that given a Hitchin representation p : m1(3) — SL(3,R),
there exists a unique p-equivariant hyperbolic affine sphere u, : Y — R3. Such a
hyperbolic affine sphere defines a metric g on ¥ (called the Blaschke metric) and
a holomorphic cubic differential g3 € H°(X, K3?), called the Pick form, where X is
the Riemann surface associated to g. This defines a map from Hit(¥,SL(3,R)) to
Q% — T(X) which they proved is a homeomorphism.

Theorem 5.14 implies that the component HY(X) consists of equivariant holo-
morphic curves [p, f] lying in a totally geodesic copy of H>? in H*? and such that
the underlying representation comes from a non-Fuchsian Hitchin representation
p : m(X) — SL(3,R). Theorem 5.16 describes a link between the holomorphic
curve f and the hyperbolic affine sphere u.

Theorem 5.16. Let (p, f) be an alternating equivariant holomorphic curve whose
equivalence class lies in HY, z be a point in S>3 fized by p, DF be isotropic 3-
plane defined in §3.3 and denote by p the corresponding Hitchin representation into
Fizg, (z) = SL(3,R). Then the map

Uy Yy — D,

. — f(z) + 2 f(z)

s a p-equivariant hyperbolic affine sphere.
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Proof. Since f takes value in z*

have

, one easily checks that u, as well. Moreover, we

bo(us(2) = 2 us(2) = 2 f(2) + 22 () = ua(a),

so u, takes value in Ker(Id —¢,) = D7 .

To see that w, is a hyperbolic affine sphere, observe that u, is obtained by
considering the section 1 of O in F; which corresponds to a hyperbolic affine
sphere by Baraglia [4, Section 3.4.2]. O

Remark 5.17. Note that the representation p fixes two points z and —z in S33.
Taking —z instead of z is equivalent to considering the map (f — z- f) which takes
value in D . The underlying representation is the contragradient of p.

5.7. Totally geodesic surfaces. In the correspondence between alternating holo-
morphic curves and G)-harmonic bundles of the form of equation (26), the section
B is the (1,0)-part of the second fundamental form of the holomorphic curve. As
alternating holomorphic curves are assumed to be not totally geodesic, 8 is nonzero.

In the equivariant setting, stability of the Higgs bundle implies the section § is
not 0 when 0 < deg(B) < g — 1, see Proposition 5.6. On the other hand, setting
B = 0 gives rise to polystable Higgs bundles if and only if 0 < deg(B) < g—1. Such
Higgs bundles are given by

5 5
1 e g e T~ o
K0 KkteB<_ kBT TkBl__ Bt

1 1 —

(MBS
NS

They correspond to equivariant holomorphic curves (p, f) with zero second funda-
mental form, and hence the image of f is a totally geodesic holomorphic disk in
H*2. Such a holomorphic disk is the intersection of H*? with a copy of S(H'),
where H' is a split-quaternion subalgebra of @’. In particular, p factors through
the stabilizer of H' which is isomorphic to SO(2,2) by Lemma 2.5.

The SO(2,2)-representation obtained can be described explicitly. Choose a
square root K2 of the canonical bundle and let (F, ¢1) and (Fa, 2) be the follow-
ing SL(2,R) Higgs bundles

(Fp1) = K=
(€1, ®4) is the Higgs bundle corresponding to the Fuchsian representation p; uni-

formizing X, while the second one corresponds to a representation py : Mm% —
SL(2,R) with Euler class g — 1 — d. Moreover, we have

§ 5
e i~ . T~
B\%’C B KB-1 B! :(.F1®.F2,<,01®Id+1d®§02),

[NIE

meaning that, under the 2-to-1 cover SL(2,R) x SL(2,R) — SO¢(2,2) coming from
the tensor product of the standard representation, we have p = p; ® po.
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Finally, we describe how these totally geodesic holomorphic curves arise as limits
of alternating ones. Given a G,-Higgs bundle (£, ®) of the form (26) with 0 <
deg(B) < g — 1, consider the C*-family given by [£,t®], for t € C*. Acting by the
gauge g; = diag(1,¢t71,¢,1,t71,¢,1), we see that (€,t®) is equivalent to

5 5
//7\—1 -1 -1
B\%BK JK\IXO\I%K B~K B~

-3 e e -4

In particular, [€,¢®] corresponds to an equivariant alternating holomorphic curve
[pt, fi] € Ha(X) for 0 < d < g — 1. Taking the limit as ¢ goes to 0, we get that
[pt, f+] converges to an equivariant totally geodesic holomorphic curve.

Recall from Theorem 5.4 that for 0 < d < g — 1 the spaces Hq(X) are biholo-
morphic to the quotient of the complement of the zero section of a rank 59 — 5 —d
vector bundle by the action of +Id. By the above discussion, we see that the totally
geodesic holomorphic curves correspond to the zero section of this vector bundle.
In particular,

(29) Ha(S) C Ha(D) = T(2),

where the fiber over X € T(X) of Hq() is the quotient by +Id of the rank 5g—5—d
vector bundle. By construction Hq(X) \ Hq(X) is the zero section of this vector
bundle and corresponds to totally geodesic equivariant holomorphic curves.

6. CYCLIC SURFACES AND INFINITESIMAL RIGIDITY

In this section, we introduce the notion of cyclic surfaces (Definition 6.4), which
is slightly more general than the one introduced by Labourie in [19]. Cyclic surfaces
are special types of holomorphic curves in a homogeneous space X which we call
the cyclic space (Definition 6.2). The cyclic space in particular fibers over both
H*? and the Riemannian symmetric space Sym(Gj). An important property of
cyclic surfaces is that their projections to H*? are (possibly branched) alternat-
ing holomorphic curves and their projections to Sym(G}) are (possibly branched)
minimal surfaces whose underlying harmonic bundle is cyclic.

To ensure non-branched immersions in both cases, we restrict to the class of a;-
cyclic surfaces. We prove that aq-cyclic surfaces arise from the Frenet lift of a unique
alternating holomorphic curve in Theorem 6.7. We then use this interpretation to
prove that equivariant alternating holomorphic curves [p, f] are infinitesimally rigid
in Theorem 6.8.

6.1. Lie theory. Fix a maximal torus T® in GS and denote by (© its Lie algebra.
Let A C (t©)* be the set of roots and, for any v € A, denote by g~ the corresponding
root space. The root space decomposition is then

gg =t‘e @ gy
veA

Writing go = t€, we have that [g.,g5] C g,4s for any v and § in AU {0}. In
particular, if v+ § is not in AU {0} we have [g,, gs] = 0.
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Choosing a subset AT C A of positive roots defines two simple roots {ay,as}
where o is the short root. Explicitly, we have

AJF = {Oll,OéQ,Ckl + a2,2a1 + a2,3a1 + a2,3a1 + 20[2}.

(6%)

Any root v € AT is uniquely written as v = nay + mas with n,m € N; we define
the length of v as

() :==n+m.
The longest root is 1 := 3a3 + 29 which has length 5. For any k € Zg set
O g ifkAO
g = § =k .
t€ if k=0

The cyclic grading is then defined to be the Zg-grading

(30) 95 = P o

k€Zg
In particular, we have g1 = g_a, ® g—a, © gy-

Lemma 6.1. There exists a Cartan involution 6 on g5 such that 0(gx) = g_ for
any k € Zg.

Proof. This can be proved by choosing a Chevalley basis (see [19] for more details).
([l

Fixing such a Cartan involution, we denote by K the associated maximal com-
pact subgroup of GS and by T = T® N K the maximal compact subgroup of TC.
In particular, K is the compact real form of G§ and Sym(GS) := GS/K is the
Riemannian symmetric space of G5.

Denote the Lie algebra of T by t. The cyclic grading (30) gives an Ad(T)-
invariant splitting

(31) §-toits @ o
keZs\{0}
We will denote by t+ the direct sum it ® @kezﬁ\{o} k-
Define the C-linear involution o of g5 by

olg. = (=1)"1dg,, k € Z.

Since the grading is even, one easily checks that o is an automorphism of gg.
Moreover, o commutes with 6 and the corresponding real form A := ¢ o 6 has fixed
point the Lie algebra of Gj.

One can be more explicit in the description of the objects above. Consider the
basis (f_3, f—2,..., f3) of F(O') ® C as in equation (7), and let F}, = spanc{fi}
for each k. The complex quadratic form q identifies F¥ with F_, for any a while

the map (z,y) — \/—%x x y identifies F_o with F_3 ® Fy. The subgroup of G
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preserving the splitting F_3 @ F_o @ - -- @ F3 is a maximal torus TC. In particular,
the vector space EBkeZG\{O} g, can be seen as the tangent space to GS/TC at the

point eT® and thus embeds in EB,#Z Hom(Fy, F}). Furthermore, any root space
g, embeds in @2;1_3 Hom(Fy, Fiy1) where [ = {(). We can thus represent any
element (a,b,¢) € g_a, B 9—a, ® gy = g1 as

c c

—

3 o Fa  JFo B F
i b a a b i
2@ 2@

(32) F_ F3a

where, as in (26), the map —1a: F_5 — F_ is defined by —$a(f-3) = —3a(fo) x
f-3

6.2. Cyclic surfaces. We continue to use the notation from the previous section.
Definition 6.2. The cyclic space X is the homogeneous space G5 /T.

The natural projection G5 — X is a principal T-bundle. For any linear action
of T on a vector space V, we denote by [V] = GS x V the associated vector bundle
T

over X.
Let D € QY(GS,gS) be the Maurer-Cartan form on GS. The Maurer-Cartan
equation is then

(33) dD + %[D/\D] ~0.

Using the Ad(T)-invariant splitting of equation (31), we can postcompose D with
the projection on each factor. The projection onto t gives a connection A on the
principal T-bundle GS. The 1-form w := D — A vanishes on the vertical tangent
space of G5 — X and thus descends to a nowhere vanishing 1-form on X with
values in the associated bundle [t']. In particular, the w identifies TX with [t1].
Since the splitting t+ = it @ @Drczq\ 0y 9k is T-invariant, we obtain

(34) TX=ft|le P I[o.

keZs\{0}

The involutions 6, o and X of g5 extend equivariantly to involutions on TX which we
denote with the same symbols. Since ) is an automorphism of g5, the distribution
in X given by the fixed points of X is integrable and its leaves correspond to orbits
of subgroup of GS conjugated to Gb.

For any k € Zg \ {0} we denote by wy, € Q*(X, [gx]) the projection of w on [gg].
Similarly, for any root -y, we denote by w;i¢ and w, the projection of w on [it] and
[g-] respectively. Projecting Maurer-Cartan equation on [t] and [gx] for k # 0, we
get

Fy+ %Ziﬂ-:o[wi Awjlt =0,

(35) Ay o1

dwr + 524 joplwi Aws] =0,
where [.,.]' is the composition of the Lie bracket with the orthogonal projection
on t.
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Definition 6.3. The cyclic distribution D C TX is the intersection of the fixed
points of A with [g_1 @ g1].

The T-equivariant endomorphism
J:i9g1®91 —— 9100
(1[,', y) — (_ixa ly)

commutes with A and squares to —Id. Thus, it induces an almost complex structure
J on D.

Given a smooth oriented surface S, an orientation preserving smooth map f :
S — X will be called a holomorphic curve in X if f is tangent to the cyclic
distribution and df (TS) is J-invariant. Given k € Zg \ {0}, we denote by dfy, the
1-form wy,(df) with value in f*[gg]. Similarly, for any root v € A, we denote by df,
the form w, (df).

Definition 6.4. Let f: S — X be a holomorphic curve,

e fis a cyclic surface if df_,, and df_,, are not identically zero,
e fis an aj-cyclic surface if it is a cyclic surface and df_,, is nowhere van-
ishing.

Remark 6.5. In [19], a cyclic surface is assumed to have df_,, nowhere vanishing for
all simple roots «;. When considering cyclic surfaces which are equivariant under
surface group representations, this assumption forces the representation to be in
the Hitchin component. Insisting df_,, is nowhere vanishing for only one simple
root allows more flexibility, and is still strong enough to ensure the infinitesimal
rigidity of Theorem 6.8. This loosening of the definition also appears in [6]. In [§],
we consider a more general setup which guarantees infinitesimal rigidity.

6.3. Cyclic surfaces and cyclic harmonic bundles. We now describe how
cyclic surfaces are a differential geometric interpretation of G-cyclic harmonic bun-
dles. Given a cyclic surface f : S — X, denote by V = f* A the pull-back connection
on f*TX.

Lemma 6.6. Let f: S — X be a cyclic surface, then

(1) There is a unique complex structure j on S such that, for any root space g
in g1, the form df,, has type (1,0). In particular ¢ = df1 is of type (1,0).
(2) Up to postcomposing f with an element in GS, the map f takes value in a
G,-orbit.
(3) The Maurer-Cartan equations are equivalent to
{Fv —lon6(@) =0

)

Ovp =0
where Oy is the (0,1)-part of dV .

Proof. For the first item, f is an immersion away from a discrete set D. Thus,
there exists a unique complex structure j on S\ D such that df o] = J odf. The
complex structure j extends uniquely on S. The result then follows from the fact
that J is the multiplication by i on [g1] = [g—a ® g—p @ @,] so the projection on
each [g,] is holomorphic.

The second item follows from the fact that D is tangent to the distribution fixed
by A whose leaves are orbits of groups conjugated to Gb.
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For the third item, note that the only nonzero terms in the pullback of equation
(35) are in degrees 0, +1, +2. Using df_; = —0(df1), we see that the equations in
degrees —1 and —2 are equivalent to the ones in degrees 1 and 2 respectively. The
equations in degrees 0, 1,2 are respectively

Fo—[6A0(@) =0,  dyé=0  and  6AG=0.
Since ¢ is a (1,0)-from, ¢ A ¢ is automatically satisfied and dy ¢ = Iy ¢. O

Denote by Sym(GS) and Sym(Gh) the (Riemannian) symmetric space of G
and G}, respectively. We see Sym(G}) as a totally geodesic subspace of Sym(GS).
Denote by 7 : X — Sym(GS) the natural projection. Note that a cyclic surface
induces a Riemann surface structure X = (5,j) on S.

Theorem 6.7. Given a cyclic surface f : S — X, the map wo f : S — Sym(GS) is
a branched minimal immersion whose image is contained in Sym(Gj). Moreover,
the corresponding G, -harmonic bundle on the induced Riemann surface has the form
(25) with o and 5 non-zero.

Conversely, given a Gh-cyclic harmonic bundle on a Riemann surface X of the
form (25) with o and B non-zero, let p be the holonomy representation of the flat
connection. Then the cyclic harmonic metric defines a conformal p-equivariant
harmonic map h, : X — Sym(G5) which lifts to a p-equivariant cyclic surface
in X.

Proof. To prove that m o f is a branched minimal immersion, observe that, when
X is equipped with the pseudo-Riemannian metric induced by the Killing form,
the map 7 : X — Sym(G}) is a pseudo-Riemannian submersion whose horizontal
distribution is given by

HX ={z € TX, () = —=a}.

In particular, the horizontal distribution HX 1is naturally identified with
7*TSym(GS). Moreover, this identification also identifies the restriction of A to
HX with the pull-back by 7 of the Levi-Civita connection on Sym(G}) (this can
be easily seen using the Kozsul formula).

Since the cyclic distribution D is a subdistribution of HX, the (1, 0)-part of the
differential of 7 o f is identified with ¢ = df; which is holomorphic by item (3) of
Lemma 6.6. It follows that m o f is harmonic.

To prove that 7 o f is a minimal immersion, we compute its Hopf differential.
But since f is tangent to the horizontal distribution, the Hopf differential of 7 o f
is equal to the one of f, which is 0 since df; is tangent to the vector bundle [g4]
which is isotropic with respect to the Killing form. So 7 o f is weakly conformal
and harmonic so is a branched minimal immersion.

The fact that 7o f lies in Sym(G}) is a direct consequence of item (2) of Lemma
6.6.

Consider now the associated G)-Higgs bundle (£, ®) on (S,j). In particular, £
is associated to the principal K®-bundle obtained by complexifying the principal
K-bundle (7o f)*G, (where we see G} as a principal K-bundle over Sym(G})). The
fact that 7o f lifts to X means that € reduces to a holomorphic T¢-bundle which
is compatible with the metric. Under this reduction, the Higgs field ® = d(wo f)1°
lies in the bundle associated to the adjoint action of T® on g;. According to (32),
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this exactly means that (£, ®) has the form of (25) with «, 8 and § corresponding
respectively to df_a, , df—«, and df,.

Conversely, a diagonal harmonic metric on (€, ®) corresponds to a harmonic
map to Sym(Gj) which is compatible with the holomorphic TC-structure on &.
This means that the harmonic map lifts to a map f : (S,j) — X. The Higgs field
® is identified with df'"* which takes value in [g;].

By construction, the underlying K-bundle reduces to a T-bundle. This exactly
means that £ splits holomorphically as a direct sum of line bundles. Similarly, the
fact that the lift is cyclic means that ® as the form of (25), where o = df_,,, =
df_q, and 0 = df,,. O

6.4. Infinitesimal rigidity. Let X be a closed oriented surface. An equivariant
cyclic surface is a pair (p, f), where p : m1(X) — G} is a representation and f : P
X is a cyclic surface which is p-equivariant.

A smooth family of equivariant cyclic surfaces is a smooth map

F:Yx(—ee) > X

such that the map f; := F(-,t) is a cyclic surface which is p;-equivariant where
the correspondlng [p] : (—€,€) = X(X,Gh) is smooth. We denote by (p, fi)ie(—e,e)
(

€
such a family, fo = dF 0¢)|,—, the vector field along fo and [po] = do[p](0;).
Jie

Theorem 6.8. Let (pt, ft)ie(—e,c) be a smooth path of equivariant o -cyclic surfaces
such that [po) = 0. Then there exists a smooth path (g:,) € G4y x Diffo(X) such

that fé = 0 where f{ = g: o fi o ;.

The proof follows (and simplify) the ideas introduced by Labourie in [19]. A
tangent vector ¢ to a smooth family (f;)ic(—e,e) of cyclic surfaces is called a Jacobi
field. We see ¢ as a section of fFTX. Denote the projection of ¢ on f*[g_,] by
(—«- Proposition 6.9 is the key technical result used to prove Theorem 6.8. We
postpone the proof until the final section.

Proposition 6.9. Let [ : Y X bea cyclic surface and let ¢ be a Jacobi field
along f. If ¢ is w1 (3)-invariant and (_, = 0, then ¢ = 0.

Proof of Theorem 6.8 using Proposition 6.9. Consider a smooth family
(ptu ft)te(fe,e)

of equivariant a;-cyclic surfaces such that [gg] = 0. In particular, there exists a
smooth path (g¢)ic(—e.) in G5 such that %‘t:o giprgr = 0. Hence, the tangent
vector to the family (g: © fi)ie(—ec,e) is a m1(X)-invariant Jacobi field.

By assumption, df_,, is never vanishing. So there exists a unique vector field
X on % with df—0,(X) = —C_q,. Let ¢ be the flow of X at time ¢ and define
fi = gt o ft o9p. In particular, each f/ is a giprg; !_equivariant a;-cyclic surface,
and the tangent vector to the family (f/) is a m1(2)-invariant Jacobi field ¢’ which
satisfies ¢’ ,, = 0. The result follows from Proposition 6.9. (]

6.5. Infinitesimal deformations of cyclic surfaces. The final section is devoted
to the study of infinitesimal deformation of cyclic surfaces. In particular, we prove
Proposition 6.9. We follow the idea of [19], but our proof simplifies many relevant
computations. We hope this sheds light on the important ingredients to ensure
local rigidity.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



HOLOMORPHIC CURVES AND CYCLIC SURFACES 6509

Consider a Lie algebra bundle 7 : F — M on a manifold M, and let V be a
compatible connection (that is V is a derivation for the Lie bracket). Consider
O = {b1,...,0;} with 6, € Q*(M, E). A solution to the Pfaffian system © is then
amap f: N — M such that f*0; = 0 for all §;, € ©. Let Zg be the differential
ideal generated by ©.

Lemma 6.10. A map f : N — M is a solution to the Pfaffian system © if and

only if f*a =0 for any a € Tg.

Proof. The direct implication follows from the fact that f*[aAB] = [f*aA f*5] and

[fdga =dy f*afor V= f*V. The converse follows from the fact that © € Zg. O
The following is proved in [19, Proposition 7.14]:

Proposition 6.11. Let (fi)ie(—c,c) be a smooth path of solution of the Pfaffian
system © and let ¢ = %|t:0ft. Then for any a = f*& with & € Zg we have
dv o Lo = —1¢ © dYa.

Recall that the Maurer-Cartan equation implies that the connection D = A +w
on [t} TX is flat, so [{] ® TX is isomorphic to the trivial Lie algebra bundle X x g.
Consider the Pfaffian system

0 := {wy + (w_1),wi,wj for j € Zg \ {0, +1}}.
Lemma 6.12. The form [w_1 A w_1] belongs to the ideal Zg.

Proof. The form w_» is in ©, so d4w_» is in Ze. But equation (35) for k = 2 gives

1
dAw_g + 5 Z [wi A w]'] =0.
itj=—2
In Zg the equation i+j = —2 implies ¢ = j = =1l or 4,5 ¢ {£1}. But fori,j ¢ {£1}
we have w;,w; € © 50 [w; Aw;] € Tg. In particular, the above equation implies that
[w_1 Aw_1] € To. O

One easily checks that a map f:.S — X is tangent to the cyclic distribution D
if and only if it is solution to the Pfaffian system ©.

Definition 6.13. Let f : S — X be a cyclic surface and V = f*A. A Jacobi field
of f is a section ¢ of f*TX such that, for any a = f*& with & € Zg, we have

dv o Lo = —1¢ © d¥a.

Since cyclic surfaces are solution to the Pfaffian system ©, Proposition 6.11
implies that a vector field tangent to a deformation of cyclic surfaces is in particular
a Jacobi field.

Let f: S — X be a cyclic surface with ¢ = df; and ¢' = df_; = —60(df,) and let
j be the complex structure on S associated to f. Define

[®] = @j;éo,:l:l[gj] and Q= Zj;éo,:tl Wi«

A Jacobi field ¢ which is tangent to a path of cyclic surfaces f; with fo = f
decomposes as

(=C+G+C1+7
where (; = t¢(f*w;) is a section of f*[g;] and Z = 1¢(f*Q) is a section of f*[&].
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Proposition 6.14. A Jacobi field  of a cyclic surface satisfies (o =0, A(Z) =Z
and 1 = —0(¢-1).

Proof. The second item of Lemma 6.6 implies that, up to postcomposing f; by
an element in G5, the cyclic surfaces f; are contained in a given Gh-orbit. Since
the tangent space of such an orbit is Fix(\), we have that A(¢) = ¢. But A({) =
—Co—0(¢—1) — 6(¢1) + A(Z). Projecting on [it] gives (o = 0, projecting on & gives
A(Z) = Z, while projecting on [g1] gives ;1 = —6(¢-1). a

The following appears in [19, Proposition 7.6.1]. For completeness, we repeat
them here.

Lemma 6.15.
(1) d¥Z =[G+ Z) A® +[(C-1+ Z) A oT]®.
(2) [PvCan o =[1Z A gt AT
Proof. For the first item, we have by Definition 6.13
42 = d% (1c(*)) = —1c(d% (£ Q).

However, projecting Maurer-Cartan equations on [&] gives

1 1 1
—dAQ: 5 [Q/\Q]QS+[WO/\Q]+[WO/\Q]+§ [wl/\wl]—l—i[w_l/\w_1]+[w1/\(2]6+[w_1/\Q]Qj.

Pulling back by f, using f*Q = f*wo = 0 and applying ¢¢ yields
—1¢(d¥ (f*2)) = [(C1 + Z) A ¢]® +[(C-1 + 2) A T]°.

For the second item, first compute

(36) A (e f*lwoa Awoa]) = 2dV[C1 A T] = 2[09¢ 1 A 9T,

where we used the fact that ¢! has type (0, 1) and satisfies d¥ ¢' = 0. On the other
hand, using Lemma 6.12 we have

(37) d¥ (e[ w1 Aw-i)) = —e¢ (¥ (flw-1 Aw-1])) = =2[ee(dY (f*w-1)) A 6T].

But the Maurer-Cartan equations on [g_1] give
1
—dAw_ 1 = [wo Aw_1] +[QAw]% T + @A

This yields —¢c(dY (f*w_1)) = [Z A ¢]®-1. Plugging back in equation (37) and
comparing with equation (36) give the result. O

Proposition 6.16. A Jacobi field of a cyclic surface satisfies
= ®
OvOvZ = [[ZN|NOT]",
where the superscript & denotes the projection on f*[®].

Proof. Taking the (0, 1)-part in the first item of Lemma 6.15 gives OvZ = [((_1 +
Z) A ¢T1®. So, B
OvOvZ = [8VC—1 A ¢T}® + [8vZ A ¢T]®.
By Lemma 6.15 we have
Ov0vZ =[[Z N g* A TN® +[[(G+ 2) A gl® A oT]®.

Note that [[¢1 A @] A ¢T] is valued in f*[g1]. So its projection on f*[&] vanishes.
Moreover, [Z A ¢] is valued in f*[g_1] ® f*[&], so we obtain dydvZ = [[Z A ¢] A
#1]®. ]
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In the case S = ¥ and ¢ is m1(¥)-invariant, the Bochner technique gives the
following.

Proposition 6.17. Suppose ¢ is a 71 (2)-invariant Jacobi field, then Z = 0.

Proof. Denote the Killing form on g$ by B and (-,-) = B(6(-),-) the corresponding
Hermitian metric. By a slight abuse of notation, we denote in the same way their
extension to the bundle of forms with value in f*TX. On the one hand, we have

1/<z,avévz> :i/ B(6(2),dvOvZ)
» >
_ _1/23(dv9(2),5v2)
- _1/23(9(dv2),5v2)
I / (9v2,352)

<0,

where in the second line we used Stokes theorem, for the third we used the fact that

V preserves 0 and for the last one, we used the fact that in a local holomorphic

coordinate z, the (1,1)-form (v Z, Oy Z) is a nonnegative function times idz A dz.
On the other hand, by Propositions 6.14 and 6.16, we have

; / (Z.090v7) i / B (6(2), [1Z A ] A 61])
5 5
:i/ZB([a(Z)Aw],[Zmb])
_ _i/EB(a(qus]),[Zw])
:—i/2<[ZA¢HZ/\¢]>

Z Oa
where we used that, locally, ([Z A¢], [Z A¢]) is a nonnegative function time idzZ Adz.
This thus gives Z A ¢ = 0. Applying the involution A and using A(¢) = —0(¢) =
o', we also obtain Z A ¢' = 0. To show that Z = 0, we compute the component Z,

along f*[g,] vanishes for each root 7. To do so, start by projecting the equation
[Z A¢] =0 on f*[ga,]. Using the root system of g5, we obtain

[Z A ¢]9a2 = [Z0¢1+(12 A df—al] = 07
but since df_,, is an isomorphism, this gives Z,, 14, = 0. Similarly, we have

[Z A ¢}ga1+a2 = [Z2061+C¥2 A df—al] =0,

SO Zaa,+a; = 0. The same argument gives Z3n,4+q, = 0. For the projection
on negatives roots, we just use A(Z) = Z and the fact that that A maps [g,] to
[9-+]- O

We are now ready to prove Proposition 6.9.
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Proof of Proposition 6.9. Using Propositions 6.16 and 6.17, we get that a 71 (X)-
Jacobi field ¢ on ¥ arising from a deformation of cyclic surfaces has the form
¢ =( + (_1. In particular, Lemma 6.15 gives

[C1 A g =0.

Assume (_,, = 0, and project the above equation on f*[g_qa,—a,]. This gives

[(—az A df-a,] = 0.

Since df_,, is not identically zero, we get that (_,, = 0 away from the zeroes of
df .- By holomorphicity of df_,,, this set is disrete, and {_,, = 0 everywhere by
continuity.

Finally, the last component of (i is (, = (3a,+2a,- Projecting [(; A ¢] = 0 on
f*[g3o¢1+a2} giVGS

[C’r] A df,a2] =0.
Again, since df_, is holomorphic and not identically 0, we get that ¢, = 0. Finally,
using (1 = —6(¢1), we conclude that ¢ = 0. 0
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