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Abstract. The spaceH4,2 of vectors of norm−1 in R4,3 has a natural pseudo-

Riemannian metric and a compatible almost complex structure. The group of

automorphisms of both of these structures is the split real form G′
2. In this

paper we consider a class of holomorphic curves in H
4,2 which we call alter-

nating. We show that such curves admit a so called Frenet framing. Using this

framing, we show that the space of alternating holomorphic curves which are

equivariant with respect to a surface group is naturally parameterized by cer-

tain G′
2-Higgs bundles. This leads to a holomorphic description of the moduli

space as a fibration over Teichmüller space with a holomorphic action of the

mapping class group. Using a generalization of Labourie’s cyclic surfaces, we

then show that equivariant alternating holomorphic curves are infinitesimally

rigid.
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1. Introduction

The pseudohyperbolic space H4,2 is the set of vectors of norm −1 in a real vector
space equipped with a nondegenerate quadratic form of signature (4, 3). There is a
natural signature (4, 2) pseudo-Riemannian metric on H4,2. Multiplication in the
split octonion algebra defines a nonintegrable almost complex structure on H4,2

which is compatible with the pseudo-Riemannian metric. This is the noncompact
analogue of the famous almost complex structure on the 6-sphere. The group which
preserves this structure is the split real Lie group G′

2 of type G2. In this paper, we
consider a class of J-holomorphic curves inH4,2 which we call alternating. Similar to
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parameterized curves in R3, holomorphic curves in H4,2 generically admit a Frenet
framing. The alternating condition concerns the signature of the subbundles in the
Frenet framing, and can be equivalently described using cyclic Higgs bundles. We
focus especially on alternating holomorphic curves which are preserved by a surface
group, and describe the resulting moduli space.

Let Σ be a closed oriented surface of genus g ≥ 2. For a real semisimple Lie group
G, the character variety X (Σ,G) is the space of G-conjugacy classes of reductive
group homomorphisms π1(Σ) → G from the fundamental group of Σ into G. For
some Lie groups, the character variety has distinguished connected components
which generalize many features of the Teichmüller space of Σ. Such components will
be called higher rank Teichmüller spaces. These spaces have been studied in detail
by a variety of authors from various perspectives, see for example [14, 18, 30, 36].

When the rank of G is two, the relevant Lie groups are locally isomorphic to
SL(3,R), SO(2, n) and G′

2; the relevant spaces are known as the Hitchin components
for SL(3,R), SO(2, 3) and G′

2, and the space of maximal representations for SO(2, n).
Each of these spaces admits a mapping class group invariant complex analytic
parameterization as a fibration over the Teichmüller space of Σ. This was described
independently by Loftin [24] and Labourie [20] for SL(3,R) and Labourie [19] for
Hitchin components; for maximal representations it was described by Alessandrini
and the first author [2] and Tholozan and the authors [7].

The complex analytic description has two inputs, a parameterization of the
spaces using Higgs bundles on a fixed Riemann surface and the uniqueness of a
π1(Σ)-invariant minimal surface in the Riemannian symmetric space of the group.
A central tool in the rank 2 analysis is the restriction to a set of Higgs bundles which
have a cyclic group symmetry. When the rank of the group is at least 3, the relevant
Higgs bundles do not necessarily have a cyclic symmetry. In fact, Marković, Sag-
man and Smillie recently showed that, in rank at least 3, there are representations
in higher rank Teichmüller spaces which have multiple π1(Σ)-invariant minimal
surface in the Riemannian symmetric space [25, 26, 31]. Among other things, this
breakthrough suggests that representations arising from cyclic Higgs bundles de-
serve special attention.

For SL(3,R) Hitchin representations, the uniqueness of the minimal surface was
deduced from the uniqueness of an invariant affine sphere. Similarly, for SO(2, n)
maximal representations, the uniqueness of the minimal surface follows from the
uniqueness of an invariant maximal spacelike surface in the pseudohyperbolic space
H2,n−1. In both cases, these surfaces characterize the appropriate higher rank
Teichmüller space. That is, they only exist for representations in the SL(3,R)-
Hitchin component or for maximal SO(2, n)-representations, respectively. In [4],
Baraglia pioneered the use of cyclic Higgs bundles to study Hitchin representations
in rank 2. In particular, he recovered the affine sphere description for SL(3,R) and
proved that Hitchin representations into G′

2 define equivariant holomorphic curves

f : X̃ → H4,2.
The equivariant holomorphic curves constructed by Baraglia satisfy the alter-

nating condition defined in this paper. However, we prove that preserving an alter-
nating holomorphic curve in H4,2 does not characterize the G′

2 Hitchin component.
As a result, the theory of alternating holomorphic curves identifies representations
π1(Σ) → G′

2 which are not Hitchin representations but share some features with
Hitchin representations. This is similar to what happens for SO(2, 3). Namely,
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SO(2, 3) Hitchin representations are maximal, and so preserve a maximal space-
like surface in H2,2, but this does not characterize SO(2, 3) Hitchin representations
since there are non-Hitchin maximal SO(2, 3) representations. Unlike the SO(2, 3)
situation, the only higher rank Teichmüller space for the group G′

2 is the Hitchin
component. In particular, little is known about the non-Hitchin G′

2 representations
which preserve an alternating holomorphic curve. It would be interesting to deter-
mine whether these G′

2 representations are Anosov, and to study the uniqueness
properties of the alternating holomorphic curves.

1.1. Alternating holomorphic curves. Let S be an oriented surface, and
(H4,2,J) be the almost complex manifold described above. An immersion f : S →
H4,2 is called a holomorphic curve if the image of the tangent bundle is J-invariant.
This induces a Riemann surface structure on S. As mentioned above, holomorphic
curves in H4,2 generically admit a Frenet framing. We say that f : S → H4,2

is alternating if the tangent bundle of S is positive definite and the image of the
second fundamental form is negative definite. It turns out that when the second
fundamental form is nonzero, its image defines a subbundle of rank two, see §3.4
for details. Alternating holomorphic curves are in particular maximal spacelike
surfaces.

By construction, the Frenet framing defines a lift to a homogeneous space X

which we call the cyclic space. Surfaces in X arising from the Frenet lift of alter-
nating holomorphic curves are very particular and define what we call α1-cyclic

surfaces, a slight generalization of the cyclic surfaces introduced by Labourie in
[19]. A holomorphic interpretation of the Frenet framing defines a special type of
cyclic G′

2 harmonic bundle on the Riemann surface induced by f . That is, a cyclic
G′
2-Higgs bundles equipped with a cyclic harmonic metric, see §4.5.
To establish a 1-1 correspondence between isomorphism classes of these objects,

it is necessary to consider equivariant alternating holomorphic curves. Such objects

are pairs (ρ, f), where ρ : π1(S) → G′
2 is a representation and f : S̃ → H4,2 is an

alternating holomorphic curve which is ρ-equivariant. There are natural notions of
isomorphisms in this setting.

Theorem A. Let S be an oriented surface. Then the Frenet lift defines a one-to-

one correspondence between isomorphism classes of

(1) equivariant alternating holomorphic curves in H4,2,

(2) equivariant α1-cyclic surfaces in X, and

(3) G′
2 cyclic harmonic bundles of the form (25).

Remark 1.1. Note that Theorem A does not assume the surface S is compact. This
is why we have G′

2-harmonic bundles rather than polystable G′
2-Higgs bundles. In

particular, the induced Riemann surfaces could be biholomorphic to the complex
plane. Existence of cyclic harmonic metrics has recently been studied by Li and
Mochizuki [23].

Now consider a closed oriented surface Σ of genus g ≥ 2. The set of equivalence
classes of equivariant alternating holomorphic curves (ρ, f) is denoted by

H(Σ) = {(ρ, f) equivariant alternating holomorphic curves}/ ∼,

where the equivalence is given by the natural action of G′
2×Diff0(Σ). The mapping

class group Mod(Σ) of Σ naturally acts on H(Σ). Furthermore, forgetting the map
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f , and taking the induced Riemann surface structure of f defineMod(Σ)-equivariant
maps to the G′

2-character variety and the Teichmüller space of Σ

H(Σ)

Ã

��

Hol
�� X (Σ,G′

2)

T (Σ)

For closed surfaces, isomorphism classes of G′
2-cyclic harmonic bundles on a fixed

Riemann surface X = (Σ, j) are identified with isomorphism classes of polystable
G′
2-cyclic Higgs bundles. In Theorem 5.4, we parameterize isomorphism classes of

polystable G′
2-Higgs bundles which arise from equivariant alternating holomorphic

curves. Combining this description with Simpson’s construction of the moduli space
of Higgs bundles in families [34] (see also [2]) leads to a complex analytic structure
on H(Σ).

Theorem B. The moduli space H(Σ) has the structure of a complex analytic space.

With respect to this structure, the mapping class group Mod(Σ) acts analytically

and the projection map π : H(Σ) → T (Σ) is a surjective analytic map with smooth

fibers. Moreover, the space H(Σ) decomposes as

H(Σ) =
∐

d∈{0,··· ,6g−6}
Hd(Σ),

where Hd(Σ) has complex dimension d + 8g − 8. The fiber of π : Hd(Σ) → T (Σ)
over a Riemann surface X is

• a rank (2d−g+1) holomorphic vector bundle over the (6g−6−d)-symmetric

product of X when g ≤ d ≤ 6g − 6, and
• a bundle over an H1(X,Z2)-cover of the 2d-symmetric product of X whose

fiber is (C5g−5−d \ {0})/± Id when 0 ≤ d ≤ g − 1.

For the extremal values d = 6g − 6 and d = 0, the image of the holonomy map
can be classified. When d = 6g − 6, the space H6g−6 → T (Σ) is a holomorphic
vector bundle whose fibers over a Riemann surface X are holomorphic differentials
of degree 6. In this case, the holonomy map establishes a diffeomorphism with
the G′

2-Hitchin component. When d = 0, the space H0(Σ) has 22g connected
components, and the image of the holonomy map consists of all representations
ρ : π1(Σ) → G′

2 which factor through the nonsplit Z2-extension of SL(3,R) and
whose SL(3,R)-factor is a Hitchin representation, see §5.5 for more details. For
0 < d < 6g − 6, the representations in the image of the holonomy map have not
been studied previously.

Holomorphic curves in the almost complex 6-sphere were first studied by Bryant
in [5]. His work can be thought of as an analogue of our Higgs bundle description of
alternating holomorphic curves in H4,2, where the main difference is that we work
in the equivariant case and noncompact symmetric spaces instead of with compact
Riemann surfaces and compact symmetric spaces. In [12], Eschenburg and Vlachos
prove that a holomorphic curve in S6 is contained in S2 (the totally geodesic case),
a totally geodesic hypersurface S5 ⊂ S6, or spans the entire sphere (generic case).
Equivariant alternating holomorphic curves in H4,2 witness the same phenomenon.
They either span H4,2 or are in a totally geodesic H3,2 ⊂ H4,2, the latter case only
occurs in H0(Σ). Furthermore, for 0 ≤ d ≤ g − 1, the components Hd(Σ) contain
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natural degenerations of alternating holomorphic curves which lie in totally geodesic
copies of the hyperbolic disc.

Finally, we study the infinitesimal properties of the holonomy map Hol : H(Σ) →
X (Σ,G′

2). Specifically, we show that alternating holomorphic curves are infinitesi-
mally rigid.

Theorem C. For t ∈ (−ε, ε), let (ρt, ft) be a smooth path of equivariant alternating

curves such that [
•
ρ0] = 0 in the tangent space T[Ä0]X (Σ,G′

2). Then, at t = 0, (ρt, ft)

is tangent to the
(
G′
2 × Diff0(Σ)

)
-orbit through (ρ0, f0).

To prove Theorem C, we show that Labourie’s proof of infinitesimal rigidity of
the cyclic surfaces arising from Hitchin representations into split rank 2 Lie groups
can be adapted to our more general setting. In the process, we streamline many
of the main ideas and computations of [19]. A general theory of cyclic surfaces
and infinitesimal rigidity will appear in [8]. Theorem C should be thought of as
saying the holonomy map is an immersion. In particular, for a representation ρ in
the image of Hol, ρ-equivariant alternating holomorphic curves do not come in one
parameter families. In the case of G′

2-Hitchin representations, infinitesimal rigidity
is enough to prove global uniqueness of the equivariant alternating holomorphic
curve, this is not the case for the components Hd(Σ) when 0 < d < 6g − 6.

1.2. Related results. While this paper was being written, some analogous results
were proved. In [28], Nie studies equivariant alternating surfaces in Hp,q for (p, q) =
(2k, 2k) or (2k, 2k − 2). The name alternating in this paper was chosen because
of Nie’s work. Using different techniques, he proves an infinitesimal rigidity result
analogous to Theorem C under some assumptions. ForH4,2, Nie’s results apply to a
subset of SO(4, 3) representations. Interestingly, the intersection of this subset with
G′
2-representations is exactly the set of G′

2-Hitchin representations. In particular,
the overlap of the Nie’s results with Theorem C is exactly the case originally covered
by Labourie [19].

In [13], Evans studies holomorphic curves in H4,2 when the underlying surface
is biholomorphic to the complex plane. The holomorphic curves he considers are
alternating and, in many aspects, analogous to those equivariant for a Hitchin rep-
resentation. It would be interesting if similar analysis applies to general alternating
holomorphic curves from the complex plane.

1.3. Organization of the paper. In §2, we recall different constructions of the
split octonions and define the group G′

2. The almost-complex structure on H4,2, the
notion of alternating holomorphic curves and their Frenet framings are introduced
in §3. In §4, we recall the theory of G-Higgs bundle and G-harmonic bundle, then
specifying to the case of G = G′

2 and prove the equivalence between equivariant
holomorphic bundles and certain G′

2 cyclic harmonic bundles. In §5, we parameter-
ize the moduli spaces Hd(Σ) and establish properties of the extremal cases. In §6,
we develop the notion of cyclic surfaces and prove Theorem C.

2. Split octonions and the Lie group G′
2

In this section we discuss the algebra of split octonions and some of its properties.
We refer the reader to [3, 11] for more details. We start with the quaternions and
split quaternions.
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2.1. Quaternions and split quaternions. Recall that the quaternions are the
real associative algebra H generated as an R-vector space by {1, j, d, e} with the
relations1

j2 = d2 = e2 = −1 and j · d = −d · j = e.

On the other hand, the split quaternions are the real associative algebra H
′ gener-

ated as an R-vector space by {1, j, δ, ε} with the relations

j2 = −δ2 = −ε2 = −1 and j · δ = −δ · j = ε.

We have a vector space decomposition

H = R⊕	(H) and H′ = R⊕	(H′) ,

where R is the span of the unit 1 and 	 is the span of the remaining generators.
These spaces are the ±1-eigenspaces of the conjugation involution x 
→ x. The
projection onto the eigenspaces is given by taking real and imaginary parts x =
�(x) + 	(x), where

�(x) = 1
2 (x+ x) and 	(x) = 1

2 (x− x) .

On the imaginary spaces 	(H) and 	(H′), taking real and imaginary parts of
the product define nondegenerate symmetric bilinear forms 〈·, ·〉 with respective
signatures (0, 3) and (2, 1), and a skew symmetric product ×. Namely, for x1, x2 in
	(H) or 	(H′)

〈x1, x2〉 = �(x1 · x2) and x1 × x2 = 	(x1 · x2) .

Combining these structures defines volume forms Ω on 	(H) and 	(H′) defined by

Ω(x1, x2, x3) = 〈x1 × x2, x3〉.
In both cases, the group of algebra automorphisms acts trivially on the real

part, and so acts on imaginary subspace. Hence, the groups Aut(H) and Aut(H′)
respectively act on 	(H) and 	(H′) preserving 〈·, ·〉, × and Ω. Thus,

Aut(H) < SO(3) and Aut(H′) < SO(2, 1).

In fact, Aut(H) = SO(3) and Aut(H′) is the identity component SO0(2, 1) of
SO(2, 1).

2.2. The split octonions from split quaternions. The split octonions O′ can
be described by the Cayley-Dickson process on H′ or H. Both perspectives will be
useful but we start with the split quaternion description.

Definition 2.1. The split octonions O′ are the real algebra with underlying vector
space H′ ⊕H′ equipped with the product

(1) O′ = H′ ⊕H′ with (x1, y1) · (x2, y2) = (x1 · x2 − y2 · y1, y2 · x1 + y1 · x2) .

The group G′
2 is defined to be the group of algebra automorphisms of O′. It is the

split real form of the exceptional complex simple Lie group GC
2 .

1We do not use i, j, k since we will need i for complexified objects. Our convention is that

Greek letters square to +1 and Roman letters square to −1.
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We will write � = (0, 1) ∈ O′, and write a split octonion z = (x, y) as z = x+ y�.
Note that �2 = −1 and that, for any y ∈ 	(H′), we have

y� = y · � = (y, 0) · (0, 1) = (0, y) = −� · y.
Nonassociativity of the product can be seen by considering (j · δ) · � and j · (δ · �)

since

(j · δ) · � = (ε, 0) · (0, 1) = ε� and j · (δ · �) = (j, 0) · (0, δ) = (0,−ε) = −ε�.

However, one checks that any subalgebra generated by two elements of O′ is asso-
ciative. In particular, for any z1, z2 ∈ O′ we have

(2) z1 · (z1 · z2) = (z1 · z1) · z2.
We have a decomposition O′ = R⊕	(O′), where R is the span of the unit 1 and

	(O′) = 	(H′)⊕H′. These are the ±1-eigenspaces of the conjugation involution

z = x+ y� � �� z = x− y�.

Since any two distinct generators {j, δ, ε, �, j�, δ�, ε�} of 	(O′) anticommute, for all
z1, z2 ∈ 	(O′) we have

z1 · z2 = z2 · z1 = z2 · z1.
There is a nondegenerate symmetric bilinear form and a skew symmetric product
defined by

〈z1, z2〉 = �(z1 · z2) =
1

2
(z1 · z2 + z1 · z2)

and z1 × z2 = 	(z1 · z2) =
1

2
(z1 · z2 − z1 · z2).

Let q be the quadratic form on 	(O′) associated to 〈·, ·〉. Some immediate conse-
quences of these definitions of (	(O′),q,×) are:

Lemma 2.2.

• The signature of q is (4, 3) and {j, δ, ε, �, j�, δ�, ε�} is an orthonormal basis.

• z1, z2 ∈ 	(O′) are orthogonal if and only if z1 × z2 = z1 · z2.
• 	(O′) = 	(H′) ⊕ H′ is an orthogonal splitting, and the restriction of q to

	(H′) and H
′ has signature (2, 1) and (2, 2), respectively.

• For z1, z2 ∈ 	(H′) and w1, w2 ∈ H′, we have

z1 × z2 ∈ 	(H′) z1 × w1 ∈ H′ and w1 × w2 ∈ 	(H′).

• There is a three form Ω ∈ Λ3(	(O′)∗) defined by

(3) Ω(z1, z2, z3) = 〈z1 × z2, z3〉.

Remark 2.3. The algebra structure on O
′ is fully determined by (	(O′),q,×) since

for a1, a2 ∈ R and z1, z2 ∈ 	(O′) we have

(a1 + z1) · (a2 + z2) = a1a2 + 〈z1, z2〉+ a2z1 + a1z2 + z1 × z2.

The group G′
2 acts trivially on the real part. Hence, G′

2 acts on 	(O′) preserving
q, × and Ω. Since the algebraic structure of O′ is fully encoded in (	(O′),q,×),
G′
2 has the following description.
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Proposition 2.4. The group G′
2 is isomorphic to the group of linear transforma-

tions of 	(O′) which preserve q and ×. Such an automorphism also preserves Ω.
Derivations of × defines the Lie algebra

g′2 = {X ∈ End(	(O′)) | X(z1 × z2) = (X(z1)× z2) + (z1 ×X(z2))

for all z1, z2 ∈ 	(O′)}.

In particular, G′
2 < O(	(O′),q) ∼= O(4, 3) and g′2 ⊂ so(4, 3).

It follows from [11, Lemma 4.2] that there is a unique G′
2-invariant volume form

vol ∈ Λ7(	(O′)∗) such that

(4) 〈z1, z2〉 vol = ιz1Ω ∧ ιz2Ω ∧ Ω

for all z1, z2 ∈ 	(O′). Hence G′
2 < SO(4, 3). Explicitly, in the basis {f1, · · · , f7} =

{j, δ, ε, �, j�, δ�, ε�}, we have

Ω = 6
[
f∗
1∧(f∗

2∧f∗
3−f∗

4∧f∗
5−∧f∗

6∧f∗
7 )+f∗

2∧(f∗
4∧f∗

6+f∗
5∧f∗

7 )+f∗
3∧(f∗

4∧f∗
7−f∗

5∧f∗
6 )
]
,

and one checks vol = − 1
144f

∗
1 ∧ f∗

2 ∧ · · · ∧ f∗
7 .

Lemma 2.5. The subgroup of G′
2 which preserves the splitting 	(O′) = 	(H′)⊕H′

is isomorphic to SO(2, 2).

Proof. Let g = (g1 ⊕ g2) be an element of G′
2 which preserves the splitting 	(H′)⊕

H′. Since G′
2 preserves the quadratic form q, (g1, g2) ∈ O(	(H′),q) × O(H′,q).

Observe that the restriction of the 3-form Ω from (3) to Λ3(	(H′)) is nonzero.
Since G′

2 preserves Ω and the volume form from (4), we conclude that (g1, g2) ∈
SO(	(H′),q)× SO(H′,q).

To conclude the proof, G′
2 preserves the product × and

j = �× j�, δ = �× δ� and ε = �× ε�.

Hence, any g2 ∈ SO(H′,q) uniquely determines g1 ∈ SO(	(H′),q). �

2.3. Split octonions from quaternions. The split octonions can also be defined
using the quaternions:

(5) O′ = H⊕H with (a1, b1) · (a2, b2) = (a1 · a2 + b2 · b1, b2 · a1 + b1 · a2) .

We will write (a, b) = a+ bλ, where λ = (0, 1). Note that λ2 = +1.
An isomorphism between these two presentations of O′ is given by

(6) {1, j, δ, ε, �, j�, δ�, ε�} → {1, j, eλ, dλ, d, e, jλ, λ}.
In this presentation, 	(O′) = 	(H) ⊕ H, and the restrictions of q to the sum-

mands 	(H) and H have signatures (0, 3) and (4, 0), respectively.

Lemma 2.6. Let K be the subgroup of G′
2 which preserves the splitting 	(O′) =

	(H)⊕H. Then we have

K ∼= SO(H,q) ∼= SO(4).

Proof. Analogous to the proof of Lemma 2.5. �
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Remark 2.7. The exterior product decomposes as Λ2(	(O′)) ∼= Λ2(	(H))⊕	(H)⊗
H⊕Λ2H. The restriction, × to 	(H)⊗H is zero while the restrictions to the other
summands give maps

×|Λ2�(H) : Λ
2	(H) → 	(H) and ×|Λ2H : Λ2H → 	(H).

The first map is an isomorphism. The second map defines an isomorphism between
the vector space Λ2

+H of self-dual two forms on H with respect to qH and the volume
form λ ∧ (jλ) ∧ (dλ) ∧ (eλ) and 	(H).

2.4. Complexification of 	(O′). Let 	(O′)C denote the complexification of 	(O′)
and we will denote the complex linear extensions of q and × by the same symbol.
Elements of 	(O′)C will be written w + iz where w, z ∈ 	(O′).

The following basis {f−3, f−2, · · · , f3} of 	(O′)C will be used often:
(7)(

1√
2
(δ�+ iε�),

1√
2
(�+ ij�),

1√
2
(δ + iε), j,

1√
2
(δ − iε),

1√
2
(�− ij�),

1√
2
(δ�− iε�)

)
.

The multiplication table of this basis is given by

col × row f−3 f−2 f−1 f0 f1 f2 f3
f−3 0 0 0 −if−3 −

√
2f−2 −

√
2f−1 −if0

f−2 0 0 −
√
2f−3 if−2 0 −if0

√
2f1

f−1 0
√
2f−3 0 if−1 if0 0

√
2f2

f0 if−3 −if−2 −if−1 0 if1 if2 −if3
f1

√
2f−2 0 −if0 −if1 0

√
2f3 0

f2
√
2f−1 if0 0 −if2 −

√
2f3 0 0

f3 if0 −
√
2f1 −

√
2f2 if3 0 0 0

The quadratic form q and the endomorphism Jf0(·) = f0 × (·) are given by
(8)

q=

»
¼¼¼¼¼¼¼¼½

1
−1

1
−1

1
−1

1

¾
¿¿¿¿¿¿¿¿À

and Jf0 =

»
¼¼¼¼¼¼¼¼½

i
−i

−i
0

+i
+i

−i

¾
¿¿¿¿¿¿¿¿À

.

Remark 2.8. Note that span(f−1, f0, f1) equals to 	(H′)C and span(f−3, f−2, f2, f3)
equals H′

C
. With respect to the isomorphism 	(H′)⊕H

′ → 	(H)⊕H given by (6),
we have

span(f−2, f0, f2) = 	(H)C and span(f−3, f−1, f1, f3) = HC .

3. Holomorphic curves in the 6-pseudosphere

Consider a smooth, connected and oriented surface S. In this section we intro-
duce the notion of an alternating holomorphic curve in H4,2. These curves have a
naturally defined Frenet framing which is used to give a holomorphic description of
alternating holomorphic curves in Theorem 3.24. We start by introducing relevant
homogeneous spaces.
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3.1. Pseudospheres. Consider a real vector space V equipped with a non-degener-
ate quadratic form Q of signature (p, q). The signature (p − 1, q) pseudosphere is
defined as

Sp−1,q = {z ∈ V,Q(z) = 1}.
The tangent space to Sp−1,q at a point z is naturally identified with

TzS
p−1,q = {x ∈ V, 〈z, x〉 = 0} = z⊥.

In particular, the quadratic form Q restricts to a signature (p − 1, q) pseudo-
Riemannian metric g on Sp−1,q on which O(V,Q) acts by isometries. The following
is classical, but we include the proof for completeness.

Lemma 3.1. The pseudo-Riemannian manifold (Sp−1,q,g) has constant sectional

curvature +1. In particular, for any vector fields X,Y, Z on Sp−1,q the Riemann

curvature R satisfies

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y.

Proof. Consider the trivial vector bundle Sp−1,q × V over Sp−1,q and denote by D
the trivial connection. For any p ∈ Sp−1,q we have a splitting

V = TpS
p−1,q ⊕ Rp,

and the connection D decomposes as

(
∇ −B
II d

)
where the tensors II and B are

adjoint to each other and satisfy

II(X,Y ) = g(X,Y ) , B(X, f) = fX.

Since D is flat, Gauss’ equation gives

0 = R∇(X,Y )Z − g(Y, Z)X + g(X,Z)Y.

The result follows. �

Similarly, the signature (p, q − 1) pseudohyperbolic space is the quadric

Hp,q−1 = {z ∈ V,Q(z) = −1}.
In the same way as for the pseudosphere, Hp,q−1 inherits a signature (p, q − 1)
pseudo-Riemannian metric g of curvature −1.

Remark 3.2. Changing the quadratic form from Q to −Q defines an anti-isometry
between Hp,q−1 and Sq−1,p. As a result we will also refer to Hp,q−1 as a pseudo-
sphere.

We will consider (V,Q) = (	(O′),q) with q(z) = z · z. Since q has signature
(4, 3), the relevant pseudospheres are H4,2 and S3,3. The product × on 	(O′) will
induce extra G′

2-invariant structures on H4,2 and S3,3.

3.2. The space H4,2. Consider the left multiplication map

(9) L : 	(O′) �� End(	(O′))

z �

�� Lz : w 
→ z × w

.

For z ∈ H4,2, the kernel of Lz is spanned by z and, since the form Ω from (3) is skew
symmetric, the image of Lz is z⊥. In particular, Lz restricts to an endomorphism
of TzH

4,2.
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Lemma 3.3. Let J : TH4,2 → TH4,2 be the endomorphism defined by Jz = Lz |
z⊥

:

TzH
4,2 → TzH

4,2. Then J defines a G′
2-invariant almost complex structure on H4,2

which is compatible with the metric g.

Proof. As J is constructed using the G′
2-invariant product × on 	(O′), J is G′

2-
invariant. Since TzH

4,2 = z⊥, we have Jz(w) = z × w = z·w. By (2), J is an
almost complex structure:

J2
z(w) = z · (z · w) = (z · z) · w = −w.

To see that J preserves the metric g, we compute

q(Jz(w)) = (z · w) · (z · w) = z · ((w · z) · w) = −z · ((z · w) ·w) = −z2 · w2 = q(w),

where we used that z, w span an associative subalgebra of O′ and z · w = z × w =
−w · z. �

We now show that J is not integrable by computing ∇J, where ∇ is the Levi-
Civita connection ofH4,2. Since the map L from (9) is linear, its covariant derivative
using the trivial flat connection D on 	(O′) is given by

(DXL)z(Y ) = X(z)× Y (z),

where X,Y are vector fields on 	(O′). Since the Levi-Civita connection ∇ on H4,2

is induced by D and J is the restriction of L to H4,2, we obtain

(10) (∇XJ)z(Y ) =
(
X(z)× Y (z)

)z⊥

,

where ( )z
⊥

is the orthogonal projection of 	(O′) onto z⊥.

Lemma 3.4. For any z in H4,2 and any nonzero w in TzH
4,2, the restriction of

× to the complex line span(w, Jz(w)) is zero.

Proof. Since z, w span an associative subalgebra of O′, we have

Jz(w)× w =
(
(z·w)·w

)z⊥

=
(
z· (w·w)

)z⊥

=
(
q(w)z

)z⊥

= 0.

�

Consider now the nondegenerate 2-form ω on H4,2 defined by

ω(X,Y ) = g(JX,Y ).

Since J is nonintegrable, dω �= 0. In fact, dω is the restriction of the three form Ω
from (3) to H4,2.

Lemma 3.5. Let W,X, Y be vector fields on H4,2. Then

dω(W,X, Y ) = Ω(W,X, Y ) = g(W ×X,Y ).

Proof. By the definition of the exterior derivative, 3dω(W,X, Y ) is given by

W (ω(X,Y ))−X(ω(W,Y ) + Y (ω(W,X))− ω([W,X], Y )

+ ω([W,Y ], X)− ω([X,Y ],W ).

By definition we have

W (ω(X,Y )) = W (g(JX,Y )) = g((∇WJ)X,Y ) + g(J(∇WX), Y ) + g(JX,∇WY ).

Using equation (10) we have

W (g(JX,Y )) = Ω(W,X, Y ) + ω(∇WX,Y ) + ω(X,∇WY ).
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As the Levi-Civita connection is torsion free, adding the terms gives

dω(W,X, Y ) =
1

3
(Ω(W,X, Y )− Ω(X,W, Y ) + Ω(Y,W,X)) = Ω(W,X, Y ).

�

Considering dω as a complex 3-form on (H4,2,J), we can decompose it into
types:

dω = θ + ζ + ζ + θ,

where θ has type (3, 0) and ζ has type (2, 1).

Lemma 3.6. The (3, 0)-form θ is nowhere zero and the (2, 1)-form ζ is identically

zero.

Proof. The transitive action of G′
2 on H4,2 preserves J and Ω = dω, and hence

preserves type decomposition of dω. Thus, it suffices to compute θ and ζ at a
point.

The imaginary octonion z = j has norm −1 and hence j ∈ H4,2. Recall the basis
{f−3, · · · , f3} of 	(O′)C from (7). The complexified tangent space is given by

TC

j H
4,2 = j⊥ ⊗ C = span(f−3, f−2, f−1, f1, f2, f3).

The quadratic forms q and Jj : T
C
j H

4,2 → TC
j H

4,2 are given by (8). In particular,
J acts with eigenvalue +i on f−3, f1, f2 and eigenvalue −i on f−2, f−1, f3.

To see the form θ is nonzero at j ∈ H4,2 we compute

θj(f−3, f1, f2) = Ω(f−3, f1, f2) = 〈f−3 × f1, f2〉 = −
√
2〈f−2, f2〉 =

√
2.

For ζj , it suffices to consider Ω(fa, fb, fc), where a < b ∈ {−3, 1, 2} and c ∈
{−2,−1, 3}. We have

f−3 × f1 = −
√
2f−2, f−3 × f2 = −

√
2f−1 and f1 × f2 =

√
2f3,

which are all orthogonal to span(f−2, f−1, f3). Hence ζj = 0. �

Recall that the canonical bundle of H4,2 is the determinant of the holomorphic
cotangent bundle of H4,2. Its sections are complex (3, 0)-forms. Since θ is never
vanishing, we get

Corollary 3.7. The (3, 0)-form θ defines a trivialization of the canonical bundle

of (H4,2,J).

Corollary 3.8. The G′
2-stabilizer of a point z ∈ H4,2 is isomorphic to SU(2, 1).

Proof. For z ∈ H4,2, the stabilizer StabG′
2
(z) preserves the signature (2, 1) her-

mitian form hz = gz + iωz. Since G′
2 also preserves the volume form θ ∧ θ̄, we

have StabG′
2
(z) < SU(2, 1). Equality follows from connectedness of SU(2, 1) and a

dimension count. Namely, dim(H4,2) = 6 and dim(G′
2) = 14, so dim(StabG′

2
(z)) =

8 = dim(SU(2, 1)). �
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3.3. The space S3,3. Recall that an almost paracomplex structure on a manifold
M is an endomorphism ψ : TM → TM such that ψ2 = Id and dim(ker(Id− ψ)) =
dim(ker(Id + ψ)). A pseudo-Riemannian metric g on M is compatible with ψ if
ψ is an anti-isometry of g. Such a g must have neutral signature and the distri-
butions D± = ker(ψ ∓ Id) define a pair of transverse half dimensional isotropic
subspace. The subgroup of O(n, n) which preserves a pair of transverse half di-
mensional isotropic subspaces is isomorphic to GL(n,R), where the corresponding
representations on D+ and D− are dual to each other.

For each z ∈ S3,3, the multiplication map (9) defines an endomorphism of Lz :
TzS

3,3 → TzS
3,3.

Lemma 3.9. Let ψ : TS3,3 → TS3,3 be the endomorphism defined by ψz = Lz :
TzS

3,3 → TzS
3,3. Then ψ defines a G′

2-invariant paracomplex structure on S3,3

which is compatible with the metric g.

Proof. The proof is analogous to the proof of Lemma 3.3 with the exception that
for z ∈ S3,3 we have z · z = +1. �

Each point z ∈ S3,3 defines two transverse isotropic 3-planes D±
z ⊂ z⊥ ⊂ 	(O).

The antipodal map on S3,3 exchanges D+ and D−. Denote the quotient of S3,3

by the antipodal map by P+(	(O′)) (that is, P+(	(O′)) is the space of positive
definite lines in 	(O′)).

Lemma 3.10. The restriction of the 3-form Ω to the distribution D+ is nowhere

zero.

Proof. The action G′
2 on S3,3 is transitive and preserves the three form Ω. Hence,

it suffices to compute Ω at any point of S3,3. In particular, the imaginary octonion
δ has norm +1. Hence, δ ∈ S3,3 and ψδ = δ × (· ) : δ⊥ → δ⊥.

Using the notation z = x+ y� from §2.2 we compute

δ · (j − ε) = −ε+ j, δ · (�+ δ�) = δ�+ � and δ · (j�+ ε�) = ε�+ j�.

Thus, D+
δ = span(j−ε, �+δ�, j�+ε�). As (j−ε)· (�+δ�) = 2(j�−ε�), the restriction

of Ω to D+
δ is given by

Ω(j − ε, �+ δ�, j�+ ε�) = 2〈j�− ε�, j�+ ε�〉 = −4.

We conclude that Ωδ is nonzero. �

Corollary 3.11. The G′
2-stabilizer of a point z ∈ S3,3 is isomorphic to SL(3,R).

Proof. For z ∈ S3,3, the stabilizer StabG′
2
(z) preserves the distributions D+

z ⊕D−
z .

Since G′
2 preserves the 3-form Ω, and Ω|D+

z
is nonzero, we have StabG′

2
(z) < SL(D+

z ).

As in Corollary 3.8, equality follows from connectedness of SL(3,R) and a dimension
count. �

Remark 3.12. Since the antipodal map exchanges the ± distributions, the G′
2-

stabilizer of a point in [x] ∈ P+(	(O′)) is isomorphic to the unique nonsplit exten-
sion

1 → SL(3,R) → ŜL(3,R) → Z2.
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3.4. Alternating holomorphic curves into H4,2. Let S be a connected oriented
surface.

Definition 3.13. A holomorphic curve in H4,2 is an immersion f : S → (H4,2,J)
such that the tangent bundle of S is J-invariant, that is

J(df(TS)) = df(TS),

and the corresponding action of J on TS is orientation preserving.

Given a holomorphic curve f , there is a unique complex structure j on S such
that

df ◦ j = J ◦ df.
We will refer to j as the induced complex structure.

Lemma 3.14. Holomorphic curves into H4,2 are analytic.

Proof. Since G′
2 acts analytically on H4,2, the almost-complex structure J depends

analytically on the base point. Moreover, holomorphic curves into H4,2 are solution
to the Cauchy-Riemann equation df ◦ j = J ◦ df , which is a non-linear elliptic
equation. The result then follows from the main result of [27]: solutions to non-
linear elliptic equations with analytic coefficients are analytic. �

Given a holomorphic curve f from S into H4,2, the pullback bundle f∗TH4,2 is
equipped with the pullback metric, connection and complex structure that we still
denote by g,∇ and J respectively.

A holomorphic curve f is called spacelike if the induced metric on S is Riemann-
ian. In this case, identifying TS with df(TS) ⊂ f∗TH4,2, there is g-orthogonal
splitting

f∗TH4,2 = TS ⊕ (TS)⊥.

Since the almost complex structure J is compatible with the metric g, this splitting
is J-invariant. The second fundamental form of f is the 1-form

II ∈ Ω1(S,Hom(TS, (TS)⊥))

defined by
II(X,Y ) = (∇XY )⊥.

Recall that II is symmetric and that f is totally geodesic if and only if II = 0.

Lemma 3.15. Let f : S → H4,2 be a spacelike holomorphic curve with induced

complex structure j and second fundamental form II. Then for any vector fields

X,Y on S, we have

II(j(X), Y ) = II(X, j(Y )) = J(II(X,Y )).

Proof. By definition we have

II(X, j(Y )) =
(
∇X(J(Y ))

)⊥
=
(
(∇XJ)(Y ) + J(∇XY )

)⊥
.

Since X and Y are contained in the complex line, Lemma 3.4 implies X × Y = 0.
Thus, (∇XJ)(Y ) = 0 by equation (10). Since J is compatible with the metric, we
have

II(X, j(Y )) = (J(∇XY ))⊥ = J(∇XY )⊥ = J(II(X,Y )).

Since II is symmetric, we have

J(II(X,Y )) = J(II(Y,X)) = II(Y, j(X)) = II(j(X), Y ).

�
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Proposition 3.16. Let f be a spacelike holomorphic curve which is not totally

geodesic. Then

(1) f has vanishing mean curvature, and

(2) there is a unique J-invariant rank 2 subbundle NS ⊂ (TS)⊥ such that the

image of II lies in NS.

We will call the bundle NS the normal bundle of f .

Proof. Let (X1, X2) be a local orthonormal framing of TS with j(X1) = X2. Lemma
3.15 gives

II(X2, X2) = II(X2, j(X1)) = J(II(X2, X1)) = J2(II(X1, X1)) = −II(X1, X1).

In particular, the trace of II vanishes, and so the mean curvature of f is zero.
For item (2), there is an open set U ⊂ S on which the image of II has maximal di-

mension. Locally, the image of II is spanned by {II(X1, X1), II(X1, X2), II(X2, X2)}.
The image of II has rank 2 on U since II(X1, X1) = −II(X2, X2) = −J(II(X1, X2))
and f is not totally geodesic.

We claim that U is dense. If U were not dense, there would be an open set on
which the rank of II is 0, meaning that f(S) would be totally geodesic on some
open space. But holomorphic curves in H4,2 are analytic by Lemma 3.14, so f(S)
would be totally geodesic everywhere. Thus the image of II defines a complex line
bundle on a dense open set, which thus extends to a complex line bundle NS on
S. �

We now define the notion of an alternating holomorphic curve in H4,2.

Definition 3.17. An alternating holomorphic curve is a holomorphic curve f :
S → H4,2 which is spacelike, not totally geodesic, and has negative-definite normal
bundle NS.

We define the binormal bundle BS of an alternating holomorphic map f to be
the rank two bundle

BS = (TS ⊕NS)⊥.

Hence, an alternating holomorphic curve defines an orthogonal splitting

f∗TH4,2 = TS ⊕NS ⊕ BS.

Since J preserves g, TS and NS, J also preserves the binormal bundle BS.

Remark 3.18. In [28], Nie defines the notion of an A-surface in Hp,q . Such sur-
faces are assumed to be spacelike and have rank two “higher” normal bundles with
alternating signature. In particular, for A-curves in H4,2 the image of the second
fundamental form II is assumed to define a rank two subbundle which is assumed
to be negative definite. Thus, alternating holomorphic curves define A-surfaces in
H4,2.

3.5. Frenet framing. The trivial bundle 	(O′) = H4,2 × 	(O′) → H4,2 has a
tautological section σ which defines a splitting 	(O′) = R ⊕ TH4,2, where σ(x) =
(1, 0). In this splitting, the metric g�(O′) = −1 ⊕ gH4,2 , and the trivial connection
D decomposes as

D =

(
d �

∗

� ∇

)
,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6480 B. COLLIER AND J. TOULISSE

where ∇ is the Levi-Civita connection on H4,2, � ∈ Ω1(H4,2,Hom(R,TH4,2)) is the
identity and �∗ is the adjoint with respect to the metric g�(O′). By construction,
the product with the tautological section σ defines the almost complex structure J

on TH4,2,
(1, 0)× (u, v) = (0,J(v)).

Given a map f : S → H4,2, let (E,D,g,×) denote the pullback of the trivial
bundle 	(O′), the trivial connection D, the signature (4, 3) metric g�(O′) and the

product × : Λ2	(O′) → 	(O′). We have the following decompositions

E = R⊕ f∗TH4,2 , D =

(
d df∗

df f∗∇

)
and g = −1⊕ f∗gH4,2 .

The map f is identified with the pullback of the tautological section f∗σ : S → R,
and (1, 0)× (u, v) = (0, f∗J(v)).

Definition 3.19. When f : S → H4,2 is an alternating holomorphic curve, E =
f∗	(O′) decomposes as

(11) E = R⊕ TS ⊕NS ⊕ BS.

We call this decomposition, the Frenet framing of f .

In the Frenet framing, the metric decomposes as g = −1 ⊕ gT ⊕ gN ⊕ gB,
where 1⊕ gT ⊕ (−gN)⊕ gB is positive definite, and the almost complex structure
decomposes as J = JT ⊕ JN ⊕ JB. In particular,

(12) (1, 0, 0, 0)× (a, t, n, b) = (0,JT(t),JN(n),JB(b)).

Also, in the Frenet framing the connection D decomposes as

(13) D =

»
¼¼½

d �
∗ 0 0

� ∇T S2 0
0 II ∇N S3

0 0 III ∇B

¾
¿¿À ,

where:

• ∇T,∇N,∇B are metric connections on (TS,gT,JT), (NS,−gN,JN),
(BS,gB,JB), respectively; they are unitary with respect to the induced
hermitian metrics.

• � ∈ Ω1(R,TS) is the identity between the tangent bundle of S and TS ∼=
df(TS) ⊂ f∗TH4,2.

• II ∈ Ω1(S,Hom(TS,NS)) is the second fundamental form of f .
• III ∈ Ω1(S,Hom(NS,BS)) will be called the third fundamental form of f .
• S2 ∈ Ω1(S,Hom(NS,TS)) and S3 ∈ Ω1(S,Hom(BS,NS)) satisfy

−gN(II(X,Y ), ν) = gT(Y, S2(X, ν)) and gB(III(X, ν), β) = −gN(ν, S3(X, β)),

where X,Y are vector fields on S and ν, β are sections of NS and BS,
respectively.

Lemma 3.20. If α is the 1-form II, III, S2, or S3, then d∇α is equal to zero.

Proof. Recall that d∇α is the 2-form satisfying

d∇α(X,Y ) = ∇X(α(Y ))−∇Y (α(X))− α([X,Y ]).

Let us prove the result for α equal to III, the computations for II, S2 and S3

are similar. This follows from the Codazzi equations in this context. As H4,2
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has constant sectional curvature (see Lemma 3.1), its curvature tensor R satisfies
R(X,Y )(ν) = 0. Hence,

0 = πB(R(X,Y )ν) = πB(∇X∇Y ν −∇Y ∇Xν −∇[X,Y ]ν).

A computation using the Frenet framing (13) shows

πB(∇X∇Y ν) = III(X,∇N
Y ν) +∇B

X(III(Y, ν)).

Thus,

0 = III(X,∇N
Y ν) +∇B

X(III(Y, ν))− III(Y,∇N
Xν)−∇B

Y (III(X, ν))− III([X,Y ], ν)

= (∇NB
X III)(Y, ν)− (∇NB

Y III)(X, ν)− III([X,Y ], ν) = d∇
NB

III(X,Y )(ν),

where ∇NB is the induced connection on Hom(NS,BS). �

Lemma 3.21. The tensor III(·, II(·, ·)) is symmetric.

Proof. Let X,Y, Z be vector fields on S. Since II(Y, Z) = II(Z, Y ), it suffices to
compute

III(X, II(Y, Z))− III(Y, II(X,Z)) = πB

(
∇X∇Y Z −∇Y ∇XZ

)

= πB

(
R∇(X,Y )Z +∇[X,Y ]Z

)
.

Since ∇ is the pull-back of a constant curvature metric, R∇(X,Y )Z ∈ Ω0(S,TS).
Moreover, ∇[X,Y ]Z ∈ Ω0(S,TS ⊕NS) so πB

(
R∇(X,Y )Z +∇[X,Y ]Z

)
= 0. �

3.6. Complexified Frenet framing. Let f : S → H4,2 be an alternating holo-
morphic curve, and let X = (S, j) be the Riemann surface defined by the induced
complex structure. The complexification of the Frenet framing of f is given by

EC = C⊕ T′ ⊕ T′′ ⊕N′ ⊕N′′ ⊕ B′ ⊕ B′′,

where TCS = T′ ⊕ T′′ is the decomposition of the complexification of TS into ±i-
eigenspaces of the complex linear extension of JT, similarly NCS = N′ ⊕ N′′ and
BCS = B′ ⊕ B′′.

Lemma 3.22. In the complexified Frenet framing, the product × satisfies the fol-

lowing properties:

(1) For the section s0 = (1, 0, · · · , 0) of EC, the endomorphism s0× (·) is given
by

s0 × (·) = diag(0,+i,−i,+i,−i,+i,−i).

(2) For a sections s′ = (t′, n′, b′) of T′ ⊕ N′ ⊕ B′ and s′′ = (t′′, n′′, b′′) of

T′′ ⊕N′′ ⊕ B′′, we have

s′ × s′′ = t′ × t′′ + n′ × n′′ + b′ × b′′ = −i(gC

T(t
′, t′′) + gC

N(n
′, n′′) + gC

B(b
′, b′′))s0.

(3) The product defines isomorphisms T′ ⊗ B′ ∼= N′′ and T′′ ⊗ B′′ ∼= N′.

Proof. The first point follows from equation (12) and the definitions of the ±i-
eigenspaces. The remaining points follow Lemma 3.6 and the fact that gC(s0, s0) =
−1. �

The complex linear extension IIC ∈ Ω1(Hom(T′ ⊕ T′′,N′ ⊕N′′)) is given by

IIC =

(
II′ II

′′

II′′ II
′

)
,
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where II′ ∈ Ω1(Hom(T′,N′)), II′′ ∈ Ω1(Hom(T′,N′′)), and II
′
and II

′′
are the

conjugate maps. The tensors IIIC, (S2)C, and (S3)C have analogous decompositions.

Proposition 3.23. With the above notation, we have

(1) II′′ = 0 and S′′
2 = 0, and

(2) for any vector field X on S and sections ν, β of N′,B′, respectively we have

III′′(X, ν) = − i
2 (X × ν) and S′′

3 (X, β) = − i
2 (X × β) .

Proof. Note that II′′ = 0 if and only if II◦JT = JN ◦ II. So the first item is a direct
consequence of Lemma 3.15 and the duality between S2 and II.

For the second item, denote the orthogonal projection onto BS by πB, note that
πB commutes with J. By definition, III(X, ν) = πB(∇Xν), and

III′′(X, ν) =
1

2
(IIIC(X, ν) + iJ(IIIC(X, ν))).

Using equation (10), J(ν) = iν and J ◦ πB = πB ◦ J, we have

iJ(IIIC(X, ν)) = J(IIIC(X,Jν)) = J(πB((∇XJ)(ν) + J(∇Xν)))

= J(πB(X × ν))− IIIC(X, ν).

Thus III′′(X, ν) = 1
2J(πB(X × ν)). By Lemma 3.22, X × ν ∈ B′′ since X ∈ TS and

ν ∈ N′. Hence III′′(X, ν) = − i
2 (X × ν). The computation for S3 now follows from

duality between III and S3. �

The hermitian metric on (TS, gT,JT) induces a hermitian metric hT′ ⊕ hT′′ on

T′ ⊕ T′′. The complex linear extension of ∇T induces hermitian connections ∇T′

and ∇T′′

on T′ and T′′, respectively. The (0, 1)-part of these connections defines
holomorphic structures ∂̄T′ and ∂̄T′′ on T′ and T′′, respectively. Let T and T denote
the associated holomorphic line bundles on the Riemann surface X. Since T and
T are isotropic with respect to gC

T, the hermitian metric defines an isomorphism

between T and the dual holomorphic line bundle T −1; under this identification

(T ⊕ T ,gC

T) =

(
T ⊕ T −1,

(
0 1
1 0

))
.

Repeating the above discussion for the bundles NCS and BCS, we obtain hermitian
holomorphic line bundles N ,N−1,B and B−1 whose underlying smooth bundles are
respectively N′,N′′,B′ and B′′. In particular, the (0, 1)-part of the complex linear
extension of the metric connections d,∇T,∇N,∇B defines a holomorphic structure
∂̄EC

on EC which holomorphically decomposes as

(14) E = (EC, ∂̄EC
) = OX ⊕ T ⊕ T −1 ⊕N ⊕N−1 ⊕ B ⊕ B−1,

where OX is the trivial holomorphic line bundle. With respect to this decomposi-
tion, the complex linear extension of the positive definite metric and the Hermitian
metric are given by

(1⊕ gT ⊕ (−gN)⊕ gB)
C = 1⊕

(
0 1
1 0

)
⊕
(
0 1
1 0

)
⊕
(
0 1
1 0

)
,

h = h0 ⊕ hT ⊕ h−1
T ⊕ hN ⊕ h−1

N ⊕ hB ⊕ h−1
B .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

HOLOMORPHIC CURVES AND CYCLIC SURFACES 6483

As the isomorphisms T −1 ∼= T , N−1 ∼= N and B−1 ∼= B are given by the Hermitian
metric, the second form decomposes as

IIC =

(
II′ (II′′)∗h

II′′ (II′)∗h

)
,

where (II′)∗h , (II′′)∗h are the Hermitian adjoints of II′ and II′′. The tensors, IIIC,
(S2)C and (S3)C decompose similarly.

In the complex Frenet framing, the flat connection D decomposes as follows.

Theorem 3.24. Let f : S → H4,2 be an alternating holomorphic curve and X =
(S, j) be the induced Riemann surface. Let (E,D) = (f∗	(O′), f∗D) be the pullback

of the trivial bundle with trivial connection on H4,2. Then, with respect to the

complexified Frenet framing

E = OX ⊕ T ⊕ T −1 ⊕N ⊕N−1 ⊕ B ⊕ B−1,

the flat connection D decomposes as

(15) D =

»
¼¼¼¼¼¼¼¼¼½

d 1∗h 1 0 0 0 0
1 ∇hT

0 β∗h 0 0 0
1∗h 0 ∇h−1

T

0 β 0 0

0 β 0 ∇hN
0 δ∗h α∗h

0 0 β∗h 0 ∇h−1

N

α δ

0 0 0 δ α∗h ∇hB
0

0 0 0 α δ∗h 0 ∇h−1

B

¾
¿¿¿¿¿¿¿¿¿À

,

where

• 1 ∈ Ω1,0(Hom(OX , T )) is the identity between T′X and ∂f(T′X) ∼= T ⊂
f∗(TCH

4,2),
• β ∈ Ω1,0(Hom(T ,N )) is holomorphic,

• δ ∈ Ω1,0(Hom(N ,B)) is holomorphic,

• α ∈ Ω1,0(Hom(B,N−1)) is nonzero, holomorphic and given by α(b)(Y ) =
i
2b× Y , for any section b of B and vector field Y .

• 1∗h , β∗h , δ∗h and α∗h are the hermitian adjoints of 1, β, δ and α, respec-

tively.

Remark 3.25. The line bundles T and T −1 are the holomorphic tangent and cotan-
gent bundles of the Riemann surface X, respectively. Dropping the immersion as-
sumption in the definition of an alternating holomorphic curves would give the same
type of framing with T replaced by T ⊗OD, where D ⊂ X is the divisor where the
differential ∂f vanishes.

Proof. The flat connection in the Frenet framing is given by complex linearly ex-
tending the expression (13). The term �C ∈ Ω1(Hom(OX , T ⊕T −1)) is the identifi-
cation of dC(T

′S⊕T′′S) = T ⊕T −1 ⊂ f∗TCH
4,2. As f is a holomorphic immersion,

�C = 1 ∈ Ω1,0(Hom(OX , T )).
For the second fundamental form IIC, II

′′ = 0 by Proposition 3.23. The tensor
β is II′; it is a (1, 0)-form by Lemma 3.15. Namely,

II′(Y, t′) =
1

2
(IIC(Y, t

′)− iJIIC(Y, t
′)) =

1

2
(IIC(Y, t

′)− iIIC(j(Y ), t′)),

and II′(Y, t′) vanishes when j(Y ) = −iY . Lemma 3.20 implies β is holomorphic.
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The tensor α is III′′C; it has type (1, 0) since T′′ × N′ = 0. The tensor δ is III′C.
Generically on the Riemann surface, we have III′(Y, ν) = III′(Y, II′(Z, τ )), for τ a
section of T . By Lemma 3.21

III′(Y, ν) = III′(Y, II′(Z, τ )) = III′(Z, II′(Y, τ )).

Hence, III′ is a (1, 0)-form since II′ is a (1, 0)-form. Lemma 3.20 implies δ is
holomorphic. To conclude, note that (S2)C and (S3)C are given by

(S2)C=

(
0 1
1 0

)(
β 0
0 β∗h

)(
0 1
1 0

)
and (S3)C=

(
0 1
1 0

)(
δ α

α∗h δ∗h

)(
0 1
1 0

)
.

�

The group G′
2 acts on the set of alternating holomorphic curves by (g · f)(x) =

g · f(x). This action does not change the induced Riemann surface, but it can

change the Frenet framing of Theorem 3.24 slightly. Namely, if (E , h) and (Ê , ĥ)
are the holomorphic bundles with induced hermitian metrics associated to f and

g · f , respectively, then f∗g defines an isomorphism (E , h) ∼= (Ê , ĥ). Under this
isomorphism, the holomorphic tangent bundles are the same and the holomorphic

normal and binormal bundles are identified (N,hN ) ∼= (N̂ , ĥN̂ ) and (B, hB) ∼=
(B̂, ĥB̂). Since such an isomorphism preserves the product, and the product iden-
tifies N ∼= B−1T −1, the space of such identifications is a U(1)-torsor. Under such
an isomorphism, there is λ ∈ U(1) such that the associated holomorphic sections
(α, β, δ) from (15) are changed by

(16) (α, β, δ) 
→ (α, λβ, λ−2δ).

4. Higgs bundles and equivariant alternating holomorphic curves

Fix a Riemann surface X = (S, j) and denote its holomorphic cotangent bundle
by K. We do not assume X is compact until §5. In this section we introduce
the basics of Higgs bundles and harmonic bundles that are relevant to this paper.
We then explain how certain G′

2-cyclic harmonic bundles determine and are deter-
mined by alternating holomorphic curves which are equivariant with respect to a
representation ρ : π1(S) → G′

2. We start by recalling some Lie theory.

4.1. Cartan decompositions. Every semisimple real Lie group G has a maxi-
mal compact subgroup K which is unique up to conjugation, and G is homotopy
equivalent to K. A choice of maximal compact subgroup defines a Lie algebra in-
volution θ : g → g called a Cartan involution. The +1-eigenspace of the Cartan
involution is the Lie algebra k of the maximal compact K and the (−1)-eigenspace
p is the subspace perpendicular to k with respect to the Killing form. Hence a
choice of maximal compact defines a Cartan decomposition g = k ⊕ p. A Cartan
decomposition satisfies the bracket relations

[k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k .

Complexifying, defines the complexified Cartan decomposition gC = kC ⊕ pC.

Remark 4.1. If G0 < G is a reductive subgroup, then we can choose a maximal
compact K < G such that K0 = G0 + K is a maximal compact of G0. Conversely, if
K0 < G0 is a maximal compact subgroup, we can extend it to a maximal compact
subgroup K < G, see for example [1, §3].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

HOLOMORPHIC CURVES AND CYCLIC SURFACES 6485

If (E,q) is a 7-dimensional real vector space equipped with a signature (4, 3)
quadratic form, then the maximal compact of SO0(E,q) ∼= SO0(4, 3) is isomorphic
to SO(4)×SO(3). A choice of maximal compact is given by choosing an orthogonal
splitting E = U ⊕ V such that the restrictions qU and qV of q to U and V have
signature (4, 0) and (0, 3), respectively. With respect to this splitting, the Lie
algebra so(4, 3) is

so(4, 3)

=

{
X=

(
A η†

η B

)
| A∈so(U,qU ), B∈so(V,qV ), η∈Hom(U, V ), η†=−q−1

U ηTqV

}
.

Thus, the Cartan decomposition of so(4, 3) is

(17) so(4, 3) ∼=
(
so(U,qU )⊕ so(V,qV )

)
⊕Hom(U, V ).

By Lemma 2.6, the maximal compact subgroup of G′
2 is isomorphic to SO(4). A

choice of maximal compact is given by choosing a decomposition 	(O′) = 	(H)⊕H,
where the multiplication is given by (5). The corresponding Cartan decomposition
of g′2 is then given by intersecting with the Cartan decomposition of so(4, 3) =
so(	(O′),q). Specifically, if

(	(O′),q) = (H,qH)⊕ (	(H),q�(H)) = (U,qU )⊕ (V,qV ),

then the Cartan decomposition of g′2 is given by g′2 = k⊕ p, where

k =

{
X =

(
A

B

)
| A ∈ so(U,qU ), B ∈ so(V,qV ),

X(z1 × z2) = X(z1)× z2 + z1 ×X(z2)

}
,

p =

{
X =

(
η†

η

)
| η† = −q−1

U ηTqV , X(z1 × z2) = X(z1)× z2 + z1 ×X(z2)

}
.

4.2. Higgs bundles definitions. Let X = (S, j) be a Riemann surface. Fix a
maximal compact subgroup K < G and consider the Cartan decomposition g = k⊕p

of the Lie algebra of G. Let KC < GC be the complexification of K and denote the
complexified Cartan decomposition by gC = kC ⊕ pC. Note that KC acts on pC;
given a principal KC-bundle P → X, let P [pC] denote the associated vector bundle
P ×KC

pC with fiber pC.

Definition 4.2. With the above notation, a G-Higgs bundle on X is a pair (P,Φ),
where

• P is a holomorphic principal KC-bundle over X and
• Φ is a holomorphic section of P[pC]⊗K called the Higgs field.

If we fix the underlying smooth KC-bundle P , then two G-Higgs bundles (P,Φ)
and (P ′,Φ′) are isomorphic if they differ by the action of the KC-gauge group.
That is, if there is a smooth bundle isomorphism of P which defines a holomorphic
isomorphism (P,Φ) ∼= (P ′,Φ′).

A complex group GC is a real form of GC×GC. In this case, KC
∼= GC and pC ∼= gC,

and a GC-Higgs bundle is a pair (P,Φ), where P is a holomorphic GC-bundle on
X and Φ is a holomorphic section of the adjoint bundle P[gC]⊗ K. Using faithful
representations of GC, we can work with vector bundles. We give a few relevant
examples:
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Example 1. An SL(n,C)-Higgs bundle on X is a tuple (E , volE ,Φ), where
• E → X is a holomorphic vector bundle of rank n,
• volE : ΛnE → OX is a holomorphic isomorphism, and
• Φ is a holomorphic section of End(E)⊗K with tr(Φ) = 0.

Similarly, an SO(n,C)-Higgs bundle is an SL(n,C)-Higgs bundle equipped with a
nondegenerate holomorphic section QE of the symmetric power S2E∗ such that
ΦTQE + QEΦ = 0, where QE is viewed as an isomorphism QE : E → E∗ and
ΦT : E∗ → E∗ ⊗K.

Example 2. The complexified Cartan decomposition of so(4, 3) is given by com-
plexifying (17). An SO0(4, 3)-Higgs bundle is thus a tuple (U , QU , volU ,V , QV ,
volV , η), where

• (U , QU , volU ) and (V , QV , volV) are respectively rank 4 and 3 holomorphic
vector bundles equipped with holomorphic orthogonal structures QU , QV
and volume forms volU , volV and

• η : U → V ⊗K is a holomorphic bundle map.

The associated SO(7,C)-Higgs bundle is (E , volE , QE ,Φ) = (U⊕V , volU ∧ volV , QU⊕
−QV ,Φ), where for η† = Q−1

U ◦ ηT ◦QV we have

(18) Φ =

(
0 η†

η 0

)
: U ⊕ V → (U ⊕ V)⊗K.

We now describe G′
2-Higgs bundles. Recall that g′2 ⊂ so(	(O′),q) ∼= so(4, 3)

is the subalgebra of derivations of (	(O′),×). We will suppress the volume forms
from the notation.

Definition 4.3. A G′
2-Higgs bundle on X is an SO0(4, 3)-Higgs bundle (U , QU ,

V , QV , η) equipped with a holomorphic bundle map × : Λ2(V ⊕ U) → V ⊕ U such
that

• (Vp ⊕ Up,×p) ∼= (	(H)C ⊕HC,×) for every p ∈ X, and
• Φ(s × t) = Φ(s) × t + s × Φ(t), where Φ is given by (18) and s, t are any

sections of U ⊕ V .

Remark 4.4. By Remark 2.7, this implies that ×|Λ2U : Λ2U → V defines a holo-
morphic isomorphism between V and the self-dual part Λ2

+U of the second exterior
product.

Remark 4.5. Consider the flat connection D arising from an alternating holomor-
phic curve. Using the notation of Theorem 3.24 (E ,×,Φ) is a G′

2-Higgs bundle,
where Φ is the (1, 0)-part of D −∇.

4.3. An example. The Higgs bundles relevant to this paper have the additional
property that the bundle will have a holomorphic reduction to the maximal torus.
This means that the vector bundle decomposes as a direct sum of holomorphic line
bundles. Specifically,

(19) E = L−3 ⊕ L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 ⊕ L3,

where each Li is holomorphic a line bundle. We furthermore impose L−i = L−1
i

and L0 = O. With respect to the splitting (19), a Higgs field Φ : E → E ⊗ K can
be written as a 7× 7-matrix whose entries are holomorphic sections of appropriate
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line bundles. We will consider Higgs fields of the form

(20) Φ =

»
¼¼¼¼¼¼¼¼½

0 0 0 0 0 δ 0
α 0 0 0 0 0 δ
0 β 0 0 0 0 0
0 0 γ 0 0 0 0
0 0 0 γ 0 0 0
0 0 0 0 β 0 0
0 0 0 0 0 α 0

¾
¿¿¿¿¿¿¿¿À

: E → E ⊗ K,

where α, β, γ, δ are holomorphic sections of L3L−2K, L2L−1K, L1L0K and
L−3L−2K, respectively. To avoid writing 7 × 7 matrices, we will represent such
an object by

(21) (E ,Φ) := L−3
³

�� L−2

´

�� L−1
µ

�� L0
µ

�� L1

´

�� L2
³

��

δ

�� L3

δ

��
.

Since tr(Φ) = 0 and Λ7E is trivializable, (E ,Φ) is an SL(7,C)-Higgs bundle.
In fact, this example defines an SO0(4, 3)-Higgs bundle (U , QU ,V , QV , η), where

• U = L−3 ⊕ L−1 ⊕ L1 ⊕ L3 and V = L−2 ⊕ L0 ⊕ L2,
• QU , QV are orthogonal structures on U and V defined by

QU =

»
¼½

1

. .
.

1

¾
¿À : U → U∗ and QV =

»
½

1
1

1

¾
À : V → V∗,

• η =

»
½
α 0 0 δ
0 γ 0 0
0 0 β 0

¾
À : U → V ⊗K.

For this example to be a G′
2-Higgs bundle, we need a holomorphic map

× : Λ2(U ⊕ V) → U ⊕ V ,

such that (Up ⊕ Vp,×) ∼= (	(H)C ⊕HC,×) for each p ∈ X. This implies V ∼= Λ2
+U ,

and hence we have L−2
∼= L−3L1 and L2

∼= L3L−1. We will define a product as
in the complex Frenet framing (14) of an alternating holomorphic curve. If we fix
L−2 = L−3L1, then an isomorphism is determined by a nonzero complex number
ξ,

ξ : L−3 ⊗ L1 → L−2 = L−3L1.

As L0 = O, let s0 = 1 ∈ H0(L0) be the constant section. Let s−3, s−1 be
local nowhere vanishing holomorphic sections of L−3,L−1, respectively, and let
s3, s1 be the corresponding dual sections of L3,L1. Finally, set s2 = s3 ⊗ s−1 and
s−2 = s−3 ⊗ s1. With this setup, for ξ ∈ C∗, we define the product × to have the
same multiplication as that of {f−3, . . . , f3} of 	(O′)C from (7) where the −

√
2 is

replaced by ξ. Namely
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col × row s−3 s−2 s−1 s0 s1 s2 s3
s−3 0 0 0 −is−3 ξs−2 ξs−1 −is0
s−2 0 0 ξs−3 is−2 0 −is0 −ξs1
s−1 0 −ξs−3 0 is−1 is0 0 −ξs2
s0 is−3 −is−2 −is−1 0 is1 is2 −is3
s1 −ξs−2 0 −is0 −is1 0 −ξs3 0
s2 −ξs−1 is0 0 −is2 ξs3 0 0
s3 is0 ξs1 ξs2 is3 0 0 0

Lemma 4.6. With the above choice of product × : Λ2(U ⊕ V) → U ⊕ V, the Higgs

bundles (20) is a G′
2-Higgs bundle if and only if we have the following equation in

H0(K ⊗Hom(L−3,L−2))

(22) α(·) = − i

2
γ(s0)× (·),

where s0 = 1 ∈ H0(X,L0) is a trivializing unit section. In particular, α = iξ
2 γ.

Proof. To be a G′
2-Higgs bundle, the Higgs field Φ must be a derivation. We com-

pute Φ(s0 × s−3) = Φ(s0) × s−3 + s0 × Φ(s−3) implies α(s−3) = − i
2γ(s0) × s−3.

Indeed,

Φ(s0)× s−3 + s0 × Φ(s−3) = γ(s0)× s−3 − iα(s−3),

while Φ(s0 × s−3) = iΦ(s−3) = iα(s−3). To see this is the only condition on
the Higgs field, one computes Φ(sa × sb) and Φ(sa) × sb + sa × Φ(b) using the
multiplication table (7), we leave this to the reader.

The condition α = iξ
2 γ follows from the multiplication table s−3×s1 = ξs−3⊗s1

and equation (22). �

Remark 4.7. Note that if L−2 = L−3L1 and α is a scalar multiple of γ, then we
can define a product × making a Higgs bundle of the form (21) a G′

2-Higgs bundle.

4.4. Harmonic bundles. A G-harmonic bundle is a G-Higgs bundle equipped with
a metric which solves a PDE related to the flatness of a connection. We will focus
on the vector bundle description.

Definition 4.8. An SL(n,C)-harmonic bundle on X is an SL(n,C)-Higgs bundle
(E ,Φ) equipped with a hermitian metric h which induces the trivial metric on ΛnE
and satisfies the Hitchin equations

(23) Fh + [Φ,Φ∗] = 0,

where Fh is the curvature of the Chern connection ∇h of h and Φ∗ is the hermitian
adjoint of Φ.

Let (E, h) be a smooth bundle unitary bundle. Two harmonic bundles (E ,Φ, h)
and (E ′,Φ′, h) on (E, h) are isomorphic if they differ by unitary bundle automor-
phism.

Given an SL(n,C)-harmonic bundle (E ,Φ, h), the Hitchin equations (23) are
equivalent to the flatness of the connection

D = ∇h +Φ+ Φ∗.
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Hence an SL(n,C)-harmonic bundle defines a (conjugacy class of) representation

ρ : π1(X) → SL(n,C) such that E ∼= X̃ ×Ä Cn. Given a representation ρ :

π1(X) → SL(n,C), a metric hÄ on the flat bundle X̃ ×Ä Cn can be interpreted
as a ρ-equivariant map to the Riemannian symmetric space:

hÄ : X̃ → SL(n,C)/SU(n).

A metric hÄ is called harmonic if, for every compact subset K ⊂ X̃, it is a critical
point of the energy

EK(hÄ) =
1

2

∫

K

|dhÄ|2.

This makes sense since, for two dimensional domains, the energy only depends on
the conformal structure of the domain. It turns out that a metric h solves the
Hitchin equations (23) if and only if the ρ-equivariant map hÄ is harmonic.

For SL(n,C)-Higgs bundles which have extra structures related to being a G-
Higgs bundle, the harmonic metric h is assumed to be compatible with these struc-
tures, i.e., the Chern connection ∇h has holonomy in the compact group K < KC,
and hence the associated flat connection D has holonomy in G. In terms of har-
monic maps, the associated harmonic map factors through a copy of the symmetric
space G/K ⊂ SL(n,C)/SU(n). For example, a hermitian metric h on E is compatible
with a nondegenerate symmetric bilinear from QE if there exists a conjugate linear
involution λ : E → E such that h(e1, e2) = Q(e1, λ(e2)). In particular, viewing h

as an isomorphism H : E → E∗
and QE as an isomorphism Q : E → E∗, we have

λ = Q−1 ◦H; hence H ◦Q−1 ◦H = Q.
An SO0(4, 3)-harmonic metric on an SO0(4, 3)-Higgs bundle (U , QU ,V , QV , η)

consists of two hermitian metrics hU , hV on U ,V which are compatible with QU , QV ,
respectively. Note that the associated flat bundle E decomposes as E = U ⊕ V ,
where U ⊂ U and V ⊂ V . Moreover, QU |U ⊕ (−QV)|V defines a parallel metric on
E of signature (4, 3).

For an SO0(4, 3)-Higgs bundle which is a G′
2-Higgs bundle, the quadratic form

QV is determined by QU and the product ×.

Definition 4.9. A G′
2-harmonic metric on a G′

2-Higgs bundle (U , QU ,V , QV ,×, η) is
a pair of compatible metrics hU , hV on U ,V , respectively, such that the involutions
λV , λU satisfy

λV(u1 × u2) = λU (u1)× λU (u2).

Remark 4.10. Note that the flat bundle E associated to a G′
2-harmonic bundle

decomposes as E = U⊕V and has a parallel product × : Λ2E → E which identifies
the fibers with 	(O′).

4.5. Cyclic Higgs and harmonic bundles. The explicit Higgs bundles consid-
ered in §4.3 have additional symmetries which make them 6-cyclic Higgs bundles.

Definition 4.11. An SL(n,C)-Higgs bundle (E ,Φ) is called k-cyclic if there is a
holomorphic splitting E = E1 ⊕ · · · ⊕ Ek such that Φ(Ei) ⊂ Ei+1 ⊗K, where i+ 1 is
taken mod k. The splitting E = E1 ⊕ · · · ⊕ Ek will be called the cyclic splitting.

Definition 4.12. An SL(n,C)-harmonic bundle (E ,Φ, h) is called a k-cyclic har-
monic bundle if (E ,Φ) is k-cyclic and the cyclic splitting is orthogonal with respect
to the metric h.
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Two k-cyclic Higgs bundles (E1⊕· · ·⊕Ek,Φ) and (E ′
1⊕· · ·⊕E ′

k,Φ
′) are isomorphic

if there is a holomorphic bundle automorphism which identifies Ej ∼= E ′
j for all j

and Φ and Φ′. Similarly, two k-cyclic harmonic bundles are isomorphic if such an
isomorphism is unitary. We note that cyclic Higgs bundles and cyclic harmonic
bundles have a cyclic group symmetry. Namely, if (E ,Φ) is a k-cyclic Higgs bundle,
consider the unitary holomorphic bundle automorphism

g = diag(ζaIdE1
, ζa−1IdE2

, . . . , ζa−k+1IdEk
) : E1 ⊕ · · · ⊕ Ek → E1 ⊕ · · · ⊕ Ek,

where ζ is a primitive kth root of unity and a is chosen so that det(g) = 1. Then g
acts on Φ by

g · Φ = g−1 ◦ Φ ◦ g = ζ · Φ.
Remark 4.13. When X is compact, polystability of the above Higgs bundles au-
tomatically implies the existence of cyclic harmonic metrics, see Proposition 5.3.
When X is noncompact, see [21,22] for results regarding the existence and unique-
ness of cyclic harmonic metrics.

Lemma 4.14. The Higgs bundles from (21) are 6-cyclic with cyclic splitting

E1 ⊕ E2 ⊕ E3 ⊕ E4 ⊕ E5 ⊕ E6 = (L−3 ⊕ L3)⊕ L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2.

Moreover, if h is a cyclic SO0(4, 3)-harmonic metric, then h = h−3 ⊕ h−2 ⊕ · · · ⊕
h2 ⊕ h3 where ha is a hermitian metric on La and h−a = h−1

a .

Proof. The Higgs bundle is 6-cyclic since rearranging the summands from (21)
yields

L−3 ⊕ L3

(³ δ)

�� L−2

´

�� L−1
µ

�� L0
µ

�� L1

´

�� L2

(δ ³)T

��

.

Recall that this is SO0(4, 3)-Higgs bundle, with U = L−3 ⊕ L−1 ⊕ L1 ⊕ L3,
V = L−2 ⊕ L0 ⊕ L2 and quadratic forms

(24) QU =

»
¼½

1

. .
.

1

¾
¿À and QV =

»
½

1
1

1

¾
À .

Thus, an SO0(4, 3)-cyclic harmonic metric hU ⊕ hV is diagonal in the cyclic split-
ting. The condition that λU = Q−1

U ◦ hU and λV = Q−1
V ◦ hV are conjugate linear

involutions of U and V , respectively, implies that the metric on L−3 ⊕ L3 splits as
h−3 ⊕ h3, where h−1

3 = h−3, and that the metric hj on Lj satisfies h−1
j = h−j . �

Lemma 4.15. When L−2 = L−3L1 and α is a scalar multiple of γ, a G′
2-cyclic

harmonic metric is an SO0(4, 3)-cyclic harmonic metric where the metric h−2 on

L−2 is h−3h1 and the metric h2 on L2 is h3h−1.

Proof. Recall from Lemma 4.6 that when L−2 = L−3L1 and α = iξ
2 γ, the Higgs

bundle under consideration is a G′
2-Higgs bundle with respect to the product given

by s−3× s1 = ξs−3⊗ s1. Thus, the conjugate linear involutions λU = Q−1
U ◦hU and

λV = Q−1
V ◦ hV associated to a G′

2-harmonic metric satisfies

λU (u1)× λU (u2) = λV(u1 × u2),
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for all u1, u2 ∈ U . Using the metric decomposition from Lemma 4.14, we have

λU (s−3)× λU (s1) = h−3h1s3 × s−1 = h−3h1ξ(s3 ⊗ s−1),

λV(s−3 × s1) = λV(ξ(s−3 ⊗ s1)) = h−2ξ(s3 ⊗ s−1).

Hence, h−2 = h−3h1 and h2 = h3h−1. �

We now deduce a decomposition of the flat bundle associated to these G′
2-cyclic

harmonic bundles which is analogous to [7, Theorem 2.33]. Let D = ∇h + Φ + Φ∗

be the associated flat connection. Since the metric is diagonal, in the splitting
E = L0 ⊕ L1 ⊕ L−1 ⊕ L2 ⊕ L−2 ⊕ L−3 ⊕ L3, the connection D decomposes as
in (15) of Theorem 3.24 where T is replaced with L1, N is replaced by L2, B is
replaced with L−3, and 1 and 1∗ are replaced with α and α∗. The associated G′

2-
flat bundle ED ⊂ E is the fixed point locus of the antilinear involution λ : E → E
defined by h(u, v) = Q(u, λ(v)). The bundle ED decomposes as ED = U⊕V , where
U ⊂ L−3 ⊕ L−1 ⊕ L1 ⊕ L3 and V ⊂ L−2 ⊕ L0 ⊕ L2.

Proposition 4.16. The flat bundle ED of a G′
2-cyclic harmonic bundle of the form

(21) decomposes as

ED = �⊕ U1 ⊕ V1 ⊕ U2,

where � ⊂ L0 and V1 ⊂ L−2 ⊕ L2 are negative definite subbundles of rank 1 and 2

respectively, and U1 ⊂ L−1 ⊕ L1 and U2 ⊂ L−3 ⊕ L3 are positive definite rank 2

subbundles.

Proof. The complex bilinear forms QU and QV are given by (24). Since the metric
h is diagonal, in the splitting E = L0 ⊕ (L−1 ⊕L1)⊕ (L−2 ⊕L2)⊕ (L−3 ⊕L3), the
involution λ is given by

λ = −h0 ⊕
(

h1

h−1
1

)
⊕
(

−h2

−h−1
2

)
⊕
(

h3

h−1
3

)
,

where hj(w) : Lj → L−j is the antilinear map defined by hj(w)(w
′) = hj(w,w

′).
�

4.6. Cyclic harmonic bundles and equivariant alternating holomorphic

maps. We now establish a 1-1 correspondence between isomorphism classes of
certain G′

2-cyclic harmonic bundles and equivariant alternating holomorphic curves.
Fix a basepoint x0 ∈ S and let π1(S) = π1(S, x0) denote the fundamental group

of S. Fix also a universal covering S̃ → S and a lift x̃0 of the basepoint. We will
suppress the basepoints from the notation.

Definition 4.17. An equivariant alternating holomorphic curve on S is a pair
(ρ, f) consisting of a representation ρ : π1(S) → G′

2 and an alternating holomorphic

curve f : S̃ → H4,2 which is ρ-equivariant, that is, f(γ · x) = ρ(γ) · f(x) for all

x ∈ S̃ and all γ ∈ π1(S).

When S is simply connected an alternating holomorphic curve is of course the
same as an equivariant alternating holomorphic curve. For example, (S, j) could be
isomorphic to the complex plane as in [13]. Note that the Riemann surface structure

X̃ = (S̃, j) induced by an equivariant alternating holomorphic curve (ρ, f) descends
to a Riemann surface structure X = (S, j).
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Definition 4.18. Two equivariant alternating holomorphic curves (ρ1, f1) and
(ρ2, f2) are isomorphic if there exists g ∈ G′

2 and ψ ∈ Diff0(S) such that

(ρ1, f1) = (Adg ◦ ρ2, (g · f2) ◦ ψ̃),
where ψ̃ is the pullback of ψ to S̃.

Remark 4.19. Since Diff0(S) acts freely on the space of complex structures on S,
two equivariant holomorphic curves (ρ1, f1) and (ρ2, f2) which induce the same
Riemann surface X are isomorphic if and only if there is g ∈ G′

2 such that

(ρ1, f1) = (Adg ◦ ρ2, g · f2).
For the discussion below, let B be a holomorphic line bundle onX, and consider a

G′
2-cyclic harmonic bundle (E ,×,Φ, h) of the form (21) with L−3 = B and L−1 = K,

and assume β is nonzero. The Higgs bundle is written schematically as

(25) B
− i

2

�� BK−1

´

		 K
1

		 O
1

�� K−1

´

�� B−1K
− i

2

��

δ

�� B−1

δ

��

.

Here the map 1 : O → K−1 ⊗ K is the identity and − i
2 : B → BK−1 ⊗ K is

determined by the product ×. Namely, for a section b of B and s0 = 1 ∈ H0(O),
we have

− i

2
(b) = − i

2
· 1(s0)× b.

Proposition 4.20. Two G2-cyclic harmonic bundles of the form (25) determined

by (B, β, δ) and (B′, β′, δ′) are isomorphic if and only if (B, β, δ) = (B′, λβ, λ−2δ)
for some λ ∈ U(1).

Proof. Such an isomorphism is given by a diagonal unitary gauge transformation
g which has det(g) = 1, preserves the orthogonal structures QU and QV and the
product. As a result

g = diag(λ, λμ−1, μ−1, 1, μ, λ−1μ, λ−1),

where λ, μ ∈ U(1). Such a gauge transformation preserves the map 1 : K → O⊗K if
and only if μ = 1. Hence, such a gauge transformation acts on (β, δ) by β 
→ λ−1β
and δ 
→ λ2δ. �

Theorem 4.21. There is a 1-1 correspondence between isomorphism classes of

equivariant alternating holomorphic curves with induced Riemann surface X and

isomorphism classes of G′
2-cyclic harmonic bundles of the form (25) on X.

Proof. One direction essentially follows from the description of the complex Frenet
framing in Theorem 3.24. As in §3.6, let (E,×, D) be the pullback of the trivial

	(O′)-bundle and connection on H4,2 by f to X̃. Recall the Frenet framing of f
induces a decomposition E = R⊕TS⊕NS⊕BS which is orthogonal with respect to
a positive definite metric g = 1⊕gT⊕ (−gN)⊕gB. By Theorem 3.24, the complex
Frenet framing of f defines a holomorphic structure E on EC which decomposes as

E = O ⊕K−1 ⊕K ⊕ B−1K ⊕ BK−1 ⊕ B ⊕ B−1,

where we have written K−1 instead of T and N = B−1K. This splitting is or-
thogonal with respect to the induced hermitian metric h, and Φ = (D −∇h)

1,0 is
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holomorphic. In particular, (E ,×,Φ, h) defines a G′
2-cyclic harmonic bundle. Re-

arranging the summands of the splitting, the cyclic Higgs bundle on X̃ has the
desired form. Everything descends to X by equivariance. By (16) and Proposition
4.20, two equivariant holomorphic curves which induce the Riemann surface X are
isomorphic if and only if the associated G′

2-cyclic harmonic bundles are isomorphic.
We now construct an isomorphism class of equivariant alternating holomorphic

curves from a G′
2-cyclic harmonic bundle of the form (25). By Proposition 4.16, the

bundle ED ⊂ E decomposes as �⊕U1⊕V1⊕U2. Where � ⊂ O is a negative definite
line subbundle. Moreover, � is the span of the section s0 = 1 : X → O ⊂ E , and so
s0(x) is a vector in ED of norm −1.

The pullback ẼD of ED to the universal covering is trivialized by parallel trans-
port by D. In this trivialization, the pullback of s0 defines a ρ-equivariant map

to the space of norm −1-vectors in the fiber over the base point Ẽx̃0
. Choosing

an identification of (Ẽx̃0
,×) ∼= 	(O′) defines an equivariant curve f : X̃ → H4,2.

By construction, the complex Frenet framing of f is the decomposition of the flat
connection D in the splitting O⊕K−1⊕K⊕B−1K⊕BK−1⊕B⊕B−1. In particular,
f is an alternating holomorphic curve. Changing the identification with 	(O′) gives
isomorphic equivariant alternating holomorphic curves. �

5. Moduli spaces for compact surfaces

Fix a closed surface Σ with genus g ≥ 2, and let X denote a Riemann surface
structure on Σ. In this section we prove Theorem 5.4 which gives a holomorphic de-
scription of the G′

2-Higgs bundles which arise from equivariant holomorphic curves
on Σ with induced Riemann surface X. In particular, the associated moduli space
has many connected components. Then, in Theorem 5.9, we describe the mod-
uli space of equivariant alternating holomorphic curves on Σ, where the induced
Riemann surface is allowed to vary, as a complex analytic space with a surjective
holomorphic map to the Teichmüller space of Σ and with a holomorphic action of
the mapping class group; here the fibers are described by Theorem 5.4. Finally, we
describe how some of the connected components correspond to Hitchin representa-
tions for the groups G′

2 and SL(3,R), and discuss the totally geodesic case in §5.7.
We start by recalling the moduli space of Higgs bundles on a compact Riemann
surface and the nonabelian Hodge correspondence.

5.1. Moduli spaces for fixed Riemann surface. To form the moduli space of
Higgs bundles on X, we need the notion of stability. An SL(n,C)-Higgs bundle
(E ,Φ) on X is called

• semistable if, for every proper holomorphic subbundle F ⊂ E such that
Φ(F) ⊂ F ⊗K, we have deg(F) ≤ 0,

• stable if it is semistable and the above inequality is always strict, and
• polystable if it is a direct sum of stable Higgs bundles of degree 0, that is,
E = E1 ⊕ · · · ⊕ Ek and, for all i, deg(Ei) = 0, Φ(Ei) ⊂ Ei ⊗K and (Ei,Φ|Ei

)
is a stable Higgs bundle.

Theorem 5.1 was proven by Nitsure [29] and Simpson [34].

Theorem 5.1. There is a quasi-projective variety M(X, SL(n,C)), called the mod-

uli space of SL(n,C)-Higgs bundles, whose points parametrize isomorphism classes

of polystable SL(n,C)-Higgs bundles on a compact Riemann X.
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There are appropriate notions of stability for G-Higgs bundles and associated
moduli spaces M(X,G), see [15, 34]. When G is complex reductive, the moduli
space M(X,G) is quasi-projective.

Since (poly)stability is preserved by scaling the Higgs field by λ ∈ C∗, there is a
natural algebraic C∗-action on the moduli space M(X,G). The fixed point set of
any subgroup of C∗ thus defines an algebraic subvariety.

Theorem 5.2 relates the notion of stability to the existence of a harmonic metric.
It was proven by Hitchin [16] for n = 2 and Simpson [33] in general.

Theorem 5.2. Let X be a compact Riemann surface of genus g ≥ 2. An SL(n,C)-
Higgs bundle (E ,Φ) on X is polystable if and only if there is a hermitian metric

h on E solving the Hitchin equations (23). In particular, (E ,Φ, h) is an SL(n,C)-
harmonic bundle and SL(n,C)-harmonic bundles define polystable Higgs bundles.

For G-Higgs bundles on compact Riemann surfaces, a similar theorem holds.
Namely, if (P,Φ) is a G-Higgs bundle, then it is polystable if and only if there
is a metric h such that (P,Φ, h) is a G-harmonic bundle. This correspondence is
usually called the Kobayashi–Hitchin correspondence. For SL(n,C)-Higgs bundles
which have extra structures related to being a G-Higgs bundle, the metric solving
the Hitchin equations is compatible with these structures, see [15] for details.

For k-cyclic Higgs bundles on compact Riemann surfaces, we have the following
result of Simpson which implies that polystable k-cyclic Higgs bundles on a compact
Riemann surface are automatically k-cyclic harmonic bundles.

Proposition 5.3 ([32]). Let (E ,Φ) be a k-cyclic Higgs bundle with E = E1⊕· · ·⊕Ek.
Then (E ,Φ) is stable if and only if for all proper holomorphic subbundles F =
F1⊕· · ·⊕Fk ⊂ E with Fi ⊂ Ei and Φ(F) ⊂ F ⊗K, we have deg(F) < 0. Moreover,

when (E ,Φ) is stable, the splitting E1 ⊕ · · · ⊕ Ek is orthogonal with respect to the

hermitian metric h solving the Hitchin equations (23).

A representation ρ : π1(Σ) → G is called reductive if postcomposing ρ with the
adjoint representation of G decomposes as a direct sum of irreducible representa-
tions. The moduli space of G-conjugacy classes of representations π1(Σ) → G is
called the character variety and denoted by

X (Σ,G) = Homred(π1(Σ),G)/G.

Corlette’s theorem [9] (proven by Donaldson [10] for SL(2,C)) asserts that given
a representation ρ : π1(Σ) → G, there exists a ρ-equivariant harmonic map hÄ :

X̃ → G/K if and only if ρ is reductive. Combining Corlette’s theorem with the
Kobayashi–Hitchin correspondence defines a real analytic isomorphism between the
moduli space of G-Higgs bundles on X, the moduli space of G-harmonic bundles on
X and the G-character variety. This is called the nonabelian Hodge correspondence.

5.2. Moduli spaces of holomorphic curves for compact Riemann surfaces.

For a compact Riemann surface X, denote the set of isomorphism classes of equi-
variant alternating holomorphic curves (ρ, f) with induced Riemann surface X by

H(X)

={(ρ, f)equiv. alt. holomorphic curves with induced complex structure X}/G′
2.

By the nonabelian Hodge correspondence and Theorem 4.21, H(X) is in 1-1 cor-
respondence with the isomorphism classes of polystable G′

2-Higgs bundles on X of
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the form

(26) B
− i

2

�� BK−1

´

		 K
1

		 O
1

�� K−1

´

�� B−1K
− i

2

��

δ

�� B−1

δ

��

,

where B is a holomorphic line bundle, β ∈ H0(B−1K3) \ {0}, 1 : O → K−1 ⊗ K is
the identity, and − i

2 : B → BK−1 ⊗K is defined by − i
2 (b) = − i

2 · 1(s0)× b, where

s0 = 1 ∈ H0(O). This correspondence gives H(X) a complex analytic structure.
The degree of the line bundle B defines a continuous map deg : H(X) → Z. In

particular,

H(X) =
∐

d∈Z

Hd(X),

where Hd(X) = deg−1(d). The spaces Hd(X) are parameterized as follows.

Theorem 5.4. Let X be a compact Riemann surface of genus g ≥ 2.

(1) If g ≤ d ≤ 6g − 6, then Hd(X) is biholomorphic to a rank (2d − g + 1)
holomorphic vector bundle over the (6g − 6− d)-symmetric product of X.

(2) If 0 ≤ d ≤ g−1, then Hd(X) is biholomorphic to bundle over a H1(X,Z2)-
cover of the 2d-symmetric product of X whose fiber is (C5g−5−d\{0})/±Id.

(3) If d /∈ {0, . . . , 6g − 6}, then Hd(X) is empty.

Remark 5.5. The upper bound on d follows immediately from the assumption that
β ∈ H0(B−1K3) \ {0} while the lower bound comes from polystability. To prove
first two points, we parameterize the isomorphism classes of G′

2-Higgs bundles of
the form (26) which are polystable. The proof gives explicit descriptions of the
fibrations over the appropriate symmetric product.

Proposition 5.6 describes when the associated SL(7,C)-Higgs bundle is polystable.

Proposition 5.6. For a G′
2-Higgs bundle of the form (26), let d = deg(B). Then

0 ≤ d ≤ 6g − 6, and,

• for g ≤ d ≤ 6g − 6, the associated SL(7,C)-Higgs bundle is stable,

• for 0 < d ≤ g − 1, the associated SL(7,C)-Higgs bundle is polystable if and

only if δ �= 0, in which case it is stable,

• for d = 0, the associated SL(7,C)-Higgs bundle is polystable if and only if

δ �= 0, in which case it is strictly polystable.

Proof. Recall that the SL(7,C)-Higgs bundles are 6-cyclic with cyclic splitting

(B ⊕ B−1)⊕ BK−1 ⊕K ⊕O ⊕K−1 ⊕ B−1K.

By Proposition 5.3, to test stability of the SL(7,C)-Higgs bundle it suffices to
consider invariant subbundles compatible with the cyclic splitting.

When δ = 0, B−1 ⊕ B−1K is such an invariant bundle. If d < g − 1, then the
degree of B−1 ⊕ B−1K is positive and invariant so the underlying Higgs bundle is
unstable, while for d = g − 1, B−1 ⊕ B−1K is a degree zero invariant subbundle
which does not have an invariant complement, so the SL(7,C)-Higgs bundle is not
polystable. Hence, the Higgs bundles with δ = 0 are polystable if and only if
d > g − 1, in which case they are stable.
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When δ �= 0, the only invariant subbundle is the degree −d kernel of

(27)
(
− i

2 δ
)
: B ⊕ B−1 → (BK−1)⊗K.

Hence, when 0 < d ≤ 6g − 6 and δ �= 0, the associated SL(7,C)-Higgs bundle is
stable.

Finally, when d = 0, δ ∈ H0(B2) \ {0} defines an isomorphism B ∼= B−1. Denote
the kernel of (27) by I. Since δ �= 0, I ⊂ B ⊕ B−1 is an orthogonal subbundle
which is isomorphic to B. Hence, taking the orthogonal complement, we obtain a
new splitting B⊕B−1 ∼= I⊕I⊥. In this splitting the SL(7,C)-Higgs bundle is given
by (E ,Φ) = (I ⊕ E ′, 0⊕ Φ′), where (E ′,Φ′) is the 6-cyclic Higgs bundle

(28) (E ′,Φ′) = BK−1

´

		 K
1

		 O
1

�� K−1

´

�� B−1K
ε

�� I⊥

ε

��

,

where ε is the restriction of (27) to I⊥. Since ε �= 0, the cyclic Higgs bundle (E ′,Φ′)
is stable, and hence (E ,Φ) is strictly polystable. �

Remark 5.7. Note that in the case 0 ≤ d ≤ g − 1, the SL(7,C)-Higgs bundle
associated to the above G′

2-Higgs bundle is polystable when β = 0. Such Higgs

bundles define equivariant holomorphic curve f : X̃ → H4,2 which are totally
geodesic.

Proof of Theorem 5.4. Denote the set of degree n line bundles on X by Picn(X)
and the nth symmetric product by Symn(X). Taking the divisor div(σ) defines
a biholomorphism between Symn(X) and the space of pairs (N , [σ]), where N ∈
Picn(X) and [σ] ∈ P(H0(N )).

First consider the case when d = deg(B) satisfies g ≤ d ≤ 6g − 6. The proof is
similar to Hitchin’s parameterization of the components of M(X,PSL(2,R)) with
nonzero Euler number in [16]. By Proposition 4.20 and Proposition 5.6, we have

Hd(X) = {(B, β, δ)}/ ∼,

where B ∈ Picd(X), β ∈ H0(B−1K3) \ {0} and δ ∈ H0(B2), and (B, β, δ) ∼
(B, λβ, λ−2δ) for λ ∈ C∗. Define the bundle π : Y → Sym6g−6−d(X) by π−1(D) =
H0(K6(−2D)). Since d ≥ g, Riemann-Roch and Serre duality imply dim(π−1(D))

= 2d − (g − 1). Hence, Y → Sym6g−6−d(X) is a rank 2d − (g − 1) vector bundle.
There is a well defined injective map

Ψ : Hd(X) �� Y
[(B, β, δ)] � ��

(
div(β), β2δ

)
.

Moreover, the map Ψ is surjective. Indeed, a point (D, θ) ∈ Y determines (L, [β]),
where β ∈ P(H0(L)) with div(β) = D and θ ∈ H0(K6(−2D)). Consider B =

L−1K3 ∈ Picd(X), since θ is degree six holomorphic differential which vanishes
on 2D, it can be written as θ = β2δ for δ ∈ H0(B2). The result follows since
holomorphic bijections are biholomorphisms.

Now assume 0 ≤ d ≤ g − 1. By Proposition 4.20 and Proposition 5.6, we have

Hd(X) = {(B, β, δ)}/ ∼,
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where B ∈ Picd(X), β ∈ H0(B−1K3) \ {0}, δ ∈ H0(B2) \ {0}, and (B, β, δ) ∼
(B, λβ, λ−2δ) for λ ∈ C∗. Note that dim(H0(B−1K3)) = 5g − 5− d.

Recall that the set of square roots of an even degree line bundle over X is an
H1(S,Z2)-torsor. The 2d-symmetric product Sym2d(X) thus has an H1(X,Z2)-

cover Ŝym
2d
(X) which parameterizes pairs (B, [δ]), where B ∈ Picd(X) and [δ] ∈

P(H0(B2) \ {0}). There is a well defined injective map

Θ : Hd(X) �� Ŝym
2d
(X)×H0(K6),

[(B, β, δ)] � ��
(
(B, [δ]), β2δ

)
.

Let W denote the image of Θ. Projection onto the first factor defines a surjective

map π : W → Ŝym
2d
(X). The fiber π−1((B, [δ])) consists of all nonzero holo-

morphic sections of K6 which are squares of sections B−1K3 and vanish on div(δ).
In other words, the fiber is the image of the quadratic map H0(B−1K3) \ {0} →
H0(B−2K6) ⊂ H0(K6) defined by β 
→ β2. In particular, it is biholomorphic to
(C5g−5−d \ {0})/± Id. �

Remark 5.8. By Remark 5.7, when 0 ≤ d ≤ g − 1 and β = 0, the resulting Higgs
bundles are also polystable. By the above proof, the space of such Higgs bundles

is biholomorphic the quotient of a rank (5g − 5− d) vector bundle over Ŝym
2d
(X)

by the fiberwise action of ±Id.

5.3. Varying the Riemann surface. The moduli space H(Σ) of equivariant al-
ternating holomorphic curves on Σ is defined by

H(Σ) = {(ρ, f)equivariant alternating holomorphic curve }/ ∼,

where (f1, ρ1) ∼ (f2, ρ2) if there is g ∈ G′
2 and ψ ∈ Diff0(Σ) such that (ρ1, f1) =

(Adg ◦ ρ2, (g · f2) ◦ ψ̃).
Recall that the Teichmüller space T (Σ) of Σ is the quotient of the space of

complex structures on Σ which are compatible with the orientation by the group
Diff0(Σ). Taking the induced Riemann surface of an equivariant holomorphic curve
defines a surjective map

π : H(Σ) �� T (Σ).

[(ρ, f)] � �� [(S, j)].

Recall also that the mapping class group Mod(Σ) of Σ is the quotient Mod(Σ) =
Diff+(Σ)/Diff0(Σ). The mapping class group acts naturally on H(Σ) and T (Σ),
and the map π is equivariant with respect to these actions.

Finally, recall that a complex analytic set is a subset V ⊂ Cn which is locally
the zero set of a finite number of holomorphic functions. A holomorphic function
on an open set U ⊂ V is the restriction of a holomorphic function defined on a
neighborhood of U in Cn. This defines a structure sheaf OV on V and we call
a complex analytic space a ringed space (A,OA) which is locally isomorphic to an
analytic set equipped with its structure sheaf. A morphism of ringed space between
complex analytic space is called a holomorphic map.

Theorem 5.9. The moduli space H(Σ) has the structure of a complex analytic

space. With respect to this structure, the mapping class group Mod(Σ) acts holomor-

phically and the projection to Teichmüller space π : H(Σ) → T (Σ) is a surjective
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holomorphic map. Moreover,

H(Σ) =
∐

d∈{0,...,6g−6}
Hd(Σ),

where, for each X ∈ T (Σ), Hd(Σ) + π−1(X) is biholomorphic to the space Hd(X)
from Theorem 5.4.

Proof. Recall from §4 that there is a one-to-one correspondence between points in
H(Σ) and pairs of points (X, (E ,Φ)) where X ∈ T (Σ) and (E ,Φ) ∈ M(Σ,GC

2 ) is a
stable GC

2 -Higgs bundles of the form of equation (25).
Consider the space

M(Σ,GC

2 ) =
∐

X∈T (Σ)

M(X,GC

2 ),

where M(X,GC
2 ) is the moduli space of poly-stable GC

2 -Higgs bundles over X.
Since GC

2 is a complex reductive algebraic group G, building on the construc-
tion of Simpson [35], it was proven in [2, Theorem 7.5] that M(Σ,GC

2 ) has a
Mod(Σ)-invariant complex analytic structure such that the natural projection map
π : M(Σ,GC

2 ) → T (Σ) is holomorphic and π−1(X) is biholomorphic to M(X,GC
2 ).

The C
∗-action on each M(X,GC

2 ) yields a C
∗-action on M(Σ,GC

2 ) which is ana-
lytic by [35]. Given a primitive 6th root of unity ζ, the set of fixed points M(Σ,GC

2 )
ζ

is thus analytic. To conclude the proof, observe that being of the form (25) is an
open condition in the space of 6-cyclic GC

2 -Higgs bundles. Since open subsets of
analytic spaces are analytic, the result follows. �

Remark 5.10. Simpson explained to us a proof that the restriction of the projection
π : M(Σ,GC

2 ) → T (Σ) to stable Higgs bundles is a flat family. This implies in
particular that the total space M(Σ,GC

2 ), and hence H(Σ), is smooth. Since the
technical aspects of the proof are not inline with the main points of this paper, we
decided not to include it here. Smoothness will be explicitly addressed in [8].

5.4. The case d = 6g − 6. Recall that a Fuchsian representation is a morphism
ρ : π1(Σ) → PSL(2,R) arising as the holonomy of a hyperbolic structure on Σ
(compatible with the orientation). The space of Fuchsian representations defines a
connected component of the character variety X (Σ,PSL(2,R)) which is naturally
identified with the Teichmüller space T (Σ).

For GC a complex semisimple Lie group of adjoint type, there is a special embed-
ding PSL(2,C) → GC called the principal embedding. The restriction of the princi-
pal embedding to PSL(2,R) defines an embedding into the split real form G of GC.
Hence, postcomposing Fuchsian representations with the principal embedding de-
fine representations ρ : π1(Σ) → G. In [17], Hitchin used Higgs bundles on a fixed
Riemann surface to parameterize the connected component Hit(Σ,G) ⊂ X (Σ,G)
containing such representations by a vector space of holomorphic differentials. As
a result, Hit(Σ,G) is called the Hitchin component and representations in it are
called G-Hitchin representations.

Denote the vector bundle of degree 6 holomorphic differentials by p : Q6(Σ) →
T (Σ), i.e., p−1(X) ∼= H0(K6

X). For the case d = 6g − 6, we have the following
description of H6g−6(Σ).
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Theorem 5.11. The space π : H6g−6(Σ) → T (Σ) is biholomorphic to the vector

bundle p : Q6 → T (Σ). Moreover, the points of H6g−6(Σ) correspond to isomor-

phism classes of alternating holomorphic curves (ρ, f) with ρ a G′
2-Hitchin repre-

sentation.

Proof. For a fixed Riemann surface X, the space H6g−6(X) is parameterized by
isomorphism classes of G′

2-Higgs bundles of the form (26) with deg(B) = 6g − 6.
Such Higgs bundles are determined by triples (B, β, δ), where B ∈ Pic6g−6(X),
β ∈ H0(B−1K3) \ {0} and δ ∈ H0(B2). Since deg(B) = 6g − 6 and β �= 0,
we have B = K3, and hence δ ∈ H0(K6). Furthermore, by Theorem 5.4, fixing
β = 1 ∈ H0(B−1K3) determines the isomorphism class of such a Higgs bundle.
Under the nonabelian Hodge correspondence, such Higgs bundles define G′

2-Hitchin
representations, see [17]. We conclude the proof by noting that the fiber of π :
H6g−6(Σ) → T (Σ) is defined by the holomorphic section δ ∈ H0(K6) by Theorem
5.4. �

Remark 5.12. In [19], Labourie proved that the natural mapH6g−6(Σ) → Hit(Σ,G′
2)

is a diffeomorphism. A dimension count implies that Hd(Σ) → X (Σ,G′
2) maps onto

a connected component of X (Σ,G′
2) if and only if d = 6g − 6. In §6 we will discuss

the local structure of the map Hd(Σ) → X (Σ,G′
2) for general d.

5.5. The case d = 0. Recall that elements ω ∈ H1(Σ,Z2) correspond to represen-
tations ρω : π1(Σ) → Z2, and also to holomorphic line bundles Iω on a Riemann
surface such that I2

ω = O. Given ω and a Riemann surface X, an ω-twisted holo-

morphic cubic differential is a holomorphic section of K3
X ⊗ Iω. We denote the

vector bundle of ω-twisted holomorphic cubic differentials over Teichmüller space
by Qω

3 . For the case d = 0, we have the following description of H0(Σ).

Lemma 5.13. The space π : H0(Σ) → T (Σ) decomposes as

H0(Σ) =
∐

ω∈H1(Σ,Z2)

Hω
0 (Σ),

where Hω
0 (Σ) is biholomorphic to the quotient of the complement of the zero section

of Qω
3 by ±Id.

Proof. For a fixed Riemann surface X, the space H0(X) is parameterized by iso-
morphism classes of G′

2-Higgs bundles of the form (26) with deg(B) = 0. Such Higgs
bundles are determined by triple (B, β, δ), where B ∈ Pic0(X), β ∈ H0(B−1K3)\{0}
and δ ∈ H0(B2) \ {0}. Since δ �= 0, B2 ∼= OX . Hence H1(Σ,Z2) parameterizes
the choices for B, and this gives the decomposition into components Hω

0 (Σ). Note
that β is an ω-twisted holomorphic cubic differential since β ∈ H0(B−1K3) and
B−1 ∼= B. By the proof of Theorem 5.4, fixing δ ∈ H0(B2) determines the isomor-
phism class of the Higgs bundle up to β 
→ −β. Hence, Hω

0 (Σ) is the biholomorphic
to the quotient of the complement of the zero section of Qω

3 by ±Id. �

We now describe the equivariant holomorphic curves in Hω
0 (Σ) in more detail.

Recall from §3.3 that S3,3 is the space of vectors in R4,3 of norm 1 and P+(R
4,3)

is the space of positive definite lines in R
4,3. The group G′

2 acts transitively on
both S3,3 and P+(R

4,3), and the stabilizers of a point are respectively isomorphic
to SL(3,R) and the nonsplit extension

1 → SL(3,R) → ŜL(3,R)
ϕ−→ Z2 → 1.
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Since taking orthogonal complements defines a bijection between points in P+(R
4,3)

and totally geodesic copies of H3,2 in H4,2, the G′
2-stabilizer of an H3,2 ⊂ H4,2 is

isomorphic to ŜL(3,R). Finally, note that given a representation ρ̂ : π1(Σ) →
ŜL(3,R), we get

• an induced Z2-representation ρω = ϕ ◦ ρ̂ : π1(Σ) → Z2, and
• an SL(3,R)-representation ρ̂ : ker(ρω) → SL(3,R).

Theorem 5.14. For ω ∈ H1(Σ,Z2), the isomorphism class of an equivariant al-

ternating holomorphic curve [ρ, f ] lies in Hω
0 (Σ) if and only if f(Σ̃) is contained in

a unique totally geodesic copy of H3,2 inside H4,2 and

ρ = ι ◦ ρ̂ : π1(Σ) → ŜL(3,R) → G′
2,

where ι : ŜL(3,R) → G′
2 is given by the stabilizer of the unique H3,2 containing f(Σ̃),

and ρ̂ : π1(Σ) → ŜL(3,R) has the property that the induced Z2-representation is ρω
and the associated SL(3,R) representation ρ̂ : ker(ρω) → SL(3,R) is an SL(3,R)-
Hitchin representation which is not Fuchsian.

Remark 5.15. Note that an equivariant holomorphic curve [ρ, f ] lies in a totally
geodesic copy of H3,2 ⊂ H4,2 if and only if the representation fixes a positive
definite line in R4,3, and that this is equivalent to ρ factoring through the stabilizer
of a positive definite line.

Proof. First suppose [ρ, f ] ∈ Hω
0 . Let X be the induced Riemann surface and I the

holomorphic line bundle on X associated to ω. As in the proof of Proposition 5.6,
the SL(7,C)-Higgs bundle associated to [ρ, f ] is strictly polystable and isomorphic
to (E ,Φ) ∼= (I ⊕ E ′, 0 ⊕ Φ′), where I ∼= B is an orthogonal subbundle of B ⊕ B−1

defined by the kernel of (27) and (E ′,Φ′) is given by (28). Note that (E ′,Φ′) defines
an O(3, 3)-Higgs bundle, and that (E ,Φ) defines an S(O(1)×O(3, 3))-Higgs bundle.
This implies the SO0(4, 3) representations ρ associated via the nonabelian Hodge
correspondence fix a positive definite line in R4,3. Hence, the image of f lies in the
totally geodesic copy of H3,2 ⊂ H4,2 associated to the positive definite line bundle
I and ρ factors through the stabilizer of a positive definite line in R

4,3.
Since B ∼= I, the Z2-factor of the representation ρ is given by the ω ∈ H1(Σ,Z2)

determined by B. As I and I⊥ are both isomorphic to B, the Higgs bundle (E ′,Φ′)
from (28) can be written as

(E ′,Φ′) = IK−1

´

		 K
1

		 O
1

�� K−1

´

�� IK
1



 I

1

��

.

First consider the case I = O. In this case the ρω is the trivial representation
and ρ̂ is an SL(3,R)-representation. Consider the following injective holomorphic
bundle maps

θ± : K ⊕O ⊕K−1 �� E ′

(x, y, z) � �� (±z, x, y, z,±x,±y)

.
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The images of θ± define holomorphic subbundles F± ⊂ E ′ such that E ′ = F+⊕F−.
The bundles F± are both Φ′-invariant since

Φ(θ±(x, y, z)) = Φ(±z, x, y, z,±x,±y) = (±(1),±β(z), 1(x), 1(y), β(z),±1(x))

= θ±(φ±(x, y, z)),

where

φ± =

»
½
0 0 ±β
1 0 0
0 1 0

¾
À ∈ End(K ⊕O ⊕K−1)⊗K.

Moreover, (F±, φ±) is the SL(3,R)-Higgs bundles in the Hitchin component de-
scribed by the cubic differential ±β, see [17]. Hence, when ω = 0, the representa-

tion ρ̂ : π1(Σ) → ŜL(3,R)-factors through an SL(3,R)-Hitchin representation. As
β is assumed to be nonzero, ρ̂ is not Fuchsian.

When ω �= 0, the Z2-representation ρω is nontrivial. However, the pullback of
the Higgs bundle to the connected double cover Xω → X defines a point in H0

0(Xω).
Hence the restriction of ρ̂ to the kernel of ρω is an SL(3,R)-Hitchin representation
which is not Fuchsian.

Conversely, let [ρ, f ] be an equivariant holomorphic curve such that f(Σ̃) lies in

a totally geodesic subspace H3,2 ⊂ H4,2. Let W̃ be the normal bundle of H3,2 in

H4,2. If we denote by M̃ the orthogonal of TΣ̃ ⊕ NΣ̃ inside f∗TH3,2, then f∗W̃
and M̃ descend respectively to real line bundles W and M on Σ. Thus we have
that BΣ = W ⊕M is topologically trivial, and so has degree 0. Thus, [ρ, f ] defines
a point in H0. �

5.6. Link with affine spheres. The theory of Hitchin representations in SL(3,R)
is intimately linked with the theory of affine spheres in R3. Namely, Loftin [24]
and Labourie [20] proved that given a Hitchin representation ρ : π1(Σ) → SL(3,R),

there exists a unique ρ-equivariant hyperbolic affine sphere uÄ : Σ̃ → R3. Such a
hyperbolic affine sphere defines a metric g on Σ (called the Blaschke metric) and
a holomorphic cubic differential q3 ∈ H0(X,K3), called the Pick form, where X is
the Riemann surface associated to g. This defines a map from Hit(Σ, SL(3,R)) to
Q0

3 → T (Σ) which they proved is a homeomorphism.
Theorem 5.14 implies that the component H0

0(Σ) consists of equivariant holo-
morphic curves [ρ, f ] lying in a totally geodesic copy of H3,2 in H4,2 and such that
the underlying representation comes from a non-Fuchsian Hitchin representation
ρ̂ : π1(Σ) → SL(3,R). Theorem 5.16 describes a link between the holomorphic
curve f and the hyperbolic affine sphere uÄ̂.

Theorem 5.16. Let (ρ, f) be an alternating equivariant holomorphic curve whose

equivalence class lies in H0
0, z be a point in S3,3 fixed by ρ, D+

z be isotropic 3-
plane defined in §3.3 and denote by ρ̂ the corresponding Hitchin representation into

FixG′
2
(x) ∼= SL(3,R). Then the map

uz : Σ̃ −→ D+
z ,

x 
−→ f(x) + z· f(x)

is a ρ̂-equivariant hyperbolic affine sphere.
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Proof. Since f takes value in z⊥, one easily checks that uz as well. Moreover, we
have

ψz(uz(x)) = z·uz(x) = z· f(x) + z2· f(x) = uz(x),

so uz takes value in Ker(Id− ψz) = D+
z .

To see that uz is a hyperbolic affine sphere, observe that uz is obtained by
considering the section 1 of O in F+ which corresponds to a hyperbolic affine
sphere by Baraglia [4, Section 3.4.2]. �

Remark 5.17. Note that the representation ρ fixes two points z and −z in S3,3.
Taking −z instead of z is equivalent to considering the map (f − z· f) which takes
value in D−

z . The underlying representation is the contragradient of ρ̂.

5.7. Totally geodesic surfaces. In the correspondence between alternating holo-
morphic curves and G′

2-harmonic bundles of the form of equation (26), the section
β is the (1, 0)-part of the second fundamental form of the holomorphic curve. As
alternating holomorphic curves are assumed to be not totally geodesic, β is nonzero.

In the equivariant setting, stability of the Higgs bundle implies the section δ is
not 0 when 0 ≤ deg(B) ≤ g − 1, see Proposition 5.6. On the other hand, setting
β = 0 gives rise to polystable Higgs bundles if and only if 0 ≤ deg(B) ≤ g−1. Such
Higgs bundles are given by

K
1

		 O
1

�� K−1 ⊕ B
− i

2

�� K−1B KB−1

− i
2

��

δ

�� B−1

δ

��

.

They correspond to equivariant holomorphic curves (ρ, f) with zero second funda-
mental form, and hence the image of f is a totally geodesic holomorphic disk in
H4,2. Such a holomorphic disk is the intersection of H4,2 with a copy of 	(H′),
where H′ is a split-quaternion subalgebra of O′. In particular, ρ factors through
the stabilizer of H′ which is isomorphic to SO(2, 2) by Lemma 2.5.

The SO(2, 2)-representation obtained can be described explicitly. Choose a

square root K 1
2 of the canonical bundle and let (F1, ϕ1) and (F2, ϕ2) be the follow-

ing SL(2,R) Higgs bundles

(F1, ϕ1) := K 1
2

− i
2

�� K− 1
2 , (E2, ϕ2) := K 1

2B−1

δ

�� K− 1
2B .

(E1,Φ1) is the Higgs bundle corresponding to the Fuchsian representation ρ1 uni-
formizing X, while the second one corresponds to a representation ρ2 : π1Σ →
SL(2,R) with Euler class g − 1− d. Moreover, we have

B
− i

2

�� K−1B KB−1

− i
2

��

δ

�� B−1

δ

��

= (F1 ⊗F2, ϕ1 ⊗ Id + Id⊗ ϕ2),

meaning that, under the 2-to-1 cover SL(2,R)× SL(2,R) → SO0(2, 2) coming from
the tensor product of the standard representation, we have ρ = ρ1 ⊗ ρ2.
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Finally, we describe how these totally geodesic holomorphic curves arise as limits
of alternating ones. Given a G′

2-Higgs bundle (E ,Φ) of the form (26) with 0 ≤
deg(B) ≤ g − 1, consider the C

∗-family given by [E , tΦ], for t ∈ C
∗. Acting by the

gauge gt = diag(1, t−1, t, 1, t−1, t, 1), we see that (E , tΦ) is equivalent to

B
− i

2

�� BK−1

t3´

		 K
1

		 O
1

�� K−1

t3´

�� B−1K
− i

2

��

δ

�� B−1

δ

��

.

In particular, [E , tΦ] corresponds to an equivariant alternating holomorphic curve
[ρt, ft] ∈ Hd(Σ) for 0 ≤ d ≤ g − 1. Taking the limit as t goes to 0, we get that
[ρt, ft] converges to an equivariant totally geodesic holomorphic curve.

Recall from Theorem 5.4 that for 0 ≤ d ≤ g − 1 the spaces Hd(X) are biholo-
morphic to the quotient of the complement of the zero section of a rank 5g− 5− d
vector bundle by the action of ±Id. By the above discussion, we see that the totally
geodesic holomorphic curves correspond to the zero section of this vector bundle.
In particular,

(29) Hd(Σ) ⊂ Ĥd(Σ) → T (Σ),

where the fiber over X ∈ T (Σ) of Ĥd(Σ) is the quotient by ±Id of the rank 5g−5−d

vector bundle. By construction Ĥd(Σ) \ Hd(Σ) is the zero section of this vector
bundle and corresponds to totally geodesic equivariant holomorphic curves.

6. Cyclic surfaces and infinitesimal rigidity

In this section, we introduce the notion of cyclic surfaces (Definition 6.4), which
is slightly more general than the one introduced by Labourie in [19]. Cyclic surfaces
are special types of holomorphic curves in a homogeneous space X which we call
the cyclic space (Definition 6.2). The cyclic space in particular fibers over both
H4,2 and the Riemannian symmetric space Sym(G′

2). An important property of
cyclic surfaces is that their projections to H4,2 are (possibly branched) alternat-
ing holomorphic curves and their projections to Sym(G′

2) are (possibly branched)
minimal surfaces whose underlying harmonic bundle is cyclic.

To ensure non-branched immersions in both cases, we restrict to the class of α1-
cyclic surfaces. We prove that α1-cyclic surfaces arise from the Frenet lift of a unique
alternating holomorphic curve in Theorem 6.7. We then use this interpretation to
prove that equivariant alternating holomorphic curves [ρ, f ] are infinitesimally rigid
in Theorem 6.8.

6.1. Lie theory. Fix a maximal torus TC in GC
2 and denote by tC its Lie algebra.

Let ∆ ⊂ (tC)∗ be the set of roots and, for any γ ∈ ∆, denote by gµ the corresponding
root space. The root space decomposition is then

gC2 = tC ⊕
⊕

µ∈∆

gµ .

Writing g0 = tC, we have that [gµ , gδ] ⊂ gµ+δ for any γ and δ in ∆ , {0}. In
particular, if γ + δ is not in ∆ , {0} we have [gµ , gδ] = 0.
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Choosing a subset ∆+ ⊂ ∆ of positive roots defines two simple roots {α1, α2}
where α1 is the short root. Explicitly, we have

∆+ =
{
α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2

}
.

α1

α2

Any root γ ∈ ∆+ is uniquely written as γ = nα1 +mα2 with n,m ∈ N; we define
the length of γ as

�(γ) := n+m.

The longest root is η := 3α1 + 2α2 which has length 5. For any k ∈ Z6 set

gk =

§
¨
©

⊕
−
(µ)=k

gµ if k �= 0

tC if k = 0
.

The cyclic grading is then defined to be the Z6-grading

(30) gC2 =
⊕

k∈Z6

gk.

In particular, we have g1 = g−³1
⊕ g−³2

⊕ gη.

Lemma 6.1. There exists a Cartan involution θ on gC2 such that θ(gk) = g−k for

any k ∈ Z6.

Proof. This can be proved by choosing a Chevalley basis (see [19] for more details).
�

Fixing such a Cartan involution, we denote by K the associated maximal com-
pact subgroup of GC

2 and by T = TC + K the maximal compact subgroup of TC.
In particular, K is the compact real form of GC

2 and Sym(GC
2 ) := GC

2 /K is the
Riemannian symmetric space of GC

2 .
Denote the Lie algebra of T by t. The cyclic grading (30) gives an Ad(T)-

invariant splitting

(31) gC2 = t⊕ it⊕
⊕

k∈Z6\{0}
gk.

We will denote by t⊥ the direct sum it⊕⊕k∈Z6\{0} gk.

Define the C-linear involution σ of gC2 by

σ|gk
= (−1)kIdgk

, k ∈ Z6.

Since the grading is even, one easily checks that σ is an automorphism of gC2 .
Moreover, σ commutes with θ and the corresponding real form λ := σ ◦ θ has fixed
point the Lie algebra of G′

2.
One can be more explicit in the description of the objects above. Consider the

basis (f−3, f−2, . . . , f3) of 	(O′) ⊗ C as in equation (7), and let Fk = spanC{fk}
for each k. The complex quadratic form q identifies F ∗

a with F−a for any a while
the map (x, y) 
→ −1√

2
x × y identifies F−2 with F−3 ⊗ F1. The subgroup of GC

2
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preserving the splitting F−3 ⊕F−2 ⊕ · · · ⊕F3 is a maximal torus TC. In particular,
the vector space

⊕
k∈Z6\{0} gk can be seen as the tangent space to GC

2 /T
C at the

point eTC and thus embeds in
⊕

k 	=l Hom(Fk, Fl). Furthermore, any root space

gµ embeds in
⊕3−l

k=−3Hom(Fk, Fk+l) where l = �(γ). We can thus represent any
element (a, b, c) ∈ g−³1

⊕ g−³2
⊕ gη = g1 as

(32) F−3

− i
2
a

�� F−2

b

�� F−1
a

�� F0
a

		 F1

b

		 F2

− i
2
a

		

c

��
F3

c

��
,

where, as in (26), the map − i
2a : F−3 → F−2 is defined by − i

2a(f−3) = − i
2a(f0)×

f−3.

6.2. Cyclic surfaces. We continue to use the notation from the previous section.

Definition 6.2. The cyclic space X is the homogeneous space GC
2 /T.

The natural projection GC
2 → X is a principal T-bundle. For any linear action

of T on a vector space V , we denote by [V ] = GC
2 ×

T
V the associated vector bundle

over X.
Let D ∈ Ω1(GC

2 , g
C
2 ) be the Maurer-Cartan form on GC

2 . The Maurer-Cartan
equation is then

(33) dD +
1

2
[D ∧D] = 0.

Using the Ad(T)-invariant splitting of equation (31), we can postcompose D with
the projection on each factor. The projection onto t gives a connection A on the
principal T-bundle GC

2 . The 1-form ω := D − A vanishes on the vertical tangent
space of GC

2 → X and thus descends to a nowhere vanishing 1-form on X with
values in the associated bundle [t⊥]. In particular, the ω identifies TX with [t⊥].
Since the splitting t⊥ = it⊕⊕k∈Z6\{0} gk is T-invariant, we obtain

(34) TX = [it]⊕
⊕

k∈Z6\{0}
[gk].

The involutions θ, σ and λ of gC2 extend equivariantly to involutions on TX which we
denote with the same symbols. Since λ is an automorphism of gC2 , the distribution
in X given by the fixed points of λ is integrable and its leaves correspond to orbits
of subgroup of GC

2 conjugated to G′
2.

For any k ∈ Z6 \ {0} we denote by ωk ∈ Ω1(X, [gk]) the projection of ω on [gk].
Similarly, for any root γ, we denote by ωit and ωµ the projection of ω on [it] and
[gµ ] respectively. Projecting Maurer-Cartan equation on [t] and [gk] for k �= 0, we
get

(35)
FA + 1

2

∑
i+j=0[ωi ∧ ωj ]

t = 0,

dAωk + 1
2

∑
i+j=k[ωi ∧ ωj ] = 0,

where [., .]t is the composition of the Lie bracket with the orthogonal projection
on t.
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Definition 6.3. The cyclic distribution D ⊂ TX is the intersection of the fixed
points of λ with [g−1 ⊕ g1].

The T-equivariant endomorphism

J : g−1 ⊕ g1 �� g−1 ⊕ g1

(x, y) � �� (−ix, iy)

commutes with λ and squares to −Id. Thus, it induces an almost complex structure
J on D.

Given a smooth oriented surface S, an orientation preserving smooth map f :
S → X will be called a holomorphic curve in X if f is tangent to the cyclic
distribution and df(TS) is J -invariant. Given k ∈ Z6 \ {0}, we denote by dfk the
1-form ωk(df) with value in f∗[gk]. Similarly, for any root γ ∈ ∆, we denote by dfµ
the form ωµ(df).

Definition 6.4. Let f : S → X be a holomorphic curve,

• f is a cyclic surface if df−³1
and df−³2

are not identically zero,
• f is an α1-cyclic surface if it is a cyclic surface and df−³1

is nowhere van-
ishing.

Remark 6.5. In [19], a cyclic surface is assumed to have df−³i
nowhere vanishing for

all simple roots αi. When considering cyclic surfaces which are equivariant under
surface group representations, this assumption forces the representation to be in
the Hitchin component. Insisting df−³i

is nowhere vanishing for only one simple
root allows more flexibility, and is still strong enough to ensure the infinitesimal
rigidity of Theorem 6.8. This loosening of the definition also appears in [6]. In [8],
we consider a more general setup which guarantees infinitesimal rigidity.

6.3. Cyclic surfaces and cyclic harmonic bundles. We now describe how
cyclic surfaces are a differential geometric interpretation of G′

2-cyclic harmonic bun-
dles. Given a cyclic surface f : S → X, denote by∇ = f∗A the pull-back connection
on f∗TX.

Lemma 6.6. Let f : S → X be a cyclic surface, then

(1) There is a unique complex structure j on S such that, for any root space gµ
in g1, the form dfµ has type (1, 0). In particular φ := df1 is of type (1, 0).

(2) Up to postcomposing f with an element in GC
2 , the map f takes value in a

G′
2-orbit.

(3) The Maurer-Cartan equations are equivalent to
{
F∇ − [φ ∧ θ(φ)] = 0

∂∇φ = 0
,

where ∂∇ is the (0, 1)-part of d∇.

Proof. For the first item, f is an immersion away from a discrete set D. Thus,
there exists a unique complex structure j′ on S \D such that df ◦ j′ = J ◦ df . The
complex structure j′ extends uniquely on S. The result then follows from the fact
that J is the multiplication by i on [g1] = [g−³ ⊕ g−´ ⊕ gη] so the projection on
each [gµ ] is holomorphic.

The second item follows from the fact that D is tangent to the distribution fixed
by λ whose leaves are orbits of groups conjugated to G′

2.
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For the third item, note that the only nonzero terms in the pullback of equation
(35) are in degrees 0, ±1, ±2. Using df−1 = −θ(df1), we see that the equations in
degrees −1 and −2 are equivalent to the ones in degrees 1 and 2 respectively. The
equations in degrees 0, 1, 2 are respectively

F∇ − [φ ∧ θ(φ)] = 0, d∇φ = 0 and φ ∧ φ = 0 .

Since φ is a (1, 0)-from, φ ∧ φ is automatically satisfied and d∇φ = ∂̄∇φ. �

Denote by Sym(GC
2 ) and Sym(G′

2) the (Riemannian) symmetric space of GC
2

and G′
2, respectively. We see Sym(G′

2) as a totally geodesic subspace of Sym(GC
2 ).

Denote by π : X → Sym(GC
2 ) the natural projection. Note that a cyclic surface

induces a Riemann surface structure X = (S, j) on S.

Theorem 6.7. Given a cyclic surface f : S → X, the map π ◦f : S → Sym(GC
2 ) is

a branched minimal immersion whose image is contained in Sym(G′
2). Moreover,

the corresponding G′
2-harmonic bundle on the induced Riemann surface has the form

(25) with α and β non-zero.

Conversely, given a G′
2-cyclic harmonic bundle on a Riemann surface X of the

form (25) with α and β non-zero, let ρ be the holonomy representation of the flat

connection. Then the cyclic harmonic metric defines a conformal ρ-equivariant

harmonic map hÄ : X̃ → Sym(G′
2) which lifts to a ρ-equivariant cyclic surface

in X.

Proof. To prove that π ◦ f is a branched minimal immersion, observe that, when
X is equipped with the pseudo-Riemannian metric induced by the Killing form,
the map π : X → Sym(G′

2) is a pseudo-Riemannian submersion whose horizontal
distribution is given by

HX = {x ∈ TX, θ(x) = −x}.
In particular, the horizontal distribution HX is naturally identified with
π∗TSym(GC

2 ). Moreover, this identification also identifies the restriction of A to
HX with the pull-back by π of the Levi-Civita connection on Sym(G′

2) (this can
be easily seen using the Kozsul formula).

Since the cyclic distribution D is a subdistribution of HX, the (1, 0)-part of the
differential of π ◦ f is identified with φ = df1 which is holomorphic by item (3) of
Lemma 6.6. It follows that π ◦ f is harmonic.

To prove that π ◦ f is a minimal immersion, we compute its Hopf differential.
But since f is tangent to the horizontal distribution, the Hopf differential of π ◦ f
is equal to the one of f , which is 0 since df1 is tangent to the vector bundle [g1]
which is isotropic with respect to the Killing form. So π ◦ f is weakly conformal
and harmonic so is a branched minimal immersion.

The fact that π ◦f lies in Sym(G′
2) is a direct consequence of item (2) of Lemma

6.6.
Consider now the associated G′

2-Higgs bundle (E ,Φ) on (S, j). In particular, E
is associated to the principal KC-bundle obtained by complexifying the principal
K-bundle (π ◦ f)∗G′

2 (where we see G′
2 as a principal K-bundle over Sym(G′

2)). The
fact that π ◦ f lifts to X means that E reduces to a holomorphic TC-bundle which
is compatible with the metric. Under this reduction, the Higgs field Φ = d(π ◦f)1,0
lies in the bundle associated to the adjoint action of TC on g1. According to (32),
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this exactly means that (E ,Φ) has the form of (25) with α, β and δ corresponding
respectively to df−³1

, df−³2
and dfη.

Conversely, a diagonal harmonic metric on (E ,Φ) corresponds to a harmonic
map to Sym(G′

2) which is compatible with the holomorphic TC-structure on E .
This means that the harmonic map lifts to a map f : (S, j) → X. The Higgs field
Φ is identified with df1,0 which takes value in [g1].

By construction, the underlying K-bundle reduces to a T-bundle. This exactly
means that E splits holomorphically as a direct sum of line bundles. Similarly, the
fact that the lift is cyclic means that Φ as the form of (25), where α = df−³1

, β =
df−³2

and δ = dfη. �

6.4. Infinitesimal rigidity. Let Σ be a closed oriented surface. An equivariant

cyclic surface is a pair (ρ, f), where ρ : π1(Σ) → G′
2 is a representation and f : Σ̃ →

X is a cyclic surface which is ρ-equivariant.
A smooth family of equivariant cyclic surfaces is a smooth map

F : Σ̃× (−ε, ε) → X

such that the map ft := F (·, t) is a cyclic surface which is ρt-equivariant where
the corresponding [ρ] : (−ε, ε) → X (Σ,G′

2) is smooth. We denote by (ρt, ft)t∈(−ε,ε)

such a family,
�

f0 = dF (∂t)|t=0 the vector field along f0 and [
�

ρ0] = d0[ρ](∂t).

Theorem 6.8. Let (ρt, ft)t∈(−ε,ε) be a smooth path of equivariant α1-cyclic surfaces

such that [
�

ρ0] = 0. Then there exists a smooth path (gt, ψt) ∈ G′
2 × Diff0(Σ) such

that
�

f ′
0 = 0 where f ′

t = gt ◦ ft ◦ ψt.

The proof follows (and simplify) the ideas introduced by Labourie in [19]. A
tangent vector ζ to a smooth family (ft)t∈(−ε,ε) of cyclic surfaces is called a Jacobi

field. We see ζ as a section of f∗
0TX. Denote the projection of ζ on f∗[g−³] by

ζ−³. Proposition 6.9 is the key technical result used to prove Theorem 6.8. We
postpone the proof until the final section.

Proposition 6.9. Let f : Σ̃ → X be a cyclic surface and let ζ be a Jacobi field

along f . If ζ is π1(Σ)-invariant and ζ−³1
= 0, then ζ = 0.

Proof of Theorem 6.8 using Proposition 6.9. Consider a smooth family

(ρt, ft)t∈(−ε,ε)

of equivariant α1-cyclic surfaces such that [
�

ρ0] = 0. In particular, there exists a
smooth path (gt)t∈(−ε,ε) in G′

2 such that d
dt

∣∣
t=0

gtρtg
−1
t = 0. Hence, the tangent

vector to the family (gt ◦ ft)t∈(−ε,ε) is a π1(Σ)-invariant Jacobi field.
By assumption, df−³1

is never vanishing. So there exists a unique vector field

X on Σ̃ with df−³1
(X) = −ζ−³1

. Let ψt be the flow of X at time t and define
f ′
t := gt ◦ ft ◦ ψt. In particular, each f ′

t is a gtρtg
−1
t -equivariant α1-cyclic surface,

and the tangent vector to the family (f ′
t) is a π1(Σ)-invariant Jacobi field ζ ′ which

satisfies ζ ′−³1
= 0. The result follows from Proposition 6.9. �

6.5. Infinitesimal deformations of cyclic surfaces. The final section is devoted
to the study of infinitesimal deformation of cyclic surfaces. In particular, we prove
Proposition 6.9. We follow the idea of [19], but our proof simplifies many relevant
computations. We hope this sheds light on the important ingredients to ensure
local rigidity.
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Consider a Lie algebra bundle π : Ê → M on a manifold M , and let ∇̂ be a
compatible connection (that is ∇̂ is a derivation for the Lie bracket). Consider

Θ = {θ1, . . . , θk} with θk ∈ Ω•(M, Ê). A solution to the Pfaffian system Θ is then
a map f : N → M such that f∗θk = 0 for all θk ∈ Θ. Let IΘ be the differential
ideal generated by Θ.

Lemma 6.10. A map f : N → M is a solution to the Pfaffian system Θ if and

only if f∗α = 0 for any α ∈ IΘ.
Proof. The direct implication follows from the fact that f∗[α∧β] = [f∗α∧f∗β] and
f∗d∇̂α = d∇f∗α for∇ = f∗∇̂. The converse follows from the fact that Θ ⊂ IΘ. �

The following is proved in [19, Proposition 7.14]:

Proposition 6.11. Let (ft)t∈(−ε,ε) be a smooth path of solution of the Pfaffian

system Θ and let ζ = d
dt
|t=0ft. Then for any α = f∗α̂ with α̂ ∈ IΘ we have

d∇ ◦ ιζα = −ιζ ◦ d∇α.

Recall that the Maurer-Cartan equation implies that the connection D = A+ ω
on [t]⊕TX is flat, so [t]⊕TX is isomorphic to the trivial Lie algebra bundle X×gC2 .
Consider the Pfaffian system

Θ :=
{
ω1 + θ(ω−1), ωit, ωj for j ∈ Z6 \ {0,±1}

}
.

Lemma 6.12. The form [ω−1 ∧ ω−1] belongs to the ideal IΘ.
Proof. The form ω−2 is in Θ, so dAω−2 is in IΘ. But equation (35) for k = 2 gives

dAω−2 +
1

2

∑

i+j=−2

[ωi ∧ ωj ] = 0.

In Z6 the equation i+j = −2 implies i = j = −1 or i, j /∈ {±1}. But for i, j /∈ {±1}
we have ωi, ωj ∈ Θ so [ωi∧ωj ] ∈ IΘ. In particular, the above equation implies that
[ω−1 ∧ ω−1] ∈ IΘ. �

One easily checks that a map f : S → X is tangent to the cyclic distribution D
if and only if it is solution to the Pfaffian system Θ.

Definition 6.13. Let f : S → X be a cyclic surface and ∇ = f∗A. A Jacobi field

of f is a section ζ of f∗TX such that, for any α = f∗α̂ with α̂ ∈ IΘ, we have

d∇ ◦ ιζα = −ιζ ◦ d∇α.

Since cyclic surfaces are solution to the Pfaffian system Θ, Proposition 6.11
implies that a vector field tangent to a deformation of cyclic surfaces is in particular
a Jacobi field.

Let f : S → X be a cyclic surface with φ = df1 and φ† = df−1 = −θ(df1) and let
j be the complex structure on S associated to f . Define

[G] =
⊕

j 	=0,±1[gj ] and Ω =
∑

j 	=0,±1 ωj .

A Jacobi field ζ which is tangent to a path of cyclic surfaces ft with f0 = f
decomposes as

ζ = ζ0 + ζ1 + ζ−1 + Z,

where ζj = ιζ(f
∗ωj) is a section of f∗[gj ] and Z = ιζ(f

∗Ω) is a section of f∗[G].
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Proposition 6.14. A Jacobi field ζ of a cyclic surface satisfies ζ0 = 0, λ(Z) = Z
and ζ1 = −θ(ζ−1).

Proof. The second item of Lemma 6.6 implies that, up to postcomposing ft by
an element in GC

2 , the cyclic surfaces ft are contained in a given G′
2-orbit. Since

the tangent space of such an orbit is Fix(λ), we have that λ(ζ) = ζ. But λ(ζ) =
−ζ0 − θ(ζ−1)− θ(ζ1) + λ(Z). Projecting on [it] gives ζ0 = 0, projecting on G gives
λ(Z) = Z, while projecting on [g1] gives ζ1 = −θ(ζ−1). �

The following appears in [19, Proposition 7.6.1]. For completeness, we repeat
them here.

Lemma 6.15.

(1) d∇Z = [(ζ1 + Z) ∧ φ]G + [(ζ−1 + Z) ∧ φ†]G.
(2) [∂∇ζ−1 ∧ φ†] = [[Z ∧ φ]g−1 ∧ φ†]

Proof. For the first item, we have by Definition 6.13

d∇Z = d∇(ιζ(f
∗Ω)) = −ιζ(d

∇(f∗Ω)).

However, projecting Maurer-Cartan equations on [G] gives

−dAΩ=
1

2
[Ω∧Ω]G+[ω0∧Ω]+[ω0∧Ω]+

1

2
[ω1∧ω1]+

1

2
[ω−1∧ω−1]+[ω1∧Ω]G+[ω−1∧Ω]G.

Pulling back by f , using f∗Ω = f∗ω0 = 0 and applying ιζ yields

−ιζ(d
∇(f∗Ω)) = [(ζ1 + Z) ∧ φ]G + [(ζ−1 + Z) ∧ φ†]G.

For the second item, first compute

(36) d∇(ιζf
∗[ω−1 ∧ ω−1]) = 2d∇[ζ−1 ∧ φ†] = 2[∂∇ζ−1 ∧ φ†],

where we used the fact that φ† has type (0, 1) and satisfies d∇φ† = 0. On the other
hand, using Lemma 6.12 we have

(37) d∇(ιζf
∗[ω−1 ∧ ω−1]) = −ιζ

(
d∇(f∗[ω−1 ∧ ω−1])

)
= −2

[
ιζ(d

∇(f∗ω−1)) ∧ φ†].
But the Maurer-Cartan equations on [g−1] give

−dAω−1 = [ω0 ∧ ω−1] + [Ω ∧ ω1]
g−1 +

1

2
[Ω ∧ Ω]g−1 .

This yields −ιζ(d
∇(f∗ω−1)) = [Z ∧ φ]g−1 . Plugging back in equation (37) and

comparing with equation (36) give the result. �

Proposition 6.16. A Jacobi field of a cyclic surface satisfies

∂∇∂∇Z =
[
[Z ∧ φ] ∧ φ†]G,

where the superscript G denotes the projection on f∗[G].

Proof. Taking the (0, 1)-part in the first item of Lemma 6.15 gives ∂∇Z = [(ζ−1 +
Z) ∧ φ†]G. So,

∂∇∂∇Z = [∂∇ζ−1 ∧ φ†]G + [∂∇Z ∧ φ†]G.

By Lemma 6.15 we have

∂∇∂∇Z = [[Z ∧ φ]g−1 ∧ φ†]G + [[(ζ1 + Z) ∧ φ]G ∧ φ†]G.

Note that [[ζ1 ∧ φ] ∧ φ†] is valued in f∗[g1]. So its projection on f∗[G] vanishes.
Moreover, [Z ∧ φ] is valued in f∗[g−1] ⊕ f∗[G], so we obtain ∂∇∂∇Z = [[Z ∧ φ] ∧
φ†]G. �
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In the case S = Σ̃ and ζ is π1(Σ)-invariant, the Bochner technique gives the
following.

Proposition 6.17. Suppose ζ is a π1(Σ)-invariant Jacobi field, then Z = 0.

Proof. Denote the Killing form on gC2 by B and 〈·, ·〉 = B(θ(·), ·) the corresponding
Hermitian metric. By a slight abuse of notation, we denote in the same way their
extension to the bundle of forms with value in f∗TX. On the one hand, we have

i

∫

Σ

〈Z, ∂∇∂∇Z〉 = i

∫

Σ

B(θ(Z), d∇∂∇Z)

= −i

∫

Σ

B(d∇θ(Z), ∂∇Z)

= −i

∫

Σ

B(θ(d∇Z), ∂∇Z)

= −i

∫
〈∂∇Z, ∂∇Z〉

≤ 0,

where in the second line we used Stokes theorem, for the third we used the fact that
∇ preserves θ and for the last one, we used the fact that in a local holomorphic
coordinate z, the (1, 1)-form 〈∂∇Z, ∂∇Z〉 is a nonnegative function times idz ∧ dz.

On the other hand, by Propositions 6.14 and 6.16, we have

i

∫

Σ

〈Z, ∂∇∂∇Z〉 = i

∫

Σ

B
(
θ(Z),

[
[Z ∧ φ] ∧ φ†])

= i

∫

Σ

B
(
[θ(Z) ∧ φ†], [Z ∧ φ]

)

= −i

∫

Σ

B (θ([Z ∧ φ]), [Z ∧ φ])

= −i

∫

Σ

〈[Z ∧ φ], [Z ∧ φ]〉

≥ 0,

where we used that, locally, 〈[Z∧φ], [Z∧φ]〉 is a nonnegative function time idz∧dz.
This thus gives Z ∧φ = 0. Applying the involution λ and using λ(φ) = −θ(φ) =

φ†, we also obtain Z ∧φ† = 0. To show that Z = 0, we compute the component Zµ

along f∗[gµ ] vanishes for each root γ. To do so, start by projecting the equation
[Z ∧ φ] = 0 on f∗[g³2

]. Using the root system of gC2 , we obtain

[Z ∧ φ]gα2 = [Z³1+³2
∧ df−³1

] = 0,

but since df−³1
is an isomorphism, this gives Z³1+³2

= 0. Similarly, we have

[Z ∧ φ]gα1+α2 = [Z2³1+³2
∧ df−³1

] = 0,

so Z2³1+³2
= 0. The same argument gives Z3³1+³2

= 0. For the projection
on negatives roots, we just use λ(Z) = Z and the fact that that λ maps [gµ ] to
[g−µ ]. �

We are now ready to prove Proposition 6.9.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6512 B. COLLIER AND J. TOULISSE

Proof of Proposition 6.9. Using Propositions 6.16 and 6.17, we get that a π1(Σ)-

Jacobi field ζ on Σ̃ arising from a deformation of cyclic surfaces has the form
ζ = ζ1 + ζ−1. In particular, Lemma 6.15 gives

[ζ1 ∧ φ] = 0.

Assume ζ−³1
= 0, and project the above equation on f∗[g−³1−³2

]. This gives

[ζ−³2
∧ df−³1

] = 0.

Since df−³1
is not identically zero, we get that ζ−³2

= 0 away from the zeroes of
df−³1

. By holomorphicity of df−³1
, this set is disrete, and ζ−³2

= 0 everywhere by
continuity.

Finally, the last component of ζ1 is ζη = ζ3³1+2³2
. Projecting [ζ1 ∧ φ] = 0 on

f∗[g3³1+³2
] gives

[ζη ∧ df−³2
] = 0.

Again, since df−³2
is holomorphic and not identically 0, we get that ζη = 0. Finally,

using ζ−1 = −θ(ζ1), we conclude that ζ = 0. �
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[8] Brian Collier and Jérémy Toulisse, Generalized cyclic surfaces, In preparation, 2023.
[9] Kevin Corlette, Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988), no. 3,

361–382. MR965220
[10] S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math.

Soc. (3) 55 (1987), no. 1, 127–131, DOI 10.1112/plms/s3-55.1.127. MR887285
[11] Cristina Draper Fontanals, Notes on G2: the Lie algebra and the Lie group, Differential

Geom. Appl. 57 (2018), 23–74, DOI 10.1016/j.difgeo.2017.10.011. MR3758361
[12] Jost-Hinrich Eschenburg and Theodoros Vlachos, Pseudoholomorphic curves in S6 and

S5, Rev. Un. Mat. Argentina 60 (2019), no. 2, 517–537, DOI 10.33044/revuma.v60n2a16.
MR4049801

[13] Parker Evans, Polynomial almost complex curves in S2,4, arXiv e-prints, August 2022.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

HOLOMORPHIC CURVES AND CYCLIC SURFACES 6513
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