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1 Introduction

Differential equations satisfied by correlation functions are essential elements in Conformal
Field Theory (CFT). Some famous examples are Belavin-Polyakov-Zamolodchikov (BPZ)
equations [1], Knizhnik-Zamolodchikov (KZ) equations [2] in two dimensions, and differential
equations of conformal partial waves by Dolan and Osborn [3] in higher dimensions. These
differential equations place powerful constraints on the correlation functions. For example,
the four-point correlators in minimal models and in the WZW model can be determined by
solving differential equations subjected to physically sensible monodromy properties [1, 2, 4].

Celestial amplitudes for massless particles computed from Mellin transforms of scattering
amplitudes in momentum basis with respect to the light-cone energies behave as conformal
correlators on the celestial sphere [5–7]. This was understood as a change of basis from
momentum-eigenstate basis to boost-eigenstate basis [8, 9], and has been under intensive
research in the context of celestial holography due to the fact that the boost-eigenstate basis
makes the conformal properties of scattering amplitudes manifest [5–22]. One might hope
that some stardard CFT techniques, e.g., differential equations can be applied to the study
of celestial amplitudes. This was initiated by [23] for MHV graviton amplitudes and [24] for
MHV gluon amplitudes respectively. These differential equations come from the requirement
that subleading terms in the celestial OPEs should be consistent with the subleading soft
gluon/graviton theorems [23, 24]. The gluon case in momentum space has a simple origin
that follows from the transformation property of the Parke-Taylor formula under a BCFW
shift [25]. See also [26–32] for further developments.
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Recently, an alternative change of basis for massless particles has gained a lot of interest
since [33–37], which is to perform Fourier transforms with respective to the energies rather
than Mellin transforms. In this way, one obtain Carrollian amplitudes which provide non-
trivial putative data for a three-dimensional Carrollian CFT that has been proposed to
describe four-dimensional asymptotically flat spacetime [33–35]. Carrollian CFTs are field
theories exhibiting conformal Carroll (or BMS) symmetries as spacetime symmetries, and
can be constructed from standard CFTs by formally taking the speed of light to zero, see
e.g. [38–43]. We refer to [33–35, 43–53] for some explicit examples of Carrollian amplitudes.

It has been shown that celestial amplitudes and Carrollian amplitudes are closely related
to each other [35, 49]. A natural question is whether we can find differential equations satisfied
by Carrollian amplitudes, similar to what we have seen for their celestial counterparts. In
this paper, we provide a definitive answer to this question and derive Carrollian differential
equations at null infinity. We investigate the solution space of these equations and find
non-distributional solutions beyond Carrollian MHV amplitudes.

This paper is organized as follows. In section 2, we review some basics of Carrollian
amplitudes. In section 3, we review the differential equations satisfied by the celestial MHV
gluon amplitudes and show how to translate them into the corresponding equations for the
Carrollian MHV gluon amplitudes. We find two non-distributional three-point solutions to
the differential equations of Carrollian MHV gluon amplitudes. We discuss the higher-point
case. In section 4, we review the differential equations satisfied by the celestial MHV graviton
amplitudes and translate them into the corresponding equations for the Carrollian MHV
graviton amplitudes. In section 5, we check explicitly that the differential equations satisfied
by the Carrollian MHV amplitudes are consistent with conformal Carrollian symmetries at
null infinity. Section 6 discusses briefly some future directions. In appendix A, we show an
example of how to derive a differential equation for celestial MHV graviton amplitudes from
a null state condition constructed from subleading and subsubleading graviton symmetries.

2 Elements of Carrollian amplitudes

To compute Carrollian amplitudes from scattering amplitudes for massless particles in
momentum basis, we parametrize the light-like momenta by

pµ = ωqµ = 1
2 ω(1 + |z|2, z + z̄,−i(z − z̄), 1− |z|2) , (2.1)

where ω is the light-cone energy. The scattering amplitudes in momentum basis can be
expressed in terms of spinor products

⟨ij⟩ = √ωiωj zij , [ij] = −√ωiωj z̄ij (2.2)

and the usual scalar products

sij = 2pipj = ωiωjzij z̄ij . (2.3)

The Carrollian amplitudes are obtained by performing Fourier transforms with respect to
the light-cone energies:

Cn({u1, z1, z̄1}ϵ1
J1

, . . . , {un, zn, z̄n}ϵn
Jn
)

=
n∏

i=1

(∫ +∞

0

dωi

2π
eiϵiωiui

)
An({ω1, z1, z̄1}ϵ1

J1
, . . . , {ωn, zn, z̄n}ϵn

Jn
) .

(2.4)
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where An are scattering amplitudes expressed in the usual momentum space basis, ϵ = ±1
corresponds to outgoing (+1) or incoming (−1) particle and J denotes the particle helicities.
These Carrollian amplitudes can be re-interpreted as correlators in a Carrollian CFT at
null infinity [35, 49]:

Cn({u1, z1, z̄1}ϵ1
J1

, . . . , {un, zn, z̄n}ϵn
Jn
) = ⟨Φϵ1

J1
(u1, z1, z̄1) . . .Φϵn

Jn
(un, zn, z̄n)⟩ (2.5)

where Φϵi
Ji
(ui, zi, z̄i) are conformal Carrollian primaries with weights

(ki, k̄i) =
(1 + ϵiJi

2 ,
1− ϵiJi

2

)
(2.6)

The relation between the Carrollian amplitude Cn and the corresponding celestial amplitude
Mn is given by [33, 35]

Mn

(
{∆1,z1, z̄1}ϵ1

J1
, . . . ,{∆n,zn, z̄n}ϵn

Jn

)
=

n∏
i=1

(
(−iϵi)∆iΓ[∆i]

∫ +∞

−∞

dui

(ui−iϵiε)∆i

)
Cn

(
{u1,z1, z̄1}ϵ1

J1
, . . . ,{un,zn, z̄n}ϵn

Jn

)
(2.7)

where ε→ 0+ is a regulator. As explained in [35, 47, 49], it is also useful to consider correlators
of descendants by taking derivatives with respect to the u coordinate. Indeed, ∂u-descendants
of conformal Carrollian primaries are also primaries. Adopting the notations of [49], we have

Cm1...mn
n ({u1,z1, z̄1}ϵ1

J1
, . . . ,{un,zn, z̄n}ϵn

Jn
)= ∂m1

u1 . . .∂mn
un

Cn({u1,z1, z̄1}ϵ1
J1

, . . . ,{un,zn, z̄n}ϵn
Jn
)

=
n∏

i=1

(∫ +∞

0

dωi

2π
(iϵiωi)mieiϵiωiui

)
An({ω1,z1, z̄1}ϵ1

J1
, . . . ,{ωn,zn, z̄n}ϵn

Jn
) , (2.8)

and a shorthand notation for C1...1
n :

C̃n({u1, z1, z̄1}ϵ1
J1

, . . . , {un, zn, z̄n}ϵn
Jn
) = C1...1

n ({u1, z1, z̄1}ϵ1
J1

, . . . , {un, zn, z̄n}ϵn
Jn
) . (2.9)

The explicit expressions of the n-point Carrollian MHV gluon and graviton amplitudes
were derived in [49].

3 Differential equations for Carrollian MHV gluon amplitudes

In this section, we derive the differential equations satisfied by Carrollian MHV gluon
amplitudes, starting from their celestial version [24, 25]. The differential equations satisfied
by the full celestial MHV gluon amplitudes were obtain by Banerjee and Ghosh (BG) [24].
For the purpose of simplicity, we consider the coresponding differential equations satisfied
by the color-ordered (partial) celestial MHV gluon amplitudes shown in [25]. The authors
of [25] also gave a simple explanation of the origin of BG equations in terms of BCFW shifts
in momentum space. For generic n-point color-ordered celestial MHV gluon amplitudes,
they satisfy the following differential equations,(

∂i −
∆i

zi−1,i
− 1

zi+1,i

)
Mn(1, · · · , n)

+
(

ϵiϵi−1
∆i−1 − Ji−1 − 1 + z̄i−1,i∂̄i−1

zi−1,i
e

∂
∂∆i

− ∂
∂∆i−1

)
Mn(1, · · · , n) = 0 , (3.1)

where particle i is a gluon with positive helicity. There is another set of equations that can
be obtained from eq. (3.1) by i − 1 ↔ i + 1. Ji is the helicity of gluon.

– 3 –
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Notice that the operator e
∂

∂∆ in eq. (3.1) shifts the conformal dimension up by one.
In momentum basis, this comes from having an extra ω in the integrand of the celestial
amplitudes. Therefore, if we consider the corresponding Carrollian amplitudes, e

∂
∂∆ gets

translated into 1
iϵ∂u acting on the Carrollian amplitudes:

Celestial Carrollian

e
∂

∂∆jMn(1, · · · , n) ←→ 1
iϵj

∂uj Cn(1, · · · , n) . (3.2)

This relation can also be directly deduced from the correspondence between Carrollian and
celestial amplitudes in (2.7).

The operator e−
∂

∂∆ in eq. (3.1) shifts the conformal dimension down by 1. Is is not
obvious how to translate this operator into the Carrollian language, although one can formally
write it as ∂−1

u . To avoid this issue, we can simply shift the conformal dimension of ∆i−1 up
by one in eq. (3.1) by choosing ∆i−1 → ∆i−1 + 1 in Mn. Eq. (3.1) becomes(

∂i −
∆i

zi−1,i
− 1

zi+1,i

)
e

∂
∂∆i−1Mn(1, · · · , n)

+
(

ϵiϵi−1
∆i−1 − Ji−1 + z̄i−1,i∂̄i−1

zi−1,i

)
e

∂
∂∆iMn(1, · · · , n) = 0 , (3.3)

together with the one obtained by i− 1↔ i+1. The other element that we need to translate
eq. (3.3) into its Carrollian version is a dictionary between ∆i and some operator acting
on the Carrollian amplitudes. For celestial amplitudes, ∆i corresponds to −ωi∂ωi acting on
the amplitudes in momentum basis [13, 15, 54, 55]. Therefore, translating into the operator
acting on the Carrollian operator, we find

Celestial Carrollian
∆iMn ←→ −ωi∂ωiAn ←→ ∂ui (uiCn) . (3.4)

Again, this correspondence can also be directly checked using (2.7).
By using eqs. (3.2), (3.3), and (3.4), we find the differential equations satisfied by the

Carrollian MHV gluon amplitudes:(
∂i −

1 + ui∂ui

zi−1,i
− 1

zi+1,i

)
∂ui−1Cn(1, · · · , n)

+
(
1 + ui−1∂ui−1 − Ji−1 + z̄i−1,i ∂̄i−1

zi−1,i

)
∂uiCn(1, · · · , n) = 0 , (3.5)

together with the one with i − 1 ↔ i + 1.
A few remarks are in order before we proceed. From eq. (3.5), we can obtain differential

equations satisfied by MHV Carrollian gluon amplitudes by switching z and z̄, and flipping
J to −J , (

∂̄i −
1 + ui∂ui

z̄i−1,i
− 1

z̄i+1,i

)
∂ui−1Cn,MHV(1, · · · , n)

+
(
1 + ui−1∂ui−1 + Ji−1 + zi−1,i ∂i−1

z̄i−1,i

)
∂uiCn,MHV(1, · · · , n) = 0 , (3.6)

together with the one with i − 1 ↔ i + 1.

– 4 –
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Another notice is that we can generalize the Carrollian differential equations to arbitrary
u-descendants. For example, if we take a derivative with respect to uj from eq. (3.5), we find(

∂i −
1 + δij + ui∂ui

zi−1,i
− 1

zi+1,i

)
∂ui−1∂uj Cn

+
(
1 + δj

i−1 + ui−1∂ui−1 − Ji−1 + z̄i−1,i ∂̄i−1

zi−1,i

)
∂ui∂uj Cn = 0 . (3.7)

It is straightforward to generalize it to the whole tower of the u-descendants eq. (2.8),(
∂i −

1 + mi + ui∂ui

zi−1,i
− 1

zi+1,i

)
∂ui−1Cm1...mn

n

+
(
1 + mi−1 + ui−1∂ui−1 − Ji−1 + z̄i−1,i∂̄i−1

zi−1,i

)
∂uiC

m1...mn
n = 0 . (3.8)

We note that Carrollian amplitudes are closely related to the modified Mellin transform
amplitudes [37]. Eq. (3.8) would be the result obtained via the modified Mellin transform by
setting ∆ = m + 1. See section 3 of [49] where the relation between Carrollian amplitudes
and modified mellin transform amplitudes is explained in details.

Examples of solutions. There exist two different types of Carrollian CFT correlators
compatible with the Ward identities: the time-dependent correlators, referred to as electric
(timelike), and the time-independent correlators, called magnetic (spacelike). The latter
reduce to correlators of a standard relativistic CFT living in one dimension lower. For
instance, the two-point function in three dimensions have the following two branches of
solutions for the Ward identities [41, 56–59]:

⟨Φ(k1,k̄1)(u1, z1, z̄1)Φ(k2,k̄2)(u2, z2, z̄2)⟩ =


α

u
k1+k2+k̄1+k̄2−2
12

δ(2)(z12)δk1+k2,k̄1+k̄2

β

z
k1+k2
12 z̄

k̄1+k̄2
12

δk1,k2δk̄1,k̄2

(3.9)

where α and β are normalization constants, and (ki, k̄i) are the Carrollian weights. The first
branch is u-dependent and involves a δ-function with respect to z and z̄. The second branch
is u-independent and coincides with the two-point correlation function in a two-dimensional
CFT. While the electric branch has been shown to be relevant to describe a scattering
process involving massless finite-energy particles, the precise role of the magnetic branch
remains unclear. Magnetic correlation functions seem to appear in the soft sector (see
e.g. [60–63]), and this observation is buttressed by taking the inverse Fourier transform of
the u-independent branch in (3.9):∫ +∞

−∞
du1e−iω1u1

∫ +∞

−∞
du2e−iω1u1 β

zk1+k2
12 z̄k̄1+k̄2

12
δk1,k2δk̄1,k̄2

= δ(ω1)δ(ω2)
(2π)2β

zk1+k2
12 z̄k̄1+k̄2

12
δk1,k2δk̄1,k̄2

(3.10)

(the first particle being seen as outgoing and the second as incoming). We leave a complete
characterization of the magnetic branch in the context of scattering amplitudes for future work.

– 5 –
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For higher-point cases, there will be more branches, see e.g., [47, 48]. In any case, we
find that any correlators from the magnetic branch would automatically satisfy the Carrollian
differential equations (3.5) since Cn always appears with an operator ∂u acting on it. Here
we shall give a simple example of the three-point case. One can check that

C3(−,−,+)Mag = z12
z13z23z̄2

12
(3.11)

satisfies eq. (3.5) with the correct conformal weights of each operator as the conformal
dimension ∆ = k + k̄ of each operator has to be 1 (see (2.6)). As we will see, eq. (3.11) will
also appear in the non-trivial three-point solution of eq. (3.5) as a prefactor.

As another simple example, one can check that the three-point Carrollian MHV gluon
amplitudes obtained from the flat-space amplitudes in (2, 2) signature satisfy the Carrollian
BG eq. (3.5). Consider the case where particle 1 and 2 are incoming, particle 3 is outgoing,
one finds [49]

C3(−,−,+)flat =
∫ ∞

0
dω1dω2dω3e−iω1u1e−iω2u2eiω3u3 ⟨12⟩

3

⟨23⟩⟨31⟩δ
(4)(ω1q1 + ω2q2 − ω3q3)

4
∫ ∞

0
dω1dω2dω3e−iω1u1e−iω2u2eiω3u3 ω1ω2

ω3

z3
12

z23z31

× 1
ω2

3 z23z31
δ

(
ω1 −

z32
z12

ω3

)
δ

(
ω2 −

z31
z21

ω3

)
δ(z̄13)δ(z̄23)

= 4
∫ ∞

0
dω3 exp

[
iω3

(
u3 −

z32
z12

u1 −
z31
z21

u2

)] 1
ω3

z12
z23z31

δ(z̄13)δ(z̄23)

= 4z12
z23z31

δ(z̄13)δ(z̄23)I0

(
z32
z12

u1 +
z31
z21

u2 − u3

)
, (3.12)

where I0(x) is defined by

I0(x) =
∫ +∞

0

dω

ω
e−iωx , (3.13)

which is divergent, but can be regularized [49].

Iβ(x) = lim
ϵ→0+

∫ +∞

0
dω ωβ−1e−iωx−ωϵ = lim

ϵ→0+

Γ(β)(−i)β

(x− iϵ)β
. (3.14)

In the limit β → 0+, one finds

Iβ(x) =
1
β
−
(

γE + ln |x|+ iπ

2 sign(x)
)
+O(β) , (3.15)

where γE is the Euler-Mascheroni constant. One can see that the divergent piece would not
depend on the u coordinates, meaning it would be automatically killed by the ∂u in (3.5). We
can check that eq. (3.12) satisfies the differential equations eq. (3.7), by choosing i = j = 3,
and using the identities such as z̄23∂z̄2δ(z̄23) = −z̄23δ(z̄23)/z̄23 = −δ(z̄23).

– 6 –
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3.1 Three-point solution in the presence of a dilaton source (case I)

In [64], the authors provided a way to compute non-distributional n-point celestial MHV gluon
amplitudes by coupling the gluons to a massless dilaton background which breaks explicitly
translation invariance. The calculation boils down to the following Mellin transforms

Mn(−,−,+, · · · ,+) =
(

n∏
i=1

∫ +∞

0
dωi ω∆i−1

i

)
⟨12⟩4

⟨12⟩⟨23⟩ · · · ⟨n1⟩
δ(Q2)

Q2 , (3.16)

where the integrand contains the Parke-Taylor formula together with δ(Q2)/Q2. Q is the
sum of all momenta of gluons

Q = p1 + p2 −
n∑

k=3
pk , (3.17)

where we choose particles 1 and 2 to be incoming. Our idea here is to perform similar
calculations in [64] by using Fourier transforms with respect to the energies ωs rather than
by Mellin transforms.

Cn(−,−,+, · · · ,+) =
(

n∏
i=1

∫ +∞

0
dωi

)
e−iω1u1e−iω2u2

(
n∏

k=3
eiωkuk

)
⟨12⟩4

⟨12⟩⟨23⟩ · · · ⟨n1⟩
δ(Q2)

Q2 .

(3.18)
It would give us a solution of the Carrollian BG equations (3.5). We begin with the simplest
case, which is the three-point:

C3(−,−,+) =
∫ +∞

0
dω1dω2dω3e−iω1u1e−iω2u2eiω3u3 ω1ω2

ω3

z3
12

z23z31

δ(Q2)
Q2 , (3.19)

where
δ(Q2)

Q2 =
δ′
(
ω3 − ω1ω2z12z̄12

ω1z13z̄13+ω2z23z̄23

)
(ω1z13z̄13 + ω2z23z̄23)2 . (3.20)

See section 3 in [64] for details. Here δ′(x) is the derivative of the δ function.
Actually it turns out that it is simpler to compute ∂u3C3. Once we have ∂u3C3, we

can integrate it over u3 to get C3 modulo a constant of the integration that we will neglect.
Starting from eq. (3.19), we compute

∂u3C3(−,−,+)= i

∫ +∞

0
dω1dω2dω3e−iω1u1e−iω2u2eiω3u3ω1ω2

z3
12

z23z31

δ′
(
ω3− ω1ω2z12z̄12

ω1z13z̄13+ω2z23z̄23

)
(ω1z13z̄13+ω2z23z̄23)2 .

(3.21)

Integrating it by part over ω3 and using the δ-function to fix ω3, we find

∂u3C3(−,−,+) = − z3
12

z23z13
u3

∫ +∞

0
dω1dω2e−iω1u1e−iω2u2 exp

(
iu3

ω1ω2z12z̄12
ω1z13z̄13 + ω2z23z̄23

)
× ω1ω2

(ω1z13z̄13 + ω2z23z̄23)2 . (3.22)

– 7 –
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To evaluate the dω1 and dω2 integrals, first we expand the exponential with u3:

∂u3C3(−,−,+)

= − z3
12

z23z13
u3

∫ +∞

0
dω1dω2e−iω1u1e−iω2u2 ω1ω2

(ω1z13z̄13 + ω2z23z̄23)2

×
∞∑

n=0

(
iu3

ω1ω2z12z̄12
ω1z13z̄13+ω2z23z̄23

)n

n!

= − z3
12

z23z13

∞∑
n=0

u3(iu3z12z̄12)n

n!

∫ +∞

0
dω1dω2e−iω1u1e−iω2u2 ωn+1

1 ωn+1
2

(ω1z13z̄13 + ω2z23z̄23)n+2

= − z3
12

z23z13

∞∑
n=0

u3(iu3z12z̄12)n

n! In3 , (3.23)

where we denote the integrals of ω1 and ω2 as In3. Next, we make the following change
of variables

ωP = ω1 + ω2 , t = ω1
ωP

. (3.24)

In3 becomes

In3 =
∫ 1

0
dt

∫ +∞

0
dωP

ωP ωn+1
P tn+1ωn+1

P (1− t)n+1

(ωP tz13z̄13 + ωP (1− t)z23z̄23)n+2 e−iωP (tu1+(1−t)u2)

=
∫ 1

0
dt

tn+1(1− t)n+1

(tz13z̄13 + (1− t)z23z̄23)n+2

∫ +∞

0
dωP ωn+1

P e−iωP (tu1+(1−t)u2)

=
∫ 1

0
dt

tn+1(1− t)n+1

(tz13z̄13 + (1− t)z23z̄23)n+2
Γ(2 + n)

(itu1 + i(1− t)u2)n+2 . (3.25)

To evaluate the dt integral of In3, we perform the change of variable:

t̃ = t

t− 1 . (3.26)

Eq. (3.25) becomes

In3 = −Γ(2 + n)
∫ −∞

0

dt̃

(1− t̃ )2

(
−t̃

1− t̃

)n+1 ( 1
1− t̃

)n+1

×
(
−t̃

1− t̃
|z13|2 +

1
1− t̃

|z23|2
)−n−2(

i
−t̃

1− t̃
u1 + i

1
1− t̃

u2

)−n−2

= Γ(2 + n)i−n−2
∫ +∞

0
dt tn+1 (|z23|2 + t|z13|2)−n−2(u2 + tu1)−n−2 , (3.27)

where in the last line we rename −t̃ as t. At this stage, the last line takes the form as an
integral representation of the hypergeometric function 2F1. We find

In3 = i−n−2u−2−n
2 (z13z̄13)−2−n Γ3(2+n)

Γ(4+2n) 2F1

(
2+n,2+n,4+2n;1−u1|z23|2

u2|z13|2

)
. (3.28)

Plug it back to eq. (3.23), we have

∂u3C3(−,−,+)=− z3
12

z23z13

∞∑
n=0

un+1
3 (iz12z̄12)n

n!
1

(iu2z13z̄13)n+2

× Γ3(2+n)
Γ(4+2n) 2F1

(
2+n,2+n,4+2n;1−u1|z23|2

u2|z13|2

)
(3.29)
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Integrating it over u3, we obtain

C3(−,−,+)

= z12
z13z23z̄2

12

∞∑
n=0

(
u3|z12|2

u2|z13|2

)n+2 (n + 1)Γ2(2 + n)
(n + 2)Γ(4 + 2n) 2F1

(
2 + n, 2 + n, 4 + 2n; 1− u1|z23|2

u2|z13|2

)
.

(3.30)

As we mentioned before, the prefactor is given by eq. (3.11). Moreover, we check numerically
that the sum is convergent in the region where

∣∣∣1− u1|z23|2
u2|z13|2

∣∣∣ < 1.
Using the following identity

2F1(n + 1, n + m + 1, n + m + l + 2; z)

= (n + m + l + 1)!(−1)m

l!n! (n + m)!(m + l)!
dn+m

dzn+m

(
(1− z)m+l dl

dzl 2F1(1, 1, 2, z)
)

(3.31)

where

2F1(1, 1, 2, z) = − log(1− z)
z

, (3.32)

we can rewrite eq. (3.30) as

C3(−,−,+)

=− z12
z13z23z̄2

12

∞∑
n=0

(
u3|z12|2

u2|z13|2

)n+2 1
n!(n+2)!

dn+1

dyn+1

{
(1−y)n+1 dn+1

dyn+1
log(1−y)

y

}
, (3.33)

where we define

y = 1− u1|z23|2

u2|z13|2
. (3.34)

Notice that the sum of eq. (3.30) is written in a way that the symmetric property under
1↔ 2 is not manifest. To see indeed the sum is symmetric under 1↔ 2, we use the following
identity of the hypergeometric function 2F1,

2F1(α, β, 2β; z) =
(
1− z

2

)−α

2F1

(
α

2 ,
α + 1
2 , β + 1

2;
(

z

2− z

)2
)

(3.35)

to rewrite eq. (3.30) as

C3(−,−,+)

= z12
z13z23z̄2

12

∞∑
n=0

(
2u3|z12|2

u2|z13|2 + u1|z23|2

)n+2 (n + 1)Γ2(2 + n)
(n + 2)Γ(4 + 2n)

×2 F1

n + 2
2 ,

n + 3
2 , n + 5

2;
(

u2|z13|2 − u1|z23|2

u2|z13|2 + u1|z23|2

)2
 , (3.36)

where the sum is manifestly symmetric under 1 ↔ 2 as expected.
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Special case 1. We consider the case where z13z̄13 = au1 and z23z̄23 = au2, with a being
a constant. Then In3 eq. (3.25) becomes

In3(case 1) = 1
in+2an+2

∫ 1

0
dt tn+1(1− t)n+1 Γ(2 + n)

(tu1 + (1− t)u2)2n+4

= 2−3−2n√π

in+2an+2 (u1u2)−n−2 Γ(2 + n)2

Γ
(

5
2 + n

) . (3.37)

Repeating the same steps as we had above, we find that the three-point Carrollian amplitude
in this case is given by

C3(case 1)= z12
z13z23

2
√

π

z̄2
12

∞∑
n=0

(
u3z12z̄12
4au1u2

)n+2 (n+1)Γ(2+n)
(n+2)Γ

(
5
2+n

)
= 4z12

z13z23z̄2
12

sin−1
(√

u3z12z̄12
4au1u2

)
√
1− u3z12z̄12

4au1u2

(√
u3z12z̄12
4au1u2

−
√
1−u3z12z̄12

4au1u2
sin−1

(√
u3z12z̄12
4au1u2

))
.

(3.38)

This special case sugguests that the generic formula for C3 and its u-descendants might be
resummed into a compact formula as well.

It turns out that we can start from eq. (3.22), and perform change of variables as we
had in (3.24). Eq. (3.22) becomes

∂u3C3(−,−,+)=− z3
12

z23z13
u3

∫ 1

0
dt

∫ +∞

0
dωP ωP e−itωP u1e−i(1−t)ωP u2

t(1−t)
(tz13z̄13+(1−t)z23z̄23)2

=exp
(

iu3
t(1−t)ωP z12z̄12

(tz13z̄13+(1−t)z23z̄23

)
= z3

12
z23z13

u3

∫ 1

0
dt

t(1−t)
(tz13z̄13+(1−t)z23z̄23)2

1(
u3

t(1−t)z12z̄12
tz13z̄13+(1−t)z23z̄23

−tu1−(1−t)u2

)2

= z3
12

z23z13
u3

∫ 1

0
dt

t(1−t)
(u3t(1−t)z12z̄12−(tu1+(1−t)u2)(tz13z̄13+(1−t)z23z̄23))2

(3.39)

We perform the change of variale as we had in eq. (3.26), it becomes

∂u3C3(−,−,+) = z3
12

z23z13
u3

∫ −∞

0
dt̃

t̃(
−t̃ u3z12z̄12 − (−t̃ u1 + u2)(−t̃ z13z̄13 + z23z̄23)

)2
= z3

12
z23z13

u3

∫ +∞

0
dt

t

[tu3z12z̄12 − (tu1 + u2)(tz13z̄13 + z23z̄23)]2
, (3.40)
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where we rename −t̃ as t in the last line. The intgral takes the form [65],∫ +∞

0

tdt

(at2 + 2bt + c)2

= 1
2(ac− b2) −

b

2(ac− b2)
3
2

arccot b√
ac− b2

for ac > b2

= 1
2(ac− b2) +

b

4(b2 − ac)
3
2
ln b +

√
b2 − ac

b−
√

b2 − ac
for b2 > ac > 0

= 1
6b2 for ac = b2 . (3.41)

As a result, we find

∂u3C3(−,−,+) = z3
12

z23z13
u3

(
1

2(ac− b2) −
b

2(ac− b2)
3
2

arccot b√
ac− b2

)
for ac > b2

= z3
12

z23z13
u3

(
1

2(ac− b2) +
b

4(b2 − ac)
3
2
ln b +

√
b2 − ac

b−
√

b2 − ac

)
for b2 > ac > 0

= z3
12

z23z13
u3

1
6b2 for ac = b2 ,

(3.42)
2 where

a = u1z13z̄13 , (3.43)

b = u1z23z̄23 + u2z13z̄13 − u3z12z̄12
2 , (3.44)

c = u2z23z̄23 . (3.45)

The result given by eq. (3.42) is anti-symmetric under exchanging 1↔ 2 as expected. One
can try to integrate it over u3 to get a formula for C3(−,−,+). On the other hand, we have
differential equations satisfied by ∂u3C3(−,−,+) given by eqs. (3.7) and (3.8). Having a
close formula for ∂u3C3(−,−,+) is equally good.

3.2 Three-point solution in the presence of a dilaton source (case II)

We can also use the massless dilaton source in [66]. For the three-point case, we shall compute

C3L =
∫ ∞

0
dω1dω2dω3eiu1ω1eiu2ω2eiu3ω3 ⟨12⟩

3

⟨23⟩⟨31⟩
1

Q2

= z3
12

z23z31

∫ ∞

0
dω1dω2dω3eiu1ω1eiu2ω2eiu3ω3 ω1ω2

ω3

1
ω1ω2z12z̄12 + ω2ω3z23z̄23 + ω1ω3z13z̄13

,

(3.46)
where particles 1, 2, and 3 are all outgoing. Similar to the calculations that we did before,
it is easier to compute the u− descendants,

∂u3C3L = z3
12

z23z31
i

∫ ∞

0
dω1dω2dω3eiu1ω1+iu2ω2+iu3ω3 ω1ω2

ω1ω2z12z̄12+ω2ω3z23z̄23+ω1ω3z13z̄13

= z3
12

z23z31
i

∫ ∞

0
dω1dω2eiu1ω1+iu2ω2 ω1ω2

ω1z13z̄13+ω2z23z̄23
exp

(
−iu3

ω1ω2z12z̄12
ω1z13z̄13+ω2z23z̄23

)
×Γ

(
0,−iu3

ω1ω2z12z̄12
ω1z13z̄13+ω2z23z̄23

)
, (3.47)
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where Γ(α, x) is the incomplete gamma function defined as

Γ(α, x) =
∫ ∞

x
dt e−t tα−1 . (3.48)

Next, we make a change of variable as we had in eq. (3.24), then eq. (3.47) becomes

∂u3C3L = z3
12

z23z31
i

∫ 1

0
dt

∫ +∞

0
dωP ω2

P

t(1−t)
tz13z̄13+(1−t)z23z̄23

eiωP tu1eiωP (1−t)u2

×exp
(
−iu3

ωP z12z̄12 t(1−t)
tz13z̄13+(1−t)z23z̄23

)
Γ
(
0,−iu3

ωP z12z̄12 t(1−t)
tz13z̄13+(1−t)z23z̄23

)
,

(3.49)

where the ωP integral can be evaluated by using eq. (6.455) of Gradshteyn and Ryzhik
7th edition,∫ +∞

0
dxxµ−1e−βx Γ(ν, αx) = ανΓ(µ + ν)

µ(α + β)µ+ν 2F1

(
1, µ + ν, µ + 1; β

α + β

)
. (3.50)

We find

∂u3C3L = z3
12

z23z31

2
3

∫ 1

0
dt

t(1−t)
tz13z̄13+(1−t)z23z̄23

1
(tu1+(1−t)u2)3

×2F1

(
1,3,4; 1− u3t(1−t)z12z̄12

(tu1+(1−t)u2)(tz13z̄13+(1−t)z23z̄23)

)
. (3.51)

We make a change of variable as we had in eq. (3.26), it becomes

∂u3C3L = 2
3

z3
12

z23z31

∫ ∞

0
dt

t

(tz13z̄13+z23z̄23)(tu1+u2)3

×2F1

(
1,3,4; 1− tu3z12z̄12

(tu1+u2)(tz13z̄13+z23z̄23)

)
. (3.52)

The hypergeometric function in eq. (3.52) admits the following series expansion,

2F1(1, 3, 4;x) = 3
∞∑

n=0

xn

n + 3 = 3 Φ(x, 1, 3) , (3.53)

which in turn is related to Lerch function Φ. Therefore, eq. (3.52) can be written as

∂u3C3L = 2 z3
12

z23z31

∫ +∞

0
dt

t

(tz13z̄13 + z23z̄23)(tu1 + u2)3

∞∑
n=0

(
1− tu3z12z̄12

(tu1+u2)(tz13z̄13+z23z̄23)

)n

n + 3 .

(3.54)

Using the binomial expansion(
1− tu3z12z̄12

(tu1 + u2)(tz13z̄13 + z23z̄23)

)n

=
n∑

k=0
(−1)k n!

k!(n− k)!
tk(u3z12z̄12)k

(tu1 + u2)k(tz13z̄13 + z23z̄23)k
,

(3.55)
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we obtain

∂u3C3L = 2z3
12

z23z31

∞∑
n=0

n∑
k=0

∫ +∞

0
dt

1
n+3

(−1)kn!
k!(n−k)!

tk+1(u3z12z̄12)k

(tu1+u2)k+1(tz13z̄13+z23z̄23)k+3

= 2z3
12

z23z31

∞∑
n=0

n∑
k=0

1
n+3

(−1)kn!
k!(n−k)!

(u3z12z̄12)k

u1u2

1
(u2z13z̄13)k+1

Γ2(2+k)
Γ(4+2k)

×2F1

(
1+k,2+k,4+2k; 1−u1z23z̄23

u2z13z̄13

)
. (3.56)

Similar as (3.33) with (3.31) we may cast (3.56) into:

∂u3C3L = − 2 z3
12

z23z31

∞∑
n=0

n∑
k=0

1
n + 3

(−1)kn!
k!(n− k)!

(u3z12z̄12)k

u1u2

1
(u2z13z̄13)k+1

× 1
k!(k + 2)!

dk+1

dyk+1

{
(1− y)k+2 dk+1

dyk+1
log(1− y)

y

}
, (3.57)

with the variable (3.34). Notice that similar to eq. (3.30), the result (3.56) can be rewritten in
a way that it is anti-symmetric under 1↔ 2. Using the identity eq. (3.35), ∂u3C3L becomes,

∂u3C3L = 2z2
12

z23z31z̄12u1u2u3

∞∑
n=0

n∑
k=0

1
n + 3

(−1)kn!
k!(n− k)!

( 2u3z12z̄12
u2|z13|2 + u1|z13|2

)k+1

× Γ2(2 + k)
Γ(4 + 2k) 2F1

k + 1
2 ,

k + 2
2 , k + 5

2;
(

u2|z13|2 − u1|z23|2

u2|z13|2 + u1|z23|2

)2
 , (3.58)

which is anti-symmetric under exchanging 1 and 2 as expected.

3.3 Higher-point solutions

In the presence of a generic massless dilaton source, it was shown that the higher-point
non-distributional solutions of celestial BG equation can be obtained as follows [64],

MN (z1, z̄1, . . . , zN , z̄N |∆1, . . . ,∆N ) = JN (zi)SN (zi, z̄i) (3.59)

where

JN (zi) =
∑

π∈SN−2

fa1aπ(2)x1fx1aπ(3)x2 · · · fxN−3aπ(N−1)aN
z4

12
z1π(2)zπ(2)π(3) · · · zN1

, (3.60)

is the holomorphic “soft” factor, with (a1, a2, . . . , aN ) labeling the gluon group indices. The
Mellin transforms are contained in the “scalar” part

SN (zi, z̄i) =
∫

d4X

∫
ωi≥0

JΦ(X)eiX·Q

Q2 dω1 ω∆1
1 dω2 ω∆2

2

N∏
k≥3

dωk ω∆k−2
k , (3.61)

where Q is the total momentum of the gluon system,

Q =
N∑

i=1
Pi . (3.62)
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One can easily translate eq. (3.59) to its Carrollian version,

CN (z1, z̄1, u1, · · · , zN , z̄N ) = JN (zi) CSN (zi, z̄i, ui) , (3.63)

where JN (zi) is given by eq. (3.60), and CSN (zi, z̄i, ui) contains all the Fourier transforms,

CSN (zi, z̄i, ui) =
∫

d4X

∫
ωi≥0

JΦ(X)eiX·Q

Q2 dω1dω2 ω1ω2 eiϵ1ω1u1eiϵ2ω2u2
N∏

k≥3
dωk

1
ωk

eiϵkωkuk .

(3.64)
The choice of the dilaton source JΦ(X) determines the integrand. For example, the dilaton
source used ref. [64] is given by

JΦ(X) ∼
∫

d4P δ(P 2) eiP ·X (3.65)

while the dilaton source used in ref. [66] is

JΦ(X) ∼ δ4(X) . (3.66)

In [66], it was shown that the dilaton source eq. (3.66) led to celestial MHV gluon amplitudes
that are related to correlators of light operators in Liouville CFT in the large central charge
limit. See also [67–71] for further developments. Notice that in [71, 72], the authors showed
that the Liouville correlators appearing in the large central charge limit can be combined
into the orginal celestial MHV gluon amplitudes with translation invariance. It would be
interesting to see if this idea has a Carrollian description.

4 Differential equations for Carrollian MHV graviton amplitudes

4.1 From leading and subleading soft graviton symmetries

In section 12 of [23], the authors showed two differential equations satisfied by celestial MHV
graviton amplitudes derived from the null states conditions constructed from leading and
subleading soft graviton symmetries,

Φσ =
[
J1
−1P−1,−1 − (2h̄ + 1)P−2,0

]
Gσ

∆(z, z̄) , (4.1)

Ψ =
(
L−1P−1,−1 + 2J0

−1P−1,−1 − (∆ + 1)P−2,−1 − L̄−1P−2,0
)

G+
∆(z, z̄) , (4.2)

with helicity σ and cf. [23] for details. Inserting them into celestial MHV graviton amplitudes,
one finds the following differential equations,

−
n−1∑
i=1

(∆i − Ji)(z̄i − z̄n) + (z̄i − z̄n)2∂̄i

zi − zn
e

∂
∂∆nMn(1, · · · , n)

+ (∆n − Jn + 1)
n−1∑
i=1

z̄i − z̄n

zi − zn
ϵi e

∂
∂∆iMn(1, · · · , n) = 0 , (4.3)

(
∂ie

∂
∂∆n −

n−1∑
i=1

(∆i − Ji) + 2(z̄i − z̄n)∂̄i

zi − zn
e

∂
∂∆n

)
Mn(1, · · · , n)

+
(
(∆n + 1)

n−1∑
i=1

1
zi − zn

ϵi e
∂

∂∆i + ∂̄i

n−1∑
i=1

z̄i − z̄n

zi − zn
ϵi e

∂
∂∆i

)
Mn(1, · · · , n) = 0 , (4.4)
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where we have chosen the last graviton n to be outgoing and the helicity of it to be +2. By
using eqs. (3.2) and (3.4), we can translate eqs. (4.3) and (4.4) into differential equations
of the corresponding Carrollian graviton amplitudes,

−
n−1∑
i=1

(1 + ui∂ui − Ji)(z̄i − z̄n) + (z̄i − z̄n)2∂̄i

zi − zn
∂unCn(1, · · · , n)

+ (2 + un∂un − Jn)
n−1∑
i=1

z̄i − z̄n

zi − zn
∂uiCn(1, · · · , n) = 0 , (4.5)

(
∂n∂un −

n−1∑
i=1

(1 + ui∂ui − Ji) + 2(z̄i − z̄n)∂̄i

zi − zn
∂un

)
Cn(1, · · · , n)

+
(
(2 + un∂un)

n−1∑
i=1

1
zi − zn

∂ui + ∂̄n

n−1∑
i=1

z̄i − z̄n

zi − zn
∂ui

)
Cn(1, · · · , n) = 0 , (4.6)

respectively. Similar to eq. (3.11), we can write down a magnetic branch solution for eqs. (4.5)
and (4.6),

C3(−−,−−,++)Mag = z
5/2
12

z
3/2
13 z

3/2
23

z̄
1/2
23 z̄

1/2
13

z̄
7/2
12

, (4.7)

which has the expected Carrollian weights and dimensions.
Similar to eq. (3.12), one can compute the Carrollian three-point graviton amplitudes

in flat space,

C3(−−,−−,++)flat =
z2

12
z13z23

1
u3 − z32

z12
u1 − z31

z21
u2

δ(z̄13)δ(z̄23) , (4.8)

where particles 1 and 2 are incoming, particle 3 is outgoing. We have neglected an overall
constant. One can check that eq. (4.8) satisfies both eqs. (4.5) and (4.6) by using identities
such as z̄23∂z̄2δ(z̄23) = −δ(z̄23) and z̄23 δ(z̄23) = 0.

A comment is in order about the MHV case. Similar to eq. (3.6), from eqs. (4.5) and (4.6),
we can obtain differential equations satisfied by MHV Carrollian graviton amplitudes by
switching z and z̄, and flipping J to −J ,

−
n−1∑
i=1

(1 + ui∂ui + Ji)(zi − zn) + (zi − zn)2∂i

z̄i − z̄n
∂unCn,MHV(1, · · · , n)

+ (2 + un∂un + Jn)
n−1∑
i=1

zi − zn

z̄i − z̄n
∂uiCn,MHV(1, · · · , n) = 0 , (4.9)

(
∂̄n∂un −

n−1∑
i=1

(1 + ui∂ui + Ji) + 2(zi − zn)∂i

z̄i − z̄n
∂un

)
Cn,MHV(1, · · · , n)

+
(
(2 + un∂un)

n−1∑
i=1

1
z̄i − z̄n

∂ui + ∂n

n−1∑
i=1

zi − zn

z̄i − z̄n
∂ui

)
Cn,MHV(1, · · · , n) = 0 . (4.10)
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4.2 From leading, subleading, and subsubleading soft graviton symmetries

In [26], the authors showed null state conditions constructed from leading, subleading, and
subsubleading soft graviton symmetries,

S0
−1G+2

∆ (z, z̄) = 1
2(∆− 2)(∆− 3)P−2,0 G+2

∆−2(z, z̄) , (4.11)

S1
−1 G+2

∆ (z, z̄)− 1
2(∆− 1)(∆− 3)P−2,−1 G+2

∆−2(z, z̄) + 2(∆− 2)J0
−1 P−1,−1 G+2

∆−2(z, z̄) = 0 .

(4.12)

In terms of celestial MHV graviton amplitudes, they lead to

−
n−1∑
i=1

z̄i−z̄n

zi−zn

(
2h̄i(2h̄i−1)+2(z̄i−z̄n)2h̄i∂̄i+(z̄i−z̄n)2∂̄2

i

)
ϵie

− ∂
∂∆iMn

+(∆n−2)(∆n−3)
n−1∑
i=1

z̄i−z̄n

zi−zn
ϵie

∂
∂∆i e−2 ∂

∂∆nMn =0 , (4.13)

n−1∑
i=1

1
zi−zn

(
2h̄i(2h̄i−1)+8(z̄i−z̄n)h̄i∂̄i+3(z̄i−z̄n)2∂̄i

)
ϵie

− ∂
∂∆iMn

(∆n−2)(∆n−3)
n−1∑
i=1

1
zi−zn

ϵi e
∂

∂∆i e−2 ∂
∂∆nMn−4(∆n−2)

n−1∑
i=1

h̄i+(z̄i−z̄n)∂̄i

zi−z
e−

∂
∂∆nMn =0 .

(4.14)

Translating them into differential equations of the corresponding Carrollian amplitudes, we
find the following differential equations of u− descendants for Carrollian amplitudes,

n−1∑
i=1

z̄i − z̄n

zi − zn

(
(2− 3Ji) + (4− 2Ji)ui∂ui + u2

i ∂2
ui

+ J2
i

) n−1∏
k ̸=i

∂uk
∂2

un
Cn

+
n−1∑
i=1

z̄i − z̄n

zi − zn

(
2(z̄i − z̄n)∂̄i(2 + ui∂ui − Ji) + (z̄i − z̄n)2∂̄2

i

) n−1∏
k ̸=i

∂uk
∂2

un
Cn

+ (2un∂un + u2
n∂2

un
)

n−1∑
i=1

z̄i − z̄n

zi − zn
∂ui

n−1∏
k=1

∂uk
Cn = 0 , (4.15)

n−1∑
i=1

1
zi − zn

(
(2− 3Ji) + (4− 2Ji)ui∂ui + u2

i ∂2
ui

+ J2
i

) n−1∏
k ̸=i

∂uk
∂2

un
Cn

+
n−1∑
i=1

1
zi − zn

(
4(z̄i − z̄n)∂̄i(2 + ui∂ui − Ji) + 3(z̄i − z̄n)2∂̄2

i

) n−1∏
k ̸=i

∂uk
∂2

un
Cn

+ (2un∂un + u2
n∂2

un
)

n−1∑
i=1

1
zi − zn

∂ui

n−1∏
k=1

∂uk
Cn

− (2 + 2un∂un)
n−1∑
i=1

(2 + ui∂ui − Ji) + (z̄i − z̄n)∂̄i

zi − zn

n−1∏
k=1

∂uk
∂unCn = 0 . (4.16)
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5 Covariance of Carrollian differential equations

In this section, we show that the differential equations for MHV gluon amplitudes (3.5) and
MHV graviton amplitudes (4.5)–(4.6) are genuine Carrollian equations. More precisely, we
verify the compatibility of these equations with global conformal Carrollian transformations
at null infinity, provided the correlators satisfy the Carrollian Ward identities. Of course,
this can be understood as a manifestation of Poincaré invariance in the bulk since the global
conformal algebra in three dimensions is isomorphic to the Poincaré algebra in four dimensions
(see e.g. appendix B of [35]). Nevertheless, these equations are of interest for Carrollian
physics and it is instructive to check the invariance from an intrinsic boundary perspective.

The finite global conformal Carrollian transformations acting on the coordinates x =
(u, z, z̄) at I are given by

u′ = 1
|cz + d|2

[u + T (z, z̄)], z′ = az + b

cz + d
, z̄′ = āz̄ + b̄

c̄z̄ + d̄
(5.1)

Here a, b, c, d ∈ C satisfy ad − bc = 1 parametrize the six SL(2,C) transformations, and
T (z, z̄) =

∑
0≤m,n≤2 tm,nzmz̄n with t∗m,n = tn,m ∈ C parametrize the four (bulk) translations.

In particular, the two Carrollian boosts in three dimensions are generated by T = z, z̄. The
Carrollian amplitudes Cn in (2.4) have been shown to satisfy Carrollian Ward identities [35, 49].
The finite version of these is given by

C ′
n(x′

1 . . . x′
n) =

(
∂z

∂z′

)k1

z=z1

(
∂z̄

∂z̄′

)k̄1

z̄=z̄1

. . .

(
∂z

∂z′

)kn

z=zn

(
∂z̄

∂z̄′

)k̄n

z̄=z̄n

Cn(x1 . . . xn) (5.2)

where the Carrollian weights (k, k̄i) are fixed in terms of the particle helicities Ji as (2.6). This
justifies the identification of position space amplitudes at I with Carrollian CFT correlators
in (2.5). Crucially, Carrollian boost Ward identities imply the division of the correlators into
electric and magnetic branches, as discussed around (3.9) (see also [35, 56]).

Invariance of the differential equations (3.5) and (4.5)–(4.6) under SL(2,C) is guaranteed
from the starting point given by the BG equations in celestial CFT (3.1) and (4.3)–(4.4).
In particular, dilatation invariance can be checked directly from a simple weights counting.
From (5.1), one can easily deduce

zij z̄ij →
zij z̄ij

(czi + d)(c̄z̄i + d̄)(czj + d)(c̄z̄j + d̄)
, (5.3)

so that the following combinations are SL(2,C) invariant:

dij = zij z̄ij

uiuj
, eijk = uizjkz̄jk − ujzkiz̄ki

uizjkz̄jk + ujzkiz̄ki
. (5.4)

These objects dij and eijk appear naturally in the non-distributional solutions of Carrollian
BG equations discussed in the previous sections.

Here we focus on (bulk) translations, which include the (boundary) Carrollian boosts.
Under translation, the derivative operators transform according to the chain rule:

∂u′ = ∂u, ∂z′ = ∂z − ∂zT∂u, ∂z̄′ = ∂z̄ − ∂z̄T∂u (5.5)

Using this together with (5.2), we show explicitly that (3.5) and (4.5)–(4.6) are transla-
tion invariant.
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Differential equation for gluons. Denoting by Ggluons(x1 . . . xn) the left-hand side of (3.5),
transformation under translations yields

Ggluons(x′
1 . . . x′

n)

=
(

∂′
i −

1 + u′
i∂u′

i

z′i−1,i

− 1
z′i+1,i

)
∂u′

i−1
Cn(x′

1 · · ·x′
n)

+

1 + u′
i−1∂u′

i−1
− Ji−1 + z̄′i−1,i ∂̄′

i−1

z′i−1,i

 ∂u′
i
Cn(x′

1 · · ·x′
n)

=
(

∂i −
1 + ui∂ui

zi−1,i
− 1

zi+1,i

)
∂ui−1Cn(x1 · · ·xn)

+
(
1 + ui−1∂ui−1 − Ji−1 + z̄i−1,i ∂̄i−1

zi−1,i

)
∂uiCn(x1 · · ·xn)

+
[
−∂iT (zi, z̄i)−

1
zi−1,i

T (zi, z̄i) +
1

zi−1,i
T (zi−1, z̄i−1)

− z̄i−1,i

zi−1,i
∂̄i−1T (zi−1, z̄i−1)

]
∂ui−1∂uiCn(x1 · · ·xn)

(5.6)

The two last lines can be shown to cancel each other for the four translation generators
T (z, z̄) = 1, z, z̄, zz̄.

Differential equations for gravitons. Similarly, we denote by G(1)
gravitons(x1 . . . xn) and

G(2)
gravitons(x1 . . . xn) the left-hand sides of (4.5) and (4.6), respectively. Transformation under

translations implies

G(1)
gravitons(x′

1 . . . x′
n) = G

(1)
gravitons(x1 . . . xn)

+
n−1∑
i=1

z̄i,n

zi,n

[
− T (zi, z̄i) + z̄i,n∂̄iT (zi, z̄i) + T (zn, z̄n)

]
∂ui∂unCn(x1 . . . xn)

(5.7)

One can check that the last line vanishes immediately for holomorphic translations T = 1, z.
For T = z̄, zz̄, the last line can be shown to vanish by noticing that

n−1∑
i=1

z̄i,n∂ui∂unCn =
n−1∑
i=1

z̄i∂ui∂unCn − z̄n

n−1∑
i=1

∂ui∂unCn

=
n−1∑
i=1

z̄i∂ui∂unCn + z̄n∂un∂unCn

=
n∑

i=1
z̄i∂ui∂unCn

= 0

(5.8)

where we used the Ward identities for translations in the second and last equalities. Similarly,
the transformation of (4.6) under translations leads to

G(2)
gravitons(x′

1 . . . x′
n) = G

(2)
gravitons(x1 . . . xn)− ∂nT (zn, z̄n)∂2

un
Cn

+
n−1∑
i=1

1
zi,n

[
T (zn, z̄n)− T (zi, z̄i) + 2z̄i,n∂̄iT (zi, z̄i)− ∂̄nT (zn, z̄n)z̄i,n

]
∂ui∂unCn(x1 . . . xn)

(5.9)
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The extra terms cancel immediately for T = 1, z̄, and can be shown to cancel for T = z, zz̄

after using the Ward identities for translations.
Hence, we conclude that the Carrollian BG equations are translation invariant. Of

course, as discussed in the previous sections, these equations also admit solutions which
explicitly break translation invariance. Acting with translations on these solutions provides
a systematic way to produce new solutions.

6 Concluding remarks

In [23, 24], it was shown that the celestial differential equations impose constraints on the
celestial OPEs. It would be interesting to check if our Carrollian differential equations impose
non-trivial constraints on the Carrollian OPEs and compare them with the OPEs shown in [49].
It would be also interesting to see if there are alternative ways of deriving our Carrollian
differential equations, perhaps starting from finding some Carrollian null state conditions. We
expect eqs. (4.1) and (4.2) would be translated to null state conditions in 3D Carrollian CFT.
A related approach would be to take the Carrollian limit of the differential equations in 3D
CFT, which, in the current holographic framework, could be understood from a flat limit in
the bulk, as discussed in [43]. However, the relation between null state conditions in 3D CFTs
and differential equations of correlation functions has been largely unexplored, due to the
fact that the usual three-dimensional conformal group is finite-dimensional, and lack of the
holomorphic and anti-holomorphic factorization in d > 2.1 For the celestial case, using the
null state condition shown in [23, 26], we show a sample calculation of constructing a celestial
null state from subleading and subsubleading soft graviton symmetries in appendix A, which
would hopefully shed some lights towards this direction.

We have shown that the differential equations for Carrollian amplitudes are Carrollian
covariant. It would be interesting to find a manifestly covariant form of these equations
using some Carrollian geometry at I . It would also be fascinating to see whether these
equations can be derived from a variational principle which would provide an example of
Carrollian CFT action relevant for holography.

It would be interesting to find a physical interpretation of the magnetic solutions of the
Carrollian differential equations shown in sections 3 and 4. As discussed around eq. (3.10),
one might expect them to be related to soft modes or Goldstones modes.

Recently, celestial holography on non-trivial backgrounds has attracted considerable
attention [53, 64, 75–81, 83–94]. Most of the work focuses on using backgrounds to regularize
the singularities of celestial amplitudes and the fate of celestial soft algebras upon turning
on backgrounds. It would be interesting to explore whether there is a similar story for the
Carrollian case. Our results in section 2 suggest encouraging steps towards this direction.
Instead of massless dilaton backgrounds that we considered in section 2, one can definitely
consider massive dilaton backgrounds. For the celestial case, massive dilaton backgrounds
have been used in [67, 75, 80, 81].

Solutions of the Knizhnik-Zamolodchikov (KZ) equation describe correlation functions
of primary (or descendant) fields in two-dimensional CFTs. Furthermore, the Drinfeld

1See however, recent work in [73, 74] searching for BPZ-type equations in CFTs in d > 2.
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associator captures the monodromy of a universal version of the KZ equation, which in
turn naturally appears in the world-sheet monodromy representation of open superstring
amplitudes [82]. Interestingly, the coefficients of the Drinfeld associator govern the Carrollian
four-point open superstring amplitude [52]. It would be interesting to understand whether
our differential equation (3.5) corresponds to some variant of KZ type equations of three-
dimensional Carrollian CFT.

The MHV-sector is closed under taking celestial/Carrollian OPEs. The differential equa-
tions derived in this paper work for the MHV sector only while non-MHV celestial/Carrollian
amplitudes are not closed under taking celestial/Carrollian OPEs. There would be more com-
plicated differential equations for non-MHV amplitudes or amplitudes with higher derivative
interations. It would be interesting to study them in the future.
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A A differential equation of celestial MHV graviton amplitudes

In [23], the authors showed a null state condition constructed from leading and subleading
soft graviton symmetries,

(J1
−1P−1,−1 − (∆− 1)P−2,0)G+2

∆ (z, z̄) = 0 , (A.1)

where J1
−1 is associated to subleading soft graviton.

In [26], the authors showed another null state condition constructed from leading, and
subsubleading soft graviton symmetries,

S0
−1G+2

∆ (z, z̄) = 1
2(∆− 2)(∆− 3)P−2,0 G+2

∆−2(z, z̄) , (A.2)

where S0
−1 is associated to sub-subleading soft graviton.

One can combine these two equations and eliminate P−2,0 in the equation. We find an
equation which is a linear combination of subleading and sub-subleading current algebra
descendants only

1
2(∆− 2)J1

−1G+2
∆−1(z, z̄) = S0

−1G+2
∆ (z, z̄) . (A.3)

Here we show an alternative way of deriving eq. (A.3) from the algebras among J and S

without using P .

– 20 –



J
H
E
P
0
9
(
2
0
2
4
)
1
4
9

Eq.(A.1) in [26] tells us that S0
−1 acting on a primary ϕh,h̄ with conformal weights

(h, h̄) gives us a descendant with weights (h + 1
2 , h̄ − 3

2). Similarly J1
−1 ϕh− 1

2 ,h̄− 1
2

is also
a descendant with weights (h + 1

2 , h̄ − 3
2). So the null state condition we are looking for

takes the following form

A(∆)J1
−1 G+2

∆−1 = S0
−1G+2

∆ . (A.4)

We will use the algebra of J and S to find A(∆). We use eq. (A.10) in [26]:

[S1
0 , J1

−1] = 3S0
−1 , (A.5)

and eq. (A.14) in [26]:

[S1
0 , S0

−1]ϕh,h̄ = 4h̄ S0
−1 ϕh− 1

2 ,h̄− 1
2

. (A.6)

We compute the commutator between S1
0 and (A.4),

A(∆)[S1
0 , J1

−1G+2
∆−1]− [S1

0 , S0
−1G+2

∆ ] =

= A(∆)
(
3S0

−1G+2
∆−1 + J1

−1[S1
0 , G+2

∆−1]
)
− 4∆− 2

2 S0
−1G+2

∆−1 − S0
−1[S1

0 , G+2
∆ ] = 0 .

(A.7)

Using eq. (5.3) in [26]:

[S1
0 , G+2

∆ ] = −1
2(∆− 2)(∆− 3)G+2

∆−1 (A.8)

and also (A.4) to eliminate J1
−1, we obtain an equation for A(∆)

3A(∆)− 1
2(∆− 3)(∆− 4) A(∆)

A(∆− 1) = 2(∆− 2)− 1
2(∆− 2)(∆− 3) . (A.9)

One can check A(∆) = 1
2(∆− 2) is the solution, which agrees with eq. (A.3). Inserting (A.3)

into celestial MHV graviton amplitudes, we find the following differential equation
1
2(∆− 2)J 1

−1 e−∂∆ ⟨G+2
∆ (z, z̄)

∏
i

Gσi
∆i
(zi, z̄i)⟩MHV = S0

−1⟨G+2
∆ (z, z̄)

∏
i

Gσi
∆i
(zi, z̄i)⟩MHV ,

(A.10)
where

J 1
−1 = −

∑
i

2h̄i(z̄i − z̄) + (z̄i − z̄)2∂̄i

zi − z
, (A.11)

S0
−1 = −1

2
∑

i

z̄i − z̄

zi − z

[
2h̄i(2h̄i − 1) + 2(z̄i − z̄)2h̄i∂̄i + (z̄i − z̄)2∂̄2

i

]
ϵi e−∂∆i . (A.12)

Given the fact that now we have a differential equation constructed from subleading and
subsubleading soft graviton symmetries, which are independent of the leading soft graviton
symmetries related to translation symmmetries in the bulk, one can show that eq. (A.10)
admit the following three-point non-distributional solution,

M3(∆1 = −2 + iλ1, J1 = −2, ∆2 = −2 + iλ2, J2 = −2, ∆3 = 2 + iλ3, J3 = 2)

= δ(λ1 + λ2 + λ3)B(1− iλ1, 1− iλ2)
z6

12
z2

13z2
23
(z12z̄12)iλ3(z23z̄23)iλ1(z13z̄13)iλ2 , (A.13)

where the incoming/outgoing configuration has been chosen to be:ϵ1 = ϵ2 = −1, ϵ3 = 1. It
would be interesting to see if one can compute it from other prescriptions, perhaps along
the line with [81].

– 21 –



J
H
E
P
0
9
(
2
0
2
4
)
1
4
9

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

References

[1] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in
Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

[2] V.G. Knizhnik and A.B. Zamolodchikov, Current Algebra and Wess-Zumino Model in
Two-Dimensions, Nucl. Phys. B 247 (1984) 83 [INSPIRE].

[3] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results,
arXiv:1108.6194 [INSPIRE].

[4] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer-Verlag, New
York (1997) [DOI:10.1007/978-1-4612-2256-9] [INSPIRE].

[5] S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry of
the Celestial Sphere, Phys. Rev. D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].

[6] S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D 96 (2017)
065022 [arXiv:1705.01027] [INSPIRE].

[7] S. Pasterski, S.-H. Shao and A. Strominger, Gluon Amplitudes as 2d Conformal Correlators,
Phys. Rev. D 96 (2017) 085006 [arXiv:1706.03917] [INSPIRE].

[8] S. Stieberger and T.R. Taylor, Symmetries of Celestial Amplitudes, Phys. Lett. B 793 (2019) 141
[arXiv:1812.01080] [INSPIRE].

[9] N. Arkani-Hamed, M. Pate, A.-M. Raclariu and A. Strominger, Celestial amplitudes from UV to
IR, JHEP 08 (2021) 062 [arXiv:2012.04208] [INSPIRE].

[10] L. Donnay, A. Puhm and A. Strominger, Conformally Soft Photons and Gravitons, JHEP 01
(2019) 184 [arXiv:1810.05219] [INSPIRE].

[11] W. Fan, A. Fotopoulos and T.R. Taylor, Soft Limits of Yang-Mills Amplitudes and Conformal
Correlators, JHEP 05 (2019) 121 [arXiv:1903.01676] [INSPIRE].

[12] M. Pate, A.-M. Raclariu and A. Strominger, Conformally Soft Theorem in Gauge Theory, Phys.
Rev. D 100 (2019) 085017 [arXiv:1904.10831] [INSPIRE].

[13] T. Adamo, L. Mason and A. Sharma, Celestial amplitudes and conformal soft theorems, Class.
Quant. Grav. 36 (2019) 205018 [arXiv:1905.09224] [INSPIRE].

[14] A. Puhm, Conformally Soft Theorem in Gravity, JHEP 09 (2020) 130 [arXiv:1905.09799]
[INSPIRE].

[15] A. Guevara, Notes on Conformal Soft Theorems and Recursion Relations in Gravity,
arXiv:1906.07810 [INSPIRE].

[16] M. Pate, A.-M. Raclariu, A. Strominger and E.Y. Yuan, Celestial operator products of gluons
and gravitons, Rev. Math. Phys. 33 (2021) 2140003 [arXiv:1910.07424] [INSPIRE].

[17] A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Extended BMS Algebra of Celestial CFT,
JHEP 03 (2020) 130 [arXiv:1912.10973] [INSPIRE].

[18] S. Banerjee, S. Ghosh and R. Gonzo, BMS symmetry of celestial OPE, JHEP 04 (2020) 130
[arXiv:2002.00975] [INSPIRE].

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(84)90052-X
https://inspirehep.net/literature/202442
https://doi.org/10.1016/0550-3213(84)90374-2
https://inspirehep.net/literature/210258
https://doi.org/10.48550/arXiv.1108.6194
https://inspirehep.net/literature/925954
https://doi.org/10.1007/978-1-4612-2256-9
https://inspirehep.net/literature/454643
https://doi.org/10.1103/PhysRevD.96.065026
https://doi.org/10.48550/arXiv.1701.00049
https://inspirehep.net/literature/1507492
https://doi.org/10.1103/PhysRevD.96.065022
https://doi.org/10.1103/PhysRevD.96.065022
https://doi.org/10.48550/arXiv.1705.01027
https://inspirehep.net/literature/1597599
https://doi.org/10.1103/PhysRevD.96.085006
https://doi.org/10.48550/arXiv.1706.03917
https://inspirehep.net/literature/1604922
https://doi.org/10.1016/j.physletb.2019.03.063
https://doi.org/10.48550/arXiv.1812.01080
https://inspirehep.net/literature/1706800
https://doi.org/10.1007/JHEP08(2021)062
https://doi.org/10.48550/arXiv.2012.04208
https://inspirehep.net/literature/1835363
https://doi.org/10.1007/JHEP01(2019)184
https://doi.org/10.1007/JHEP01(2019)184
https://doi.org/10.48550/arXiv.1810.05219
https://inspirehep.net/literature/1698238
https://doi.org/10.1007/JHEP05(2019)121
https://doi.org/10.48550/arXiv.1903.01676
https://inspirehep.net/literature/1723714
https://doi.org/10.1103/PhysRevD.100.085017
https://doi.org/10.1103/PhysRevD.100.085017
https://doi.org/10.48550/arXiv.1904.10831
https://inspirehep.net/literature/1731073
https://doi.org/10.1088/1361-6382/ab42ce
https://doi.org/10.1088/1361-6382/ab42ce
https://doi.org/10.48550/arXiv.1905.09224
https://inspirehep.net/literature/1736276
https://doi.org/10.1007/JHEP09(2020)130
https://doi.org/10.48550/arXiv.1905.09799
https://inspirehep.net/literature/1736552
https://doi.org/10.48550/arXiv.1906.07810
https://inspirehep.net/literature/1740508
https://doi.org/10.1142/S0129055X21400031
https://doi.org/10.48550/arXiv.1910.07424
https://inspirehep.net/literature/1759362
https://doi.org/10.1007/JHEP03(2020)130
https://doi.org/10.48550/arXiv.1912.10973
https://inspirehep.net/literature/1772301
https://doi.org/10.1007/JHEP04(2020)130
https://doi.org/10.48550/arXiv.2002.00975
https://inspirehep.net/literature/1778516


J
H
E
P
0
9
(
2
0
2
4
)
1
4
9

[19] L. Donnay, S. Pasterski and A. Puhm, Asymptotic Symmetries and Celestial CFT, JHEP 09
(2020) 176 [arXiv:2005.08990] [INSPIRE].

[20] A. Guevara, E. Himwich, M. Pate and A. Strominger, Holographic symmetry algebras for gauge
theory and gravity, JHEP 11 (2021) 152 [arXiv:2103.03961] [INSPIRE].

[21] A. Strominger, w1+∞ Algebra and the Celestial Sphere: Infinite Towers of Soft Graviton, Photon,
and Gluon Symmetries, Phys. Rev. Lett. 127 (2021) 221601 [arXiv:2105.14346] [INSPIRE].

[22] E. Himwich, M. Pate and K. Singh, Celestial operator product expansions and w1+∞ symmetry
for all spins, JHEP 01 (2022) 080 [arXiv:2108.07763] [INSPIRE].

[23] S. Banerjee, S. Ghosh and P. Paul, MHV graviton scattering amplitudes and current algebra on
the celestial sphere, JHEP 02 (2021) 176 [arXiv:2008.04330] [INSPIRE].

[24] S. Banerjee and S. Ghosh, MHV gluon scattering amplitudes from celestial current algebras,
JHEP 10 (2021) 111 [arXiv:2011.00017] [INSPIRE].

[25] Y. Hu, L. Ren, A.Y. Srikant and A. Volovich, Celestial dual superconformal symmetry, MHV
amplitudes and differential equations, JHEP 12 (2021) 171 [arXiv:2106.16111] [INSPIRE].

[26] S. Banerjee, S. Ghosh and S.S. Samal, Subsubleading soft graviton symmetry and MHV graviton
scattering amplitudes, JHEP 08 (2021) 067 [arXiv:2104.02546] [INSPIRE].

[27] S. Pasterski, A. Puhm and E. Trevisani, Celestial diamonds: conformal multiplets in celestial
CFT, JHEP 11 (2021) 072 [arXiv:2105.03516] [INSPIRE].

[28] Y. Hu and S. Pasterski, Celestial recursion, JHEP 01 (2023) 151 [arXiv:2208.11635] [INSPIRE].

[29] T. Adamo, W. Bu, E. Casali and A. Sharma, All-order celestial OPE in the MHV sector, JHEP
03 (2023) 252 [arXiv:2211.17124] [INSPIRE].

[30] S. Banerjee, H. Kulkarni and P. Paul, An infinite family of w1+∞ invariant theories on the
celestial sphere, JHEP 05 (2023) 063 [arXiv:2301.13225] [INSPIRE].

[31] A. Saha, Carrollian approach to 1 + 3D flat holography, JHEP 06 (2023) 051
[arXiv:2304.02696] [INSPIRE].

[32] S. Banerjee et al., All OPEs invariant under the infinite symmetry algebra for gluons on the
celestial sphere, Phys. Rev. D 110 (2024) 026020 [arXiv:2311.16796] [INSPIRE].

[33] L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, Carrollian Perspective on Celestial
Holography, Phys. Rev. Lett. 129 (2022) 071602 [arXiv:2202.04702] [INSPIRE].

[34] A. Bagchi, S. Banerjee, R. Basu and S. Dutta, Scattering Amplitudes: Celestial and Carrollian,
Phys. Rev. Lett. 128 (2022) 241601 [arXiv:2202.08438] [INSPIRE].

[35] L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, Bridging Carrollian and celestial
holography, Phys. Rev. D 107 (2023) 126027 [arXiv:2212.12553] [INSPIRE].

[36] S. Banerjee, Null Infinity and Unitary Representation of The Poincaré Group, JHEP 01 (2019)
205 [arXiv:1801.10171] [INSPIRE].

[37] S. Banerjee, S. Ghosh, P. Pandey and A.P. Saha, Modified celestial amplitude in Einstein gravity,
JHEP 03 (2020) 125 [arXiv:1909.03075] [INSPIRE].

[38] G. Barnich, A. Gomberoff and H.A. González, Three-dimensional Bondi-Metzner-Sachs invariant
two-dimensional field theories as the flat limit of Liouville theory, Phys. Rev. D 87 (2013) 124032
[arXiv:1210.0731] [INSPIRE].

[39] A. Bagchi, A. Mehra and P. Nandi, Field Theories with Conformal Carrollian Symmetry, JHEP
05 (2019) 108 [arXiv:1901.10147] [INSPIRE].

– 23 –

https://doi.org/10.1007/JHEP09(2020)176
https://doi.org/10.1007/JHEP09(2020)176
https://doi.org/10.48550/arXiv.2005.08990
https://inspirehep.net/literature/1796970
https://doi.org/10.1007/JHEP11(2021)152
https://doi.org/10.48550/arXiv.2103.03961
https://inspirehep.net/literature/1850558
https://doi.org/10.1103/PhysRevLett.127.221601
https://doi.org/10.48550/arXiv.2105.14346
https://inspirehep.net/literature/1973774
https://doi.org/10.1007/JHEP01(2022)080
https://doi.org/10.48550/arXiv.2108.07763
https://inspirehep.net/literature/1906452
https://doi.org/10.1007/JHEP02(2021)176
https://doi.org/10.48550/arXiv.2008.04330
https://inspirehep.net/literature/1811123
https://doi.org/10.1007/JHEP10(2021)111
https://doi.org/10.48550/arXiv.2011.00017
https://inspirehep.net/literature/1827518
https://doi.org/10.1007/JHEP12(2021)171
https://doi.org/10.48550/arXiv.2106.16111
https://inspirehep.net/literature/1873461
https://doi.org/10.1007/JHEP08(2021)067
https://doi.org/10.48550/arXiv.2104.02546
https://inspirehep.net/literature/1856371
https://doi.org/10.1007/JHEP11(2021)072
https://doi.org/10.48550/arXiv.2105.03516
https://inspirehep.net/literature/1862670
https://doi.org/10.1007/JHEP01(2023)151
https://doi.org/10.48550/arXiv.2208.11635
https://inspirehep.net/literature/2141360
https://doi.org/10.1007/JHEP03(2023)252
https://doi.org/10.1007/JHEP03(2023)252
https://doi.org/10.48550/arXiv.2211.17124
https://inspirehep.net/literature/2605929
https://doi.org/10.1007/JHEP05(2023)063
https://doi.org/10.48550/arXiv.2301.13225
https://inspirehep.net/literature/2628406
https://doi.org/10.1007/JHEP06(2023)051
https://doi.org/10.48550/arXiv.2304.02696
https://inspirehep.net/literature/2649619
https://doi.org/10.1103/PhysRevD.110.026020
https://doi.org/10.48550/arXiv.2311.16796
https://inspirehep.net/literature/2727514
https://doi.org/10.1103/PhysRevLett.129.071602
https://doi.org/10.48550/arXiv.2202.04702
https://inspirehep.net/literature/2030695
https://doi.org/10.1103/PhysRevLett.128.241601
https://doi.org/10.48550/arXiv.2202.08438
https://inspirehep.net/literature/2034302
https://doi.org/10.1103/PhysRevD.107.126027
https://doi.org/10.48550/arXiv.2212.12553
https://inspirehep.net/literature/2618247
https://doi.org/10.1007/JHEP01(2019)205
https://doi.org/10.1007/JHEP01(2019)205
https://doi.org/10.48550/arXiv.1801.10171
https://inspirehep.net/literature/1653745
https://doi.org/10.1007/JHEP03(2020)125
https://doi.org/10.48550/arXiv.1909.03075
https://inspirehep.net/literature/1753124
https://doi.org/10.1103/PhysRevD.87.124032
https://doi.org/10.48550/arXiv.1210.0731
https://inspirehep.net/literature/1188991
https://doi.org/10.1007/JHEP05(2019)108
https://doi.org/10.1007/JHEP05(2019)108
https://doi.org/10.48550/arXiv.1901.10147
https://inspirehep.net/literature/1717510


J
H
E
P
0
9
(
2
0
2
4
)
1
4
9

[40] M. Henneaux and P. Salgado-Rebolledo, Carroll contractions of Lorentz-invariant theories,
JHEP 11 (2021) 180 [arXiv:2109.06708] [INSPIRE].

[41] J. de Boer et al., Carroll Symmetry, Dark Energy and Inflation, Front. in Phys. 10 (2022)
810405 [arXiv:2110.02319] [INSPIRE].

[42] B. Chen, R. Liu, H. Sun and Y.-F. Zheng, Constructing Carrollian field theories from null
reduction, JHEP 11 (2023) 170 [arXiv:2301.06011] [INSPIRE].

[43] L.F. Alday, M. Nocchi, R. Ruzziconi and A. Yelleshpur Srikant, Carrollian Amplitudes from
Holographic Correlators, arXiv:2406.19343 [INSPIRE].

[44] J. Salzer, An embedding space approach to Carrollian CFT correlators for flat space holography,
JHEP 10 (2023) 084 [arXiv:2304.08292] [INSPIRE].

[45] A. Saha, w1+∞ and Carrollian holography, JHEP 05 (2024) 145 [arXiv:2308.03673] [INSPIRE].

[46] K. Nguyen and P. West, Carrollian Conformal Fields and Flat Holography, Universe 9 (2023)
385 [arXiv:2305.02884] [INSPIRE].

[47] K. Nguyen, Carrollian conformal correlators and massless scattering amplitudes, JHEP 01
(2024) 076 [arXiv:2311.09869] [INSPIRE].

[48] A. Bagchi, P. Dhivakar and S. Dutta, Holography in flat spacetimes: the case for Carroll, JHEP
08 (2024) 144 [arXiv:2311.11246] [INSPIRE].

[49] L. Mason, R. Ruzziconi and A. Yelleshpur Srikant, Carrollian amplitudes and celestial
symmetries, JHEP 05 (2024) 012 [arXiv:2312.10138] [INSPIRE].

[50] W.-B. Liu, J. Long and X.-Q. Ye, Feynman rules and loop structure of Carrollian amplitudes,
JHEP 05 (2024) 213 [arXiv:2402.04120] [INSPIRE].

[51] E. Have, K. Nguyen, S. Prohazka and J. Salzer, Massive carrollian fields at timelike infinity,
JHEP 07 (2024) 054 [arXiv:2402.05190] [INSPIRE].

[52] S. Stieberger, T.R. Taylor and B. Zhu, Carrollian Amplitudes from Strings, JHEP 04 (2024) 127
[arXiv:2402.14062] [INSPIRE].

[53] T. Adamo, W. Bu, P. Tourkine and B. Zhu, Eikonal amplitudes on the celestial sphere,
arXiv:2405.15594 [INSPIRE].

[54] D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, 2D Stress Tensor for 4D Gravity, Phys.
Rev. Lett. 119 (2017) 121601 [arXiv:1609.00282] [INSPIRE].

[55] A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Extended Super BMS Algebra of Celestial
CFT, JHEP 09 (2020) 198 [arXiv:2007.03785] [INSPIRE].

[56] B. Chen, R. Liu and Y.-F. Zheng, On higher-dimensional Carrollian and Galilean conformal field
theories, SciPost Phys. 14 (2023) 088 [arXiv:2112.10514] [INSPIRE].

[57] S. Baiguera, G. Oling, W. Sybesma and B.T. Søgaard, Conformal Carroll scalars with boosts,
SciPost Phys. 14 (2023) 086 [arXiv:2207.03468] [INSPIRE].

[58] D. Rivera-Betancour and M. Vilatte, Revisiting the Carrollian scalar field, Phys. Rev. D 106
(2022) 085004 [arXiv:2207.01647] [INSPIRE].

[59] J. de Boer et al., Carroll stories, JHEP 09 (2023) 148 [arXiv:2307.06827] [INSPIRE].

[60] E. Himwich et al., The Soft S-Matrix in Gravity, JHEP 09 (2020) 129 [arXiv:2005.13433]
[INSPIRE].

– 24 –

https://doi.org/10.1007/JHEP11(2021)180
https://doi.org/10.48550/arXiv.2109.06708
https://inspirehep.net/literature/1921595
https://doi.org/10.3389/fphy.2022.810405
https://doi.org/10.3389/fphy.2022.810405
https://doi.org/10.48550/arXiv.2110.02319
https://inspirehep.net/literature/1939472
https://doi.org/10.1007/JHEP11(2023)170
https://doi.org/10.48550/arXiv.2301.06011
https://inspirehep.net/literature/2623845
https://doi.org/10.48550/arXiv.2406.19343
https://inspirehep.net/literature/2802598
https://doi.org/10.1007/JHEP10(2023)084
https://doi.org/10.48550/arXiv.2304.08292
https://inspirehep.net/literature/2651864
https://doi.org/10.1007/JHEP05(2024)145
https://doi.org/10.48550/arXiv.2308.03673
https://inspirehep.net/literature/2686078
https://doi.org/10.3390/universe9090385
https://doi.org/10.3390/universe9090385
https://doi.org/10.48550/arXiv.2305.02884
https://inspirehep.net/literature/2656612
https://doi.org/10.1007/JHEP01(2024)076
https://doi.org/10.1007/JHEP01(2024)076
https://doi.org/10.48550/arXiv.2311.09869
https://inspirehep.net/literature/2723240
https://doi.org/10.1007/JHEP08(2024)144
https://doi.org/10.1007/JHEP08(2024)144
https://doi.org/10.48550/arXiv.2311.11246
https://inspirehep.net/literature/2724301
https://doi.org/10.1007/JHEP05(2024)012
https://doi.org/10.48550/arXiv.2312.10138
https://inspirehep.net/literature/2738147
https://doi.org/10.1007/JHEP05(2024)213
https://doi.org/10.48550/arXiv.2402.04120
https://inspirehep.net/literature/2756046
https://doi.org/10.1007/JHEP07(2024)054
https://doi.org/10.48550/arXiv.2402.05190
https://inspirehep.net/literature/2756725
https://doi.org/10.1007/JHEP04(2024)127
https://doi.org/10.48550/arXiv.2402.14062
https://inspirehep.net/literature/2760788
https://doi.org/10.48550/arXiv.2405.15594
https://inspirehep.net/literature/2790015
https://doi.org/10.1103/PhysRevLett.119.121601
https://doi.org/10.1103/PhysRevLett.119.121601
https://doi.org/10.48550/arXiv.1609.00282
https://inspirehep.net/literature/1484832
https://doi.org/10.1007/JHEP09(2020)198
https://doi.org/10.48550/arXiv.2007.03785
https://inspirehep.net/literature/1805865
https://doi.org/10.21468/SciPostPhys.14.5.088
https://doi.org/10.48550/arXiv.2112.10514
https://inspirehep.net/literature/1994150
https://doi.org/10.21468/SciPostPhys.14.4.086
https://doi.org/10.48550/arXiv.2207.03468
https://inspirehep.net/literature/2107235
https://doi.org/10.1103/PhysRevD.106.085004
https://doi.org/10.1103/PhysRevD.106.085004
https://doi.org/10.48550/arXiv.2207.01647
https://inspirehep.net/literature/2106105
https://doi.org/10.1007/JHEP09(2023)148
https://doi.org/10.48550/arXiv.2307.06827
https://inspirehep.net/literature/2676639
https://doi.org/10.1007/JHEP09(2020)129
https://doi.org/10.48550/arXiv.2005.13433
https://inspirehep.net/literature/1798077


J
H
E
P
0
9
(
2
0
2
4
)
1
4
9

[61] S. Pasterski, A. Puhm and E. Trevisani, Revisiting the conformally soft sector with celestial
diamonds, JHEP 11 (2021) 143 [arXiv:2105.09792] [INSPIRE].

[62] L. Freidel, D. Pranzetti and A.-M. Raclariu, A discrete basis for celestial holography, JHEP 02
(2024) 176 [arXiv:2212.12469] [INSPIRE].

[63] A. Fiorucci, D. Grumiller and R. Ruzziconi, Logarithmic celestial conformal field theory, Phys.
Rev. D 109 (2024) L021902 [arXiv:2305.08913] [INSPIRE].

[64] W. Fan et al., Elements of celestial conformal field theory, JHEP 08 (2022) 213
[arXiv:2202.08288] [INSPIRE].

[65] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press
(1943) [INSPIRE].

[66] S. Stieberger, T.R. Taylor and B. Zhu, Celestial Liouville theory for Yang-Mills amplitudes,
Phys. Lett. B 836 (2023) 137588 [arXiv:2209.02724] [INSPIRE].

[67] T.R. Taylor and B. Zhu, Celestial Supersymmetry, JHEP 06 (2023) 210 [arXiv:2302.12830]
[INSPIRE].

[68] S. Stieberger, T.R. Taylor and B. Zhu, Yang-Mills as a Liouville theory, Phys. Lett. B 846
(2023) 138229 [arXiv:2308.09741] [INSPIRE].

[69] W. Melton and S.A. Narayanan, Celestial gluon amplitudes from the outside in, JHEP 05 (2024)
211 [arXiv:2312.12394] [INSPIRE].

[70] G. Giribet, Remarks on celestial amplitudes and Liouville theory, arXiv:2403.03374 [INSPIRE].

[71] W. Melton, A. Sharma, A. Strominger and T. Wang, Celestial Dual for Maximal Helicity
Violating Amplitudes, Phys. Rev. Lett. 133 (2024) 091603 [arXiv:2403.18896] [INSPIRE].

[72] W. Melton, A. Sharma and A. Strominger, Celestial leaf amplitudes, JHEP 07 (2024) 132
[arXiv:2312.07820] [INSPIRE].

[73] K.-W. Huang, Toward null-state equations in d > 2, JHEP 11 (2023) 203 [arXiv:2308.03229]
[INSPIRE].

[74] K.-W. Huang, Resummation of Multi-Stress Tensors in Higher Dimensions, arXiv:2406.07458
[INSPIRE].

[75] E. Casali, W. Melton and A. Strominger, Celestial amplitudes as AdS-Witten diagrams, JHEP
11 (2022) 140 [arXiv:2204.10249] [INSPIRE].

[76] W. Fan et al., Celestial Yang-Mills amplitudes and D = 4 conformal blocks, JHEP 09 (2022) 182
[arXiv:2206.08979] [INSPIRE].

[77] L.P. de Gioia and A.-M. Raclariu, Eikonal approximation in celestial CFT, JHEP 03 (2023) 030
[arXiv:2206.10547] [INSPIRE].

[78] R. Gonzo, T. McLoughlin and A. Puhm, Celestial holography on Kerr-Schild backgrounds, JHEP
10 (2022) 073 [arXiv:2207.13719] [INSPIRE].

[79] S. Pasterski and A. Puhm, Shifting spin on the celestial sphere, Phys. Rev. D 104 (2021) 086020
[arXiv:2012.15694] [INSPIRE].

[80] S. Banerjee, R. Mandal, A. Manu and P. Paul, MHV gluon scattering in the massive scalar
background and celestial OPE, JHEP 10 (2023) 007 [arXiv:2302.10245] [INSPIRE].

[81] A. Ball, S. De, A. Yelleshpur Srikant and A. Volovich, Scalar-graviton amplitudes and celestial
holography, JHEP 02 (2024) 097 [arXiv:2310.00520] [INSPIRE].

– 25 –

https://doi.org/10.1007/JHEP11(2021)143
https://doi.org/10.48550/arXiv.2105.09792
https://inspirehep.net/literature/1864430
https://doi.org/10.1007/JHEP02(2024)176
https://doi.org/10.1007/JHEP02(2024)176
https://doi.org/10.48550/arXiv.2212.12469
https://inspirehep.net/literature/2617989
https://doi.org/10.1103/PhysRevD.109.L021902
https://doi.org/10.1103/PhysRevD.109.L021902
https://doi.org/10.48550/arXiv.2305.08913
https://inspirehep.net/literature/2660276
https://doi.org/10.1007/JHEP08(2022)213
https://doi.org/10.48550/arXiv.2202.08288
https://inspirehep.net/literature/2034287
https://inspirehep.net/literature/2614823
https://doi.org/10.1016/j.physletb.2022.137588
https://doi.org/10.48550/arXiv.2209.02724
https://inspirehep.net/literature/2148187
https://doi.org/10.1007/JHEP06(2023)210
https://doi.org/10.48550/arXiv.2302.12830
https://inspirehep.net/literature/2636359
https://doi.org/10.1016/j.physletb.2023.138229
https://doi.org/10.1016/j.physletb.2023.138229
https://doi.org/10.48550/arXiv.2308.09741
https://inspirehep.net/literature/2689759
https://doi.org/10.1007/JHEP05(2024)211
https://doi.org/10.1007/JHEP05(2024)211
https://doi.org/10.48550/arXiv.2312.12394
https://inspirehep.net/literature/2738722
https://doi.org/10.48550/arXiv.2403.03374
https://inspirehep.net/literature/2765799
https://doi.org/10.1103/PhysRevLett.133.091603
https://doi.org/10.48550/arXiv.2403.18896
https://inspirehep.net/literature/2823172
https://doi.org/10.1007/JHEP07(2024)132
https://doi.org/10.48550/arXiv.2312.07820
https://inspirehep.net/literature/2736588
https://doi.org/10.1007/JHEP11(2023)203
https://doi.org/10.48550/arXiv.2308.03229
https://inspirehep.net/literature/2686043
https://doi.org/10.48550/arXiv.2406.07458
https://inspirehep.net/literature/2796994
https://doi.org/10.1007/JHEP11(2022)140
https://doi.org/10.1007/JHEP11(2022)140
https://doi.org/10.48550/arXiv.2204.10249
https://inspirehep.net/literature/2070502
https://doi.org/10.1007/JHEP09(2022)182
https://doi.org/10.48550/arXiv.2206.08979
https://inspirehep.net/literature/2098325
https://doi.org/10.1007/JHEP03(2023)030
https://doi.org/10.48550/arXiv.2206.10547
https://inspirehep.net/literature/2098504
https://doi.org/10.1007/JHEP10(2022)073
https://doi.org/10.1007/JHEP10(2022)073
https://doi.org/10.48550/arXiv.2207.13719
https://inspirehep.net/literature/2127383
https://doi.org/10.1103/PhysRevD.104.086020
https://doi.org/10.48550/arXiv.2012.15694
https://inspirehep.net/literature/1838933
https://doi.org/10.1007/JHEP10(2023)007
https://doi.org/10.48550/arXiv.2302.10245
https://inspirehep.net/literature/2635101
https://doi.org/10.1007/JHEP02(2024)097
https://doi.org/10.48550/arXiv.2310.00520
https://inspirehep.net/literature/2705175


J
H
E
P
0
9
(
2
0
2
4
)
1
4
9

[82] J. Broedel, O. Schlotterer, S. Stieberger and T. Terasoma, All order α′-expansion of superstring
trees from the Drinfeld associator, Phys. Rev. D 89 (2014) 066014 [arXiv:1304.7304] [INSPIRE].

[83] E. Crawley, A. Guevara, E. Himwich and A. Strominger, Self-dual black holes in celestial
holography, JHEP 09 (2023) 109 [arXiv:2302.06661] [INSPIRE].

[84] K. Costello and N.M. Paquette, Celestial holography meets twisted holography: 4d amplitudes
from chiral correlators, JHEP 10 (2022) 193 [arXiv:2201.02595] [INSPIRE].

[85] W. Melton, S.A. Narayanan and A. Strominger, Deforming soft algebras for gauge theory, JHEP
03 (2023) 233 [arXiv:2212.08643] [INSPIRE].

[86] R. Bittleston, S. Heuveline and D. Skinner, The celestial chiral algebra of self-dual gravity on
Eguchi-Hanson space, JHEP 09 (2023) 008 [arXiv:2305.09451] [INSPIRE].

[87] K. Costello, N.M. Paquette and A. Sharma, Top-Down Holography in an Asymptotically Flat
Spacetime, Phys. Rev. Lett. 130 (2023) 061602 [arXiv:2208.14233] [INSPIRE].

[88] K. Costello, N.M. Paquette and A. Sharma, Burns space and holography, JHEP 10 (2023) 174
[arXiv:2306.00940] [INSPIRE].

[89] T. Adamo, W. Bu and B. Zhu, Infrared structures of scattering on self-dual radiative
backgrounds, JHEP 06 (2024) 076 [arXiv:2309.01810] [INSPIRE].

[90] W. Melton, F. Niewinski, A. Strominger and T. Wang, Hyperbolic vacua in Minkowski space,
JHEP 08 (2024) 046 [arXiv:2310.13663] [INSPIRE].

[91] A. Lipstein and S. Nagy, Self-Dual Gravity and Color-Kinematics Duality in AdS4, Phys. Rev.
Lett. 131 (2023) 081501 [arXiv:2304.07141] [INSPIRE].

[92] T.R. Taylor and B. Zhu, w1+∞ Algebra with a Cosmological Constant and the Celestial Sphere,
Phys. Rev. Lett. 132 (2024) 221602 [arXiv:2312.00876] [INSPIRE].

[93] R. Bittleston et al., On AdS4 deformations of celestial symmetries, JHEP 07 (2024) 010
[arXiv:2403.18011] [INSPIRE].

[94] T. Adamo, G. Bogna, L. Mason and A. Sharma, Gluon scattering on the self-dual dyon,
arXiv:2406.09165 [INSPIRE].

– 26 –

https://doi.org/10.1103/PhysRevD.89.066014
https://doi.org/10.48550/arXiv.1304.7304
https://inspirehep.net/literature/1230970
https://doi.org/10.1007/JHEP09(2023)109
https://doi.org/10.48550/arXiv.2302.06661
https://inspirehep.net/literature/2632018
https://doi.org/10.1007/JHEP10(2022)193
https://doi.org/10.48550/arXiv.2201.02595
https://inspirehep.net/literature/2005607
https://doi.org/10.1007/JHEP03(2023)233
https://doi.org/10.1007/JHEP03(2023)233
https://doi.org/10.48550/arXiv.2212.08643
https://inspirehep.net/literature/2615487
https://doi.org/10.1007/JHEP09(2023)008
https://doi.org/10.48550/arXiv.2305.09451
https://inspirehep.net/literature/2660275
https://doi.org/10.1103/PhysRevLett.130.061602
https://doi.org/10.48550/arXiv.2208.14233
https://inspirehep.net/literature/2143709
https://doi.org/10.1007/JHEP10(2023)174
https://doi.org/10.48550/arXiv.2306.00940
https://inspirehep.net/literature/2664628
https://doi.org/10.1007/JHEP06(2024)076
https://doi.org/10.48550/arXiv.2309.01810
https://inspirehep.net/literature/2693581
https://doi.org/10.1007/JHEP08(2024)046
https://doi.org/10.48550/arXiv.2310.13663
https://inspirehep.net/literature/2713165
https://doi.org/10.1103/PhysRevLett.131.081501
https://doi.org/10.1103/PhysRevLett.131.081501
https://doi.org/10.48550/arXiv.2304.07141
https://inspirehep.net/literature/2651462
https://doi.org/10.1103/PhysRevLett.132.221602
https://doi.org/10.48550/arXiv.2312.00876
https://inspirehep.net/literature/2729860
https://doi.org/10.1007/JHEP07(2024)010
https://doi.org/10.48550/arXiv.2403.18011
https://inspirehep.net/literature/2772078
https://doi.org/10.48550/arXiv.2406.09165
https://inspirehep.net/literature/2797768

	Introduction
	Elements of Carrollian amplitudes
	Differential equations for Carrollian MHV gluon amplitudes
	Three-point solution in the presence of a dilaton source (case I)
	Three-point solution in the presence of a dilaton source (case II)
	Higher-point solutions

	Differential equations for Carrollian MHV graviton amplitudes
	From leading and subleading soft graviton symmetries
	From leading, subleading, and subsubleading soft graviton symmetries

	Covariance of Carrollian differential equations
	Concluding remarks
	A differential equation of celestial MHV graviton amplitudes

