
a

b

c

d

t
n

h
o

t
t

(

Physica D 471 (2025) 134418 

A
0

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Conformalized-DeepONet: A distribution-free framework for uncertainty
quantification in deep operator networks
Christian Moya c, Amirhossein Mollaali d, Zecheng Zhang a,∗, Lu Lu b, Guang Lin c

Department of Mathematics, Florida State University, Tallahassee, FL 32304, USA
Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA
Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA

A R T I C L E I N F O

Communicated by ChangQing Cheng

Keywords:
Operator learning
Uncertainty quantification
Conformal prediction
Quantile prediction
Dynamical systems
Time-dependent PDE

A B S T R A C T

In this paper, we adopt conformal prediction, a distribution-free uncertainty quantification (UQ) framework,
to obtain prediction intervals with coverage guarantees for Deep Operator Network (DeepONet) regression.
Initially, we enhance the uncertainty quantification frameworks (B-DeepONet and Prob-DeepONet) previously
proposed by the authors by using split conformal prediction. By combining conformal prediction with our
Prob- and B-DeepONets, we effectively quantify uncertainty by generating rigorous prediction intervals for
DeepONet prediction. Additionally, we design a novel Quantile-DeepONet that allows for a more natural use
of split conformal prediction. We refer to this distribution-free effective uncertainty quantification framework
as split conformal Quantile-DeepONet regression. Finally, we demonstrate the effectiveness of the proposed
methods using various ordinary, partial differential equation numerical examples, and multi-fidelity learning.
1. Introduction

Recent advancements in neural network technology have solidified
its standing as a reliable and efficient tool for function approxima-
ion [1,2]. This is particularly evident in scientific computing, where
eural networks have demonstrated their power in approximating so-

lutions to Partial Differential Equations (PDEs) or Ordinary Differential
Equations (ODEs) [3–7]. A prevalent challenge in scientific computing
involves approximating operators that map one function to another.
Seminal research endeavors, such as those by Chen and Chen [8,9],
ave explored the utilization of neural networks to approximate such
perators, commonly referred to as neural operators.

In recent years, there has been a surge of interest in neural opera-
ors, with notable contributions from various scholars [10–17]. Among
hese, two prominent approaches have emerged as particularly success-

ful: Deep Operator Neural Networks (DeepONet) [10–12,18–20] and
Fourier Neural Operator (FNO) [14–17,21–23].

Compared to FNO, DeepONet represents a mesh-free neural oper-
ator, implying that the output functions do not require discretization.
This characteristic enhances the flexibility of DeepONet in both training
and testing phases [11,22,24–29]. Furthermore, recent advancements
in BelNet by [22,25,26] have extended DeepONet’s capabilities, making
it invariant to input function discretization. This means that input

∗ Corresponding author.
E-mail addresses: cmoyacal@purdue.edu (C. Moya), amollaal@purdue.edu (A. Mollaali), zecheng.zhang.math@gmail.com (Z. Zhang), lu.lu@yale.edu

L. Lu), guanglin@purdue.edu (G. Lin).

functions no longer need to conform to a shared discretization, thereby
enhancing the versatility of DeepONet even further.

DeepONet and its extensions have been successfully applied to a di-
verse array of real-world applications. These include weather forecast-
ing [23], sub-surface structure detection [13], electrical propagation on
the left ventricle [30], geological carbon sequestration [31], disk-planet
interactions in protoplanetary disks [32], hypersonic systems [33,34],
power systems [35], and optimization [36].

The need for Uncertainty Quantification (UQ) in scientific machine
learning [37,38] often arises from several factors. These include un-
certainties in data due to measurement errors and numerical algorithm
errors [21], uncertainties in model forms due to network architectures
and physical models of varying fidelities [27,37,39], and uncertainties
in parameters due to network training and system properties at differ-
ent scales [37,39]. As a result, researchers are tasked with providing
prediction intervals for predicted outputs. A good interval should meet
two fundamental criteria. Firstly, it should have a significant coverage
rate, encompassing precise solutions or dynamics to the greatest extent
possible. Secondly, the interval should be minimized in size.
https://doi.org/10.1016/j.physd.2024.134418
Received 27 April 2024; Received in revised form 29 September 2024; Accepted 22
vailable online 22 November 2024 
167-2789/© 2024 Published by Elsevier B.V. 
 October 2024

https://www.elsevier.com/locate/physd
https://www.elsevier.com/locate/physd
mailto:cmoyacal@purdue.edu
mailto:amollaal@purdue.edu
mailto:zecheng.zhang.math@gmail.com
mailto:lu.lu@yale.edu
mailto:guanglin@purdue.edu
https://doi.org/10.1016/j.physd.2024.134418
https://doi.org/10.1016/j.physd.2024.134418


C. Moya et al.

f
p

s
e
k

m
p
f
i
t
q
r
H
d
i

q
p
i
r

T
p

p
i
t
c
r
v
F
c

2

w
t
D

2

Physica D: Nonlinear Phenomena 471 (2025) 134418 
Numerous works [21,27,36–43] have established various uncer-
tainty quantification (UQ) frameworks for DeepONet. These frame-
works aim not only for accurate prediction but also for quantifying un-
certainty. For example, a recent study [21] from the authors addresses
this uncertainty issue in operator learning by framing the training pro-
cess within a Bayesian framework. The study uses Langevin diffusion-
based sampling methods [44–48] to generate ensembles, which aids
in characterizing uncertainty in DeepONet predictions. To lessen the
use of ensembles and increase efficiency, we introduced a probabilistic
framework for UQ in DeepONets in [27], which provides an input-
dependent standard deviation as a heuristic measure of uncertainty.
However, despite the promising results from these methods, construct-
ing rigorous prediction intervals for DeepONet predictions remains an
unsolved challenge, which we aim to solve using conformal prediction.

Conformal prediction [49–51] is an alternative method for con-
structing prediction intervals that provide nonasymptotic, distribution-
ree coverage guarantees. Unlike the Bayesian Framework, this ap-
roach does not require prior distribution knowledge and avoids rely-

ing on strong assumptions of large-sample asymptotic approximations,
which may be difficult to justify in practical scenarios. These char-
acteristics make conformal prediction a valuable tool for addressing
cientific machine learning problems, especially those arising from
ngineering applications with real observed data and a lack of prior
nowledge.

There are two types of conformal prediction methods: full confor-
al prediction [51,52] and split conformal prediction [51,53]. In this
aper, we focus on split conformal prediction, which operates with
inite samples and enables building adaptive and validated prediction
ntervals. These properties have allowed split conformal prediction
o become a popular approach for machine learning and uncertainty
uantification tasks, including Language Modeling [54], Graph Neu-
al Networks [55], time series [56], and quantile regression [57].
owever, despite its potential, split conformal prediction remains un-
erutilized in the scientific machine learning community, particularly
n the context of Deep Operator Networks.

The goal of this paper is to address the challenge of uncertainty
uantification (UQ) in operator learning. It aims to showcase the im-
lementation of split conformal prediction for constructing prediction
ntervals and improving existing UQ algorithms tailored for DeepONet
egression, with coverage guarantees.

To achieve this goal, we make the following contributions:

1. We design a split conformal prediction algorithm (Section 3.1)
that enhances the previously proposed uncertainty quantifica-
tion frameworks, Bayesian DeepONet (B-DeepONet) and Proba-
bilistic DeepONet (Prob-DeepONet). This novel algorithm allows
B-DeepONet and Prob-DeepONet to generate prediction intervals
with coverage guarantees.

2. We then propose a new extension of DeepONet called Quantile-
DeepONet (Section 3.2), which we use in a novel Conformal
Quantile-DeepONet regression algorithm to construct rigorous
prediction intervals.

3. Finally, we demonstrate the effectiveness of our proposed
conformalized-DeepONets by conducting multiple numerical ex-
periments on ordinary differential equations, partial differential
equations, and multi-fidelity settings.

he remaining sections of this paper are organized as follows. Section 2
rovides a review of the concepts of DeepONet, B-DeepONet, and Prob-

DeepONet. In Section 3.1, we describe how to use split conformal
rediction on B-DeepONet and Prob-DeepONet to build prediction
ntervals with coverage guarantees. Section 3.2 presents the design of
he Quantile DeepONet, which serves as the main component of the
onformal Quantile-DeepONet regression algorithm for constructing
igorous prediction intervals. We present numerical experiments that
alidate the performance of all conformalized DeepONets in Section 4.
inally, Section 5 discusses our results and future work, and Section 6
oncludes the paper.
2 
. Background information

This section reviews the Deep Operator Network (DeepONet) frame-
ork [10]. It also provides a summary of two uncertainty quan-

ification (UQ) frameworks for DeepONet: Bayesian DeepONet (B-
eepONet [21]) and probabilistic DeepONet (Prob-DeepONet [27]).

.1. Deep operator network (DeepONet)

The Deep Operator Network (DeepONet) [10–12,30] is an operator
learning framework that aims to approximate the nonlinear operator
𝐺. The operator 𝐺 maps a function space 𝑈 with domain 𝐾1 to a
function space 𝑉 with domain 𝐾2. DeepONet has been theoretically
supported by universal approximation theorems [8,18,26,58]. These
theorems enable the approximation of the operator 𝐺 for a given 𝑢 ∈ 𝑈
and 𝑥 ∈ 𝐾2 using the following linear trainable representation:

𝐺(𝑢)(𝑥) ≈ 𝐺𝜃(𝑢̂)(𝑥) =
𝐾
∑

𝑘=1
𝑏𝑘(𝑢̂)𝜏𝑘(𝑥),

Here, 𝜃 is the vector of trainable parameters, while 𝑏𝑘 and 𝜏𝑘 are 𝐾
trainable coefficients and basis functions, respectively.

DeepONet consists of two sub-networks: the branch network and
the trunk network (see Fig. 1). The branch network maps the input
function 𝑢 ∈ 𝑈 , which is discretized using 𝑚 sensors and denoted as 𝑢̂,
to a vector of 𝐾 trainable coefficients 𝑏(𝑢̂) ∈ R𝐾 . It is worth noting
that various variants of DeepONet have been proposed to handle input
functions with different discretizations. For instance, the new enhanced
structures proposed in [25,26] and the training algorithms proposed
in [22].

On the other hand, the trunk network maps a location 𝑥 ∈ 𝐾2,
which belongs to the output function domain 𝐾2 ⊂ R𝑑 , to a vector
of 𝐾 trainable basis functions. This feature eliminates the need for
discretization of the output function 𝐺(𝑢) ∈ 𝑉 in DeepONet and its
variants, making them mesh-free PDE approximate solvers. To train
DeepONet, one could optimize,

(𝜃) = 1
𝑁

𝑁
∑

𝑖=1

𝑁𝑗
∑

𝑗=1

|

|

|

|

𝐺(𝑖) − 𝐺𝜃
(

𝑢̂(𝑖)
)

(

𝑥(𝑖)𝑗
)

|

|

|

|

2
.

Without loss of generality and for better illustration of the algorithms,
we assume 𝑁𝑗 = 1, or 𝑥(𝑖) ∈ 𝐾2 is the only evaluation point for
one function 𝑢(𝑖). That is, we have the dataset, using the dataset of 𝑁
triplets:  =

{

𝑢̂(𝑖), 𝑥(𝑖), 𝐺(𝑖)}𝑁
𝑖=1, where 𝐺(𝑖) = 𝐺

(

𝑢̂(𝑖)
) (

𝑥(𝑖)
)

is the target
operator value.

Despite the remarkable accuracy of DeepONet on multiple appli-
cations (e.g., [13,23,27,30]), it only produces pointwise predictions.
However, in cases where small training datasets or noisy inputs are
involved, these pointwise predictions may be unreliable. Therefore, it
is necessary to have some measure of the DeepONet’s uncertainty. This
requirement led the authors of this paper to develop two uncertainty
quantification frameworks for DeepONet: Bayesian and probabilistic
DeepONets, which we review next.

2.2. Bayesian deep operator network (B-DeepONet)

This section reviews the first framework for uncertainty quantifi-
cation (UQ) in DeepONet, known as Bayesian DeepONet (B-DeepONet)
[21], developed by the authors of this paper. In particular, B-DeepONet
is based on the Langevin theory that allows us to generate samples from
an approximate posterior that converges to the Gibbs distribution pro-
portional to exp(−𝑈 (𝜃)∕𝜏), where 𝑈 is the non-convex energy function
and 𝜏 > 0 the temperature.

Measuring the uncertainty linked with constrained training datasets,
noisy inputs, and over-parametrization of neural networks poses a
considerable challenge. This challenge is even more pronounced in
deep operator regression, as it involves mapping between functional
spaces. To address this challenge, we proposed the Bayesian DeepONet



C. Moya et al.

(
p
t

s
s

P
T
b
c

Physica D: Nonlinear Phenomena 471 (2025) 134418 
Fig. 1. Stacked version DeepONet 𝐺𝜃 .
⨂ denotes the inner product in R𝐾 . Specifically, 𝑡𝑗 ∈ R is the trunk net output, and 𝑏𝑗 ∈ R is the brunch net output..
U

B
o
w
a
H
t

2

D
a
T
P
i

t

𝐺

I
a
g
f

𝜇

S
m

B-DeepONet) in [21]. B-DeepONet allows us to construct heuristic
rediction intervals for the operator that maps an input function 𝑢 ∈ 𝑉
o an output function 𝐺(𝑢)(𝑥) ∈ R evaluated at a point 𝑥 ∈ 𝐾2 ⊂ R𝑑 .

In B-DeepONet, our goal was to develop a method to sample from
the predictive distribution 𝑝(𝐺|(𝑢, 𝑥),) of the target operator 𝐺(𝑢)(𝑥),
given a discretized input 𝑢̂ ∈ R𝑚 at any 𝑥 ∈ 𝐾2 using the training dataset
. To reach this goal, we first assumed a factorized Gaussian likelihood
function for the dataset [44,59]:

𝑝(𝐺|(𝑢̂, 𝑥), 𝜃) =  (𝐺|𝐺𝜃(𝑢̂)(𝑥),diag(𝛴2)) =
𝑁
∏

𝑖=1
 (𝐺(𝑖)

|𝐺𝜃(𝑢̂(𝑖))(𝑥(𝑖)), 𝜎),

where the mean 𝐺𝜃(𝑢̂)(𝑥) is the output of the underlying DeepONet with
a vector of trainable parameters 𝜃 and diag(𝛴2) a diagonal covariance
matrix with 𝛴2 = (𝜎2,… , 𝜎2) on the diagonal [37], which we assume is
given.

It is important to note that the target operator value 𝐺(𝑢)(𝑥) ∈ R
for a given input function 𝑢 ∈ 𝑈 at any location 𝑥 ∈ 𝐾2 and the
training dataset  is the random variable (𝐺|(𝑢, 𝑥),). To calculate the
density of this random variable, the DeepONet parameters 𝜃 need to be
integrated out, as shown below:

𝑝(𝐺|(𝑢, 𝑥),) = ∫ 𝑝(𝐺|(𝑢, 𝑥), 𝜃)𝑝(𝜃|)𝑑 𝜃 .

In the above, 𝑝(𝜃|) is the posterior distribution of the DeepONet
trainable parameters. Using Bayes’ rule, we can write the posterior of
DeepONet parameters as

𝑝(𝜃|) ∝ 𝑝(|𝜃)𝑝(𝜃),

where 𝑝(𝜃) is the prior distribution of the parameters, and 𝑝(|𝜃) is the
data likelihood, that is, 𝑝(|𝜃) = ∏𝑁

𝑖=1 𝑝(𝐺
(𝑖)
|(𝑢̂(𝑖), 𝑥(𝑖)), 𝜃). We calculate

this using the DeepONet forward pass and the i.i.d. training dataset .
Computing the posterior distribution in closed form using Bayes’

rule is intractable [37] for deep operator networks. Thus, to generate
samples from this distribution, we employ a Langevin diffusion-based
ampling technique [47,60]. This technique has been shown to produce
amples that closely match the target distribution [61,62]. Specifically,

the Langevin diffusion process used to generate samples is as follows:

𝑑 𝜃𝑡 = −∇𝑈 (𝜃𝑡)𝑑 𝑡 +
√

2𝜏 𝑑 𝑊𝑡,

where 𝜃 is the vector of parameters, 𝑈 is the energy function (i.e., the
log data likelihood and prior), 𝜏 the temperature, and 𝑊𝑡 is the Brow-
nian motion. By sampling from the posterior distribution using a dis-
cretized Langevin process, we obtained an ensemble of 𝑀 𝜃 samples,
denoted as {𝜃𝑘}𝑀𝑘=1, as described next.

To obtain the ensemble of parameters, denoted as {𝜃𝑘}𝑀𝑘=1, B-
DeepONet uses a variation of the diffusion process mentioned earlier.
articularly, the authors consider the parallel tempering techniques.
hese methods involve two chains and facilitate particle swapping
etween them, aiding in escaping local traps and addressing highly non-
onvex problems, thereby enhancing its capability to tackle complex
 f

3 
Q challenges. However, employing two chains doubles the cost of
energy function evaluation. Despite efforts by the authors to mitigate
these costs, achieving only up to a 25% reduction in the doubled cost,
this prompts the exploration of alternative UQ methods for managing
uncertainty in neural operators.

To construct the prediction intervals, in our paper [21], we used the
obtained 𝑀-ensemble {𝜃𝑘}𝑀𝑘=1 of sampled parameters from the posterior
distribution to fit a parametric predictive distribution, a common prac-
tice in the literature [37]. It is important to note that this assumption
limits the applicability of these prediction intervals. Specifically, we
used the Gaussian distribution  (𝜇(𝑢̂)(𝑥), 𝜎(𝑢̂)(𝑥)) for an arbitrary 𝑥
location. The parameters of this distribution were obtained as follows:

𝜇(𝑢̂)(𝑥) = 1
𝑀

𝑀
∑

𝑘=1
𝐺𝜃𝑘 (𝑢̂)(𝑥)

𝜎2(𝑢̂)(𝑥) = 1
𝑀

𝑀
∑

𝑘=1

(

𝐺𝜃𝑘 (𝑢̂)(𝑥) − 𝜇(𝑢̂)(𝑥)
)2

.

Due to the assumption of fitting the parametric predictive distribution,
-DeepONet can only provide a heuristic estimate of uncertainty. In
ur paper [21], we demonstrated that constructing prediction intervals
ith B-DeepONet requires extensive hyperparameter optimization to
chieve a high prediction level (e.g., 95%) for a specific test dataset.
owever, there is no guarantee that these heuristic prediction in-

ervals, developed using B-DeepONet, will be reliable for other test
examples. Additionally, constructing these heuristic prediction inter-
vals requires the forward pass of 𝑀 DeepONets, making B-DeepONet a
computationally expensive method.

.3. Probabilistic deep operator network (Prob-DeepONet)

One of the main drawbacks of quantifying uncertainty using B-
eepONet is its cost. B-DeepONet requires performing a forward pass
cross all the DeepONets within the collected ensemble of size 𝑀 .
o address this drawback, the authors of this paper developed the
robabilistic DeepONet (Prob-DeepONet) [27], which we will review
n this section.

Prob-DeepONet is a probabilistic model whose output approximates
he parameters of a normal distribution:

|𝑋 = (𝑢̂, 𝑥) ∼ 
(

𝜇𝜃𝜇 (𝑢̂)(𝑥), 𝜎𝜃𝜎 (𝑢̂)(𝑥)
)

.

n the above, 𝜇𝜃𝜇 represents the mean of the probabilistic model and
ims to approximate 𝐺(𝑢)(𝑥) ∈ R, which is the target operator for a
iven input 𝑢 ∈ 𝑈 at 𝑥 ∈ 𝐾2. This approximation is achieved using the
ollowing linear trainable representation:

𝜃𝜇 (𝑢̂)(𝑥) =
𝐾
∑

𝑖=1
𝑏𝜇𝑘 (𝑢̂) ⋅ 𝜏

𝜇
𝑘 (𝑥).

imilarly, 𝜎𝜃𝜎 represents the standard deviation of the probabilistic
odel. It aims to estimate the uncertainty for 𝐺(𝑢)(𝑥) through the

ollowing linear trainable representation:



C. Moya et al.

N

P
o
e
p
t
d

3

p
h
D
N
b
g

3

5
f
t
g

a

P

u
u
i
s
u

a

D

t
m

i
n
a
c

t
e



T
r
s
n

T
r
a

𝑞

Physica D: Nonlinear Phenomena 471 (2025) 134418 
log(𝜎𝜃𝜎 (𝑢̂)(𝑥)) =
𝐾
∑

𝑖=1
𝑏𝜎𝑘(𝑢̂) ⋅ 𝜏

𝜎
𝑘 (𝑥).

ote that in the above, for numerical stability, we train the model
to produce log 𝜎 and then recover the standard deviation 𝜎 using the
exponential function.

Similar to the classical DeepONet, Prob-DeepONet consists of two
sub-networks: the branch network and the trunk network. In the branch
network, we design two components: one for the mean and the other for
the standard deviation. The branch component for the mean includes
shared trainable layers and a few independent layers. It maps the
discretized input 𝑢̂ ∈ R𝑚 to a vector of 𝐾 trainable coefficients 𝑏𝜇(𝑢̂) ∈
R𝐾 for the mean. Similarly, the branch component for the log standard
deviation shares several layers with the mean component. It also has
independent layers to process the map from the discretized input 𝑢̂ ∈
R𝑚 to the vector of trainable coefficients 𝑏𝜎(𝑢̂) ∈ R𝐾 .

On the other hand, the trunk network also has two components:
one for the mean and another for the log standard deviation. Each
component consists of a set of shared layers and a few independent
layers. The trunk component for the mean maps the location 𝑥 ∈ 𝐾2
within the output function domain 𝐾2 ⊂ R𝑑 to the vector of 𝐾 trainable
basis functions 𝜏𝜇(𝑥) ∈ R𝐾 . Similarly, the trunk component for the log
standard deviation maps the location 𝑥 ∈ 𝐾2 to the vector of trainable
basis functions 𝜏𝜎 (𝑥) ∈ R𝐾 .

To train the Prob-DeepONet parameters 𝜃 = {𝜃𝜇 , 𝜃𝜎}, we minimize
the negative log likelihood:

nll(𝜃)

= − 1
2𝑁

⎛

⎜

⎜

⎜

⎝

𝑁
∑

𝑖=1

⎛

⎜

⎜

⎜

⎝

(

𝐺(𝑖) − 𝜇𝜃𝜇 (𝑢̂
(𝑖))(𝑥(𝑖))

)2

𝜎𝜃𝜎 (𝑢̂
(𝑖))(𝑥(𝑖))2

+ 2 log 𝜎𝜃𝜎 (𝑢̂(𝑖))(𝑥(𝑖))
⎞

⎟

⎟

⎟

⎠

+𝑁 log 2𝜋
⎞

⎟

⎟

⎟

⎠

,

using the dataset of 𝑁 triplets:  =
{

𝑢̂(𝑖), 𝑥(𝑖), 𝐺(𝑖)}𝑁
𝑖=1.

Similar to B-DeepONet, Prob-DeepONet only provides a heuristic es-
timate of uncertainty through the standard deviation. As demonstrated
in our paper, constructing prediction intervals using Prob-DeepONet
requires heavy hyper-parameter optimization to achieve a high con-
fidence level (e.g., 95%) for a fixed test dataset. However, it is not
guaranteed that these heuristic prediction intervals, developed using
rob-DeepONet and the estimated standard deviation, are reliable for
ther test examples. Therefore, the first objective of this paper is to
nhance our previously proposed methods to transform these heuristic
rediction intervals into rigorous prediction intervals. To accomplish
his, we will employ split conformal prediction [49,53], which will be
escribed in the following section.

. Conformal prediction for deep operator network regression

In this section, we will first demonstrate how to use split conformal
rediction [49,53] to create reliable prediction intervals using the
euristic uncertainty estimates 𝜎(𝑢̂)(𝑥) obtained from a trained Prob-
eepONet and the trained 𝑀-ensemble generated by B-DeepONet.
ext, we will propose a novel Quantile-DeepONet extension that is
etter suited for developing a conformalized Quantile-DeepONet re-
ression algorithm.

.1. Split conformal prediction for DeepONet

Within this section, we employ split conformal prediction [49,
3], recognized as the predominant conformal prediction approach,
acilitating Prob- and B-DeepONet in delivering robust prediction in-
ervals. Formally, given any DeepONet test triplet (𝑢̂test, 𝑥test, 𝐺test), our
oal is to construct a marginal distribution-free prediction interval
(𝑢̂test, 𝑥test) that likely contains the operator target 𝐺test. That is, given
 miscoverage rate 𝛼 ∈ (0, 1), we aim to achieve:
{𝐺test ∈ (𝑢̂test, 𝑥test)} ≥ 1 − 𝛼 . (1)

4 
To achieve this goal, split conformal prediction (see Algorithm 1)
proceeds as follows.

Trained DeepONet model. First, we have access to trained B- or Prob-
DeepONet models. These models predict the target operator 𝐺test by
sing the mean output 𝜇(𝑢̂test)(𝑥test) and provide an estimate of the
ncertainty through the standard deviation output 𝜎(𝑢̂test)(𝑥test). It is
mportant to note that, as described in our previous works [21,27], the
tandard deviation 𝜎 produces a larger value when there is increased
ncertainty about the test input.
Score function. Then, given 𝜇 and 𝜎, we define a score function for

ny DeepONet data triplet (𝑢̂, 𝑥, 𝐺):

𝑠(𝑢̂, 𝑥, 𝐺) = |𝐺 − 𝜇(𝑢̂)(𝑥)|
𝜎(𝑢̂)(𝑥)

. (2)

Note that this score function acts as a correction factor [49]; for our
eepONet measure of uncertainty, i.e., 𝑠(𝑢̂, 𝑥, 𝐺)⋅𝜎(𝑢̂)(𝑥) = |𝐺 − 𝜇(𝑢̂)(𝑥)|.
Calibration quantile. Using a given calibration dataset of size 𝑛,

denoted as {𝑢̂(𝑖), 𝑥(𝑖), 𝐺(𝑖)}𝑛𝑖=1, we compute the calibration scores 𝑠1 =
𝑠(𝑢̂(1), 𝑥(1), 𝐺(1)),… , 𝑠𝑛 = 𝑠(𝑢̂(𝑛), 𝑥(𝑛), 𝐺(𝑛)). Next, we calculate 𝑞 as the
⌈(𝑛+1)(1−𝛼)⌉

𝑛 quantile of the calibration scores 𝑠1,… , 𝑠𝑛, where ⌈⋅⌉ denotes
he ceil function. It is important to note that the calibration dataset
ust satisfy the exchangeability property [49], which is true in most

DeepONet settings where the training, test, and calibration data are
ndependently and identically distributed (i.i.d.). Finally, it is worth
oting (see [57] for more details) that if the conformity scores 𝑠𝑖 are
lmost surely distinct, then the prediction interval is nearly perfectly
alibrated, that is [57],

P{𝐺test ∈ (𝑢̂test, 𝑥test)} ≤ 1 − 𝛼 + 1
1 + 𝑛

. (3)

Prediction intervals with coverage guarantees. We use the quantile 𝑞
o construct rigorous prediction intervals for any new DeepONet test
xample (𝑢̂test, 𝑥test):

(𝑢̂test, 𝑦test) = {𝐺 ∶ 𝑠(𝑢̂test, 𝑦test, 𝐺) ≤ 𝑞}

≡ {𝐺 ∶ |𝐺 − 𝜇(𝑢̂test)(𝑥test)| ≤ 𝑞 𝜎(𝑢̂test)(𝑥test)}. (4)

hese prediction intervals hold for any distribution of the data and are
igorous in the sense that they satisfy property (1), which was demon-
trated in the conformal coverage guarantee theorem 3.1 replicated
ext for completeness.

heorem 3.1. Conformal calibration coverage guarantee theo-
em [49,50]. Suppose {𝑋𝑖, 𝑌𝑖}𝑛𝑖=1 and (𝑋test, 𝑌test) are i.i.d. Then define 𝑞
s

̂ = inf
{

𝑞 ∶
|𝑖 ∶ 𝑠(𝑋𝑖, 𝑌𝑖) ≤ 𝑞|

𝑛
≥

⌈(𝑛 + 1)(1 − 𝛼)⌉
𝑛

}

and the resulting prediction sets as
(𝑋test) = {𝑦 ∶ 𝑠(𝑋test, 𝑦) ≤ 𝑞}.

Then,

P{𝑌test ∈ (𝑋test)} ≥ 1 − 𝛼 .

We conclude this section by noting that the above theorem holds
for any score function 𝑠.

3.2. Conformal quantile DeepONet regression

In the previous section, we demonstrated how to construct finite-
sample, distribution-free, and adaptive prediction intervals of the form
𝜇(𝑢̂)(𝑥) ± 𝑞 𝜎(𝑢̂)(𝑥) for operator targets 𝐺 using the standard deviation 𝜎
as a measure of uncertainty for DeepONets. We will show in Section 4
that this approach effectively quantifies uncertainty in DeepONets.
However, as stated in [49], there is no evidence to suggest that the

heuristic measure of uncertainty 𝜎 for B- and Prob-DeepONet is strongly



C. Moya et al.

a
a

𝑡

w

𝐹

i
p
𝑌

t

𝑡

f
s

q
c
t
i
w

h
𝑥

e

Physica D: Nonlinear Phenomena 471 (2025) 134418 
Algorithm 1: Split Conformal Prediction to Enhance B- and Prob-DeepONet
1 Input: Calibration data: {𝑢̂(𝑖), 𝑥(𝑖), 𝐺(𝑖)}𝑛𝑖=1 where 𝐺(𝑖) = 𝐺(𝑢̂(𝑖))(𝑥(𝑖)) is the exact output function values, miscoverage level: 𝛼 ∈ (0, 1), and

mean and standard deviation models: 𝜇 and 𝜎, obtained from the trained 𝑀-ensemble of B-DeepONet or a trained Prob-DeepONet.
2 Process:
3 Use 𝜇 and 𝜎 models to compute the calibration scores:
4

𝑠1 = 𝑠
(

𝑢̂(1), 𝑥(1), 𝐺(1)) ,… , 𝑠𝑛 = 𝑠
(

𝑢̂(𝑛), 𝑥(𝑛), 𝐺(𝑛)) ,

where
5

𝑠(𝑢̂, 𝑥, 𝐺) = |𝐺 − 𝜇(𝑢̂)(𝑥)|
𝜎(𝑢̂)(𝑥)

.

6 Compute 𝑞 as the ⌈(𝑛+1)(1−𝛼)⌉
𝑛 −th quantile of the calibration scores 𝑠1,… , 𝑠𝑛.

7 Return: Rigorous prediction intervals (i.e., that satisfy (1)) for any new test example (𝑢̂test, 𝑥test):
8

(𝑢̂test, 𝑥test) =
[

𝜇(𝑢test)(𝑥test) − 𝑞 𝜎(𝑢test)(𝑥test), 𝜇(𝑢test)(𝑥test) + 𝑞 𝜎(𝑢test)(𝑥test)
]

.

c
C
w

c
g

t

correlated with the quantiles of the operator target distribution. There-
fore, it is more natural to expect that a DeepONet method that estimates
the quantiles for the target operator 𝐺 distribution will enhance the
use of split conformal predictions. Let us now introduce this novel
Quantile-DeepONet.

Quantile-DeepONet. Our goal is to design a Quantile-DeepONet that
can approximate the conditional quantiles 𝑡𝛼∕2 and 𝑡1−𝛼∕2, given (i) a
miscoverage level 𝛼 ∈ (0, 1) (Note that the miscoverage level refers
to the probability that a prediction interval does not contain the true
value being estimated.), (ii) a discretized input function 𝑢̂ ∈ R𝑚, and
(iii) a location within the output function domain 𝑥 ∈ 𝐾2. To provide
a complete understanding, let us recall the mathematical definition of
 conditional quantile function. The 𝛾th conditional quantile is defined
s follows:

𝛾 (𝑥) = inf {𝑦 ∈ R ∶ 𝐹 (𝑦|𝑋 = 𝑥) ≥ 𝛾},

here

(𝑦|𝑋 = 𝑥) = P{𝑌 ≤ 𝑦|𝑋 = 𝑥},

s the conditional distribution of 𝑌 given 𝑋 = 𝑥. In other words, 𝑡𝛾
rovides us with information about the percentile of the distribution of
when conditioned on 𝑋 = 𝑥.
Similar to Prob-DeepONet, Quantile-DeepONet approximates quan-

iles using the following linear trainable representations:

𝛾 (𝑢̂)(𝑥) ≈ 𝑡𝜃𝛾 (𝑢̂)(𝑥) =
𝐾
∑

𝑘=1
𝑏𝛾𝑘(𝑢̂) ⋅ 𝜏

𝛾
𝑘 (𝑥),

or 𝛾 ∈ {𝛼∕2, 1 − 𝛼∕2}. Therefore, Quantile-DeepONet consists of two
ub-networks: the branch network and the trunk network.

The branch network comprises two components: one for the (𝛼∕2)th
uantile and another for the (1 − 𝛼∕2)th quantile. Each component
onsists of a set of shared trainable layers and a few independent
rainable layers. Additionally, each component maps the discretized
nput 𝑢̂ ∈ R𝑚 to a vector of 𝐾 trainable coefficients 𝑏𝛾 (𝑢̂) ∈ R𝐾 ,
here 𝛾 ∈ {𝛼∕2, 1 − 𝛼∕2}. Similarly, the trunk network consists of two

components, one for each quantile. These two trunk components also
ave shared and independent trainable layers. They map the location
∈ 𝐾2 to a vector of 𝐾 basis functions 𝜏𝛾 (𝑥) ∈ R𝑚, where 𝛾 ∈

{𝛼∕2, 1 − 𝛼∕2}.
We can train the Quantile-DeepONet parameters 𝜃 = {𝜃𝛼∕2, 𝜃1−𝛼∕2}

by minimizing the following loss function for 𝛾 ∈ {𝛼∕2, 1 − 𝛼∕2}:

(𝜃) = 1
𝑁

𝑁
∑

𝑖=1
𝜌𝛾

(

𝐺(𝑖), 𝑡𝜃𝛾
(

𝑢̂(𝑖)
) (

𝑥(𝑖)
)

)

,

on the dataset of 𝑁 triplets:  =
{

𝑢̂(𝑖), 𝑥(𝑖), 𝐺(𝑖)}𝑁
𝑖=1. In the above

xpression, the loss function 𝜌 refers to the pinball loss [57,63,64]:
𝛾

5 
Algorithm 2: Split Conformal Quantile DeepONet Regression
1 Input: Calibration data: {𝑢̂(𝑖), 𝑥(𝑖), 𝐺(𝑖)}𝑛𝑖=1, miscoverage level:

𝛼 ∈ (0, 1), and trained quantile-DeepONet outputs 𝑡𝛼∕2 and
𝑡1−𝛼∕2.

2 Process:
3 Use the trained quantile-DeepONet to compute the

calibration scores:
4

𝑠1 = 𝑠
(

𝑢̂(1), 𝑥(1), 𝐺(1)) ,… , 𝑠𝑛 = 𝑠
(

𝑢̂(𝑛), 𝑥(𝑛), 𝐺(𝑛)) ,

where
5

𝑠(𝑢, 𝑥, 𝐺) = max
{

𝑡𝜃∗𝛼∕2 (𝑢)(𝑥) − 𝐺 , 𝐺 − 𝑡𝜃∗1−𝛼∕2 (𝑢)(𝑥)
}

.

6 Compute 𝑞 as the ⌈(𝑛+1)(1−𝛼)⌉
𝑛 quantile of the calibration

scores 𝑠1,… , 𝑠𝑛.
7 Return: Rigorous prediction intervals for any new test example

(𝑢̂test, 𝑥test):
8

(𝑢̂test, 𝑥test) =
[

𝑡𝜃∗𝛼∕2 (𝑢̂test)(𝑥test) − 𝑞 , 𝑡𝜃∗1−𝛼∕2 (𝑢̂test)(𝑥test) + 𝑞
]

.

𝜌𝛾 (𝑦, 𝑦̂) =
{

𝛾(𝑦 − 𝑦̂) if 𝑦 − 𝑦̂ > 0,
(1 − 𝛾)(𝑦̂ − 𝑦) otherwise.

Once trained, a Quantile-DeepONet can provide an estimate of the
prediction interval for any new test sample:

𝐶̂(𝑢̂test, 𝑥test) =
[

𝑡𝜃∗𝛼∕2
(

𝑢̂test
) (

𝑥test
)

, 𝑡𝜃∗1−𝛼∕2
(

𝑢̂test
) (

𝑥test
)

]

,

where 𝜃∗𝛼∕2 and 𝜃∗1−𝛼∕2 denote the optimizers of the corresponding
losses. However, the estimate provided above fails to meet the coverage
probability requirement stated in (1). To satisfy this requirement, we
need to incorporate conformal prediction. It is worth noting that the
ombination of quantile and conformal prediction is referred to as
onformal Quantile Regression (CQR) in the literature [57], and we
ill now describe its application to Quantile-DeepONets.
Conformal Quantile-DeepONet Regression. The details of the split

onformal Quantile-DeepONet regression procedure are provided in Al-
orithm 2. This procedure begins by defining a suitable score function.
Score function. Given the trained Quantile-DeepONet, we compute

he score for any DeepONet data triplet (𝑢̂, 𝑥, 𝐺) as follows:
{ }
𝑠(𝑢, 𝑥, 𝐺) = max 𝑡𝜃∗𝛼∕2 (𝑢)(𝑥) − 𝐺 , 𝐺 − 𝑡𝜃∗1−𝛼∕2 (𝑢)(𝑥) .



C. Moya et al.

Q

d

t
a
p
t
i
m

a
s
a
T
i
o

O
w
b
c
t
s

Physica D: Nonlinear Phenomena 471 (2025) 134418 
Table 1
Summary of the number of training (𝑁) and calibration (𝑛) data samples for each experiment. Each sample is a triplet consisting of

(

𝑢̂(𝑖) , 𝑥(𝑖) , 𝐺(𝑖)).

Experiment # 𝑁 training # 𝑛 calibration

The nonlinear pendulum equation 5000 500
The diffusion-reaction system 10 000 1000
The viscous Burgers’ equation 30 000 3000
Table 2
Summary of the width and depth of the trunk and branch feed-forward neural networks used in each experiment. For the depth of Prob- and Quantile-DeepONets, we use the
notation shared(independent) layers.

Experiment Trunk depth Trunk width Branch depth Branch width

The nonlinear pendulum 3(1) 100 3(1) 100
The diffusion-reaction 4(1) 100 4(1) 100
The viscous Burgers’ 5(1) 128 5(1) 128
w
d

o

u

D
(
j
f
t
c
t

Note that if the operator target 𝐺 satisfies 𝐺 < 𝑡𝜃∗𝛼∕2 (𝑢)(𝑥) or 𝐺 >
𝑡𝜃∗1−𝛼∕2 (𝑢)(𝑥), then the score represents the amount of error incurred by

uantile-DeepONet.
Calibration quantile. As before, using a given calibration i.i.d dataset

of size 𝑛, denoted as {𝑢̂(𝑖), 𝑥(𝑖), 𝐺(𝑖)}𝑁𝑖=1, where 𝐺(𝑖) = 𝐺(𝑢̂(𝑖))(𝑥(𝑖)), we com-
pute the calibration scores 𝑠1 = 𝑠(𝑢̂(1), 𝑥(1), 𝐺(1)),… , 𝑠𝑛 = 𝑠(𝑢̂(𝑛), 𝑥(𝑛), 𝐺(𝑛)).
Then, we calculate 𝑞 as the ⌈(𝑛+1)(1−𝛼)⌉

𝑛 quantile of the calibration scores
𝑠1,… , 𝑠𝑛.

Prediction intervals with coverage guarantees. We use the quantile 𝑞
to construct rigorous prediction intervals for any new DeepONet test
example (𝑢̂test, 𝑥test):

(𝑢̂test, 𝑥test) =
[

𝑡𝜃∗𝛼∕2 (𝑢̂test)(𝑥test) − 𝑞 , 𝑡𝜃∗1−𝛼∕2 (𝑢̂test)(𝑥test) + 𝑞
]

. (5)

These prediction intervals are adaptive, distribution-free, and satisfy
the coverage probability property (1). The validity of this property was
emonstrated in [57] by extending theorem 3.1 to the case of CQR.

4. Numerical experiments

In this section, we assess the ability of conformalized-DeepONets
(conformal prediction combined with B-DeepONet, Prob-DeepONet,
or Quantile-DeepONet) to generate prediction intervals with coverage
guarantees. We illustrate this through three experiments: (i) the nonlin-
ear pendulum (Section 4.1), (ii) the diffusion-reaction system 4.2, and
(iii) the viscous Burgers’ equation 4.3.

Datasets. To train our DeepONet models, we used a dataset con-
sisting of 𝑁 samples, each in the form of a triplet

(

𝑢̂(𝑖), 𝑥(𝑖), 𝐺(𝑖)). The
specific size of the training dataset, 𝑁 , for each experiment is provided
in Table 1. For the calibration dataset, we used 𝑛 = 𝑁

10 samples, with
details outlined in Table 1. Finally, for testing purposes, we evaluated
all our DeepONet models using 100 trajectories per experiment. Each
rajectory included the target operator values 𝐺(𝑢)(𝑋test) evaluated on
 mesh 𝑋test ⊂ 𝐾2 composed of 100 uniformly distributed location
oints within the output function domain 𝐾2. It should be noted that
he testing mesh size is much more dense than the training mesh,
.e., our experiments also demonstrate the extrapolation of the proposed
ethods.
Neural Networks. We used the feed-forward neural network (FNN)

rchitecture to build the branch and trunk sub-networks. The corre-
ponding width and depth for each experiment, including the shared
nd independent layers for Prob- and Quantile-DeepONet, are listed in
able 2. We used the ReLU function as the activation function for each

nput and hidden layer. Finally, for B-DeepONet, we used an ensemble
f size 𝑀 = 200.

Note that the architectures of both quantile and probabilistic Deep-
Nets are the same, closely following the vanilla DeepONet structure
ith one key difference in the final layer. In this layer, the trunk and
ranch are divided into two independent single layers, allowing for the
omputation of two separate dot products—one for each quantile in
he quantile DeepONet, or one for the mean and one for the log of the
tandard deviation in the probabilistic DeepONet.
6 
Optimizer and Sampler. For Prob- and Quantile-DeepONet, we
used the Adam optimizer [65] with default hyperparameters and a
learning rate 𝜂 = 10−3. We adjusted the learning rate using the reduced
on plateau scheduler. For B-DeepONet, we used the stochastic gra-
dient replica-exchange sampling algorithm [21,66,67] with standard
hyperparameters.

Baselines. We compared the proposed Conformalized-DeepONets
(which combine conformal prediction with B-DeepONet,
Prob-DeepONet, or Quantile-DeepONet) against the following base-
lines: B-DeepONet [21], Prob-DeepONet [27], and Quantile-DeepONet
(Section 3.2). Specifically, for each conformalized and baseline model,

e calculated the coverage over the test dataset. This coverage is
etermined by

𝐶𝑗 =
1

𝑛eval

𝑛eval
∑

𝑖=1
1
{

𝐺(𝑖,𝑗) ∈ 𝑗
(

𝑢̂(𝑗), 𝑥(𝑖,𝑗))} , for 𝑗 = 1,… , 𝑛traj.

In other words, we calculate the coverage of 𝑛traj test trajectories and
each 𝐶𝑗 is the ratio of location points whose reference solutions are in
the established prediction interval. These are evaluated at 𝑛eval = 100
uniformly spaced points within the output function domain.

4.1. Experiment: The nonlinear pendulum

In this experiment, we consider the nonlinear pendulum subject to
external forcing, represented by:
𝑑 𝑠1
𝑑 𝑡 = 𝑠2,

𝑑 𝑠2
𝑑 𝑡 = −𝑘 sin 𝑠1 + 𝑢(𝑡),

with the initial condition (𝑠1(0), 𝑠2(0))⊤ = (0, 0)⊤ and time domain [0, 1.0]
(s). In the above, (𝑠1(𝑡), 𝑠2(𝑡))⊤ is the state, 𝑘 = 1.0 is a constant
determined by the acceleration due to gravity and the length of the
pendulum, and 𝑢(𝑡) is the time-dependent external forcing with time
domain [0, 1] (s).

Our aim is to approximate the solution operator 𝐺 ∶ 𝑢(𝑡) ↦ 𝑠1(𝑡),
which maps the external forcing input to the state 𝑠1. We draw samples
f the external forcing inputs for training, calibration, and testing

from the mean-zero Gaussian Random Field (GRF) 𝑢 ∼ (0, 𝑘𝓁(𝑡1, 𝑡2)).
This GRF has a radial-basis function covariance kernel 𝑘𝓁(𝑡1, 𝑡2) with
a length-scale of 𝓁 = 0.2. Finally, we discretize each sampled input 𝑢
sing 𝑚 = 100 sensors.
Checking Coverage. We evaluated the ability of all conformalized-

eepONet models and baseline models to generate prediction intervals
with misscoverage rate 𝛼 = 0.05) with coverage guarantees for tra-
ectories in the test dataset. Fig. 2 illustrates the prediction intervals
or a test trajectory randomly selected from the test dataset. Fur-
hermore, Table 3 presents the average coverage achieved by both
onformalized-DeepONets and baseline models for all trajectories in the
est dataset.

Fig. 2 and Table 3 offer significant insights. Firstly, the confor-
malized DeepONets (Bayesian, Probabilistic and Quantile) deliver the



C. Moya et al.

a

M
D
t
f
h
t
r
t
a

e
t
n
t
a
d

t
a

Physica D: Nonlinear Phenomena 471 (2025) 134418 
Fig. 2. Prediction intervals for a random test trajectory of the nonlinear pendulum experiment given a miscoverage rate 𝛼 = 0.05. (a) Prediction intervals for the Conformalized
Prob-DeepONet and the baseline Prob-DeepONet. (b) Prediction intervals for the Conformalized Quantile-DeepONet and the baseline Quantile-DeepONet. (c) Prediction intervals
for the Conformalized B-DeepONet and the baseline B-DeepONet. Please refer to Table 3 for the summary of the average coverage rate for all testing trajectories with different
pproaches.
Table 3
The average coverage percentage for the prediction intervals (with a miscoverage rate of 𝛼 = 0.05) calculated based on the
100 test trajectories in the nonlinear pendulum experiment.
DeepONet model Average coverage % (𝛼 = 0.05)

Conformalized Prob-DeepONet 94.69%
Conformalized Quantile-DeepONet 95.86%
Conformalized B-DeepONet 96.41%

Prob-DeepONet 3.80%
Quantile-DeepONet 55.31%
B-DeepONet 50.59%
l
T
a
D
w
l
i
a
n
l

S
t
a

e
𝑅
𝑛
t

desired coverage on average, with a miscoverage rate of 𝛼 = 0.05.
oreover, the Quantile-DeepONet significantly outperforms the Prob-
eepONet and B-DeepONet. Lastly, the Probabilistic DeepONet displays

he poorest average coverage. These findings support the conclusions
rom our previous paper, which highlighted the necessity of extensive
yperparameter optimization to improve the quality of prediction in-
ervals for Prob-DeepONet and B-DeepONet. However, the improved
esults from conformalized-DeepONet come with the added computa-
ional cost compared to the original DeepONets. This extra cost mainly
rises from the 𝑛 forward passes required to compute the scores 𝑠.

Finally, Fig. 3 shows the distribution of coverages (with a miscov-
rage rate of 𝛼 = 0.05) for all prediction intervals obtained by applying
he conformalized Quantile-DeepONet to all 100 test trajectories of the
onlinear pendulum example. As anticipated, the coverages concen-
rate around 1 − 𝛼, that is, with 95% coverage. Next, we present two
blation studies showing the adaptivity and effect of the calibration
ataset size.
Ablation Study I: Adaptivity of Prediction Intervals. We tested

he proposed conformalized Prob-DeepONet for its ability to provide

daptive prediction intervals — that is, prediction intervals of varying f

7 
engths for each 𝑥 ∈ 𝐾2, while still ensuring coverage guarantees.
he adaptive coverage will reduce the over-confidence issue of many
lgorithms. To accomplish this, we applied the conformalized Prob-
eepONet to all 100 test trajectories of the pendulum experiment,
ith the goal of analyzing the distribution of the prediction intervals’

engths. Fig. 4 illustrates the distribution of the lengths of prediction
ntervals. This distribution demonstrates that the prediction intervals
re adaptive, meaning their length varies for each 𝑥 ∈ 𝐾2. If this was
ot the situation, the distribution would be focused around a specific
ength. Clearly, our experiment indicates that this is not the scenario.
Ablation Study II: Testing the Effect of the Calibration Dataset

ize 𝑛. We tested the effect of varying the calibration dataset size 𝑛 on
he distribution of coverages for the nonlinear pendulum example and
 miscoverage rate of 𝛼 = 0.05.

To this end, we varied 𝑛 over the set {500, 1000, 5000, 10000}. For
ach 𝑛, we computed the distribution of coverages. This was done for

rounds (𝑅 = 200), where we generated a calibration dataset of size
and a validation dataset of size 𝑛val. Each dataset contains DeepONet

riplets of the form (𝑢̂, 𝑥, 𝐺). We then calculated the coverages as

ollows.



C. Moya et al.

u
p

t
t
w
r

4

r

d

T
p
a

Physica D: Nonlinear Phenomena 471 (2025) 134418 
Fig. 3. The distribution of prediction intervals’ coverages (in percentages), obtained by
sing the conformalized Quantile-DeepONet on the 100 test trajectories of the nonlinear
endulum experiment, with a specified miscoverage rate of 𝛼 = 0.05.

Fig. 4. The distribution of the lengths of the prediction intervals (given a miscoverage
rate 𝛼 = 0.05) predicted using the proposed conformalized Prob-DeepONet for the 100
test trajectories of the nonlinear pendulum experiment.

𝐶𝑘 = 1
𝑛val

𝑛val
∑

𝑖=1
1
{

𝐺(𝑖,𝑘) ∈ 𝑘
(

𝑢̂(𝑖,𝑘), 𝑥(𝑖,𝑘))} , for 𝑘 = 1,… , 𝑅.

Finally, we obtained the distribution of the obtained coverages {𝐶𝑘}𝑅𝑘=1,
which we plot for each 𝑛.

Note that to prevent the generation of 𝑅 distinct datasets of size
𝑛 + 𝑛val, we used the approach proposed in [49]. This method creates
just one dataset of size 𝑛 + 𝑛val for all 𝑅 rounds. Then, in each round,
we shuffled this dataset and used the initial 𝑛 samples for calibration
and the remaining 𝑛val samples for validation.

Fig. 5 illustrates the obtained distribution of coverages for 𝑛 ∈
{500, 1000, 5000, 10000}. Observe that for 𝑛 > 500, the distribution, as
expected, centers around 95% (𝛼 = 0.05). Notably, for 𝑛 = 1000, we
achieve a satisfactory distribution, and the gain from increasing the
calibration dataset size is minimal.

Finally, for 𝑛 = 500, the distribution peaks at a value larger
than 95%. This could be due to the small number of calibration
samples, which may not allow for a proper characterization of the cov-
erage. However, even in this extreme case, conformalized-DeepONet
still produces satisfactory prediction intervals around 1 − 𝛼.
8 
Fig. 5. The empirical distribution of coverages 𝐶𝑘 for different values of the calibration
dataset size 𝑛 ∈ {500, 1000, 5000, 10000}. We observe that for 𝑛 > 500, the distribution,
as expected, centers around 95% (𝛼 = 0.05). Notably, for 𝑛 = 1000 and this nonlinear
pendulum dataset, we achieve a satisfactory distribution, and the gain from increasing
𝑛 is minimal.

Ablation Study III: Verifying the Effect of the Miscoverage
Rate 𝛼. To conclude this example, we examined the effect of varying
he miscoverage rate 𝛼 over the set 0.05, 0.1, 0.2. As shown in Fig. 6,
he width of the resulting prediction intervals decreases as 𝛼 increases,
hile maintaining approximate coverage levels of 95%, 90%, and 80%,

espectively, as expected.

.2. Experiment: The diffusion-reaction system

In the second experiment, we examine the following diffusion-
eaction system with a source term, 𝑢(𝑥), as described below:
𝜕 𝑠
𝜕 𝑡 = 𝐷 𝜕2𝑠

𝜕 𝑥2 + 𝑘𝑠2 + 𝑢(𝑥), 𝑥 ∈ [0, 1], 𝑡 ∈ [0, 1],

with zero boundary/initial conditions. In the above, 𝐷 = 0.01 is the
iffusion coefficient, and 𝑘 = 0.01 is the reaction rate.

Our goal is to approximate the solution operator 𝐺 ∶ 𝑢(𝑥) ↦ 𝑠(𝑥, 1.0),
that is, the mapping from the source term to the solution at the terminal
time. As in the nonlinear pendulum experiment, we sample the input
function (the source term 𝑢(𝑥)) from the non-zero Gaussian Random
Field 𝑢 ∼ (0, 𝑘𝓁(𝑥1, 𝑥2)) with a radial basis function kernel and a length-
scale of 𝓁 = 0.2. Finally, we discretize the sampled source terms using
𝑚 = 100 sensors.

Checking Coverage. We assessed the ability of all conformalized
and baseline DeepONet models to generate appropriate prediction in-
tervals for a miscoverage rate of 𝛼 = 0.05. Fig. 7 displays the prediction
intervals predicted by the proposed conformalized-DeepONet and base-
line models for a randomly selected trajectory from the test dataset.
Furthermore, Table 4 presents the average coverage of the prediction
intervals predicted by both the conformalized and baseline DeepONet
models for all 𝑛traj = 100 test trajectories of the diffusion-reaction
system.

Fig. 7 shows that the prediction intervals predicted by the
conformalized-DeepONet appear to be adequate. Table 4 confirms this,
indicating that the average coverage for the conformalized-DeepONets
is as expected (≈95%), considering a miscoverage rate of 𝛼 = 0.05.

he baseline Quantile-DeepONet also has a good coverage level com-
ared to the Prob-DeepONet and B-DeepONet. This superior cover-
ge might enable the conformalized Quantile-DeepONet to perform

slightly better than the conformalized Prob-DeepONet and confor-
malized B-DeepONet, which must compensate for its baseline’s poor
coverage.



C. Moya et al. Physica D: Nonlinear Phenomena 471 (2025) 134418 
Fig. 6. Prediction intervals for the nonlinear pendulum with miscoverage rates of 𝛼 = 5%, 10%, and 20%, using Conformalized Probabilistic-, Quantile-, and B-DeepONets.
Table 4
The average coverage percentage for the prediction intervals (with a miscoverage rate of 𝛼 = 0.05) calculated based on the
100 test trajectories in the diffusion-reaction experiment.
DeepONet model Average coverage % (𝛼 = 0.05)

Conformalized Prob-DeepONet 96.26%
Conformalized Quantile-DeepONet 95.64%
Conformalized B-DeepONet 94.18%

Prob-DeepONet 8.99%
Quantile-DeepONet 83.09%
B-DeepONet 60.67%
The Two-Dimensional Diffusion-Reaction System. In the previ-
ous analysis, we computed the solution operator for the terminal time
𝑡 = 1.0. Here, we extend this analysis to the two-dimensional case by
approximating the solution operator for varying values of 𝑡 ∈ [0, 1]. In
this scenario, the scores are no longer computed at different 𝑥 values
alone but at different (𝑥, 𝑡) tuples. To conformalize our DeepONets, we
select a grid of 100 equidistributed 𝑥 points and 120 equidistributed
𝑡 values within [0, 1], alongside 300 corresponding solutions of the
two-dimensional diffusion-reaction system.

Fig. 8 presents the conformalized quantiles for a randomly selected
test solution. Additionally, Table 5 shows the corresponding coverage
values. The results demonstrate that the conformalized DeepONets
successfully achieved the desired coverage for the two-dimensional
problem, whereas the non-conformalized DeepONet failed to properly
quantify the uncertainty in this case.

We conclude the two-dimensional example by assessing the ro-
bustness of conformal prediction as the size of the calibration dataset
increases. As shown in Fig. 9, and consistent with theoretical expecta-
tions, when the calibration dataset is small, the approximate coverage
tends to be loose. However, as the size of the calibration dataset grows,

the coverage converges more closely to the desired target.

9 
4.3. Experiment: The viscous Burgers’ equation

In this section, we explore a common example found in most
operator learning literature: the viscous Burgers’ equation:
𝜕 𝑢𝑠
𝜕 𝑡 + 1

2
𝜕(𝑢2𝑠 )
𝜕 𝑥 = 𝛼

𝜕2𝑢𝑠
𝜕 𝑥2 , 𝑥 ∈ [0, 2𝜋], 𝑡 ∈ [0, 0.3]

𝑢𝑠(𝑥, 0) = 𝑢0𝑠 (𝑥),

𝑢𝑠(0, 𝑡) = 𝑢𝑠(2𝜋 , 𝑡),
where 𝑢0𝑠 (𝑥) is the initial condition that depends on the parameter 𝑠. In
the above, the viscosity is set to 𝛼 = 0.05.

Our objective is to estimate the solution operator 𝐺 ∶ 𝑢0𝑠 (𝑥) ↦

𝑢𝑠(𝑥, 0.3), which is the mapping from the initial condition to the solution
at the terminal time. We generated initial conditions using a sum of
two Gaussian distributions with a uniformly randomized weight from
[0, 5]. The means and standard deviations of the two distributions were
sampled uniformly from [0, 2𝜋] and [0.1, 1], respectively.

Checking Coverage. We evaluated the proposed conformalized-
DeepONet models’ capacity to produce rigorous prediction intervals.
These intervals have a specified miscoverage rate of 𝛼 = 0.05 for
test trajectories generated from the viscous Burgers’ model. We also
compared these proposed models with the baseline models. Fig. 10



C. Moya et al.

Fig. 7. Prediction intervals for a random test trajectory of the diffusion-reaction experiment given a miscoverage rate 𝛼 = 0.05. (a) Prediction intervals for the Conformalized
Prob-DeepONet and the baseline Prob-DeepONet. (b) Prediction intervals for the Conformalized Quantile-DeepONet and the baseline Quantile-DeepONet. (c) Prediction intervals
for the Conformalized B-DeepONet and the baseline B-DeepONet. The average coverage rate for all samples for all approaches are presented in Table 4..

Fig. 8. Prediction interval (conformalized lower and upper quantiles) for a randomly selected test solution of the two-dimensional diffusion-reaction system, with a miscoverage
rate of 𝛼 = 0.05.

Physica D: Nonlinear Phenomena 471 (2025) 134418 

10 



C. Moya et al.

P
a

p
T
t
t
e
I
r

t
b
j
a
t
c

Physica D: Nonlinear Phenomena 471 (2025) 134418 
Table 5
The average coverage (%) of prediction intervals (with a miscoverage rate of 𝛼 = 0.05) calculated using 100 test solutions of
the two-dimensional diffusion-reaction system.
DeepONet model Average coverage % (𝛼 = 0.05)

Conformalized Prob-DeepONet 95.12%
Conformalized Quantile-DeepONet 95.92%
Conformalized B-DeepONet 96.62%

Prob-DeepONet 1.52%
Quantile-DeepONet 82.13%
B-DeepONet 69.73%
Fig. 9. Coverage (%) vs. calibration dataset size for the two-dimensional Diffusion-Reaction example using Conformalized Prob-DeepONet and Conformalized Quantile-DeepONet.
Fig. 10. Prediction intervals for a random test trajectory of the viscous Burgers’ experiment given a miscoverage rate 𝛼 = 0.05. (a) Prediction intervals for the Conformalized
rob-DeepONet and the baseline Prob-DeepONet. (b) Prediction intervals for the Conformalized Quantile-DeepONet and the baseline Quantile-DeepONet. The average coverage for
ll testing trajectories and approaches are summarized and presented in Table 6.
p
D
t
m

5

t
i
d
n
r

resents a comparison between the conformalized and baseline models.
his comparison uses the prediction interval for a randomly chosen
est trajectory from the viscous Burgers’ example. The figure indicates
hat both the conformalized Prob-DeepONet and Quantile-DeepONet
ffectively capture the reference solution within the prediction interval.
n contrast, the baseline models do not capture several portions of the
eference solution.

Moreover, Table 6 shows the average coverage of prediction in-
ervals (with a targeted coverage rate of 𝛼 = 0.05) generated from
oth conformalized and baseline models for all 𝑛traj = 100 test tra-
ectories produced using the viscous Burgers’ model. The results once
gain demonstrate that both the conformalized Prob-DeepONet and
he conformalized Quantile-DeepONet provide (on average) the desired
overage guarantee. In contrast, both baseline models generally offer
 f

11 
oor coverage guarantees. It is noteworthy that the conformalized Prob-
eepONet still produces satisfactory coverage results, even though

hese are based on the inferior results from the baseline Prob-DeepONet
odel.

. Discussion

On Our Results. Our results indicate that split conformal predic-
ion [49,51,57] is an easy-to-use methodology that offers prediction
ntervals with coverage guarantees. We consider it easy-to-use as it
oes not require any distributional assumptions and only needs a finite
umber of DeepONet samples. This allowed us to build an adaptive,
eliable, and efficient Uncertainty Quantification (UQ) and regression
ramework for Deep Operator Networks.



C. Moya et al.

(
a
w
i
B
w
c

p
t
j

𝑦

w
s

m
g

i
j
o
g
D
r
m

u
s
i
s
s
i

Physica D: Nonlinear Phenomena 471 (2025) 134418 
Table 6
The average coverage percentage for the prediction intervals (with a miscoverage rate of 𝛼 = 0.05) calculated based on the
100 test trajectories in the viscous Burgers’ experiment.
DeepONet model Average coverage % (𝛼 = 0.05)

Conformalized Prob-DeepONet 94.88%
Conformalized Quantile-DeepONet 95.96%

Prob-DeepONet 7.84%
Quantile-DeepONet 72.91%
Table 7
The average coverage percentage for the prediction intervals (with a given miscoverage rate of 𝛼 = 0.05) calculated based on
the 100 high-fidelity test trajectories of the 1D jump function experiment.
DeepONet model Average coverage % (𝛼 = 0.05)

Multi-fidelity Conformalized Prob-DeepONet 97.02%
Multi-fidelity Prob-DeepONet 82.07%
t
t

a

Our results also indicate that split conformal prediction is model ag-
nostic. Note that we applied it on top of two UQ DeepONet frameworks
B-DeepONet and Prob-DeepONet), proposed in our previous works,
nd a new UQ framework (Quantile-DeepONet) proposed here. Hence,
e expect split conformal prediction to be compatible with many exist-

ng DeepONet extensions, such as Multi-fidelity DeepONet [12,68,69],
elNet [25], Fed-DeepONet [70], or D2NO [22]. To demonstrate this,
e will present a simple experiment that highlights the use of split

onformal prediction with Multi-fidelity DeepONets.
Conformal Prediction and Multi-Fidelity DeepONet. In this ex-

eriment, we used a multi-fidelity conformalized Prob-DeepONet model
o approximate the high-fidelity solution operator for the given 1D
ump function:

𝑦𝐿(𝑢)(𝑥) =
{

0.5(6𝑥 − 2)2 sin(𝑢) + 10(𝑥 − 0.5) − 5 𝑥 ≤ 0.5
0.5(6𝑥 − 2)2 sin(𝑢) + 10(𝑥 − 0.5) − 2 𝑥 > 0.5

𝐻 (𝑢)(𝑥) = 2𝑦𝐿(𝑢)(𝑥) − 20𝑥 + 20
𝑢(𝑥) = 𝑎𝑥 − 4

(6)

here 𝑥 ∈ [0, 1] and a ∈ [10, 14]. In the above, 𝑦𝐿 is the low-fidelity
olution, 𝑦𝐻 the high-fidelity solution, and 𝑢 the input.

We built our Multi-fidelity Prob-DeepONet baseline model as fol-
lows. Initially, we used a trained classical DeepONet to approximate
the low-fidelity solution operator 𝐺 ∶ 𝑢(𝑥) ↦ 𝑦̂𝐿𝐹 (𝑢)(𝑥). Next, we
trained a Prob-DeepONet to approximate the difference between the
high-fidelity and low-fidelity solution operators (𝑦𝐻 𝐹 − 𝑦𝐿𝐹 ) ∣ 𝑋 =
(𝑢, 𝑥) ∼  (𝜇(𝑢)(𝑥), 𝜎(𝑢)(𝑥)). Finally, we recovered the high-fidelity solu-
tion operator using the probabilistic model  (𝜇(𝑢)(𝑥) + 𝑦̂(𝑢)(𝑥), 𝜎(𝑢)(𝑥)).

We trained the baseline model using a dataset of 𝑁𝐿𝐹 = 3800
low-fidelity DeepONet triplets and 𝑁𝐻 𝐹 = 760 high-fidelity DeepONet
triplets. For calibration, we used the half the of number of high-fidelity
data samples (𝑛 = 𝑁𝐻 𝐹

2 = 380).
Checking Coverage. We tested the proposed Multi-Fidelity Confor-

alized Prob-DeepONet to create prediction intervals with coverage
uarantees for a target miscoverage rate of 𝛼 = 0.05. Fig. 11 shows the

prediction intervals for a randomly chosen high-fidelity test trajectory.
The Multi-fidelity Conformalized model provides a suitable prediction
nterval, showing increased uncertainty at the high-fidelity solution’s
umps and turns. Additionally, Table 7 displays the average coverage
f prediction intervals (targeting a miscoverage rate of 𝛼 = 0.05),
enerated by both the Multi-fidelity conformalized and baseline Prob-
eepONet models for all 𝑛traj = 100 high-fidelity test trajectories. The

esults suggest satisfactory coverage, which can be enhanced by using
ore calibration examples.
On Our Future Work. The findings discussed in this paper are

ndoubtedly promising and applicable in scenarios where a reliable
urrogate model is required. Thus, in our future work, we plan to
nvestigate the application of conformalized-DeepONets in real-world
ettings. This includes power systems [27], rib-optimization in fluid
ystems [36], PDE-based topology optimization [12], and forecast-

ng extreme events. Additionally, we plan to investigate the use of

12 
Fig. 11. Prediction intervals predicted by the Multi-fidelity conformalized Prob-
DeepONet and the corresponding baseline model for a random high-fidelity test
rajectory of the 1D jump function, given a miscoverage rate of 𝛼 = 0.05. We summarize
he average coverage rate for all approaches in Table 7.

conformal prediction in DeepONet settings where the properties of
exchangeability and independent and identically distributed (i.i.d.) do
not apply. For instance, in DeepONet extrapolation [20], DeepONet for
non-autonomous systems [19], or Federated DeepONet [70].

6. Conclusion

In the paper, we presented methods to apply split conformal pre-
diction for providing prediction intervals for Deep Operator Network
(DeepONet) prediction. These intervals come with coverage guarantees
nd do not require distributional assumptions. Specifically, we used

split conformal prediction to enhance our previously proposed Prob-
abilistic and Bayesian DeepONets, enabling them to predict rigorous
prediction intervals at a predetermined miscoverage rate. Moreover, we
designed a novel extension of DeepONet, known as Quantile-DeepONet,
which estimated conditional quantiles for DeepONet predictions and
provided a more natural setting for applying conformal prediction.
By combining split conformal prediction with Quantile-DeepONet, we
successfully developed an effective and distribution-free methodology
for constructing prediction intervals with guaranteed coverage.

CRediT authorship contribution statement

Christian Moya: Writing – review & editing, Writing – original
draft, Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization. Amirhossein Mollaali: Writing –



C. Moya et al.

Z
d
P
D
e
v
I
C
–
s
a

D
w

i
r
f

D

t
G
F
D

t

A

U
E
N
e
t
D
m
R
M
8
D

D

R

Physica D: Nonlinear Phenomena 471 (2025) 134418 
review & editing, Writing – original draft, Visualization, Validation,
Methodology, Investigation, Formal analysis, Conceptualization.
echeng Zhang: Writing – review & editing, Writing – original
raft, Visualization, Validation, Supervision, Software, Resources,
roject administration, Methodology, Investigation, Formal analysis,
ata curation, Conceptualization. Lu Lu: Writing – review &
diting, Writing – original draft, Visualization, Validation, Super-
ision, Software, Resources, Project administration, Methodology,
nvestigation, Funding acquisition, Formal analysis, Data curation,
onceptualization. Guang Lin: Writing – review & editing, Writing
 original draft, Visualization, Validation, Supervision, Software, Re-
ources, Project administration, Methodology, Investigation, Funding
cquisition, Formal analysis, Data curation, Conceptualization.

eclaration of Generative AI and AI-assisted technologies in the
riting process

During the preparation of this work, the authors used ChatGPT
n order to check grammar issues. After using ChatGPT, the authors
eviewed and edited the content as needed and took full responsibility
or the content of the published article.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
uang Lin reports financial support was provided by National Sleep
oundation. Lu Lu, Guang Lin reports financial support was provided by
epartment of Energy. If there are other authors, they declare that they

have no known competing financial interests or personal relationships
hat could have appeared to influence the work reported in this paper.

cknowledgments

Z. Zhang acknowledges the support of the Department of Energy,
SA (DE-SC0025440). L. Lu was supported by the U.S. Department of
nergy Office of Advanced Scientific Computing Research under Grants
o. DE-SC0025592 and No. DE-SC0025593, and the U.S. National Sci-
nce Foundation under Grant No. DMS-2347833. G. Lin acknowledges
he support of the National Science Foundation, USA (DMS-2053746,
MS-2134209, ECCS-2328241, and OAC-2311848), and U.S. Depart-
ent of Energy (DOE) Office of Science Advanced Scientific Computing
esearch program DE-SC0023161, the Uncertainty Quantification for
ultifidelity Operator Learning (MOLUcQ), USA project (Project No.

1739) and DOE–Fusion Energy Science, USA, under grant number:
E-SC0024583.

ata availability

Data will be made available on request.

eferences

[1] Andrew R. Barron, Universal approximation bounds for superpositions of a
sigmoidal function, IEEE Trans. Inform. Theory 39 (3) (1993) 930–945.

[2] Ali Rahimi, Benjamin Recht, Weighted sums of random kitchen sinks: Replacing
minimization with randomization in learning, Adv. Neural Inf. Process. Syst. 21
(2008).

[3] Maziar Raissi, Paris Perdikaris, George E. Karniadakis, Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019)
686–707.

[4] Lu Lu, Xuhui Meng, Zhiping Mao, George Em Karniadakis, DeepXDE: A deep
learning library for solving differential equations, SIAM Rev. 63 (1) (2021)
208–228.

[5] George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan
Wang, Liu Yang, Physics-informed machine learning, Nat. Rev. Phys. 3 (6) (2021)
422–440.
13 
[6] Wing Tat Leung, Guang Lin, Zecheng Zhang, NH-PINN: Neural homogenization-
based physics-informed neural network for multiscale problems, J. Comput. Phys.
(2022) 111539.

[7] Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, Madeleine Udell, Chal-
lenges in training PINNs: A loss landscape perspective, 2024, arXiv preprint
arXiv:2402.01868.

[8] Tianping Chen, Hong Chen, Universal approximation to nonlinear operators
by neural networks with arbitrary activation functions and its application to
dynamical systems, IEEE Trans. Neural Netw. 6 (4) (1995) 911–917.

[9] Tianping Chen, Hong Chen, Approximations of continuous functionals by neural
networks with application to dynamic systems, IEEE Trans. Neural Netw. 4 (6)
(1993) 910–918.

[10] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, George Em Karniadakis,
Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators, Nat. Mach. Intell. 3 (3) (2021) 218–229.

[11] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang
Zhang, George Em Karniadakis, A comprehensive and fair comparison of two
neural operators (with practical extensions) based on fair data, Comput. Methods
Appl. Mech. Engrg. 393 (2022) 114778.

[12] Lu Lu, Raphaël Pestourie, Steven G. Johnson, Giuseppe Romano, Multifidelity
deep neural operators for efficient learning of partial differential equations with
application to fast inverse design of nanoscale heat transport, Phys. Rev. Res. 4
(2) (2022) 023210.

[13] Min Zhu, Shihang Feng, Youzuo Lin, Lu Lu, Fourier-DeepONet: Fourier-enhanced
deep operator networks for full waveform inversion with improved accuracy,
generalizability, and robustness, 2023, arXiv preprint arXiv:2305.17289.

[14] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik
Bhattacharya, Andrew Stuart, Anima Anandkumar, Fourier neural operator for
parametric partial differential equations, 2020, arXiv preprint arXiv:2010.08895.

[15] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik
Bhattacharya, Andrew Stuart, Anima Anandkumar, Neural operator: Graph kernel
network for partial differential equations, 2020, arXiv preprint arXiv:2003.03485.

[16] Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, Sally M.
Benson, U-FNO—An enhanced Fourier neural operator-based deep-learning
model for multiphase flow, Adv. Water Resour. 163 (2022) 104180.

[17] Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, Anima Anandkumar, Fourier
neural operator with learned deformations for pdes on general geometries, 2022,
arXiv preprint arXiv:2207.05209.

[18] Pengzhan Jin, Shuai Meng, Lu Lu, MIONet: Learning multiple-input operators
via tensor product, SIAM J. Sci. Comput. 44 (6) (2022) A3490–A3514.

[19] Guang Lin, Christian Moya, Zecheng Zhang, Learning the dynamical response
of nonlinear non-autonomous dynamical systems with deep operator neural
networks, Eng. Appl. Artif. Intell. 125 (2023) 106689.

[20] Min Zhu, Handi Zhang, Anran Jiao, George Em Karniadakis, Lu Lu, Reliable ex-
trapolation of deep neural operators informed by physics or sparse observations,
Comput. Methods Appl. Mech. Engrg. 412 (2023) 116064.

[21] Guang Lin, Christian Moya, Zecheng Zhang, B-DeepONet: An enhanced Bayesian
DeepONet for solving noisy parametric PDEs using accelerated replica exchange
SGLD, J. Comput. Phys. 473 (2023) 111713.

[22] Zecheng Zhang, Christian Moya, Lu Lu, Guang Lin, Hayden Schaeffer, D2NO:
Efficient handling of heterogeneous input function spaces with distributed deep
neural operators, 2023, arXiv preprint arXiv:2310.18888.

[23] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh
Chattopadhyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar
Azizzadenesheli, et al., Fourcastnet: A global data-driven high-resolution weather
model using adaptive fourier neural operators, 2022, arXiv preprint arXiv:2202.
11214.

[24] Chensen Lin, Zhen Li, Lu Lu, Shengze Cai, Martin Maxey, George Em Karniadakis,
Operator learning for predicting multiscale bubble growth dynamics, J. Chem.
Phys. 154 (10) (2021).

[25] Zecheng Zhang, Wing Tat Leung, Hayden Schaeffer, BelNet: Basis enhanced
learning, a mesh-free neural operator, 2022, arXiv preprint arXiv:2212.07336.

[26] Zecheng Zhang, Wing Tat Leung, Hayden Schaeffer, A discretization-invariant
extension and analysis of some deep operator networks, 2023, arXiv preprint
arXiv:2307.09738.

[27] Christian Moya, Shiqi Zhang, Guang Lin, Meng Yue, Deeponet-grid-uq: A
trustworthy deep operator framework for predicting the power grid’s post-fault
trajectories, Neurocomputing 535 (2023) 166–182.

[28] Joel Hayford, Jacob Goldman-Wetzler, Eric Wang, Lu Lu, Speeding up and
reducing memory usage for scientific machine learning via mixed precision,
2024, arXiv preprint arXiv:2401.16645.

[29] Yixuan Sun, Christian Moya, Guang Lin, Meng Yue, Deepgraphonet: A deep
graph operator network to learn and zero-shot transfer the dynamic response
of networked systems, IEEE Syst. J. (2023).

[30] Minglang Yin, Nicolas Charon, Ryan Brody, Lu Lu, Natalia Trayanova, Mauro
Maggioni, DIMON: Learning solution operators of partial differential equations
on a diffeomorphic family of domains, 2024, arXiv preprint arXiv:2402.07250.

[31] Zhongyi Jiang, Min Zhu, Dongzhuo Li, Qiuzi Li, Yanhua O. Yuan, Lu Lu,
Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase
modeling of geological carbon sequestration, 2023, arXiv preprint arXiv:2303.
04778.

http://refhub.elsevier.com/S0167-2789(24)00368-3/sb1
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb1
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb1
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb2
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb2
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb2
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb2
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb2
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb3
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb3
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb3
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb3
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb3
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb3
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb3
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb4
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb4
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb4
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb4
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb4
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb5
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb5
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb5
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb5
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb5
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb6
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb6
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb6
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb6
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb6
http://arxiv.org/abs/2402.01868
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb8
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb8
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb8
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb8
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb8
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb9
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb9
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb9
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb9
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb9
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb10
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb10
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb10
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb10
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb10
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb11
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb11
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb11
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb11
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb11
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb11
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb11
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb12
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb12
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb12
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb12
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb12
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb12
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb12
http://arxiv.org/abs/2305.17289
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2003.03485
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb16
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb16
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb16
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb16
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb16
http://arxiv.org/abs/2207.05209
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb18
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb18
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb18
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb19
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb19
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb19
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb19
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb19
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb20
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb20
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb20
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb20
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb20
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb21
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb21
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb21
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb21
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb21
http://arxiv.org/abs/2310.18888
http://arxiv.org/abs/2202.11214
http://arxiv.org/abs/2202.11214
http://arxiv.org/abs/2202.11214
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb24
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb24
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb24
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb24
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb24
http://arxiv.org/abs/2212.07336
http://arxiv.org/abs/2307.09738
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb27
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb27
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb27
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb27
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb27
http://arxiv.org/abs/2401.16645
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb29
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb29
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb29
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb29
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb29
http://arxiv.org/abs/2402.07250
http://arxiv.org/abs/2303.04778
http://arxiv.org/abs/2303.04778
http://arxiv.org/abs/2303.04778


C. Moya et al. Physica D: Nonlinear Phenomena 471 (2025) 134418 
[32] Shunyuan Mao, Ruobing Dong, Lu Lu, Kwang Moo Yi, Sifan Wang, Paris
Perdikaris, PPDONet: Deep operator networks for fast prediction of steady-state
solutions in disk–planet systems, Astrophys. J. Lett. 950 (2) (2023) L12.

[33] Zhiping Mao, Lu Lu, Olaf Marxen, Tamer A. Zaki, George Em Karniadakis,
DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate chem-
istry behind a normal shock using neural-network approximation of operators,
J. Comput. Phys. 447 (2021) 110698.

[34] Patricio Clark Di Leoni, Lu Lu, Charles Meneveau, George Em Karniadakis,
Tamer A. Zaki, Neural operator prediction of linear instability waves in
high-speed boundary layers, J. Comput. Phys. 474 (2023) 111793.

[35] Christian Moya, Guang Lin, Tianqiao Zhao, Meng Yue, On approximating the
dynamic response of synchronous generators via operator learning: A step to-
wards building deep operator-based power grid simulators, 2023, arXiv preprint
arXiv:2301.12538.

[36] Izzet Sahin, Christian Moya, Amirhossein Mollaali, Guang Lin, Guillermo
Paniagua, Deep operator learning-based surrogate models with uncertainty
quantification for optimizing internal cooling channel rib profiles, Int. J. Heat
Mass Transfer 219 (2024) 124813.

[37] Apostolos F. Psaros, Xuhui Meng, Zongren Zou, Ling Guo, George Em Kar-
niadakis, Uncertainty quantification in scientific machine learning: Methods,
metrics, and comparisons, J. Comput. Phys. 477 (2023) 111902.

[38] Zongren Zou, Xuhui Meng, Apostolos F. Psaros, George E Karniadakis, NeuralUQ:
A comprehensive library for uncertainty quantification in neural differential
equations and operators, SIAM Rev. 66 (1) (2024) 161–190.

[39] Zecheng Zhang, Christian Moya, Wing Tat Leung, Guang Lin, Hayden Schaeffer,
Bayesian deep operator learning for homogenized1 to fine-scale maps for
multiscale PDE, 2023.

[40] Yibo Yang, Georgios Kissas, Paris Perdikaris, Scalable uncertainty quantification
for deep operator networks using randomized priors, Comput. Methods Appl.
Mech. Engrg. 399 (2022) 115399.

[41] Shailesh Garg, Souvik Chakraborty, VB-DeepONet: A Bayesian operator learning
framework for uncertainty quantification, Eng. Appl. Artif. Intell. 118 (2023)
105685.

[42] Ling Guo, Hao Wu, Wenwen Zhou, Yan Wang, Tao Zhou, IB-UQ: Information
bottleneck based uncertainty quantification for neural function regression and
neural operator learning, 2023, arXiv preprint arXiv:2302.03271.

[43] Christian Moya Calderon, Guang Lin, Bayesian, multifidelity operator learning for
complex engineering systems-A position paper, J. Comput. Inf. Sci. Eng. (2023)
1–9.

[44] Max Welling, Yee W. Teh, Bayesian learning via stochastic gradient langevin
dynamics, in: Proceedings of the 28th International Conference on Machine
Learning, ICML-11, Citeseer, 2011, pp. 681–688.

[45] Arnak Dalalyan, Further and stronger analogy between sampling and optimiza-
tion: Langevin Monte Carlo and gradient descent, in: Conference on Learning
Theory, PMLR, 2017, pp. 678–689.

[46] Arnak S. Dalalyan, Avetik Karagulyan, User-friendly guarantees for the Langevin
Monte Carlo with inaccurate gradient, Stochastic Process. Appl. 129 (12) (2019)
5278–5311.

[47] Maxim Raginsky, Alexander Rakhlin, Matus Telgarsky, Non-convex learning via
stochastic gradient langevin dynamics: a nonasymptotic analysis, in: Conference
on Learning Theory, PMLR, 2017, pp. 1674–1703.

[48] Haoyang Zheng, Wei Deng, Christian Moya, Guang Lin, Accelerating approximate
thompson sampling with underdamped langevin Monte Carlo, 2024, arXiv
preprint arXiv:2401.11665.
14 
[49] Anastasios N. Angelopoulos, Stephen Bates, A gentle introduction to conformal
prediction and distribution-free uncertainty quantification, 2021, arXiv preprint
arXiv:2107.07511.

[50] Volodya Vovk, Alexander Gammerman, Craig Saunders, Machine-learning
applications of algorithmic randomness, 1999.

[51] Vladimir Vovk, Alexander Gammerman, Glenn Shafer, Algorithmic Learning in
a Random World, vol. 29, Springer, 2005.

[52] Glenn Shafer, Vladimir Vovk, A tutorial on conformal prediction, J. Mach. Learn.
Res. 9 (3) (2008).

[53] Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, Alex Gammerman, In-
ductive confidence machines for regression, in: Machine Learning: ECML 2002:
13th European Conference on Machine Learning Helsinki, Finland, August 19–23,
2002 Proceedings 13, Springer, 2002, pp. 345–356.

[54] Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S.
Jaakkola, Regina Barzilay, Conformal language modeling, 2023, arXiv preprint
arXiv:2306.10193.

[55] Kexin Huang, Ying Jin, Emmanuel Candes, Jure Leskovec, Uncertainty quantifi-
cation over graph with conformalized graph neural networks, Adv. Neural Inf.
Process. Syst. 36 (2024).

[56] Anastasios Angelopoulos, Emmanuel Candes, Ryan J. Tibshirani, Conformal PID
control for time series prediction, Adv. Neural Inf. Process. Syst. 36 (2024).

[57] Yaniv Romano, Evan Patterson, Emmanuel Candes, Conformalized quantile
regression, Adv. Neural Inf. Process. Syst. 32 (2019).

[58] Beichuan Deng, Yeonjong Shin, Lu Lu, Zhongqiang Zhang, George Em Karni-
adakis, Approximation rates of DeepONets for learning operators arising from
advection–diffusion equations, Neural Netw. 153 (2022) 411–426.

[59] Guanxun Li, Guang Lin, Zecheng Zhang, Quan Zhou, Fast replica exchange
stochastic gradient langevin dynamics, 2023, arXiv preprint arXiv:2301.01898.

[60] Tianqi Chen, Emily Fox, Carlos Guestrin, Stochastic gradient hamiltonian Monte
Carlo, in: International Conference on Machine Learning, PMLR, 2014, pp.
1683–1691.

[61] R.N. Bhattacharya, Criteria for recurrence and existence of invariant measures
for multidimensional diffusions, Ann. Probab. (1978) 541–553.

[62] Gareth O. Roberts, Richard L. Tweedie, Exponential convergence of langevin
distributions and their discrete approximations, Bernoulli (1996) 341–363.

[63] Roger Koenker, Gilbert Bassett Jr., Regression quantiles, Econometrica (1978)
33–50.

[64] Ingo Steinwart, Andreas Christmann, Estimating conditional quantiles with the
help of the pinball loss, Bernoulli 17 (1) (2011) 211–225.

[65] Diederik P. Kingma, Jimmy Ba, Adam: A method for stochastic optimization,
2014, arXiv preprint arXiv:1412.6980.

[66] Guang Lin, Yating Wang, Zecheng Zhang, Multi-variance replica exchange
SGMCMC for inverse and forward problems via Bayesian PINN, J. Comput. Phys.
460 (2022) 111173.

[67] Wei Deng, Qi Feng, Liyao Gao, Faming Liang, Guang Lin, Non-convex learning
via replica exchange stochastic gradient mcmc, in: International Conference on
Machine Learning, PMLR, 2020, pp. 2474–2483.

[68] Amanda A. Howard, Mauro Perego, George E. Karniadakis, Panos Stinis,
Multifidelity deep operator networks, 2022, arXiv preprint arXiv:2204.09157.

[69] Amirhossein Mollaali, Izzet Sahin, Iqrar Raza, Christian Moya, Guillermo Pani-
agua, Guang Lin, A physics-guided bi-fidelity Fourier-featured operator learning
framework for predicting time evolution of drag and lift coefficients, Fluids 8
(12) (2023) 323.

[70] Christian Moya, Guang Lin, Fed-deeponet: Stochastic gradient-based federated
training of deep operator networks, Algorithms 15 (9) (2022) 325.

http://refhub.elsevier.com/S0167-2789(24)00368-3/sb32
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb32
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb32
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb32
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb32
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb33
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb33
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb33
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb33
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb33
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb33
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb33
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb34
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb34
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb34
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb34
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb34
http://arxiv.org/abs/2301.12538
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb36
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb36
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb36
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb36
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb36
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb36
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb36
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb37
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb37
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb37
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb37
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb37
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb38
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb38
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb38
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb38
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb38
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb39
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb39
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb39
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb39
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb39
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb40
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb40
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb40
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb40
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb40
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb41
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb41
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb41
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb41
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb41
http://arxiv.org/abs/2302.03271
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb43
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb43
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb43
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb43
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb43
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb44
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb44
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb44
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb44
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb44
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb45
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb45
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb45
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb45
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb45
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb46
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb46
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb46
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb46
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb46
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb47
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb47
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb47
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb47
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb47
http://arxiv.org/abs/2401.11665
http://arxiv.org/abs/2107.07511
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb50
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb50
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb50
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb51
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb51
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb51
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb52
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb52
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb52
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb53
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb53
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb53
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb53
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb53
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb53
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb53
http://arxiv.org/abs/2306.10193
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb55
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb55
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb55
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb55
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb55
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb56
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb56
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb56
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb57
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb57
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb57
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb58
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb58
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb58
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb58
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb58
http://arxiv.org/abs/2301.01898
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb60
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb60
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb60
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb60
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb60
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb61
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb61
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb61
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb62
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb62
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb62
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb63
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb63
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb63
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb64
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb64
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb64
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb66
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb66
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb66
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb66
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb66
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb67
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb67
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb67
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb67
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb67
http://arxiv.org/abs/2204.09157
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb69
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb69
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb69
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb69
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb69
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb69
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb69
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb70
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb70
http://refhub.elsevier.com/S0167-2789(24)00368-3/sb70

	Conformalized-DeepONet: A distribution-free framework for uncertainty quantification in deep operator networks
	Introduction
	Background Information
	Deep Operator Network (DeepONet)
	Bayesian Deep Operator Network (B-DeepONet)
	Probabilistic Deep Operator Network (Prob-DeepONet)

	Conformal Prediction for Deep Operator Network Regression
	Split Conformal Prediction for DeepONet
	Conformal Quantile DeepONet Regression

	Numerical Experiments
	Experiment: The Nonlinear Pendulum
	Experiment: The Diffusion-Reaction System
	Experiment: The Viscous Burgers' Equation

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


