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VibTac: A high-resolution high-bandwidth tactile
sensing fnger for multi-modal perception in robotic

manipulation
Sheeraz Athar†,1 , Xinwei Zhang†,1 , Jun Ueda2 , Ye Zhao2 , Yu She˜,1 

Fig. 1: Overview of the proposed sensor: The fgure demonstrates the dual-modal sensing of the proposed sensor integrated with a Franka Panda robot.
(a) In (i), the robot grips an Ethernet cable in a random orientation. Vision-based tactile sensing (shown in (b)) determines the in-hand pose and adjusts
orientation. The robot then moves to (ii) for insertion. During this phase, acoustic-based tactile sensing (shown in (c)) detects the “click” sound upon full
insertion, signaling the robot to stop, confrming task completion.

Abstract—Tactile sensing is pivotal for enhancing robot ma-
nipulation abilities by providing crucial feedback for localized
information. However, existing sensors often lack the necessary
resolution and bandwidth required for intricate tasks. To address
this gap, we introduce VibTac, a novel multi-modal tactile sensing
fnger designed to offer high-resolution and high-bandwidth tac-
tile sensing simultaneously. VibTac seamlessly integrates vision-
based and vibration-based tactile sensing modes to achieve
high-resolution and high-bandwidth tactile sensing respectively,
leveraging a streamlined human-inspired design for versatility
in tasks. This paper outlines the key design elements of VibTac 
and its fabrication methods, highlighting the signifcance of the
Elastomer Gel Pad (EGP) in its sensing mechanism. The sensor’s
multi-modal performance is validated through 3D reconstruction
and spectral analysis to discern tactile stimuli effectively. In
experimental trials, VibTac demonstrates its effcacy by achieving
over 90% accuracy in insertion tasks involving objects emitting
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distinct sounds, such as ethernet connectors. Leveraging vision-
based tactile sensing for object localization and employing a deep
learning model for “click” sound classifcation, VibTac showcases
its robustness in real-world scenarios. Video of the sensor working
can be accessed at https://youtu.be/kmKIUlXGroo.

Index Terms—tactile sensing, vision-based tactile, vibration-
based tactile, manipulation.

I. INTRODUCTION

Robots are increasingly becoming integral to both our per-
sonal and professional environments. The rapid advancement
in robotic technology is expected to lead to an unprecedented
demand for their deployment. One of the challenging appli-
cations in robotics is complex manipulation, a skill humans
routinely employ to complete various tasks [1]. Enabling
robots to execute complex hand manipulation resembling that
of humans is crucial for their widespread adoption in human
spaces.

An essential aspect of successful human manipulation is the
ability to sense the environment [2]. Humans utilize various
sensing cues to gather pertinent information for task execution.
Tactile sensing, in particular, plays a vital role in manipulation
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by providing localized infonnation about the object being han-
dled [3]. Similarly, tactile sensing is of paramount importance 
for robots, furnishing them with the necessary infonnation to 
manipulate objects effectively [4], [5]. 

For robotic tactile sensing, one of the biggest hurdles is to 
provide robots with both high-resolution and high-bandwidth 
tactile infonnation. Currently, most tactile sensors either pro-
vide high-resolution infonnation [6], [7] or high-bandwidth 
[8]. Equipping robots with both high-resolution and high-
bandwidth tactile data is still not trivial for tactile sensors. 

On the other hand, human tactile sensing provides both 
high-resolution and high-bandwidth tactile sensing by combin-
ing different mechanisms [9]. Humans also leverage acoustic 
sensing to infer critical information during manipulation tasks. 
Acoustic cues he lp distinguish objects, detect faults, confirm 
task completion, and assess structural integrity [10]. For ex-
ample, the distinct "click" sound when inserting an Ethernet 
cable signals successful assembly. This illustrates how humans 
integrate tactile and acoustic sensing to manage tasks involving 
diverse contact dynamics. 

Researchers frequently use tactile sensing for robotic ma-
nipulation tasks [l l]- [13]. However, there has been limited 
exploration into developing comprehensive methods that equip 
robots with both high-resolution and high-bandwidth tactile 
sensing. To achieve human-like dexterity, robots should be 
equipped with this technology, which they currently lack. 

To address this issue, we introduce in this paper a novel 
tactile sensing finger called VibTac. VibTac combines vision 
and acoustic-based tactile sensing to offer high-resolution and 
high-bandwidth tactile sensing within a single hardware setup. 
Fig. 1 presents an overview of the proposed sensing finger, 
which will be used for manipulation in an actual setup. 

The finger comprises a vision-based tactile sensing module 
for high-resolution sensing. Additionally, it incorporates an 
accelerometer and a microphone to enable high-bandwidth 
tactile sensing. The sensor captures both micro-slip (small, 
localized shifts in the contact area) and gross-slip (larger, more 
noticeable movements) by detecting their unique vibration 
patterns. In robotic grasping, micro-slip happens when an 
object, like a pen, slightly shifts within the grip without 
slipping out completely, while gross slip occurs when the 
object moves significantly or falls entirely from the hand [14]. 
These two types of slip produce different vibration frequen-
cies: micro-slip generates high-frequency vibrations (> 200 
Hz), which are detected by the microphone, while gross slip 
results in lower-frequency vibrations ( <200 Hz), best captured 
by the accelerometer [15], [16]. VibTac utilizes its vision-
based tactile sensing capabilities for in-hand localization and 
employs acoustic signals to infer structural integrity, such as 
the successful insertion of parachute buckles or the completion 
of tasks like the successful insertion of an Ethernet cable. 

The main contributions of the paper are as follows: It 
showcases significant advancements in robotic tactile sensing 
and manipulation through the introduction of a multi-modal 
tactile sensing finger, offering both high-resolution and high-
bandwidth tactile feedback, equips robots with refined tactile 
information, enabling them to execute long-horizon manipula-
tion tasks. Additionally, this paper presents a software pipeline 

2 

that converts raw tactile data into crucial state feedback for 
tasks such as determining the precise position and orientation 
of hand-held objects and assessing the success of insertions. 
The study also emphasizes the robust execution of a class of 
robotic manipulation tasks, made possible by integrating both 
high-resolution and high-bandwidth tactile feedback, thereby 
enhancing the robot's interaction with its environment and task 
performance. 

The remainder of the paper is arranged as follows: Section 
II presents a review of the related works. Section ill provides 
details of the sensor design and fabrication. Section IV outlines 
the methods used to do perception using the proposed sensing 
finger. Section V contains details regarding experiments and 
results. Finally, Section VI concludes the study and presents 
the future course of work. 

Microphone Holder 

Camera Holder 

Accelerometer 

meter 
Ider 

Fig. 2: Design: Exploded view of the VibTac finger, showing its main compo-
nents. The camera holder contains the camera, LED acrylic, and elastomer gel 
pad. The mirror holder secures the mirror, reflecting gel deformations to the 
camera. The microphone holder houses the microphone, and the accelerometer 
holder secures the accelerometer. All components are connected by a central 
skeleton. 

II. RELATED WORKS 

Tactile sensation is crucial for humans to manipulate ob-
jects effectively [17]. To replicate this capability in robotics, 
researchers have developed tactile sensors that endow robots 
with human-like tactility [18]. These sensors interact with the 
robot's environment, capturing key physical quantities such as 
pressure, force, displacement, surface texture, and depth [19]. 
By processing these measurements, robots can infer essential 
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perceptual information necessary for dexterous manipulation 
[20]. 

Various sensing mechanisms have been explored to achieve 
tactile perception in robots. Vision-based tactile sensors em-
ploy cameras and computer vision techniques to capture 
deformations or contact patterns [21], [22]. Vibration-based 
sensors utilize accelerometers and acoustic transducers to 
analyze surface interactions [23]. Piezoelectric tactile sensors 
leverage the piezoelectric effect to convert mechanical stress 
into electrical signals [24]. Capacitive and resistive sensors 
measure variations in capacitance and resistance, respectively, 
to detect contact and force distribution [25], [26]. Additionally, 
electromagnetic and triboelectric sensors exploit electromag-
netic induction and triboelectric effects to generate tactile 
feedback [27], [28]. 

Photonics and optical tactile sensors are rapidly emerging, 
detecting mechanical deformation through changes in light 
properties [29]. Fiber Bragg Grating (FBG) sensors, a key 
type, are valued for applications like tactile sensing, surgery, 
structural monitoring, and biosensing [30], [31]. While highly 
sensitive and stable, they face challenges with low spatial 
resolution and complex fabrication. 

Among the various categories of tactile sensors, vision-
based tactile sensors exhibit superior performance, offering 
higher spatial resolution, consistency, and robustness [6]. 
These sensors typically use a camera to capture the deforma-
tion of an elastomer gel pad (EGP) during interactions with 
the environment. GelSight [32] is a well-established vision-
based tactile sensor, known for its high spatial resolution 
and ability to reconstruct fine contact geometries [33], [34]. 
Recent applications of GelSight sensors include shear and 
slip measurement [35], texture recognition [36], and liquid 
property estimation [37]. 

Despite their inherent advantages, vision-based tactile sen-
sors frequently face a bottleneck in operating at low band-
width, often in the range of dozens (30 Hz), thereby impeding 
the execution of dynamic and high-frequency manipulation 
tasks [38]. To surmount this challenge, it becomes evident 
that achieving high spatial resolution alone is inadequate; a 
concurrent emphasis on high bandwidth becomes imperative. 

Vibration/acoustic-based tactile sensors are another promi-
nent category among tactile sensors [39]. They offer high-
bandwidth sensing suitable for capturing high-frequency sig-
nals [40]. Some examples of vibration-based tactile sensors 
developed for robotic manipulation include [41]- [43]. Despite 
their high bandwidth, these sensors lack the spatial resolution 
necessary for complex manipulation [38]. 

To enhance robots ' capabilities in complex manipulation 
tasks, a tactile sensor that provides both high-resolution and 
high-bandwidth sensing is required. While individual studies 
have explored either high-resolution or high-bandwidth tactile 
sensing, there is limited work on seamlessly integrating both 
modalities within a single sensor. This paper introduces a novel 
sensing finger, VibTac, which addresses this gap by offering 
both high-resolution and high-bandwidth sensing in a unified 
hardware solution. 

(a) (b) 

Fig. 3: Design: Physical prototype of the VibTac finger. (a) Isometric view 
(top), (b) Isometric view (bottom), (c) Side view (right), (d) Side view (left). 

• o 
(a) 

(e) (f) 

Fig. 4: EGP Fabrication Process:(a) Assembling the mold frame, (b) 
Attaching the back acrylic plate and pouring silicone, (c) Fully pouring 
silicone, (d) Applying a coat of primer to the acrylic and attaching it to 
the silicone, ensuring no air bubbles are trapped. After placing the acrylic on 
top, the silicone is left to cure either at room temperature for 24 hours or in 
an oven for 30 minutes at 60°C. Once cured, the silicone-acrylic cartridge is 
demolded (e) Demolded cartridge with acrylic on top (green) and silicone on 
the bottom. (f) Demolded cartridge showing the silicone on top, (g) Placing 
the cartridge in the painti ng guide and applying reflective coating, (h) Final 
elastomer gel pad (EGP). A video demonstration of the full fabrication process 
is included in supplementary material. 

III. D ESIGN AND FABRICATION 

This section outlines the design of the proposed tactile 
sensor and its fabrication methods. Fig. 2 presents an exploded 
view of the sensor design, detailing all the main components. 
Fig. 3 displays the actual prototype of the sensor. The pro-
posed VibTac finger incorporates two main sensing modalities: 
vision-based tactile sensing and acoustic-based tactile sensing. 
Each component will be discussed individually. 

A. Vision-Based Tactile Sensing 
In the following discussion, we delve into the detailed 

aspects of the vision-based tactile components. 
Elastomer Gel Pad (EGP) The proposed sensor features 

two sensing modes: Vision-based tactile sensing and acoustic-
based tactile sensing. Vision-based tactile sensing, utilizing 
an EGP, provides localized tactile information crucial for the 
sensor's functionality. 

During EGP fabrication, two main considerations are ad-
dressed. First, the EGP must be clear without any stains 
to ensure a clear vision. Second, proper bonding with the 
acrylic pad is crucial to prevent air trapping between the EGP 
and acrylic sheet, which could lead to sensing errors. Fig. 
4 illustrates the fabrication process, involving custom frame 
printing, joining, attaching to a clear acrylic sheet, pouring 
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silicone mixture, curing, and applying a Lambertian coating
for tactile sensing enhancement. The coating blocks external
light, enabling the camera to capture localized information.
The supplementary video included with the manuscript shows
the description of the pad fabrication procedure.

Air can become trapped in the silicone during mixing,
making it unsuitable for use. To eliminate these bubbles, the
silicone should be degassed in a vacuum chamber. Addition-
ally, pouring the silicone slowly into the mold helps prevent
air from being trapped between layers or between the silicone
and acrylic. Pressing the top acrylic frmly onto the silicone
is also crucial to remove any excess air and ensure a proper
seal.

Lighting Lighting plays a crucial role in vision-based tactile
sensors, especially when employing photometric stereo for
tactile sensing. To achieve better results, directional lighting is
used to compute deformation depth. While the ideal lighting
angle is 120˜ [44], we arrange three surface-mounted LEDs
from the ‘Chanzon’ brand in a compact strip at 90˜ for a
slender, manipulation-friendly sensor design (Fig. 2). Gray and
diffuser flters are currently attached to each LED array—the
‘VViViD Air-Tint Dark Air-Release Vinyl Wrap Film’ gray
flter minimizes refections in the EGP caused by the acrylic,
and the ‘3M Diffuser 3635-70’ ensures consistent illumination
and softens bright light spots. It is important to note that
the refections minimized by the gray flter differ from those
produced by the gel pad’s coating. Refections from the acrylic
are undesirable, as they result from LED light bouncing off
the acrylic surface. In contrast, the refections generated by the
coating are benefcial, enabling the computation of essential
gradients for perception.

Camera The camera is the key component of the proposed
sensor for vision-based tactile sensing. We use the camera to
capture pad deformations and extract relevant tactile informa-
tion. Specifcally, we employ the Raspberry Pi Zero standard
focus camera, with dimensions 12 × 12 × 5 mm. The small
size of the camera also ensures the overall compactness of the
robotic fnger. The video feed from the camera is streamed
using mjpg-streamer. The stream provides a feed at a
resolution of 640 × 480 pixels, delivering it at 60 Frames
Per Second (FPS) and at 90 FPS for a resolution of 320 ×
240 pixels.

B. Acoustic-Based Tactile Sensing

The primary goal is to enhance the bandwidth of vision-
based tactile sensing by incorporating acoustic sensing. Two
distinct sensing elements are employed for a broader sens-
ing bandwidth: an ADXL345 accelerometer captures small-
frequency vibrations within 0-200Hz, while a MAX9814 elec-
tret microphone amplifer is able to capture high-frequency
signals up to 44 kHz. The ADXL345, with a sensing sensitivity
of up to 16g (where g is the acceleration due to gravity), is
compact and cost-effective, suitable for most microcontroller
boards. The MAX9814, equipped with auto gain for noise
fltering, offers sound with signifcantly less noise and is both
compact and affordable, presenting an effective solution for
our sensor.

(a) (b) 

(c) (d) 

Fig. 5: Depth estimation results from vision-based tactile sensing: In each
part, the image on the left displays the RGB output from the sensor, while
the image on the right shows the corresponding depth estimation. (a) Metal
ball, (b) Screwdriver head, (c) 3D printed part, (d) Key.

C. Assembly

All parts of the sensor are manufactured using the Bambu
Lab X-1 Carbon 3D printer. After printing, heat set inserts are
attached for screwing in different assembly components.

Silicone is cast using the method discussed above, as shown
in Fig. 4. During casting, the bottom and top acrylic sheets are
cleaned with a nanofber cloth to prevent imprints on the casted
pad. After pouring, the mold is gently tapped to remove large
air bubbles. It is worth noting that some small air bubbles will
remain even after tapping and will be removed later during
the curing process. Finally, the casted pad is demolded and
painted.

The accelerometer and microphone are attached to their
holders, mirrors are attached to the mirror holder, and LED
strips with the acrylic+EGP cartridge are in the camera holder.
The camera is then attached, and all components are joined on
the skeleton using M-2 screws. The video included with the
manuscript shows the full procedure of the sensor assembly.
The overall cost of the VibTac sensing fnger is less than $50.

IV. PERCEPTION

The sensor in this paper has two sensing modalities: vision-
based tactile sensing and vibration/acoustic-based tactile sens-
ing. Through this confuence, we aim to leverage the benefts
of both. Vision-based tactile sensors provide high-resolution
data but have limited bandwidth, while vibration/acoustic sens-
ing offers high bandwidth without high resolution. The per-
ception methods for vision-based tactile and vibration/acoustic
sensing are different, and this section provides details on the
methods used for perception.

A. Vision-Based Tactile Sensing

The main methods for vision-based tactile perception in this
project are photometric stereo [45] and Principal Component
Analysis (PCA) [46]. Photometric stereo provides 3D geom-
etry information about the object in grip, while PCA is used
to estimate the in-hand pose.
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Fig. 6: Setup to test the accuracy of the PCA method: In this experiment, 
the robot was provided with a peg at a known angle (measured using a digital 
protractor), and the angle estimated by the PCA was then recorded The results 
are reported in Table I 

1) Photomeric Stereo: 
Photometric stereo employs the retrographic method to 

derive the shape of an object from various lighting variations. 
The fundamental concept involves representing the object's 
surface using a height function expressed as zi = f(xi, Yi), 
where xi and Yi denote the i th spatial coordinates in pixel 
space. Extracting depth entails two primary steps: Step 1 
involves estimating surface gradients ( Gix, Giy) at spatial lo-
cation (xi, Yi) in RGB space using (Ri , Gi , Bi) values. In Step 
2, a rapid Poisson solver [47] is employed to spatially integrate 
surface gradients for achieving complete spatial depth. Once 
spatial depth is obtained, a point cloud is generated by project-
ing pixel coordinates xi, Yi, and zi as Xi = (xi - xe) * mpp, 
1'i = (Yi - Ye) * mpp, and zi = Zi * mpp, where (xe , Ye) 
represents the center coordinates in 2D-pixel space, and mpp 
denotes the millimeter-per-pixel ratio. 

Color-to-Gradient Mapping In the initial phase, our ob-
jective is to acquire knowledge of the relationship between 
R , G , B values at (x, y) and their corresponding surface 
gradients through the utilization of a Neural Network (NN). 
This model takes as input the RG B values at a given spatial 
location and predicts the surface gradients. The optimization 
process revolves around minimizing the Mean Squared Error 
(MSE) between the predicted and actual surface gradients. 

N 

mJn.CMSE(0) = mJn L)gi - Jo(~, Gi, Bi)II~, (1) 
i=l 

! 
In this equation, gi represents the ground-truth surface 

gradients of the i th data point. These reference values are 
derived from a calibration ball, which is spherical and has a 
known diameter. The calibration process involves determining 
the millimeter-per-pixel (mpp) ratio, creating impressions of 
a 3D printed sphere, and adjusting the parameters (0) of the 
mapping function using the defined optimization objective. 

During operation, the trained NN f 0 is responsible for 
predicting surface gradients. Unlike previous approaches [12], 
we employ a low-memory footprint neural network for learn-
ing the color-to-gradient mapping. This entails utilizing a 

multilayer perceptron with tanh activation and incorporating 
three hidden layers, resulting in enhanced performance. 

Fast Poisson Solver: Following the gradient computation, a 
2D fast Poisson solver [47] is utilized to ascertain depths. This 
solver utilizes Gx and Gy as inputs, incorporating boundary 
conditions, to yield relative depths. By leveraging the relative 
depth information and the mpp ratio, the actual depth is calcu-
lated, culminating in the formation of a 3D point cloud Figure 
5 illustrates the tactile depths of diverse objects produced by 
the VibTac sensor, accompanied by their corresponding RGB 
image. 

This approach of extracting depth using image gradients 
offers several advantages over directly computing depth using 
a neural network. The latter method introduces significant 
complexity, as depth prediction is highly sensitive to variations 
in lighting and surface textures, making it difficult to obtain 
precise ground truth data for training. 

2) Denoising and PCA: To obtain robust PCA results, a 
stable stream of contact features from the EGP is necessary. 
We subtract a no-contact background image from the stream, 
generating a grayscale difference signal. The grayscale frames 
are dilated and eroded to connect contact regions and denoise. 
The live grayscale video is then denoised using a first-order 
autoregressive filter as described by the following equation: 

Yt = aXt + (1 - a)Yt-1 , 0::; a:=; 1 (2) 

Xt represents the raw grayscale frame at time t, and Yt is 
the corresponding denoised frame. The coefficients a balance 
the current frame and the previous denoised frame. 

Otsu's adaptive binarization [48] is utilized from OpenCV 
[49] to make the threshold sensitive to contact features and 
relieve the heterogeneity from light. After isolating the contact 
region, those thresholded contours are sorted by area; only 
the largest region is used to compute PCA in this work. The 
orientation of objects can be obtained by averaging the angles 
of the first principal component over a few seconds. 

To evaluate the accuracy of the PCA method in estimating 
the in-hand angle of the object, we conducted experiments 
using the setup shown in Fig. 6. A custom 3D-printed platform 
was designed to rotate the peg around the y-axis, with a 
digital protractor installed to record the ground truth angle. 
The VibTac finger was mounted on the WSG gripper of the 
Franka Panda robot arm, with the fingers aligned to the z-axis. 
During the experiment, the peg was rotated at angles from -
30° to 30° in 5° increments, with each angle calibrated using 
the digital protractor. For each angle, the peg was grasped 
20 times, and the angle was estimated using PCA orientation. 
The mean angle and standard deviation results are presented 
in Table I . 

B. Vibration /Acoustic Based Tactile Sensing 
1) Accelerometer: 
Calibration For accelerometer calibration, we use the 

method proposed in [50], taking advantage of static conditions 
where the accelerometer output aligns with gravitational accel-
eration. The calibration model includes the offset and scaling 
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TABLE I: Statistical Data of PCA Accuracy 

Angle -30 -25 -20 -15 -IO -5 0 5 JO 15 20 25 30 
Mean -30.99 -26.44 -20.99 -16.16 -10.48 -5.06 0.08 6.30 10.36 15.55 20.54 25.48 29.32 

Std Dev 1.57 1.07 1.36 0.86 1.00 0.94 0.64 0.52 0.96 1.93 3.19 3.04 208 

(b) Accelerometer Calibration 
Uncalibrated Acceleration 

- Calibrated Acceleration 
1.050 -- Uncalibrated Average 

-- CalibratedAvera~e 
§ 1.025 - irll 
g ------------------------------------------------~ I 000 

§ 0.975 
< 

0.950 

0.925 

0.900 
0 2 3 4 6 

Time(ms) 

Fig. 7: Accelerometer Calibration: (a) The setup used to calibrate the 
accelerometer, which is attached to a 3D-printed platfonn that can rotate freely 
along all three axes (highlighted in red). The accelerometer is connected to 
an Arduino that records the data during calibration. (b) Calibration results 
showing both uncalibrated and calibrated outputs. The calibration did not 
significantly shift the average since the accelerometer came pre-calibrated 
from the manufacturer. 
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Fig. 8: Frequency Characterizat.ion of the Accelerometer : (a) Setup used 
to characterize the accelerometer's frequency response. The accelerometer 
was mounted on a vibration generator connected to a signal generator, which 
excited it with a sweep signal ranging from 10 Hz to 160 Hz over 20 seconds. 
(b) STFf plot of the accelerometer output, showing a clear linear increase in 
frequency. 

values for individual axes, along with factors for cross-axis 
symmetry, expressed as: 

C = F(A -B) (3) 

where 

(4) 

Here, C is the calibrated value, F is the scaling factor in 
each axis, A is the current accelerometer values, and B is 
the bias vector. Fig. 7 shows the calibration setup and results. 
From the figure, the average acceleration value becomes l g, as 
expected as only gravity affects the accelerometer. Calibration 
involves placing the accelerometer in various orientations 
using the setup in Fig. 7(a). Fig. 7(b) shows the calibrated 
and uncalibrated accelerometer output. As the accelerometer 
works in 3D Cartesian space with gravity, the magnitude 
of acceleration should be g. As the measurement contains 

(b) 

some noise, the reading is averaged for a better view. After 
calibration, the average output from the accelerometer is g. 
It is important to note that in our case, calibration does not 
result in a significant offset due to the high quality of the 
accelerometer and its accurate factory calibration. However, 
this may not hold true for all accelerometers, as many can 
exhibit larger offsets following calibration. 

Frequency Characterization We next characterize the ac-
celerometer's frequency response using the setup in Fig. 8, 
where the accelerometer is mounted on a vibration generator 
and excited with a sweep signal ranging from 10 Hz to 160 Hz 
over 20 seconds. A Short-Time Fourier Transform (STFT) is 
then applied to the recorded data to analyze the frequency 
components. The resulting STFT plot shows a clear linear 
increase in frequencies from approximately 10 Hz to 160 Hz. 

2) Microphone: 
Spectral Analysis 



7TRANSACTIONS ON HAPTICS, VOL. XX, NO. XX, OCTOBER 2024

(a) 

(b) 

(c) 

Fig. 9: Spectral Analysis: Results from the spectral analysis of microphone
data. A Short-Time Fourier Transform (STFT) was applied to detect vibration
signatures, generating a decibel spectrogram. (a) The VibTac fnger was tapped
fve times to test the pipeline. (b) Accelerometer output during sensor poking.
(c) Spectrogram of the microphone output during tapping. Peaks in both
(b) and (c) correspond to touch events, enabling the extraction of vibration
signatures for various tasks.

To detect vibration signatures from the microphone, we
perform Short-time Fourier Transform (STFT) to obtain a
decibel (dB) spectrogram using Librosa [51] package with the
default setting. The spectrogram provides information in the
frequency and time domain, which can be further analyzed
using computer vision algorithms. Fig. 9 shows the raw output
and corresponding spectrogram when human fngers apply an
external mechanical perturbation fve times. Since the working
sampling rate is 8000 Hz, it can be observed that the maximum
frequency in the spectrogram is 4000 Hz due to Nyquist
frequency [52].

V. EXPERIMENTS

A. Data Collection

We attach the designed sensor to a WSG-32 gripper
mounted on a Franka Panda robot for experiments (Fig. 1).
We select objects that produce distinct clicking sounds when
they are inserted into their respective sockets (Fig. 10). For
data collection, the sockets are fxed onto an aluminum fxture
plate in front of the robot, while objects are placed between the
WSG gripper’s fngers, positioned 6–12 cm above the sockets.
The Franka Panda robot then moves downward to insert the
objects, stopping at a predefned target. During each insertion,
both acceleration and microphone data are recorded. A total
of 500 insertion trials are conducted for each object, with
additional control data collected, capturing only movement
noise without object insertion.

B. Dataset and Preprocessing

The collected dataset includes eight objects: Ethernet cable,
big buckle, car seat belt, snap button, glue stick, secure pen,
buckle, plane seat belt, and background movement noise data.
Fig.10 shows all the objects included in the dataset. Each
dataset contains an audio fle and an acceleration fle collected
simultaneously during insertion.

We keep complete and valid data and clean garbled char-
acters, randomly keeping 400 pairs of balanced data for each
category, that means each category contains nearly the same

number of data points, and 800 pairs of blank background
data.

Each valid acceleration data contains around 2000 steps
of discrete three-dimensional acceleration, and we calculate
the magnitude using the L − 2 norm. Each recorded audio
contains around 4 seconds of data in real-time. We remove the
center amplitude offset and over-amplifcation in the audio to
standardize the audio, upsample to 22 kHz, apply a short-
time Fourier transform (STFT), and obtain dB amplitude
spectrograms.

Finally, the corresponding audio and acceleration fles are
matched, and the two types of data are aligned based on visual
pattern inspection. The acceleration data are standardized, and
the spectrograms are normalized to zero and one.

C. Deep Learning Model for Multimodal Classifcation
The objective of the classifcation is to classify acoustic

signals made by different insertions, like a “click” sound.
Also, a click detection model is needed to generalize the
click. Recurrent neural network (RNN) with the module of
gated recurrent unit (GRU) [53] and Long Short-Term Memory
(LSTM) [54] is widely used for acoustic and time sequence
tasks [55], [56]. One advantage of using RNN is that it can
take sequence data in the form of segments and capture the
relevance among them. This feature is particularly suitable for
online tasks that require contextual input.

The classifcation algorithm used in this work is a multi-
modality RNN model, which accepts both audio spectrogram
and acceleration input. The architecture is shown in Fig 11.
The aligned data sequences are frst divided into seven valid
segments in total, each around 0.5 seconds. The corresponding
standardization and normalization are applied to each segment
individually. Each acceleration segment vector with a length of
143 is input into a double-layer multilayer perceptron (MLP)
encoder with ReLU [57] activation and output size of 8.
The audio spectrogram is fed into a modifed ResNet-18 [58]
network as a convolutional neural network (CNN) encoder.
Each segment of the spectrogram is a single-channel input
with a size of 1025 x 22. The ResNet directly takes the shape
without resizing by PyTorch’s implementation [59]; its frst
layer is changed to accept single-channel input, and its last
fully connected layer is removed and outputted a vector of
size 512.

Then, the output of encoders is concatenated into a vector
of size 520. The compacted representation is accepted as the
input of an LSTM network. The last LSTM module’s output
hidden states are linked to a double-layer MLP classifer with
50% dropout [60] to make the prediction.

D. Hyperparameter Grid Search and Modality Ablation Study
To determine the optimal model hyperparameters and

modality combination while improving search effciency, we
design a sub-dataset with 160 samples selected from each
category. The dataset is randomly split into two halves: one
for the training set and the other for the test set. The model
is trained for 30 epochs with a batch size of 64. The cross-
entropy loss function is used for multi-class classifcation, and
the Adam optimizer [61] is employed.
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Fig. JO: Objects included in the dataset for the insertion and "click" detection experiment. From left to right: (a) Ethernet cable, (b) Big-buckle, (c) Car seat 
belt, (d) Snap button, (e) Glue stick, (t) Secure pen, (g) Buckle, (h) Plane seat belt. 
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Fig. 11: Architecture of the multi modal RNN used in this paper for detecting
vibration signatures. 

 

We perform a grid search over hyperparameters and modal-
ities: 

• Learning Rate: The learning rates tested are le-3 , l e - 4 , 

and le-5 . 

• LSTM Hidden Size: Hidden sizes of 64, 128, and 256 
units are tested to capture temporal information. 

• Modality Ablation: RNN models with single modalities 
(spectrogram and acceleration) are tested for an ablation 
study. 

During training, the weights achieving the highest accuracy 
on the test data are saved for evaluation. The grid search results 
show that a learning rate of le-4 and an LSTM hidden size 
of 128 yield the highest accuracy. Additionally, we observe 
that the multi-modality RNN outperfonns the single-modality 
models, verifying that both modalities contribute to better 
classification performance. 

All experiments are conducted on a system equipped with 
an Intel Core i9-13900K processor, 128 GB of RAM, and a 
GeForce RTX 4090 graphics card. 

TABLE II: Grid search of multimodal RNN model 's hyperparameters and 
modality ablation study with a sub-training set. 

Modality Learning rate LSTM bidden sue Ac.curacy (% ) 

Spectrogram 
+ 

Acceleration 

l e-~ 
64 79.45 
128 79.66 
256 73.ITT 

le- 4 
64 97.19 
128 98.23 
,!.;JO 96.98 

l e-3 
64 YJ.:W 
128 94.09 
.<.JO YL.U~ 

Spectrogram l e-• 128 97.53 
Acceleration l e-• 128 30.60 

Confusion Matrix(%) 
Accuracy: 99.72 

Ethernet o.oo o.oo o.oo o.oo o.oo 1,16 o.oo o.oo 

Big buckle - 0.00 II 0.00 0.00 0.00 0.00 1.61 0.00 0.00 

Car seatbelt - o,oo o,oo o,oo o,oo o,oo o,oo o.oo o,oo 

Snap button - 0.00 o.oo o.oo Ill o.oo o.oo o.oo o.oo 0.00 

Glue stick - o.oo o.oo o.oo o.oo II o.oo o.oo o.oo o.oo 

Secure pen - o.oo o,oo o,oo o,oo o,oo o.oo o.oo o,oo 

Buckle - 0.00 0.00 0.00 0.00 0.00 0.00 Ill 0.00 0.00 

Plane seatbelt - o.oo o.oo o.oo o.oo o.oo o.oo o.oo II o.oo 

Noise - o.~o o.~o o.~o o.~o o.~o o.~o o.~o o.~o 
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Fig. 12: Confusion matrix (%) illustrating the classification performance of 
the proposed RNN model, with an overall accuracy of 99.72%. The matrix 
shows the correct and misclassified predictions across all object categories. 

E. Results 
1) Classification: For the classification task, the goal is 

to detect the category of the insertion click. The dataset 
is combined with 400 samples from each category and the 
background noise. Twenty percent of the data is split for the 
test set. The best hyperparameter configuration with a learning 
rate of l e- 4 and an LSTM hidden size of 128 is used. The 
classification model is trained with 30 epochs. 

Fig. 12 shows the confusion matrix of the click classification 
results. It can be observed that the model achieves excellent 
performance with an overall accuracy of 99.72% in classifying 
the multi-modal sequence data. 

2) Zero-shot Click Detection: For insertion click detection, 
this work aims to establish this sensor and algorithm's ability 
to detect common insertion and not only the cases that have 
been entered and trained in the dataset. We preserve 100 
samples of data from each insertion category but leave only 
one set entirely out of the training set as the test category. 



TRANSACTIONS ON HAPTICS, VOL. XX, NO. XX, OCfOBER 2024 9 

TABLE ill: Zero-shot Click Detection Accuracy 

Category Ethernet cable Big buckle Car seatbelt Snap button Glue stick Secure pen Buckle Plane seatbelt Average 
Accuracy 99.40% 99.52% 99.40% 97.84% 95.67% 93.51% 99.40% 99.40% 98.02% 

lime 

(c) 
Acceleration 

I · -. , · -· J , - ': .,_. ,_ r "- · _, I 
(t) False 

Run PC/\ Reorientation 
Go 10 the 

inscrlion poin l 
lmcrt the object 
;mll collect data Stop 

Fig. 13: Demo: The complete pipeline for the insertion task using the proposed VibTac sensor. (a) The VibTac sensing finger mounted on a Franka Panda 
robot during the pen insertion task. (b) Tactile sensing feedback used by the robot to adjust the pen's orientation. (c) Accelerometer output showing a spike 
upon pen contact. (d) Corresponding spectrogram from the microphone data, detecting the click sound during insertion. (e) The system detects the click and 
displays "Click detected" on the terminal, signaling the robot to stop. (I) Flow diagram illustrating the task sequence, from object reorientation to insertion 
and click detection. 

The noise data is half separated into the training and test data. 
Such a dataset ensures that no similar data is available during 
the training, enabling us to test unseen data exclusively. The 
learning rate used is se-4, and 40 epochs for each training. 
The LSTM hidden size is 128. 

Table ill shows the metrics of the accuracy of detecting the 
unseen data The average accuracy of the eight categories is 
98.02%, and we find higher accuracy in detecting insertions 
that emit high volume and high impact. The only accuracy 
below 95% is the class of secure pen. This is reasonable since 
its closure mechanism is looser than other classes. It can be 
inserted easily, making a smaller sound amplitude and impact 
than others. As a result, it is the least perceptible object for 
the model. 

These results demonstrates our model's capability for zero-
shot learning to generalize the click sequence multi-modal 
data. This generalization reveals our method's plug-and-play 
potential to handle industrial and daily tasks. 

F Insertion Demo 
To demonstrate the overall multi-modal tactile sensing abil-

ity of the sensor, we use the sensor to complete various 
insertion tasks that make distinct "click" sounds. The suc-
cessful completion of these tasks requires both high-resolution 
and high-bandwidth tactile sensing, which is achieved by our 
proposed finger sensor with vision-based tactile modality and 
acoustic-based modality, respectively. 

In the demo, we give objects to the robot at a random 
orientation and ask it to insert them successfully. For this, 

the robot first uses vision-based tactile sensing to infer the 
in-hand pose of the object and adjusts the pose so that it can 
be inserted correctly by aligning the axis of the object to the 
axis of the insertion point. After this, the robot goes to the 
insertion target point (which is known). During the insertion 
stroke, the sensor records accelerometer and microphone data. 
Meanwhile, the latest data is inputted to the click detection 
RNN model for online inference. If a click is detected, the 
control loop of the insertion movement is broken, so the robot 
stops at the right place. Fig. 13 shows the snapshot of the demo 
when the robot is inserting the secure pen. It also shows sensor 
output and various points during the demo. 

To reduce the impact of environmental noise and increase 
online robustness, the input audio volume halves. The click-
detection model is pre-trained with 100 samples from each 
object's data and all noise data with three epochs. This ensures 
a balanced dataset, as we have 800 data points from noise 
without clicks and 800 click samples, obtained by selecting 
100 samples from each of the eight categories. 

It can be seen from the figure that the secure pen is given 
to the robot at a random angle, and the sensor then uses 
vision-based tactile (Fig. 13(b)) to estimate the in-hand pose 
of the object and then adjusts the pose and goes to the known 
insertion point. During insertion, it records the microphone 
(Fig. 13(d)) and accelerometer (Fig. 13(c)) data in sequence. 
The recorded segmented data is fed to the model every 0.5 
seconds, and the multi-modality RNN model processes the 
data simultaneously. The script prints "click detected" on the 
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terminal and stops the robot if it detects a click (Fig. 13(e)).
Fig.13(f) presents the fow diagram of the demonstration task.
The video demonstration of all the objects included in the
dataset is shown in the supplementary video; kindly refer to
that.

To demonstrate the necessity of a combination of high
resolution and high bandwidth, we conduct an ablation study
experiment where we ask the robot to complete the task with
only one sensing modality at a time. First, we test without
PCA, meaning no vision-based high-resolution tactile sensing.
In this case, because the robot has no information regarding the
orientation of the object, it is not able to adjust the orientation
and fails to insert the object. In the second case, we ask
the robot to complete the task without acoustic-based high-
bandwidth tactile sensing. In this case, two scenarios emerge.
In the frst scenario, the robot might be able to insert the object,
but due to the fact that there is no acoustic feedback, it will not
know when to stop and will hit the insertion with a big impact.
This is potentially dangerous and can cause serious damage
to the robot hardware. In the second scenario, the robot will
not know when to stop and will stop before completing the
task. From these experiments, we see that for the successful
completion of the insertion task, both sensing modalities are
required, and only one sensing modality will not be able to
complete the task effectively. A video showing the results from
the ablation study is included in the media fle.

VI. CONCLUSION & DISCUSSION

In this study, we present a novel sensing fnger, VibTac,
which integrates high-resolution vision-based tactile sensing
with high-bandwidth acoustic-based tactile sensing. We de-
tail the design and fabrication of the sensor components to
combine these dual modalities. High-resolution tactile sensing
is demonstrated through geometry and orientation extraction
using photometric stereo and principal component analysis
(PCA). For high-bandwidth tactile sensing, we utilize fre-
quency characterization and spectral analysis. We also train
and evaluate models for click classifcation and zero-shot click
detection.

To showcase the sensor’s integrated functionality, we per-
form insertion tasks that require pose alignment and pro-
duce distinct “click” sounds upon completion. Initially, high-
resolution vision-based tactile data is used to infer the in-
hand pose of the object. During insertion, high-bandwidth
acoustic/vibration data is employed to detect the “click” in
real time, signaling successful task completion and closing
the feedback loop. These experiments highlight the sensor’s
ability to handle manipulation tasks that are challenging with
only one type of tactile sensing. An ablation study further
confrms that both modalities are necessary for successful task
completion, as a single modality alone is insuffcient.

Compared to existing state-of-the-art tactile sensors, our
sensor demonstrates a broader range of applications, excelling
in tasks that other sensors cannot perform. For instance, high-
resolution vision-based tactile sensors, such as [32], are unable
to perform click detection with the same level of precision as
our sensor. Similarly, purely acoustic-based sensors, like those

in [41], [43], lack the capability to accurately estimate the
in-hand angle—a task our sensor handles effectively due to
its integrated high-resolution tactile sensing. The multimodal
nature of our sensor, combining both tactile and acoustic
sensing, offers a signifcant advantage over existing technolo-
gies. This integration enables it to tackle tasks requiring both
modalities, delivering enhanced versatility in applications that
demand simultaneous tactile and acoustic precision, which
current state-of-the-art systems cannot achieve independently.

We conduct ablation studies to evaluate the performance
of our sensor and assess the contribution of individual sensing
modalities—vision and acoustic. We attempt the insertion task
using only one modality at a time. In the frst scenario, when
vision-based tactile sensing is absent, the robot is unable
to adjust its pose and cannot complete the insertion. In the
second scenario, without acoustic-based tactile sensing, the
robot adjusts its in-hand pose but fails to insert the object
correctly due to the lack of feedback during the insertion
process. Additionally, we investigate the effects of using the
microphone and accelerometer individually, as well as in
combination. The results show that combining both sensors
signifcantly improves performance, achieving a classifcation
accuracy of 98%. These fndings are summarized in Table II.

Despite the impressive performance of the sensor, we
observe certain limitations. First, the classifcation model’s
accuracy degrades when the insertion speed and acceleration
deviate signifcantly from the training data. This highlights
the need for a more diverse dataset to improve generalization.
Second, environmental noise levels fuctuate across different
testing scenarios, affecting the robustness of acoustic-based
tactile sensing. To address this, future work will expand the
dataset and incorporate noise-fltering techniques.

Third, the acoustic response of the sensor varies depending
on whether an external force is applied to the gel pad or
the sensor’s rigid frame, as the gel pad dampens higher-
frequency vibrations. This may introduce inconsistencies in
signal interpretation.

Finally, precise alignment between the object in the robot’s
hand and the insertion point remains critical for task success.
This suggests the potential beneft of reinforcement learning-
based insertion strategies for improved adaptability.
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