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Abstract Water hyacinth (Pontederia crassipes, 
used to be Eichhornia crassipes), one of the world’s 
most notorious invasive species, poses significant 
threats to freshwater ecosystems worldwide. Despite 
its widespread presence in over 70 countries, there is 
a lack of comprehensive analyses about the impacts 
of water hyacinth. To fill this knowledge gap and to 
explore the multi-dimensional (physical, chemical, 
and biological) impacts of water hyacinth on fresh-
water ecosystems, we conducted a meta-analysis that 
synthesized data from 25 original studies encompass-
ing 12 countries and three continents. We found that 
water hyacinth invasions lead to significant reduc-
tions in water dissolved oxygen levels (Standardized 
Mean Difference (SMD) = "2.26, 95% CI: ["3.94, 
"0.56]; p = 0.001) and nitrogen (SMD = "1.70, 95% 
CI: ["3.19,  " 0.20]; p = 0.01). We also observed non-
significant but notable trends of decreased water pH 

levels and increased macroinvertebrates abundance, 
suggesting complex interactions between water hya-
cinth and abiotic factors. Our analysis underscores 
the need for more localized studies to better under-
stand the general impacts of water hyacinth invasions. 
Given the significant ecological disruptions caused 
by water hyacinth, effective management strategies 
are imperative to mitigate the adverse effects of this 
invasive species. Overall, this meta-analysis provides 
valuable insights into the ecological consequences of 
water hyacinth invasion, highlighting the urgent need 
for targeted research and intervention strategies to 
protect and restore affected freshwater ecosystems.

Keywords Water hyacinth · Eichhornia crassipes · 
Invasive species · Freshwater ecosystem · Ecological 
impacts

Introduction

The IPBES (2023) defines invasive non-native spe-
cies as the subset of established non-native species 
that spread and have negative impacts on biodiversity. 
Non-native plants that can propagate rapidly and veg-
etatively have the potential to be invasive non-native 
plants. Such invasive plants are capable of causing 
disturbances in ecosystem functioning and nutri-
ent balance (Lansdown et  al. 2016). As a particular 
example, invasive freshwater plants (macrophytes) 
can degrade water quality by disturbing the flow 

Supplementary Information The online version 
contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10530- 024- 03499-9.

R. R. Jha (*) · D. Li 
Department of Biological Sciences, Louisiana State 
University, Baton Rouge, LA 70803, USA
e-mail: rohitrajjh@gmail.com
D. Li 
e-mail: daijianglee@gmail.com

D. Li 
Department of Ecology and Evolutionary Biology, 
University of Arizona, Tucson, AZ 85721, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10530-024-03499-9&domain=pdf
http://orcid.org/0000-0001-9797-6031
http://orcid.org/0000-0002-0925-3421
https://doi.org/10.1007/s10530-024-03499-9
https://doi.org/10.1007/s10530-024-03499-9


 R. R. Jha, D. Li 27 Page 2 of 11

Vol:. (1234567890)

and altering the primary productivity of the aquatic 
system (Zenetos et  al. 2009). Invasive macrophytes 
are also known to disrupt irrigation channels, water 
intakes, and hydroelectric facilities by clogging in 
and altering the functions of dams and other infra-
structures (Spencer and Seaman 1980). Therefore, 
invasive freshwater plants are causing significant 
ecological and socio-economic damages (Villamagna 
and Murphy 2010).

As one of the worst 100 invasive species of the 
world listed by the IUCN Invasive Species Specialist 
Group, water hyacinth (Pontederia crassipes, used to 
be Eichhornia crassipes), is one of the most noxious 
freshwater plant invaders (Lowe et al. 2000). Native 
to South America, the water hyacinth now spreads 
across 70 countries on five continents (Gezie et  al. 
2018), with freshwaters in tropical and sub-tropical 
regions with high concentrations of nutrients due 
to agricultural runoffs being the most vulnerable to 
water hyacinth invasions (Villamagna and Murphy 
2010). Although the current spread of the species is 
limited to tropical and subtropical regions, climate 
change is further expected to trigger its expansion 
to greater latitudinal zones (Hellmann et  al. 2008; 
Rahel and Olden 2008). Water hyacinth can easily get 
established in areas lacking sufficient aquatic mac-
rophytes and can replace the native species through 
competition (Wilson et al. 2005). Furthermore, in the 
invaded regions, the absence of weevil species (i.e., 
Neochetina eichhorniae and Neochetina bruchi) that 
feed upon water hyacinth in its native habitats further 
assists this weed in becoming a super spreader (Wil-
son et al. 2005). After becoming invasive, water hya-
cinth can cause catastrophic environmental damage 
(Gezie et al. 2018).

One of the most observed impacts of water hya-
cinth is their impact on water conditions (Villa-
magna and Murphy 2010), including dissolved oxy-
gen (Brendonck et  al. 2003), temperature, and pH 
(Giraldo and Garzon 2002). However, the direction 
and generality of such impacts are still unclear. For 
example, a review by Villamagna and Murphy (2010) 
found decreased dissolved oxygen, phosphorous, 
nitrogen, and phytoplankton production in a freshwa-
ter system post-invasion by water hyacinth, reducing 
habitat heterogeneity and aquatic biodiversity. Stud-
ies have also reported an increase in dissolved oxy-
gen (Greenfield et al. 2007) and an increase in tem-
perature (Chapungu et  al. 2018; Jagaveerapandian 

and Thamizharasu 2015; Yongo et  al. 2017) caused 
by water hyacinth invasion. The inconsistent impact 
of water hyacinth on the freshwaters can be due to 
varying nutrient levels (Gaikwad and Gavande 2017; 
Karouach et al. 2022), water flow (Churko et al. 2023; 
Dersseh et  al. 2022), climate conditions (Hellmann 
et  al. 2008), human activities (Dersseh et  al. 2022; 
Karouach et  al. 2022), and presence of herbivores 
(Karouach et al. 2022).

Along with water quality, water hyacinth invasions 
have significant effects on aquatic biodiversity. As a 
fast-growing plant that forms dense mats on water 
surfaces, it alters habitats and disrupts the ecologi-
cal balance of freshwater ecosystems (Tobias et  al. 
2019). Aquatic birds are one of the aspects of aquatic 
biodiversity known to be impacted by water hyacinth 
invasion. Water hyacinth mats reduce the availability 
of open water, which is crucial for many bird species 
for foraging and nesting. Birds that rely on open water 
for feeding, such as waterfowl and waders, find their 
habitats reduced, leading to a decline in their popu-
lations (Villamagna and Murphy 2010). Dense mats 
can also prevent some bird species from reaching to 
their feeding grounds resulting in reduced food avail-
ability. Marco et  al. (2001) found that bird species 
diversity and abundance significantly decreased in 
water bodies heavily invaded by water hyacinth.

Aquatic invertebrates are also found to be impacted 
by the invasion of this weed. Water hyacinth provides 
habitat for some invertebrates while being detrimen-
tal to others. Invasive macrophytes like water hya-
cinth can create favorable conditions for invertebrates 
such as mosquitoes and midges, which thrive in stag-
nant water with low dissolved oxygen levels (Ofulla 
et al. 2010). However, not all species of invertebrates 
benefit from water hyacinth invasion. Crustaceans 
and other sensitive invertebrate species are adversely 
affected by reduced oxygen levels and altered water 
chemistry. Findings of Toft et al. (2003) showed that 
crustacean diversity and abundance declined in areas 
invaded by water hyacinth. Water hyacinth invasions 
thus have complex and far-reaching effects on aquatic 
biodiversity.

Given the far-reaching ecological and economic 
consequences of water hyacinth, it is surprising that 
no systematic review of its impacts on freshwater eco-
systems has been conducted. Existing studies often 
provide fragmented and region-specific insights, mak-
ing it challenging to draw general conclusions about 
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the global impact of water hyacinth. This gap in the 
literature hampers the ability to formulate effective 
management and mitigation strategies on a greater 
scale. Here, in this meta-analysis, we systematically 
synthesized data from a diverse array of studies to 
provide a comprehensive and holistic understanding 
of water hyacinth invasion on freshwater ecosystems 
worldwide. We hypothesized that the invasion of 
water hyacinth would significantly alter water quality 
and ecological parameters in invaded freshwater eco-
systems. Furthermore, this meta-analysis highlights 
the need for more targeted research in underrepre-
sented areas, guiding future studies to address the 
existing knowledge gaps.

Methods

Systematic literature search

We followed the standard guidelines (Page et  al. 
2021; Pullin and Stewart 2006) for systematic search 
and selection of research works for meta-analysis. 
We searched the Web of Science, JSTOR, and Sco-
pus between September 25 and October 15, 2024, and 
identified peer-reviewed original research articles that 
reported observational or experimental data related to 
the impact of water hyacinth as a freshwater invader. 
We used the phrases in combination of ("Pontederia 
crassipes" OR "Eichhornia crassipes" OR "water 
hyacinth") AND (impact* OR effect* OR affect) 
AND (freshwater OR "fresh water" OR aquatic) AND 
(physical OR chemical OR biological OR ecosystem 
OR environment*). The final search based on bibli-
ographies of retrieved articles was made in Google 
Scholar.

Study selection and data extraction

Our initial search yielded a total of 3390 records. 
After an initial screening based on titles and abstracts, 
we identified 139 studies for further review. From 
these, we excluded 58 studies that did not analyze the 
impacts of water hyacinth, resulting in a subset of 81 
studies. Additionally, we identified 17 more studies 
through the bibliographies of selected studies, bring-
ing the total to 98 studies for detailed examination.

For these 98 studies, we reviewed the methods and 
results sections. Only studies that generated original 

data and included both control and treatment setups 
were selected for final analysis. A detailed over-
view of the literature search process is provided in 
the PRISMA flow diagram, following the guide-
lines of Page et al. (2021) (Supplementary material, 
Figure S1).

In total, 25 studies were shortlisted for the meta-
analysis. The details of the included studies are 
included as supplementary material (Table  S1). The 
supplementary data table has an additional study 
from Brazil that met our requirements. However, as 
we were interested in investigating the impacts of the 
weed in invaded range, we did not include that study 
in our meta-analyses. All of the shortlisted studies 
reported mean, standard deviation (SD), and sam-
ple size for both treatment and control groups. We 
also included studies that reported standard error 
(SE) instead of SD, calculating the correspond-
ing SD where necessary. From the final 25 studies, 
we extracted 16 types of information as outlined in 
Table 1.

Statistical analysis

Based on the information we extracted from the 
selected studies, we focused on the impacts of water 
hyacinth invasion on (1) physical (conductivity, sus-
pended solid, temperature, and turbidity), (2) chemi-
cal (dissolved oxygen, nitrogen, phosphate, and pH), 
and (3) biological (macroinvertebrates) aspects of 
freshwaters. For simplicity, these nine types of impact 
under the three broad categories will be referred as 
‘parameters’ from here on. For the final analysis, we 
only included those parameters investigated in at least 
five independent studies. We choose this threshold to 
ensure that the reported results are based on a suffi-
cient level of evidence.

As the same study sometimes reported observa-
tions of multiple impacts, we accounted for the non-
independence of observations from the same study 
by fitting a mixed-effects model. We treated differ-
ent groups of observations within the same study as 
nested observations and extracted multiple effect 
sizes from the same study. This structure enabled us 
to include both study-level and group-within-study-
level random effects, ensuring an accurate reflec-
tion of the hierarchical structure of our data (Cheung 
2019; Habeck and Schultz, 2015). We used the rma.
mv function with restricted maximum likelihood 
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estimation (REML) from the metafor R package (ver-
sion 4.6; Viechtbauer 2020) to fit the mixed effect 
model to estimate standardized mean differences 
(SMD) along with their 95% confidence intervals. 
SMD, a measure for effect size was calculated using 
Hedge’s g (Hedges, 1981; Tasker et al. 2022). 

The resultant Hedge’s g value is unit less and can 
range from negative to positive infinity.

We also assessed between-study heterogeneity 
using the Q and I2 statistics (Harrer et  al. 2021). A 
higher Q value indicates greater heterogeneity not 
accounted for by the model, while a higher I2 value 
suggests a larger percentage of variability in effect 
size due to between-study differences. Generally, an 
I2 value of 75% or more suggests substantial hetero-
geneity (Higgins 2003). Additionally, we constructed 
funnel plots for each outcome variable to explore 
potential publication bias in our meta-analyses which 
might arise when studies with significant or favora-
ble results are more likely to be published than stud-
ies with non-significant or unfavorable results. By 
displaying effect size against their standard errors, 

SMD = Treatment Mean − Control Mean
Pooled StandardError

×Weighing Factor (#of Replicates)

these plots allow visual inspection of the symmetry of 
data distribution (Sterne and Egger 2001). All analy-
ses were conducted in R Version 4.4.1 (R Core Team, 
2013).

Result

The 25 studies used for our final analyses spread 
across 12 countries over three continents (Fig.  1). 
Africa and Asia contributed equal number of stud-
ies (n = 11), whereas three studies came from North 
America. Most studies were on lentic (standing 
water) water (n = 21). Of these 21 studies, 16 per-
formed experiments/observations in lakes, reservoirs, 
or ponds. Whereas the remaining five were either 
mesocosms or experimental ponds-based studies. The 
remaining four water bodies were lotic (free-flowing) 
systems such as rivers, estuaries, or lagoons.

Across nine parameters, these 25 studies con-
tributed to 246 effect sizes (Fig.  2). Our meta-anal-
ysis showed a decreasing trend for five out of nine 

Table 1  Description of information collected from the sorted studies
Data Description

Author The name(s) of the author(s) of the study
Year The year when the study was published
Title The title of the study
Journal The name of the journal where the study was published
Time since invasion Duration since the invasion of water hyacinth began, if applicable
Type of water body Classification of the water body studied (e.g., river, large reservoir, pond, or experimental water bodies)
Country of study Country where study was conducted
Study design Type of study design employed, such as observational study or experimental setup
System studied The specific ecosystem component studied, such as water quality, invertebrates, phytoplankton, fish, or 

waterbirds
Impact studied Under each system studied, various impacts were particularly studied such asunder water quality, studies 

looked at dissolved oxygen, pH, temperature, nitrites, phosphates, conductivity and many others
Mean (Control) Mean value in the uninvaded site
SD (Control) SD of the measured values for the uninvaded site
Sample size (control) Number of samples for the uninvaded site
Mean (Invaded) Mean value in the invaded site
SD (Invaded) SD of the measured values for the invaded site
Sample size (Invaded) Number of samples for the invaded site
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Fig. 1  Number of studies from representative countries included in our meta-analysis. The gray countries indicate water hyacinth’s 
introduced region (Source https:// powo. scien ce. kew. org/ taxon/ urn: lsid: ipni. org: names: 310928-2)

Fig. 2  Standardized Mean difference (SMD) between treat-
ment and control, showing the effects of invasive water hya-
cinth on nine parameters that describe water quality and bio-
diversity. The values in parentheses (a, b) represent: a the total 
number of effect sizes used in the model; b the total number 
of unique articles that contributed to the effect sizes. The size 
of the bars represents 95% Confidence Intervals (CI). The 

different colors (red, orange, blue, black) of effect size bars 
represent different levels of significance; the red colored bar 
indicates a highly significant effect (**; p < 0.001); the orange 
colored bar indicates a significant effect (*; p < 0.01); the blue 
colored bar indicates a marginally significant effect (.; p < 0.1); 
the black colored bars indicate non-significant effects

https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:310928-2
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parameters (Table  2). The most prominent and sig-
nificant effect was on dissolved oxygen (estimate 
SMD = "2.26, 95%, CI: ["3.94, "0.56], p = 0.001) 
and nitrogen (SMD = "1.70, 95%, CI: ["3.19, "0.20], 
p = 0.01). Other non-significant but negative trends 
were noticed for phosphate, conductivity, and pH. We 
observed non-significant positive trends for tempera-
ture, suspended solid, and turbidity (Fig. 2, Table 2). 
For eight out of nine models,  I2 value which reflects 
the level of heterogeneity was beyond 75% indicating 
a large portion of residual variation remained unex-
plained (Table  2). However, for macroinvertebrates, 
the  I2 value was relatively lower at 73.23%, suggest-
ing moderate heterogeneity indicating more consist-
ent effect size across studies for macroinvertebrates.

Top three parameters reported in multiple studies 
(total 25) were dissolved oxygen (n = 14), tempera-
ture (n = 12), and pH (n = 14). For dissolved oxygen, 
we observed decreasing trend between control and 
invaded freshwater ecosystems for most studies 
(Fig. 3, left panel). This pattern is well summarized 
in the parameter estimation for dissolved oxygen 
(Table 2). For temperature, we noticed both increas-
ing and decreasing pattern post invasion (Fig. 3, mid-
dle panel), which led to a non-significant but overall 
marginal increasing pattern (estimate SMD = 0.02, 
95% CI = ["0.9, 0.96], p = 0.58) (Table 2). Similarly, 
we also noticed decreasing trend of pH for more than 
two-third of studies that were incorporated in our 
meta-analysis. However, there were a few studies 
which showed an increasing trend. Interestingly, we 

observed a steep increase in pH in a few sites (Fig. 3, 
right panel). The parameter estimation reflected the 
same with non-significant decreasing value (esti-
mate SMD = "1.95, 95% CI = ["4.35, 0.45], p = 0.13; 
Table 2).

We created a funnel plot to assess the potential 
publication bias across the studies included in our 
meta-analysis (Fig. 4). The plot shows some degree of 
asymmetry, particularly with an outlier towards right 
(SMD % 9) for suspended solid which has large effect 
size and higher standard error. Additionally, signifi-
cant effects (red and orange points) are clustered to 
the left of the zero line, representing significantly 
negative impacts of water hyacinth. The concentra-
tion of these points on one side of the funnel suggests 
that studies with significant negative effects might be 
overrepresented, potentially indicating publication 
bias or small study effects. This asymmetry may be 
reflecting a bias toward publishing studies with sig-
nificant or more extreme results. However, despite 
these observations, the general spread of the points 
across both sides of the zero line provide some bal-
ance in the overall dataset.

Discussion

Our review and meta-analysis showed a surprising 
lack of studies exploring the impact of water hyacinth 
as a freshwater invader. Although water hyacinth is 
invading over 70 countries, we could only find 25 

Table 2  Standardized mean differences (SMD) estimates from multilevel mixed-effect models of the impacts of water hyacinth on 
eight parameters that describe water quality and biodiversity

SMD represents Standardized Mean Difference (Hedge’s g) of treatment and control group. CI95 is 95% Confidence Intervals. Q 
along with its associated p-value and  I2 give an estimation of residual heterogeneity. An  I2 value of 75% or more indicates consider-
able heterogeneity. 0.05 < p < 0.1, *p < 0.01, **p < 0.001

Parameter SMD ± CI95 Significance Number of 
effect Sizes

Number of 
studies

Heterogeneity statistics

Dissolved oxygen "2.1927 ± 1.60 ** 25 14 Q = 553.26, df = 24, p < 0.0001;  I2 = 95.66%
Temperature 0.037 ± 0.9845 ns 18 12 Q = 144.80, df = 17, p < 0.0001;  I2 = 88.26%
Nitrogen "1.8909 ± 1.6142 * 30 11 Q = 321.37, df = 29, p < 0.0001;  I2 = 90.99%
Phosphate "0.6067 ± 1.4154 ns 20 8 Q = 295.65, df = 19, p < 0.0001;  I2 = 93.56%
Suspended Solid 8.6903 ± 9.9125 9 7 Q = 182.72, df = 8, p < 0.0001;  I2 = 95.62%
macroinvertebrates 0.6029 ± 1.1304 0.456 91 5 Q = 336.35, df = 90, p < 0.0001;  I2 = 73.23%
Conductivity "1.3495 ± 8.22 ns 19 10 Q = 495.19, df = 18, p < 0.0001;  I2 = 96.36%
pH "1.847 ± 2.4025 ns 22 14 Q = 425.12, df = 21, p < 0.0001;  I2 = 95.6%
Turbidity 2.2661 ± 7.2384 ns 12 5 Q = 320.07, df = 11, p < 0.0001;  I2 = 96.56%
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studies distributed over 12 countries that compared 
the impact water hyacinth invasion with control. 

However, this can be a global trend of less studies 
being conducted for this ecosystem. A recent global 
meta-analysis exploring the impacts of multiple 
freshwater invasive macrophytes also reported only 
53 articles (Tasker et al. 2022).

Our study showed significant reductions in dis-
solved oxygen and nitrogen due to water hyacinth 
invasion, indicating a plausible indirect impact on 
aquatic ecosystems. Seven out of nine type of impacts 
we studied had inconsistent pattern in the impacts of 
water hyacinth. The observed heterogeneity across 
studies highlights the context-dependent nature of 
these impacts, emphasizing the need for targeted 
management. Such inconsistency in results aligns 
with the uncertain and complex nature of freshwater 
ecosystem. Variables such as climate and water con-
ditions, nutrient abundance, presence of other mac-
rophytes, and management efforts associated with 
freshwater ecosystems vary from place to place (Reit-
sema et  al. 2018), influencing the intensity of water 
hyacinth invasion. As a natural result, the impacts of 
water hyacinth vary from site to site (Corman et  al. 
2023).

This meta-analysis shows an overall significant 
decrease in dissolved oxygen in a freshwater body 
after being invaded by water hyacinth, which is 

Fig. 3  Differences in mean dissolved oxygen (DO), tempera-
ture, and pH (going from left to right) between control plots 
and plots with invasive water hyacinth. X-axis denotes two 

groups as control and invaded and Y-axis denotes the mean 
dissolved oxygen (in mg/l), mean temperature (in Celsius), and 
mean pH for the first, second, and third panel respectively

Fig. 4  Funnel plot assessing potential publication bias in the 
meta-analysis of water hyacinth impacts on freshwater param-
eters. The plot displays standardized mean differences (SMD) 
of effect sizes on the x-axis against their standard errors on the 
y-axis. Each point represents an effect size from a study, with 
colors indicating significance levels (black = non-significant, 
red = p < 0.01, orange = p < 0.05, blue = p < 0.1)
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consistent with other studies (Wilson et  al. 2005). 
Several reasons can explain this pattern. First, grow-
ing leaves and stems of water hyacinth can consume 
the available oxygen in the water for respiration, 
and the decaying matter of dead water hyacinth also 
consumes oxygen. Second, water hyacinth can block 
the light, preventing phytoplankton and submerged 
vegetation from getting enough energy require for 
photosynthesis, thus reducing the amount of oxygen 
produced (Wilson et  al. 2005). These consequences 
in combination decrease the amount of dissolved oxy-
gen in the invaded system.

Along with this, our meta-analysis also indicated 
a consistent decreasing nitrogen level in water bod-
ies post water hyacinth invasion. Earlier similar work 
also reported decrease in nitrogen in water hyacinth 
invaded area (Villamagna and Murphy 2010). This 
trend reflects water hyacinth efficiency of up taking 
of nitrogen for its rapid growth and thus reducing the 
available nitrogen in the water body (Reddy and De 
Busk, 1985). Additionally, the dense mats of water 
hyacinth might create anaerobic conditions favoring 
denitrification, leading to further nitrogen loss (Jia 
et  al. 2023). These ecological processes might be 
playing a major role in depleting nitrogen.

Furthermore, although non-significant, we 
observed a marginal increase in water temperature 
post invasion. Despite the fact that mat-like root 
structure of water hyacinth can prohibit penetration 
of sunlight below water surface and thus keep water 
at lower temperature (Tobias et  al. 2019), there are 
several studies which also claim water temperature 
to rise after water hyacinth invasion (Chapungu et al. 
2018; Jagaveerapandian and Thamizharasu 2015; 
Yongo et al. 2017).

Additionally, we found non-significant but 
decreasing pattern for the pH of water post invasion. 
This fluctuation in water pH can happen in multiple 
ways. First, water hyacinth can consume the nutri-
ents like nitrogen and phosphorus from the water 
resulting in the reduction of nutrient. The reduction 
in the nutrients can lead to reduction in the carbon-
ates in the water which results in lower pH for water 
(Giraldo and Garzon 2002). Water hyacinth can also 
alter water pH through the substances it produces. 
For example, the mucilage it produces can coat the 
surface of water and the plant itself. This mucilage 
can absorb and release carbon dioxide from water, 
which alerts the pH level. Similarly, water hyacinth 

can release volatile organic compounds into the 
water, altering the water pH level (Giraldo and Gar-
zon 2002).

Our result regarding the abundance of macroin-
vertebrates is in line with a global pattern where 
water hyacinth favors some macroinvertebrates 
while it is detrimental for others (Marco et  al. 
2001). Macroinvertebrates like mosquito, midges, 
and snails are expected to increase in habitat with 
water hyacinth (Ofulla et al. 2010) whereas crusta-
ceans do not prefer habitat with water hyacinth (Toft 
et  al. 2003). Although not included in this meta-
analysis because of insufficient studies, one study 
that investigated impacts of water hyacinth inva-
sion on waterbirds abundance reported decreasing 
trend for all the species (Sinha et al. 2011). As most 
birds prefer macroinvertebrates as diet, decrease in 
macroinvertebrates might have cascading effect on 
the bird abundance in the freshwater with water 
hyacinth. Similarly, two studies (Ngodigha 2024; 
Zhao and Chen, 2016) which explored the impacts 
of water hyacinth on phytoplankton abundance 
reported a consistent decreasing trend.

Along with this, there can be other various 
impacts of water hyacinth on biodiversity due to 
cascading effects of the hyacinth on water quality. 
Decrease in dissolved oxygen, temperature, and pH 
of water are factors which largely influences aquatic 
biodiversity of the system. As species have their tol-
erance limit for dissolved oxygen, temperature, and 
pH, the alteration in these parameters may cause 
shift in species distribution. This may lead to higher 
abundance of some species which are tolerant to 
low dissolved oxygen, temperature and pH and dis-
appearance of some species which are intolerant to 
these changes. These shift in species composition 
can alter the species distribution between different 
layers of freshwater which can have several adverse 
impacts on food webs of the freshwater ecosys-
tem (Meerhoff et  al. 2003). The shift in inverte-
brate community composition can have cascading 
effects on the food web. Birds that rely on certain 
invertebrates for food might find their primary food 
sources diminished, leading to broader ecological 
impacts (Marco et  al. 2001). Decrease in tempera-
ture may impact the migration pattern of some spe-
cies of fish as they depend on certain temperature 
to trigger migration (Fenkes et  al. 2016; Salinger 
and Anderson 2006). The disruption in migration 
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pattern may threat the existence of species as such 
migrations are part of their life cycle (Tamario et al. 
2019).

Conclusion

Our meta-analysis provides valuable insights into the 
impacts of water hyacinth invasion on multiple fac-
tors, though we acknowledge that our results were 
based on a limited number of studies. On one hand, 
our results highlight consistent trends such as the 
decrease in dissolved oxygen and nitrogen; on the 
other hand, we reveal areas with inconsistent results, 
emphasizing the need for more studies. This study 
also points out the importance of strategic planning 
in identifying key geographical regions where further 
studies are crucial to achieve a more comprehensive 
understanding of water hyacinth’s ecological effects.
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