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M Check for updates

Earth harbours an extraordinary plant phenotypic diversity' that is at risk from
ongoing global changes®*. However, it remains unknown how increasing aridity

and livestock grazing pressure—two major drivers of global change*®—shape the
trait covariation that underlies plant phenotypic diversity'’. Here we assessed

how covariation among 20 chemical and morphological traits responds to aridity
and grazing pressure within global drylands. Our analysis involved 133,769 trait
measurements spanning 1,347 observations of 301 perennial plant species surveyed
across 326 plots from 6 continents. Crossing an aridity threshold of approximately
0.7 (close to the transition between semi-arid and arid zones) led to an unexpected
88% increase in trait diversity. This threshold appeared in the presence of grazers,
and moved toward lower aridity levels with increasing grazing pressure. Moreover,
57% of observed trait diversity occurred only in the most arid and grazed drylands,
highlighting the phenotypic uniqueness of these extreme environments. Our work
indicates that drylands act as aglobal reservoir of plant phenotypic diversity and
challenge the pervasive view that harsh environmental conditions reduce plant trait
diversity®°. They also highlight that many alternative strategies may enable plants

to cope withincreases in environmental stress induced by climate change and
land-use intensification.

Therecent development of global trait databases™ has beeninstrumen-
tal for characterizing the phenotypic diversity (hereafter referred to
astrait diversity) of the entire plant kingdom'”*2, This characterization
is fundamental for anticipating the effects of global change on biodi-
versity and the functioning of the biosphere?®, Yet, our understand-
ing of plant trait diversity has been biased towards mesic biomes'"
(for example, temperate regions). Although the geographical cover-
age of trait observations s currently increasing™, many regions of the
globe remain poorly explored™". In particular, drylands remain largely
underrepresented in global trait databases®™ (Supplementary Table 1)
despite the fact that they cover around 45% of the planet’s terrestrial
area'®, are present over alllatitudes and continents”, and are projected
to expand owing to climate change and associated increases in aridity™
(defined as1- aridity index’, where aridity index = mean annual precipi-
tation/potential evapotranspiration)”. Drylands are highly vulnerable
to multiple global change drivers*® including changes in aridity and
pressure from livestock grazing, the major land use across drylands®.
Forinstance, crossing an aridity threshold of 0.7 or increasing grazing
pressure canlead to abruptand systemic changesin multiple ecosystem
attributes®®, including drastic decreases in plant species richness and
cover that may lead toland degradation and desertification®. However,
itremains almost completely unknown how increasing aridity and graz-
ing pressure might jointly shape trait diversity of drylands at a global
scale. This knowledge is needed to make reliable predictions of the
future of biodiversity***and the functioning of dryland ecosystems'*
under global change.

One may expect that crossing aridity thresholds and increasing
grazing pressure should reduce trait diversity in drylands* by select-
ing only those species able to tolerate extreme temperatures, low

soil nutrient contents and water availability, and high stocking rates
(see the pervasive ‘environmental filtering’ concept®'®and associated
hypothesesin Supplementary Text1and Supplementary Fig.1). How-
ever, drylands can exhibit a remarkable diversity of plant forms and
functions?* (the ‘functional paradox of drylands™), which seemingly
contradicts the environmental filtering concept. This paradox may
arise because distinct trait syndromes can perform equally inresponse
to a specific environmental constraint**%, thus allowing alternative
plant strategies to persist in harsh environments (Supplementary
Text1). Given the importance of trait diversity in the provisioning
of essential ecosystem services? to the more than 2 billion people
inhabiting dryland areas?’, understanding this discrepancy is a crucial
research need.

Plant traits covary predictably among species because of evolu-
tionary and ecological constraints limiting the number of viable trait
combinations'”* that ultimately determine the extent of plant trait
diversity". Global initiatives that aim to characterize the fundamental
dimensions of trait covariation have focused mainly on plant mor-
phological diversity"”*? and leaf carbon economy?, but have largely
neglected the diversity of chemical elements that sustain plant survival
and growth?®%. The elemental concentrationin plantleaves (the plant
elementome) has majorimplications for plant development®°, animal
and human health®??, and global biogeochemical cycles®. Further-
more, the plant elementome has a pivotal role in determining plant
responses to water scarcity®* > and herbivory***” (Supplementary
Table 2). However, we do not know how the plant elementome is dis-
tributed across plant species and how it contributes to trait diversity
patterns across global drylands. Accounting for the plant elementome
may thusreveal new functional dimensions with the potential to change
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Fig.1|Asurvey of plant trait diversity across global dryland rangelands.
Thedataincluded1,347 observations of 301 perennial plant species, which
provided acomplete set of measurements for the 20 traits (see Supplementary
Table 3 for details). The colour of the dots represents the aridity level of each of
the98drylandsites where plant traits have been measured. Eachsiteincluded
three to four plotslocally distributed along agrazing gradient (326 plots were
surveyed intotal; Methods). The size of the dots indicates the number of

our understanding of plant strategiesin drylands and their responses
to ongoing global changes.

We conducted astandardized field survey to investigate the impacts
of aridity and grazing pressure on the chemical and morphological
trait diversity of perennial plants across drylands worldwide (Fig.1).
We selected 98 sites from 25 countries that represent the aridity gradi-
ent over which dryland rangelands can be found globally®. Each site
included three to four 45 m x 45 m plots spanning local gradients
of grazing pressure (from ungrazed or low grazing pressure to high
grazing pressure), with a total of 326 plots surveyed. In each plot,
we measured a total of 20 continuous traits related to: (1) the con-
centration of 14 chemical elements in plant leaves (C, N, P, K, Mg,
Ca,S,Zn, Na, Cu, Mn, Fe, Ba and Al); (2) the leaf and whole plant size
(lateral spread, maximum plant height, leaflength and leaf area); and
(3) theleaf carbon economy (specific leafarea (SLA) and leaf dry mat-
ter content (LDMC)). Our study included 1,347 observations of 301
dryland plant species sampled across 326 plots from all latitudes
and continents (Fig. 1) for which the complete set of these 20 traits
was measured (total number of traits measurements =133,769; see
Supplementary Table 3 for a full description of the data and Sup-
plementary Figs. 2-4 for the frequency distribution of these traits).
These data constitute a unique source of functional information to
explore how aridity and grazing shape the covariations and trade-offs
observed among multiple morphological and chemical plant traits
across global drylands.
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speciessampledineach plot (mean number per plot = 4.6 species; minimum
number per plot =1species; maximum number per plot =18 species). The
selected sites were globally distributed across all latitudes and continents
(except Antarctica), and are representative of the wide variationin climates,
soil properties and vegetation types found across global drylands®". The
distribution of the 98 sites along the aridity gradient, the longitude and the
latitude are shown along the left, top and right edges of the figure, respectively.

Trait diversity explodesin arid rangelands

We used a sliding-windows analysis (Methods) to evaluate changes in
dryland trait diversity in response to increases in aridity and grazing
pressure. To do so, we ordered the 326 plots surveyed according to
their aridity. We then defined aridity windows that represent 19% of
the global aridity gradient considered, and selected all plant species
from all plots within this aridity range (n = 307 observations in each
window). For each aridity window, we quantified the n-dimensional
trait space using the plant elementome, and morphological and carbon
economy-related traits (that is, trait hypervolume®; see Methods and
Extended Data Fig. 1, Supplementary Figs. 5-8, and Supplementary
Table 4 for a description of the dryland trait space evaluated). The
size of the hypervolume provides a measure of the trait diversity®®
considered within each aridity window.

Increases in aridity were associated with an unforeseen increase in
planttraitdiversity (Fig. 2a, dashed line, and Supplementary Table 5).
We found a significant threshold response in the trait hypervolume
occurring atanaridity value of approximately 0.7 (Fig. 2). Aridity values
that exceeded this threshold were associated with an 88.1% increase
inthe size of the trait hypervolume in the driest rangelands surveyed
(Fig. 2b and Supplementary Fig. 9). The trait hypervolume observed
athigharidity levels largely encompassed and surpassed the morpho-
logical and chemical trait diversity observed under low aridity condi-
tions: 80.1% of the low-aridity hypervolume was included within the
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Fig.2|Globalincreaseindryland plant trait diversity driven by aridity
and grazing. a, The effect of aridity on the size of the trait hypervolume.

We found asignificant, non-linear increase in the hypervolume size once an
aridity threshold of around 0.7 was crossed. Vertical dashed and dotted lines
represent the meanlocation of the threshold and 95% confidence interval,
respectively (Supplementary Table 5). Coloured dots represent bootstrapped
values for trait hypervolume. The error band shows the 95% confidence
interval. b, Bootstrapped values for the hypervolume size below and above the
aridity threshold (low aridity, n =189; high aridity, n = 696). After crossing the
aridity threshold of approximately 0.7, the hypervolume increased by 88.1%,
becauseitincluded most of the trait variability observed under low aridity
conditions (only 19.9% of uniqueness) as well as 57.3% of trait diversity that

high-aridity hypervolume and 57.3% of the global dryland trait diversity
was observed only under aridity values higher than approximately 0.7
(Fig.2b). We also observed anincrease of the size of the trait hypervol-
ume withincreasing grazing pressure (Fig. 2¢). Aridity and grazing thus
have a similar effect on trait diversity by promoting a wide spectrum
of plant strategies to cope with water shortage*** and herbivory***°
through a variety of avoidance and tolerance strategies. Our results
support theoretical predictions® and empirical observations from
drylands*?* and other extreme environments (for example, alpine
ecosystems*), which suggest that there are many ways for species
to cope with climatic extremes and grazing pressure. The most arid
dryland rangelands thus harbour aunique trait diversity, highlighting
theirimportance as a global reservoir of plant form and function and
reinforcing the biological and evolutionary importance of dryland
ecosystems.

The elementome responds to global change

Thesharpincrease intrait diversity observed withincreasesin aridity
and grazing pressure resulted mainly from a decrease in trait covari-
ation at aridity values higher than around 0.7 (Fig. 3). Specifically,
both aridity (Extended Data Fig. 2 and Supplementary Table 4) and
the presence of grazers (Extended Data Fig. 3 and Supplementary

occursonlyinthe mostarid conditions. ¢, Bootstrapped values for trait
hypervolume foreach grazing pressure level (high grazing, n=382; medium
grazing, n=410; low grazing, n=389; ungrazed n =166). Bootstrapped values
were generated using arandom sampling of n =100 observations for 100 times
ineacharidity and grazinglevel.Inbox plots, the centre line is the median, lower
and upper hinges correspond to the first and third quartiles, and whiskers show
the 95% confidenceintervals.Inb,c, we tested whether different aridity and
grazing pressure levels showed significant differences using a generalized
least squares model (P<0.001for aridity inband for grazinginc).Inc, letters
show results of apost hoc test based on bootstrapped pairwise comparisons
betweengrazing pressurelevels; differentletters indicate significant
differences amonggrazing pressure levels.

Table 6) increased the number of trait dimensions within the dry-
land plant trait spectrum, resulting in the presence of extreme phe-
notypes exhibiting unique trait syndromes in the driest rangelands
surveyed. For instance, all macronutrients correlated along a unique
principal component axis below the ~0.7 aridity threshold (princi-
pal component1(PC1) in Extended Data Fig. 2a, b). After exceeding
the ~0.7 aridity threshold, primary and secondary macronutrients—
namely N-P-K and Mg-Ca-S—became independent and segregated
along two different axes (Extended Data Fig. 2c-e), highlighting a
decoupling between macronutrients in plants under high-aridity
conditions.

High aridity levels also promoted functionally contrasting strategies
(see Extended DataFig. 4), such astall species with fast growing leaves
following stress-avoidance strategies?*? (defined by high N-P-K and low
LDMC values) and small conservative species following stress-tolerance
strategies"*? (defined by low N-P-K and high LDMC values; Extended
Data Fig. 4b) with either low or high Mg-Ca (Extended Data Fig. 4a)
and Zn-Na (Extended Data Fig. 4c) concentrations in leaves. These
elemental strategies can reflect the contrasting role of chemical ele-
ments in plants, either as a way to tolerate high aridity levels*, or
as base elements for defensive compounds against herbivory?¢*4
(Supplementary Table 2). By identifying an abrupt change in trait vari-
ations among plant chemical elements occurring at aridity values of
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Fig.3|Abrupt changesintrait covariations after crossing the aridity
threshold. a, Strength of trait covariations measured using a phenotypic
integrationindex (Methods) decreased with aridity. We found asignificant,
non-linear declineataridity values above approximately 0.7 (see Supplementary
Table 5 for more detailed results). Vertical dashed and dotted lines represent
the meanlocation ofthe threshold and its 95% confidence interval, respectively.
Coloured dotsrepresent bootstrapped values for trait covariation for each
aridity level. The error band shows the 95% confidence interval. b, Bootstrapped
values for trait covariation for each grazing pressure level (high grazing,
n=382; mediumgrazing, n =410;low grazing, n = 389; ungrazed, n =166).
Bootstrapped values were generated usingarandom sampling of n=100
observations for 100 times in each aridity and grazing level. Inbox plots, the
centrelineis the median, lowerand upper hinges correspond to the firstand
third quartiles, and whiskers show the 95% confidence intervals; databeyond
the confidenceinterval are outlying points that are plotted individually.

Inb, we tested whether different grazing pressure levels showed significant
differences using a generalized least squares model (P < 0.001). Letters show
results of apost hoc testbased onbootstrapped pairwise comparisons
between grazing pressure levels. Different lettersindicate significant
differencesamonggrazing pressure levels.

around 0.7, our findings highlight the importance of considering the
plantelementome to accurately grasp dryland biodiversity responses
to ongoing climate change.

Resolving the dryland functional paradox
Theabruptincreaseintrait diversity with aridity observed corresponds
with one of the recently identified ecosystem thresholds operating on
drylands worldwide®, which is characterized by declinesinsoil fertility
and plant cover after an aridity value of approximately 0.7 is crossed.
The simultaneous occurrence of alterations in crucial aspects of dry-
lands and trait diversity presents a distinctive opportunity to uncover
the underlying mechanisms through whichincreasing aridity and graz-
ing pressureimpact on dryland ecosystems.

We first hypothesized that abrupt declines in soil fertility could
explain the changes in plant trait diversity observed once the aridity
threshold of approximately 0.7is crossed. Thisis attributed to the fact
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that variationsin the chemical diversity of soils (the soil elementome)
across different sites can directly affect the plant elementome®*, We
tested this hypothesis by measuring the soil elemental concentra-
tion of the 326 plots surveyed (Extended Data Fig. 5 and Methods).
Contrary towhatis observed across plant leaves (Extended Data Fig.1
and Supplementary Fig. 5), we found a strong covariation within the
soilelementome (Extended DataFig. 5a,b and Supplementary Fig.10).
All soil elements aligned along a unique principal component that
accounts for 65.8% of the total variation observed in the soil elemen-
tome, apattern that furtherincreasedinthe mostarid areas (Extended
DataFig.5cand Supplementary Table 7). These results did not support
our hypothesis. Rather, they suggested a strong decoupling between
the soil and plant elementome, and therefore that plant elemental
concentrationreflectsindependent dimensions throughwhich dryland
plant species segregate across contrasting functional strategies®.

Alternatively, we hypothesized that declines in plant cover may
explain the observed pattern of increased trait diversity with aridity.
Since the declinein plant cover canalter interactions among plants (for
example, release of competitive interactions and collapse of positive
interactions—including facilitation and plant-soil feedback>*>*), we
expected that increasing aridity would promote the persistence of
competitively weak, but well-adapted phenotypes to aridity (see Sup-
plementary Text 2 and Supplementary Figs. 11 and 12 for a rationale
for this hypothesis). To test this hypothesis, we measured in situ total
plant cover across all of our sites (see Methods) and found that it was
sharply reduced below around 50% after crossing the aridity threshold
of approximately 0.7 (Extended Data Fig. 6). We substituted aridity with
plant coverinoursliding-windows procedure, and showed that crossing
aplant cover value of around 50% was associated with both anincrease
inthe traithypervolume and adecreaseintrait covariation (Extended
DataFig.7and Supplementary Table 8). At cover values higher than 50%,
large vegetation patches may emerge from spatial constraints only (see
the ‘spanning clusters’ in percolation theory**®), forcing plant indi-
viduals to compete for space. By contrast, the decrease in plant cover
below 50% may release competitive interactions as plant individuals
would have space to thrive by avoiding competitive interactions*>*.
The matchbetween the aridity threshold of approximately 0.7 and the
50% thresholdin plant cover therefore reinforces our hypothesis that
the observed pattern of increase in trait diversity with aridity may be
driven by a collapse of plant-plant interactions>*. Our results chal-
lenge the pervasive environmental filtering concept®°, which posits
that the abiotic environment should select for a narrow set of trait
values and reduce trait diversity in the most severe environments. By
contrast, they revealed thatincreasing plant cover and the associated
biotic processes*** act as a global filter of plant biodiversity thereby
reducing plant phenotypic diversity by half in the most productive
compared to the most arid dryland areas.

Grazingwasamaindriver of decreasing plant cover (Extended Data
Fig. 6a,c), and significantly modulated both the shape and location of
the aridity threshold (Fig. 4 and Supplementary Table 9), indicating
that climate and land use changes interact to determine phenotypic
plant diversity. Specifically, the absence of grazing shifted the observed
aridity threshold for trait covariation towards a higher aridity value
compared with other grazing pressure levels (Fig. 4). Furthermore,
removing grazing smoothed aridity effects on trait hypervolume, lead-
ing to a weak linear response of trait diversity to aridity observed in
the absence of grazers (Fig. 4). Together, our results also show that by
modifying plant cover, grazing pressure can modulate the response
of trait diversity to increasing aridity, and thus alter the trait space of
dryland plant species worldwide.

Our results shed new light on the dryland functional paradox”
by identifying a ‘plant loneliness syndrome’, in which the scattered
plants across the most arid rangeland landscapes in drylands exhibit
high degrees of trait uniqueness. This syndrome may result directly
from the collapse of biotic interactions associated with the low
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plant cover occurring in these environments*“%, and from the large

spatio-temporal variation in the distribution of limiting resources®.
Regardless of the mechanisms involved, the plant loneliness syndrome
promotes aremarkably high planttraitdiversity at the dry edge of per-
ennial plantlife. Combined with the general decline in plant taxonomic
richness observed in the most arid drylands®, our results highlight
avery low functional redundancy in the species pool of the dryland
plant flora, which could compromise their resistance and resilience
to further disturbances®.

Conclusion

Here weidentified an abrupt reorganization of the dryland trait space
after crossing an aridity value of around 0.7. Once this threshold was
reached, smallincreases in aridity led to an abrupt increase of trait
diversity. These changes were linked to a decoupling in the plant
elementome. Similarly, increases in grazing pressure substantially
increased trait diversity and modulated the identified aridity threshold.
Our findingsillustrate how climate and land use interact to shape phe-
notypic plant diversity in drylands, and bring both empiricaland mech-
anistic evidence to the dryland functional paradox”. They question the
predictions of the pervasive environmental filtering concept®° that
single trait optima enable species to persistin new environments. Our
study also deliversinsights into how vascular plants respond to biotic
stressors and environmental extremes, and shed light on how the global
plant functional trait space may be shaped by jointincreasesin aridity
and grazing pressure, which are becoming more commonin adrier and
human-dominated world. Finally, our results canimprove understand-
ing of the provisioning of essential nutrients to livestock and human
populationsindrylands under ongoing global environmental change.

the confidenceinterval are outlying points that are plotted individually.

Inc,d, wetested whether different grazing pressure levels showed significant
differences using a generalized least squares model (P < 0.001). Letters show
resultsof aposthoctestbased onbootstrapped pairwise comparisons between
grazing pressurelevels. Different letters indicate significant differencesamong
grazing pressure levels. Significant threshold responses were observed under
grazing (low, medium and high grazing pressures) on trait hypervolume (a,c)
while trait hypervolume remained constantly low as aridity increased and
increased linearly when grazing was removed (ungrazed plots). For trait
covariation (b,d), the thresholds appeared at lower aridity levels under
increasing grazing pressure.
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Methods

Further details on methods are givenin the Supplementary Information.

Study site selection

Our study focused ondrylands, areas where rainfall is <65% of the evap-
orative demand®. We surveyed 98 drylandsites located in 25 countries
from six continents (Algeria, Argentina, Australia, Botswana, Brazil,
Canada, Chile, China, Ecuador, Hungary, Iran, Israel, Kazakhstan, Kenya,
Mexico, Mongolia, Namibia, Niger, Palestine, Peru, Portugal, South
Africa, Spain, Tunisia and the USA) (Fig.1). Site selection captured most
of the aridity conditions, vegetation (shrublands, grasslands, open
woodlands, savannahs and steppes) and soil types that can be found
in drylands worldwide (see refs. 6,52 for more detailed explanation
onsite selection). At each of the 98 study sites surveyed, three to four
45 m x 45 mplots (total n = 326 plots) were selected along alocal graz-
inggradient (ungrazed, low, medium and high grazing pressure), which
was largely driven by livestock (but also included native herbivores®).
Each grazing gradient was established using the distance to artificial
water points and grazing exclosures when available (see ref. 6 for a
detailed assessment of the validation of the local grazing gradients
surveyed).Inour dataset, aridity* was defined as1 - aridity index, where
aridity index is mean annual precipitation/potential evapotranspira-
tion, following ref. 5. Aridity ranged between 0.48 (wettest) to 0.99
(driest) across the surveyed drylands. This aridity range corresponds
toagradient of mean annual precipitation between 891and 29 mmyr™,
andtoagradient of mean annual temperature between-1.2and 29.2 °C.
Our survey also captured most of the variation in grazing pressure that
can be found across dryland rangelands worldwide®.

Plant trait sampling

Fieldwork was conducted between January 2016 and September 2019.
Vegetation surveys were carried out after the main rainfall season at
eachsite to ensure surveying during (or just after) the main peak bio-
mass. This approach allowed us to standardize the sampling while
accounting for differencesin vegetation phenology among contrasted
biogeographical regions, continents, and hemispheres. We restricted
our study to perennial plants because they represent 94% of the plant
species on earth®and are instrumental in maintaining the functioning
of drylands?*>*-%,

We focused on 20 continuous traits related to the morphological
and chemical diversity of plants, which were measured following
the most updated standardized protocols®*®, These traits included:
(1) whole-plant and leaf size related traits">® (maximum plant height
(H,incm), plant lateral spread (LS, in cm?), leaf length (LL, in cm) and
leaf area (LA, in cm?)); (2) leaf traits related to carbon economy and
herbivory?32406961(SLA (incm? g™) and LDMC (ing g™)); and (3) the
foliar concentration of 14 chemical elements that characterize the plant
elementome?®*32¢2(C,N, P,K, Mg, Ca, Zn, S, Na, Cu, Fe, Al, Mn and Ba).
These traits were measured in situ within each of the 326 plots. To do
so, four 45 m transects oriented downslope were established within
eachplot,and spaced10 mapart. We then placed 25 contiguous quad-
rats (1.5 m x 1.5 m) along each transect (100 quadrats per plot). Trait
measurements were performed on five quadrats randomly selected in
eachtransect (5 quadrats x 4 transects = 20 quadrats per plot).Ineach
quadrat, we selected the most developed individual of each perennial
species present. Our sampling protocol is highly suitable to account
for both local trait abundances (because frequent species will have
more samples than rare species®®¢*) and between-plot intraspecific
trait variability®. See ref. 52 for a detailed description of the sampling
protocol followed.

We measured plant height (the height of the selected individual
fromthe ground to the highest leaves belonging to the vegetative part
of the plant) and the lateral spread using two perpendicular meas-
urements of plant width. On the same individual, we then sampled

mature and undamaged leaves at the top of the plant to ensure adevel-
opment under full-light conditions (sampled leaf surface was always
>2 cm?). Leaves were stored in moistened plastic bags and brought
to the laboratory for rehydration, before leaf area and leaf mass
measurements.

We measured the leaf area of each sampled individual by taking
pictures of the collected leaves flattened below a glass sheet and
analysed them using Image)®® (https://imagej.nih.gov/ij/index.html;
see ref. 52 for additional details). Leaf fresh and dry mass for each
sampled individual were obtained by weighing before and after oven
drying at 60 °C for 48 h. Then, dry leaves were grouped by species
within each plot in paper bags and were shipped to the laboratory of
ReyJuan Carlos University in Mdstoles (Spain) for chemical analyses.
These shipments were carried out according to national and interna-
tional regulations; exporting permits were obtained for each country
(when required) and importing permits to Spain were obtained for
every shipment by the Spanish Ministry of Agriculture, Fisheries
and Food.

Onceinthelaboratory, oven-dried leaves were ground in ahomoge-
nizer (Precellys 24; Bertin Technologies) and analysed for total nitrogen
and total carbon on a EuroEA3000 elemental analyser (EuroVector).
Total chemical elementsinleaves (P,K,Mg, Ca, Cu,Zn,S, Na, Fe, Al, Mn
and Ba) were analysed by inductively coupled plasma optical emis-
sion spectrometry with a Perkin ElImer Optima 4300 DV (Perkin Elmer)
after open-vessel nitric-perchloric acid wet digestion. At the end of this
procedure, we obtained the foliar concentration of the 14 elements for
each species sampled in each plot.

Plant cover and soil properties measurements

We quantified vegetation cover in each plot using the line-pointinter-
cept method®. We recorded points located every 20 cm along each
of the four transects for a total of 225 points per transect (900 points
per plot; see ref. 54 for additional details on this survey). Vegetation
cover was calculated as the proportion of points where perennial plants
were recorded.

We also quantified the elemental concentrations of the soil beneath
plant canopiesin each of the 326 plots surveyed in the peak of the dry
season to ensure that the data obtained across sites were as stand-
ardized and comparable as possible®. At each plot, five 50 cm x50 cm
quadrats were randomly placed under the canopy of the dominant
(in terms of percentage cover) perennial plant species. A composite
topsoil sample consisting of five 145 cm®soil cores (0-7.5 cm depth)
was collected from each quadrat, bulked, and homogenizedin the field
(five composite samples per plot were obtained). After field collection,
the soil samples were taken to the laboratory, where they were sieved
(2 mmmesh). Once sieved, samples were air-dried for one month and
stored for physico-chemical analyses. Dried soil samples from all the
countries were shipped to the laboratory of Rey Juan Carlos University
in Moéstoles (Spain) for analyses. Onceinthe laboratory, replicated soil
samples were bulked to obtain a composite sample per plot. Total C
and N concentration insoils was determined on ball-milled soils by dry
combustion, gas chromatography and thermal conductivity detection,
after removing carbonates by acid fumigation. Total P, K, Mg, Ca, Cu, Zn,
S,Na, Fe, Al, Mnand Bawere extracted by open-vessel nitric-perchloric
acid wet digestion, re-suspended in water, and measured by inductively
coupled plasma optical emission spectrometry®”*® (ICP-OES Perkin
Elmer Optima 4300 DV).

Soil pH was measured in all the soil samples with a pH meter, ina
1:1soil to water (w:v) suspension®., Soil texture (sand, clay and silt con-
tent) was measured according to ref. 69. The three textural variables
measured (sand, clay and silt) were highly intercorrelated (Spearman
Psang-sit = —0.987, P < 0.001; Spearman pg,,4-cay = —0.851, P < 0.001;
Spearman pg,_q,y = 0.766, P < 0.001). Thus, we selected just one of these
fractions (sand), to usein our data analyses because this fractionis less
prone to measurement errors given the method used.
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Datamanagement and gap-filling procedure

We compiled a database 0f 133,769 trait measurements, where each
speciesineach plotwastaggedasauniquelD (Supplementary Table 3).
Species taxonomy was standardized according to World of Flora (World
Flora Online (2023); http://www.worldfloraonline.org). 99.5% of the
individual plants were identified at the genus level, and 93.6% at the spe-
cieslevel. We used pseudo-species names for the 6.4% of species (n =18
species) that could not be identified. To ensure a high level of data
quality, all trait measurements were inspected using a semi-automated
procedure and corrected when possible following guidelines from
ref. 11 Specifically, we looked for potential systematic errors, including
wrong units or the presence of aberrant traits values for each species
and trait measured.

Morphological traits (H, LS, LL, LA, SLAand LDMC) were available at
theindividuallevel (20,961individual plants measured). Traits related
to leaf nutrients were available at the plot level for each species. To
homogenize the level of analysis for all traits, we averaged individual
morphological measurements to obtain a single trait value for each
species in each of the 326 plots. For H and LS, we also recorded the
maximum value observed in each plot and for each species to charac-
terize plant species maximum H and LS following ref. 57.

Datacompleteness varied amongtraits (Supplementary Table 3) but
overall offered a high degree of representativeness and geographical
coverage at a global scale (Fig. 1). We did not have missing data for
morphological traits (H, LS, LL). The levels of data completeness for
LA, SLA, LDMC were very high: 95%, 93%, and 89%, respectively. Miss-
ing data for these variables were mainly due to methodological rea-
sons, such as the inability to ensure a proper leaf rehydration when
measuring leaf fresh mass for LDMC. The amount of leaf dry material
sampled in the field was lower than the minimum required for some
analyses for rare species (for which the leaves of less than three indi-
viduals per plot were sampled). Thus, the number of trait samples also
differed among leaf nutrients (CN versus other macro- and microele-
ments) due to the amount of leaf dry material available for analyses
(2 mg of dry mass for C/N analyses versus 800 mg of dry mass for
other elements). In total, the level of data completeness for chemical
traits was greater than 70% for C and N concentration in leaves and
greater than 50% for other macro and microelements (Supplementary
Table 3).

Data completeness is a fundamental prerequisite of trait covaria-
tion analyses because multivariate analyses require a full set of trait
information for all species considered. Indeed, a missing value for one
trait leads to systematic deletion of the whole species. Therefore, a
gap-filling procedure inthe data trait matricesis asuitableapproachto
reduce this problem’ 72, Here, we used a highly conservative gap-filling
procedure based on the following criteria: (1) we used only trait data
measured fromour trait sampling (thatis, we did not retrieve trait data
from external databases such as TRYY); (2) the gap-filling procedure
was performed within speciesinall cases (that s, only when trait values
were available for the same species in another plot); and (3) we devel-
oped analgorithmto optimize the gap-filling procedure according to
botharidity and grazing pressure levels instead of using phylogenetic
relatedness™. Specifically, whenatrait value is missing for a given spe-
ciesin agiven plot, the algorithm allows filling the missing data by
maximizing the match between the species trait value and the local
environmental conditions (see all details of the gap-filling procedure
in Supplementary Text 3 and Supplementary Figs. 13-15). Gap filling
significantly improved data representativeness by increasing the num-
ber of species considered (Supplementary Table 3) without biasing the
trait database. Indeed, we observed remarkably low imputation errors
(11 + 8%) for most chemical traits, indicating that within species trait
variability of the plant elementome is negligible compared to what
is observed across species (see additional results in Supplementary
Text 3 and Supplementary Figs. 7 and 8).

Attheend of the procedure, atotal of 1,347 observations of 301 dry-
land plant species measured across the 326 plots with the complete set of
traits were available for analyses (compared to 887 observations before
gap filling, see Supplementary Table 3 and Supplementary Fig. 16).
Then=1,347 observations were consistently used in all main analyses.

Statistics and reproducibility

We conducted all statistical analyses using the statistical software R
4.3.2(2023-10-31 ucrt).

Characterizing the dryland trait space. To quantify the trait diversity
of dryland plant species, we first determined the fundamental trait
dimensions along which dryland plant species segregate. To do this,
weranaseries of principal component analyses (PCAs) using the com-
plete set of measured traits (Extended Data Fig. 1) and plant chemical
elements only (Supplementary Fig. 5). Traits were log-transformed
and scaled before analysis" (see the distribution of each trait in Sup-
plementary Figs. 2-4). We used the Horn’s parallel analysis from the
R package paran™ to determine the dimensionality of the PCAs?, and
applied a varimax rotation procedure to facilitate the interpretation
oftheresults.

PCAs are standard tools in trait spectrum analyses"'>*>7, They effi-
ciently summarize the covariations and trade-offs observed among
multiple traits by representing the trait loadings (arrows in Extended
Data Fig. 1) along the PCA axes (calculated from the eigenvectors of
eachtraitandthe eigenvalues of each axis). The percentage of variance
explained by each selected axis represents theimportance of each PCA
dimension in explaining the observed trait variability across species.
Eigenvalues were further used to calculate an index of phenotypic
integration, which summarizes the strength of trait covariation” "8,
This phenotypic integration index was calculated using the variance
of the eigenvalues as:

N
var(y) = X (4~ DYN §)
i-1

where y;is the eigenvalue from the ith dimension and Nis the number
of traits’. We used the eigenvalue of the un-rotated PCA to compute
the phenotypicintegrationindex. Higher values of thisindex indicate
stronger covariations among N traits. When traits are uncorrelated,
eigenvalues are similar and exhibit low variance. When traits are highly
correlated, thefirst eigenvalue ismuch higher than the other eigenval-
ues, leading to high variance. PCA axes also provide information on the
hypervolume'*#8°# gccupied by the studied species in an-dimensional
traitspace, and thus the size of the hypervolume provides ameasure of
the trait diversity observed for agiven species pool®. In this study, we
used both hypervolumes and trait covariations to quantify the effects
ofaridity and grazing on the spectrum of plant traits observedin global
drylands.

Evaluating the impacts of aridity on the dryland plant trait space.
We used a sliding-window analysis to evaluate how the hypervolume
and trait covariation changed along the aridity gradient evaluated.
Thisanalysis is well suited to investigate how the correlation between
different variables (here traits) change according to a third predic-
tor (here aridity), and to evaluate whether these changes are linear or
abrupt*®%%, To do so, we first ordered the 326 plots surveyed accor-
ding to their aridity level. We then selected all plots located within
an aridity window of 0.1 (roughly equivalent to 19% of the total arid-
ity gradient captured in our survey), starting from the lowest aridity
value observed in our dataset. The width of the aridity window used
was selected to ensure: (1) enough statistical power (307 observa-
tions of dryland plant species on average within each window; with
minimum =103 and maximum =473); (2) that the species pools selected
in each window originated from plots characterized by different
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grazing pressure levels; and (3) that the selected species belonged to
contrasted biogeographical regions across the world. Indeed, eacharid-
ity windowincluded onaverage 19 sites (minimum = 8; maximum = 32)
originated from different regions of the world to avoid spatial autocor-
relation (see Fig.1). Therefore, our sliding-windows analysis operates
ataglobalscale to evaluate how globalincreasesin aridity and grazing
pressure influence the trait poolin drylands worldwide.

For eacharidity window, we calculated the strength of trait covaria-
tions using the same PCA procedure as explained above and the diver-
sity of trait values observed within this aridity range. We randomly
sampled n =100 observations within the window and extracted the
eigenvalue of the significant selected axes, calculating their variance
toobtainanindex of phenotypicintegration. Werepeated the random
sampling of n =100 observations for 100 times within eachwindow to
calculate the confidence interval of the index for each aridity window.
We used the same procedure to calculate the hypervolume using the
R package Hypervolume®.. To calculate the hypervolume, we used the
PCA coordinates as trait values for the five dimensions of the dryland
plantspectrumdescribedin Extended Data Fig. 4. We then moved the
sliding window toward higher aridity levels of 0.01 by both adding
the plots scoring the next aridity value and removing the plots with
the lowest aridity. We repeated this analysis as many times as plots
remained along the aridity gradient. We then plotted the results and
tested how trait covariations in the dryland species pool and their
diversity changed along the aridity gradient.

We evaluated whether the observed trait responses along the aridity
gradient truly corresponded to an aridity-threshold by fitting threshold
models using the R package chngpt®*. In essence, these models find
abreakpoint in the data by dividing it according to a predictor value
(here aridity) and using two different fitting functions at each side of
the breakpoint. To assess whether these threshold models were abetter
fit to the data than a linear model we used the Bayesian information
criterion (BIC), which measures the goodness of fit of the data based
on log-likelihood of the fitting functions considering the number of
parameters used®?. The models exhibiting the lowest BIC values are
the most parsimonious and provide the best fit. Differencesin BIC <2
represent similarly good models®. Apart fromaregular linear model,
we used a generalized additive model and five different threshold
models for extracting the BIC, each differing from each other by the
functions fitted at both sides of the estimated breakpoint: step (two
intercept models, for which the differencesinintercept were tested at
the breakpoint), segmented (two linear models in which the slope is
changed atbreakpoint), stegmented (two linear modelsin which both
theslope and theinterceptare changed at the breakpoint), hinge model
12 (one linear model is fitted for the left part of the breakpoint and a
second degree polynomialis fitted for the right part), and hinge model
22 (two different second degree polynomial models are fitted at both
sides of the breakpoint). The model (either linear or threshold-like)
exhibiting the lowest BIC was considered the best model. Each of the
threshold models considered allows the identification of abreakpoint
with associated 95% confidence interval as a parameter resulting from
the modelfitting. We considered the aridity value at which abreakpoint
was observed as the aridity threshold.

We observed non-linear, abrupt responses of trait covariations
and hypervolumes at aridity ~0.7 based on the breakpoint analy-
ses described above (Figs. 2 and 3). To further examine how aridity
reshaped the dryland plant trait spectrum, we divided our data into
two subsets: below and above aridity = 0.7 + confidence interval. We
re-ran all the PCA analyses explained above to evaluate how aridity
changed the dimensionality of the trait spectrum for these subsets of
the data. We also re-calculated the hypervolume observed at low and
high aridity values, and quantified their overlap using the function
hypervolume_overlap_statisticsin the R package Hypervolume®. This
function provides the percentage of overlap between distinct hyper-
volumes, as well as the percentage of uniqueness of each hypervolume.

Assessing the impacts of grazing on the dryland plant trait space.
To test for the effects of grazing pressure, we calculated the index of
trait covariation and the hypervolumes for each grazing pressure level
(ungrazed, low, medium, and high grazing pressure). We used aboot-
strap procedure and repeated the calculation 100 times to obtain the
confidenceinterval. We then tested whether different grazing pressure
levels showed contrasted values of these indices using a generalized
least squares model to account for heteroscedasticity (using the func-
tion gls from the R package nlme®®). To represent how different grazing
pressures may alter the dryland plant trait space, we alsore-ranthe PCA
analyses for each grazing pressure level evaluated (from ungrazed to
high grazing pressure). Finally, we tested whether grazing pressure
changed the shape and the location of the aridity threshold. To do so,
we re-ran the sliding-windows analysis conducted above, but at each
grazing level separately. We tested whether grazing pressure (ungrazed,
low, medium and high grazing pressure) changed the location of the
threshold. We extracted the bootstrap distribution of the threshold at
eachgrazingpressure level, and tested, using generalized least square
models, whether the location of the threshold was significantly shifted
alongthe aridity gradient compared to the overall threshold found at
aridity ~0.7.

Assessing the impacts of aridity and grazing on the soil elemen-
tome. We examined how chemical elements in soils (the soil elemen-
tome) responded to changes in aridity. We first conducted a PCA as
explained above to evaluate how the concentrations of the 14 chemi-
cal elements in soils covary across the 326 sampled plots. We then
extracted the principal component coordinate of each selected axis
and evaluated how the soil elementome responded to grazing and
aridity using linear mixed effect models and the R package Ime4®. We
considered inthe model the effect of grazing and aridity and used site
as arandom factor (random effect: 1|site), allowing model intercept
tovary amongsites since plots belonging to the same site correspond
to alocal grazing gradient that has been repeated across the 98 sites
surveyed. Finally, we used the same sliding-windows procedure as
explained above to test how soil chemical diversity responded to arid-
ity. All soil elements covaried along a unique principal component axis
accounting for 65.8% of the total variation (Extended Data Fig. 5a,b).
Because computing hypervolumes in one dimension isirrelevant®, we
therefore computed the sliding-window analysis only to test whether
covariation among multiple soil elements changed with increasing
aridity (Extended Data Fig. 5c).

Plant cover as a modulator of the effects of aridity and grazing on
the dryland plant trait space. We evaluated how changes in plant
cover observed across global drylands once the ~0.7 aridity threshold is
crossed impacted on plant trait diversity. We first tested how aridity and
grazingimpacted plant cover using linear mixed effect modelsand the
R package Ime4®. Our modelincluded aridity, grazing, and an interac-
tion between them. Site was used as a random factor (random effect:
1|site). Themodel alsoincluded aseries of covariates known toimpact
plant cover®in drylands, such as latitude and longitude of our study
sites, aswell as their elevation and topography (slope and aspect). We
used the sine and cosine of the longitude and aspect to avoid any bias
duetointrinsic circularity of these predictors in the statistical models®
(that is, longitude (sin) and longitude (cos) hereafter, respectively).
We also considered two soil master variables (sand content and soil
pH?#®). A quadratic term was considered for pH. All predictors were
scaled before analysis to facilitate the comparison of estimates.

The full model used was: Imer (Plant Cover ~ (1|site) + latitude +
longitude (sin) + longitude (cos) + exposure (sin) + exposure (cos) +
slope + elevation + aridity x grazing + sand + pH + pH?). Using this
full model, we ran a model averaging procedure to select the set of
predictors that best explained variations in plant cover. To do this,
we applied a multi-model inference procedure using the MuMIn



R package®. This method allowed us to create a set of models with all
possible combinations of the initial variables, which were fitted using
amaximum likelihood procedure®® and sorted according to the Akaike
information criterion. Aridity and grazing were the main drivers of plant
cover in our analyses (Extended Data Fig. 6). Finally, we substituted
aridity by plant cover in our sliding-windows procedure to test how
plant cover influenced hypervolume and trait covariation (Extended
DataFig.7).

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All processed datasets generated during the current study are available
inthe open source repository at https://doi.org/10.57745/SFCXOO0.

Code availability

The R code used to analyse the data is available in the open source
repository at https://doi.org/10.57745/SFCX0O0.
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Extended DataFig.1| The trait space of global dryland rangelands.
a-crepresent the probabilistic species distributionsin the space defined by a
Principal Component Analysis (PCA) on whole-plantand leafsize, and on leaf
chemical traits. ashows the dimensions related to plant size and leaf C-economy.
b-cshow the additional, butindependent dimensions related to the plant
elementome characterized by the concentration of 14 elementsin plant leaves:
C,N,P,Mg,Mn, Ca, Cu, Al,Ba, Fe, K, Na, S, and Zn. The dryland trait space
displayed five major dimensions (Principal Components PC1to PC5), accounting
for 66.7 % of the total trait variation. Ina, Leaf traits related to leaf C-economy
(PC1) and plant size (PC3) varied along two orthogonal dimensions and
accounted for atotal of28.2% of trait variation. Inb-c, the plant elementome
accounted for 55.5% of trait variation. While adimension of the plant elementome
covaried with the leaf C-economy dimension?” (N-P-K on PC1), italso added
three other orthogonal dimensions that were associated withimportant
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macro- and micronutrients (PC2, PC4, PC5). These findings show thatalarge
fraction of trait diversity found across global drylands is not captured by plant
sizeandleaf C-economy alone, but by the plant elementome (see Supplementary
Fig.5foranadditional description of the elementome; Supplementary Fig. 8
for the PCA ranwithout the gap-filling of the data; Supplementary Fig. 7 for
pictures of dryland plant species). The color gradient depicts the different
species densitiesin the trait space (high and low density inred and fading
yellow, respectively). The arrow length is proportional to the trait loadings.
Each point represents thelocation of aspecies within the five-dimensional trait
space forall the species surveyed (n =1347). Abbreviations: maximum plant
height, H; Lateral spread, LS; Leaflength, LL; leaf area, LA; specificleafarea,
SLA;leafdry matter content, LDMC. See also Supplementary Table 4 for
detailed results.
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Extended DataFig.2|Aridity reshuffles the trait space of global dryland
rangelands. We show how trait covariation changes along the aridity gradient
using Principal Component Analysis (PCA) conducted for sites with aridity
valueslocated below and above the aridity threshold of ~0.7 (Low aridity
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ofthe traits considered. Ina-b, four principal components were selected at
aridity values < 0.7 whilein c-e five components were selected at aridity
values > 0.7.See Extended Data Fig. 1for trait abbreviations and Supplementary

Table 4 for detailed results.



2 a 2 C
o & 5
oo o S
T «0 w 0
O O
Q. a
) LDMC B B
-2 0 -2 -1 0 1 2 3 -2 - 1 2 3
PC 1 (17.4%) PC 3 (11.9%) PC 4 (11.6%)
©
Q
g s [
2 2
S ¥y S
N~ <
9 s S
~ 0 L 50
O O
n._1 Zn n._1
LDMC
2 LL 2 5 n =389
-2 0 -2 -1 0 1 2 3 -2 - 0 1 2 3
PC 1 (18.4%) PC 3 (11.7%) PC 4 (11.3%)
. )
o <
g 51
(U o)
o T
DD N
c g
: -1
-2

-2 0
PC 1(22.2%)

Extended DataFig. 3 | Presence of grazers modulates the trait space of
global dryland rangelands. We show how trait covariation changes with
increasing grazing pressure using Principal Componentanalysis (High Grazing
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n=382; Medium Grazing n =410; Low Grazing n=389; Ungrazed n=166). The

arrow lengthis proportional to theloadings of the traits considered. In a-i, five
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principal components were significantly selected in low, medium, and high
grazing pressures. Inj-k, four principal components were significantly
selectedinungrazed plots. See Extended DataFig.1for trait abbreviations and
Supplementary Table 6 for detailed results. Low =low grazing pressure, Med =
medium grazing pressure, and High =high grazing pressure.
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elementome) to aridity. Soil elements covary across the 326 sampled plots gradientand selected all plots within this aridity range (n > 30 plotsin each
alongaunique Principal Componentaxis (PC1) thataccount for 65.8 % of soil window). We finally examined how the bootstrapped covariation of soil elements
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(seemethods). Wefirstordered the 326 plots according to their aridity level.
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whether different grazing pressure levels showed significant differences using
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Study description Our study focused on drylands, areas where rainfall is < 65% of the evaporative demand. We surveyed 98 dryland sites located in 25
countries from six continents (Algeria, Argentina, Australia, Botswana, Brazil, Canada, Chile, China, Ecuador, Hungary, Iran, Israel,
Kazakhstan, Kenya, Mexico, Mongolia, Namibia, Niger, Palestine, Peru, Portugal, South Africa, Spain, Tunisia, and the United States of
America) (see Figure 1 main text). Site selection captured most of the aridity conditions, vegetation (shrublands, grasslands, open
woodlands, savannahs, and steppes) and soil types that can be found in drylands worldwide.

Research sample Vegetation surveys were carried out after the main rainfall season at each site to ensure surveying during (or just after) the main
peak biomass. This approach allowed us to standardize the sampling while accounting for differences in vegetation phenology among
contrasted biogeographical regions, continents, and hemispheres. We restricted our study to perennial plants because they
represent 94% of the plant species on earth and are instrumental in maintaining the functioning of drylands.

Sampling strategy We focused on 20 continuous traits related to the morphological and chemical diversity of plants, which were measured following
the most updated standardized protocols. These traits included: i) whole-plant and leaf size related traits1,59 (maximum plant height
[H, cm], plant lateral spread [LS, cm?], leaf length [LL, cm] and leaf area [LA, cm?]); ii) leaf traits related to carbon-economy and
herbivory27,32,40,60,61 (Specific leaf area [SLA, cm2.g-1], leaf dry matter content [LDMC, g.g-1]); and iii) the foliar concentration of
14 chemical elements that characterize the plant elementome28,29,32,62 (C, N, P, K, Mg, Ca, Zn, S, Na, Cu, Fe, Al, Mn, and Ba).

These traits were measured in situ within each of the 326 plots. To do so, four 45 m transects oriented downslope were established
within each plot, and spaced 10 m apart. We then placed 25 contiguous quadrats (1.5 m x 1.5 m) along each transect (100 quadrats
per plot). Trait measurements were performed on five quadrats randomly selected in each transect (i.e., five quadrats x four
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transects = 20 quadrats per plot). In each quadrat, we selected the most developed individual of each perennial species present.
Our sampling protocol is highly suitable to account for both local trait abundances (because frequent species will have more samples
than rare species) and between-plot intraspecific trait variability65. See ref.52 for a detailed description of the sampling protocol
followed.

see more details in the Methods section.

Data collection Data were collected by all coauthors of the study.

Timing and spatial scale  Fieldwork was conducted between January 2016 and September 2019. Spatial scale global

Data exclusions We did not exclude data points

Reproducibility We used standardized protocles in each field location

Randomization Indivudal plants were sampled in quadrat that were randomly selected in each sampling location (see methods)
Blinding Our study is an observational study not a clinical research study. Blinding was not relevant in our case.

Did the study involve field work? Yes |:| No

Field work, collection and transport

Field conditions Our study focused on drylands, areas where rainfall is < 65% of the evaporative demand51. We surveyed 98 dryland sites located in
25 countries from six continents (Algeria, Argentina, Australia, Botswana, Brazil, Canada, Chile, China, Ecuador, Hungary, Iran, Israel,
Kazakhstan, Kenya, Mexico, Mongolia, Namibia, Niger, Palestine, Peru, Portugal, South Africa, Spain, Tunisia, and the United States of
America). Aridity ranged between 0.48 (wettest) to 0.99 (driest) across the surveyed drylands. This aridity range corresponds to a
gradient of mean annual precipitation between 891 and 29 mm/yr, and to a gradient of mean annual temperature between -1.2 and
29.2°C. Our survey also captured most of the variation in grazing pressure that can be found across dryland rangelands worldwide6.

Location (Algeria, Argentina, Australia, Botswana, Brazil, Canada, Chile, China, Ecuador, Hungary, Iran, Israel, Kazakhstan, Kenya, Mexico,
Mongolia, Namibia, Niger, Palestine, Peru, Portugal, South Africa, Spain, Tunisia, and the United States of America)

Access & import/export  These shipments were carried out according to national and international regulations; exporting permits were obtained for each
country (when required) and importing permits to Spain were obtained for every shipment by the Spanish Ministry of Agriculture,
Fisheries and Food.

Disturbance The sampling did not involved any distruibance

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:
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Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Plants

Seed stocks We samples leaves from plants in the fields. We measured plant height, i.e. the height of the selected individual from the ground to
the highest leaves belonging to the vegetative part of the plant; and the lateral spread using two perpendicular measurements of
plant width. On the same individual, we then sampled mature and undamaged leaves at the top of the plant to ensure a

Novel plant genotypes Hévelopment under full-light conditions (sampled leaf surface was always > 2 cm?).

Authentication NA
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