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Abstract—Joint blind source separation (JBSS) involves the
factorization of multiple matrices, i.e. “‘datasets”, into “sources”
that are statistically dependent across datasets and independent
within datasets. Despite this usefulness for analyzing multiple
datasets, JBSS methods suffer from considerable computational
costs and are typically intractable for hundreds or thousands of
datasets. To address this issue, we present a methodology for
how a subset of the datasets can be used to perform efficient
JBSS over the full set. We motivate two such methods: a
numerical extension of independent vector analysis (IVA) with the
multivariate Gaussian model (IVA-G), and a recently proposed
analytic method resembling generalized joint diagonalization
(GJD). We derive nonidentifiability conditions for both methods,
and then demonstrate how one can significantly improve these
methods’ generalizability by an efficient representative subset
selection method. This involves selecting a coreset (a weighted
subset) that minimizes a measure of discrepancy between the
statistics of the coreset and the full set. Using simulated and real
functional magnetic resonance imaging (fMRI) data, we demon-
strate significant scalability and source separation advantages of
our “corelVA-G” method vs. other JBSS methods.

Index Terms—Joint Blind Source Separation, Independent
Vector Analysis, Multiset Canonical Correlation Analysis.

[. INTRODUCTION

The goal of joint blind source separation (JBSS) is to
factorize several datasets arranged as matrices into components
that maximize a measure of statistical dependence across the
datasets while maximizing independence within each dataset.
In BSS terminology, each individual component is called a
“source”. By this understanding, JBSS naturally generalizes
blind source separation (BSS) of a single dataset by ex-
ploiting an additional statistical power: source dependence
across the datasets. This not only estimates sources with
greater interpretability, but also aligns sources across datasets
and provides additional means to compare datasets via their
uncovered source dependencies. JBSS has been frequently
used for analyzing medical imaging datasets [1]-[4], but has
seen applications in various other domains, such as remote
sensing [5], frequency domain analysis [6], molecular property
prediction [7], and various other applications.

The primary characteristic of JBSS is exploiting cross-
dataset dependencies via constructing sets of dependent
sources, typically called “source component vectors” (SCVs).
Each SCV includes one source from each dataset, and JBSS
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methods typically operate by maximizing dependence within
each SCV and independence across different SCVs.

Differences between JBSS methods largely hinge on the
measure of statistical dependence being utilized. Mutual in-
formation is the primary measure used in independent vector
analysis (IVA) [6], [8], a multi-dataset generalization of inde-
pendent component analysis (ICA) for BSS. IVA algorithms
parameterize each SCV by a multidimensional probability den-
sity function (PDF) to model statistical dependencies within
and across SCVs. IVA methods offer some of the most
powerful estimation capabilities of JBSS, yet IVA algorithms
are burdened by higher computational expenses.

On the other hand, simpler methods such as multiset canoni-
cal correlation analysis (MCCA) [2], [5], [9], [10] and variants
of generalized joint diagonalization (GJD) [11]-[13] exploit
only source correlations as the measure of dependence, which
leads to significantly more efficient algorithms with possibly
less powerful estimation capabilities. An IVA algorithm most
comparable with these methods is one assuming a multivariate
Gaussian distribution (IVA-G) [14]. As dependence between
Gaussian random vectors is described only by correlation,
IVA-G similarly enjoys lower computational complexity and
thus IVA-G has become a practical algorithm for performing
IVA. Theoretically, algorithms exploiting only source correla-
tion have been shown capable of estimating underlying SCVs,
so long as the SCVs do not possess covariance matrices that
are related to each other in certain aspects [14], [15].

Despite the powerful statistical capabilities of JBSS, many
JBSS methods are computationally infeasible for very high-
dimensional data, particularly with too many datasets (e.g.,
hundreds or more). This is especially a concern given the
availability of larger numbers of datasets, and the benefits of
including as many datasets as possible in the decomposition
for capturing the underlying distribution and relationships
in the data. Complexity of JBSS with respect to the num-
ber of datasets K can be shown as at least O(K?) for
even the simplest JBSS methods, however, a recent JBSS
method proposed in [16] called “regIVA-G” allows for O(K)
complexity. This method operates by performing JBSS first
on a small subset of the K datasets to learn “regressor”
sources, and sources from the remaining datasets are then
estimated by maximizing/minimizing correlation with these
regressor sources. The reglVA-G method is so named because
it uses a multivariate Gaussian assumption for the SCV, and
thus can be interpreted as a regression-based extension of
IVA-G. It was further demonstrated that reglVA-G allows a
specified dimension-parameterization for the SCVs: whereas
IVA-G assumes a K-dimensional distribution for the K-
dimensional SCVs, regIVA-G effectively parameterizes the
SCV dimensions by the number of datasets in the subset.
This allows regIlVA-G the ability to provide lower-dimensional
parameterizations to over-parameterized SCVs. Thus, regIVA-
G was demonstrated as both feasible to large numbers of



datasets and flexible to the effective dimensionality of SCVs.
In this paper, we provide a comprehensive methodology for

“reglVA-G”: scaling IVA-G on a subset to a much larger set

of datasets. Our paper provides the following contributions:

« As an alternative to the analytic method proposed in [16],
we propose a numerical method to reglVA-G based on
maximum-likelihood IVA-G [14].

o For the analytic and numerical methods, we give theoret-
ical understanding of their capabilities via deriving non-
identifiability conditions: statistical conditions for when
the methods cannot identify sources in a new dataset.

o Whereas [16] used random subsets, we propose selecting
a subset that minimizes a novel discrepancy-based cost
function [17], [18] between the statistics of the subset and
the statistics of the full set. We derive this discrepancy
measure directly from the analytic method’s objective
function, noting the discrepancy is applicable to most
other JBSS methods. We then introduce an efficient sub-
set selection method to minimize the discrepancy based
on coresets (weighted subsets) [18]-[22], motivating the
name “corel VA-G” for performing IVA-G with coresets.

We compare performance of the methods with coreset vs.
random subsets, alongside other efficient JBSS algorithms,
on simulated and real functional magnetic resonance imaging
(fMRI) datasets. Our results demonstrate that corelVA-G can
significantly outperform other comparable methods in both
computational and source separation performance.

The paper is organized as follows. Section II formulates
the JBSS problem. Section III introduces IVA and IVA-G.
Section IV introduces the reglVA-G methodology for scaling
IVA-G on a subset to a larger set of datasets, and introduces
two methods for scaling to a new dataset. Section V de-
rives nonidentifiability conditions for both methods. Section
VI introduces a subset selection method by minimizing a

K number of total datasets (dataset index k = 1,..., K)
N number of SCVs (SCVindex n =1,...,N)
T number of samples (sample index t = 1,...,T)

x[k] 7 X[K] kth dataset (€ RN/ RNXT)
slkl 7 Sl¥] kth dataset’s true sources (e RN / RNXT)
y[k] 1 YF] kth dataset’s estimated sources (e RN /RN XT)
sw / sw nth true source in kth dataset (e R/RT)
ylf ! / Lf ] nth estimated source in kth dataset (e R/RT)
Al¥] kth dataset’s mixing matrix (€ RVXN)
W K] kth dataset’s estimated demixing matrix (&€ RN XN
al¥l nth column of Al¥] (e RN)
(w Lk]) nth demixing vector (row vector) in Wl (e RY)
sn / Sn nth true SCV over all K datasets (€ RE RKXT)

yn/!Yn nth estimated SCV over all K datasets
(€ RE JREXT)

CE 41 / CEZ 1 (¢, j) datasets’ cross-covariance matrix
/ sample cross-covariance matrix (€ RN XN

Cy, / Cy" yn’s covariance matrix
/ sample covariance matrix (€ REXK)
Ky number of datasets in the regIVA-G subset

Table 1. Notations used in this paper. Vectors are given as column vectors, e.g. Wy,

discrepancy measure between the statistics of the subset and
the full set. Section VII demonstrates performance with respect
to simulated data and real fMRI data. Section VIII concludes
with takeaways and discusses future areas of improvement.

II. JBSS PROBLEM FORMULATION

We start with the JBSS problem formulation. We have K
datasets, each modeled as linear mixtures of N sources. At
some sample ¢, the generative model is:

xFly = AW slFly | v=1,....7, k=1,...,K, (1)

with x¥ = [2¥ 2T ¢ RN denoting the N observed
signals within the kth dataset, A¥l ¢ RVxN denotln% an
unknown invertible “mixing” matrix, s[k] = [k] .. k

€ RY denoting the kth dataset’s IV latent source 51gnals, and
()T denotes the transpose. JBSS methods generally do not
make any model assumptions on the A[* (other than being
full rank), only modeling the sl*l. Note we assume that for
each dataset the number of mixtures is equal to the number of
sources N. In practice, an overdetermined system of more
mixtures than sources is reduced to /N mixtures, typically
using principal component analysis (PCA) on each dataset.

The goal of JBSS is to estimate the K datasets’ sources, via
estimating K demixing matrices W¥ € RV*N that demix
the datasets into the estimated sources y[k] = W x[¥ with
ylHl = [ygk], ey y[]\,k}]T € R¥. The nth row of demixing matrix
WL is given by (wif ])T, and is used to estimate the nth
source within the kth dataset, via yﬂc] = (w[,{“ ])T x[],

With T samples of data, the observed datasets are repre-
sented by matrices X% = x® . xhT ¢ RNXT and the
model (1) is given as X = A¥] SI¥ with sources given by
Skl = [s[lk], e, SKC,]}T € RV*T and estimated sources given
by Y = Wi X = [y ylT ¢ paver,

To model dependencies across datasets, JBSS formulations
assume that sources of the same index n are dependent across

Sk, index set of the K} subset

Sn /Syp  nth true SCV of the Kj subset (€ REv | REwXT)
n /Y,  nthestimated SCV of the K}, subset (€ R¥v / REvxT)

slil 5%] Sy, appended with nth true source
in ith remaining dataset (€ REv+1 / RUKp+1)XT)

il ?k] ¥y appended with nth estimated source
in ith remaining dataset (€ RE»+1 / R(Ep+1)xT)
C.i covariance matrix of gLi] (€ RKp+1) X (Kp+1)y
Cym sample covariance matrix of y ~[ | (€ REEb+1)X(Kp+1))y
(cg])m vector of cross-correlations of SL] with S, (€ REb)
(éw)m vector of cross-correlations of y[ 7 with Y (€ REv)
R} (T )2 XU ¥l Ym x0T (€ RNXN)
S (€ RTXT)
m#*n
Qn & (S0 Sn = Xmoy SISl (€ RT*T)
m*En
X[KIT X[k kth dataset’s projection embedding (€ RTxT)
Y mean embedding of all K datasets (€ RTXT)
k] . k
] is a column vector, and (WL])T

a row vector, with | denoting the transpose. Datasets and sources (e.g. x[*!, s/*!, and y!*!) are represented

as either a random vector, or by 7" observed samples of a random vector (e.g. x[*!

e RN / X ¢ RVxT),



the K datasets, thus forming N sets of K sources. In IVA
terminology, each of these sets is referred to as a “source
component vector” (SCV). The nth SCV is denoted by s,, =
[sg], s SLLK]]T € RE, and is estimated by y,, = [yLl], el
YT € RE . Over T samples, the nth SCV is represented by
the matrix S,, [sg], e [K}] € REXT estimated by Y,
[yL1 ], e yL }] € REXT Typically each SCV is modeled as
independent from all other SCVs, thus any two sources across
the datasets are modeled as dependent only if they correspond
to the same index n (nth SCV).

JBSS algorithms can only identify demixing matrix vectors
(wlf ] )—r (and thus the estimated sources yn]C ) up to scaling and
permutation ambiguity within each dataset. JBSS additionally
orders sources to align with the order of SCVs, such that the
nth source within a dataset corresponds to the nth SCV.

Additionally, JBSS implementations typically involve stan-
dardizing and prewhitening each dataset prior to estimation,
as this considerably simplifies the calculations involved in
solving these problems [23]. It is notable that when datasets
are standardized and prewhitened, then provided that the SCVs
are uncorrelated (and thus sources are uncorrelated within
datasets), it follows that the residual mixing matrices AlK]
become asymptotically orthogonal for the observed datasets
X as T — oco. We will assume for the remainder of the
paper that datasets are standardized and prewhitened prior to
JBSS, thus each mixture and source is zero mean unit variance.
However, as in practice we deal with finite 7, we do not

generally assume that the Al*] are orthogonal.

III. IVA AND IVA-G: BACKGROUND

This section explains the JBSS methodology of IVA, and
explains that a multivariate Gaussian parameterization of the
SCVs leads to the IVA-G method. We explain that despite
IVA-G being perhaps the most efficient IVA method, IVA-
G is computationally limited, thus motivating the regIVA-G
methodology outlined in the following section.

A. Independent Vector Analysis (IVA)

The fundamental assumption of IVA is that the N SCVs are
independent, and thus JBSS can be performed by minimizing a
measure of dependence among the SCVs. A useful and general
measure of dependence is the mutual information among the
N SCVs. Given estimated SCVs y,, (determined by demixing
matrices W*]), this leads to the general IVA cost function:

K

Trva (W Z?—l{yn} = > tog|det (W) | @
k=1

where W is the collection of W! for k = 1,..., K, and

H{y~} is defined as the entropy of SCV estimate y,, which is
specifically defined by its PDF [8]. The term log | det (W*) |
acts as a penalty effectively ensuring that sources are close to
being uncorrelated within each dataset.

B. IVA with multivariate Gaussian Distribution (IVA-G)

IVA-G [14] is a variant of the general IVA cost (2) where
each SCV’s PDF is modeled as multivariate Gaussian with

independent and identically distributed (i.i.d.) samples ¢. The
IVA-G cost is thus given by :
det( )

Z log det( )
3)
RKXK

where we define Cyn = ﬁ Y, Y, € as the sample
covariance matrix of SCV y,, and ¢ = 1NK log(2me) is a
constant. Minimizing (3) can also be explained as minimizing
correlation amongst the N SCVs while also maximizing the
correlation within each SCV [14], [16].

Despite its efficiency among IVA methods, IVA-G nonethe-
less suffers from computational complexity. We consider
the minimum computations required for IVA-G numerical
methods provided in [14]: computing the gradient. Here, we
ignore the one-time initial costs of estimating the CLZ’J] =
75 XU XUIT € RV*N the dataset cross-covariances, for
1 < i,j < K. Asides from estimating the Gl each
iteration requires updating all NK demixing vectors W[ |
where each wﬂ“ ) update involves an update of W of O(V 3)
complexity, an update of Cy of O(N?K) complexity, and
an update of C i L of O(K?3) complexity. If IVA-G requires
q iterations to converge, this leads a total complexity of
O(q(N*K + N3K? 4+ NK%)). This leads IVA-G to becoming
computationally infeasible for large K, motivating the need
for the low complexity alternative methods described in the
following sections.

Jva-c(

Z log

IV. REGIVA-G: SUBSET-BASED METHODS
FOR LARGE-SCALE IVA-G

We now provide an overview of the main methodology of
the paper: using a subset of the datasets to efficiently perform
IVA-G on all datasets. The methodology was first introduced in
the preliminary work of [16] and was called “regIVA-G” due
to the solution being a multilinear-regression of the subset’s
estimated SCVs. For simplicity, we refer to this methodology
as “reglVA-G” when using a general choice of subset (e.g.
a random subset), and later refer to the methodology as
“corel VA-G” when using a coreset (weighted subset) selected
to best represent the statistics of the /K datasets.

The reglVA-G methodology is illustrated in Fig. 1. The three
steps of reglVA-G are summarized as follows:

1) partitioning step: divide the K datasets into two groups
(K = Ky + K,), the K}, regressors and the K, regressed:

o K, datasets that form the subset estimated by IVA-G
(whose sources will form regressors)

o K, remaining datasets (“new” datasets) that will be
regressed onto the regressor sources of the subset

2) subset estimation step: perform IVA-G on the K subset,
estimating the subset’s W*! and corresponding N SCVs
Y~'n, which we call regressor SCVs.

3) regression step: use the regressor SCVs to separately
estimate IV sources in each of the K, remaining datasets.
Each source in remaining dataset X7 is estimated such
that it is maximally correlated to one regressor SCV and
maximally uncorrelated to the N — 1 other SCVs.
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Fig. 1. illustration of the reglVA-G methodology.

Unlike IVA-G or other JBSS methods, this methodology
estimates sources in each remaining dataset independently
of other remaining datasets. As a result, this methodology
exhibits asymptotically linear complexity with respect to K,
provided that K, is fixed and K, — oo. With large K, regI VA-
G’s complexity is dominated by the O(K) regression step.

In the following sections, we overview two methods for
performing the regression step: one being the explicit numer-
ical minimization of the IVA-G cost, and the other being the
GJD-type analytic solution proposed in [16].

A. reglVA-G-N (Numerical method)

The regIl VA-G method for numerically minimizing the IVA-
G cost, which we refer to as regl VA-G-N, is simply described:
for each remaining X[, estimate WU by performing IVA-
G on the K, subset’s datasets appended with X[ (thus
performing on K} + 1 total datasets), while updating only that
ith dataset’s W (fixing constant the subset’s W to those
W!H estimated in the subset estimation step).

We first provide notations for the regl VA-G-N subproblem
over K + 1 datasets as to differentiate from IVA-G over all
K datasets, namely we introduce new notations concerning
the ith subproblem’s SCVs. We first denote 8, € RE® as the
nth SCV of the subset, and 8 = 8, sg]]T € REv+1 as the
nth SCV of the subset appended with sw, the nth source in
the ith dataset. These quantities resFectlvely correspond to the
estimated SCVs: y,, € R%? and y yn,yn ] € REvH,
Over T samples the SCVs are represented by the matrices
Sn € REwXT S [i] _ [ST z] c R(Kb+1)><T’ ?n c REoxT
and Y%] — [Y;LF7 [i]] c RE+)XT

Using this notation, we can write the cost function per each
ith remaining dataset as a modified version of (3). If we denote
the nth estimated SCV’s sample covariance by C. sl =

(YM ) (YM )T

T
e RUKe+Dx(Ke+1) “and ignore the constant

term, the reglVA-G-N cost function is given by:

Z log|det ( ) ‘ —log

All methods for minimizing (3) are also applicable to (4); the
only difference with (4) is that all W*] are fixed for k # i.

For each of the K, remaining datasets, reglVA-G-N’s
regression step involves IVA-G to minimize (4) over Kj + 1
datasets. Given IVA-G’s complexity described in Section III.B,
it follows that the complexity of reglVA-G-N’s regression step
is O(K, q(N* + N3(Kp +1) + N(Kp, + 1)3)).

“4)

TregvA-G-N( (Wl = det (W[ ]) ‘

B. reglVA-G-A (Analytic method)

The analytic method proposed in [16], which we refer to as
reglVA-G-A, is a highly efficient alternative to the previously
described numerical method with cost described in (4). In
contrast to (3) and (4), reglVA-G-A measures the degree of
source dependence by the squared correlation between sources,
analogous to generalized joint diagonalization (GJD) costs
[11]-[13]. Furthermore, unlike reglVA-G-N in (4) where each
dataset’s sources are estimated jointly (via W), regIVA-G-A
involves separate estimation of each source (via each wn])

We now describe reglVA-G-A’s objective function. Corre-
lation of the nth source in X! with each of the mth SCV’s
sources is given by (é%])m = ﬁ Y, XliIT W%] € R¥v. The
degree of correlation with that SCV is measured by the sum of
squared correlations with sources in the mth SCV: ||( Cn ) |J

(¢ %])m (¢ Lf])m = %]T RM WL], where we define R%
(745)% XU YT Y, XHUT € RN*N_ Using these R,
reglVA-G-A’s objective function measures the corresponding
nth source’s degree of correlation with its nth SCV, weighted
against the correlation with the N —1 other SCVs:

Z RUIwi - (5)

m;én
Subject to Hwn]||2 = 1, the wi that maximizes (5) is
estimated by the principal eigenvector of [ [ _ ZN: Lﬂ]

m#n
For each remaining dataset reglVA-G-A involves calcu-

lating the N SCVs R (of complexity O(N3Ky)), the N
[Rk 72 ; R } (of O(IN?)), and the principal eigenvector

of each [R[ g 72 = R[ ]] per wn (of O(N3)). Thus, com-

plexity of regIlVA-G- A’s regression step is O(K, (K, +2)N3).

It is notable that because the w[ T are separately estimated in
each +th dataset, this analytic method does not explicitly max-
imize source uncorrelatedness within each dataset (unlike the
numerical method). Instead, uncorrelatedness within datasets
is indirectly achieved by maximizing uncorrelatedness with the
subset’s SCVs. This difference between the regl VA-G methods
leads to differences in estimation capabilities, highlighted in
Section VII when simulating correlated SCVs.

In the next section, we derive conditions on the data’s
generative model for which reglVA-G is unable to uniquely
identify the true sources (via demixing vectors w%f]) subject
to scale and permutation ambiguity, which we refer to as the
nonidentifiability conditions of regIVA-G.

[I> 1

jregIVA-G—A (Wk])



V. REGIVA-G NONIDENTIFIABILITY CONDITIONS

This section is dedicated to deriving the nonidentifiability
conditions of regIVA-G: statistical conditions on the data’s
generative model for which regIlVA-G is unable to identify
sources S in the regression step of a new dataset X7/, When
these conditions are not satisfied, precise inference of Sl is
possible such that one can achieve Y[ = Sl via achieving
Wl = (A1)~ subject to scale and permutation ambiguities.

Denoting al’l as the nth column of Al and (w,[f])T as the
nth row of WU, identifiability occurs for the nth source if
WH = aL,] subject to scale and permutation ambiguity.

These proofs use notations defined earlier in the paper,
and proceed under the following assumptions:

e T — 00, thus the data’s true statistics are known

(e.g., C[w E{XHX[J]T} € RV*N for 1 <i,j < K)

o uncorrelated SCVs (E {sm sz} =0 for m # n)

« prewhitened datasets (thus AlF are orthogonal matrices)

« the subset’s sources have been estimated exactly

(Yn = Sn € R¥»*T) thus our only concern is identify-
ing the remaining datasets’ sources (via their W)

Nonidentifiability of reglVA-G depends on the SCV covari-
ances, which we require notation for. From Section IV.A, we
remind the nth reglVA-G SCV is defined s = [5,) SL]]T

€ R¥»+1 which is the subset’s nth SCV §,, € RX¢ appended

with the new dataset’s nth source s%]. We also define:

e Gy = E{s//sl T} € RSHDX(KitD) g5 the
covariance matrlx (also correlation matrix) of s[]

. (CL])m E{s m}T € RE» as the vector containing
correlations of the new dataset’s nth source s%] with all
sources in the subset’s mth SCV s,,.

For convenience, we denote ¢ = K341 within the regression

step, such that [(c H),TL, 1] is the last row/column of C_i:

The following theorem states the nonidentifiability cond1-
tions shared by reglVA-G-N and regIVA-G-A.

Theorem 1 (reglVA-G nonidentifiability conditions):

We follow all assumptions listed at the beginning of Section
V. Considering the nth source in the zth remaining dataset s%],
corresponding to demlxm? vector wn , it follows that SL] is
nonidentifiable (wn # ap, | subject to scale and permutation
ambiguity) if and only if for any 1 < m # n < N, both
(i), = 0 € REs and (c i, =0 e REe, .

Slmpl?/ stated: For SQ] to be nonidentifiable, sw
source sm must be uncorrelated to their corresponding SCVs.

We first derive these conditions for reglVA-G-N’s (4), and
later derive these conditions for regIlVA-G-A’s (5).

and another

A. reglVA-G-N nonidentifiability

Proof: We outline the two main steps in this proof:

1) show reglVA-G-N’s regression step is actually a particular
variation of ICA, and thus reglVA-G-N can be more
easily studied via the ICA nonidentifiability conditions.

2) show that reglVA-G-N’s Fisher Information Matrix (FIM)
is singular if and only if (c M) = 0 and (CL])n = 0.

Before connecting reglVA-G-N to ICA, we first introduce

some preliminaries regarding the IVA cost function.

IVA requires specification of p,(y,), the (chosen) differ-
entiable PDF of the nth SCV (for n = 1,..., N). Associated
with this PDF is the score function for the nth SCV [8], [14]:

0 log pn(Sn) k=1,2,..., K
[P (Sn)le = o sH (1) t=1,2,..., T

Regarding the reglVA-G-N subproblem over K;+1 datasets,
we define the score function for the ¢th subproblem’s nth
true SCV by dpE) = [p(E,)T, d(5)]T € RE++1 and nth
estimated SCV by d((F1) = [d(3.)7 ,¢(y7[f])]T € REs+1,

Now we connect reglVA-G-N to ICA. If we assume the
statistics are known (1" — ©0), and we multiply the general
IVA mutual information cost function in (2) by 7', the negative
of (2) becomes equivalent to the log-likelihood [8], [14].
Within the general IVA log-likelihood gradient, by fixing all
W to constant quantities for k # i (as done by regIVA-G-
N), we obtain reglVA-G-N’s log-likelihood gradient:

0T wa(WH) i 7T a1\ "
S = —0(Y )X +T (W) )
where ¢(F) = [d@), ..., o)) € RN are the ith

dataset’s score functlon components, observed over T samples
by @ (Y1) = [p(@), ..., d(HN)] € RV

We now note that th1s gradient (6) takes the exact same form
as the gradient of the log-likelihood for ICA [24]. Because
of this equivalency, reglVA-G nonidentifiability can be more
easily studied in terms of ICA nonidentifiability.

We refer to [1], [24] for the ICA nonidentifiability con-
ditions. We focus on the log-likelihood’s Fisher Information
Matrix (FIM), F(Wll) € RN"*N* a5 nonidentifiability
conditions are those conditions that make the FIM singular.
Evaluated at the optimum WALl = T (subject to scale /
permutation ambiguity), the FIM is block diagonal, with:

o N positive scalars (for each source);

. w matrices F,, ,, € R?*2 (for each pair of sources).

As the scalars are positive, invertibility of the FIM depends
only on invertibility of the F,,, ,, matrices [1], [24], given by:
Konn 1

1 Kn,m
and provided IVA-G assumes unit variance sources with i.i.d.
samples, then K,, ,, = E {d)(swf} E {SLZ]Q} =E {d)(s%) }
€ R (not a function of m).

Then as IVA-G assumes a multivariate Gaussian PDF [14],
the nth SCV’s score function is d)(sn]) C }] sl € REw+1,

and E{q)([”)q)(*”) - ¢} € €, 1 = C}. Thus,
the F,, ,, are defined by K,, ,, = (C )(Z i) Wthh is the
(i,7)th diagonal entry of the inverse correlat1on matrix C_;

For the F,,, ,, to be 1nvert1ble it follows ICp, 1, # ICm no
ie., (C )(1 oy # 1/(C )(l i) However, since C [l is the

inverse of a correlation matrlx its diagonal entries must obey
(CN[ )iy > 1[25], and (C 1])(Z ;) = 1 is achieved only when
Sn S

Fm,n: },1§m,n§N,

n

(c[z]) =0 (e., s[] is uncorrelated to its own SCV) [25].
Thus, having (C .1)(,» oy = 1/(C )(7 ;) requires that
(C D) = 1/(C )(Z o =1, Wthh requ1res (c u)n =0

and (cLl)m =0. Thus completes the proof for reglVA-G-N.



B. reglVA-G-A nonidentifiability

Proof: We first refer back to the reglVA-G-A objective func-
tion in (5). Evaluated at Y,, = S,,, (5) is equivalent to

T regIVA-G-A (wlih) = wlITXEQ, X Twli] @)

where we deﬁnefl =c? [STQ Zm 1 S| S m] e RTXT,
and we define ¢ = 7= for sake of brev1ty

This Q@ is equlyalently » = Q,Q,, where we define
Q. =c[2S],...,S],...,28}] € CT*NKb g5 the horizontal

concatenation of the N SCVs, where all SCVs except the nth
are multiplied by imaginary number z. It follows that:

xliQ, xiT = A[i]s[i]Qans[i]TAMT
- A[i}QL:']Qg}TA[i]T,

where we define QLZ:] =Sl Q,, € CN*NEs g5 the correlations
of all SCVs with each source of the ith dataset. Given
uncorrelated SCVs, Qw is represented by the block dla%onal
matrix of N vector blocks: QZ] = g 1 vY(m,n) (em)ms
with y(m, n) equals 1 when m = n and equals z otherw1se

W1th Qn having this block diagonal structure, it follows
that Qn Ql]T € RNVXN is a diagonal matrix, with the
mth diagonal element given by ~(m,n)? (c%) (c%)m, here
v(m,n)? equals 1 when m = n and equals —1 otherwise.

We now consider the eigendecomposition of Q%] Qgh.
With Q%] Q%]T being a diagonal matrix, its eigenvectors
are given as an identity matrix, and its eigenvalues are its
diagonal elements. The principal eigenvalue is (c%]);r (c%])n
> 0, which is the only eigenvalue capable of being positive.

With Al orthogonal, it follows that Al QE]QWT AlT
has the same eigenvalues of Q l]T , but the corresponding
eigenvectors are the columns of A[Z] Thus when the principal
eigenvalue is positive (( )n (c M) > 0), 1t follows that the
corresponding principal eigenvector of Al Q Q[Z]T AT
is uniquely :i:a[n], in which case identifiability is achieved.
Therefore, nonidentifiability occurs only when the principal
elgenvalue (c Ll])n (CL])n is non-unique.

As (c %])n (c Lf])n is the only nonnegative eigenvalue, and
all other eigenvalues are nonpositive, then (c%])z (c Lf])n is
non-unique only when (c£f])n (c%])n is equal to 0 and one
of the N — 1 other eigenvalues is also equal to 0. This only
occurs for the nth and mth SCVs when (cy)n (cEf])n =0
and (ci)T (ci]),, = 0, requiring that (c!)),, = 0 and (cl)),,
= 0. Thus completes the proof for reglVA-G-A.

Therefore, for either regl VA-G method, identifiability of Sl
is possible so long as there is not more than one source in
Sl that is uncorrelated with its SCV. An example of this
occurance is when several sources are random “noise” sources
uncorrelated to all other sources in the system. Yet if there
is only one source sgl] where (CL])n = 0, then sU is still
identifiable because the remaining sources have (cm) # 0.

It is also notable that this condition specifically depends
on the subset’s sources; with a different choice of subset,
the correlations (c,[i])n will be different. Thus, there can be
cases where identifiability is not possible with one subset and
possible with another.

In the next section, we discuss how performance of the
reglVA-G methodology can be improved by a specific choice
of the subset, referred to as “corelVA-G”.

VI. COREIVA-G: REGIVA-G WITH CORESET SELECTION

Performance of reglVA-G is predicated on the subset choice.
Intuitively, the best subset is one that is most “representative”
of all K datasets. A perfectly representative K subset ideally
should produce the same results as using all K datasets
in place of the subset, resulting in an estimation that is
comparable to IVA-G on all K datasets simultaneously.

This section develops a measure of a subset’s represen-
tativeness in the context of IVA-G. To simplify derivations,
we assume SCVs are uncorrelated and datasets X[ are
prewhitened, thus the A[* are orthogonal. However as we
show later, this measure is also applicable in general when
SCVs may not be uncorrelated or the datasets not prewhitened,
and also applicable to other JBSS methods that only model
SI*, opening the possibility of subset-based methods for
efficiently optimizing other JBSS objective functions.

A. corelVA-G subset selection: Cost function

We start with the reglVA-G-A’s objective function (5), and
assume the subset’s sources are exactly identified such that
Yn = Sn. Our goal will be to compare (5) evaluated over a
particular K, subset to (5) evaluated over all K datasets.

From Section V.B, we note that (5) can be rewritten as in
(7): JregIVAGA(WE]) wil TXUQ, X Twll Here, we
scale (7) via Q, by 1 2, such that we now redefine Q,,
= Kb [Sn S Zm 1 ST Sm] ERTXT.

To consider the * representatweness” of the K, subset’s f).n
matrix over all KX datasets, we also consider this matrix over
all KNdatasets. Thus, we similarly define Q,, = % [S,] S,
— Y m=1 S, S;n] € RT*T evaluated over all K datasets.

m#n

Compafing the regl VA-G-A (7) over K} datasets to (7) over
K datasets, these objective functions only differ between Q,
and Q,,. Thus, we can measure the “representativeness” of a
K, subset by the distance of its fln from €,,. If we denote
Sk, as the index set that specifies a K, subset’s datasets from
the K total, representativeness of that subset can be measured
by the squared Frobenius distance measure R (Sk,) :

R (Sk,) = (8)
2
N
=2, =) I, 9)
mzn e
where we define £, = 7= S| S, — £ S| S, e RT*7,

Assuming the NV SCVs are uncorrelated to each other, it
is straightforward to show that ( vec(Z,,) , vec(X,) ) =0
for m # n, where vec(.) denotes the vectorization. This is
useful considering vectorized quantities: ||a + bHé = HaHé +
||bH§ + 2(a, b), as (9) can be equivalently represented using
vectorized forms of matrices, and ||a + b||§ = ||a||12: + ||b||12:
= |la— b||§ when (a,b) = 0. Thus, (9) can be rewritten as:



2
2

N N N
R(S1) = ||Zn = D Zm|| =D lIZalle= D=
m: n=1 n=1

F
This allows us to write R (Sk,) in terms of “embeddings”

of each dataset’s sources S[k]TS[k]:

2 2
N
1 T
_ _ = [kl g[k]
22 Sl X s S sl
n=1 n=1 ]CGSKb kESK F
2
1 T
| k1T all [k] * gl¥]
= Z S -5 > sl's
keSKb keESK F
(10)

where Sk represents the index set of all K datasets.

This (10) is particularly useful because if we assume the
SCVs are uncorrelated and the data is whitened (thus the
Al are orthogonal matrices), it follows that S Sk —
ST AK T ARSH — XXM, This means that without
even knowing the underlying sources, R (Sk, ) can be written
just in terms of the original whitened datasets:

Y XWXy

k‘GSKb

2

R (Sk,) = (1)

F

where W = %>, co XXk € RTXT is what we call

the “mean projection embedding” (MPE) of all K datasets, a
fixed quantity that we aim to approximate with our subset.

This allows directly measuring a subset’s representativeness
before JBSS, motivating combinatorial optimization methods
to select a subset that “best” minimizes (11).

We now discuss how (11) can be used to define “represen-
tativeness” in the general JBSS context, not just for IVA-G.

Most JBSS methods represent datasets as linear subspaces
(specifically all JBSS methods that model only the S[*! and
not the A[F), as these methods are invariant to the A*l. Both
X and S[¥ effectively provide orthonormal bases for the
same N dimensional linear subspace of R”. While a choice
of orthonormal ba51s for this kth subspace is not unique,
the quantity XK XK ¢ RTXT, commonly known as a
projection matrix, provides a unique, canonical representation
of that kth subspace. This is because X[ }T X K] 1s 1nvariant

to an¥ realization of orthonormal basis X¥ (as X[* X[k] =
XK A AT X[k] for any orthogonal matrix A € RNXN)

While X[k] X¥ is more commonly referred to as a
projection matrix (e.g. in ordinary least squares regression), in
the study of linear subspaces via the Grassmannian manifold
[26], X*1' X[k s called the “projection embedding” of its
linear subspace (as it “embeds” the subspace into a unique
coordinate in ]RTQ). When these X5 X* are averaged
across K datasets, the resultant “mean projection embedding”
(MPE) ¥ provides a statistic capturing information shared
across the subspaces (namely, subspaces that are “most shared”
across the X[’“]). In that sense, (11) can be interpreted as
a discrepancy-based cost function [17], [18], [21] measuring
distance between a subset’s and the full set’s MPEs.

This discrepancy can be further decreased if we consider
weighted subsets. If we assign weight A\, € R to each kth
dataset, where weights can be organized into a vector A

= [A1,...,Ak,] € REv, then we can consider a weighted
variation of (11):
2
RSk, = | = 3 W XETXE —w |
kESKb F

Methods that use weighted subsets to minimize discrepancy-
based costs are referred to as coreset methods [18]-[22], and
thus we refer to “corelVA-G” as the “regl VA-G” methodology
where a weighted subset is constructed to minimize (12). In
corel VA-G, we also apply these weights \; to the subset esti-
mation and regression steps, such that reglVA-G’s objectives
in (4) and (5) coincide with the weighted discrepancy in (12).

B. overview of corelVA-G

We now overview the corelVA-G methodology:

1) partitioning step: select K datasets that minimize (11),
simultaneously learning coreset weights \j. Divide the K
total into this K, coreset and the K, remaining datasets.

2) subset estimation step: perform a weighted IVA-G
on the coreset, estimating weighted regressor SCVs.

3) regression step: use the weighted regressor SCVs to sep-
arately estimate sources in each of the K, remaining
datasets, using either reglVA-G-N or reglVA-G-A.

Weighting can simply be done by multiplying each coreset
X¥l by its respective A, and steps 2-3 are performed using
weighted datasets in place of their nonweighted versions.

For the purpose of efficiently minimizing (12), we consider
greedy methods that progressively add one dataset to the subset
until K, datasets are selected. Furthermore, it is significantly
more efficient to use kernel methods to minimize (12), as
a greedy method would otherwise require constructing the
subset’s MPE at each ith step for ¢ = 1,..., K;. Instead,
kernel methods define the cost only in terms of the kernels
between datasets, which only need to be calculated once at
the beginning of the subset selection. The canonical choice
of kernel for (12) is the inner product between the datasets’

embeddings: ( vec(X[k]TXUc])7 Vec(X[k]TX[k]) ). However, it

is more convenient to use the “projection kernel” [26]:
L1 vl T

ker(i. i) = — || —xlixb || = = J]H
er(i,j) =+ | 771 IS

The kernel is normalized in [0 1], where O indicates the
subspaces are orthogonal, and 1 indicates the subspaces are
equivalent. This is especially useful as the CE’J can be
calculated as done with IVA-G, thus CEJ ] can be used for
both the kernel and the JBSS procedure. Our implementation
of minimizing (12) is the “weighted kernel herding” (WKH)
method [22], a greedy method with theoretical guarantees
such as the property of “weak submodularity”. It is notable
that when greedily performing WKH such that each new kth
dataset is learned aside its weight )\, this ensures that (12)
can only decrease or stay constant as the subset size increases.

A final consideration is how the subset size K} should be
determined for coreIVA-G. Provided that the kernels between



the K datasets are organized into a matrix @ € RE*K guch

that (@); ; = ker(, j), we may assume that the optimal K, is
the number of datasets necessary to model @ with a low-rank
approximation. Thus we may assume K, is the “rank” of @,
motivating techniques using the eigenspectra of ® to select
K. However with WKH, as (12) can only decrease or stay
constant as the subset size increases. a practical choice of K}
can be made at the point which (12) stops decreasing, which
agrees with the aforementioned rank-based methods provided
that ® is low-rank. In practice when K, is not specified in the
greedy procedure, we select K; when the Kjth weight wg,
is sufficiently small: wg, < 7. We find 7 = 0.001 is a good
choice for the general case.

In the next section, we demonstrate performance of several
JBSS algorithms, including reglVA-G (with a random subset
of datasets) and corel VA-G (with a WKH subset), applied to
separating simulated data. We demonstrate how each algo-
rithm’s separation performance depends on the statistics of the
underlying sources. After that, we demonstrate performance on
real fMRI sources over a large number of datasets.

VII. RESULTS

We use joint inter-symbol-interference (joint-ISI or jISI) to
study separation performance of JBSS when A!*] are known,
such as in the case of simulations. jISI is given by:

1 (o= G
- _Imm] 4
2N(N — 1) [Z (Z maxy, g[n,p] >

n=1 \m=1

+ i i g[n,m] _1
— max, g[

n=1 p,m]

ISIjnt (W, A) =

With W as the set of all Wl A4 as the set of all A
G = W Al s the “mixing-demixing matrix” of the kth
dataset, g[k] the [m, n] entry in G[*, and Gimn] = % 2521

[m.n]
|g[[:i)n} . jIST is given in [14] as an extension of the inter-
symbol-interference measure (IST) for BSS introduced in [27].
JISI is normalized in [0 1], and collectively measures how
close each G!¥ matrix is to a permuted diagonal matrix, with
0 jISI indicative of perfect separation.

We also use cross joint inter-symbol-interference (cross-
jISI) as an alternative performance measure when Al¥ are
not known, such as with real-world data. Cross-jISI is also
normalized in [0 1] and measures “consistency” of a JBSS
algorithm’s estimated sources across different initializations
of the data: if cross-jISI is nearly O, then essentially the same
sources are estimated regardless of an algorithm’s initialization
[28]. The cross-jISI between two “runs” (initializations) uses
nearly the same formula for jISI except W is the set of all
WIFl estimated for one run and .A is the set of inverses of
all WI¥ estimated for another run. For our experiments, our
reported cross-jISI values are averaged across all pairs of runs,
recording the average “distance” between any two runs.

As our paper focuses on efficient JBSS, we limit our results
to the source correlation-based JBSS methods. These include
the MCCA-SUMCORR solution (often simply called MCCA,
which we also call in this paper) [9], [10], a nonorthogonal
GJD algorithm called GNJD which is state of the art among

GJD algorithms [12], IVA-G [14], regIVA-G (random subset)
[16], and coreIVA-G. For numerical algorithms, we imple-
mented the default stopping criteria of each algorithm and
limited to a maximum of 1000 W*| updates. We utilize the
efficient “Newton” method [14] when implementing IVA-G.

For all performance evaluations done in Sections VII and
VIII, we use the computational resources provided by the
UMBC High Performance Computing Facility (HPCF), thus
CPU time is reflective of HPCF’s capabilities.

A. Performance with simulated data

Our SCV generative model for simulated data is as follows.
We model each SCV s,, as a K-dimensional multivariate
Gaussian distributed random vector, with mean 0 € R¥X and
some specified covariance Cs, € RE*X. JBSS algorithms
that exploit source correlation have statistical capabilities and
nonidentifiability conditions dependent on these Cs_, therefore
we provide a comprehensive model for the Cg, as follows:

Cs, =aB, + 8117 + 0Q + (Ix
where the following quantities are defined:

e a, f3, 0, and ¢ are weights in [0 1] that all sum to 1, such
that Cg is a correlation matrix.

o B, € REXE 5 block matrix of R2 total blocks, thus R,,
blocks on the main diagonal. Each diagonal block is of
a random size (uniformly distributed in [1 (K — R,)]),
constrained such that the diagonal block sizes sum to K.
All elements in the (i, j)th block in B,, equal the (i, j)th
element in a matrix Qp, € R¥*%n which is randomly
generated from the Wishart distribution, normalized such
that Qp, is a normalized similarity matrix, and then
elementwise-squared such that Qg is strictly nonnega-
tive. We note that R,, can be seen as the “effective rank”
of B,, (number of unique eigenvalues), and an increase in
R,, corresponds to a decrease in the “off-block™ values.
In a sense B,, can be understood as the “group structure”
of s,,, modeling groups of correlated sources sometimes
seen with medical imaging datasets [1], [3], and R,, can
be understood as the number of groups in that SCV.

o 3117 € REXK is a matrix where all elements equal 3.
This matrix can be understood as the minimum threshold
of correlation within that SCV (any two sources within
s, must have correlation of at least 3).

o Q € REXK js arank K matrix randomly generated from
the Wishart distribution, then normalized and element-
wise squared such that Q is a positive definite, strictly
positive normalized similarity matrix (like Qg, ). This
matrix can be understood as adding random variations
in correlation to the otherwise simple structured Cg ,
effectively ensuring all eigenvalues and eigenvectors of
Cs,, are unique. This effectively makes the Cg, farther
from the JBSS nonidentifiability conditions and results in
an improved JBSS separation performance.

o Ix € REXK is an identity matrix that models the
covariance of additive noise of the nth SCV. We model
all additive noise signals as being uncorrelated to all
other noise signals in the system (as otherwise their
correlatedness defines dependence that helps JBSS).



Furthermore, all SCVs are generated jointly together in a
concatenated form s = [s],...,s\]T € RVE, which allows
us to not only specify the SCV covariance matrices Cg, but
also the cross-covariance between separate SCVs. To this end,
we additionally introduce v € [0 1] as the cross-covariance
value shared between any two SCVs, thus any two sources of
two different SCVs have correlation v. Many JBSS methods
assume the SCVs are completely independent and thus ~y
= 0, however it is notable that JBSS is still possible with
dependent SCVs so long as they are maximally independent,
which are still identifiabile as JBSS methods merely maximize
independence among SCVs. This is an important aspect to
include in simulations as real-world SCVs are often dependent,
such as with medical imaging data. Increasing v demonstrates
a more difficult separation problem for the JBSS methods.

Our simulated experiments test for varying the values of
each variable individually, in addition to varying the number
of SCVs N and the number of datasets K. Notably, time
complexity of JBSS algorithms primarily depends on the data
dimensions N and K and less on the statistics of the data.

Each experiment varies one variable while fixing all others
to a fixed value specified here. Unless otherwise varied, we
resort to these default values for variables: 8 = 0, o0 =
0, =01~v=0 N =38, K = 30, and T = 50000.
With N = 8, we default to 4 of the SCVs having R,
= 2 and the other 4 SCVs having R, = 3. Due to the
challenging nature of the default variables chosen, the default
Cs,, have a simple block structure that has a highly non-unique
eigendecomposition, which allows us a better lens to magnify
the different estimation capabilities of the algorithms.

All SCVs are jointly generated from 7' samples of the
multivariate Gaussian random vector s = [sy, . ..,sy]| € RVE
according to specified Cg, and the specified ~y. Sources are
then distributed to their datasets S[’“], then mixed with values
in Al¥l drawn from the standard Gaussian distribution.

Each variable’s experiment measures jISI and cross-jISI
in separate sub-experiments. For the jISI sub-experiment, we
perform 1000 data simulations and report average jISI with
initializations W*] = I. For the cross-jISI sub-experiment,
we perform 50 data simulations and provide each simulation
with 20 random initializations of W'*! (all algorithms share
the same initializations), and report average cross-jISI over
these 50 simulations. The cross-jISI experiments omit MCCA-
SUMCORR as it is an analytic solution invariant to initializa-
tions, thus its cross-jISI can be treated as 0.

We also note that reglVA-G-N and regIVA-G-A perform
nearly the same for all experiments in terms of jISI and cross-
JISI except for when the experiment is varying the SCV cross-
correlation ~. This was also observed for corelVA-G-N and
corelVA-G-A. Thus to simplify those experiment’s plots, we
refer to regl VA-G as the performance shared by both regIVA-
G-A and reglVA-G-N, and coreIVA-G as the performance
shared by both coreIVA-G-A and corelVA-G-N.

Fig. 2 plots the algorithms’ CPU time performances with
varying the number of datasets & and the number of SCVs N.
We first note that MCCA-SUMCORR (MCCA), reglVA-G-A,
and coreI VA-G-A are the most efficient of all tested algorithms
and have nearly overlapping CPU times when varying either

K or N. The MCCA-SUMCORR solution performed here is
an analytic solution where the W are obtained from the N
principal eigenvectors of Cx = =15 X X' € RVEXNK,

where we define X = [X[l]T7...,X[K}T]T € RNEXT 3¢
the vertical concatenation of the K datasets [10]. This leads
MCCA-SUMCORR to have a computational complexity of
O((NK)3) which is among the lowest complexities of all
JBSS algorithms. While MCCA-SUMCORR is efficient for
large K and N, we expect reglVA-G-A to outperform in CPU
time when K — oo due to its asymptotically linear complexity
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Fig. 2. CPU time (minutes) w.r.t. varying number of datasets
K (fixing N=8) and number of sources N (fixing K=30).
MCCA, regIVA-G-A and coreIVA-G-A overlap in varying K
and N. GNJD and coreIVA-G-N overlap in varying K.
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Fig. 3. jISI and cross-jISI w.r.t. varying number of datasets K.
regl VA-G methods overlap (“regl VA-G”), coreIVA-G methods
overlap (“corelVA-G”). All cross-jISI figures (including this
one) omit MCCA, as MCCA’s cross-jISI is always O.
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Fig. 4. jISI and cross-jISI w.r.t. varying number of SCVs N.
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Fig. 5. jISI and cross-jISI w.r.t. varying the SCVs’ “effective

rank” R,, (number of blocks in each Cg)).



with K. On the other hand, regIVA-G-N and coreIVA-G-
N are significantly slower algorithms, primarily due to their
numerical optimization of each ¢th remaining dataset, resulting
in CPU times comparable with GNJD. Finally, IVA-G is the
most expensive of all tested algorithms. These plots were
observed using the default values of all variables, however we
note that across all experiments, each algorithm’s time was
observed to essentially only depend on the dimensions K and
N and not depend on the statistics of the data.

Fig. 3 plots the algorithms’ average jISI and cross-jISI
performances with varying the number of datasets K. Due
to the challenging nature of the default variables chosen, IVA-
G and GNJD have significantly worse estimation capabilities
than the other algorithms. We note that when the Cg  have
a simple low effective rank structure, performance of IVA-G
suffers when K is very large since IVA-G overparameterizes
SCVs. Conversely, GNJD performs worse when K is small.
On the other hand, MCCA-SUMCORR assumes a generative
model where each SCV is a “common source” shared across
the K datasets, thus modeling each SCV S,, as an effectively
rank 1 matrix [9]. Apparently this simpler parameterization
allows MCCA-SUMCORR to outperform with simpler Cg_,.
Finally, we observed coreIVA-G to be the best jISI performing
algorithm with increasing K. As regIVA-G and corelVA-G
use a smaller number of datasets K} to model the remaining
datasets, K} becomes the effective dimensionality of the
SCVs (thus avoiding SCV overparameterization), allowing
these methods to maintain good performance with large K.

Fig. 4 plots the algorithms’ average jISI and cross-jISI
performances with varying the number of SCVs N. Like in
the previous experiment with varying K, IVA-G and GNJD
perform the poorest among all tested algorithms, whereas the
other algorithms perform significantly better in jISI in order
of reglVA-G, MCCA-SUMCORR, and coreIVA-G (best).

Fig. 5 plots the algorithms’ average jISI and cross-jISI
performances with varying the number of blocks in each SCV
R,,. We observe all algorithms perform worse with increasing
R,,, which we believe is the result of less correlation in
the Cs, due to the way the Cg, are generated, and the
Cs, possibly being closer to nonidentifiability conditions.
We notably observed that GNJD performed poorly with R,
= 2, but was among the best performing algorithms when
R,, is large, with performance similar to coreIVA-G. Like
in the previous experiments, coreIVA-G is among the best
performing of all tested algorithms.

Fig. 6 plots the algorithms’ average jISI and cross-jISI per-
formances with varying (3, the minimum correlation between
any two sources in the same SCV. All algorithms except GNJD
perform better with increasing [, whereas GNJD performs
significantly worse with larger 5. This may possibly be due to
GNIJD’s separation performance being more sensitive to when
all SCVs have Cg, with more similar elements (elements be-
come closer together). Like the previous simulations, coreI VA-
G is among the best performing of all tested algorithms.

Fig. 7 plots the algorithms’ average jISI and cross-jISI
performances with varying o, the amount of Wishart ran-
dom “variability” added to the Cg, , which deviates the Cg,
from having a non-unique eigendecomposition and deviates
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from JBSS nonidentifiability. All algorithms except MCCA-
SUMCORR perform better with larger o, whereas MCCA-
SUMCORR performs slightly worse with larger . We antic-
ipate that this is due to the fact that as MCCA-SUMCORR
effectively models each SCV (and thus each Cg ) as a rank
1 matrix, adding the Wishart variability tends the Cg, closer
to a rank K model and thus tends farther from the MCCA-
SUMCORR assumed model. IVA-G in particular performs the
best when o is high, which we attribute to the K-dimensional
maximum likelihood SCV model providing the best SCV
model in this scenario. Like the previous simulations, coreI VA-
G is among the best performing of all tested algorithms, only

0.1 0.2
0.08 A _ 015 MCCA
_ 006 2 v =0 GNJD
= ee & 0.1 =0 IVA-G
0.047" = o e g b o o’ reglVA-G
0.02¢ =8 T0057" ¥ =m0 o __|=*®= corelVA-G
0 0
0 0.2 0.4 0 0.2 0.4

B (min. SCV corr) B (min. SCV corr)

Fig. 6. jISI and cross-jISI w.rt. varying /3, the minimum
correlation between any two sources in the same SCV.
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] & T,
o 0 - g -
0 0.1 0.2 0 0.1 0.2
o (Wishart noise) o (Wishart noise)

Fig. 7. jISI and cross-jISI w.r.t. varying o, the amount of
Wishart random “variability” added to the Cg .
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Fig. 8. JISI and cross-jISI w.r.t. varying (, the level of additive
noise in the SCVs.
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Fig. 9. jISI and cross-jISI w.r.t. varying v, the SCV cross-
correlation. regl VA-G methods overlap in cross-jISI. coreIVA-
G methods overlap in jISI and cross-jISI.



beaten by IVA-G in jISI when o is high.

Fig. 8 plots the algorithms’ average jISI and cross-jISI
performances with varying (, the level of additive noise in
the SCVs. Increasing ¢ decreases the total level of correlation
in the SCVs and results in a harder JBSS problem. All algo-
rithms perform worse with greater noise, with the relationship
between ( and jISI appearing to be linear. Interestingly, the
cross-jISI of all algorithms is not as affected by greater noise,
aside from GNJD which has a exponential plot very similar
to its cross-jISI plot observed for increasing 5. An increase
in B or ¢ both correspond to all off-diagonal values in each
Cs,, becoming closer together, which may predict performance
issues for GNJD. Like the previous simulations, coreIVA-G is
among the best performing of all tested algorithms.

Fig. 9 plots the algorithms’ average jISI and cross-jISI
performances with varying -, the cross-correlation between
separate SCVs. v = 0 corresponds to uncorrelated SCVs,
whereas increasing 7y presents a harder JBSS problem. We
first note that this is the only case of changing the generative
model’s variables where we observed a difference in jISI
between the analytic and numerical methods of regIVA-G
and corelVA-G: when v > 0, reglVA-G-N outperformed
regl VA-G-A in jISI, and coreIVA-G-N (slightly) outperformed
corelVA-G-A in jISI. We anticipate that this is because the
numerical methods’ cost functions per each ith remaining
dataset are a function of all demixing vectors W%], whereas the
analytic methods’ objective functions are a function of a single
demixing vector at a time. In particular, the log | det (W[k]) |
term in the numerical methods may lead to better performance
with correlated SCVs (otherwise log | det (W) | = 0
when SCVs are uncorrelated and the datasets are prewhitened).
However we note that with coreIVA-G, the difference in jISI
between coreIlVA-G-N and coreIVA-G-A is observed to be
very small, which justifies coreIVA-G-A as practical method
not just in time complexity but also in separation performance.

Next, we study the performance of the JBSS algorithms in
the context of a resting-state fMRI data experiment.

B. fMRI data experiment

One common application of JBSS is for analyzing medical
imaging datasets, particularly with fMRI data [1]-[3]. For
many fMRI datasets, most SCVs estimated by JBSS are
typically both low-rank and correlated to each other, with
statistics like those modeled in Section VII.A. Thus, fMRI
datasets typically have SCVs that are challenging to estimate
for algorithms that only exploit source correlation. At the same
time, fMRI datasets are also typically very large and thus also
necessitate efficient JBSS algorithms, like those algorithms
only exploiting source correlation.

Our experiments use the resting-state fMRI data from the
bipolar-schizophrenia network on intermediate phenotypes (B-
SNIP) [29], [30]. We used subject datasets available at multiple
sites for a total of K = 1175 subjects. A single 5-minute
resting fMRI scan was captured for each subject, who were
instructed to maintain an open-eyed state, concentrate on
a crosshair presented on a display screen, and remain still
throughout the scanning process. At least R > 97 time
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points were obtained for each subject. We removed the first
3 time points to address the T; effect and each subject’s data
was preprocessed including motion correction and slicetime
correction. Each subject image was masked, yielding a matrix
X[ e REXT where each of the R time point rows was a
flattened observation vector of T' = 57878 voxels. We then
standardized and whitened these X% using PCA, and the
first IV principal components were retained for the subsequent
JBSS performance evaluations. The order N = 80 was chosen
by selecting an adequate order analyzing post-analysis results,
however, we also note that N = 80 was the largest possible
order we could use given the HPCF maximum available
memory (350 GB). We thus preprocessed K = 1175 subjects’
fMRI datasets X[*] ¢ R80x57878 1. — 1 K, which were
then used to perform JBSS.

Given the massive size of this fMRI data, which would
be infeasible for most JBSS methods (including IVA-G, GID
methods, etc.), we perform JBSS on the data using only
two methods: coreIVA-G-A and MCCA-SUMCORR. With
NK >> T, we performed the MCCA-SUMCORR solu-
tion from a singular value decomposition (SVD) of X =
X7, XIKIT)T ¢ RVEXT a5 estimating the MCCA-
SUMCORR W from the N left singular vectors of X
provides a significantly more CPU and memory efficient
alternative to calculating these from the eigendecomposition of
of Cx = 745 X X7 € RNKEXNK This method of performing
MCCA-SUMCORR is mathematically equivalent to group-
PCA [31], and thus can be seen as performing a group-level
PCA on the K datasets to select N group level components
whose corresponding weights in the PCA form the demixing
matrices WI*I [10]. We used K, = 40 for coreIVA-G based
on higher quality post-analysis results with this Kj.

As we do not have ground-truth sources with real data (and
thus can’t directly measure source separation with jISI), we
use other performance measures on the results:

o total CPU-time to estimate all W*!

o cross-jISI between WI*! of runs with different initializa-
tions (measuring consistency in estimated sources)
“mean PSR”: average of the SCV’s power spectral ratios
(PSR). PSR is defined as the power ratio between low-
frequency (< 0.1 Hz) and high-frequency (> 0.15 Hz)
bands within estimated sources. Considering the frequen-
cies of neural-activity related BOLD signals are generally
below 0.15 Hz, high power ratio values typically indicate
BOLD activity and low power ratio values typically
associate with noisier estimates and artifacts [32].

To measure cross-jISI, we ran corelVA-G 10 different
times with 10 random initializations for the estimated W,
When plotting estimated fMRI sources, we retained the run
that had the minimum cross-jISI between all other runs (the
run “most similar” to all runs). As MCCA-SUMCORR is
performed with SVD, which has an analytic solution (invariant
to initialization), we report MCCA-SUMCORR’s cross-jISI as
0 and use results from a single run.

Table 2 presents the performance measures of corelVA-
G and MCCA-SUMCORR (MCCA) on the fMRI data. We
first note that MCCA-SUMCORR takes about 20% more
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Fig. 10. Plots of JBSS estimated sources for coreIVA-G and MCCA-SUMCORR (MCCA) obtained from the fMRI data.
(a) Distribution of power spectral ratio (PSR) values over the N = 80 SCVs, for both coreVA-G and MCCA-SUMCORR.
(b) (¢) (d) (e) plot the principal right singular vector of four different SCVs (a way of summarizing the K sources in the

corresponding SCV Y,, € REXT

, accounting for possible sign ambiguities of the sources). (b) and (c) correspond to two SCVs
glorp g g p

representing the default mode network (DMN), (d) and (e) correspond to two SCVs representing the visual (VIS) networks.

Table 2. Performance measures of corelVA-G and MCCA-
SUMCORR (MCCA) on the K = 1175 fMRI datasets. The
best performing algorithm per measure has its value in bold.
coreIVA-G’s CPU-time is averaged over 10 runs. Mean PSR
is the average of all N = 80 SCV’s power spectral ratios.
We included only coreI VA-G and MCCA-SUMCORR as other
methods (such as IVA-G, GID, etc.) were computationally
infeasible for this large dataset.

Cgl[é;t;;l;e cross-jISI | mean PSR
corelVA-G 40.88 9.42¢-9 3.16
MCCA 48.78 0 2.02

CPU-time. We anticipate the relative time difference between
the algorithms would increase significantly with larger K
due to the O(K) complexity of the coreIVA-G regression
step, whereas MCCA-SUMCORR has a complexity with K
of O(K?®). We then note that MCCA-SUMCORR has the
advantage of an analytic solution and thus the estimated
solution is invariant to the initialization (cross-jISI of 0),
however, coreIVA-G’s observed cross-jISI value of 9.42e-9
is low enough such that the difference between sources of
any two runs is essentially negligable. We also note that
coreIVA-G has higher mean PSR values averaged across the
N = 80 SCVs, indicating that coreIlVA-G generally estimates
less noisy sources compared to MCCA-SUMCORR. Fig. 10
(a) presents violin plots visualizing the distribution of the
N = 80 SCVs’ PSR values, further demonstrating that on
a whole the PSR values were significantly higher per SCV
with coreIVA-G compared to MCCA-SUMCORR.

Fig. 10 also plots spatial maps for the algorithms’ estimated
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SCVs (referred to as networks), two networks corresponding to
default mode network (DMN) domains in (b) and (c), and two
corresponding to visual domains (VIS) in (d) and (e). Each plot
is of the principal right singular vector of that corresponding
SCV Y,, € REXT providing a way of summarizing the K
sources yﬂc Vin Y ,,, accounting for possible sign ambiguities.
When analyzing plots of estimated sources, we found these
differences in coreIVA-G vs. MCCA-SUMCORR:

o “focal” activations correspond to activation peaks at the
center of an activated region and a gradual decrease in
magnitude away from the region, which is a desired qual-
ity in fMRI spatial maps. Sources estimated by MCCA-
SUMCORR generally display more noise, particularly the
blue plotted areas, and are generally less “focal” than the
corresponding sources estimated by coreIVA-G.

higher activation magnitude within a source may cor-
respond to a better isolation of that source’s functional
network (FN), which may indicate a better demixing of
sources. We observed overall higher activation magni-
tudes with coreIVA-G than with MCCA-SUMCORR.

We anticipate that these differences are largely due to
coreIVA-G being an IVA-based method, which can generally
perform better for preserving per-subject variability in SCVs
[33]. This is opposed to MCCA-SUMCORR, which was
shown in [9] to model SCVs as an effectively rank-1 matrix
(a source shared across the datasets). This rank-1 model is
expected to perform well when SCVs are highly homogeneous,
but may otherwise be outperformed by IVA-based methods
when more heterogeneity exists within SCVs.

VIII. CONCLUSION

This paper presents an efficient methodology for scaling
IVA-G on a subset of datasets to a much larger set of
datasets, called “reglVA-G”. We proposed two such methods
for regressing an additional dataset: a numerical solution



minimizing the IVA-G cost, and a previously proposed analytic
solution [16] with an objective function comparable with
those of GJD-based methods. We then derived the regIVA-G
methods’ nonidentifiability conditions: conditions for which
the reglVA-G methods are unable to uniquely identify the
true sources. These conditions are highly general (assuming
the subset’s sources have been identified), highlighting the
powerful estimation capabilities of both reglVA-G methods.
Following this, we derived a novel tractable cost function for
measuring the representativeness of a subset of datasets, com-
parable to discrepancy-based costs for coreset (representative
subset) selection. We thus propose using this discrepancy, in
conjunction with weighting the datasets to best minimize the
discrepancy, as the “coreIVA-G” method building onto the
regl VA-G method. Finally, we experimentally demonstrate that
reglVA-G and corelVA-G methods can significantly outper-
form other JBSS methods in terms of CPU-time, jISI, and
cross-jISI, making these methods highly practical and highly
generalizable to many different types of data.

The main limitation of the reglVA-G and coreI VA-G meth-
ods is that they only assume a multivariate Gaussian model,
and thus only exploit source correlation to perform JBSS.
Algorithms that exploit higher-order statistics are generally
known for strong performance, and provide superior identi-
fiability conditions when the data’s SCVs are non-Gaussian.
Thus, future work may generalize these methods to a general
“reglVA” or “core]l VA’ methodology modeling non-Gaussian
distributions as well, in addition to other statistical properties
of the data (such as sample dependence within the sources).
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