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Abstract—Joint blind source separation (JBSS) involves the
factorization of multiple matrices, i.e. “datasets”, into “sources”
that are statistically dependent across datasets and independent
within datasets. Despite this usefulness for analyzing multiple
datasets, JBSS methods suffer from considerable computational
costs and are typically intractable for hundreds or thousands of
datasets. To address this issue, we present a methodology for
how a subset of the datasets can be used to perform efficient
JBSS over the full set. We motivate two such methods: a
numerical extension of independent vector analysis (IVA) with the
multivariate Gaussian model (IVA-G), and a recently proposed
analytic method resembling generalized joint diagonalization
(GJD). We derive nonidentifiability conditions for both methods,
and then demonstrate how one can significantly improve these
methods’ generalizability by an efficient representative subset
selection method. This involves selecting a coreset (a weighted
subset) that minimizes a measure of discrepancy between the
statistics of the coreset and the full set. Using simulated and real
functional magnetic resonance imaging (fMRI) data, we demon-
strate significant scalability and source separation advantages of
our “coreIVA-G” method vs. other JBSS methods.

Index Terms—Joint Blind Source Separation, Independent
Vector Analysis, Multiset Canonical Correlation Analysis.

I. INTRODUCTION

The goal of joint blind source separation (JBSS) is to

factorize several datasets arranged as matrices into components

that maximize a measure of statistical dependence across the

datasets while maximizing independence within each dataset.

In BSS terminology, each individual component is called a

“source”. By this understanding, JBSS naturally generalizes

blind source separation (BSS) of a single dataset by ex-

ploiting an additional statistical power: source dependence

across the datasets. This not only estimates sources with

greater interpretability, but also aligns sources across datasets

and provides additional means to compare datasets via their

uncovered source dependencies. JBSS has been frequently

used for analyzing medical imaging datasets [1]–[4], but has

seen applications in various other domains, such as remote

sensing [5], frequency domain analysis [6], molecular property

prediction [7], and various other applications.

The primary characteristic of JBSS is exploiting cross-

dataset dependencies via constructing sets of dependent

sources, typically called “source component vectors” (SCVs).

Each SCV includes one source from each dataset, and JBSS
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methods typically operate by maximizing dependence within

each SCV and independence across different SCVs.

Differences between JBSS methods largely hinge on the

measure of statistical dependence being utilized. Mutual in-

formation is the primary measure used in independent vector

analysis (IVA) [6], [8], a multi-dataset generalization of inde-

pendent component analysis (ICA) for BSS. IVA algorithms

parameterize each SCV by a multidimensional probability den-

sity function (PDF) to model statistical dependencies within

and across SCVs. IVA methods offer some of the most

powerful estimation capabilities of JBSS, yet IVA algorithms

are burdened by higher computational expenses.

On the other hand, simpler methods such as multiset canoni-

cal correlation analysis (MCCA) [2], [5], [9], [10] and variants

of generalized joint diagonalization (GJD) [11]–[13] exploit

only source correlations as the measure of dependence, which

leads to significantly more efficient algorithms with possibly

less powerful estimation capabilities. An IVA algorithm most

comparable with these methods is one assuming a multivariate

Gaussian distribution (IVA-G) [14]. As dependence between

Gaussian random vectors is described only by correlation,

IVA-G similarly enjoys lower computational complexity and

thus IVA-G has become a practical algorithm for performing

IVA. Theoretically, algorithms exploiting only source correla-

tion have been shown capable of estimating underlying SCVs,

so long as the SCVs do not possess covariance matrices that

are related to each other in certain aspects [14], [15].

Despite the powerful statistical capabilities of JBSS, many

JBSS methods are computationally infeasible for very high-

dimensional data, particularly with too many datasets (e.g.,

hundreds or more). This is especially a concern given the

availability of larger numbers of datasets, and the benefits of

including as many datasets as possible in the decomposition

for capturing the underlying distribution and relationships

in the data. Complexity of JBSS with respect to the num-

ber of datasets K can be shown as at least O(K2) for

even the simplest JBSS methods, however, a recent JBSS

method proposed in [16] called “regIVA-G” allows for O(K)

complexity. This method operates by performing JBSS first

on a small subset of the K datasets to learn “regressor”

sources, and sources from the remaining datasets are then

estimated by maximizing/minimizing correlation with these

regressor sources. The regIVA-G method is so named because

it uses a multivariate Gaussian assumption for the SCV, and

thus can be interpreted as a regression-based extension of

IVA-G. It was further demonstrated that regIVA-G allows a

specified dimension-parameterization for the SCVs: whereas

IVA-G assumes a K-dimensional distribution for the K-

dimensional SCVs, regIVA-G effectively parameterizes the

SCV dimensions by the number of datasets in the subset.

This allows regIVA-G the ability to provide lower-dimensional

parameterizations to over-parameterized SCVs. Thus, regIVA-

G was demonstrated as both feasible to large numbers of



datasets and flexible to the effective dimensionality of SCVs.

In this paper, we provide a comprehensive methodology for

“regIVA-G”: scaling IVA-G on a subset to a much larger set

of datasets. Our paper provides the following contributions:

• As an alternative to the analytic method proposed in [16],

we propose a numerical method to regIVA-G based on

maximum-likelihood IVA-G [14].

• For the analytic and numerical methods, we give theoret-

ical understanding of their capabilities via deriving non-

identifiability conditions: statistical conditions for when

the methods cannot identify sources in a new dataset.

• Whereas [16] used random subsets, we propose selecting

a subset that minimizes a novel discrepancy-based cost

function [17], [18] between the statistics of the subset and

the statistics of the full set. We derive this discrepancy

measure directly from the analytic method’s objective

function, noting the discrepancy is applicable to most

other JBSS methods. We then introduce an efficient sub-

set selection method to minimize the discrepancy based

on coresets (weighted subsets) [18]–[22], motivating the

name “coreIVA-G” for performing IVA-G with coresets.

We compare performance of the methods with coreset vs.

random subsets, alongside other efficient JBSS algorithms,

on simulated and real functional magnetic resonance imaging

(fMRI) datasets. Our results demonstrate that coreIVA-G can

significantly outperform other comparable methods in both

computational and source separation performance.

The paper is organized as follows. Section II formulates

the JBSS problem. Section III introduces IVA and IVA-G.

Section IV introduces the regIVA-G methodology for scaling

IVA-G on a subset to a larger set of datasets, and introduces

two methods for scaling to a new dataset. Section V de-

rives nonidentifiability conditions for both methods. Section

VI introduces a subset selection method by minimizing a

discrepancy measure between the statistics of the subset and

the full set. Section VII demonstrates performance with respect

to simulated data and real fMRI data. Section VIII concludes

with takeaways and discusses future areas of improvement.

II. JBSS PROBLEM FORMULATION

We start with the JBSS problem formulation. We have K
datasets, each modeled as linear mixtures of N sources. At

some sample t, the generative model is:

x[k](t) = A[k] s[k](t) , t = 1, . . . , T, k = 1, . . . ,K, (1)

with x[k] = [x
[k]
1 , . . . , x

[k]
N ]¦ ∈ R

N denoting the N observed

signals within the kth dataset, A[k] ∈ R
N×N denoting an

unknown invertible “mixing” matrix, s[k] = [s
[k]
1 , . . . , s

[k]
N ]¦

∈ R
N denoting the kth dataset’s N latent source signals, and

(.)¦ denotes the transpose. JBSS methods generally do not

make any model assumptions on the A[k] (other than being

full rank), only modeling the s[k]. Note we assume that for

each dataset the number of mixtures is equal to the number of

sources N . In practice, an overdetermined system of more

mixtures than sources is reduced to N mixtures, typically

using principal component analysis (PCA) on each dataset.

The goal of JBSS is to estimate the K datasets’ sources, via

estimating K demixing matrices W[k] ∈ R
N×N that demix

the datasets into the estimated sources y[k] = W[k] x[k], with

y[k] = [y
[k]
1 , . . . , y

[k]
N ]¦ ∈ R

N . The nth row of demixing matrix

W[k] is given by (w
[k]
n )¦, and is used to estimate the nth

source within the kth dataset, via y
[k]
n = (w

[k]
n )¦ x[k].

With T samples of data, the observed datasets are repre-

sented by matrices X[k] = [x
[k]
1 , . . . , x

[k]
N ]¦ ∈ R

N×T , and the

model (1) is given as X[k] = A[k] S[k], with sources given by

S[k] = [s
[k]
1 , . . . , s

[k]
N ]¦ ∈ R

N×T , and estimated sources given

by Y[k] = W[k] X[k] = [y
[k]
1 , . . . , y

[k]
N ]¦ ∈ R

N×T .

To model dependencies across datasets, JBSS formulations

assume that sources of the same index n are dependent across

. .
K number of total datasets (dataset index k = 1, . . . ,K)
N number of SCVs (SCV index n = 1, . . . , N )
T number of samples (sample index t = 1, . . . , T )

x[k] / X[k] kth dataset (∈ RN / RN×T )

s[k] / S[k] kth dataset’s true sources (∈ RN / RN×T )

y[k] / Y[k] kth dataset’s estimated sources (∈ RN / RN×T )

s
[k]
n / s

[k]
n nth true source in kth dataset (∈ R / RT )

y
[k]
n / y

[k]
n nth estimated source in kth dataset (∈ R / RT )

A[k] kth dataset’s mixing matrix (∈ RN×N )

W[k] kth dataset’s estimated demixing matrix (∈ RN×N )

a
[k]
n nth column of A[k] (∈ RN )

(w
[k]
n )¦ nth demixing vector (row vector) in W[k] (∈ RN )

sn / Sn nth true SCV over all K datasets (∈ RK / RK×T )
yn / Yn nth estimated SCV over all K datasets

aaaaaa . (∈ RK / RK×T )

C
[i,j]
x / Ĉ

[i,j]
x (i, j) datasets’ cross-covariance matrix

aaaaaa aaaa / sample cross-covariance matrix (∈ RN×N )

Cyn
/ Ĉyn

yn’s covariance matrix

aaaaaa aaaa / sample covariance matrix (∈ RK×K )
Kb number of datasets in the regIVA-G subset

. .

. .
SKb

index set of the Kb subset

s̃n / S̃n nth true SCV of the Kb subset (∈ RKb / RKb×T )

ỹn / Ỹn nth estimated SCV of the Kb subset (∈ RKb / RKb×T )

s̃
[i]
n / S̃

[i]
n s̃n appended with nth true source

aaaaaa aa in ith remaining dataset (∈ RKb+1 / R(Kb+1)×T )

ỹ
[i]
n / Ỹ

[i]
n ỹn appended with nth estimated source

aaaaaa aa in ith remaining dataset (∈ RKb+1 / R(Kb+1)×T )

C
s̃
[i]
n

covariance matrix of s̃
[i]
n (∈ R(Kb+1)×(Kb+1))

Ĉ
ỹ
[i]
n

sample covariance matrix of ỹ
[i]
n (∈ R(Kb+1)×(Kb+1))

(c
[i]
n )m vector of cross-correlations of s

[i]
n with s̃m (∈ RKb )

(ĉ
[i]
n )m vector of cross-correlations of y

[i]
n with Ỹm (∈ RKb )

R̂
[i]
m ( 1

T−1
)2 X[i] Ỹ¦

m Ỹm X[i]¦ (∈ RN×N )

Ω̃n
1

Kb

[S̃¦
n S̃n −

∑N
m=1
m ̸=n

S̃¦
m S̃m] (∈ RT×T )

Ωn
1
K

[S¦
n Sn −

∑N
m=1
m ̸=n

S¦
m Sm] (∈ RT×T )

X[k]¦ X[k] kth dataset’s projection embedding (∈ RT×T )

Ψ mean embedding of all K datasets (∈ RT×T )
. .
. .

Table 1. Notations used in this paper. Vectors are given as column vectors, e.g. w
[k]
n is a column vector, and (w

[k]
n )¦

aaaaaaaa a row vector, with ¦ denoting the transpose. Datasets and sources (e.g. x[k], s[k], and y[k]) are represented

aaaaaaaa as either a random vector, or by T observed samples of a random vector (e.g. x[k] ∈ R
N / X[k] ∈ R

N×T ).
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the K datasets, thus forming N sets of K sources. In IVA

terminology, each of these sets is referred to as a “source

component vector” (SCV). The nth SCV is denoted by sn =

[s
[1]
n , . . . , s

[K]
n ]¦ ∈ R

K , and is estimated by yn = [y
[1]
n , . . . ,

y
[K]
n ]¦ ∈ R

K . Over T samples, the nth SCV is represented by

the matrix Sn = [s
[1]
n , . . . , s

[K]
n ]¦ ∈ R

K×T , estimated by Yn =

[y
[1]
n , . . . , y

[K]
n ]¦ ∈ R

K×T . Typically each SCV is modeled as

independent from all other SCVs, thus any two sources across

the datasets are modeled as dependent only if they correspond

to the same index n (nth SCV).

JBSS algorithms can only identify demixing matrix vectors

(w
[k]
n )¦ (and thus the estimated sources y

[k]
n ) up to scaling and

permutation ambiguity within each dataset. JBSS additionally

orders sources to align with the order of SCVs, such that the

nth source within a dataset corresponds to the nth SCV.

Additionally, JBSS implementations typically involve stan-

dardizing and prewhitening each dataset prior to estimation,

as this considerably simplifies the calculations involved in

solving these problems [23]. It is notable that when datasets

are standardized and prewhitened, then provided that the SCVs

are uncorrelated (and thus sources are uncorrelated within

datasets), it follows that the residual mixing matrices A[k]

become asymptotically orthogonal for the observed datasets

X[k] as T → ∞. We will assume for the remainder of the

paper that datasets are standardized and prewhitened prior to

JBSS, thus each mixture and source is zero mean unit variance.

However, as in practice we deal with finite T , we do not

generally assume that the A[k] are orthogonal.

III. IVA AND IVA-G: BACKGROUND

This section explains the JBSS methodology of IVA, and

explains that a multivariate Gaussian parameterization of the

SCVs leads to the IVA-G method. We explain that despite

IVA-G being perhaps the most efficient IVA method, IVA-

G is computationally limited, thus motivating the regIVA-G

methodology outlined in the following section.

A. Independent Vector Analysis (IVA)

The fundamental assumption of IVA is that the N SCVs are

independent, and thus JBSS can be performed by minimizing a

measure of dependence among the SCVs. A useful and general

measure of dependence is the mutual information among the

N SCVs. Given estimated SCVs yn (determined by demixing

matrices W[k]), this leads to the general IVA cost function:

BJ IVA (W) ≜

N
∑

n=1

H
{

yn

}

−
K
∑

k=1

log

∣

∣

∣
det
(

W[k]
) ∣

∣

∣
(2)

where W is the collection of W[k] for k = 1, . . . ,K, and

H{yn} is defined as the entropy of SCV estimate yn, which is

specifically defined by its PDF [8]. The term log | det
(

W[k]
)

|
acts as a penalty effectively ensuring that sources are close to

being uncorrelated within each dataset.

B. IVA with multivariate Gaussian Distribution (IVA-G)

IVA-G [14] is a variant of the general IVA cost (2) where

each SCV’s PDF is modeled as multivariate Gaussian with

independent and identically distributed (i.i.d.) samples t. The

IVA-G cost is thus given by :

J IVA-G(W) =
1

2

N
∑

n=1

log

∣

∣

∣

∣

det
(

Ĉyn

)

∣

∣

∣

∣

−

K
∑

k=1

log

∣

∣

∣

∣

det
(

W[k]
)

∣

∣

∣

∣

+c

(3)

where we define Ĉyn
= 1

T−1 Yn Y¦
n ∈ R

K×K as the sample

covariance matrix of SCV yn, and c = 1
2NK log(2πe) is a

constant. Minimizing (3) can also be explained as minimizing

correlation amongst the N SCVs while also maximizing the

correlation within each SCV [14], [16].

Despite its efficiency among IVA methods, IVA-G nonethe-

less suffers from computational complexity. We consider

the minimum computations required for IVA-G numerical

methods provided in [14]: computing the gradient. Here, we

ignore the one-time initial costs of estimating the Ĉ
[i,j]
x =

1
T−1 X[i] X[j]¦ ∈ R

N×N , the dataset cross-covariances, for

1 f i, j f K. Asides from estimating the Ĉ
[i,j]
x , each

iteration requires updating all NK demixing vectors w
[k]
n ,

where each w
[k]
n update involves an update of W[k] of O(N3)

complexity, an update of Ĉyn
of O(N2K) complexity, and

an update of Ĉ−1
yn

of O(K3) complexity. If IVA-G requires

q iterations to converge, this leads a total complexity of

O(q(N4K+N3K2+NK4)). This leads IVA-G to becoming

computationally infeasible for large K, motivating the need

for the low complexity alternative methods described in the

following sections.

IV. REGIVA-G: SUBSET-BASED METHODS

FOR LARGE-SCALE IVA-G

We now provide an overview of the main methodology of

the paper: using a subset of the datasets to efficiently perform

IVA-G on all datasets. The methodology was first introduced in

the preliminary work of [16] and was called “regIVA-G” due

to the solution being a multilinear-regression of the subset’s

estimated SCVs. For simplicity, we refer to this methodology

as “regIVA-G” when using a general choice of subset (e.g.

a random subset), and later refer to the methodology as

“coreIVA-G” when using a coreset (weighted subset) selected

to best represent the statistics of the K datasets.

The regIVA-G methodology is illustrated in Fig. 1. The three

steps of regIVA-G are summarized as follows:

1) partitioning step: divide the K datasets into two groups

(K = Kb + Ka), the Kb regressors and the Ka regressed:

• Kb datasets that form the subset estimated by IVA-G

(whose sources will form regressors)

• Ka remaining datasets (“new” datasets) that will be

regressed onto the regressor sources of the subset

2) subset estimation step: perform IVA-G on the Kb subset,

estimating the subset’s W[k] and corresponding N SCVs

Ỹn, which we call regressor SCVs.

3) regression step: use the regressor SCVs to separately

estimate N sources in each of the Ka remaining datasets.

Each source in remaining dataset X[i] is estimated such

that it is maximally correlated to one regressor SCV and

maximally uncorrelated to the N − 1 other SCVs.
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Fig. 1. illustration of the regIVA-G methodology.

Unlike IVA-G or other JBSS methods, this methodology

estimates sources in each remaining dataset independently

of other remaining datasets. As a result, this methodology

exhibits asymptotically linear complexity with respect to K,

provided that Kb is fixed and Ka →∞. With large K, regIVA-

G’s complexity is dominated by the O(K) regression step.

In the following sections, we overview two methods for

performing the regression step: one being the explicit numer-

ical minimization of the IVA-G cost, and the other being the

GJD-type analytic solution proposed in [16].

A. regIVA-G-N (Numerical method)

The regIVA-G method for numerically minimizing the IVA-

G cost, which we refer to as regIVA-G-N, is simply described:

for each remaining X[i], estimate W[i] by performing IVA-

G on the Kb subset’s datasets appended with X[i] (thus

performing on Kb+1 total datasets), while updating only that

ith dataset’s W[i] (fixing constant the subset’s W[k] to those

W[k] estimated in the subset estimation step).

We first provide notations for the regIVA-G-N subproblem

over Kb + 1 datasets as to differentiate from IVA-G over all

K datasets, namely we introduce new notations concerning

the ith subproblem’s SCVs. We first denote s̃n ∈ R
Kb as the

nth SCV of the subset, and s̃
[i]
n = [s̃¦n , s

[i]
n ]¦ ∈ R

Kb+1 as the

nth SCV of the subset appended with s
[i]
n , the nth source in

the ith dataset. These quantities respectively correspond to the

estimated SCVs: ỹn ∈ R
Kb and ỹ

[i]
n = [ỹ¦

n , y
[i]
n ]¦ ∈ R

Kb+1.

Over T samples, the SCVs are represented by the matrices

S̃n ∈ R
Kb×T , S̃

[i]
n = [S̃¦

n , s
[i]
n ]¦ ∈ R

(Kb+1)×T , Ỹn ∈ R
Kb×T

and Ỹ
[i]
n = [Ỹ¦

n ,y
[i]
n ]¦ ∈ R

(Kb+1)×T .

Using this notation, we can write the cost function per each

ith remaining dataset as a modified version of (3). If we denote

the nth estimated SCV’s sample covariance by Ĉ
ỹ
[i]
n

= 1
T−1

(Ỹ
[i]
n ) (Ỹ

[i]
n )¦ ∈ R

(Kb+1)×(Kb+1), and ignore the constant

term, the regIVA-G-N cost function is given by:

J regIVA-G-N(W
[i]) =

1

2

N
∑

n=1

log

∣

∣

∣

∣

det
(

Ĉ
ỹ
[i]
n

)

∣

∣

∣

∣

−log

∣

∣

∣

∣

det
(

W[i]
)

∣

∣

∣

∣

(4)

All methods for minimizing (3) are also applicable to (4); the

only difference with (4) is that all W[k] are fixed for k ̸= i.

For each of the Ka remaining datasets, regIVA-G-N’s

regression step involves IVA-G to minimize (4) over Kb + 1
datasets. Given IVA-G’s complexity described in Section III.B,

it follows that the complexity of regIVA-G-N’s regression step

is O(Ka q(N4 +N3(Kb + 1) +N(Kb + 1)3)).

B. regIVA-G-A (Analytic method)

The analytic method proposed in [16], which we refer to as

regIVA-G-A, is a highly efficient alternative to the previously

described numerical method with cost described in (4). In

contrast to (3) and (4), regIVA-G-A measures the degree of

source dependence by the squared correlation between sources,

analogous to generalized joint diagonalization (GJD) costs

[11]–[13]. Furthermore, unlike regIVA-G-N in (4) where each

dataset’s sources are estimated jointly (via W[i]), regIVA-G-A

involves separate estimation of each source (via each w
[i]
n ).

We now describe regIVA-G-A’s objective function. Corre-

lation of the nth source in X[i] with each of the mth SCV’s

sources is given by (ĉ
[i]
n )m = 1

T−1 Ỹm X[i]¦ w
[i]
n ∈ R

Kb . The

degree of correlation with that SCV is measured by the sum of

squared correlations with sources in the mth SCV: ||(ĉ
[i]
n )m||22

= (ĉ
[i]
n )¦m (ĉ

[i]
n )m = w

[i]
n

¦ R̂
[i]
m w

[i]
n , where we define R̂

[i]
m

≜ ( 1
T−1 )

2 X[i] Ỹ¦
m Ỹm X[i]¦ ∈ R

N×N . Using these R̂
[i]
m ,

regIVA-G-A’s objective function measures the corresponding

nth source’s degree of correlation with its nth SCV, weighted

against the correlation with the N − 1 other SCVs:

J regIVA-G-A (w[i]
n ) = w[i]

n
¦
[

R̂[i]
n −

N
∑

m=1
m ̸=n

R̂[i]
m

]

w[i]
n (5)

Subject to ||w
[k]
n ||2 = 1, the w

[i]
n that maximizes (5) is

estimated by the principal eigenvector of
[

R̂
[i]
n −

∑N
m=1
m ̸=n

R̂
[i]
m

]

.

For each remaining dataset, regIVA-G-A involves calcu-

lating the N SCVs’ R̂
[i]
n (of complexity O(N3Kb)), the N

[

R̂
[i]
n −

∑N
m=1
m ̸=n

R̂
[i]
m

]

(of O(N3)), and the principal eigenvector

of each
[

R̂
[i]
n −

∑N
m=1
m ̸=n

R̂
[i]
m

]

per w
[i]
n (of O(N3)). Thus, com-

plexity of regIVA-G-A’s regression step is O(Ka(Kb+2)N3).

It is notable that because the w
[i]
n are separately estimated in

each ith dataset, this analytic method does not explicitly max-

imize source uncorrelatedness within each dataset (unlike the

numerical method). Instead, uncorrelatedness within datasets

is indirectly achieved by maximizing uncorrelatedness with the

subset’s SCVs. This difference between the regIVA-G methods

leads to differences in estimation capabilities, highlighted in

Section VII when simulating correlated SCVs.

In the next section, we derive conditions on the data’s

generative model for which regIVA-G is unable to uniquely

identify the true sources (via demixing vectors w
[k]
n ) subject

to scale and permutation ambiguity, which we refer to as the

nonidentifiability conditions of regIVA-G.
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V. REGIVA-G NONIDENTIFIABILITY CONDITIONS

This section is dedicated to deriving the nonidentifiability

conditions of regIVA-G: statistical conditions on the data’s

generative model for which regIVA-G is unable to identify

sources S[i] in the regression step of a new dataset X[i]. When

these conditions are not satisfied, precise inference of S[i] is

possible such that one can achieve Y[i] = S[i], via achieving

W[i] = (A[i])−1, subject to scale and permutation ambiguities.

Denoting a
[i]
n as the nth column of A[i] and (w

[i]
n )¦ as the

nth row of W[i], identifiability occurs for the nth source if

w
[i]
n = a

[i]
n subject to scale and permutation ambiguity.

These proofs use notations defined earlier in the paper,

and proceed under the following assumptions:

• T → ∞, thus the data’s true statistics are known

(e.g., C
[i,j]
x = E

{

x[i]x[j]¦
}

∈ R
N×N for 1 f i, j f K)

• uncorrelated SCVs (E
{

sm s¦n
}

= 0 for m ̸= n)

• prewhitened datasets (thus A[k] are orthogonal matrices)

• the subset’s sources have been estimated exactly

(Ỹn = S̃n ∈ R
Kb×T ), thus our only concern is identify-

ing the remaining datasets’ sources (via their W[i])

Nonidentifiability of regIVA-G depends on the SCV covari-

ances, which we require notation for. From Section IV.A, we

remind the nth regIVA-G SCV is defined s̃
[i]
n = [s̃¦n , s

[i]
n ]¦

∈ R
Kb+1, which is the subset’s nth SCV s̃n ∈ R

Kb appended

with the new dataset’s nth source s
[i]
n . We also define:

• C
s̃
[i]
n

= E{s̃
[i]
n s̃

[i]
n

¦} ∈ R
(Kb+1)×(Kb+1) as the

covariance matrix (also correlation matrix) of s̃
[i]
n

• (c
[i]
n )m = E{s

[i]
n s̃¦m}¦ ∈ R

Kb as the vector containing

correlations of the new dataset’s nth source s
[i]
n with all

sources in the subset’s mth SCV s̃m.

For convenience, we denote i = Kb+1 within the regression

step, such that [(c
[i]
n )¦n , 1] is the last row/column of C

s̃
[i]
n

.

The following theorem states the nonidentifiability condi-

tions shared by regIVA-G-N and regIVA-G-A.

Theorem 1 (regIVA-G nonidentifiability conditions):

ll We follow all assumptions listed at the beginning of Section

V. Considering the nth source in the ith remaining dataset s
[i]
n ,

corresponding to demixing vector w
[i]
n , it follows that s

[i]
n is

nonidentifiable (w
[i]
n ̸= a

[i]
n subject to scale and permutation

ambiguity) if and only if for any 1 f m ̸= n f N , both

(c
[i]
n )n = 0 ∈ R

Kb and (c
[i]
m)m = 0 ∈ R

Kb .

Simply stated: For s
[i]
n to be nonidentifiable, s

[i]
n and another

source s
[i]
m must be uncorrelated to their corresponding SCVs.

We first derive these conditions for regIVA-G-N’s (4), and

later derive these conditions for regIVA-G-A’s (5).

A. regIVA-G-N nonidentifiability

Proof: We outline the two main steps in this proof:

1) show regIVA-G-N’s regression step is actually a particular

variation of ICA, and thus regIVA-G-N can be more

easily studied via the ICA nonidentifiability conditions.

2) show that regIVA-G-N’s Fisher Information Matrix (FIM)

is singular if and only if (c
[i]
m)m = 0 and (c

[i]
n )n = 0.

Before connecting regIVA-G-N to ICA, we first introduce

some preliminaries regarding the IVA cost function.

IVA requires specification of pn(yn), the (chosen) differ-

entiable PDF of the nth SCV (for n = 1, . . . , N ). Associated

with this PDF is the score function for the nth SCV [8], [14]:

[Φ(Sn)]kt =
∂ log pn(Sn)

∂ s
[k]
n (t)

;
k = 1, 2, . . . , K
t = 1, 2, . . . , T

Regarding the regIVA-G-N subproblem over Kb+1 datasets,

we define the score function for the ith subproblem’s nth

true SCV by φ(s̃
[i]
n ) = [φ(s̃n)

¦,φ(s̃
[i]
n )]¦ ∈ R

Kb+1 and nth

estimated SCV by φ(ỹ
[i]
n ) = [φ(ỹn)

¦,φ(ỹ
[i]
n )]¦ ∈ R

Kb+1.

Now we connect regIVA-G-N to ICA. If we assume the

statistics are known (T → ∞), and we multiply the general

IVA mutual information cost function in (2) by T , the negative

of (2) becomes equivalent to the log-likelihood [8], [14].

Within the general IVA log-likelihood gradient, by fixing all

W[k] to constant quantities for k ̸= i (as done by regIVA-G-

N), we obtain regIVA-G-N’s log-likelihood gradient:

∂J IVA(W
[i])

∂W[i]
= −Φ(Ỹ[i])X[i]¦ + T

(

W[i]−1
)¦

(6)

where φ(ỹ[i]) = [φ(ỹ
[i]
1 ), . . . ,φ(ỹ

[i]
N )] ∈ R

N are the ith
dataset’s score function components, observed over T samples

by Φ(Ỹ[i]) = [φ(ỹ
[i]
1 ), . . . ,φ(ỹ

[i]
N )] ∈ R

N×T .

We now note that this gradient (6) takes the exact same form

as the gradient of the log-likelihood for ICA [24]. Because

of this equivalency, regIVA-G nonidentifiability can be more

easily studied in terms of ICA nonidentifiability.

We refer to [1], [24] for the ICA nonidentifiability con-

ditions. We focus on the log-likelihood’s Fisher Information

Matrix (FIM), F(W[i]) ∈ R
N2×N2

, as nonidentifiability

conditions are those conditions that make the FIM singular.

Evaluated at the optimum W[i]A[i] = I (subject to scale /

permutation ambiguity), the FIM is block diagonal, with:

• N positive scalars (for each source);

•
N(N−1)

2 matrices Fm,n ∈ R
2×2 (for each pair of sources).

As the scalars are positive, invertibility of the FIM depends

only on invertibility of the Fm,n matrices [1], [24], given by:

Fm,n =

[

Km,n 1
1 Kn,m

]

, 1 f m,n f N,

and provided IVA-G assumes unit variance sources with i.i.d.

samples, then Kn,m = E
{

φ(s
[i]
n )2

}

E
{

s
[i]
m

2
}

= E
{

φ(s
[i]
n )2

}

∈ R (not a function of m).

Then as IVA-G assumes a multivariate Gaussian PDF [14],

the nth SCV’s score function is φ(s̃
[i]
n ) = C−1

s̃
[i]
n

s̃
[i]
n ∈ R

Kb+1,

and E
{

φ(s̃
[i]
n )φ(s̃

[i]
n )¦

}

= C−1

s̃
[i]
n

C
s̃
[i]
n

C−1

s̃
[i]
n

= C−1

s̃
[i]
n

. Thus,

the Fm,n are defined by Kn,m = (C−1

s̃
[i]
n

)(i,i), which is the

(i, i)th diagonal entry of the inverse correlation matrix C−1

s̃
[i]
n

.

For the Fm,n to be invertible, it follows Kn,m ̸= K−1
m,n, or

i.e., (C−1

s̃
[i]
n

)(i,i) ̸= 1/(C−1

s̃
[i]
m

)(i,i). However, since C−1

s̃
[i]
n

is the

inverse of a correlation matrix, its diagonal entries must obey

(C−1

s̃
[i]
n

)(i,i) g 1 [25], and (C−1

s̃
[i]
n

)(i,i) = 1 is achieved only when

(c
[i]
n )n = 0 (i.e., s

[i]
n is uncorrelated to its own SCV) [25].

Thus, having (C−1

s̃
[i]
n

)(i,i) = 1/(C−1

s̃
[i]
m

)(i,i) requires that

(C−1

s̃
[i]
n

)(i,i) = 1/(C−1

s̃
[i]
m

)(i,i) = 1, which requires (c
[i]
n )n = 0

and (c
[i]
m)m = 0. Thus completes the proof for regIVA-G-N.
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B. regIVA-G-A nonidentifiability

Proof: We first refer back to the regIVA-G-A objective func-

tion in (5). Evaluated at Ỹm = S̃m, (5) is equivalent to

J regIVA-G-A (w[i]
n ) = w[i]

n
¦X[i]Ω̃nX

[i]¦w[i]
n (7)

where we define Ω̃n = c2
[

S̃¦
n S̃n−

∑N
m=1
m ̸=n

S̃¦
mS̃m

]

∈ R
T×T ,

and we define c = 1
T−1 for sake of brevity.

This Ω̃n is equivalently Ω̃n = QnQ
¦
n , where we define

Qn = c [zS̃¦
1 , . . . , S̃

¦
n , . . . , zS̃

¦
N ] ∈ C

T×NKb as the horizontal

concatenation of the N SCVs, where all SCVs except the nth

are multiplied by imaginary number z. It follows that:

X[i]Ω̃nX
[i]¦ = A[i]S[i]QnQ

¦
nS

[i]¦A[i]¦

= A[i]Q[i]
n Q[i]

n
¦A[i]¦,

where we define Q
[i]
n = S[i] Qn ∈ C

N×NKb as the correlations

of all SCVs with each source of the ith dataset. Given

uncorrelated SCVs, Q
[i]
n is represented by the block diagonal

matrix of N vector blocks: Q
[i]
n =

⊕N

m=1 γ(m,n) (c
[i]
m)¦m,

with γ(m,n) equals 1 when m = n and equals z otherwise.

With Q
[i]
n having this block diagonal structure, it follows

that Q
[i]
n Q

[i]
n

¦ ∈ R
N×N is a diagonal matrix, with the

mth diagonal element given by γ(m,n)2 (c
[i]
m)¦m (c

[i]
m)m, here

γ(m,n)2 equals 1 when m = n and equals −1 otherwise.

We now consider the eigendecomposition of Q
[i]
n Q

[i]
n

¦.

With Q
[i]
n Q

[i]
n

¦ being a diagonal matrix, its eigenvectors

are given as an identity matrix, and its eigenvalues are its

diagonal elements. The principal eigenvalue is (c
[i]
n )¦n (c

[i]
n )n

g 0, which is the only eigenvalue capable of being positive.

With A[i] orthogonal, it follows that A[i] Q
[i]
n Q

[i]
n

¦ A[i]¦

has the same eigenvalues of Q
[i]
n Q

[i]
n

¦, but the corresponding

eigenvectors are the columns of A[i]. Thus when the principal

eigenvalue is positive ((c
[i]
n )¦n (c

[i]
n )n > 0), it follows that the

corresponding principal eigenvector of A[i] Q
[i]
n Q

[i]
n

¦ A[i]¦

is uniquely ±a
[i]
n , in which case identifiability is achieved.

Therefore, nonidentifiability occurs only when the principal

eigenvalue (c
[i]
n )¦n (c

[i]
n )n is non-unique.

As (c
[i]
n )¦n (c

[i]
n )n is the only nonnegative eigenvalue, and

all other eigenvalues are nonpositive, then (c
[i]
n )¦n (c

[i]
n )n is

non-unique only when (c
[i]
n )¦n (c

[i]
n )n is equal to 0 and one

of the N − 1 other eigenvalues is also equal to 0. This only

occurs for the nth and mth SCVs when (c
[i]
n )¦n (c

[i]
n )n = 0

and (c
[i]
m)¦m (c

[i]
m)m = 0, requiring that (c

[i]
n )n = 0 and (c

[i]
m)m

= 0. Thus completes the proof for regIVA-G-A.

Therefore, for either regIVA-G method, identifiability of S[i]

is possible so long as there is not more than one source in

S[i] that is uncorrelated with its SCV. An example of this

occurance is when several sources are random “noise” sources

uncorrelated to all other sources in the system. Yet if there

is only one source s
[i]
n where (c

[i]
n )n = 0, then s

[i]
n is still

identifiable because the remaining sources have (c
[i]
m)m ̸= 0.

It is also notable that this condition specifically depends

on the subset’s sources; with a different choice of subset,

the correlations (c
[i]
n )n will be different. Thus, there can be

cases where identifiability is not possible with one subset and

possible with another.

In the next section, we discuss how performance of the

regIVA-G methodology can be improved by a specific choice

of the subset, referred to as “coreIVA-G”.

VI. COREIVA-G: REGIVA-G WITH CORESET SELECTION

Performance of regIVA-G is predicated on the subset choice.

Intuitively, the best subset is one that is most “representative”

of all K datasets. A perfectly representative Kb subset ideally

should produce the same results as using all K datasets

in place of the subset, resulting in an estimation that is

comparable to IVA-G on all K datasets simultaneously.

This section develops a measure of a subset’s represen-

tativeness in the context of IVA-G. To simplify derivations,

we assume SCVs are uncorrelated and datasets X[k] are

prewhitened, thus the A[k] are orthogonal. However as we

show later, this measure is also applicable in general when

SCVs may not be uncorrelated or the datasets not prewhitened,

and also applicable to other JBSS methods that only model

S[k], opening the possibility of subset-based methods for

efficiently optimizing other JBSS objective functions.

A. coreIVA-G subset selection: Cost function

We start with the regIVA-G-A’s objective function (5), and

assume the subset’s sources are exactly identified such that

Ỹn = S̃n. Our goal will be to compare (5) evaluated over a

particular Kb subset to (5) evaluated over all K datasets.

From Section V.B, we note that (5) can be rewritten as in

(7): J regIVA-G-A (w
[i]
n ) = w

[i]
n

¦X[i]Ω̃nX
[i]¦w

[i]
n . Here, we

scale (7) via Ω̃n by
(T−1)2

Kb

, such that we now redefine Ω̃n

= 1
Kb

[S̃¦
n S̃n −

∑N
m=1
m ̸=n

S̃¦
m S̃m] ∈ R

T×T .

To consider the “representativeness” of the Kb subset’s Ω̃n

matrix over all K datasets, we also consider this matrix over

all K datasets. Thus, we similarly define Ωn = 1
K

[S¦
n Sn

−
∑N

m=1
m ̸=n

S¦
m Sm] ∈ R

T×T evaluated over all K datasets.

Comparing the regIVA-G-A (7) over Kb datasets to (7) over

K datasets, these objective functions only differ between Ω̃n

and Ωn. Thus, we can measure the “representativeness” of a

Kb subset by the distance of its Ω̃n from Ωn. If we denote

SKb
as the index set that specifies a Kb subset’s datasets from

the K total, representativeness of that subset can be measured

by the squared Frobenius distance measure R (SKb
) :

R (SKb
) =

∥

∥

∥
Ω̃n −Ωn

∥

∥

∥

2

F
(8)

=

∥

∥

∥

∥

∥

∥

∥

Σn −

N
∑

m=1
m ̸=n

Σm

∥

∥

∥

∥

∥

∥

∥

2

F

(9)

where we define Σn = 1
Kb

S̃¦
n S̃n − 1

K
S¦
n Sn ∈ R

T×T .

Assuming the N SCVs are uncorrelated to each other, it

is straightforward to show that ï vec(Σm) , vec(Σn) ð = 0
for m ̸= n, where vec(.) denotes the vectorization. This is

useful considering vectorized quantities: ∥a+ b∥
2
F = ∥a∥

2
F +

∥b∥
2
F + 2ïa,bð, as (9) can be equivalently represented using

vectorized forms of matrices, and ∥a+ b∥
2
F = ∥a∥

2
F + ∥b∥

2
F

= ∥a− b∥
2
F when ïa,bð = 0. Thus, (9) can be rewritten as:
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R (SKb
) =

∥

∥

∥

∥

∥

∥

∥

Σn −

N
∑

m=1
m ̸=n

Σm

∥

∥

∥

∥

∥

∥

∥

2

F

=

N
∑

n=1

∥Σn∥
2
F =

∥

∥

∥

∥

∥

N
∑

n=1

Σn

∥

∥

∥

∥

∥

2

F

This allows us to write R (SKb
) in terms of “embeddings”

of each dataset’s sources S[k]¦S[k]:
∥

∥

∥

∥

∥

N
∑

n=1

Σn

∥

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

∥

∥

N
∑

n=1

[

1

Kb

∑

k∈SKb

s[k]n s[k]n

¦
−

1

K

∑

k∈SK

s[k]n s[k]n

¦
]

∥

∥

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

∥

∥

1

Kb

∑

k∈SKb

S[k]¦S[k] −
1

K

∑

k∈SK

S[k]¦S[k]

∥

∥

∥

∥

∥

∥

2

F

(10)

where SK represents the index set of all K datasets.

This (10) is particularly useful because if we assume the

SCVs are uncorrelated and the data is whitened (thus the

A[k] are orthogonal matrices), it follows that S[k]¦S[k] =

S[k]¦A[k]¦A[k]S[k] = X[k]¦X[k]. This means that without

even knowing the underlying sources, R (SKb
) can be written

just in terms of the original whitened datasets:

R (SKb
) =

∥

∥

∥

∥

∥

∥

1

Kb

∑

k∈SKb

X[k]¦X[k] −Ψ

∥

∥

∥

∥

∥

∥

2

F

(11)

where Ψ = 1
K

∑

k∈SK
X[k]¦X[k] ∈ R

T×T is what we call

the “mean projection embedding” (MPE) of all K datasets, a

fixed quantity that we aim to approximate with our subset.

This allows directly measuring a subset’s representativeness

before JBSS, motivating combinatorial optimization methods

to select a subset that “best” minimizes (11).

We now discuss how (11) can be used to define “represen-

tativeness” in the general JBSS context, not just for IVA-G.

Most JBSS methods represent datasets as linear subspaces

(specifically all JBSS methods that model only the S[k] and

not the A[k]), as these methods are invariant to the A[k]. Both

X[k] and S[k] effectively provide orthonormal bases for the

same N dimensional linear subspace of R
T . While a choice

of orthonormal basis for this kth subspace is not unique,

the quantity X[k]¦ X[k] ∈ R
T×T , commonly known as a

projection matrix, provides a unique, canonical representation

of that kth subspace. This is because X[k]¦ X[k] is invariant

to any realization of orthonormal basis X[k] (as X[k]¦ X[k] =

X[k]¦ A A¦ X[k] for any orthogonal matrix A ∈ R
N×N ).

While X[k]¦ X[k] is more commonly referred to as a

projection matrix (e.g. in ordinary least squares regression), in

the study of linear subspaces via the Grassmannian manifold

[26], X[k]¦ X[k] is called the “projection embedding” of its

linear subspace (as it “embeds” the subspace into a unique

coordinate in R
T 2

). When these X[k]¦ X[k] are averaged

across K datasets, the resultant “mean projection embedding”

(MPE) Ψ provides a statistic capturing information shared

across the subspaces (namely, subspaces that are “most shared”

across the X[k]). In that sense, (11) can be interpreted as

a discrepancy-based cost function [17], [18], [21] measuring

distance between a subset’s and the full set’s MPEs.

This discrepancy can be further decreased if we consider

weighted subsets. If we assign weight λk ∈ R to each kth

dataset, where weights can be organized into a vector λ

= [λ1, . . . , λKb
] ∈ R

Kb , then we can consider a weighted

variation of (11):

R (SKb
,λ) =

∥

∥

∥

∥

∥

∥

1

Kb

∑

k∈SKb

λk X[k]¦X[k] − Ψ

∥

∥

∥

∥

∥

∥

2

F

, (12)

Methods that use weighted subsets to minimize discrepancy-

based costs are referred to as coreset methods [18]–[22], and

thus we refer to “coreIVA-G” as the “regIVA-G” methodology

where a weighted subset is constructed to minimize (12). In

coreIVA-G, we also apply these weights λk to the subset esti-

mation and regression steps, such that regIVA-G’s objectives

in (4) and (5) coincide with the weighted discrepancy in (12).

B. overview of coreIVA-G

We now overview the coreIVA-G methodology:

1) partitioning step: select Kb datasets that minimize (11),

simultaneously learning coreset weights λk. Divide the K
total into this Kb coreset and the Ka remaining datasets.

2) subset estimation step: perform a weighted IVA-G

on the coreset, estimating weighted regressor SCVs.

3) regression step: use the weighted regressor SCVs to sep-

arately estimate sources in each of the Ka remaining

datasets, using either regIVA-G-N or regIVA-G-A.

Weighting can simply be done by multiplying each coreset

X[k] by its respective λk, and steps 2-3 are performed using

weighted datasets in place of their nonweighted versions.

For the purpose of efficiently minimizing (12), we consider

greedy methods that progressively add one dataset to the subset

until Kb datasets are selected. Furthermore, it is significantly

more efficient to use kernel methods to minimize (12), as

a greedy method would otherwise require constructing the

subset’s MPE at each ith step for i = 1, ...,Kb. Instead,

kernel methods define the cost only in terms of the kernels

between datasets, which only need to be calculated once at

the beginning of the subset selection. The canonical choice

of kernel for (12) is the inner product between the datasets’

embeddings: ï vec(X[k]¦X[k]), vec(X[k]¦X[k]) ð. However, it

is more convenient to use the “projection kernel” [26]:

ker(i, j) =
1

N

∥

∥

∥

∥

1

T − 1
X[i]X[j]¦

∥

∥

∥

∥

2

F

=
1

N

∥

∥

∥
Ĉ[i,j]

x

∥

∥

∥

2

F

The kernel is normalized in [0 1], where 0 indicates the

subspaces are orthogonal, and 1 indicates the subspaces are

equivalent. This is especially useful as the Ĉ
[i,j]
x can be

calculated as done with IVA-G, thus Ĉ
[i,j]
x can be used for

both the kernel and the JBSS procedure. Our implementation

of minimizing (12) is the “weighted kernel herding” (WKH)

method [22], a greedy method with theoretical guarantees

such as the property of “weak submodularity”. It is notable

that when greedily performing WKH such that each new kth

dataset is learned aside its weight λk, this ensures that (12)

can only decrease or stay constant as the subset size increases.

A final consideration is how the subset size Kb should be

determined for coreIVA-G. Provided that the kernels between
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the K datasets are organized into a matrix Θ ∈ R
K×K such

that (Θ)i,j = ker(i, j), we may assume that the optimal Kb is

the number of datasets necessary to model Θ with a low-rank

approximation. Thus we may assume Kb is the “rank” of Θ,

motivating techniques using the eigenspectra of Θ to select

Kb. However with WKH, as (12) can only decrease or stay

constant as the subset size increases. a practical choice of Kb

can be made at the point which (12) stops decreasing, which

agrees with the aforementioned rank-based methods provided

that Θ is low-rank. In practice when Kb is not specified in the

greedy procedure, we select Kb when the Kbth weight wKb

is sufficiently small: wKb
f τ . We find τ = 0.001 is a good

choice for the general case.

In the next section, we demonstrate performance of several

JBSS algorithms, including regIVA-G (with a random subset

of datasets) and coreIVA-G (with a WKH subset), applied to

separating simulated data. We demonstrate how each algo-

rithm’s separation performance depends on the statistics of the

underlying sources. After that, we demonstrate performance on

real fMRI sources over a large number of datasets.

VII. RESULTS

We use joint inter-symbol-interference (joint-ISI or jISI) to

study separation performance of JBSS when A[k] are known,

such as in the case of simulations. jISI is given by:

aa

ISIJNT (W ,A) ≜
1

2N(N − 1)

[

N
∑

n=1

(

N
∑

m=1

ḡ[n,m]

maxp ḡ[n,p]
− 1

)

+

N
∑

m=1

(

N
∑

n=1

ḡ[n,m]

maxp ḡ[p,m]
− 1

)]

With W as the set of all W[k], A as the set of all A[k],

G[k] = W[k] A[k] is the “mixing-demixing matrix” of the kth

dataset, g
[k]
[m,n] the [m,n] entry in G[k], and ḡ[m,n] = 1

K

∑K

k=1

|g
[k]
[m,n]|. jISI is given in [14] as an extension of the inter-

symbol-interference measure (ISI) for BSS introduced in [27].

jISI is normalized in [0 1], and collectively measures how

close each G[k] matrix is to a permuted diagonal matrix, with

0 jISI indicative of perfect separation.

We also use cross joint inter-symbol-interference (cross-

jISI) as an alternative performance measure when A[k] are

not known, such as with real-world data. Cross-jISI is also

normalized in [0 1] and measures “consistency” of a JBSS

algorithm’s estimated sources across different initializations

of the data: if cross-jISI is nearly 0, then essentially the same

sources are estimated regardless of an algorithm’s initialization

[28]. The cross-jISI between two “runs” (initializations) uses

nearly the same formula for jISI except W is the set of all

W[k] estimated for one run and A is the set of inverses of

all W[k] estimated for another run. For our experiments, our

reported cross-jISI values are averaged across all pairs of runs,

recording the average “distance” between any two runs.

As our paper focuses on efficient JBSS, we limit our results

to the source correlation-based JBSS methods. These include

the MCCA-SUMCORR solution (often simply called MCCA,

which we also call in this paper) [9], [10], a nonorthogonal

GJD algorithm called GNJD which is state of the art among

GJD algorithms [12], IVA-G [14], regIVA-G (random subset)

[16], and coreIVA-G. For numerical algorithms, we imple-

mented the default stopping criteria of each algorithm and

limited to a maximum of 1000 W[k] updates. We utilize the

efficient “Newton” method [14] when implementing IVA-G.

For all performance evaluations done in Sections VII and

VIII, we use the computational resources provided by the

UMBC High Performance Computing Facility (HPCF), thus

CPU time is reflective of HPCF’s capabilities.

A. Performance with simulated data

Our SCV generative model for simulated data is as follows.

We model each SCV sn as a K-dimensional multivariate

Gaussian distributed random vector, with mean 0 ∈ R
K and

some specified covariance Csn ∈ R
K×K . JBSS algorithms

that exploit source correlation have statistical capabilities and

nonidentifiability conditions dependent on these Csn , therefore

we provide a comprehensive model for the Csn as follows:

Csn = αBn + β11¦ + σQ+ ζIK

where the following quantities are defined:

• α, β, σ, and ζ are weights in [0 1] that all sum to 1, such

that Csn is a correlation matrix.

• Bn ∈ R
K×K is block matrix of R2

n total blocks, thus Rn

blocks on the main diagonal. Each diagonal block is of

a random size (uniformly distributed in [1 (K − Rn)]),
constrained such that the diagonal block sizes sum to K.

All elements in the (i, j)th block in Bn equal the (i, j)th
element in a matrix QBn

∈ R
Rn×Rn , which is randomly

generated from the Wishart distribution, normalized such

that QBn
is a normalized similarity matrix, and then

elementwise-squared such that QBn
is strictly nonnega-

tive. We note that Rn can be seen as the “effective rank”

of Bn (number of unique eigenvalues), and an increase in

Rn corresponds to a decrease in the “off-block” values.

In a sense Bn can be understood as the “group structure”

of sn, modeling groups of correlated sources sometimes

seen with medical imaging datasets [1], [3], and Rn can

be understood as the number of groups in that SCV.

• β 11¦ ∈ R
K×K is a matrix where all elements equal β.

This matrix can be understood as the minimum threshold

of correlation within that SCV (any two sources within

sn must have correlation of at least β).

• Q ∈ R
K×K is a rank K matrix randomly generated from

the Wishart distribution, then normalized and element-

wise squared such that Q is a positive definite, strictly

positive normalized similarity matrix (like QBn
). This

matrix can be understood as adding random variations

in correlation to the otherwise simple structured Csn ,

effectively ensuring all eigenvalues and eigenvectors of

Csn are unique. This effectively makes the Csn farther

from the JBSS nonidentifiability conditions and results in

an improved JBSS separation performance.

• IK ∈ R
K×K is an identity matrix that models the

covariance of additive noise of the nth SCV. We model

all additive noise signals as being uncorrelated to all

other noise signals in the system (as otherwise their

correlatedness defines dependence that helps JBSS).
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Furthermore, all SCVs are generated jointly together in a

concatenated form s = [s¦1 , . . . , s
¦
N ]¦ ∈ R

NK , which allows

us to not only specify the SCV covariance matrices Csn but

also the cross-covariance between separate SCVs. To this end,

we additionally introduce γ ∈ [0 1] as the cross-covariance

value shared between any two SCVs, thus any two sources of

two different SCVs have correlation γ. Many JBSS methods

assume the SCVs are completely independent and thus γ
= 0, however it is notable that JBSS is still possible with

dependent SCVs so long as they are maximally independent,

which are still identifiabile as JBSS methods merely maximize

independence among SCVs. This is an important aspect to

include in simulations as real-world SCVs are often dependent,

such as with medical imaging data. Increasing γ demonstrates

a more difficult separation problem for the JBSS methods.

Our simulated experiments test for varying the values of

each variable individually, in addition to varying the number

of SCVs N and the number of datasets K. Notably, time

complexity of JBSS algorithms primarily depends on the data

dimensions N and K and less on the statistics of the data.

Each experiment varies one variable while fixing all others

to a fixed value specified here. Unless otherwise varied, we

resort to these default values for variables: β = 0, σ =
0, ζ = 0.1, γ = 0, N = 8, K = 30, and T = 50000.

With N = 8, we default to 4 of the SCVs having Rn

= 2 and the other 4 SCVs having Rn = 3. Due to the

challenging nature of the default variables chosen, the default

Csn have a simple block structure that has a highly non-unique

eigendecomposition, which allows us a better lens to magnify

the different estimation capabilities of the algorithms.

All SCVs are jointly generated from T samples of the

multivariate Gaussian random vector s = [s1, . . . , sN ] ∈ R
NK

according to specified Csn and the specified γ. Sources are

then distributed to their datasets S[k], then mixed with values

in A[k] drawn from the standard Gaussian distribution.

Each variable’s experiment measures jISI and cross-jISI

in separate sub-experiments. For the jISI sub-experiment, we

perform 1000 data simulations and report average jISI with

initializations W[k] = I. For the cross-jISI sub-experiment,

we perform 50 data simulations and provide each simulation

with 20 random initializations of W[k] (all algorithms share

the same initializations), and report average cross-jISI over

these 50 simulations. The cross-jISI experiments omit MCCA-

SUMCORR as it is an analytic solution invariant to initializa-

tions, thus its cross-jISI can be treated as 0.

We also note that regIVA-G-N and regIVA-G-A perform

nearly the same for all experiments in terms of jISI and cross-

jISI except for when the experiment is varying the SCV cross-

correlation γ. This was also observed for coreIVA-G-N and

coreIVA-G-A. Thus to simplify those experiment’s plots, we

refer to regIVA-G as the performance shared by both regIVA-

G-A and regIVA-G-N, and coreIVA-G as the performance

shared by both coreIVA-G-A and coreIVA-G-N.

Fig. 2 plots the algorithms’ CPU time performances with

varying the number of datasets K and the number of SCVs N .

We first note that MCCA-SUMCORR (MCCA), regIVA-G-A,

and coreIVA-G-A are the most efficient of all tested algorithms

and have nearly overlapping CPU times when varying either

K or N . The MCCA-SUMCORR solution performed here is

an analytic solution where the W[k] are obtained from the N
principal eigenvectors of Ĉx = 1

T−1 X X¦ ∈ R
NK×NK ,

where we define X = [X[1]¦, . . . ,X[K]¦]¦ ∈ R
NK×T as

the vertical concatenation of the K datasets [10]. This leads

MCCA-SUMCORR to have a computational complexity of

O((NK)3) which is among the lowest complexities of all

JBSS algorithms. While MCCA-SUMCORR is efficient for

large K and N , we expect regIVA-G-A to outperform in CPU

time when K → ∞ due to its asymptotically linear complexity

Fig. 2. CPU time (minutes) w.r.t. varying number of datasets

K (fixing N=8) and number of sources N (fixing K=30).

MCCA, regIVA-G-A and coreIVA-G-A overlap in varying K
and N . GNJD and coreIVA-G-N overlap in varying K.

Fig. 3. jISI and cross-jISI w.r.t. varying number of datasets K.

regIVA-G methods overlap (“regIVA-G”), coreIVA-G methods

overlap (“coreIVA-G”). All cross-jISI figures (including this

one) omit MCCA, as MCCA’s cross-jISI is always 0.

Fig. 4. jISI and cross-jISI w.r.t. varying number of SCVs N .

Fig. 5. jISI and cross-jISI w.r.t. varying the SCVs’ “effective

rank” Rn (number of blocks in each Csn ).
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with K. On the other hand, regIVA-G-N and coreIVA-G-

N are significantly slower algorithms, primarily due to their

numerical optimization of each ith remaining dataset, resulting

in CPU times comparable with GNJD. Finally, IVA-G is the

most expensive of all tested algorithms. These plots were

observed using the default values of all variables, however we

note that across all experiments, each algorithm’s time was

observed to essentially only depend on the dimensions K and

N and not depend on the statistics of the data.

Fig. 3 plots the algorithms’ average jISI and cross-jISI

performances with varying the number of datasets K. Due

to the challenging nature of the default variables chosen, IVA-

G and GNJD have significantly worse estimation capabilities

than the other algorithms. We note that when the Csn have

a simple low effective rank structure, performance of IVA-G

suffers when K is very large since IVA-G overparameterizes

SCVs. Conversely, GNJD performs worse when K is small.

On the other hand, MCCA-SUMCORR assumes a generative

model where each SCV is a “common source” shared across

the K datasets, thus modeling each SCV Sn as an effectively

rank 1 matrix [9]. Apparently this simpler parameterization

allows MCCA-SUMCORR to outperform with simpler Csn .

Finally, we observed coreIVA-G to be the best jISI performing

algorithm with increasing K. As regIVA-G and coreIVA-G

use a smaller number of datasets Kb to model the remaining

datasets, Kb becomes the effective dimensionality of the

SCVs (thus avoiding SCV overparameterization), allowing

these methods to maintain good performance with large K.

Fig. 4 plots the algorithms’ average jISI and cross-jISI

performances with varying the number of SCVs N . Like in

the previous experiment with varying K, IVA-G and GNJD

perform the poorest among all tested algorithms, whereas the

other algorithms perform significantly better in jISI in order

of regIVA-G, MCCA-SUMCORR, and coreIVA-G (best).

Fig. 5 plots the algorithms’ average jISI and cross-jISI

performances with varying the number of blocks in each SCV

Rn. We observe all algorithms perform worse with increasing

Rn, which we believe is the result of less correlation in

the Csn due to the way the Csn are generated, and the

Csn possibly being closer to nonidentifiability conditions.

We notably observed that GNJD performed poorly with Rn

= 2, but was among the best performing algorithms when

Rn is large, with performance similar to coreIVA-G. Like

in the previous experiments, coreIVA-G is among the best

performing of all tested algorithms.

Fig. 6 plots the algorithms’ average jISI and cross-jISI per-

formances with varying β, the minimum correlation between

any two sources in the same SCV. All algorithms except GNJD

perform better with increasing β, whereas GNJD performs

significantly worse with larger β. This may possibly be due to

GNJD’s separation performance being more sensitive to when

all SCVs have Csn with more similar elements (elements be-

come closer together). Like the previous simulations, coreIVA-

G is among the best performing of all tested algorithms.

Fig. 7 plots the algorithms’ average jISI and cross-jISI

performances with varying σ, the amount of Wishart ran-

dom “variability” added to the Csn , which deviates the Csn

from having a non-unique eigendecomposition and deviates

from JBSS nonidentifiability. All algorithms except MCCA-

SUMCORR perform better with larger σ, whereas MCCA-

SUMCORR performs slightly worse with larger σ. We antic-

ipate that this is due to the fact that as MCCA-SUMCORR

effectively models each SCV (and thus each Csn ) as a rank

1 matrix, adding the Wishart variability tends the Csn closer

to a rank K model and thus tends farther from the MCCA-

SUMCORR assumed model. IVA-G in particular performs the

best when σ is high, which we attribute to the K-dimensional

maximum likelihood SCV model providing the best SCV

model in this scenario. Like the previous simulations, coreIVA-

G is among the best performing of all tested algorithms, only

Fig. 6. jISI and cross-jISI w.r.t. varying β, the minimum

correlation between any two sources in the same SCV.

Fig. 7. jISI and cross-jISI w.r.t. varying σ, the amount of

Wishart random “variability” added to the Csn .

Fig. 8. jISI and cross-jISI w.r.t. varying ζ, the level of additive

noise in the SCVs.

Fig. 9. jISI and cross-jISI w.r.t. varying γ, the SCV cross-

correlation. regIVA-G methods overlap in cross-jISI. coreIVA-

G methods overlap in jISI and cross-jISI.
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beaten by IVA-G in jISI when σ is high.

Fig. 8 plots the algorithms’ average jISI and cross-jISI

performances with varying ζ, the level of additive noise in

the SCVs. Increasing ζ decreases the total level of correlation

in the SCVs and results in a harder JBSS problem. All algo-

rithms perform worse with greater noise, with the relationship

between ζ and jISI appearing to be linear. Interestingly, the

cross-jISI of all algorithms is not as affected by greater noise,

aside from GNJD which has a exponential plot very similar

to its cross-jISI plot observed for increasing β. An increase

in β or ζ both correspond to all off-diagonal values in each

Csn becoming closer together, which may predict performance

issues for GNJD. Like the previous simulations, coreIVA-G is

among the best performing of all tested algorithms.

Fig. 9 plots the algorithms’ average jISI and cross-jISI

performances with varying γ, the cross-correlation between

separate SCVs. γ = 0 corresponds to uncorrelated SCVs,

whereas increasing γ presents a harder JBSS problem. We

first note that this is the only case of changing the generative

model’s variables where we observed a difference in jISI

between the analytic and numerical methods of regIVA-G

and coreIVA-G: when γ > 0, regIVA-G-N outperformed

regIVA-G-A in jISI, and coreIVA-G-N (slightly) outperformed

coreIVA-G-A in jISI. We anticipate that this is because the

numerical methods’ cost functions per each ith remaining

dataset are a function of all demixing vectors w
[i]
n , whereas the

analytic methods’ objective functions are a function of a single

demixing vector at a time. In particular, the log | det
(

W[k]
)

|
term in the numerical methods may lead to better performance

with correlated SCVs (otherwise log | det
(

W[k]
)

| = 0
when SCVs are uncorrelated and the datasets are prewhitened).

However we note that with coreIVA-G, the difference in jISI

between coreIVA-G-N and coreIVA-G-A is observed to be

very small, which justifies coreIVA-G-A as practical method

not just in time complexity but also in separation performance.

Next, we study the performance of the JBSS algorithms in

the context of a resting-state fMRI data experiment.

B. fMRI data experiment

One common application of JBSS is for analyzing medical

imaging datasets, particularly with fMRI data [1]–[3]. For

many fMRI datasets, most SCVs estimated by JBSS are

typically both low-rank and correlated to each other, with

statistics like those modeled in Section VII.A. Thus, fMRI

datasets typically have SCVs that are challenging to estimate

for algorithms that only exploit source correlation. At the same

time, fMRI datasets are also typically very large and thus also

necessitate efficient JBSS algorithms, like those algorithms

only exploiting source correlation.

Our experiments use the resting-state fMRI data from the

bipolar-schizophrenia network on intermediate phenotypes (B-

SNIP) [29], [30]. We used subject datasets available at multiple

sites for a total of K = 1175 subjects. A single 5-minute

resting fMRI scan was captured for each subject, who were

instructed to maintain an open-eyed state, concentrate on

a crosshair presented on a display screen, and remain still

throughout the scanning process. At least R g 97 time

points were obtained for each subject. We removed the first

3 time points to address the T1 effect and each subject’s data

was preprocessed including motion correction and slicetime

correction. Each subject image was masked, yielding a matrix

X̃[k] ∈ R
R×T where each of the R time point rows was a

flattened observation vector of T = 57878 voxels. We then

standardized and whitened these X̃[k] using PCA, and the

first N principal components were retained for the subsequent

JBSS performance evaluations. The order N = 80 was chosen

by selecting an adequate order analyzing post-analysis results,

however, we also note that N = 80 was the largest possible

order we could use given the HPCF maximum available

memory (350 GB). We thus preprocessed K = 1175 subjects’

fMRI datasets X[k] ∈ R
80×57878, k = 1, . . . ,K, which were

then used to perform JBSS.

Given the massive size of this fMRI data, which would

be infeasible for most JBSS methods (including IVA-G, GJD

methods, etc.), we perform JBSS on the data using only

two methods: coreIVA-G-A and MCCA-SUMCORR. With

NK >> T , we performed the MCCA-SUMCORR solu-

tion from a singular value decomposition (SVD) of X =

[X[1]¦, . . . ,X[K]¦]¦ ∈ R
NK×T , as estimating the MCCA-

SUMCORR W[k] from the N left singular vectors of X

provides a significantly more CPU and memory efficient

alternative to calculating these from the eigendecomposition of

of Ĉx = 1
T−1 XX¦ ∈ R

NK×NK . This method of performing

MCCA-SUMCORR is mathematically equivalent to group-

PCA [31], and thus can be seen as performing a group-level

PCA on the K datasets to select N group level components

whose corresponding weights in the PCA form the demixing

matrices W[k] [10]. We used Kb = 40 for coreIVA-G based

on higher quality post-analysis results with this Kb.

As we do not have ground-truth sources with real data (and

thus can’t directly measure source separation with jISI), we

use other performance measures on the results:

• total CPU-time to estimate all W[k]

• cross-jISI between W[k] of runs with different initializa-

tions (measuring consistency in estimated sources)

• “mean PSR”: average of the SCV’s power spectral ratios

(PSR). PSR is defined as the power ratio between low-

frequency (< 0.1 Hz) and high-frequency (> 0.15 Hz)

bands within estimated sources. Considering the frequen-

cies of neural-activity related BOLD signals are generally

below 0.15 Hz, high power ratio values typically indicate

BOLD activity and low power ratio values typically

associate with noisier estimates and artifacts [32].

To measure cross-jISI, we ran coreIVA-G 10 different

times with 10 random initializations for the estimated W[k].

When plotting estimated fMRI sources, we retained the run

that had the minimum cross-jISI between all other runs (the

run “most similar” to all runs). As MCCA-SUMCORR is

performed with SVD, which has an analytic solution (invariant

to initialization), we report MCCA-SUMCORR’s cross-jISI as

0 and use results from a single run.

Table 2 presents the performance measures of coreIVA-

G and MCCA-SUMCORR (MCCA) on the fMRI data. We

first note that MCCA-SUMCORR takes about 20% more
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Fig. 10. Plots of JBSS estimated sources for coreIVA-G and MCCA-SUMCORR (MCCA) obtained from the fMRI data.

(a) Distribution of power spectral ratio (PSR) values over the N = 80 SCVs, for both coreIVA-G and MCCA-SUMCORR.

(b) (c) (d) (e) plot the principal right singular vector of four different SCVs (a way of summarizing the K sources in the

corresponding SCV Yn ∈ R
K×T , accounting for possible sign ambiguities of the sources). (b) and (c) correspond to two SCVs

representing the default mode network (DMN), (d) and (e) correspond to two SCVs representing the visual (VIS) networks.

Table 2. Performance measures of coreIVA-G and MCCA-

SUMCORR (MCCA) on the K = 1175 fMRI datasets. The

best performing algorithm per measure has its value in bold.

coreIVA-G’s CPU-time is averaged over 10 runs. Mean PSR

is the average of all N = 80 SCV’s power spectral ratios.

We included only coreIVA-G and MCCA-SUMCORR as other

methods (such as IVA-G, GJD, etc.) were computationally

infeasible for this large dataset.

CPU-time
(hours)

.
cross-jISI

.
mean PSR

.
coreIVA-G

.
40.88 9.42e-9 3.16

.
MCCA

.
48.78 0 2.02

CPU-time. We anticipate the relative time difference between

the algorithms would increase significantly with larger K
due to the O(K) complexity of the coreIVA-G regression

step, whereas MCCA-SUMCORR has a complexity with K
of O(K3). We then note that MCCA-SUMCORR has the

advantage of an analytic solution and thus the estimated

solution is invariant to the initialization (cross-jISI of 0),

however, coreIVA-G’s observed cross-jISI value of 9.42e-9

is low enough such that the difference between sources of

any two runs is essentially negligable. We also note that

coreIVA-G has higher mean PSR values averaged across the

N = 80 SCVs, indicating that coreIVA-G generally estimates

less noisy sources compared to MCCA-SUMCORR. Fig. 10

(a) presents violin plots visualizing the distribution of the

N = 80 SCVs’ PSR values, further demonstrating that on

a whole the PSR values were significantly higher per SCV

with coreIVA-G compared to MCCA-SUMCORR.

Fig. 10 also plots spatial maps for the algorithms’ estimated

SCVs (referred to as networks), two networks corresponding to

default mode network (DMN) domains in (b) and (c), and two

corresponding to visual domains (VIS) in (d) and (e). Each plot

is of the principal right singular vector of that corresponding

SCV Yn ∈ R
K×T , providing a way of summarizing the K

sources y
[k]
n in Yn, accounting for possible sign ambiguities.

When analyzing plots of estimated sources, we found these

differences in coreIVA-G vs. MCCA-SUMCORR:

• “focal” activations correspond to activation peaks at the

center of an activated region and a gradual decrease in

magnitude away from the region, which is a desired qual-

ity in fMRI spatial maps. Sources estimated by MCCA-

SUMCORR generally display more noise, particularly the

blue plotted areas, and are generally less “focal” than the

corresponding sources estimated by coreIVA-G.

• higher activation magnitude within a source may cor-

respond to a better isolation of that source’s functional

network (FN), which may indicate a better demixing of

sources. We observed overall higher activation magni-

tudes with coreIVA-G than with MCCA-SUMCORR.

We anticipate that these differences are largely due to

coreIVA-G being an IVA-based method, which can generally

perform better for preserving per-subject variability in SCVs

[33]. This is opposed to MCCA-SUMCORR, which was

shown in [9] to model SCVs as an effectively rank-1 matrix

(a source shared across the datasets). This rank-1 model is

expected to perform well when SCVs are highly homogeneous,

but may otherwise be outperformed by IVA-based methods

when more heterogeneity exists within SCVs.

VIII. CONCLUSION

This paper presents an efficient methodology for scaling

IVA-G on a subset of datasets to a much larger set of

datasets, called “regIVA-G”. We proposed two such methods

for regressing an additional dataset: a numerical solution
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minimizing the IVA-G cost, and a previously proposed analytic

solution [16] with an objective function comparable with

those of GJD-based methods. We then derived the regIVA-G

methods’ nonidentifiability conditions: conditions for which

the regIVA-G methods are unable to uniquely identify the

true sources. These conditions are highly general (assuming

the subset’s sources have been identified), highlighting the

powerful estimation capabilities of both regIVA-G methods.

Following this, we derived a novel tractable cost function for

measuring the representativeness of a subset of datasets, com-

parable to discrepancy-based costs for coreset (representative

subset) selection. We thus propose using this discrepancy, in

conjunction with weighting the datasets to best minimize the

discrepancy, as the “coreIVA-G” method building onto the

regIVA-G method. Finally, we experimentally demonstrate that

regIVA-G and coreIVA-G methods can significantly outper-

form other JBSS methods in terms of CPU-time, jISI, and

cross-jISI, making these methods highly practical and highly

generalizable to many different types of data.

The main limitation of the regIVA-G and coreIVA-G meth-

ods is that they only assume a multivariate Gaussian model,

and thus only exploit source correlation to perform JBSS.

Algorithms that exploit higher-order statistics are generally

known for strong performance, and provide superior identi-

fiability conditions when the data’s SCVs are non-Gaussian.

Thus, future work may generalize these methods to a general

“regIVA” or “coreIVA” methodology modeling non-Gaussian

distributions as well, in addition to other statistical properties

of the data (such as sample dependence within the sources).
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