

Earth's Future

COMMENTARY

10.1029/2024EF004481

Special Collection:

Multi-Sector Dynamics: Advancing Complex Adaptive Human-Earth Systems Science in a World of Interconnected Risks

Key Points:

- Cities are concentrators of complex, multi-sectoral interactions
- In order to address climate risks, people need transformative solutions tailored to their problems and at decision-relevant scales
- A richer understanding of human and natural interactions in urban environments can support our transition to a more climate secure future

Correspondence to:

C. Brelsford,
cbrelsford@lanl.gov

Citation:

Brelsford, C., Jones, A., Pandey, B., Vahmani, P., Allen-Dumas, M., Rastogi, D., et al. (2024). Cities are concentrators of complex, multi-sectoral interactions within the human-Earth system. *Earth's Future*, 12, e2024EF004481. <https://doi.org/10.1029/2024EF004481>

Received 22 MAY 2024
Accepted 7 OCT 2024

Author Contributions:

Conceptualization: Christa Brelsford, Andrew Jones
Funding acquisition: Christa Brelsford
Investigation: Christa Brelsford, Andrew Jones, Bharatendu Pandey, Pouya Vahmani, Melissa Allen-Dumas, Deeksha Rastogi, Kevin Sparks, Melissa Bukovsky, Iryna Dronova, Tianzhen Hong, David M. Iwaniec, Michelle E. Newcomer, Sean C. Reid, Zhonghua Zheng
Methodology: Christa Brelsford, Andrew Jones
Project administration: Christa Brelsford

© 2024. The Author(s).

This is an open access article under the terms of the [Creative Commons Attribution-NonCommercial-NoDerivs License](#), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Cities Are Concentrators of Complex, MultiSectoral Interactions Within the Human-Earth System

Christa Brelsford^{1,2} , Andrew Jones³ , Bharatendu Pandey² , Pouya Vahmani³ , Melissa Allen-Dumas⁴ , Deeksha Rastogi⁴ , Kevin Sparks² , Melissa Bukovsky⁵ , Iryna Dronova⁶ , Tianzhen Hong⁷ , David M. Iwaniec⁸ , Michelle E. Newcomer⁹ , Sean C. Reid¹⁰ , and Zhonghua Zheng¹¹

¹Los Alamos National Laboratory, Analytics, Intelligence and Technology Division, Los Alamos, NM, USA, ²Oak Ridge National Laboratory, Geospatial Science and Human Security Division, Oak Ridge, TN, USA, ³Lawrence Berkeley National Laboratory, Climate and Ecosystem Sciences Division, Berkeley, CA, USA, ⁴Oak Ridge National Laboratory, Computational Sciences and Engineering Division, Oak Ridge, TN, USA, ⁵Haub School of Environment and Natural Resources, University of Wyoming, Laramie, WY, USA, ⁶Departments of Environmental Science, Policy & Management and Landscape Architecture & Environmental Planning, University of California Berkeley, Berkeley, CA, USA, ⁷Lawrence Berkeley National Laboratory, Building Technology and Urban Systems Division, Berkeley, CA, USA, ⁸Urban Studies Institute, Andrew Young School of Policy Studies, Georgia State University, Atlanta, GA, USA, ⁹Lawrence Berkeley National Laboratory, Earth and Environmental Science Area, Berkeley, CA, USA, ¹⁰Department of Geography, University of California, Santa Barbara, CA, USA, ¹¹Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK

Abstract Cities are concentrators of complex, multi-sectoral interactions. As keystones in the interconnected human-Earth system, cities have an outsized impact on the Earth system. We describe a multi-lens framework for organizing our understanding of the complexity of urban systems and scientific research on urban systems, which may be useful for natural system scientists exploring the ways their work can be made more actionable. We then describe four critical dimensions along which improvements are needed to advance the urban research that addresses urgent climate challenges: (a) solutions-oriented research, (b) equity-centered assessments which rely on fine-scale human and ecological data, (c) co-production of knowledge, and (d) better integration of human and natural systems occurring through theory, observation, and modeling.

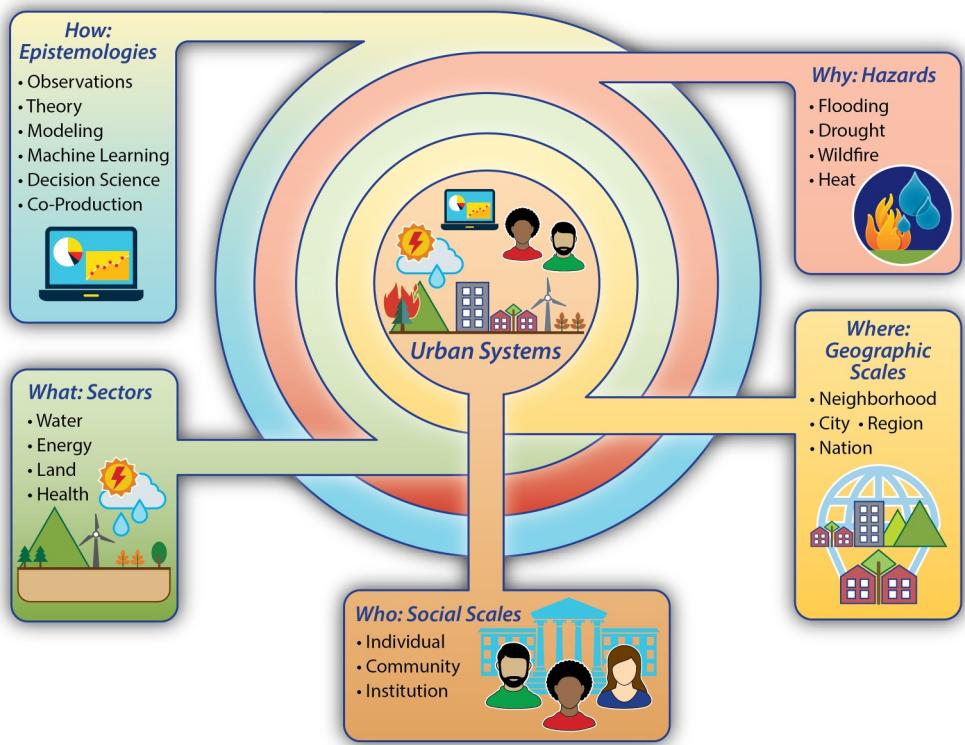
Plain Language Summary Cities can be seen as concentrators of complex, multi-sectoral interactions: ripples of influence across different systems travel faster, through more systems, and have greater consequences within cities than in other contexts. We describe a multi-lens framework for organizing our understanding of the complexity of urban systems and of scientific research on urban systems. We then describe four important improvements to urban research so we can better address urgent climate challenges in cities and globally.

1. Introduction

Cities are concentrators of complex, multi-sectoral interactions. As keystones in the interconnected human-Earth system, activities in cities have an outsized impact on the Earth system. Cities' influence on global socio-economic and environmental processes also means that research about cities provides a critical opportunity to shape insights for solution-oriented action to address the climate crisis. Climate change is increasing the frequency and magnitude of urban exposure to climate-driven hazards, which has compounding effects on the stability of interconnected urban systems and sectors. Cities face challenges in transitioning to clean energy systems through the large-scale decarbonization of major energy use sectors, including buildings, transportation, and industry, which are interconnected and interact with the urban environment (Perera et al., 2023). Our opportunities to produce the scientific insights needed to address the paired challenges of urbanization and climate change are thus both urgent and time-limited (Cologna & Oreskes, 2022; Gadgil et al., 2022; Glavovic et al., 2022; Keith et al., 2023; Lee et al., 2023; Lobo et al., 2023).

We describe a framework of multiple lenses for organizing our understanding of the complexity of urban systems and scientific research on urban systems (Figure 1). Cities are vulnerable to accelerating and interacting stresses from climate change, population growth, resource scarcity, and land-use pressure as they simultaneously

Visualization: Christa Brelsford,


Andrew Jones

Writing – original draft:

Christa Brelsford, Bhartendu Pandey, Pouya Vahmani, Melissa Allen-Dumas, Deeksha Rastogi, Kevin Sparks

Writing – review & editing:

Christa Brelsford, Andrew Jones, Bhartendu Pandey, Pouya Vahmani, Melissa Allen-Dumas, Deeksha Rastogi, Kevin Sparks, Melissa Bokovsky, Iryna Dronova, Tianzhen Hong, David M. Iwaniec, Michelle E. Newcomer, Sean C. Reid, Zhonghua Zheng

Figure 1. A conceptual diagram demonstrating multiple lenses that can be used for organizing the complexity of urban systems and scientific research within the human-Earth system. In the center, environmental, social, and built systems processes interact to produce outcomes of relevance to resilience, equity, and sustainable use of resources. Moving outward, lived experiences and decision-making take place on a continuum of social scales impacting the “Who” from individual to institutional. Key process interactions and heterogeneities “Where” multisectoral dynamics intersect differ across spatial scales from neighborhoods to nations. Sectors, the “What”, connect people and resources across urban landscapes and act as behavioral aggregators from smaller to larger scales through infrastructure networks and management institutions. Urban systems are embedded within larger environmental systems and are vulnerable to changing hazards, which motivates “Why” questions regarding resilience and adaptation and provides a lens through which to understand differential outcomes and interactions across sectors and scales. The outer circle highlights “How” we create knowledge about urban systems. Scientific insight and data, which in turn feedback to inform decision-making and behavior across the social scales highlighted in the center. Each of these lenses provides a valuable perspective on urban systems, and each is incomplete on its own.

influence regional and global socio-economic and environmental systems (Grimm et al., 2008; Seto et al., 2012). The outcomes of actions that originate in cities are shaped by the interconnections between urban sectors, nested geographic scales of action and influence, climate and non-climate-related hazards, and our own mechanisms for observing and understanding the system. For example, cities consume a large share of global energy and water, and so urban activities play a significant role in overall production & distribution. Energy conservation innovations in urban environments are shaped by the systems and sectors that use and produce energy and are influenced by regional, national, and global patterns in energy production and cost (Kennedy, 2011; Perera & Hong, 2023; Ramaswami et al., 2016). This framework highlights the need for integrative, solutions-oriented, and human-centric research to address urgent urban climate response challenges.

Human processes — increasingly determined within urban environments — are significant drivers of environmental change and a key agent of solutions and uncertainty for the future of the Earth system. Framed another way, the outcomes of these human processes define our opportunity space to avoid the most catastrophic consequences of the climate crisis. However, to explore these intertwined uncertainties and opportunities, we need to improve fine-scaled and multi-sectoral representations of coupled human-natural system processes that move beyond simple conceptual coupling (Müller-Hansen et al., 2017). Causal understanding of coupled human-natural systems are strengthened by integrating empirical and modeling approaches, and by robustly incorporating human

processes into analyses of natural systems (Schlüter et al., 2023). Uncertainties and opportunities that are driven by the coupling of urban and Earth System processes exist across geographic scopes and scales, motivating the need for diverse approaches, quantitative models, and research in this space.

As analyses of urban systems in an Earth systems context are developed, they need to support communities, scientists, and policymakers as they explore “what, who, where, why, and how” questions about the implications of particular courses of action and support identification of pathways that offer co-benefits across human, built infrastructure, and environmental systems (Hamstead et al., 2021). Cities offer an opportunity to make these advances and the incorporation of cities into Earth system analysis will improve our predictive capabilities and highlight opportunities for climate solutions.

To advance a human-Earth systems urban research agenda that addresses salient and relevant climate challenges, improvements in four key dimensions are needed: (a) solutions-oriented research, (b) equity-centered assessments that rely on fine-scale human and ecological data, (c) co-production of knowledge, and (d) better integration of human and natural systems through theory, observation, and modeling.

2. Solutions-Oriented Research

In order to address climate risks, people need transformative solutions tailored to their problems and at decision-relevant scales. Although the nature of solutions-oriented research is changing, most Earth System research has not been organized around usability of the ultimate science outcomes (cf. use-inspired research) (Coen, 2021; Morrison et al., 2022). That is, research in the context of urban climate responses must be human-centric — action and actor-oriented and center equity and justice from the perspective of both the research and governance processes and their potential outcomes. Human-centric, solutions-oriented research can take many forms and should encompass a broad range of potential interventions and theories of change, including institutional, technical, behavioral, and nature-based solutions. The critical organizing principle is that transformative research, if successful, will improve our ability to address root drivers of climate change and mitigate the consequences of the climate crisis (Morrison et al., 2022).

Within cities and across urban sectors, examples of solutions-oriented research are growing (Jagannathan, Emmanuel, et al., 2023). For example, the Grid Modernization Lab Consortium brings together leading experts, technologies, and resources to collaborate on the goal of modernizing the nation's grid (U.S. Department of Energy, 2014). The US Department of Energy's Urban Integrated Field Laboratories aim to provide the knowledge and information necessary to inform equitable climate and energy solutions that can strengthen community-scale resilience across urban landscapes (U.S. Department of Energy ESS, 2022). Basic science research, such as through the Urban Resilience to Extremes Sustainability Research Network, used knowledge co-production to learn how cities can develop urban social-ecological-technological systems that is resilient to future extreme weather events and benefits diverse urban populations equitably (Hamstead et al., 2021).

There are a range of critical literature which articulate the importance of more diverse epistemologies, ways of knowing, and cultural and geographic foci in developing and evaluating solutions-oriented research (Orlove et al., 2023). The “northern bias” in research is well documented across disciplines (Abimbola, 2019; Asase et al., 2022; North et al., 2020), but has particularly dramatic consequences in urban contexts because the vast majority of foreseeable urban growth will occur in the global South (Auerbach et al., 2018; Roy, 2005; Watson, 2016). Indigenous knowledge systems and ways of knowing have the capacity to lead toward fundamentally different understandings of climate action opportunities, but their inclusion in climate research has been uneven (David-Chavez & Gavin, 2018; Latulippe & Klenk, 2020; Smith & Sharp, 2012). Urban Governance systems have the capacity to reinforce or alleviate the systemic obstacles to sustainable urban development (Pietterse, 2019); solutions-oriented research must address insights from these diverse knowledges to achieve its most fundamental objective.

3. Fine-Scale Data

The recent explosion in digital trace data available about human behavior, mobility, and social processes is a transformative opportunity (Watts, 2012) for understanding fundamental characteristics of anthropogenic processes; for measuring and understanding inequality and its determinants; and for policymakers to understand what cities can do to mitigate and adapt to climate change on decision-relevant scales. For example, digital traces of

social interactions and human movement patterns provide insight into behavioral patterns with complexity and richness that has not previously been possible (Alessandretti et al., 2020; Brelsford et al., 2022; Pappalardo et al., 2015; Schläpfer et al., 2021; Sparks et al., 2019). Fundamental patterns in human behavior like those described by (Alessandretti et al., 2020; Pappalardo et al., 2015; Schläpfer et al., 2021) and others can quantify human behavioral processes, providing an empirical mechanism for modeling or predicting sectoral interactions, and can thus help support empirical predictions of system behaviors. This can contribute systematic insight into cities and their function as concentrators of interactions across the sectors that connect earth system risks and hazards to their impacts on societies.

This high-resolution human information is complemented by recent advances in crowd-sourced observational data sets, such as backyard weather monitors, and high-resolution urban climate modeling enabled by increases in both computational power (Almgren et al., 2023) and detailed data sets that characterize the heterogeneity of urban environments for example, (Aslam & Rana, 2022). In both cases, we need investment in data verification, validation, and comparison. For human data, these investments are needed to infer representative real-world metrics from digital traces of anthropogenic processes. For climate data, these investments ensure that estimates, their moments, and their spatial heterogeneity are represented with sufficient fidelity. This can be supported by rich computational methods—that is, Bayesian data assimilation, anomaly detection, and statistical and machine learning. Machine learning models are a powerful strategy both for arriving at complex decisions with the help of massive and heterogeneous data sets and for generating forecasts of decision-relevant urban features. However, more efforts are still needed to make machine learning models trustworthy, tractable, and capable of adequately capturing realistic, mechanistic precursors of modeled phenomena. These high-resolution data, in addition to bringing about new opportunities for insight, also bring new concerns. Digital trace data also lacks context and social depth, and often excludes the most vulnerable (people who live are not digitized). The comfort that natural scientists have with empirical data of this sort risks obscuring the validity of other forms of narrative, which remain closer to the actual lived experiences of communities and individuals (Simone & Rao, 2021). Furthermore, high resolution data create new concerns about data privacy, access, and ethical interactions with individuals and communities that is, (Anhalt-Depies et al., 2019; Seidl, 2022; Zipper et al., 2019). If the data management infrastructure is streamlined, scaled, and progress is made on the new methodological, contextual, and ethical challenges, we believe that there will be significant new opportunities for insights into urban climate response, prediction, and opportunities. Fine scale data, models, and analysis present significant unrealized opportunities for systematic understanding of multi sectoral urban processes, but alone they are insufficient.

4. Knowledge Co-Production

Fine-scale assessment of urban systems is both necessary and insufficient to comprehensively and realistically characterize the myriad of places, settings, and scales where these challenges and opportunities play out. Mechanisms of human harm from climate stressors are likely to be highly contextual. Correspondingly, assessing the critical mechanisms through which earth system hazards and stressors cause human harm requires the co-production of knowledge with stakeholders—the people at risk (Chester et al., 2023; Lemos et al., 2018; Norström et al., 2020; Ostrom, 2007). Opportunities can also be highly contextual, so assessing the key systems and sectors through which climate opportunities exist also requires co-production with the people who can develop and implement solutions in each context.

Co-production refers to collaboratively developing new knowledge, understanding, and sensemaking (Cook et al., 2021). Co-production goes beyond just sharing knowledge or extractive forms of eliciting information from a particular community; it often involves reconciling differences and building understanding through iterative collaboration. Co-production increases stakeholder agency and power in the research process, enables the research community to benefit from local perspectives on issues of critical local concern, formalizes knowledge of community-based solutions, and enhances the legitimacy and credibility of collaborative solutions that can be identified by both stakeholders and researchers. Finally, co-production allows the invention of locally specific, contextually informed opportunities for mitigation and adaptation, which are more likely to be successfully implemented because they are conceived with an understanding of the particular context. Despite the necessity and benefits of knowledge co-production, there are significant structural impediments in how this mode of science is funded, performed, and evaluated that impede implementation and success (Acuto et al., 2018). Research that aims to advance equity and environmental justice goals in urban contexts must invest in developing strategies and appropriate research scope to cope with these structural impediments.

Including human-centric approaches requires understanding the determinants of localized outcomes, experiences, and their dependencies on numerous interacting sectors. Some questions might include: What mechanisms and co-evolving sectoral processes in cities lead to differential impacts across social groups and changes in urban resilience and vulnerability? Are downscaled global or regional climate estimates reliable enough at urban scales for assessing changes in climate impacts, hazards, and adverse event probabilities? What are the primary mechanisms through which climate events (chronic and acute) cause harm? Are those critical processes well represented in high-resolution climate information? What opportunities are already used to mitigate and adapt to meteorological extremes? What are the failure mechanisms in those adaptive strategies for a range of social groups? What are the differential burdens of various adaptive strategies? How does the solution space change under different potential social, economic, and demographic futures? How much are people willing to change behavior, infrastructure, and institutions in order to move toward Net Zero carbon futures?

5. Risks and Best Practices

There are substantial risks and ethical concerns inherent in the transition from Earth system research as a discipline focused almost exclusively on natural systems to a more expansive vision which also recognizes social processes as central to determining the future of the Earth system. Beyond concerns associated with individual scale data privacy, knowledge co-production and co-design can be extractive (Lemos et al., 2018). This process can benefit the careers and goals of scientists but fail to provide tangible benefits to stakeholders, interlocutors, and co-designers. Researchers who are not active members of the communities they work in may be unaware of distinct factions and power dynamics within communities, and so inadvertently influence existing power struggles, sometimes exacerbating existing inequalities (Turnhout et al., 2020). When solution-oriented research is not directly actionable, the challenges of ethical community engaged research become more substantial because the community benefits are more abstract. Some scholars propose that incrementalist research is also an impediment to the kinds of transformational change that is necessary to address the climate crisis (Cologna & Oreskes, 2022; Glavovic et al., 2022). There is no single formula for best practices for human-centric research, but we argue that all scientists with an interest in policy relevant work should educate themselves in the state of the literature (Bixler et al., 2022; Chambers et al., 2021; Jagannathan, Buddhavarapu, et al., 2023; Mach et al., 2020; Norström et al., 2020).

6. Interconnected Assessments of Human and Natural Systems

Fundamentally, understanding urban resilience to climate change requires new theory, observations, and modeling that integrates human and natural systems. Hazard-related risk is a function of environmental conditions as well as system-level interactions among infrastructural, behavioral, and institutional factors. Understanding how these factors interact to mitigate or enhance risk is a critical area of research requiring new theoretical frameworks, observations, and modeling (Chester et al., 2023; McPhearson et al., 2021; Schlosser et al., 2023). Beyond vulnerability assessment, decision-makers need insight into the multi-objective trade-offs among alternative adaptation strategies (Ramaswami et al., 2023; Ürge-Vorsatz et al., 2018). This requires scientific foresight regarding the implications of hypothetical investment decisions, management changes, and/or environmental changes that may be out-of-sample with respect to past observed experience. In particular, green infrastructure and nature-based solutions can complement engineered infrastructure to enhance resilience and provide a multitude of co-benefits including reducing urban emissions and mitigating hydrologic or temperature extremes (Newcomer et al., 2014; Passalacqua et al., 2021; Ulpiani & Sailor, 2023). Research is needed to understand how these investments function and at what scale they can be implemented. The physical characteristics of environmental extremes can be modified by the built environment within urban areas. This highlights the importance of two-way coupling among natural and human processes in urban areas.

The insights we need are feasible. They may change our scientific understanding of the human-Earth system. Collaborative, interdisciplinary analyses at the city scale can highlight uncertainties in the future outcomes of these coupled systems, and therefore demonstrate our opportunity space for positive change. With a richer understanding of human and natural interactions in urban environments, the science we produce will be better positioned to inform decisions and policy addressing the climate crisis from a multi-sectoral perspective: supporting a transition to a more climate secure future for cities around the world.

Data Availability Statement

This commentary article does not use any new data.

Acknowledgments

This material is based upon work in the SouthEast Texas Urban Integrated Field Laboratory, supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program under Award Number DE-SC0023216. This work was funded in part by the Oak Ridge National Laboratory LDRD SEED program (ID 11328) and the Oak Ridge National Laboratory Climate Change Science Institute.

References

Abimbola, S. (2019). The foreign gaze: Authorship in academic global health. *BMJ Global Health*, 4(5), e002068. <https://doi.org/10.1136/bmigh-2019-002068>

Acuto, M., Parnell, S., & Seto, K. C. (2018). Building a global urban science. *Nature Sustainability*, 1(1), 2. <https://doi.org/10.1038/s41893-017-0013-9>

Alessandretti, L., Aslak, U., & Lehmann, S. (2020). The scales of human mobility. *Nature*, 587(7834), 402. <https://doi.org/10.1038/s41586-020-2909-1>

Almgren, A., Lattanzi, A., Haque, R., Jha, P., Kosovic, B., Mirocha, J., et al. (2023). Erf: Energy research and forecasting. *Journal of Open Source Software*, 8(87), 5202. <https://doi.org/10.21105/joss.05202>

Anholt-Depies, C., Stenglein, J. L., Zuckerberg, B., Townsend, P. A., & Rissman, A. R. (2019). Tradeoffs and tools for data quality, privacy, transparency, and trust in citizen science. *Biological Conservation*, 238(October), 108195. <https://doi.org/10.1016/j.biocon.2019.108195>

Asase, A., Mzumara-Gawa, T. I., Owino, J. O., Peterson, A. T., & Saupe, E. (2022). Replacing “parachute science” with “global science” in ecology and conservation biology. *Conservation Science and Practice*, 4(5), e517. <https://doi.org/10.1111/csp.2.517>

Aslam, A., & Rana, I. A. (2022). The use of local climate zones in the urban environment: A systematic review of data sources, methods, and themes. *Urban Climate*, 42(March), 101120. <https://doi.org/10.1016/j.ulclim.2022.101120>

Auerbach, A. M., LeBas, A., Post, A. E., & Weitz-Shapiro, R. (2018). State, society, and informality in cities of the Global South. *Studies in Comparative International Development*, 53(3), 261–280. <https://doi.org/10.1007/s12116-018-9269-y>

Bixler, R. P., Couder, M., Richter, S. M., Jones, J. M., Llanes Pulido, C., Akhavan, N., et al. (2022). Reflexive Co-production for urban resilience: Guiding framework and experiences from Austin, Texas. *Frontiers in Sustainable Cities*, 4. <https://doi.org/10.3389/frsc.2022.1015630>

Brelsford, C., Moehl, J., Weber, E., Sparks, K., Tuccillo, J. V., & Rose, A. (2022). Spatial and temporal characterization of activity in public space, 2019–2020. *Scientific Data*, 9(1), 379. <https://doi.org/10.1038/s41597-022-01480-6>

Chambers, J. M., Carina, W., Ryan, M. E., Reid, R. S., Riechers, M., Serban, A., et al. (2021). Six modes of Co-production for sustainability. *Nature Sustainability*, 4(11), 983–996. <https://doi.org/10.1038/s41893-021-00755-x>

Chester, M. V., Miller, T. R., Muñoz-Erickson, T. A., Helmrich, A. M., Iwaniec, D. M., McPhearson, T., et al. (2023). Sensemaking for entangled urban social, ecological, and technological systems in the Anthropocene. *Npj Urban Sustainability*, 3(1), 1–10. <https://doi.org/10.1038/s42949-023-00120-1>

Coen, D. R. (2021). A brief history of useable climate science. *Climatic Change*, 167(3), 51. <https://doi.org/10.1007/s10584-021-03181-2>

Cologna, V., & Oreskes, N. (2022). Don't Gloss over Social Science! A Response to: Glavovic et al. (2021) the Tragedy of Climate Change Science. *Climate & Development*, 0(0), 1–3. <https://doi.org/10.1080/17565529.2022.2076647>

Cook, E. M., Berbés-Blázquez, M., Mannetti, L. M., Grimm, N. B., Iwaniec, D. M., & Muñoz-Erickson, T. A. (2021). Setting the stage for Co-production. In Z. A. Hamstead, D. M. Iwaniec, T. McPhearson, M. Berbés-Blázquez, E. M. Cook, & T. A. Muñoz-Erickson (Eds.), *Resilient Urban futures* (pp. 99–111). The Urban Book Series Springer International Publishing. https://doi.org/10.1007/978-3-030-63131-4_7

David-Chavez, D. M., & Gavin, M. C. (2018). A global assessment of indigenous community engagement in climate research. *Environmental Research Letters*, 13(12), 123005. <https://doi.org/10.1088/1748-9326/aaef30>

Gadgil, A., Tomich, T. P., Agrawal, A., Allouche, J., Azevedo, I. M. L., Bakarr, M. I., et al. (2022). The great intergenerational robbery: A call for concerted action against environmental crises. *Annual Review of Environment and Resources*, 47(1), 1–4. <https://doi.org/10.1146/annurev-environ-061322-013248>

Glavovic, B. C., Smith, T. F., & White, I. (2022). The tragedy of climate change science. *Climate & Development*, 14(9), 829–833. <https://doi.org/10.1080/17565529.2021.2008855>

Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. *Science*, 319(5864), 756–760. <https://doi.org/10.1126/science.1150195>

Hamstead, Z. A., Iwaniec, D. M., McPhearson, T., Berbés-Blázquez, M., Cook, E. M., & Muñoz-Erickson, T. A. (Eds.) (2021). *Resilient Urban futures. Urban book Series*. Springer nature. <https://doi.org/10.1007/978-3-030-63131-4.pdf>

Jagannathan, K., Buddhavarapu, S., Ullrich, P. A., & Jones, A. D. (2023a). Typologies of actionable climate information and its use. *Global Environmental Change*, 82(September). <https://doi.org/10.1016/j.gloenvcha.2023.102732>

Jagannathan, K., Emmanuel, G., Arnott, J., Mach, K. J., Bamzai-Dodson, A., Goodrich, K., et al. (2023b). A research agenda for the science of actionable knowledge: Drawing from a review of the most misguided to the most enlightened claims in the science-policy interface literature. *Environmental Science & Policy*, 144(June), 174–186. <https://doi.org/10.1016/j.envsci.2023.03.004>

Keith, M., Birch, E., Buchoud, N. J. A., Cardama, M., Cobbett, W., Cohen, M., et al. (2023). A new urban narrative for sustainable development. *Nature Sustainability*, 6(2), 115–117. <https://doi.org/10.1038/s41893-022-00979-5>

Kennedy, C. M. (2011). *The evolution of great world cities: Urban wealth and economic growth*. University of Toronto Press.

Latulippe, N., & Klenk, N. (2020). Making room and moving over: Knowledge Co-production, indigenous knowledge sovereignty and the politics of global environmental change decision-making. *Current Opinion in Environmental Sustainability*, *Advancing the science of actionable knowledge for sustainability*, 42(February), 7–14. <https://doi.org/10.1016/j.cosust.2019.10.010>

Lee, H., Romero, J., Cheung, W. W. L., Connors, S., Denton, F., Diougue-Niang, A., et al. (2023). IPCC, 2023: Climate change 2023: Synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. In C. Writing Team, H. Lee, & J. Romero (Eds.), *IPCC. First. Intergovernmental Panel on Climate Change (IPCC)*. <https://doi.org/10.59327/IPCC/AR6-9789291691647>

Lemos, M. C., Arnott, J. C., Ardooin, N. M., Baja, K., Bednarek, A. T., Dewulf, A., et al. (2018). To Co-produce or not to Co-produce. *Nature Sustainability*, 1(12), 722–724. <https://doi.org/10.1038/s41893-018-0191-0>

Lobo, J., Aggarwal, R. M., Alberti, M., Allen-Dumas, M., Bettencourt, L. M. A., Boone, C., et al. (2023). Integration of urban science and urban climate adaptation research: Opportunities to advance climate action. *Npj Urban Sustainability*, 3(1), 1–9. <https://doi.org/10.1038/s42949-023-00113-0>

Mach, K. J., Lemos, M. C., Meadow, A. M., Wyborn, C., Klenk, N., Arnott, J. C., et al. (2020). Actionable knowledge and the Art of engagement. *Current Opinion in Environmental Sustainability*, *Advancing the science of actionable knowledge for sustainability*, 42(February), 30–37. <https://doi.org/10.1016/j.cosust.2020.01.002>

McPhearson, T., Raymond, C. M., Gulsrud, N., Albert, C., Coles, N., Fagerholm, N., et al. (2021). Radical changes are needed for transformations to a good Anthropocene. *Npj Urban Sustainability*, 1(1), 1–13. <https://doi.org/10.1038/s42949-021-00017-x>

Morrison, T. H., Neil Adger, W., Agrawal, A., Brown, K., Hornsey, M. J., Hughes, T. P., et al. (2022). Radical interventions for climate-impacted systems. *Nature Climate Change*, 12(12), 1100–1106. <https://doi.org/10.1038/s41558-022-01542-y>

Müller-Hansen, F., Schlüter, M., Mäs, M., Hegselmann, R., Donges, J. F., Kolb, J. J., et al. (2017). How to represent human behavior and decision making in Earthsystem models? A guide to techniques and approaches. *Preprint. Dynamics of the Earth system: models*. <https://doi.org/10.5194/esd-2017-18>

Newcomer, M. E., Gurdak, J. J., Sklar, L. S., & Nanus, L. (2014). Urban recharge beneath low impact development and effects of climate variability and change: Recharge beneath low impact development and climate change. *Water Resources Research*, 50(2), 1716–1734. <https://doi.org/10.1002/2013WR014282>

Norström, A. V., Cvitanovic, C., Löf, M. F., West, S., Wyborn, C., Balvanera, P., et al. (2020). Principles for knowledge Co-production in sustainability research. *Nature Sustainability*, 3(3), 182–190. <https://doi.org/10.1038/s41893-019-0448-2>

North, M. A., Hastie, W. W., & Hoyer, L. (2020). Out of Africa: The underrepresentation of African authors in high-impact geoscience literature. *Earth-Science Reviews*, 208(September), 103262. <https://doi.org/10.1016/j.earscirev.2020.103262>

Orlove, B., Sherpa, P., Dawson, N., Adelekan, I., Alangui, W., Carmona, R., et al. (2023). Placing diverse knowledge systems at the core of transformative climate research. *Ambio*, 52(9), 1431–1447. <https://doi.org/10.1007/s13280-023-01857-w>

Ostrom, E. (2007). Going beyond panaceas special feature: A diagnostic approach for going beyond panaceas. *Proceedings of the National Academy of Sciences*, 104(39), 15181–15187. <https://doi.org/10.1073/pnas.0702288104>

Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F., & Barabási, A.-L. (2015). Returners and explorers dichotomy in human mobility. *Nature Communications*, 6(September), 8166. <https://doi.org/10.1038/ncomms9166>

Passalacqua, P., Giosan, L., Goodbred, S., & Overeem, I. (2021). Stable ≠ sustainable: Delta dynamics versus the human need for stability. *Earth's Future*, 9(7), e2021EF002121. <https://doi.org/10.1029/2021EF002121>

Perera, A. T. D., & Hong, T. (2023). Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives. *Renewable and Sustainable Energy Reviews*, 173(March), 113038. <https://doi.org/10.1016/j.rser.2022.113038>

Perera, A. T. D., Javanroodi, K., Mauree, D., Nik, V. M., Florio, P., Hong, T., & Chen, D. (2023). Challenges resulting from urban density and climate change for the EU energy transition. *Nature Energy*, 8(4), 397–412. <https://doi.org/10.1038/s41560-023-01232-9>

Pieterse, E. (2019). Urban governance and spatial transformation Ambitions in Johannesburg. *Journal of Urban Affairs*, 41(1), 20–38. <https://doi.org/10.1080/07352166.2017.1305807>

Ramaswami, A., Pandey, B., Li, Q., Das, K., & Nagpure, A. (2023). Toward zero-carbon urban transitions with health, climate resilience, and equity Co-benefits: Assessing nexus linkages. *Annual Review of Environment and Resources*, 48(1), 81–121. <https://doi.org/10.1146/annurev-environ-112621-063931>

Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R., & Kumar, E. (2016). Meta-principles for developing smart, sustainable, and healthy cities. *Science*, 352(6288), 940–943. <https://doi.org/10.1126/science.aaa7160>

Roy, A. (2005). Urban informality: Toward an epistemology of planning. *Journal of the American Planning Association*, 71(2), 147–158. <https://doi.org/10.1080/01944360508976689>

Schläpfer, M., Dong, L., O'Keeffe, K., Santi, P., Szell, M., Salat, H., et al. (2021). The universal visitation law of human mobility. *Nature*, 593(7860), 522–527. <https://doi.org/10.1038/s41586-021-03480-9>

Schlosser, C. A., Frankenfeld, C., Eastham, S., Gao, X., Gurgel, A., McCluskey, A., et al. (2023). Assessing compounding risks across multiple systems and sectors: A socio-environmental systems risk-triage approach. *Frontiers in Climate*, 5. <https://doi.org/10.3389/fclim.2023.1100600>

Schlüter, M., Brelsford, C., Ferraro, P. J., Orach, K., Qiu, M., & Smith, M. D. (2023). Unraveling complex causal processes that affect sustainability requires more integration between empirical and modeling approaches. *Proceedings of the National Academy of Sciences*, 120(41), e2215676120. <https://doi.org/10.1073/pnas.2215676120>

Seidl, D. E. (2022). COVID-19's impact on geospatial data: Ethics and values. In M. Laituri, R. B. Richardson, & J. Kim (Eds.). *The geographies of COVID-19: Geospatial stories of a global pandemic* (pp. 49–61). Global Perspectives on Health Geography Springer International Publishing. https://doi.org/10.1007/978-3-031-11775-6_5

Seto, K. C., Reenberg, A., Boone, C. G., Fragiakis, M., Haase, D., Langanke, T., et al. (2012). Urban land teleconnections and sustainability. *Proceedings of the National Academy of Sciences*, 109(20), 7687–7692. <https://doi.org/10.1073/pnas.1117622109>

Simone, A. M., & Rao, V. (2021). Counting the uncountable: Revisiting urban majorities. *Public Culture*, 33(94), 151–160. <https://doi.org/10.1215/08992363-8917150>

Smith, H. A., & Sharp, K. (2012). Indigenous climate Knowledges. *WIREs Climate Change*, 3(5), 467–476. <https://doi.org/10.1002/wcc.185>

Sparks, K., Thakur, G., Pasarkar, A., & Urban, M. (2019). A global analysis of cities' geosocial temporal signatures for Points of interest hours of operation. *International Journal of Geographical Information Science*, 0(0), 1–18. <https://doi.org/10.1080/13658816.2019.1615069>

Turnhout, E., Metze, T., Wyborn, C., Klenk, N., & Louder, E. (2020). The politics of Co-production: Participation, power, and transformation. *Current Opinion in Environmental Sustainability*, *Advancing the science of actionable knowledge for sustainability*, 42(February), 15–21. <https://doi.org/10.1016/j.cosust.2019.11.009>

Ulpiani, G., & Sailor, D. J. (2023). Future-proofing the built environment: Towards a Holistic approach. *Energy and Buildings*, 300(December), 113498. <https://doi.org/10.1016/j.enbuild.2023.113498>

Ürge-Vorsatz, D., Cynthia, R., Dawson, R. J., Sanchez Rodriguez, R., Bai, X., Salisu Barau, A., et al. (2018). Locking in positive climate responses in cities. *Nature Climate Change*, 8(3), 174–177. <https://doi.org/10.1038/s41558-018-0100-6>

U.S. Department of Energy. (2014). *Grid modernization laboratory Consortium*. US Department of Energy. Retrieved from <https://www.energy.gov/gmi/grid-modernization-initiative>

U.S. Department of Energy ESS. (2022). *Urban integrated Field Laboratories*. U.S. Department of Energy Earth and Environmental Systems Sciences Division. Retrieved from <https://ess.science.energy.gov/urban-ifls/>

Watson, V. (2016). Shifting approaches to planning theory: Global North and South. *Urban Planning*, 1(4), 32–41. <https://doi.org/10.17645/up.v1i4.727>

Watts, D. J. (2012). *Everything is obvious: How common sense fails us* (Unknown edition). Currency.

Zipper, S. C., Whitney, K. S., Deines, J. M., Befus, K. M., Bhatia, U., Albers, S. J., et al. (2019). Balancing open science and data privacy in the water sciences. *Water Resources Research*, 55(7), 5202–5211. <https://doi.org/10.1029/2019WR025080>