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Abstract

The tree of blobs of a species network shows only the tree-like aspects of relationships of taxa on a network, omitting
information on network substructures where hybridization or other types of lateral transfer of genetic information
occur. By isolating such regions of a network, inference of the tree of blobs can serve as a starting point for a more
detailed investigation, or indicate the limit of what may be inferrable without additional assumptions. Building on our
theoretical work on the identifiability of the tree of blobs from gene quartet distributions under the Network Multi-
species Coalescent model, we develop an algorithm, TINNIK, for statistically consistent tree of blobs inference. We pro-
vide examples of its application to both simulated and empirical datasets, utilizing an implementation in the MSC—
quartets 2.0 Rpackage.
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Background

The availability of genome-scale datasets has led to a shift
in focus of methodological work in phylogenetics. The
Multispecies Coalescent (MSC) model, which captures
how incomplete lineage sorting (ILS) may lead to gene
trees discordant with one another and a species tree,
now provides the theoretical basis for many approaches
to species tree inference [1-7]. However, the analysis of
genomic sequence data has also made clear that using
trees to model species relationships can be inadequate.

Species networks allow for the description of more
complex patterns of sequence evolution produced by
hybridization or other forms of lateral gene transfer. Such
a network may show tree-like evolution in some parts,
with other parts, called blobs, displaying reticulations
indicating transfers of genetic material between popula-
tions. These blobs may range in complexity from simple
isolated cycles with a single reticulation to arbitrarily
complex structures with numerous reticulations. Since
some forms of gene transfer are believed to be more
likely among closely related species, and thus occur when
ILS is also present, the Network Multispecies Coalescent
(NMSC) model is usually adopted to describe the com-
bined effects of both gene transfer and ILS in the forma-
tion of gene trees [8—12].

Inference of a species network under the NMSC model,
however, poses major challenges. Simultaneous inference
of gene trees and species networks from sequences in a
Bayesian framework is computationally demanding, with
successful attempts limited to very small datasets [13, 14]
of few taxa and genes. Inference of gene trees by stand-
ard phylogenetic methods, with these inferred gene trees
treated as “data” for a second stage of species network
inference, allows for the analysis of larger datasets. Since
likelihood inference of a network still requires substantial
computational effort, optimization of pseudolikelihood
on summary statistics may be used instead. Leaving aside
whether a Bayesian or pseudolikelihood analysis is pre-
ferred, exploring network space completely is impractical
even for modest numbers of taxa, and limits on network
complexity are often imposed. Data summary network
methods hold the most promise for analysis of many-
taxon, genome-scale datasets, though more work on
computational approaches is still needed.

A pseudolikelihood, data-summary approach is taken
by PhyloNet [15], using gene tree rooted triples, and
SNaQ [16], using gene quartets, with both requiring
pre-specification of the number of reticulations. Addi-
tional speed is obtained in SNaQ by limiting networks
to a level-1 structure. NANUQ, [17], also based on
quartets, attains considerably greater speed by limiting
statistical testing to gene tree quartets and then using
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combinatorial methods for network building. NANUQ
also is limited to level-1 networks but can give some indi-
cation of when the level-1 hypothesis is violated. Finally,
PhyNEST [18] also performs level-1 quartet-based pseu-
dolikelihood inference, but uses genomic site pattern
data with the assumption that all sequences on all gene
trees were generated under the Jukes-Cantor model of
site substitution.

While assuming level-1 structure is helpful computa-
tionally, as these methods show, it is unlikely to be justifi-
able in all biological settings. Nonetheless, some limit on
network complexity is necessary for acceptable computa-
tional time, and even networks only slightly more com-
plicated than level-1 may lack identifiability from certain
data types [19].

The algorithm presented in this work takes a step
toward addressing this problem, by inferring the tree of
blobs [20] of an arbitrary species network. In this tree
only cut edges of the network remain while the blobs are
shrunk to nodes. (See, for example, Fig. 1.) Thus multi-
furcations in the tree of blobs represent potentially quite
complicated reticulated structures for which no detailed
description is given. This is similar to a “soft polytomy”
in an inferred gene tree, which rather than representing
a detailed evolutionary relationship indicates merely an
inability to obtain the true resolution. The tree of blobs
thus serves as a partial answer to how we can efficiently
infer species networks, isolating those parts of the net-
work which require additional tools to be applied —
and developed — for inferring the detailed reticulate
relationships.

In a previous work [21], as a byproduct of proving
the theoretical identifiability of the tree of blobs under
the NMSC, an algorithm to infer it from gene trees was
sketched. Hypothesis tests on counts of quartets dis-
played across gene trees for sets of 4 taxa allow the puta-
tive determination of some blob quartets, that is, of sets
of 4 taxa that are best related by a single blob, and other
quartets that could be related by a tree. Maximum likeli-
hood then allows for assignment of a tree topology to the
latter. However since not all blob quartets can be identi-
fied directly from gene data on single 4-taxon sets, a new
combinatorial inference rule is needed to combine data
for multiple 4-taxon sets. As was shown in [21], repeated
application of this rule is sufficient to correctly identify
all blob quartets. With all blob quartets known, and tree
topologies assigned to other sets of 4 taxa, we use a cer-
tain intertaxon distance that can be computed from this
information and which, assuming no error, exactly fits
the tree of blobs. Standard distance tree building meth-
ods which are robust to some error can then be used to
infer the tree of blobs from data.
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Fig. 1 (L) A species network A/t with branch lengths in coalescent units, and (R) its tree of blobs. Hybrid edges of N'* are red, with hybridization
parameters in blue above the major hybrid edges. The extended Newick string is given in Appendix A. The network N'* is non-binary, non-level-1,
non-ultrametric and non-tree-child with a 7-blob, a 6-blob, and a 4-cycle. These blobs correspond to nodes of degree 7, 6, and 4 in the true tree
of blobs on the right, where blobs are shown as blue dots. The network A/t is used in simulations to validate the TINNiK algorithm

We provide a detailed algorithm for a fast implemen-
tation of this method, called Tree of blobs INference for
a NetworK, or TINNIK,' as well as an implementation
in the MSCquartets R package, v. 2.0 [22, 23]. TIN-
NiK is a quartet-based method, motivated in part by our
development of quartet-based hypothesis tests and the
need for fast scalable algorithms. We show that TINNiK
provides a statistically consistent estimate of a network’s
tree of blobs, provided its input is a sample of gene trees
under the NMSC. Since in practice the input will be gene
trees inferred from sequence data, some degradation
of performance is to be expected. Nonetheless, sample
explorations with simulated and empirical data indicate
good performance and short computation time.

We know of no other proposed algorithm for tree of
blobs inference from biological data. One might con-
sider obtaining such an estimate through a modification
of the NANUQ algorithm [17], by collapsing the blobs
in the NANUQ splits graph to nodes. However, while it
is not hard to see this would give a statistically consist-
ent estimator in the level-1 case, nothing is known about
the theoretical behavior of doing so for more general
networks.

This paper is structured as follows. Section Networks
and models provides basic definitions and restatements
of key results from [21] which underlie our algorithm.
Section Statistical testing and estimation for cut CFs

! “Tinnik” is the Inupiaq word for bearberry or kinnickinnick, a ground
plant found throughout the circumpolar north.

presents a new statistical test to distinguish 4-taxon net-
works with a blob from those without one, with the deri-
vation of the test distribution deferred to Appendix C. In
Sect. The TINNIK algorithm for inference of the tree of
blobs, we present our TINNIK algorithm for the infer-
ence of a tree of blobs for a species network, and show
its consistency under the NMSC model. Section Simu-
lations and Applications explores performance on both
simulated and empirical datasets, with Sect. Conclusions
offering concluding comments.

Networks and models

The theoretical underpinnings of the TINNiK algorithm
were developed carefully in [21], so we treat the funda-
mental definitions and background more informally here.
Readers should consult the earlier work for a more com-
plete development.

Phylogenetic networks

We denote by N a rooted phylogenetic network, that
is, a connected, rooted, directed graph with no directed
cycles. See Fig. 1 (L) for an example. Taxa in a set X bijec-
tively label the leaves, the degree-1 descendants of the
root. Nodes are classified as tree or hybrid according to
whether exactly 1 edge or more enters them. Edges are
similarly classified according to their child node. We
often focus on binary networks, in which the root is
degree 2 and all internal vertices are degree 3. For formal
definitions of particular classes of networks, including
level-k, we recommend [24].
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A metric structure on the network specifies numerical
parameters for the NMSC model. Edge lengths are meas-
ured in coalescent units (units of generations/population
size), with tree edge lengths positive. Hybrid edges have
non-negative lengths (with length 0 modeling instantane-
ous jumping of a lineage from one population to another).
Hybridization parameters are positive probabilities that a
gene lineage at a hybrid node follows a particular hybrid
edge as it moves backward in time toward the root.

The least stable ancestor (LSA) of a network is the low-
est node through which any path from the root to any
taxon must pass. While a network may have a compli-
cated structure above its LSA, our methods do not give
us any information about this, nor about the location of
the LSA. For this reason, our focus is on the semidirected
phylogenetic network N'~, obtained from N by deleting
nodes above the LSA, undirecting all tree edges, and sup-
pressing the LSA if it became a degree-2 node. Note that
N~ is unrooted, but retains the directions of all hybrid
edges. Provided no ambiguity results, the symbol A/ may
denote either " or N/~ for simplicity.

A rooted phylogenetic network N'* on a set of taxa X
induces a network N on any subset Y C X, by retaining
only edges and nodes ancestral to at least one taxon in Y.
Induced networks on 4-taxon sets will play a particularly
important role in this work.

Blobs

A cut edge in a graph is one whose deletion increases the
number of connected components of the graph. The fol-
lowing definition also applies to general graphs.

Definition 1 A blob on a graph is a maximal connected
subgraph with no cut edges. An edge in a graph is inci-
dent to a blob if exactly one of its endpoints is in the blob.
A blob is an m-blob if it has exactly m incident cut edges.

While blobs may have complicated structures, the
simplest possible form is a single node, which is a triv-
ial blob. For example, on a tree all blobs are trivial. The
next simplest form a blob may have is that of an (undi-
rected) cycle.

Definition 2 Gusfield et al. [20] The strict tree of blobs,
T (N), for any connected graph, /N, is the tree obtained
by contracting each of the network’s blobs to a vertex,
that is, by removing all of the blob’s edges and identifying
all its vertices.

A blob with m incident cut edges in a network leads
to an m-multifurcation in the strict tree of blobs, so
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2-blobs give degree-2 nodes. Since our methods cannot
detect 2-blobs, we use a variant of the general notion of
a tree of blobs.

Definition 3 The reduced unrooted tree of blobs,
T = T,4(N7), of a rooted phylogenetic network N7 is
obtained from the strict tree of blobs of the semidirected
network N~ by suppressing all degree 2 nodes.

For the remainder of this work, the strict tree of
blobs plays no role. Therefore, we refer to the reduced
unrooted tree of blobs simply as the ‘tree of blobs 7"’
See Fig. 1 (R) for an example.

Quartets

We use two distinct classifications of sets of 4 taxa as
quartets, expressing different relationships of these sets
to the structure of a network. The first is the standard
notion of a quartet [25] in which, for instance, ab|cd
refers to an unrooted topological tree with a cut edge
separating the taxa a, b from ¢, d, and abcd refers to the
star tree.

A different notion of quartet captures the relationship
of a set of 4 taxa to the blobs of a network. A set of 4
taxa defines a blob B if there are 4 disjoint undirected
paths from B to these taxa. The taxa define B precisely
when deleting B and its incident edges leaves the 4 taxa
in distinct connected components.

Definition 4 Allman et al. [21] A setQ = {a, b, c,d} of 4
taxa on an n-taxon network is a Blob quartet, or B-quar-
tet, if there is a blob on the network which is defined by

Q.

If a set of 4 taxa is not a B-quartet on a network, then it
is a tree-like quartet, or T-quartet.

A B-quartet Q = {a,b,c,d} on N'T induces the unre-
solved quartet topology abcd on the tree of blobs 7 of
N, while a T-quartet induces a resolved quartet topol-
ogy on 7. Note, however, that a B-quartet on A/t may
become a T-quartet on an induced network ASf. For
instance, if N'" is a 5-taxon network with a single blob
which is a 5-cycle (i.e., a 5-sunlet network) and Q is the
4 taxa not descended from the hybrid node, then Q is
a B-quartet on AT, but a T-quartet on Ng See, for
example, Figure 11 in Appendix B. In contrast, T-quar-
tets on a large network remain T-quartets on induced
subnetworks.
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Quartet concordance factors and the B-quartet inference
rule

The NMSC model on a metric phylogenetic network
determines a distribution of binary metric gene trees,
and, through marginalization, distributions of binary
topological gene trees on subsets of taxa. For subsets of 4
taxa, these distributions have a special name.

Definition 5 Let N'* be a metric rooted phylogenetic
network on a taxon set X, and a, b, c,d € X distinct taxa.
The (quartet) concordance factor CFpicq = CFapjca(N'1)
is the probability under the NMSC model on N/ that a
gene tree displays the quartet ab|cd. The (vector quartet)
concordance factor, CEpeq = CFp.q(NT) is the ordered
triple

CFabcd = (CFablcd: CFaclbdv CFad\bc)

of concordance factors of each resolved quartet on
a,b,cd.

Since under the NMSC on any phylogenetic network
all gene trees are binary and all have positive probability,
the entries of CF,,,; for any a, b, ¢, d are positive and sum
to 1.

Definition 6 CF,;.; is said to be cut if two of its
entries are equal, and strictly cut if in addition the
third entry is distinct. If CF,py is strictly cut with
CFapica 7# CFacipa = CFaq)pc, then we say CFypq is strictly
(ab|cd)-cut. If CF,.4 is not cut, we say it is non-cut.

The terminology “cut” is motivated by the following
theorem.

Theorem 1 Allman et al. [21] (CF-detectability
of 4-blobs on 4-taxon networks) Consider a 4-taxon
rooted binary phylogenetic network Nt on taxa
{a,b,c,d} with quartet concordance factor CFpy
and tree of blobs T. Then under the NMSC model for
generic parameters:

(@) T has the quartet tree topology ab|cd if, and only if,
CF peq is strictly (ab|cd)-cut.

(b) T has the unresolved quartet topology if, and only if,
CF pcq is non-cut.

In contrast to the notions of B- and T-quartets, which
refer to the relationship of 4 taxa through the topology
of a full network N'F, the notions of cut and non-cut
CFs refer to properties of the probability distribution
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under the NMSC, and thus depend only on the induced
4-taxon network.

Theorem 1 shows that on 4-taxon networks there is
a close correspondence between these concepts. How-
ever, on a larger network they diverge, with the follow-
ing theorem giving a further tool for relating them.

Theorem 2 Allman et al. [21] (B-quartet Inference
Rule) Consider a rooted binary phylogenetic network N'*
on n taxa, n > 5. Suppose that {a,b,c,d} and {b,c,d, e}
are B-quartets on N'". If on the induced 4-taxon network
any one of {a, b,c, e}, {a, b,d, e}, or{a,c,d, e} is

(@) a T-quartet, with a, e not a cherry on the reduced
unrooted tree of blobs for the induced 4-taxon net-
work, or

(b) a B-quartet,

then all of {a, b, ¢, e}, {a, b, d, e}, and {a, ¢, d, e} are B-quar-
tets on N’

The previous two theorems lead to a powerful result for
application.

Theorem 3 Allman et al. [21] On an n-taxon rooted
binary phylogenetic network Nt with generic numeri-
cal parameters, all B-quartets can be identified from
the quartet CFs using CF-detectability (Theorem 1) and
applications of the B-quartet Inference Rule (Theorem 2).

In [21], these three theorems were the key to establish-
ing that the tree of blobs of an arbitrary binary species
network is identifiable from gene quartet concordance
factors. In this work, they form the basis of an algorithm
to infer that tree of blobs.

Statistical testing and estimation for cut CFs

A key component of the TINNIK algorithm for inference
of the tree of blobs is testing gene tree data to determine
which sets of four taxa are in accord with a cut CF. For
this, we introduce a new hypothesis test.

Cut model testing and maximum likelihood inference
For any phylogenetic network, a CF is a point in the
interior of the 2-dimensional probability simplex,

Az = {(pl:PZ,Pg) |pl > O’Zpi = ]_}

Definition 7 The cut model comprises those
points in A% representing cut CFs, that is
{(p1,p2,p3) € A? | p; = pj for some i # j}, as depicted in
Fig. 2 (L).
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Data relevant to a CF is collected in the form of a
quartet count concordance factor (qcCF) [27], a vector
of counts

qcCFuped = (mablcdt Myc|bds mad\hc)

of the three resolved unrooted topological quartet gene
trees, which for the taxon set {a, b, c,d} are assumed to
be independently drawn from the NMSC. In practice,
these could be quartet trees individually inferred from
sequence data for different genes, or quartet trees dis-
played on inferred gene trees on more taxa. However,
our development of a statistical test assumes no inference
error is present.

With total sample size m = mgp|cq + Macipd + Mad)bes
the empirical concordance factor, which consistently
estimates the concordance factor, is

CFapeq = (CFab\cd’ CFaclbd» CFﬂd|bC) = qcCFupcq/m.

Viewing &abcd as a point in the simplex, closeness to
the cut model lines lends informal support that the true
CFE,pcq is cut, while a greater distance supports that
CFEpcq is non-cut. For judging closeness, however, one
must take the sample size m into account.

To formulate a formal hypothesis test, fix four taxa
a, b, ¢, d, and the data qcCF 500 = (Mapjcds Mac|bds Mad|be)-
Assuming qcCF,.; arises as a trinomial sample from
the distribution specified by some true CF,.4, consider
null and alternative hypotheses:

Hy: CF 4 is cut,
Hi: CF ey is non-cut.

For a test statistic, we use the likelihood ratio statistic
for the null and alternative models, with Appendix C.1
presenting the necessary calculations for the test.

ab|cd

ac|bd ad | be
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Because the cut model has a singularity at
(1/3,1/3, 1/3) (Fig. 2 (L)), standard assumptions under-
lying the routine use of the x? distribution for judging
the test statistic are violated there. However, CF points
near the centroid include those for trees and networks
with short internal branches, and thus include some of
those of the greatest interest to researchers. Building
on work in [28], we thus develop an alternative test-
ing distribution that takes into account this geometry
of the cut model. Appendix C.2 presents its derivation
and Appendix C.3 simulations illustrating its improved
performance over the X12 distribution near and at the
cut model singularity.

The T3 model and testing
An anomalous quartet {a,b,c,d} is one whose CF is
ab|cd cut of the form (p, ¢, q) with ¢ > 1/3. Graphi-
cally, this means the CF lies on the cut model depicted
in Fig. 2 (L), but not on the 73 model shown in Fig. 2 (R).
In [17], anomalous quartets for level-1 networks were
investigated and shown to require a 3-cycle with two
taxa descended from the hybrid node, and somewhat
extreme numerical parameters which seem unlikely bio-
logically. Further investigation by Ané et al. [29] suggests
that anomalous quartets for more complex networks are
also not likely to be common. For this reason, when infer-
ring a tree of blobs it can be reasonable to assume that
an unknown network has no anomalous quartets and use
a T3 hypothesis test for CFs, rather than a cut test. The
T3 test, developed in [28], is a backbone for the NANUQ
method [17] for inferring level-1 topological networks
under the NMSC.

Using the T3 test one might infer more B-quartets than
using the cut test, as any CFs near the cut model line

ac|bd ad | be

Fig. 2 Geometric view of CFs for 4-taxon network models, with dashed lines outlining the simplex A2 Each point in A2 arises as a CF

under the NMSC, even when restricting to level-1 networks [26]. (L) The cut model consists of 3 blue line segments, with each formed by CFs arising
from 4-networks with a specific resolved tree of blobs topology. CFs off the cut model arise only from networks with unresolved trees of blobs.

(R) The T3 submodel is those cut CFs with smallest entry occurring exactly twice. Using it as the null hypothesis in the TINNiK algorithm may lead

to more sets of 4 taxa initially judged as B-quartets than using the cut test
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segments of the form (p, ¢, ¢) with g > 1/3 might support
the null hypothesis for the cut test, but be rejected by the
T3 test and flagged as indicating 4-blobs. Thus, using the
T3 test can produce a less resolved tree of blobs than the
cut test. While this is not a conservative approach in the
sense of hypothesis testing (since it may lead to more
rejections of a null hypothesis of a tree-like quartet rela-
tionship), the inferred tree of blobs it produces is a more
cautious one that possibly avoids depicting erroneous
resolution.

Although our implementation of TINNIK in MSC-
quartets has a default option of the T3 test, we rec-
ommend performing data analysis with both tests. For
many datasets we have found they give identical results,
since they either infer the same initial B-quartets, or the
B-quartet inference rule compensates for missing some
of these initially using the cut test. When the results of
using the two tests differ, investigating why that occurred
may provide more insight into the data.

The TINNiK algorithm for inference of the tree

of blobs

Building on the theorems and hypothesis tests from pre-
vious sections, we present a detailed algorithm, Tree of
blobs INference for a Species NetworK, or TINNIK, for
inferring the reduced unrooted topological tree of blobs
of a network N'* from multigene data. We then ana-
lyze its running time and show its statistical consistency
under the NMSC model for binary N'*.

TINNiK applies hypothesis tests to classify empiri-
cal CFs as cut or non-cut, giving quartet trees of blobs,
using Theorem 1. Then it repeatedly but efficiently uses
the inference rule of Theorem 2 to infer all B-quartets
for a network. TINNiK’s next step is to use a quartet-
based intertaxon distance formula [6] to convert B- and
T-quartet information to a distance approximately fit-
ting the topological tree of blobs. Then an inferred tree of
blobs can be obtained by any of a number of well-known
tree-building algorithms such as Neighbor-Joining [30],
DescentTree [31], or FastME [32]. If the quality of the
input data is unknown, or its fit to the NMSC model is
doubted, we recommend the use of the Neighbor-Net
algorithm [33] to confirm the distance reflects a strong
tree signal before tree building.

One concern for algorithm design is how to handle
empirical CFs that are near (1/3, 1/3, 1/3). These might
arise from either a true multifurcation in a network (a
hard polytomy), a “near multifurcation” of a resolved
subnetwork with short internal edges (a soft polytomy),
or from complex blobs with longer edges. TINNiK
treats all CFs judged by a “star tree” hypothesis test to
be close to (1/3, 1/3, 1/3) as B-quartets. While this is a
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natural approach, it does mean that the inferred tree of
blob’s structure may reflect both true blobs and further
multifurcations due to data quality that is insufficient to
resolve some cut edges. This may cause inferred blobs to
be larger than true ones, but only when the data is inad-
equate to obtain greater resolution.

Algorithms

The B-quartet Inference algorithm takes as input a table
of quartet count concordance factors (gcCFs). Working
from a collection of m gene trees, all on the full set X of N
taxa, this quartet table can be produced in time O(mN*).
Although under the NMSC model all gene trees are fully
resolved, in applications some inferred trees may not be,
but these can be handled either by discarding their unre-
solved quartets or assigning uniform “counts” of 1/3 to
each resolved topology, as discussed in [27].

In order to access entries of this table rapidly, without
scanning it in its entirety, we require that its rows, cor-
responding to sets of 4 taxa, be ordered so that the index
for any set can be computed directly and quickly. We
choose to order the sets of four taxa by lex order. In more
detail, this means that if the taxa are designated by the
numbers 1,2,3...,N, and a set of 4 taxa is designated
by a “word” of the four numbers in ascending order, then
these words are ordered lexicographically using the usual
order on natural numbers. Thus the first few sets are
ordered as

(1,2,3,4),(1,2,3,5),...,(1,2,3,N),(1,2,4,5),(1,2,4,6), .. ..

In lex order, the index for a particular set of 4 taxa is
given by the formula (Corollary 3.22, [34])

4
N N —n;
p(n1,n3, n3,ny) = <4>— E ( 5—il)'
i=1

The computational simplicity of this formula allows for
its rapid evaluation. Tabulating all binomial coefficients
that might be needed in the formula in advance, so they
are computed only once, requires time O(N). After this,
however, the index for any set of 4 taxa can be computed
in time O(1).

Two hypothesis tests are used in the algorithm. First,
we use a star tree test to determine whether each gcCF
is consistent with a 4-polytomy for each induced 4-taxon
network. The null hypothesis is that the CF for the 4 taxa
is (1/3, 1/3, 1/3), with the alternative its complement in
the simplex. A standard x22 test at some level B on the
likelihood ratio statistic is performed. Failure to reject
the null suggests either a true 4-polytomy, or lack of suf-
ficient information to infer a resolution.
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In addition, one of the cut or 73 hypothesis tests
described in Sect. Testing and Estimation is used in the
algorithm to decide when a vector gcCF for four taxa is
in accord with a cut relationship. More formally, rejecting
the null hypothesis of this test at level « is interpreted as
indicating a non-cut CF. By Theorem 1, this is evidence
the 4 taxa form a B-quartet on the induced 4-taxon spe-
cies network.

The following algorithm applies these tests and the
inference rule for B-quartets of Theorem 2.

Algorithm (B-quartet Inference)

Input: An <]Z) x 3 table of qcCFs for a set of N taxa

with rows in lex order corresponding to subsets of 4 taxa,
and columns corresponding to resolved quartet topolo-
gies, a choice of test “T3” or “cut,” and significance levels
o, > 0 for judging p-values in hypothesis tests on
qcCFs.

Output: A vector B of length <];[ > with entries corre-

sponding to sets of 4 taxa in lex order, whose 1/0 entries
indicate a set is/is not inferred to be a B-quartet.

1. Initialization:

Create a 4

ordered sets of 4 taxa with all entries 0, indicating
that no B-quartets are currently known. Create
empty lists L1, L2 for iteratively storing indices of
newly-found B-quartets. Compute binomial coeffi-
cients for use in indexing.

2. Hypothesis testing:

>—element indicator vector B for the lex

(a) Apply a X22 test at level 8 as described above to
each gcCF to decide which sets of 4 taxa are
viewed as B-quartets because they are in accord
with a CF of (1/3, 1/3, 1/3). Set the entries of B
for these sets to be 1, and append the indices to
L1.

(b) Apply the T3 or cut hypothesis test at level «
to each gcCF in the table not already judged as
B-quartet, to decide which sets of 4 taxa are
viewed as CF-detectable B-quartets. Set the
entries of B for these to 1, and append the indi-
cesto L1.

(c) For those sets not inferred as B-quartets, infer a
maximum likelihood estimate of a quartet tree
topology for the 4-taxon tree of blobs, for use
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in 3(a)(i)(B). In case of a tie, choose uniformly
at random.

3 Inference rule:

(a) Loop over the entries of L1, each corresponding
to a newly-determined B-quartet, say {a, b, ¢, d}

(i) Loop over the 4(N—1) sets of 4 taxa which have
exactly 3 taxa in common with {a, b, ¢, d} . For con-
creteness, say such a set is {a, b, ¢, e} with e # d. If
{a, b, ¢, e} is a known B-quartet, then

(a) Check B to see if any of {a, b, d, €}, {a,
¢, d, e}, {b, ¢, d, e} are B-quartets, and
go to (y) if one is found.

(B) Check if any of the quartet trees ea|bd,
eblad, ea|cd, ec|ad, eb|cd, ec|bd was
inferred in 2(c). If not, continue loop
(i).

(y) Update the B vector to designate {a,
b, d, e}, {a, ¢, d, e}, and {b, ¢, d, e} as
B-quartets, and store indices of any
newly-identified B-quartets in L2.

Continue loop(i)
Continue loop(a)

(b) if L2 is not empty, store L2 into L1, void L2,
and go to (a).

4. Return B.

In this algorithm, step 2 implements the theoreti-
cal CF-detectability result of Theorem 1, while step 3
implements the B-quartet inference rule of Theo-
rem 2. The algorithm eventually considers every pair of
B-quartets sharing three taxa, since any time a new one
is discovered it is compared to all quartets that share
three taxa with it. If one of these is a not-yet-inferred
B-quartet, then this pair will be compared again later,
once that quartet is inferred as a B-quartet. Theorem 3
therefore ensures the looping of step 3 can determine
all B-quartets, assuming sufficient data in accord with
the NMSC.

Steps 1 and 2 can each be accomplished in time

O(N*%). Since there can be at most (ZA\L[ > B-quartets that

can appear in the lists L through all passes through
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step 3a, and each is compared in step 3(a)i to ON)
other sets of 4-taxa, all applications of step 3 require
time at most O(N°). Thus the total time complexity is
O(N®).

To estimate the tree of blobs for a network, we seek
a tree that displays unresolved quartet trees for all
B-quartets and a resolved quartet tree with the topol-
ogy estimated by maximum likelihood for all T-quar-
tets. Note that the estimate of the topology is recorded
when step 2c of the B-inference algorithm is performed,
so we treat this as known.

Estimating the tree of blobs is now an instance of
a supertree problem, with input all trees on 4 taxa,
with the trees for B-quartets unresolved. To address
this, we take the approach introduced in [6], in which
an intertaxon distance is defined using quartet data —
including that for unresolved quartets — to compute
an intertaxon distance. Assuming perfect information,
this distance would exactly fit the unknown tree. While
inference may well lead to some incorrect quartets,
distance-based tree construction methods that behave
well under some noise can be used to return an inferred
tree of blobs. Because of possible error in some quar-
tets, and hence in the computed quartet distance, the
inferred tree may not show exact polytomies, but rather
some resolutions of them with short edges. It may thus
be desirable to reduce to zero all edge lengths smaller
than some cutoff §. Theory behind such a cutoff will
be discussed in the next subsection, in the proof of
Theorem 4.

The full TINNiK algorithm we now outline takes
as input a collection of gene trees on the taxa X, and
returns an inferred topological tree of blobs for the
network parameter which under the NMSC model pro-
duced those gene trees.

Algorithm (TINNIK)

Input: A collection of m unrooted topological gene
trees, each on a taxon set X, with |X| = N, a choice of
test “T'3” or “cut,” significance levels 8, > 0 for judging
p-values in hypothesis tests on gcCFs, and a minimum
edge length § > 0.

Output: An estimate of the tree of blobs for the net-
work parameter N producing the gene trees under the
NMSC model.

1. Tabulate all gcCFs for the taxon set X across all gene
trees.
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2. Infer all B-quartets with the B-quartet Inference
Algorithm with significance levels 8, «, and the cho-
sen test, retaining maximum likelihood topologies
for all T-quartets.

3. Treating B-quartets as unresolved, and T-quartets as
resolved with their inferred topologies, compute the
quartet intertaxon distances of [6] for X.

4. Using a distance-based tree inference method suita-
ble for non-ultrametric trees (e.g., NJ, FastME), infer
a topological tree from the distance.

5. Set all edge lengths in the tree that are less than §
to 0.

The computational times for steps 1-5 using NJ in
step 4 are, respectively, O(mN%), O(N®), O(N*), O(N?),
O(N), for a combined O((m 4+ N)N*). We report com-
putational times in practice below in Sect. Empirical
Runtimes, when analyzing TINNiK on simulated and real
data.

The TINNIK algorithm can also be applied when gene
trees have missing taxa, provided each subset of 4 taxa
occurs on at least one gene tree, so the qcCF is not the
zero vector.

Statistical consistency

It is desirable that inference algorithms produce statisti-
cally consistent estimators. In this context, informally
this means that given data (m gene trees) produced under
the NMSC model on a species network, the probability
of obtaining the correct tree of blobs approaches 1 as the
amount of data approaches infinity. However, since the
algorithms assume generic numerical parameters, and
there are several other algorithm inputs, «, 8,8, a pre-
cise statement of an appropriate notion of consistency is
more complicated. We proceed similarly to how consist-
ency was addressed for the quartet-based NANUQ algo-
rithm for inferring a level-1 species network in [17]. For
simplicity, we also restrict to the case that the data is m
gene trees, each on the full taxon set X, since generalizing
from this is straightforward.

Before stating our formal consistency theorem, we
describe explicitly what we mean by generic parameters.
For a fixed topological binary species network, it is pos-
sible that the CF for an induced 4-taxon network with
a 4-blob may be a cut CF. By Theorem 1, however, for
each such topological 4-network the CF is non-cut for
all parameters except those in a measure-0 subset of its
numerical parameter space. Since for any full network
there are only finitely many induced topological 4-net-
works and the finite union of measure-0 sets has meas-
ure zero, for generic parameters (i.e., those outside this
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measure-0 set) on the full network, all CFs for quartets
inducing 4-blob networks will be non-cut.

We also need that for generic parameters the CF of an
induced 4-taxon network is not (1/3, 1/3, 1/3). In the case
of a 4-blob, this follows from the last paragraph. But since
a 4-network without a 4-blob may have a CF with equal
entries (e.g., a 3x-cycle network [26]), more argument is
needed that this does not occur generically. Note that
if all hybridization parameters on a binary 4-network Q
without a 4-blob are 0 or 1, then Q is essentially a resolved
tree, for which CF # (1/3,1/3,1/3). Analyticity of the
parameterization then implies this inequality for generic
parameters. Mimicking the argument above shows that
no induced 4-taxon network has CF = (1/3,1/3,1/3) for
generic parameters on the full binary network.

These preliminary observations are used to prove the
following:

Theorem 4 For generic numerical parameters on a
binary phylogenetic network N't, the TINNiK Algorithm
using the cut test provides a statistically consistent esti-
mate of the topological tree of blobs T = T,;,(N ™) under
the NMSC. Specifically, there exists a sequence oy — 0
such that for any 8 > 0 and 2 > § > 0, the TINNIK algo-
rithm on a set of m gene trees independently drawn from
the NMSC model on a binary species network N'* will,
with probability — 1 asm — oo, infer T .

Proof We restrict to generic parameters ensur-
ing that all induced 4-networks with 4-blobs have
non-cut CFs, and no induced 4-taxon network has
CF = (1/3,1/3,1/3).

Page 10 of 27

First consider step 2a of the B-quartet Inference algo-
rithm. With generic parameters, for each set of 4 taxa the
probability the 3 test with significance level 8 will reject
the null hypothesis that a CFis (1/3, 1/3, 1/3) approaches
1 as m — oo. Since there are only finitely many 4-taxon
subsets, the probability goes to 1 that this null hypothesis
will be rejected for all. This holds regardless of the chosen
value of 8 > 0.

In step 2b of the B-quartet Inference algorithm, the
role of « in the cut test is more subtle, since if it is held
fixed then we expect to erroneously reject the null model
in a fraction « of all applications for each set of 4 taxa.
To make such false negatives less common, we consider
sequences of levels o, — 0 as the number of gene trees
m —> Q.

The likelihood ratio statistic is judged using the distri-
bution of Propositions 5 and 6 of Appendix C.2. If a true
CF is cut, then as m — 00, the parameter p of that dis-
tribution goes to oc and the distribution converges to the
x7. This holds even using the MLE in place of the true
parameter. To ensure that the probability of failing to
reject the null hypothesis approaches 1 as m — o0, it is
enough to choose any sequence of significance levels with
oy — 0.

In contrast, if a true CF = (p1,p2,p3), is non-cut
and hence not in the null model, let (w1, mo,ms3)
denote a gcCF under the NMSC with sample size
m = my + my + ms3, and (p1, pa, p3) the MLE of the CF
under the null model. Without loss of generality, assume
the MLE is on the vertical line segment of Fig. 2 (L), so
that

~ my L

PIZE; b2 =p3 = By

m — mq

Using the formulas of Appendix C.1, the likelihood ratio
statistic is then 4 = 4, =

— 2[my log my + (m — my) log((m — my)/2) — (my log my + my log my + ms3 log ms3))

= =2((1=50) (og (1= T) —teg2) = (Trtos T+ 010 0))

= mYm;
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where the random variable Y;,, converges in probability to
d = —=2((1 = p)og (1 = p1) —log2) — (p2log pa + p3log ps))-

Moreover, d > 0 since the unconstrained likelihood has a
unique maximum at (p1, p2, p3).

Now for any n > 0 there exists an M such that
for m>M, P, >d/2)>1—n and thus that
P(mY,, > md/2) >1—n. Since n was arbitrary, as
m — 00, P(Ay; > md/2) — 1.

Let o), be the probability that a x?-distributed random
variable is greater than md/2, so o, — 0. Then since the
test distribution converges to the x7, the probability of
rejecting the null hypothesis is greater than 1 — n for suf-
ficiently large m. Thus the probability of rejecting the null
approaches 1.

While the value of d depended upon the particular
4-taxon set under consideration, since there are only
finitely many such sets, by choosing o, as the maximum
of the &}, we obtain a sequence of significance levels that
with probability approaching 1 as m — oo ensures the
cut test will reject the null model for all induced 4-net-
works with a 4-blob and fail to reject it for all others. The
argument so far has shown that with our choice of the o,
the hypothesis tests will lead us to correctly conclude that
true CFs are cut or non-cut, with probability approaching
lasm — oc.

When the true CF for 4 taxa is cut, its value is con-
sistently inferred by maximum likelihood, and thus the
topology of the 4-taxon reduced unrooted trees of blobs
is as well. Thus as m — oo, with probability approach-
ing 1, the remaining deterministic steps of the B-quartet
Inference algorithm then correctly infer all B-quartets.

From this information on B-quartets and T-quartet
topologies, TINNiK computes an intertaxon distance
exactly fitting the network’s tree of blobs. With no error
in the distances, NJ or other tree-building algorithms
recover the tree exactly.

Note that § played no role in this argument so far, since
its purpose in the algorithm is to suppress some error
which, with probability approaching 1 as m — oo is not
present. We must however verify that § has no detrimen-
tal effects in this asymptotic result. Reviewing [6], one
sees that internal branches of a tree endowed with the
quartet distance always have length of at least 2. Thus any
0 < § < 2 will have no effect when all B- and T-quartets
are properly determined. 0

TINNiK test levels and graphical output

When TINNiK’s hypothesis tests are applied, many sets
of 4 taxa will overlap, so the CFs are not independent.
Although a Bonferroni correction for multiple tests can
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be applied, controlling the family-wise error rate, we
do not do so, as this is always equivalent to choosing a
smaller significance level. Indeed, when the method is
applied to inferred gene trees, which have unknown
error, a fully justifiable formal correction is not known.

However, when a TINNIK analysis is reported for an
empirical dataset, it should always include the values of
a, B used, and whether the “cut” or “T3” test was used.
Ideally, the gene trees that were used should be made
publicly available, for reproducibility, as gene trees
inferred by different methods might produce a different
tree of blobs.

In regard to graphical output, the tree of blobs could
be drawn in the usual way for phylogenies, with nodes
rendered as points, but we recommend a modification.
Depicting each internal node as a disk or ball gives visual
emphasis that the nodes represent blobs with potentially
complicated structures. Even degree-3 nodes should be
shown this way, since non-node 3-blobs may exist. The
implementation of TiNNiK in MSCquartets follows
this graphical style, using red disks on an inferred tree of
blobs.

Finally, although any planar drawing of the tree of blobs
necessarily orders the edges emanating from a blob in
some way, this circular order is essentially arbitrary. The
true network may not even be embeddable in the plane
without crossings, in which case no unique order is even
determined. Although for certain networks (level-1, or,
more generally, outer-labelled planar [19]) a unique cir-
cular order exists, TINNiK does not seek to find it, much
less impose it on the tree of blobs. Viewers of a tree of
blobs should keep this in mind when seeking biological
insight.

Simulations and Applications

We present analyses of both simulated and empirical
gene tree data, using the implementation of the TIN-
NiK algorithm in the MSCquartets 2.0 R package
[22, 23]. Its primary functions, TINNIK and TINNIK-
dist, utilize C++ code with the Rcpp package [35] for
increased speed.

Datasets of gene trees were simulated under the NMSC
on various networks using PhyloCoalSimulations
[36]. As true samples under the NMSC, these do not have
the gene tree inference error expected in empirical analy-
ses. For analyses of empirical datasets, we used gene trees
inferred and made publicly available by the researchers
who originally analyzed them.

With a gene tree dataset available, TINNiK can be run
quickly in R, for example using a single MSCquartets
command:

TINNIK(gene tree file)



Allman et al. Algorithms for Molecular Biology (2024) 19:23

and default settings for arguments. See the vignette in the
MSCquartets R package for an extended tutorial on
using TINNIK, and Table 1 for timing information.

Simulations

A first set of simulations, analyzed in Sects. Analysis I:
Varying a and Analysis II: Varying B, uses the model net-
work A/t of Fig. 1. This network on 23 taxa with 7 hybrid
nodes has some complicated features (e.g, non-binary,
non-tree-child [24]), with a tree-like cluster (A taxa), and
three blobs (Bs, Cs, Ds). The B-blob is descended from
the D-blob, while the C- and D-blobs include more than
one instance of gene flow.

Gene tree samples of size n = 300,500, 1000, 10000
were produced, with branch lengths scaled by factors
k =0.5,1.0,2.0, for a total of 12 simulation parameter
settings. These include cases where sampling error may
be significant (n = 300), and when short branch lengths
and the resulting high ILS (k = 0.5) may confound retic-
ulation signal. The largest value of # should approximate
asymptotic behavior. We adopt the terms ‘high, ‘moder-
ate; and ‘low’ ILS for the scaling factors k = 0.5, 1.0, 2.0,
respectively, as a convenience. Since non-matching gene
tree quartets under the NMSC on a species tree with
internal branch length 1 occur with probability approxi-
mately 0.25, our ‘moderate ILS’ is arguably ‘moderately
high’ Simulated gene tree datasets were analyzed using
the TINNIK function with the default T3 test and varied
values of « and B.

Since the T3 test and the star tree test have different
foci (hybridization vs. lack of resolution), in Sects. Analy-
sis I: Varying a and Analysis II: Varying p we investigate
the effect of each test individually. For a general overview,
Table 2 presents a summary of test levels o and simu-
lation results for all parameter choices under the T3 test,
with 8 =1 fixed (so all network quartets are treated as
resolved), and illustrates the effect that small sample size
and/or high ILS may have.

To understand the effect of blob complexity, analyses
in Sect. Analysis III: Varying blob complexity use a sec-
ond set of simulations on the networks of Fig. 6. Network
N has 10 taxa and a single 7-cycle, while network J\/';r
is obtained from N;" by the addition of two hybrid edges
cutting across the cycle, changing the blob from level-1
to level-3. Samples of size n = 1000 gene trees were
simulated.

A final simulation, in Sect. Analysis IV: compari-
son to network inference, generated a sample of size
n = 10,000 for the level-2 (2 overlapping cycles) network
N of Fig. 7. Analyses were done with TINNiK and also
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SNaQ), which infers a level-1 network under the NMSC
using pseudolikelihood on empirical quartet CFs [37].
SNaQ searches were done starting at the four level-1 net-
works displayed on A/t (obtained by deleting exactly one
hybrid edge), with the user-defined maximum number
of hybridizations, /1,4y, set to 1 and 2. Since theory justi-
fies SNaQ’s use only for level-1 networks, this modeling
scenario violates its main assumption of network com-
plexity, and it should not be expected to perform well.
Our goal is not to point out any weakness of SNaQ, but
to illustrate that TINNiK might help empiricists evaluate
if an assumption made by another method is violated by
contrasting its results to output from that method.

In accordance with Theorem 4, branch lengths in the
TINNIK tree of blobs shorter than 2 were collapsed to
zero in all analyses.

Results

We caution TINNiK users that one can rarely sim-
ply choose test levels «, 8 € [0,1] in advance (e.g., at
the common level of 0.05) and obtain a strong analysis.
Rather, a range of significance levels should be consid-
ered, in conjunction with viewing the resulting hypoth-
esis test simplex plots and weighing one’s understanding
of the extent of noise present in inferred gene trees.

Varying o from small to large increases the number of
CFs interpreted as signaling hybridization, potentially
causing TINNiK’s inferred tree of blobs to gain more or
larger multifurcations. This can indicate which multi-
furcations have the strongest support. Even in simulated
gene tree data, which has no model misspecification, the
level of support can vary with network features such as
blob complexity, hybridization parameter values, and
location of a blob within the network. Simplex plots of
test results, as discussed in [27], can help users choose
values of « that give good separation of plotted CFs into
tree-like and non-tree-like clusters.

Varying $ from small to large decreases the number
of CFs interpreted as indicating a star tree, potentially
causing the inferred tree of blobs to be more resolved.
If few CFs are plotted near the centroid (1/3,1/3,1/3) of
the simplex, the value of 8 has little impact over a wide
range. However, if many CFs are near the centroid, 8’s
value can be quite impactful. In some empirical datasets
that have been studied for signs of hybridization we have
found CFs so tightly clustered near the centroid that
whether any signal for hybridization exceeds likely gene
tree inference error seems debatable. Again, simplex
plots of test results for various § values can be a helpful
guide.
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Empirical runtimes

Representative runtimes are shown in Table 1. These
were found using gene trees as input, and do not
include the time to infer trees from sequence data.
Runtimes for other «, B are similar, although the tally-
ing of quartets need only be done once.

All times shown are a matter of seconds. In particu-
lar, TINNiK is much faster than SNaQ or PhyNEST
which infer level-1 networks, and PhyloNet which
seeks an arbitrary network, all of which perform
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pseudolikelihood optimization over (appropriate) net-
work space. TINNiK’s runtime is on par with NANUQ’s
for inferring a level-1 network topology. However, TIN-
NiK gives meaningful (though coarse) output quickly
without assumption on network level.

In conjunction with the theoretical time complex-
ity given in Sect. Algorithms, these runtimes show that
TINNIK easily scales to much larger datasets than are
likely to be feasible by any current full network inference
methods.

Table 1 Runtimes (averaged over ten runs) for the TINNiK algorithm in MSCquartets, on a 2020 Macbook 2 GHz Quad-Core i5, 32

GB RAM. Test levels are @ = 0.001for the T3 test,and 8 = 0.95

Gene tree collection Quartet tally Hypothesis tests Rest of TINNiK Total
(sec) (sec) algorithm (sec) (sec)
Simulation Analysis I: 10000 gts, k =1 323 43 03 369
23 taxa 10000 gts, k = 0.5 31.1 4.6 0.3 359
1000 gts, k = 1 33 56 03 9.2
1000 gts, k = 0.5 3.0 6.6 03 9.9
Vanderpool [38] 1730 gts 16.5 115 04 284

29 primates

Table 2 Blob detection using TINNIK for simulated data for N+ of Fig. 1 (L). Entries give ranges for e on which the full tree of blobs,
and individual blobs, are correctly inferred with the T3 test. Interval endpoints are approximate, with dashes indicating the correct

multifurcation is never inferred. For all analyses, 8 = 1

Number n of gene trees

Range of « values, for blob detection. (8 = 1)

Tree of Blobs

Fully correct

B-blob detected

C-blob detected D-blob detected

Low ILS:k = 2.
10000 [10-170,001] [10-170,001] [1073%0, 001] [107179, 0.01]
1000 [107", 1074 [107'6, 1074 [107%°,0.01] [1071°,1074,]
500 [107¢, 0.001] [1077,0.001] [107%,001] [107°, 0.001]
300 - [107%,107°] 017,001 -
300 - - - -

Moderate ILS:k = 1.
10000 [107>°, 0.001] [107>°, 0.001] [107216, 0.001] [107°°, 0.001]
1000 [10~7, 0.001] [1077, 0.001] [1072, 0.01] [1077, 0.001]
500 [107%, 0.005] [107%, 0.008] [1x 10713, 001] [1074, 0.005]
300 - - [1077, 0.003] -
300 - - - -

High ILS: k = 0.5.
10000 10712, 00011 10712, 0.001] 11078, 0.001] [10~"7,0.001]
1000 - - [1078, 0.001] -
500 - - [1074, 0.001] -

300
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Analysis I: Varying o

Our first analysis with TINNiK used a range of o val-
ues for the 73 test to detect quartet hybridization, but
set B = 1 which, in effect, treats all quartets as resolved.
Approximate ranges of o for which the full tree of blobs
and individual blobs are detected are shown in Table 2.

With sample sizes n > 500 gene trees and ILS low or
moderate, the tree of blobs is correctly inferred for a
wide range of a. With 1000 gene trees sampled under
low ILS condition, for example, the tree of blobs is cor-
rectly inferred for « ranging over eleven orders of magni-
tude. Even with high ILS, TINNIiK returns the true tree of
blobs from sample size 10,000.

A typical pattern of increasing resolution in the TIN-
NiK tree of blobs as test level « is varied is shown in Fig. 3,
for n = 1000 and k = 1. Smaller « sets a stricter criterion
for a quartet to be judged non-tree-like, so the count of
quartets initially flagged as B-quartets in the algorithm is
decreased, and the number of B-quartets inferred using
the inference rule of Theorem 2 may shrink as well. Pro-
ceeding from large o to small,

a) TINNIK first detects the tree-like A-group,

b) the C-blob is detected, and a cut edge separating the
{C-blob, A-group} from the B- and D-groups then
appears,

¢) the D-blob and then the B-blob are detected, so
that the full tree of blobs is inferred for a range of
a € [1077, 0.001],

d) the B- and D-blobs become increasingly over-
resolved, although the A-group and C-blob are cor-
rectly inferred even for very small values of c.

Several additional patterns from Table 2 and Figure 3
hold in a wide range of our experiments. First, detecting
features of the tree of blobs by TINNIK is harder for some
parts than others. For instance, decreasing «, the C-blob
and the A-tree group are the first parts to be correctly
detected by TINNIK, and remain correctly resolved for
a large range of test levels. This suggests that the metric
structure and topological complexity of a network may
result in varying difficulty in correctly inferring specific
parts of the tree of blobs. A single analysis may be insuf-
ficient to explore all hybridization in a large network.

Second, when ILS is present in anything other than low
amounts, a gene tree sample of size 300 drawn from N
appears too small to correctly infer the tree of blobs by
TINNiK. Empiricists should be aware that the number of
genes needed for accurate hybridization detection may
be large. Whether these observations apply more gen-
erally to other data types and inference frameworks is
unknown, as other tractable inference methods for non-
level-1 networks are not yet available.
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Analysis II: Varying

Short branches on a network result in higher levels of
ILS, which can cause CFs to be closer to (1/3, 1/3, 1/3).
To study these effects on TINNiK’s inference, a second
analysis focused on the network N/t of Fig. 1 (L) with
k =05. We fixed « = 10~* and varied the level g for
the star tree test. Under this test, as § is decreased more
quartets are taken to be star trees initially (and flagged as
B-quartets) leading to more polytomies and less resolu-
tion in the TINNIK tree of blobs.

Figure 4 shows results for a sample size of n = 1000
gene trees. Proceeding from left to right, we see that
for many values, 8 > 107, the A-group and C-blob are
correctly detected. As 8 is decreased, the A-, C-, and D-
groups are correctly inferred, then the correct tree of
blobs is found for B € [1073%,107%]. Decreasing 8 further
results in the D-blob collapsing incorrectly (for instance,
in the bottom, right tree of Fig. 4, {D2, D3} no longer
form a cherry), and ultimately a star tree is produced.

Figure 5 shows typical simplex plots displaying the
results of hypothesis tests (L) and application of the infer-
ence rule (R), for TINNIK test levels producing the true
tree of blobs. The TINNIK algorithm first finds B-quar-
tets corresponding to the red, green, and gold symbols
displayed on the left. The increase in the number of
B-quartets from the inference rule is visible in the gold
symbols on the right.

That TINNIK can correctly infer the true tree of blobs
when some B-quartets are found from the star tree test
should be contrasted with results shown in Table 2 for
this simulated data, where without B-quartets from
the star tree test the tree of blobs was never correctly
inferred. Using the star tree test to judge more quartets
as unresolved (decreasing 8) can thus help in obtaining
the correct tree of blobs. High amounts of ILS from short
branches can have the same qualitative impact on CFs
as some blob structures, tending to equalize the entries,
so that they are close to (1/3, 1/3, 1/3). The star tree test,
by flagging such quartets as B-quartets regardless of the
cause, helps prevent spurious resolution not strongly
supported by the data.

Analysis llI: Varying blob complexity

To investigate the effect that blob complexity might have
on TINNiK’s inference we considered a level-1 network
N1 =N with a single 7-cycle, and then modified it
by adding two additional hybridizations resulting in a
level-3 network N3 = N; . Figure 6 (L) shows Nj3, with
N1 composed of only the black and magenta edges. A
simulated sample of » = 1000 gene trees was analyzed
with TINNiK.
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=107

Fig. 3 Four TINNIK trees of blobs for a simulated sample of n = 1000 gene trees on network N’ of Fig. 1 (L) with k = 1(moderate ILS), for g = 1
anda = 0.02,001,1077,10%. Increasing resolution as « is decreased is typical. The true tree of blobs (bottom, left) is inferred for a large range
of test levels & € [1077, 0.001]. Although the (bottom, right) tree is over-resolved when a = 10723, each split is compatible with a tree displayed

on Nt

For all <140> 4-taxon sets the expected quartet con-

cordance factors were computed with QuartetNet-
workGoodnessFit [39] and plotted in Fig. 6 (R, top)
(N1 magenta, N3 blue). Expected CFs not on the model
lines in Fig. 2 correspond to B-quartets, while some of
those on the model lines may be inferred as B-quartets
using the inference rule. The effect of increasing topolog-
ical complexity in this 7-blob is to “pull” many CFs closer
to the centroid.

The pull of CFs toward the centroid with increas-
ing topological complexity means that the signal for
hybridization increasingly resembles that for lack of
quartet resolution. Intuition for this is that each par-
ticular choice of lineage paths through a blob deter-
mines a CF in the simplex, with a convex sum of these
giving the expected CF. But a convex sum of a collec-
tion of CFs will be their weighted center of gravity, and
hence tend toward their “middle”

Since CFs computed from inferred gene trees in sim-
ulation studies have also been observed to be pulled
toward the centroid from their expectation [27], the blur-
ring of hybridization signal and lack of resolution may
be very difficult to untangle. This suggests there may be
practical limits on how complicated blob structure can be
for reliable inference from CFs.

Table 3 shows a range of values for which the tree of
blobs is correctly inferred when only one of the two test
levels is varied. When 8 = 1, TINNIK infers the true tree
of blobs for a much wider range of test levels o for A}
than M. This is not surprising, since more of Ni’s CFs
are placed distant from the model lines than those for
N3. Similarly, for fixed « = 1072%, TINNIK infers the true
tree of blobs for a much wider range of § levels for the
level-3 network Ns.
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Be [107° 1] Be[10°®107]

B2B1 B2B1

Be[10% 107 Be 10 107

Fig. 4 The TINNIK tree of blobs for fixed @ = 10~ and various 8 for a simulated sample of n = 1000 gene trees for N'* with k = 0.5 (high ILS).
Decreasing B results in less resolution in the tree of blobs. From left to right: (top) only the A- and C- groups are correct; all blobs except the B-blob
are correct; (bottom) the TINNIK tree of blobs is correct forany 8 € [1 07341079 the D-group lacks sufficient resolution. For even smaller B

the TINNIK tree of blobs degrades to a star tree

A reject tree & star
O fail to reject tree/reject star B—quartet
fail to reject tree & star O T-quartet

reject tree/fail to reject star

Fig. 5 Simplex plots showing the results of hypothesis tests for@ = 1074, = 10719 (L) and after the application of the Inference Rule (R).
B-quartet simplex plots for any g € [10~3',10~°] are identical, although the hypothesis test results differ
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Expected Concordance Factors

T3 test

a=10"2% g=10

A reject tree & star

O fail to reject tree/reject star
fail to reject tree & star

X reject tree/fail to reject star

Fig. 6 (L) Model networks in Analysis lll. A consists of black and magenta edges, and N3 all edges. All hybridization parameters arey = 0.5,
with Newick notation given in Appendix A. (Right, top) Expected CFs for N7 (magenta) and A5 (light blue). (Right, bottom) Typical simplex
plots for AV; (left) and N3 (right) displaying hypothesis test results for @ = 1072°, 8 = 10~'°. For these levels, TINNiK infers the true tree of blobs
of both A/;and A5, but with different initial lists of B-quartets. For Ay most initial B-quartets are detected from non tree-like signal, but for A5

from star-like

Table 3 Range of &, B values, for correct blob detection in
7-blob networks for a sample of 1000 gene trees

T3 test: Star tree test:

ainterval, = 1 o« = 10725, Binterval

N [2 x 10719, 0.03]
N3 [0.002, 0.01]

[2%x107%, 2 x 10713
[6x 107191 x1077]

Analysis IV: comparison to network inference

Some recent network inference methods seek to infer
a level-1 network, yet offer no means of testing that
assumption. One way that TINNiK might be helpful
for this is by comparing its tree of blobs to an inferred
level-1 structure. To test this possibility, we considered
the level-2 network A/ T of Fig. 7 (L), whose tree of blobs
is a star tree. We analyzed simulated data of n = 10, 000
gene trees from this network using SNaQ [37], which
assumes the network is level-1. We thus knowingly vio-
lated SNaQ’s assumptions, and did not expect its output
to necessarily resemble the true network.

SNaQ’s optimal level-1 networks with 1 and 2 hybridi-
zations are shown in Fig. 7 (C,R). Note that the net-
work ./\/71 returned by SNaQ when /,,,, = 1 can not be
obtained from N'* by removing a single hybrid edge, nor
is its tree of blobs ’T(./\/f\l) a star tree. Much of the inferred
metric information also has little relationship to the true
network’s branch lengths. When /4, = 2, the inferred

SNaQ network N has two cycles joined with a branch
of length zero. While the tree of blobs for N, would be
a star tree if the zero branch length were collapsed, the
inferred blob structure is misleading. For instance, the
close hybrid relationship between D and E is inferred as a
more distant non-hybrid one.

The tree of blobs inferred by TINNiK is a (correct) star
tree for any @ > 1071% and g > 1071%°. For no values of
o does TINNIK obtain a tree of blobs reflecting any of the
individual cycles that SNaQ infers. Since both SNaQ and
TINNIK base their inference on the same quartet CFs,
the conflict is even more striking.

Empirical data
We apply TINNIK to infer trees of blobs from several
empirical datasets: Hawaiian flowering plants [40] and
primates [38]. These have been analyzed for hybridiza-
tion previously, with conflicting results depending on the
method used.

Hawaiian Cyrtandra

A recent study by Kleinskopf et. al. [40] investigated
hybridization and introgression in the Hawaiian
Cyrtandra. Although samples were collected across the
islands, network analyses by PhyloNet and SNaQ were
restricted to single island subsamples. The dataset con-
sists of 569 gene trees, a few with missing taxa. Most of
the gene trees are poorly resolved, with a majority of gene
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Optimal SNaQ network with hpgx =1

Optimal SNaQ network with hpgx= 2

Fig. 7 (L) A level-2 model network with star tree of blobs. Hybrid edges and hybridization parameters are in magenta, with Newick notation
given in Appendix A. (C) The optimal inferred network from SNaQ with the maximal number of hybridizations constrained to hygx = 1,and (R)
with Amax = 2.In both (CR), terminal and hybrid branch lengths are absent since they are not identifiable under the NMSC from CFs when only a
single lineage is sampled from the descendant population, and therefore are not inferred by SNaQ

quartet trees unresolved for almost all sets of 4 taxa. For
the Kauai island group of 7 taxa, for example, the star
tree topology is a majority for all but one gene quartet (34
of 35).

Networks inferred by PhyloNet and SNaQ (with
Nax = 1) for the Kauai group agreed [40, Fig. 4]. Since
the lack of gene tree resolution indicated information
content might be low, TINNiK analyses were performed
both with unresolved gene quartets omitted, and with
unresolved quartets apportioned uniformly among the
three resolved topologies. TINNiK’s analyses support
the PhyloNet/SNaQ underlying tree of blobs (Fig. 8 (L))
over a wide range of test levels with both methods for
handling unresolved gene quartets. Specifically, when
unresolved quartets are included in the analysis, the
supporting TINNIK tree of blobs shown in Fig. 8 (L) is

Kauai Cyrtandra
TINNIK tree of blobs

C. hawaiiensis 4 C. calpidicarpa

C. kauaiensis
C. sp. nov., Kaua'i

C. longifolia C. grandiflora

C. wawrae 2

C. wainihaensis C. kaulantha

C. wawrae 1

C. longifolia x C. kauaiensis L
C. hawaiiensis 3

a=0.05, Bin[0.3, 1]

Oahu Cyrtandra
TINNIK tree of blobs

a=0.05, =

obtained for any « € [0.03, 0.14] with 8 =1, and for
o = 0.05 with 8 € [0.3,1].

In contrast, there is considerable discrepancy between
the PhyloNet and SNaQ analyses for the 8-species Oahu
group [40]. PhyloNet infers a tree, while SNaQ infers a
level-1 network with 2 cycles. We found that TINNiK
inferred exactly four topologies as «, §, and the treatment
of polytomies were varied: (1) a binary tree agreeing with
that inferred by PhyloNet, (2) a tree of blobs 7" pictured
in Fig. 8 (C) with exactly two cut edges, (3) a tree with
three cut edges differing from (C) by moving the attach-
ment for C. calpidicarpa from the multifurcation, and
4) a star tree. When « is small and S large, so that there
are no initial B-quartets, the inferred TINNIK tree agrees
with that of PhyloNet (and MSCquartets’ QDC tree
[6]). This supports PhyloNet’s analysis in that signal for

Oahu Cyrtandra
Tree of blobs from optimal SNaQ network

C. cordifolia

C. calpidicarpa

i C. hawaiiensis 4
C. cordifolia C. hawaiiensis 3

C. sandwicensis 2

C. sandwicensis 2 C. grandifiora

) . is 1 C. sandwicensis 1
C. sandwicensis C. kaulantha

0.3

Fig. 8 (L) For the Kauai dataset, TINNiK's tree of blobs supports the PhyloNet and SNaQ analyses for a wide range of test levels «, B, regardless

of handling of unresolved quartet topologies. (C) The TINNIK tree of blobs for the Oahu dataset when « = 0.05and 8 = 0.3 with either treatment
of polytomies conflicts with both SNaQ and PhyloNet analyses. It supports some blob structure, but not that inferred by SNaQ. (R) The tree obtained
by contracting cycles in the SNaQ network inferred from the Oahu dataset. PhyloNet infers a resolved tree for these data
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hybridization in the Oahu data may be weak. Moreover,
the inferred TINNIK tree 7 of Fig. 8 (C) does not agree
with the tree of Fig. 8 (R) obtained by contracting cycles
in SNaQ’s optimal network, nor does its variant with
C. calpidicarpa moved. Possible reasons for this conflict
might again be signal too weak for these analyses, or that
the underlying network is not level-1. Regardless of the
cause, TINNIK illuminates that further investigation is
needed to understand relationships in this group.

Primate data

A recent study of primates by Vanderpool et al. [38] used
full genome data to investigate phylogenetic relationships
between 26 primates. Multiple analyses were performed,
but we focus on two investigations, into resolution of a
clade of New World Monkeys (NWMs), and of pos-
sible introgression within a subset of 7 taxa, the Pap-
ionini group. These data were also studied in [18] using
PhyNEST. Input for our analyses were the 1730 gene
trees estimated in [38].

The placement on the primate tree of some NWMs
is uncertain, with one analysis supporting that A.
nancymaae and C. jacchus form a clade sister to the
{S. boliviensis, C. Capucinis imitator} clade, and a sec-
ond that A. nancymaae is sister to the {S. boliviensis,

T3 test

A reject tree & star
O fail to reject tree/reject star
fail to reject tree & star

X reject tree/fail to reject star

=107, p=0.1
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C. Capucinis imitator} clade with C. jacchus an out-
group [38]. Using MSCquartets to compute empiri-
cal CFs and to perform hypothesis tests, we found that
quartet CFs that clustered near the centroid are exactly
those that might resolve this issue. In Fig. 9 (L) for any
B < 0.1 (shown with @ = 10~7), the golden squares clus-
tered around the centroid where the star tree hypothe-
sis is not rejected for any alternative resolved topology,
are those involving {C. jacchus, A. nancymaaej, exactly
one of {S. boliviensis, C. capucinus imitator} and a
fourth taxon. As seen in Fig. 9 (R), the TINNIK tree of
blobs has a degree 4 node for any 8 < 0.1, which does
not support further resolution. Note that our choice of
a ensured no putative 4-blob quartets, so this multifur-
cation arose solely due to support for star-like quartets.

A subset of four Asian Papionini (Cercocebus atys,
Mandrillus leucophaeus, Papio anubis, Theropithecus
gelada) and three African Papionini (Macaca ascicu-
laris, Macaca mulatta, Macaca nemestrina) were also
analyzed by Vanderpool et. al., with multiple introgres-
sion events found between and among these groups [38,
Fig. 4] using the A method of [41]. Specifically, seven
introgression events were inferred, with four crossing
continental boundaries.

Callithrix jacchus

Aotus nancymaae

Saimiri boliviensis
Cebus capucinus imitator

Fig.9 (L) Simplex plots illustrate that hypothesis test results support the star tree topology for quartets with A. nancymaae, C. jacchus and one
of the other two NWMs, and (R) close up of tree of blobs for the NWMs for any 8 < 0.1

A reject tree

T3 test

O fail to reject tree

Theropithecus gelada

Papio anubis

Cercocebus atys

a=0.04 a=0.02

Macaca fasciculari

Mandrillus leucophaeus

Cercocebus atys

Macaca nemestrina

Mandrillus leucophaeus Macaca nemestrina

Macaca mulatta
Macaca mulatta

Theropithecus gelada Macaca fascicularis

Papio anubis

a=0.04

Fig. 10 (L) Results of T3 hypothesis tests fora = 0.04, 8 = 7, (C) for @ € [0.015, 0.032], TINNiK's tree of blobs supports hybridization
among the African Papionini; and (R) for ¢ € [0.033, 0.093] TINNiK supports hybridization within the African Papionini and within the Asian

macaques. Only for larger values of & Does TINNiK return a star tree of blobs
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The sequence data for these taxa were reanalyzed by
Kong et. al. using PhyNEST to infer level-1 networks
with /40 = 1,2 hybridizations [18]. Theropithecus
gelada was found to be a hybrid of Papio anubis and
Mandrillus leucophaeus when hy,, =1, with an
additional hybridization among the Macaques when
Mmax = 2. These level-1 hybridization cycles do not
cross continental boundaries.

A TINNIK analysis of these seven taxa was performed
with B =1, since the simplex plot of Fig. 10 (L) shows
no CFs close to that of the star tree. In Fig. 10 (C) the
TINNIK tree of blobs for test levels o € [0.008, 0.032]
agrees with the PhyNEST analysis when #,,,, = 1. For
larger « € [0.033, 0.093] the tree of blobs is shown (R),
with multifurcations for each continent, consistent with
the PhyNEST analysis when /,,,, = 2. For test levels
a > 0.093, TINNIK returns the star tree, consistent with
the analysis using A. However, such a large value of alpha
indicates weak support for additional hybridization span-
ning continents.

Conclusions

The implementation of the TINNiK algorithm in MSC-
quartets provides the first software tool for statisti-
cally-justified inference of the tree-like parts of a species
network. With input of gene trees inferred from multilo-
cus sequence data, it quickly returns an inferred tree of
blobs of the network under the NMSC, without restric-
tive assumptions on the reticulation structure within
the blobs. Because TINNIK is a quartet-based method,
employing quartet-based hypothesis tests and quartet-
based combinatorial rules followed by a fast distance
method for constructing the tree of blobs, it is designed
to scale to large numbers of taxa.

In some cases, the tree of blobs, perhaps with partial
information on individual blob structure, may represent
the most we can tell about a species network from bio-
logical data. While the theoretical limits to inference of
complex blob structure are still unknown, recent work
[19] has shown that different blob structures are indistin-
guishable from certain types of commonly-used gene tree
summary data. Even in cases where theoretical identifia-
bility holds, practical identifiability may not, as the signal
distinguishing the precise structure may be obscured by
even small levels of noise. Learning a blob is present, or
only part of its structure, may be the strongest practical
inference that can be performed for some data.

When more can be inferred, the tree of blobs for a
large group of species can provide a good starting point
for a more targeted investigation into the unknown
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relationships represented by its multifurcations. Its infer-
ence might be either a first step in an exploratory data
analysis, or form the basis for a divide-and-conquer
approach, although the more demanding statistical infer-
ence of internal blob structure requires further theoreti-
cal and practical development.

Several recently-proposed network inference methods
assume a level-1 structure (SNaQ, PhyNEST, NANUQ),
but their performance under level misspecification has
not been studied in published work. (Note, however, that
NANUQ’s splits graph can suggest such model viola-
tion.) Since TINNIK does not assume a particular level or
other special blob structure, it can provide an important
alternative perspective. Inference of a full network that
is incompatible with TINNiK’s tree of blobs can suggest
possible model violations and a need for further analysis.
If gene trees have already been inferred, TINNiK’s speed
means its use in this way requires little additional compu-
tational effort.

An inferred tree of blobs may also be useful for the heu-
ristic searches performed by methods attempting to find
complete networks. When a starting network is needed, a
TINNIK tree of blobs is a natural candidate so the search
may spend less time finding the tree-like parts of the net-
work. Even if TINNiK produces an over-resolved tree,
in our experiments this is often a tree displayed on the
network, so that as new hybrid edges are introduced the
search may still soon focus on good candidate networks.
Finally, for those methods requiring an a priori upper
bound on the number of reticulations, TINNiK can again
be helpful by suggesting the number of blobs, and thus a
minimum number of reticulations needed.

Although our justification of the TINNiK algorithm in
this work has emphasized the NMSC model, its essential
ideas could be applied to other models of gene tree for-
mation. For instance, recent work [19] considered two
other models, one in which gene trees must be displayed
on the species network so coalescence is immediate, and
a common-inheritance coalescent model in which the
standard coalescent applies but only inside displayed
trees. In both these cases it is possible to identify B-quar-
tets for 4-taxon networks from certain data types, and
thus follow the outline of our algorithm.

The introduction of TINNIK for inferring the tree of
blobs of a species network from biological data should
encourage the development of other algorithms for this
problem. Network inference remains difficult for both
theoretical and practical reasons, and phylogenomics will
benefit from an expanding array of approaches.
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Appendix A
Newick for model networks

The Newick string for the model network shown in
Fig. 1 (L) used in simulations in Sects. Analysis I: Varying
and Analysis II: Varying  is:

(((((A1:0.4,A2:0.4)a1:1.0,A3:0.2)a2:1.5,(A4:0.5,A5:0.5)
a3:1.2)aa:1.0,  ((((C1:0.5,#H5:0.5::0.3)c1:0.6,#H6:0.5::0.4)
€2:0.4,#H7:0.4:0.25)c3:0.3,  ((C2:0.4)#H7:0.55::0.75,((C
3:0.6)#H6:0.75::0.6,((C4:0.2)#H5:0.6:0.7,  C5:0.3)c4:0.5)
¢5:0.4)c6:0.4)cc:1.0)ac:1.0,(((D1:0.6,(D2:0.3,D3:0.3)
d10:0.6) d11:1.2,#H4:0.5::0.8)d1:0.4,((D4:0.6,(D5:
0.25)#H2:0.2::0.6)d9:0.2) #H4:0.1::0.2,#H3:0.1::0.4)
d3:0.8,((((#H2:0.2::0.4,D06:0.65)d2:0.2)
#H3:0.1::0.6,(((B1:0.3,B2:0.2)b1:1.0,#H1:0.4::0.3)
b2:0.5,(((B3:0.4,B4:0.4) b5:1.0)#H1:0.4::0.7,(B5:0.4,B6:0.5)
b3:1.0)b4:0.6)bb:1.2)d5:0.2,D7:0.3) d6:0.6)jj:0.5)r;

The Newick string for the model network shown in
Fig. 6 (L) used in of Sect. Analysis III: Varying blob com-
plexity is:

((G:1.0,((((F2:1.0,F1:1.0):0.7,((E2:1.0,E1:1.0):0.7)#H1:0.6
::0.5):0.1)#H2:0.4::0.5, #H3:0.0::0.5):0.1):0.5,((((#H2:0.0::0.
5,((#H1:0.25::0.5,D:1.0):0.25,C:1.0):0.2):0.3, (B2:1.0,B1:1.0
):0.7):0.1)#H3:0.4::0.5,A:1.0):0.2)r;

The Newick string for the model network shown in
Fig. 7 (L) used in of Sect. Analysis IV: comparison to net-
work inference is:

((((1:1.0,(H:1.0,(G:1.0,(F:1.0,((E:1.0,#H2:0.5::0.4):0.5)#H
1:0.5::0.5):0.5):0.5):0.5):0.5,]:1.0):0.5,#H1:0.5::0.5):0.5,(A:1.
0,(B:1.0,(C:1.0,(D:1.0)#H2:0.5::0.6):0.5):0.5):0.5);

Appendix B
B- and T-quartets on a sunlet network
See Fig. 11
a d
b c
H

Fig. 11 The quartet Q = {a,b,¢,d, }is a B-quartet on '+,
but a T-quartet on the induced network /\/’5
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Appendix C
Cut hypothesis test and simulations

We use the notation of Sect. Cut model testing and
maximum likelihood inference.

C.1 Cut model topology estimation and LR statistic
For the cut model, the maximum likelihood parameter esti-
mate for data

qcCFupeq = (Map|cd> Mac|bd> madlbc)

with m = myp|cq + Muelpa + Maappe is found by comput-
ing the maximum of the trinomial likelihood constrained
to each of the 3 line segments of Fig. 2 (L) and then
choosing the largest. (Ties broken at random.) For the
vertical line the maximizer is

Mabled Macibd + Madibc Maclbd + Mad|be
m 2m ’ 2m

’ )
2m

_ ( Mablcd ™M — Mgp|cd M — Mgp|cd
m 2m ’

the projection of CF (the normalized gcCF) orthogonally
to the line. A comparison of the likelihood at the maxi-
mizers on the three lines leads to the three regions shown
in Fig. 12 (L) for which normalized gcCFs lead to cut
model MLEs on the model lines in each region. For use
in TINNIK, when the cut model is not rejected, we need
only the topology of the MLE, which is determined solely
by the color of the region in which CF lies.

The likelihood ratio statistic for the hypothesis test
described in Sect. Cut model testing and maximum like-
lihood inference requires the maximum log-likelihoods
under the cut (null) and unconstrained (alternative) tri-
nomial models. For the vertical line of the cut model, the
maximum log-likelihood is

Mapcd 108 Mapicq + (M — Mapicq) log(m — mgp cq) —log2)
—mlogm + C,

while for the unconstrained model, with MLE CE , the
maximum log-likelihood is

Myp|cd log Map\cd + Mac|bd log Myc|bd
+ Myq)pe log mygpe — mlogm + C,

with C a constant.
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(07N0) )

Fig. 12 (L) Regions for which data with an empirical cr gives an MLE in the cut model on each of the three cut model lines. The MLE is obtained
by moving orthogonally to the model line in the same colored region as CF. (R) The image of the cut model in A, under a linear transformation

to the plane, with (1 - %q&o, %¢>o, %qbo) mapped to (0, o), and the 3 model lines mapped to the three lines shown. The region of integration

for G(x) in the proof of Proposition 6 is all shaded regions R; and their reflections about the vertical line

C.2 Cut test distributions

To derive an asymptotic distribution for the likelihood ratio
(LR) statistic for the cut model hypothesis test of Sect. Cut
model testing and maximum likelihood inference, we follow
similar derivations for 71 and 73 tests using Theorem 3.1 of
[28]. That work also provides more discussion of why model
singularities, such as the cut model’s (1/3, 1/3, 1/3), make the
use of a standard distribution inappropriate.

Assume the generating parameter in the cut model is
6o = (1 — 2¢0/3,¢0/3, $o/3). Applying a linear transfor-
mation dependent on the sample size # and the Fisher infor-
mation matrix 7 as in [28], the simplex is mapped to R?, and
the cut model to lines crossing at the origin, with the verti-
cal line segment mapped to the y-axis. Then 6y — (0, 1o),
with 1o = po(n) := v2n(1 — ¢0)(@o(3 — 2¢0)) "/, and
the information matrix becomes the identity. This trans-
formation is not conformal (unless ¢9 = 1) and the two
transformed model lines not containing the generating
parameter form angles oo = arctan ((3(3 —2¢0) "V 2)
with the horizontal. See Fig. 12 (R).

Proposition 5 The likelihood ratio statistic for
testing Ho versus Hi for a true parameter point
6o = (1 —2¢0/3,¢0/3,90/3), ¢o € (0,3/2), of the cut
model, with sample size n is asymptotically distributed as
the random variable

A, = min <Z2, (sin agZ + cos 0502)2, (sin ogZ — cos aoZ)2>,

where Z ~ N'(0,1), Z ~ N (110, 1), po(n) := ~/2n(1 — ¢bo)
(¢0(3 — 2¢0)) "%, and ap = arctan ((3(3 — 2¢9)) " '/?).

Here “asymptotically distributed” means that the likeli-
hood ratio statistic and this random variable converge in
distribution to the same limit as n — oo.

Proof Letting yp = tan ay, in the transformed space the
image of © is contained in the union of the lines x = 0,
y = yoxand y = —ypx.

By Theorem 3.1 of [28], the approximate distribution of
the likelihood ratio statistic is the distribution of the mini-
mum squared Euclidean distance between a normal sample,
N((0, 110), I), and the three lines in the transformed space.
Assuming that 6y is not too close to the boundary of the
simplex, in a sense dependent on the sample size, little of the
mass of N'((0, o), 1) is outside the image of the simplex.
Thus, for the remainder of the argument, we replace these
line segments with lines intersecting at the singularity (0, 0).

Denote the marginal probability distributions of
the bivariate normal sample by Z ~ A/(0,1) and
Z ~ N (10, 1). We next determine the squared distance
of a sample point (Z Z ) to each of the three lines.

Considering the first line, x = 0, the squared Euclid-
ean distance is Z2. For the line y = yox, the closest point
(X,70X) to (Z,Z) has X = (Z+ wZ)/(1 + y), so the
squared distance is

2 2
1 - -
Yo 5 (Z — Z) = (sin ogZ — Cos aoZ)z.
1+ Y0

Similarly, for the line y = —ypx the squared distance is

(sin aopZ + cos a02)2. The claim follows by taking the
minimum of these squared distances. O
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For testing purposes, we characterize this distribu-
tion further.

Proposition 6 The probability density function for
the random variable A, of Proposition 5 is, for 2 > 0, is
f i, (A) with

13, () =

N

+ exp (—

+exp <—; (ﬁ + uo Cosa0)2> <2 - erf(
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cumulative distribution function of the (non-squared)
Euclidean distance. This is found by integrating the dis-
tribution NV'((0, o), I) over the tube of points within dis-
tance x from the image of ®¢, with simplifications using
the symmetry of the region and normal distribution as
shown in Fig. 12 (R). Although the generating parameter

(0, o) is shown above the origin, for ¢o € (1, 2) it may

be below. In fact, g is an increasing function of ¢o, with

; [ex (_/L 2—erf )COtﬂ(H_MO — erf Vicotfo = mo )
2427 2 P NG

2 A 2 _ .
(\/_—,uocosao) ><2_erf<«/_cotoeo+ﬂosmao> _erf<\/_c0tﬁo MoSanto>)

V2 V2

\/Icotozo—uosinom) erf<ﬁcotﬂo+uosinao>}

V2 V2

where ao = arctan ((3(3 — 2¢)) ~/?)
po=3(5 — )

and

Proof To determine the probability density function for
the distribution of Proposition 5, let G(x) denote the

G ( ) / /cosﬂ 1
—Gi(x
ao+pBo dx

x
h /ao+/3o 2 < cos2 g osﬂ

a0(0) ~0.322and lim _ao(go) = %
bo—3
Then G(x) =2 Zi:l Gi(x), where G; is the integral over
the shaded strip R;, and the density of the Euclidean dis-
tance is g(x) = 2 E?Zl %G,‘ (%).
Considering % G1(») first:

Lo . 2
<—2(r — 2uorsin B —}—pLO))rdrd,B

sin B + M%)) co:Zﬂ dg

= % exp (—x ) /o+ﬁ0 exp ( (x tan? B — 2uox tan B + Mo)) %2’3 dp.

Substituting y = x tan S gives

d 1 1 e 1 2
—Gl(x) ~— exp <—x2> / exp <—(y — o) )dy
21 2 x tan (ao+PBo) 2

—;ex <—1x2> <l—erf<1(xtan(a + Bo) — )>>
= i p 5 NG 0 0) — Ko .
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Next we consider %Gz(x) and j—ng(x). Rotating the  Next we consider j—sz;(x) and %Gs(x). Rotating the fig-
figure 2By counter-clockwise to simplify the com- ure 3 + g counter-clockwise, the generating parameter

putation, the generating parameter is mapped as becomes (—po cosag, —io sinap). Then

(0, pto) = (—po cos g, o sin ap). Then

d Z+bo d _coiﬂ 1 1
%Gz(x) =/’; %/0 Eexp (—2( 2 + 2uor cos (ag + B) —I—,u%))rdrdﬁ

7tho 1 1/ «? cos (ag + B) x
[5 2 P < 2 (cos2 B Ho¥ s B + MO)) cos2 B p

1 1 1
ﬁ exp <—2(x — o COSO[())z) (1 — erf(ﬁ(x cot Bo — uo sin ao)>>

and

2

1/ «? cos(@o+p) | o x
- el SR Wl R t) d
[50,0 2 P ( 2 <cos2 B + 2Hox cos B +Ho cos? B p

1

COS 1 1
—Gg(x) / dx/ r 2 exp (—(r2+2,uorcos (oeo+ﬂ)+ug))rdrd,3
—ao

1 5 1
= ——exp|—=+ Ccos o 1—erf| —=(xcotag — sin o .
o P< 2( Mo 0))( (ﬁ( 0 — Mo 0)))

21

PR 1/ x? cos (ag — B) 9 x
= —exp|—= — 2k ————— d
[5 2 P < 2 <cos2 B Ho cos B o cos? 8

1 1 ) 1
= ——¢eX —= (X — COS ¢ l—erf —(x cotu + SinO{ >>
T3 P( 2( Mo 0) >< (ﬁ( 0+ Mo 0)

d PR/ ~@sp 1 1
7G4(x)=/ —/ — ex p(—(r +2,uorcos(oe0—ﬂ)+uo))rdrdﬂ
dx % dx 0

and

cos 1 1
7G5(x) /_ﬁo dx/ <7 <_2(r2+2,u0rcos(oz0—ﬁ)+ug)>rdrdﬁ

1 x2 cos (ag — B) 9 X
- - 2pox 22X~ F) d
[5_50 om P ( 2 (cos2 B +Hox cos B i cos? B P

1

1 1
= ﬁ exp <—2(x + Ko Cosao)2> (1 — erf<ﬁ(x cot Bo + (o sin ao)>>,
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Finally, we consider j—xG6(x), which is identical to
%Gl (%), but after mapping the generating parameter as
(0, o) = (0, — o). Then

1 1
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If only one expected count is small, the normalization
lies near an edge of the simplex. Under the cut model,
the other two counts should be approximately equal and

d 1 1, B
de6(x)—Wexp< 2x><1 erf<ﬂ(xtan(ao+,30)+uo)>>.

The claim follows after noting that tan (g + Bo) = cot B
and performing a change of variable to the squared
Euclidean distance. 0

Using the density of Proposition 6 for judging likeli-
hood ratio statistics is still complicated by its depend-
ence on the unknown true parameter ¢9. While several
approaches to deal with this are discussed in [28],
the simplest is to replace ¢o by its MLE under the cut
model. Although theory does not guarantee the good
performance of this approach, in the next section we
investigate performance through simulation.

If an expected gqcCF has some small counts, say
less than 5, and hence its normalization lies near the
boundary of the simplex, an alternative testing proce-
dure is necessary. In the case of only 2 small counts,
the geometry of the parameter space far from a vertex
can be ignored, giving essentially the same situation
for the 71 and T3 tests already implemented in MSC-
quartets. Either parametric bootstrapping from Bo,
or a much faster precomputed approximation, can be
used.

approximately binomially distributed. Then a standard
binomial test can be applied.

C.3 Cut test simulation

Figure 13 shows results of simulations comparing p-val-
ues for the likelihood ratio statistic for simulated gcCFs
from the cut model, using the distribution of Proposi-
tion 6 with the MLE for ¢g, and a standard X12 distribu-
tion. While neither distribution produces the desired
cumulative distribution of p-values, that of Proposi-
tion 6 comes closer when o has smaller magnitude.
The value o = 0 corresponds to the model singularity
(1/3, 1/3, 1/3), where both tests will perform very con-
servatively for small significance levels, seldom rejecting
the null model. As g is varied away from 0, performance
improves.

While o depends on both the true model parameter
and the sample size #, it has a simple interpretation: if o,
is the standard deviation of the y-coordinate of the ran-
dom observations, then |ugloy is the distance between
the generating parameter 6 and the model singularity.

—— density of Proposition 6
2

Xs

0 —— both
g
S o, , o
| / —
o /
"'6 © | /, o |

IS / 1=}
> /
o © ,/ ©
& ° / S
> < | / < |
o © J/ o
= /

[aV) [aV)
281 / 3
s o |/ o |
S © T T T T © A T T
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Fig. 13 Cumulative distributions of p-values computed from simulations, for the distribution of the likelihood ratio statistic given in Proposition 6
using maximum likelihood estimates of ¢ (red), and for the sz distribution (blue) for sample size n = 10°. The cdf plots are indistinguishable
for|wo|large. The diagonal line represents ideal behavior. At and near the model singularity, o = 0, the distribution of Theorem 6 performs better
than a x?
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