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Abstract 

The tree of blobs of a species network shows only the tree-like aspects of relationships of taxa on a network, omitting 
information on network substructures where hybridization or other types of lateral transfer of genetic information 
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species Coalescent model, we develop an algorithm, TINNiK, for statistically consistent tree of blobs inference. We pro-
vide examples of its application to both simulated and empirical datasets, utilizing an implementation in the MSC-
quartets 2.0 R package.
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Background
The availability of genome-scale datasets has led to a shift 
in focus of methodological work in phylogenetics. The 
Multispecies Coalescent (MSC) model, which captures 
how incomplete lineage sorting (ILS) may lead to gene 
trees discordant with one another and a species tree, 
now provides the theoretical basis for many approaches 
to species tree inference [1–7]. However, the analysis of 
genomic sequence data has also made clear that using 
trees to model species relationships can be inadequate.

Species networks allow for the description of more 
complex patterns of sequence evolution produced by 
hybridization or other forms of lateral gene transfer. Such 
a network may show tree-like evolution in some parts, 
with other parts, called blobs, displaying reticulations 
indicating transfers of genetic material between popula-
tions. These blobs may range in complexity from simple 
isolated cycles with a single reticulation to arbitrarily 
complex structures with numerous reticulations. Since 
some forms of gene transfer are believed to be more 
likely among closely related species, and thus occur when 
ILS is also present, the Network Multispecies Coalescent 
(NMSC) model is usually adopted to describe the com-
bined effects of both gene transfer and ILS in the forma-
tion of gene trees [8–12].

Inference of a species network under the NMSC model, 
however, poses major challenges. Simultaneous inference 
of gene trees and species networks from sequences in a 
Bayesian framework is computationally demanding, with 
successful attempts limited to very small datasets [13, 14] 
of few taxa and genes. Inference of gene trees by stand-
ard phylogenetic methods, with these inferred gene trees 
treated as “data” for a second stage of species network 
inference, allows for the analysis of larger datasets. Since 
likelihood inference of a network still requires substantial 
computational effort, optimization of pseudolikelihood 
on summary statistics may be used instead. Leaving aside 
whether a Bayesian or pseudolikelihood analysis is pre-
ferred, exploring network space completely is impractical 
even for modest numbers of taxa, and limits on network 
complexity are often imposed. Data summary network 
methods hold the most promise for analysis of many-
taxon, genome-scale datasets, though more work on 
computational approaches is still needed.

A pseudolikelihood, data-summary approach is taken 
by PhyloNet [15], using gene tree rooted triples, and 
SNaQ [16], using gene quartets, with both requiring 
pre-specification of the number of reticulations. Addi-
tional speed is obtained in SNaQ by limiting networks 
to a level-1 structure. NANUQ, [17], also based on 
quartets, attains considerably greater speed by limiting 
statistical testing to gene tree quartets and then using 

combinatorial methods for network building. NANUQ 
also is limited to level-1 networks but can give some indi-
cation of when the level-1 hypothesis is violated. Finally, 
PhyNEST [18] also performs level-1 quartet-based pseu-
dolikelihood inference, but uses genomic site pattern 
data with the assumption that all sequences on all gene 
trees were generated under the Jukes-Cantor model of 
site substitution.

While assuming level-1 structure is helpful computa-
tionally, as these methods show, it is unlikely to be justifi-
able in all biological settings. Nonetheless, some limit on 
network complexity is necessary for acceptable computa-
tional time, and even networks only slightly more com-
plicated than level-1 may lack identifiability from certain 
data types [19].

The algorithm presented in this work takes a step 
toward addressing this problem, by inferring the tree of 
blobs [20] of an arbitrary species network. In this tree 
only cut edges of the network remain while the blobs are 
shrunk to nodes. (See, for example, Fig.  1.) Thus multi-
furcations in the tree of blobs represent potentially quite 
complicated reticulated structures for which no detailed 
description is given. This is similar to a “soft polytomy” 
in an inferred gene tree, which rather than representing 
a detailed evolutionary relationship indicates merely an 
inability to obtain the true resolution. The tree of blobs 
thus serves as a partial answer to how we can efficiently 
infer species networks, isolating those parts of the net-
work which require additional tools to be applied — 
and developed — for inferring the detailed reticulate 
relationships.

In a previous work [21], as a byproduct of proving 
the theoretical identifiability of the tree of blobs under 
the NMSC, an algorithm to infer it from gene trees was 
sketched. Hypothesis tests on counts of quartets dis-
played across gene trees for sets of 4 taxa allow the puta-
tive determination of some blob quartets, that is, of sets 
of 4 taxa that are best related by a single blob, and other 
quartets that could be related by a tree. Maximum likeli-
hood then allows for assignment of a tree topology to the 
latter. However since not all blob quartets can be identi-
fied directly from gene data on single 4-taxon sets, a new 
combinatorial inference rule is needed to combine data 
for multiple 4-taxon sets. As was shown in [21], repeated 
application of this rule is sufficient to correctly identify 
all blob quartets. With all blob quartets known, and tree 
topologies assigned to other sets of 4 taxa, we use a cer-
tain intertaxon distance that can be computed from this 
information and which, assuming no error, exactly fits 
the tree of blobs. Standard distance tree building meth-
ods which are robust to some error can then be used to 
infer the tree of blobs from data.
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We provide a detailed algorithm for a fast implemen-
tation of this method, called Tree of blobs INference for 
a NetworK, or TINNiK,1 as well as an implementation 
in the MSCquartets R package, v.  2.0 [22, 23]. TIN-
NiK is a quartet-based method, motivated in part by our 
development of quartet-based hypothesis tests and the 
need for fast scalable algorithms. We show that TINNiK 
provides a statistically consistent estimate of a network’s 
tree of blobs, provided its input is a sample of gene trees 
under the NMSC. Since in practice the input will be gene 
trees inferred from sequence data, some degradation 
of performance is to be expected. Nonetheless, sample 
explorations with simulated and empirical data indicate 
good performance and short computation time.

We know of no other proposed algorithm for tree of 
blobs inference from biological data. One might con-
sider obtaining such an estimate through a modification 
of the NANUQ algorithm [17], by collapsing the blobs 
in the NANUQ splits graph to nodes. However, while it 
is not hard to see this would give a statistically consist-
ent estimator in the level-1 case, nothing is known about 
the theoretical behavior of doing so for more general 
networks.

This paper is structured as follows. Section  Networks 
and models provides basic definitions and restatements 
of key results from [21] which underlie our algorithm. 
Section  Statistical testing and estimation for cut CFs 

presents a new statistical test to distinguish 4-taxon net-
works with a blob from those without one, with the deri-
vation of the test distribution deferred to Appendix C. In 
Sect. The TINNiK algorithm for inference of the tree of 
blobs, we present our TINNiK algorithm for the infer-
ence of a tree of blobs for a species network, and show 
its consistency under the NMSC model. Section  Simu-
lations and Applications explores performance on both 
simulated and empirical datasets, with Sect. Conclusions 
offering concluding comments.

Networks and models
The theoretical underpinnings of the TINNiK algorithm 
were developed carefully in [21], so we treat the funda-
mental definitions and background more informally here. 
Readers should consult the earlier work for a more com-
plete development.

Phylogenetic networks
We denote by N+ a rooted phylogenetic network, that 
is, a connected, rooted, directed graph with no directed 
cycles. See Fig. 1 (L) for an example. Taxa in a set X bijec-
tively label the leaves, the degree-1 descendants of the 
root. Nodes are classified as tree or hybrid according to 
whether exactly 1 edge or more enters them. Edges are 
similarly classified according to their child node. We 
often focus on binary networks, in which the root is 
degree 2 and all internal vertices are degree 3. For formal 
definitions of particular classes of networks, including 
level-k, we recommend [24].

Fig. 1  (L) A species network N+ with branch lengths in coalescent units, and (R) its tree of blobs. Hybrid edges of N+ are red, with hybridization 
parameters in blue above the major hybrid edges. The extended Newick string is given in Appendix A. The network N+ is non-binary, non-level-1, 
non-ultrametric and non-tree-child with a 7-blob, a 6-blob, and a 4-cycle. These blobs correspond to nodes of degree 7, 6, and 4 in the true tree 
of blobs on the right, where blobs are shown as blue dots. The network N+ is used in simulations to validate the TINNiK algorithm

1  “Tinnik” is the Inupiaq word for bearberry or kinnickinnick, a ground 
plant found throughout the circumpolar north.
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A metric structure on the network specifies numerical 
parameters for the NMSC model. Edge lengths are meas-
ured in coalescent units (units of generations/population 
size), with tree edge lengths positive. Hybrid edges have 
non-negative lengths (with length 0 modeling instantane-
ous jumping of a lineage from one population to another). 
Hybridization parameters are positive probabilities that a 
gene lineage at a hybrid node follows a particular hybrid 
edge as it moves backward in time toward the root.

The least stable ancestor (LSA) of a network is the low-
est node through which any path from the root to any 
taxon must pass. While a network may have a compli-
cated structure above its LSA, our methods do not give 
us any information about this, nor about the location of 
the LSA. For this reason, our focus is on the semidirected 
phylogenetic network N− , obtained from N+ by deleting 
nodes above the LSA, undirecting all tree edges, and sup-
pressing the LSA if it became a degree-2 node. Note that 
N− is unrooted, but retains the directions of all hybrid 
edges. Provided no ambiguity results, the symbol N  may 
denote either N+ or N− for simplicity.

A rooted phylogenetic network N+ on a set of taxa X 
induces a network N+

Y  on any subset Y ⊂ X , by retaining 
only edges and nodes ancestral to at least one taxon in Y. 
Induced networks on 4-taxon sets will play a particularly 
important role in this work.

Blobs
A cut edge in a graph is one whose deletion increases the 
number of connected components of the graph. The fol-
lowing definition also applies to general graphs.

Definition 1  A blob on a graph is a maximal connected 
subgraph with no cut edges. An edge in a graph is inci-
dent to a blob if exactly one of its endpoints is in the blob. 
A blob is an m-blob if it has exactly m incident cut edges.

While blobs may have complicated structures, the 
simplest possible form is a single node, which is a triv-
ial blob. For example, on a tree all blobs are trivial. The 
next simplest form a blob may have is that of an (undi-
rected) cycle.

Definition 2  Gusfield et al. [20] The strict tree of blobs, 
T (N ) , for any connected graph, N  , is the tree obtained 
by contracting each of the network’s blobs to a vertex, 
that is, by removing all of the blob’s edges and identifying 
all its vertices.

A blob with m incident cut edges in a network leads 
to an m-multifurcation in the strict tree of blobs, so 

2-blobs give degree-2 nodes. Since our methods cannot 
detect 2-blobs, we use a variant of the general notion of 
a tree of blobs.

Definition 3  The reduced unrooted tree of blobs, 
T = Trd(N

−) , of a rooted phylogenetic network N+ is 
obtained from the strict tree of blobs of the semidirected 
network N− by suppressing all degree 2 nodes.

For the remainder of this work, the strict tree of 
blobs plays no role. Therefore, we refer to the reduced 
unrooted tree of blobs simply as the ‘tree of blobs T  .’ 
See Fig. 1 (R) for an example.

Quartets
We use two distinct classifications of sets of 4 taxa as 
quartets, expressing different relationships of these sets 
to the structure of a network. The first is the standard 
notion of a quartet [25] in which, for instance, ab|cd 
refers to an unrooted topological tree with a cut edge 
separating the taxa a, b from c, d, and abcd refers to the 
star tree.

A different notion of quartet captures the relationship 
of a set of 4 taxa to the blobs of a network. A set of 4 
taxa defines a blob B if there are 4 disjoint undirected 
paths from B to these taxa. The taxa define B precisely 
when deleting B and its incident edges leaves the 4 taxa 
in distinct connected components.

Definition 4  Allman et al. [21] A set Q = {a, b, c, d} of 4 
taxa on an n-taxon network is a Blob quartet, or B-quar-
tet, if there is a blob on the network which is defined by 
Q.

If a set of 4 taxa is not a B-quartet on a network, then it 
is a tree-like quartet, or T-quartet.

A B-quartet Q = {a, b, c, d} on N+ induces the unre-
solved quartet topology abcd on the tree of blobs T  of 
N+ , while a T-quartet induces a resolved quartet topol-
ogy on T  . Note, however, that a B-quartet on N+ may 
become a T-quartet on an induced network N+

Y  . For 
instance, if N+ is a 5-taxon network with a single blob 
which is a 5-cycle (i.e., a 5-sunlet network) and Q is the 
4 taxa not descended from the hybrid node, then Q is 
a B-quartet on N+ , but a T-quartet on N+

Q  . See, for 
example, Figure  11 in Appendix B. In contrast, T-quar-
tets on a large network remain T-quartets on induced 
subnetworks.
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Quartet concordance factors and the B‑quartet inference 
rule
The NMSC model on a metric phylogenetic network 
determines a distribution of binary metric gene trees, 
and, through marginalization, distributions of binary 
topological gene trees on subsets of taxa. For subsets of 4 
taxa, these distributions have a special name.

Definition 5  Let N+ be a metric rooted phylogenetic 
network on a taxon set X, and a, b, c, d ∈ X distinct taxa. 
The (quartet) concordance factor CFab|cd = CFab|cd(N

+) 
is the probability under the NMSC model on N+ that a 
gene tree displays the quartet ab|cd. The (vector quartet) 
concordance factor, CFabcd = CFabcd(N

+) is the ordered 
triple

of concordance factors of each resolved quartet on 
a, b, c, d.

Since under the NMSC on any phylogenetic network 
all gene trees are binary and all have positive probability, 
the entries of CFabcd for any a, b, c, d are positive and sum 
to 1.

Definition 6  CFabcd is said to be cut if two of its 
entries are equal, and strictly cut if in addition the 
third entry is distinct. If CFabcd is strictly cut with 
CFab|cd �= CFac|bd = CFad|bc , then we say CFabcd is strictly 
(ab|cd)-cut. If CFabcd is not cut, we say it is non-cut.

The terminology “cut” is motivated by the following 
theorem.

Theorem  1  Allman et  al. [21] (CF-detectability 
of 4-blobs on 4-taxon networks) Consider a 4-taxon 
rooted binary phylogenetic network N+ on taxa 
{a, b, c, d} with quartet concordance factor CFabcd 
and tree of blobs T  . Then under the NMSC model for 
generic parameters: 

(a)	 T  has the quartet tree topology ab|cd if, and only if, 
CFabcd is strictly (ab|cd)-cut.

(b)	 T  has the unresolved quartet topology if, and only if, 
CFabcd is non-cut.

In contrast to the notions of B- and T-quartets, which 
refer to the relationship of 4 taxa through the topology 
of a full network N+ , the notions of cut and non-cut 
CFs refer to properties of the probability distribution 

CFabcd = (CFab|cd ,CFac|bd ,CFad|bc)

under the NMSC, and thus depend only on the induced 
4-taxon network.

Theorem  1 shows that on 4-taxon networks there is 
a close correspondence between these concepts. How-
ever, on a larger network they diverge, with the follow-
ing theorem giving a further tool for relating them.

Theorem  2  Allman et  al. [21] (B-quartet Inference 
Rule) Consider a rooted binary phylogenetic network N+ 
on n taxa, n ≥ 5 . Suppose that {a, b, c, d} and {b, c, d, e} 
are B-quartets on N+ . If on the induced 4-taxon network 
any one of {a, b, c, e} , {a, b, d, e} , or {a, c, d, e} is 

(a)	 a T-quartet, with a,  e not a cherry on the reduced 
unrooted tree of blobs for the induced 4-taxon net-
work, or

(b)	 a B-quartet,

then all of {a, b, c, e} , {a, b, d, e} , and {a, c, d, e} are B-quar-
tets on N+.

The previous two theorems lead to a powerful result for 
application.

Theorem  3  Allman et  al. [21] On an n-taxon rooted 
binary phylogenetic network N+ with generic numeri-
cal parameters, all B-quartets can be identified from 
the quartet CFs using CF-detectability (Theorem  1) and 
applications of the B-quartet Inference Rule (Theorem 2).

In [21], these three theorems were the key to establish-
ing that the tree of blobs of an arbitrary binary species 
network is identifiable from gene quartet concordance 
factors. In this work, they form the basis of an algorithm 
to infer that tree of blobs.

Statistical testing and estimation for cut CFs
A key component of the TINNiK algorithm for inference 
of the tree of blobs is testing gene tree data to determine 
which sets of four taxa are in accord with a cut CF. For 
this, we introduce a new hypothesis test.

Cut model testing and maximum likelihood inference
For any phylogenetic network, a CF is a point in the 
interior of the 2-dimensional probability simplex, 
�2 =

{
(p1, p2, p3) | pi > 0,

∑
pi = 1

}
.

Definition 7  The cut model comprises those 
points in �2 representing cut CFs, that is 
{(p1, p2, p3) ∈ �2 | pi = pj for some i �= j}, as depicted in 
Fig. 2 (L).
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Data relevant to a CF is collected in the form of a 
quartet count concordance factor (qcCF) [27], a vector 
of counts

of the three resolved unrooted topological quartet gene 
trees, which for the taxon set {a, b, c, d} are assumed to 
be independently drawn from the NMSC. In practice, 
these could be quartet trees individually inferred from 
sequence data for different genes, or quartet trees dis-
played on inferred gene trees on more taxa. However, 
our development of a statistical test assumes no inference 
error is present.

With total sample size m = mab|cd +mac|bd +mad|bc , 
the empirical concordance factor, which consistently 
estimates the concordance factor, is

Viewing ĈFabcd as a point in the simplex, closeness to 
the cut model lines lends informal support that the true 
CFabcd is cut, while a greater distance supports that 
CFabcd is non-cut. For judging closeness, however, one 
must take the sample size m into account.

To formulate a formal hypothesis test, fix four taxa 
a, b, c, d, and the data qcCFabcd = (mab|cd ,mac|bd ,mad|bc). 
Assuming qcCFabcd arises as a trinomial sample from 
the distribution specified by some true CFabcd , consider 
null and alternative hypotheses:

H0 : CFabcd is cut,
H1 : CFabcd is non-cut.

For a test statistic, we use the likelihood ratio statistic 
for the null and alternative models, with Appendix C.1 
presenting the necessary calculations for the test.

qcCFabcd = (mab|cd ,mac|bd ,mad|bc)

ĈFabcd = (ĈFab|cd , ĈFac|bd , ĈFad|bc) = qcCFabcd/m.

Because the cut model has a singularity at 
(1/3, 1/3, 1/3) (Fig. 2 (L)), standard assumptions under-
lying the routine use of the χ2

1  distribution for judging 
the test statistic are violated there. However, CF points 
near the centroid include those for trees and networks 
with short internal branches, and thus include some of 
those of the greatest interest to researchers. Building 
on work in [28], we thus develop an alternative test-
ing distribution that takes into account this geometry 
of the cut model. Appendix C.2 presents its derivation 
and Appendix C.3 simulations illustrating its improved 
performance over the χ2

1  distribution near and at the 
cut model singularity.

The T3 model and testing
An anomalous quartet {a, b, c, d} is one whose CF is 
ab|cd cut of the form (p,  q,  q) with q ≥ 1/3 . Graphi-
cally, this means the CF lies on the cut model depicted 
in Fig. 2 (L), but not on the T3 model shown in Fig. 2 (R). 
In [17], anomalous quartets for level-1 networks were 
investigated and shown to require a 3-cycle with two 
taxa descended from the hybrid node, and somewhat 
extreme numerical parameters which seem unlikely bio-
logically. Further investigation by Ané et al. [29] suggests 
that anomalous quartets for more complex networks are 
also not likely to be common. For this reason, when infer-
ring a tree of blobs it can be reasonable to assume that 
an unknown network has no anomalous quartets and use 
a T3 hypothesis test for CFs, rather than a cut test. The 
T3 test, developed in [28], is a backbone for the NANUQ 
method [17] for inferring level-1 topological networks 
under the NMSC.

Using the T3 test one might infer more B-quartets than 
using the cut test, as any ĈF  s near the cut model line 

Fig. 2  Geometric view of CFs for 4-taxon network models, with dashed lines outlining the simplex �2 . Each point in �2 arises as a CF 
under the NMSC, even when restricting to level-1 networks [26]. (L) The cut model consists of 3 blue line segments, with each formed by CFs arising 
from 4-networks with a specific resolved tree of blobs topology. CFs off the cut model arise only from networks with unresolved trees of blobs. 
(R) The T3 submodel is those cut CFs with smallest entry occurring exactly twice. Using it as the null hypothesis in the TINNiK algorithm may lead 
to more sets of 4 taxa initially judged as B-quartets than using the cut test
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segments of the form (p, q, q) with q > 1/3 might support 
the null hypothesis for the cut test, but be rejected by the 
T3 test and flagged as indicating 4-blobs. Thus, using the 
T3 test can produce a less resolved tree of blobs than the 
cut test. While this is not a conservative approach in the 
sense of hypothesis testing (since it may lead to more 
rejections of a null hypothesis of a tree-like quartet rela-
tionship), the inferred tree of blobs it produces is a more 
cautious one that possibly avoids depicting erroneous 
resolution.

Although our implementation of TINNiK in MSC-
quartets has a default option of the T3 test, we rec-
ommend performing data analysis with both tests. For 
many datasets we have found they give identical results, 
since they either infer the same initial B-quartets, or the 
B-quartet inference rule compensates for missing some 
of these initially using the cut test. When the results of 
using the two tests differ, investigating why that occurred 
may provide more insight into the data.

The TINNiK algorithm for inference of the tree 
of blobs
Building on the theorems and hypothesis tests from pre-
vious sections, we present a detailed algorithm, Tree of 
blobs INference for a Species NetworK, or TINNiK, for 
inferring the reduced unrooted topological tree of blobs 
of a network N+ from multigene data. We then ana-
lyze its running time and show its statistical consistency 
under the NMSC model for binary N+.

TINNiK applies hypothesis tests to classify empiri-
cal CFs as cut or non-cut, giving quartet trees of blobs, 
using Theorem 1. Then it repeatedly but efficiently uses 
the inference rule of Theorem  2 to infer all B-quartets 
for a network. TINNiK’s next step is to use a quartet-
based intertaxon distance formula [6] to convert B- and 
T-quartet information to a distance approximately fit-
ting the topological tree of blobs. Then an inferred tree of 
blobs can be obtained by any of a number of well-known 
tree-building algorithms such as Neighbor-Joining [30], 
DescentTree [31], or FastME [32]. If the quality of the 
input data is unknown, or its fit to the NMSC model is 
doubted, we recommend the use of the Neighbor-Net 
algorithm [33] to confirm the distance reflects a strong 
tree signal before tree building.

One concern for algorithm design is how to handle 
empirical CFs that are near (1/3,  1/3,  1/3). These might 
arise from either a true multifurcation in a network (a 
hard polytomy), a “near multifurcation” of a resolved 
subnetwork with short internal edges (a soft polytomy), 
or from complex blobs with longer edges. TINNiK 
treats all CFs judged by a “star tree” hypothesis test to 
be close to (1/3,  1/3,  1/3) as B-quartets. While this is a 

natural approach, it does mean that the inferred tree of 
blob’s structure may reflect both true blobs and further 
multifurcations due to data quality that is insufficient to 
resolve some cut edges. This may cause inferred blobs to 
be larger than true ones, but only when the data is inad-
equate to obtain greater resolution.

Algorithms
The B-quartet Inference algorithm takes as input a table 
of quartet count concordance factors (qcCFs). Working 
from a collection of m gene trees, all on the full set X of N 
taxa, this quartet table can be produced in time O(mN 4) . 
Although under the NMSC model all gene trees are fully 
resolved, in applications some inferred trees may not be, 
but these can be handled either by discarding their unre-
solved quartets or assigning uniform “counts” of 1/3 to 
each resolved topology, as discussed in [27].

In order to access entries of this table rapidly, without 
scanning it in its entirety, we require that its rows, cor-
responding to sets of 4 taxa, be ordered so that the index 
for any set can be computed directly and quickly. We 
choose to order the sets of four taxa by lex order. In more 
detail, this means that if the taxa are designated by the 
numbers 1, 2, 3 . . . ,N  , and a set of 4 taxa is designated 
by a “word” of the four numbers in ascending order, then 
these words are ordered lexicographically using the usual 
order on natural numbers. Thus the first few sets are 
ordered as

In lex order, the index for a particular set of 4 taxa is 
given by the formula (Corollary 3.22, [34])

The computational simplicity of this formula allows for 
its rapid evaluation. Tabulating all binomial coefficients 
that might be needed in the formula in advance, so they 
are computed only once, requires time O(N ) . After this, 
however, the index for any set of 4 taxa can be computed 
in time O(1).

Two hypothesis tests are used in the algorithm. First, 
we use a star tree test to determine whether each qcCF 
is consistent with a 4-polytomy for each induced 4-taxon 
network. The null hypothesis is that the CF for the 4 taxa 
is (1/3, 1/3, 1/3), with the alternative its complement in 
the simplex. A standard χ2

2  test at some level β on the 
likelihood ratio statistic is performed. Failure to reject 
the null suggests either a true 4-polytomy, or lack of suf-
ficient information to infer a resolution.

(1, 2, 3, 4), (1, 2, 3, 5), . . . , (1, 2, 3,N ), (1, 2, 4, 5), (1, 2, 4, 6), . . . .

ρ(n1, n2, n3, n4) =

(
N
4

)
−

4∑

i=1

(
N − ni
5− i

)
.
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In addition, one of the cut or T3 hypothesis tests 
described in Sect. Testing and Estimation is used in the 
algorithm to decide when a vector qcCF for four taxa is 
in accord with a cut relationship. More formally, rejecting 
the null hypothesis of this test at level α is interpreted as 
indicating a non-cut CF. By Theorem 1, this is evidence 
the 4 taxa form a B-quartet on the induced 4-taxon spe-
cies network.

The following algorithm applies these tests and the 
inference rule for B-quartets of Theorem 2.

Algorithm  (B-quartet Inference)

Input: An 
(
N
4

)
× 3 table of qcCFs for a set of N taxa 

with rows in lex order corresponding to subsets of 4 taxa, 
and columns corresponding to resolved quartet topolo-
gies, a choice of test “T3” or “cut,” and significance levels 
α,β > 0 for judging p-values in hypothesis tests on 
qcCFs.

Output: A vector B of length 
(
N
4

)
 with entries corre-

sponding to sets of 4 taxa in lex order, whose 1/0 entries 
indicate a set is/is not inferred to be a B-quartet. 

1.	 Initialization:

	 Create a 
(
N
4

)
-element indicator vector B for the lex 

ordered sets of 4 taxa with all entries 0, indicating 
that no B-quartets are currently known. Create 
empty lists L1,  L2 for iteratively storing indices of 
newly-found B-quartets. Compute binomial coeffi-
cients for use in indexing.

2.	 Hypothesis testing:

(a)	 Apply a χ2
2  test at level β as described above to 

each qcCF to decide which sets of 4 taxa are 
viewed as B-quartets because they are in accord 
with a CF of (1/3, 1/3, 1/3). Set the entries of B 
for these sets to be 1, and append the indices to 
L1.

(b)	 Apply the T3 or cut hypothesis test at level α 
to each qcCF in the table not already judged as 
B-quartet, to decide which sets of 4 taxa are 
viewed as CF-detectable B-quartets. Set the 
entries of B for these to 1, and append the indi-
ces to L1.

(c)	 For those sets not inferred as B-quartets, infer a 
maximum likelihood estimate of a quartet tree 
topology for the 4-taxon tree of blobs, for use 

in 3(a)(i)(β ). In case of a tie, choose uniformly 
at random.

3	 Inference rule:

(a)	 Loop over the entries of L1, each corresponding 
to a newly-determined B-quartet, say {a, b, c, d}
.

(i)	Loop over the 4(N−1)  sets of 4 taxa which have 
exactly 3 taxa in common with {a, b, c, d} . For con-
creteness, say such a set is {a, b, c, e} with e  ≠ d. If 
{a, b, c, e}  is a known B-quartet, then

(α)	 Check B to see if any of {a, b, d, e}, {a, 
c, d, e}, {b, c, d, e} are B-quartets, and 
go to (γ) if one is found.

(β)	 Check if any of the quartet trees ea|bd, 
eb|ad, ea|cd, ec|ad, eb|cd, ec|bd was 
inferred in 2(c). If not, continue loop 
(i).

(γ)	 Update the B vector to designate {a, 
b, d, e}, {a, c, d, e}, and {b, c, d, e} as 
B-quartets, and store indices of any 
newly-identified B-quartets in L2.

	 Continue loop(i)

	 Continue loop(a)

(b)	 if L2 is not empty, store L2 into L1, void L2, 
and go to (a).

4.	 Return B.

In this algorithm, step  2 implements the theoreti-
cal CF-detectability result of Theorem  1, while step  3 
implements the B-quartet inference rule of Theo-
rem 2. The algorithm eventually considers every pair of 
B-quartets sharing three taxa, since any time a new one 
is discovered it is compared to all quartets that share 
three taxa with it. If one of these is a not-yet-inferred 
B-quartet, then this pair will be compared again later, 
once that quartet is inferred as a B-quartet. Theorem 3 
therefore ensures the looping of step  3 can determine 
all B-quartets, assuming sufficient data in accord with 
the NMSC.

Steps  1 and  2 can each be accomplished in time 

O(N 4) . Since there can be at most 
(
N
4

)
 B-quartets that 

can appear in the lists L through all passes through 
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step  3a, and each is compared in step  3(a)i to O(N ) 
other sets of 4-taxa, all applications of step  3 require 
time at most O(N 5) . Thus the total time complexity is 
O(N 5).

To estimate the tree of blobs for a network, we seek 
a tree that displays unresolved quartet trees for all 
B-quartets and a resolved quartet tree with the topol-
ogy estimated by maximum likelihood for all T-quar-
tets. Note that the estimate of the topology is recorded 
when step 2c of the B-inference algorithm is performed, 
so we treat this as known.

Estimating the tree of blobs is now an instance of 
a supertree problem, with input all trees on 4 taxa, 
with the trees for B-quartets unresolved. To address 
this, we take the approach introduced in [6], in which 
an intertaxon distance is defined using quartet data – 
including that for unresolved quartets – to compute 
an intertaxon distance. Assuming perfect information, 
this distance would exactly fit the unknown tree. While 
inference may well lead to some incorrect quartets, 
distance-based tree construction methods that behave 
well under some noise can be used to return an inferred 
tree of blobs. Because of possible error in some quar-
tets, and hence in the computed quartet distance, the 
inferred tree may not show exact polytomies, but rather 
some resolutions of them with short edges. It may thus 
be desirable to reduce to zero all edge lengths smaller 
than some cutoff δ . Theory behind such a cutoff will 
be discussed in the next subsection, in the proof of 
Theorem 4.

The full TINNiK algorithm we now outline takes 
as input a collection of gene trees on the taxa X, and 
returns an inferred topological tree of blobs for the 
network parameter which under the NMSC model pro-
duced those gene trees.

Algorithm  (TINNiK)

Input: A collection of m unrooted topological gene 
trees, each on a taxon set X, with |X | = N  , a choice of 
test “T3” or “cut,” significance levels β ,α > 0 for judging 
p-values in hypothesis tests on qcCFs, and a minimum 
edge length δ ≥ 0.

Output: An estimate of the tree of blobs for the net-
work parameter N+ producing the gene trees under the 
NMSC model. 

1.	 Tabulate all qcCFs for the taxon set X across all gene 
trees.

2.	 Infer all B-quartets with the B-quartet Inference 
Algorithm with significance levels β ,α , and the cho-
sen test, retaining maximum likelihood topologies 
for all T-quartets.

3.	 Treating B-quartets as unresolved, and T-quartets as 
resolved with their inferred topologies, compute the 
quartet intertaxon distances of [6] for X.

4.	 Using a distance-based tree inference method suita-
ble for non-ultrametric trees (e.g., NJ, FastME), infer 
a topological tree from the distance.

5.	 Set all edge lengths in the tree that are less than δ 
to 0.

The computational times for steps  1–5 using NJ in 
step 4 are, respectively, O(mN 4) , O(N 5) , O(N 4) , O(N 3) , 
O(N ) , for a combined O((m+ N )N 4) . We report com-
putational times in practice below in Sect.  Empirical 
Runtimes, when analyzing TINNiK on simulated and real 
data.

The TINNiK algorithm can also be applied when gene 
trees have missing taxa, provided each subset of 4 taxa 
occurs on at least one gene tree, so the qcCF is not the 
zero vector.

Statistical consistency
It is desirable that inference algorithms produce statisti-
cally consistent estimators. In this context, informally 
this means that given data (m gene trees) produced under 
the NMSC model on a species network, the probability 
of obtaining the correct tree of blobs approaches 1 as the 
amount of data approaches infinity. However, since the 
algorithms assume generic numerical parameters, and 
there are several other algorithm inputs, α,β , δ , a pre-
cise statement of an appropriate notion of consistency is 
more complicated. We proceed similarly to how consist-
ency was addressed for the quartet-based NANUQ algo-
rithm for inferring a level-1 species network in [17]. For 
simplicity, we also restrict to the case that the data is m 
gene trees, each on the full taxon set X, since generalizing 
from this is straightforward.

Before stating our formal consistency theorem, we 
describe explicitly what we mean by generic parameters. 
For a fixed topological binary species network, it is pos-
sible that the CF for an induced 4-taxon network with 
a 4-blob may be a cut CF. By Theorem  1, however, for 
each such topological 4-network the CF is non-cut for 
all parameters except those in a measure-0 subset of its 
numerical parameter space. Since for any full network 
there are only finitely many induced topological 4-net-
works and the finite union of measure-0 sets has meas-
ure zero, for generic parameters (i.e., those outside this 
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measure-0 set) on the full network, all CFs for quartets 
inducing 4-blob networks will be non-cut.

We also need that for generic parameters the CF of an 
induced 4-taxon network is not (1/3, 1/3, 1/3). In the case 
of a 4-blob, this follows from the last paragraph. But since 
a 4-network without a 4-blob may have a CF with equal 
entries (e.g., a 32-cycle network [26]), more argument is 
needed that this does not occur generically. Note that 
if all hybridization parameters on a binary 4-network Q 
without a 4-blob are 0 or 1, then Q is essentially a resolved 
tree, for which CF  = (1/3, 1/3, 1/3) . Analyticity of the 
parameterization then implies this inequality for generic 
parameters. Mimicking the argument above shows that 
no induced 4-taxon network has CF = (1/3, 1/3, 1/3) for 
generic parameters on the full binary network.

These preliminary observations are used to prove the 
following:

Theorem  4  For generic numerical parameters on a 
binary phylogenetic network N+ , the TINNiK Algorithm 
using the cut test provides a statistically consistent esti-
mate of the topological tree of blobs T = Trd(N

−) under 
the NMSC. Specifically, there exists a sequence αm → 0 
such that for any β > 0 and 2 > δ ≥ 0 , the TINNiK algo-
rithm on a set of m gene trees independently drawn from 
the NMSC model on a binary species network N+ will, 
with probability → 1 as m → ∞ , infer T .

Proof  We restrict to generic parameters ensur-
ing that all induced 4-networks with 4-blobs have 
non-cut CFs, and no induced 4-taxon network has 
CF = (1/3, 1/3, 1/3).

First consider step 2a of the B-quartet Inference algo-
rithm. With generic parameters, for each set of 4 taxa the 
probability the χ2

2  test with significance level β will reject 
the null hypothesis that a CF is (1/3, 1/3, 1/3) approaches 
1 as m → ∞ . Since there are only finitely many 4-taxon 
subsets, the probability goes to 1 that this null hypothesis 
will be rejected for all. This holds regardless of the chosen 
value of β > 0.

In step  2b of the B-quartet Inference algorithm, the 
role of α in the cut test is more subtle, since if it is held 
fixed then we expect to erroneously reject the null model 
in a fraction α of all applications for each set of 4 taxa. 
To make such false negatives less common, we consider 
sequences of levels αm → 0 as the number of gene trees 
m → ∞.

The likelihood ratio statistic is judged using the distri-
bution of Propositions 5 and 6 of Appendix C.2. If a true 
CF is cut, then as m → ∞ , the parameter µ0 of that dis-
tribution goes to ∞ and the distribution converges to the 
χ2
1  . This holds even using the MLE in place of the true 

parameter. To ensure that the probability of failing to 
reject the null hypothesis approaches 1 as m → ∞ , it is 
enough to choose any sequence of significance levels with 
αm → 0.

In contrast, if a true CF = (p1, p2, p3) , is non-cut 
and hence not in the null model, let (m1,m2,m3) 
denote a qcCF under the NMSC with sample size 
m = m1 +m2 +m3 , and (p̂1, p̂2, p̂3) the MLE of the CF 
under the null model. Without loss of generality, assume 
the MLE is on the vertical line segment of Fig. 2 (L), so 
that

Using the formulas of Appendix C.1, the likelihood ratio 
statistic is then � = �m =

p̂1 =
m1

m
, p̂2 = p̂3 =

m−m1

2m
.

− 2[m1 logm1 + (m−m1) log((m−m1)/2)− (m1 logm1 +m2 logm2 +m3 logm3)]

= m

[
−2

((
1−

m1

m

)(
log

(
1−

m1

m

)
− log 2

)
−

(
m2

m
log

m2

m
+

m3

m
log

m3

m

))]

= mYm,
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where the random variable Ym converges in probability to

Moreover, d > 0 since the unconstrained likelihood has a 
unique maximum at (p1, p2, p3).

Now for any η > 0 there exists an M such that 
for m > M , P(Ym > d/2) > 1− η and thus that 
P(mYm > md/2) > 1− η . Since η was arbitrary, as 
m → ∞ , P(�m > md/2) → 1.

Let α′
m be the probability that a χ2

1-distributed random 
variable is greater than md/2, so α′

m → 0 . Then since the 
test distribution converges to the χ2

1  , the probability of 
rejecting the null hypothesis is greater than 1− η for suf-
ficiently large m. Thus the probability of rejecting the null 
approaches 1.

While the value of d depended upon the particular 
4-taxon set under consideration, since there are only 
finitely many such sets, by choosing αm as the maximum 
of the α′

m we obtain a sequence of significance levels that 
with probability approaching 1 as m → ∞ ensures the 
cut test will reject the null model for all induced 4-net-
works with a 4-blob and fail to reject it for all others. The 
argument so far has shown that with our choice of the αm 
the hypothesis tests will lead us to correctly conclude that 
true CFs are cut or non-cut, with probability approaching 
1 as m → ∞.

When the true CF for 4 taxa is cut, its value is con-
sistently inferred by maximum likelihood, and thus the 
topology of the 4-taxon reduced unrooted trees of blobs 
is as well. Thus as m → ∞ , with probability approach-
ing 1, the remaining deterministic steps of the B-quartet 
Inference algorithm then correctly infer all B-quartets.

From this information on B-quartets and T-quartet 
topologies, TINNiK computes an intertaxon distance 
exactly fitting the network’s tree of blobs. With no error 
in the distances, NJ or other tree-building algorithms 
recover the tree exactly.

Note that δ played no role in this argument so far, since 
its purpose in the algorithm is to suppress some error 
which, with probability approaching 1 as m → ∞ is not 
present. We must however verify that δ has no detrimen-
tal effects in this asymptotic result. Reviewing [6], one 
sees that internal branches of a tree endowed with the 
quartet distance always have length of at least 2. Thus any 
0 ≤ δ < 2 will have no effect when all B- and T-quartets 
are properly determined. 	�  �

TINNiK test levels and graphical output
When TINNiK’s hypothesis tests are applied, many sets 
of 4 taxa will overlap, so the CFs are not independent. 
Although a Bonferroni correction for multiple tests can 

d = −2
(
(1− p1)(log (1− p1)− log 2)− (p2 log p2 + p3 log p3)

)
.

be applied, controlling the family-wise error rate, we 
do not do so, as this is always equivalent to choosing a 
smaller significance level. Indeed, when the method is 
applied to inferred gene trees, which have unknown 
error, a fully justifiable formal correction is not known.

However, when a TINNiK analysis is reported for an 
empirical dataset, it should always include the values of 
α,β used, and whether the “cut” or “T3” test was used. 
Ideally, the gene trees that were used should be made 
publicly available, for reproducibility, as gene trees 
inferred by different methods might produce a different 
tree of blobs.

In regard to graphical output, the tree of blobs could 
be drawn in the usual way for phylogenies, with nodes 
rendered as points, but we recommend a modification. 
Depicting each internal node as a disk or ball gives visual 
emphasis that the nodes represent blobs with potentially 
complicated structures. Even degree-3 nodes should be 
shown this way, since non-node 3-blobs may exist. The 
implementation of TiNNiK in MSCquartets follows 
this graphical style, using red disks on an inferred tree of 
blobs.

Finally, although any planar drawing of the tree of blobs 
necessarily orders the edges emanating from a blob in 
some way, this circular order is essentially arbitrary. The 
true network may not even be embeddable in the plane 
without crossings, in which case no unique order is even 
determined. Although for certain networks (level-1, or, 
more generally, outer-labelled planar [19]) a unique cir-
cular order exists, TINNiK does not seek to find it, much 
less impose it on the tree of blobs. Viewers of a tree of 
blobs should keep this in mind when seeking biological 
insight.

Simulations and Applications
We present analyses of both simulated and empirical 
gene tree data, using the implementation of the TIN-
NiK algorithm in the MSCquartets 2.0 R package 
[22, 23]. Its primary functions, TINNIK and TINNIK-
dist, utilize C++ code with the Rcpp package [35] for 
increased speed.

Datasets of gene trees were simulated under the NMSC 
on various networks using PhyloCoalSimulations 
[36]. As true samples under the NMSC, these do not have 
the gene tree inference error expected in empirical analy-
ses. For analyses of empirical datasets, we used gene trees 
inferred and made publicly available by the researchers 
who originally analyzed them.

With a gene tree dataset available, TINNiK can be run 
quickly in R, for example using a single MSCquartets 
command:
TINNIK(gene_tree_file)
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and default settings for arguments. See the vignette in the 
MSCquartets R package for an extended tutorial on 
using TINNiK, and Table 1 for timing information.

Simulations
A first set of simulations, analyzed in Sects.  Analysis I: 
Varying α and Analysis II: Varying β, uses the model net-
work N+ of Fig. 1. This network on 23 taxa with 7 hybrid 
nodes has some complicated features (e.g., non-binary, 
non-tree-child [24]), with a tree-like cluster (A taxa), and 
three blobs (Bs, Cs, Ds). The B-blob is descended from 
the D-blob, while the C- and D-blobs include more than 
one instance of gene flow.

Gene tree samples of size n = 300, 500, 1000, 10000 
were produced, with branch lengths scaled by factors 
k = 0.5, 1.0, 2.0 , for a total of 12 simulation parameter 
settings. These include cases where sampling error may 
be significant ( n = 300 ), and when short branch lengths 
and the resulting high ILS ( k = 0.5 ) may confound retic-
ulation signal. The largest value of n should approximate 
asymptotic behavior. We adopt the terms ‘high,’ ‘moder-
ate,’ and ‘low’ ILS for the scaling factors k = 0.5, 1.0, 2.0 , 
respectively, as a convenience. Since non-matching gene 
tree quartets under the NMSC on a species tree with 
internal branch length 1 occur with probability approxi-
mately 0.25, our ‘moderate ILS’ is arguably ‘moderately 
high.’ Simulated gene tree datasets were analyzed using 
the TINNIK function with the default T3 test and varied 
values of α and β.

Since the T3 test and the star tree test have different 
foci (hybridization vs. lack of resolution), in Sects. Analy-
sis I: Varying α and Analysis II: Varying β we investigate 
the effect of each test individually. For a general overview, 
Table	  2 presents a summary of test levels α and simu-
lation results for all parameter choices under the T3 test, 
with β = 1 fixed (so all network quartets are treated as 
resolved), and illustrates the effect that small sample size 
and/or high ILS may have.

To understand the effect of blob complexity, analyses 
in Sect. Analysis III: Varying blob complexity use a sec-
ond set of simulations on the networks of Fig. 6. Network 
N+

1  has 10 taxa and a single 7-cycle, while network N+
3  

is obtained from N+
1  by the addition of two hybrid edges 

cutting across the cycle, changing the blob from level-1 
to level-3. Samples of size n = 1000 gene trees were 
simulated.

A final simulation, in Sect.  Analysis IV: compari-
son to network inference, generated a sample of size 
n = 10, 000 for the level-2 (2 overlapping cycles) network 
N+ of Fig. 7. Analyses were done with TINNiK and also 

SNaQ, which infers a level-1 network under the NMSC 
using pseudolikelihood on empirical quartet CFs [37]. 
SNaQ searches were done starting at the four level-1 net-
works displayed on N+ (obtained by deleting exactly one 
hybrid edge), with the user-defined maximum number 
of hybridizations, hmax , set to 1 and 2. Since theory justi-
fies SNaQ’s use only for level-1 networks, this modeling 
scenario violates its main assumption of network com-
plexity, and it should not be expected to perform well. 
Our goal is not to point out any weakness of SNaQ, but 
to illustrate that TINNiK might help empiricists evaluate 
if an assumption made by another method is violated by 
contrasting its results to output from that method.

In accordance with Theorem  4, branch lengths in the 
TINNiK tree of blobs shorter than 2 were collapsed to 
zero in all analyses.

Results
We caution TINNiK users that one can rarely sim-
ply choose test levels α,β ∈ [0, 1] in advance (e.g., at 
the common level of 0.05) and obtain a strong analysis. 
Rather, a range of significance levels should be consid-
ered, in conjunction with viewing the resulting hypoth-
esis test simplex plots and weighing one’s understanding 
of the extent of noise present in inferred gene trees.

Varying α from small to large increases the number of 
CFs interpreted as signaling hybridization, potentially 
causing TINNiK’s inferred tree of blobs to gain more or 
larger multifurcations. This can indicate which multi-
furcations have the strongest support. Even in simulated 
gene tree data, which has no model misspecification, the 
level of support can vary with network features such as 
blob complexity, hybridization parameter values, and 
location of a blob within the network. Simplex plots of 
test results, as discussed in [27], can help users choose 
values of α that give good separation of plotted CFs into 
tree-like and non-tree-like clusters.

Varying β from small to large decreases the number 
of CFs interpreted as indicating a star tree, potentially 
causing the inferred tree of blobs to be more resolved. 
If few CFs are plotted near the centroid (1/3,1/3,1/3) of 
the simplex, the value of β has little impact over a wide 
range. However, if many CFs are near the centroid, β ’s 
value can be quite impactful. In some empirical datasets 
that have been studied for signs of hybridization we have 
found CFs so tightly clustered near the centroid that 
whether any signal for hybridization exceeds likely gene 
tree inference error seems debatable. Again, simplex 
plots of test results for various β values can be a helpful 
guide.
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Empirical runtimes
Representative runtimes are shown in Table  1. These 
were found using gene trees as input, and do not 
include the time to infer trees from sequence data. 
Runtimes for other α,β are similar, although the tally-
ing of quartets need only be done once.

All times shown are a matter of seconds. In particu-
lar, TINNiK is much faster than SNaQ or PhyNEST 
which infer level-1 networks, and PhyloNet which 
seeks an arbitrary network, all of which perform 

pseudolikelihood optimization over (appropriate) net-
work space. TINNiK’s runtime is on par with NANUQ’s 
for inferring a level-1 network topology. However, TIN-
NiK gives meaningful (though coarse) output quickly 
without assumption on network level.

In conjunction with the theoretical time complex-
ity given in Sect.  Algorithms, these runtimes show that 
TINNiK easily scales to much larger datasets than are 
likely to be feasible by any current full network inference 
methods.

Table 1  Runtimes (averaged over ten runs) for the TINNiK algorithm in MSCquartets, on a 2020 Macbook 2 GHz Quad-Core i5, 32 
GB RAM. Test levels are α = 0.001 for the T3 test, and β = 0.95

Gene tree collection Quartet tally Hypothesis tests Rest of TINNiK Total
(sec) (sec) algorithm (sec) (sec)

Simulation Analysis I: 10000 gts, k = 1 32.3 4.3 0.3 36.9

23 taxa 10000 gts, k = 0.5 31.1 4.6 0.3 35.9

1000 gts, k = 1 3.3 5.6 0.3 9.2

1000 gts, k = 0.5 3.0 6.6 0.3 9.9

Vanderpool [38] 1730 gts 16.5 11.5 0.4 28.4

29 primates

Table 2  Blob detection using TINNiK for simulated data for N+ of Fig. 1 (L). Entries give ranges for α on which the full tree of blobs, 
and individual blobs, are correctly inferred with the T3 test. Interval endpoints are approximate, with dashes indicating the correct 
multifurcation is never inferred. For all analyses, β = 1

Number n of gene trees Range of α values, for blob detection. ( β = 1.)

Tree of Blobs

Fully correct B-blob detected C-blob detected D-blob detected

Low ILS: k = 2.

10000 [10−170, 0.01] [10−170, 0.01] [10−300, 0.01] [10−170, 0.01]

1000 [10−15, 10−4] [10−16, 10−4] [10−49, 0.01] [10−15, 10−4, ]

500 [10−6, 0.001] [10−7, 0.001] [10−25, 0.01] [10−6, 0.001]

300 – [10−6, 10−5] [10−17, 0.01] –

300 – – – –

Moderate ILS: k = 1.

10000 [10−55, 0.001] [10−55, 0.001] [10−216, 0.001] [10−55, 0.001]

1000 [10−7, 0.001] [10−7, 0.001] [10−23, 0.01] [10−7, 0.001]

500 [10−4, 0.005] [10−4, 0.008] [1× 10−13, 0.01] [10−4, 0.005]

300 – – [10−7, 0.003] –

300 – – – –

High ILS: k = 0.5.

10000 [10−12, 0.001] [10−12, 0.001] [10−88, 0.001] [10−17, 0.001]

1000 – – [10−8, 0.001] –

500 – – [10−4, 0.001] –

300 – – – –
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Analysis I: Varying α
Our first analysis with TINNiK used a range of α val-
ues for the T3 test to detect quartet hybridization, but 
set β = 1 which, in effect, treats all quartets as resolved. 
Approximate ranges of α for which the full tree of blobs 
and individual blobs are detected are shown in Table 2.

With sample sizes n ≥ 500 gene trees and ILS low or 
moderate, the tree of blobs is correctly inferred for a 
wide range of α . With 1000 gene trees sampled under 
low ILS condition, for example, the tree of blobs is cor-
rectly inferred for α ranging over eleven orders of magni-
tude. Even with high ILS, TINNiK returns the true tree of 
blobs from sample size 10,000.

A typical pattern of increasing resolution in the TIN-
NiK tree of blobs as test level α is varied is shown in Fig. 3, 
for n = 1000 and k = 1 . Smaller α sets a stricter criterion 
for a quartet to be judged non-tree-like, so the count of 
quartets initially flagged as B-quartets in the algorithm is 
decreased, and the number of B-quartets inferred using 
the inference rule of Theorem 2 may shrink as well. Pro-
ceeding from large α to small, 

a)	 TINNiK first detects the tree-like A-group,
b)	 the C-blob is detected, and a cut edge separating the 

{C-blob, A-group} from the B- and D-groups then 
appears,

c)	 the D-blob and then the B-blob are detected, so 
that the full tree of blobs is inferred for a range of 
α ∈ [10−7, 0.001],

d)	 the B- and D-blobs become increasingly over-
resolved, although the A-group and C-blob are cor-
rectly inferred even for very small values of α.

Several additional patterns from Table 2 and Figure  3 
hold in a wide range of our experiments. First, detecting 
features of the tree of blobs by TINNiK is harder for some 
parts than others. For instance, decreasing α , the C-blob 
and the A-tree group are the first parts to be correctly 
detected by TINNiK, and remain correctly resolved for 
a large range of test levels. This suggests that the metric 
structure and topological complexity of a network may 
result in varying difficulty in correctly inferring specific 
parts of the tree of blobs. A single analysis may be insuf-
ficient to explore all hybridization in a large network.

Second, when ILS is present in anything other than low 
amounts, a gene tree sample of size 300 drawn from N+ 
appears too small to correctly infer the tree of blobs by 
TINNiK. Empiricists should be aware that the number of 
genes needed for accurate hybridization detection may 
be large. Whether these observations apply more gen-
erally to other data types and inference frameworks is 
unknown, as other tractable inference methods for non-
level-1 networks are not yet available.

Analysis II: Varying β
Short branches on a network result in higher levels of 
ILS, which can cause CFs to be closer to (1/3, 1/3, 1/3). 
To study these effects on TINNiK’s inference, a second 
analysis focused on the network N+ of Fig.  1 (L) with 
k = 0.5 . We fixed α = 10−4 and varied the level β for 
the star tree test. Under this test, as β is decreased more 
quartets are taken to be star trees initially (and flagged as 
B-quartets) leading to more polytomies and less resolu-
tion in the TINNiK tree of blobs.

Figure  4 shows results for a sample size of n = 1000 
gene trees. Proceeding from left to right, we see that 
for many values, β > 10−6 , the A-group and C-blob are 
correctly detected. As β is decreased, the A-, C-, and D- 
groups are correctly inferred, then the correct tree of 
blobs is found for β ∈ [10−34, 10−9] . Decreasing β further 
results in the D-blob collapsing incorrectly (for instance, 
in the bottom, right tree of Fig.  4, {D2, D3} no longer 
form a cherry), and ultimately a star tree is produced.

Figure  5 shows typical simplex plots displaying the 
results of hypothesis tests (L) and application of the infer-
ence rule (R), for TINNiK test levels producing the true 
tree of blobs. The TINNiK algorithm first finds B-quar-
tets corresponding to the red, green, and gold symbols 
displayed on the left. The increase in the number of 
B-quartets from the inference rule is visible in the gold 
symbols on the right.

That TINNiK can correctly infer the true tree of blobs 
when some B-quartets are found from the star tree test 
should be contrasted with results shown in Table  2 for 
this simulated data, where without B-quartets from 
the star tree test the tree of blobs was never correctly 
inferred. Using the star tree test to judge more quartets 
as unresolved (decreasing β ) can thus help in obtaining 
the correct tree of blobs. High amounts of ILS from short 
branches can have the same qualitative impact on CFs 
as some blob structures, tending to equalize the entries, 
so that they are close to (1/3, 1/3, 1/3). The star tree test, 
by flagging such quartets as B-quartets regardless of the 
cause, helps prevent spurious resolution not strongly 
supported by the data.

Analysis III: Varying blob complexity
To investigate the effect that blob complexity might have 
on TINNiK’s inference we considered a level-1 network 
N1 = N+

1  with a single 7-cycle, and then modified it 
by adding two additional hybridizations resulting in a 
level-3 network N3 = N+

3  . Figure  6 (L) shows N3 , with 
N1 composed of only the black and magenta edges. A 
simulated sample of n = 1000 gene trees was analyzed 
with TINNiK.
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For all 
(
10
4

)
 4-taxon sets the expected quartet con-

cordance factors were computed with QuartetNet-
workGoodnessFit [39] and plotted in Fig.  6 (R, top) 
( N1 magenta, N3 blue). Expected CFs not on the model 
lines in Fig.  2 correspond to B-quartets, while some of 
those on the model lines may be inferred as B-quartets 
using the inference rule. The effect of increasing topolog-
ical complexity in this 7-blob is to “pull” many CFs closer 
to the centroid.

The pull of CFs toward the centroid with increas-
ing topological complexity means that the signal for 
hybridization increasingly resembles that for lack of 
quartet resolution. Intuition for this is that each par-
ticular choice of lineage paths through a blob deter-
mines a CF in the simplex, with a convex sum of these 
giving the expected CF. But a convex sum of a collec-
tion of CFs will be their weighted center of gravity, and 
hence tend toward their “middle.”

Since CFs computed from inferred gene trees in sim-
ulation studies have also been observed to be pulled 
toward the centroid from their expectation [27], the blur-
ring of hybridization signal and lack of resolution may 
be very difficult to untangle. This suggests there may be 
practical limits on how complicated blob structure can be 
for reliable inference from CFs.

Table  3 shows a range of values for which the tree of 
blobs is correctly inferred when only one of the two test 
levels is varied. When β = 1 , TINNiK infers the true tree 
of blobs for a much wider range of test levels α for N1 
than N3 . This is not surprising, since more of N1 ’s CFs 
are placed distant from the model lines than those for 
N3 . Similarly, for fixed α = 10−25 , TINNiK infers the true 
tree of blobs for a much wider range of β levels for the 
level-3 network N3.
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Fig. 3  Four TINNiK trees of blobs for a simulated sample of n = 1000 gene trees on network N+ of Fig. 1 (L) with k = 1 (moderate ILS), for β = 1 
and α = 0.02, 0.01, 10−7, 10−23 . Increasing resolution as α is decreased is typical. The true tree of blobs (bottom, left) is inferred for a large range 
of test levels α ∈ [10−7, 0.001] . Although the (bottom, right) tree is over-resolved when α = 10−23 , each split is compatible with a tree displayed 
on N+
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Fig. 4  The TINNiK tree of blobs for fixed α = 10−4 and various β for a simulated sample of n = 1000 gene trees for N+ with k = 0.5 (high ILS). 
Decreasing β results in less resolution in the tree of blobs. From left to right: (top) only the A- and C- groups are correct; all blobs except the B-blob 
are correct; (bottom) the TINNiK tree of blobs is correct for any β ∈ [10−34, 10−9] ; the D-group lacks sufficient resolution. For even smaller β 
the TINNiK tree of blobs degrades to a star tree

reject tree & star
fail to reject tree/reject star
fail to reject tree & star
reject tree/fail to reject star

B−quartet
T−quartet

Fig. 5  Simplex plots showing the results of hypothesis tests for α = 10−4 , β = 10−10 (L) and after the application of the Inference Rule (R). 
B-quartet simplex plots for any β ∈ [10−31, 10−9] are identical, although the hypothesis test results differ
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Analysis IV: comparison to network inference
Some recent network inference methods seek to infer 
a level-1 network, yet offer no means of testing that 
assumption. One way that TINNiK might be helpful 
for this is by comparing its tree of blobs to an inferred 
level-1 structure. To test this possibility, we considered 
the level-2 network N+ of Fig. 7 (L), whose tree of blobs 
is a star tree. We analyzed simulated data of n = 10, 000 
gene trees from this network using SNaQ [37], which 
assumes the network is level-1. We thus knowingly vio-
lated SNaQ’s assumptions, and did not expect its output 
to necessarily resemble the true network.

SNaQ’s optimal level-1 networks with 1 and 2 hybridi-
zations are shown in Fig.  7 (C,R). Note that the net-
work N̂1 returned by SNaQ when hmax = 1 can not be 
obtained from N+ by removing a single hybrid edge, nor 
is its tree of blobs T (N̂1) a star tree. Much of the inferred 
metric information also has little relationship to the true 
network’s branch lengths. When hmax = 2 , the inferred 

SNaQ network N̂2 has two cycles joined with a branch 
of length zero. While the tree of blobs for N̂2 would be 
a star tree if the zero branch length were collapsed, the 
inferred blob structure is misleading. For instance, the 
close hybrid relationship between D and E is inferred as a 
more distant non-hybrid one.

The tree of blobs inferred by TINNiK is a (correct) star 
tree for any α > 10−199 and β > 10−109 . For no values of 
α does TINNiK obtain a tree of blobs reflecting any of the 
individual cycles that SNaQ infers. Since both SNaQ and 
TINNiK base their inference on the same quartet CFs, 
the conflict is even more striking.

Empirical data
We apply TINNiK to infer trees of blobs from several 
empirical datasets: Hawaiian flowering plants [40] and 
primates [38]. These have been analyzed for hybridiza-
tion previously, with conflicting results depending on the 
method used.

Hawaiian Cyrtandra
A recent study by Kleinskopf et.  al. [40] investigated 
hybridization and introgression in the Hawaiian 
Cyrtandra. Although samples were collected across the 
islands, network analyses by PhyloNet and SNaQ were 
restricted to single island subsamples. The dataset con-
sists of 569 gene trees, a few with missing taxa. Most of 
the gene trees are poorly resolved, with a majority of gene 

T3 test
α = 10−25

Expected Concordance Factors

G
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F1

E2

E1
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B1

A

0.5

0.5

1.0 cu

reject tree & star
fail to reject tree/reject star
fail to reject tree & star
reject tree/fail to reject star

β = 10−15

Fig. 6  (L) Model networks in Analysis III. N1 consists of black and magenta edges, and N3 all edges. All hybridization parameters are γ = 0.5 , 
with Newick notation given in Appendix A. (Right, top) Expected CFs for N1 (magenta) and N3 (light blue). (Right, bottom) Typical simplex 
plots for N1 (left) and N3 (right) displaying hypothesis test results for α = 10−25,β = 10−15 . For these levels, TINNiK infers the true tree of blobs 
of both N1 and N3 , but with different initial lists of B-quartets. For N1 most initial B-quartets are detected from non tree-like signal, but for N3 
from star-like

Table 3  Range of α , β values, for correct blob detection in 
7-blob networks for a sample of 1000 gene trees

T3 test: Star tree test:
α interval, β = 1 α = 10

−25 , β interval

N1 [2× 10−10, 0.03] [2× 10−84, 2× 10−13]

N3 [0.002, 0.01] [6× 10−109, 1× 10−7]
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quartet trees unresolved for almost all sets of 4 taxa. For 
the Kauai island group of 7 taxa, for example, the star 
tree topology is a majority for all but one gene quartet (34 
of 35).

Networks inferred by PhyloNet and SNaQ (with 
hmax = 1 ) for the Kauai group agreed [40, Fig.  4]. Since 
the lack of gene tree resolution indicated information 
content might be low, TINNiK analyses were performed 
both with unresolved gene quartets omitted, and with 
unresolved quartets apportioned uniformly among the 
three resolved topologies. TINNiK’s analyses support 
the PhyloNet/SNaQ underlying tree of blobs (Fig. 8 (L)) 
over a wide range of test levels with both methods for 
handling unresolved gene quartets. Specifically, when 
unresolved quartets are included in the analysis, the 
supporting TINNiK tree of blobs shown in Fig.  8 (L) is 

obtained for any α ∈ [0.03, 0.14] with β = 1 , and for 
α = 0.05 with β ∈ [0.3, 1].

In contrast, there is considerable discrepancy between 
the PhyloNet and SNaQ analyses for the 8-species Oahu 
group [40]. PhyloNet infers a tree, while SNaQ infers a 
level-1 network with 2 cycles. We found that TINNiK 
inferred exactly four topologies as α , β , and the treatment 
of polytomies were varied: (1) a binary tree agreeing with 
that inferred by PhyloNet, (2) a tree of blobs T  pictured 
in Fig.  8 (C) with exactly two cut edges, (3) a tree with 
three cut edges differing from (C) by moving the attach-
ment for C.  calpidicarpa from the multifurcation, and 
4) a star tree. When α is small and β large, so that there 
are no initial B-quartets, the inferred TINNiK tree agrees 
with that of PhyloNet (and MSCquartets’ QDC tree 
[6]). This supports PhyloNet’s analysis in that signal for 
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Fig. 7  (L) A level-2 model network with star tree of blobs. Hybrid edges and hybridization parameters are in magenta, with Newick notation 
given in Appendix A. (C) The optimal inferred network from SNaQ with the maximal number of hybridizations constrained to hmax = 1 , and (R) 
with hmax = 2 . In both (C,R), terminal and hybrid branch lengths are absent since they are not identifiable under the NMSC from CFs when only a 
single lineage is sampled from the descendant population, and therefore are not inferred by SNaQ

Fig. 8  (L) For the Kauai dataset, TINNiK’s tree of blobs supports the PhyloNet and SNaQ analyses for a wide range of test levels α,β , regardless 
of handling of unresolved quartet topologies. (C) The TINNiK tree of blobs for the Oahu dataset when α = 0.05 and β = 0.3 with either treatment 
of polytomies conflicts with both SNaQ and PhyloNet analyses. It supports some blob structure, but not that inferred by SNaQ. (R) The tree obtained 
by contracting cycles in the SNaQ network inferred from the Oahu dataset. PhyloNet infers a resolved tree for these data
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hybridization in the Oahu data may be weak. Moreover, 
the inferred TINNiK tree T  of Fig. 8 (C) does not agree 
with the tree of Fig. 8 (R) obtained by contracting cycles 
in SNaQ’s optimal network, nor does its variant with 
C. calpidicarpa moved. Possible reasons for this conflict 
might again be signal too weak for these analyses, or that 
the underlying network is not level-1. Regardless of the 
cause, TINNiK illuminates that further investigation is 
needed to understand relationships in this group.

Primate data
A recent study of primates by Vanderpool et al. [38] used 
full genome data to investigate phylogenetic relationships 
between 26 primates. Multiple analyses were performed, 
but we focus on two investigations, into resolution of a 
clade of New World Monkeys (NWMs), and of pos-
sible introgression within a subset of 7 taxa, the Pap-
ionini group. These data were also studied in [18] using 
PhyNEST. Input for our analyses were the 1730 gene 
trees estimated in [38].

The placement on the primate tree of some NWMs 
is uncertain, with one analysis supporting that A. 
nancymaae and C.  jacchus form a clade sister to the 
{S. boliviensis, C. Capucinis imitator} clade, and a sec-
ond that A.  nancymaae is sister to the {S.  boliviensis, 

C.  Capucinis imitator} clade with C.  jacchus an out-
group [38]. Using MSCquartets to compute empiri-
cal CFs and to perform hypothesis tests, we found that 
quartet CFs that clustered near the centroid are exactly 
those that might resolve this issue. In Fig. 9 (L) for any 
β < 0.1 (shown with α = 10−7 ), the golden squares clus-
tered around the centroid where the star tree hypothe-
sis is not rejected for any alternative resolved topology, 
are those involving {C. jacchus, A. nancymaae}, exactly 
one of {S.  boliviensis, C.  capucinus imitator} and a 
fourth taxon. As seen in Fig. 9 (R), the TINNiK tree of 
blobs has a degree 4 node for any β < 0.1 , which does 
not support further resolution. Note that our choice of 
α ensured no putative 4-blob quartets, so this multifur-
cation arose solely due to support for star-like quartets.

A subset of four Asian Papionini (Cercocebus atys, 
Mandrillus leucophaeus, Papio anubis, Theropithecus 
gelada) and three African Papionini (Macaca ascicu-
laris, Macaca mulatta, Macaca nemestrina) were also 
analyzed by Vanderpool et. al., with multiple introgres-
sion events found between and among these groups [38, 
Fig.  4] using the � method of [41]. Specifically, seven 
introgression events were inferred, with four crossing 
continental boundaries.

Fig. 9  (L) Simplex plots illustrate that hypothesis test results support the star tree topology for quartets with A. nancymaae, C. jacchus and one 
of the other two NWMs, and (R) close up of tree of blobs for the NWMs for any β ≤ 0.1

Fig. 10  (L) Results of T3 hypothesis tests for α = 0.04 , β = 1 ; (C) for α ∈ [0.015, 0.032] , TINNiK’s tree of blobs supports hybridization 
among the African Papionini; and (R) for α ∈ [0.033, 0.093] TINNiK supports hybridization within the African Papionini and within the Asian 
macaques. Only for larger values of α Does TINNiK return a star tree of blobs
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The sequence data for these taxa were reanalyzed by 
Kong et.  al.  using PhyNEST to infer level-1 networks 
with hmax = 1, 2 hybridizations [18]. Theropithecus 
gelada was found to be a hybrid of Papio anubis and 
Mandrillus leucophaeus when hmax = 1 , with an 
additional hybridization among the Macaques when 
hmax = 2 . These level-1 hybridization cycles do not 
cross continental boundaries.

A TINNiK analysis of these seven taxa was performed 
with β = 1 , since the simplex plot of Fig.  10 (L) shows 
no CFs close to that of the star tree. In Fig.  10 (C) the 
TINNiK tree of blobs for test levels α ∈ [0.008, 0.032] 
agrees with the PhyNEST analysis when hmax = 1 . For 
larger α ∈ [0.033, 0.093] the tree of blobs is shown (R), 
with multifurcations for each continent, consistent with 
the PhyNEST analysis when hmax = 2 . For test levels 
α > 0.093 , TINNiK returns the star tree, consistent with 
the analysis using � . However, such a large value of alpha 
indicates weak support for additional hybridization span-
ning continents.

Conclusions
The implementation of the TINNiK algorithm in MSC-
quartets provides the first software tool for statisti-
cally-justified inference of the tree-like parts of a species 
network. With input of gene trees inferred from multilo-
cus sequence data, it quickly returns an inferred tree of 
blobs of the network under the NMSC, without restric-
tive assumptions on the reticulation structure within 
the blobs. Because TINNiK is a quartet-based method, 
employing quartet-based hypothesis tests and quartet-
based combinatorial rules followed by a fast distance 
method for constructing the tree of blobs, it is designed 
to scale to large numbers of taxa.

In some cases, the tree of blobs, perhaps with partial 
information on individual blob structure, may represent 
the most we can tell about a species network from bio-
logical data. While the theoretical limits to inference of 
complex blob structure are still unknown, recent work 
[19] has shown that different blob structures are indistin-
guishable from certain types of commonly-used gene tree 
summary data. Even in cases where theoretical identifia-
bility holds, practical identifiability may not, as the signal 
distinguishing the precise structure may be obscured by 
even small levels of noise. Learning a blob is present, or 
only part of its structure, may be the strongest practical 
inference that can be performed for some data.

When more can be inferred, the tree of blobs for a 
large group of species can provide a good starting point 
for a more targeted investigation into the unknown 

relationships represented by its multifurcations. Its infer-
ence might be either a first step in an exploratory data 
analysis, or form the basis for a divide-and-conquer 
approach, although the more demanding statistical infer-
ence of internal blob structure requires further theoreti-
cal and practical development.

Several recently-proposed network inference methods 
assume a level-1 structure (SNaQ, PhyNEST, NANUQ), 
but their performance under level misspecification has 
not been studied in published work. (Note, however, that 
NANUQ’s splits graph can suggest such model viola-
tion.) Since TINNiK does not assume a particular level or 
other special blob structure, it can provide an important 
alternative perspective. Inference of a full network that 
is incompatible with TINNiK’s tree of blobs can suggest 
possible model violations and a need for further analysis. 
If gene trees have already been inferred, TINNiK’s speed 
means its use in this way requires little additional compu-
tational effort.

An inferred tree of blobs may also be useful for the heu-
ristic searches performed by methods attempting to find 
complete networks. When a starting network is needed, a 
TINNiK tree of blobs is a natural candidate so the search 
may spend less time finding the tree-like parts of the net-
work. Even if TINNiK produces an over-resolved tree, 
in our experiments this is often a tree displayed on the 
network, so that as new hybrid edges are introduced the 
search may still soon focus on good candidate networks. 
Finally, for those methods requiring an a priori upper 
bound on the number of reticulations, TINNiK can again 
be helpful by suggesting the number of blobs, and thus a 
minimum number of reticulations needed.

Although our justification of the TINNiK algorithm in 
this work has emphasized the NMSC model, its essential 
ideas could be applied to other models of gene tree for-
mation. For instance, recent work [19] considered two 
other models, one in which gene trees must be displayed 
on the species network so coalescence is immediate, and 
a common-inheritance coalescent model in which the 
standard coalescent applies but only inside displayed 
trees. In both these cases it is possible to identify B-quar-
tets for 4-taxon networks from certain data types, and 
thus follow the outline of our algorithm.

The introduction of TINNiK for inferring the tree of 
blobs of a species network from biological data should 
encourage the development of other algorithms for this 
problem. Network inference remains difficult for both 
theoretical and practical reasons, and phylogenomics will 
benefit from an expanding array of approaches.



Page 21 of 27Allman et al. Algorithms for Molecular Biology           (2024) 19:23 	

Appendix A 
Newick for model networks

The Newick string for the model network shown in 
Fig. 1 (L) used in simulations in Sects. Analysis I: Varying 
and Analysis II: Varying	  is:

(((((A1:0.4,A2:0.4)a1:1.0,A3:0.2)a2:1.5,(A4:0.5,A5:0.5)
a3:1.2)aa:1.0, ((((C1:0.5,#H5:0.5::0.3)c1:0.6,#H6:0.5::0.4)
c2:0.4,#H7:0.4::0.25)c3:0.3, ((C2:0.4)#H7:0.55::0.75,((C
3:0.6)#H6:0.75::0.6,((C4:0.2)#H5:0.6::0.7, C5:0.3)c4:0.5)
c5:0.4)c6:0.4)cc:1.0)ac:1.0,(((D1:0.6,(D2:0.3,D3:0.3)
d10:0.6) d11:1.2,#H4:0.5::0.8)d1:0.4,(((D4:0.6,(D5:
0.25)#H2:0.2::0.6)d9:0.2) #H4:0.1::0.2,#H3:0.1::0.4)
d 3 : 0 . 8 , ( ( ( ( # H 2 : 0 . 2 : : 0 . 4 , D 6 : 0 . 6 5 ) d 2 : 0 . 2 ) 
#H3:0.1: :0.6,(((B1:0.3,B2:0.2)b1:1.0,#H1:0.4: :0.3)
b2:0.5,(((B3:0.4,B4:0.4) b5:1.0)#H1:0.4::0.7,(B5:0.4,B6:0.5)
b3:1.0)b4:0.6)bb:1.2)d5:0.2,D7:0.3) d6:0.6)jj:0.5)r;  

The Newick string for the model network shown in 
Fig. 6 (L) used in of Sect. Analysis III: Varying blob com-
plexity is:

((G:1.0,((((F2:1.0,F1:1.0):0.7,((E2:1.0,E1:1.0):0.7)#H1:0.6
::0.5):0.1)#H2:0.4::0.5, #H3:0.0::0.5):0.1):0.5,((((#H2:0.0::0.
5,((#H1:0.25::0.5,D:1.0):0.25,C:1.0):0.2):0.3, (B2:1.0,B1:1.0
):0.7):0.1)#H3:0.4::0.5,A:1.0):0.2)r;

The Newick string for the model network shown in 
Fig. 7 (L) used in of Sect. Analysis IV: comparison to net-
work inference is:

((((I:1.0,(H:1.0,(G:1.0,(F:1.0,((E:1.0,#H2:0.5::0.4):0.5)#H
1:0.5::0.5):0.5):0.5):0.5):0.5,J:1.0):0.5,#H1:0.5::0.5):0.5,(A:1.
0,(B:1.0,(C:1.0,(D:1.0)#H2:0.5::0.6):0.5):0.5):0.5);

Appendix B
B- and T-quartets on a sunlet network

See Fig. 11

Appendix C
Cut hypothesis test and simulations

We use the notation of Sect.  Cut model testing and 
maximum likelihood inference.

C.1 Cut model topology estimation and LR statistic
For the cut model, the maximum likelihood parameter esti-
mate for data

with m = mab|cd +mac|bd +mad|bc is found by comput-
ing the maximum of the trinomial likelihood constrained 
to each of the 3 line segments of Fig.  2 (L) and then 
choosing the largest. (Ties broken at random.) For the 
vertical line the maximizer is

the projection of ĈF  (the normalized qcCF) orthogonally 
to the line. A comparison of the likelihood at the maxi-
mizers on the three lines leads to the three regions shown 
in Fig.  12 (L) for which normalized qcCFs lead to cut 
model MLEs on the model lines in each region. For use 
in TINNiK, when the cut model is not rejected, we need 
only the topology of the MLE, which is determined solely 
by the color of the region in which ĈF  lies.

The likelihood ratio statistic for the hypothesis test 
described in Sect.  Cut model testing and maximum like-
lihood inference requires the maximum log-likelihoods 
under the cut (null) and unconstrained (alternative) tri-
nomial models. For the vertical line of the cut model, the 
maximum log-likelihood is

while for the unconstrained model, with MLE ĈF  , the 
maximum log-likelihood is

with C a constant.

qcCFabcd = (mab|cd ,mac|bd ,mad|bc)

(
mab|cd

m
,
mac|bd +mad|bc

2m
,
mac|bd +mad|bc

2m

)

=

(
mab|cd

m
,
m−mab|cd

2m
,
m−mab|cd

2m

)
,

mab|cd logmab|cd + (m−mab|cd)(log(m−mab|cd)− log 2)

−m logm+ C ,

mab|cd logmab|cd +mac|bd logmac|bd

+mad|bc logmad|bc −m logm+ C ,

Fig. 11  The quartet Q = {a, b, c, d, } is a B-quartet on N+ , 
but a T-quartet on the induced network N+

Q
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C.2 Cut test distributions
To derive an asymptotic distribution for the likelihood ratio 
(LR) statistic for the cut model hypothesis test of Sect. Cut 
model testing and maximum likelihood inference, we follow 
similar derivations for T1 and T3 tests using Theorem 3.1 of 
[28]. That work also provides more discussion of why model 
singularities, such as the cut model’s (1/3, 1/3, 1/3), make the 
use of a standard distribution inappropriate.

Assume the generating parameter in the cut model is 
θ0 = (1− 2φ0/3,φ0/3,φ0/3) . Applying a linear transfor-
mation dependent on the sample size n and the Fisher infor-
mation matrix I  as in [28], the simplex is mapped to R2 , and 
the cut model to lines crossing at the origin, with the verti-
cal line segment mapped to the y-axis. Then θ0  → (0,µ0) , 
with µ0 = µ0(n) :=

√
2n(1− φ0)(φ0(3− 2φ0))

−1/2, and 
the information matrix becomes the identity. This trans-
formation is not conformal (unless φ0 = 1 ) and the two 
transformed model lines not containing the generating 
parameter form angles α0 = arctan

(
(3(3− 2φ0))

−1/2
)
 

with the horizontal. See Fig. 12 (R).

Proposition 5  The likelihood ratio statistic for 
testing H0 versus H1 for a true parameter point 
θ0 = (1− 2φ0/3,φ0/3,φ0/3), φ0 ∈ (0, 3/2) , of the cut 
model, with sample size n is asymptotically distributed as 
the random variable

where Z ∼ N (0, 1) , Z̄ ∼ N (µ0, 1) , µ0(n) :=
√
2n(1− φ0)

(φ0(3− 2φ0))
−1/2 , and α0 = arctan

(
(3(3− 2φ0))

−1/2
)
.

�n = min
(
Z2,

(
sin α0Z + cosα0Z̄

)2
,
(
sin α0Z − cosα0Z̄

)2)
,

Here “asymptotically distributed” means that the likeli-
hood ratio statistic and this random variable converge in 
distribution to the same limit as n → ∞.

Proof  Letting γ0 = tan α0 , in the transformed space the 
image of �0 is contained in the union of the lines x = 0 , 
y = γ0x and y = −γ0x.

By Theorem  3.1 of [28], the approximate distribution of 
the likelihood ratio statistic is the distribution of the mini-
mum squared Euclidean distance between a normal sample, 
N ((0,µ0), I) , and the three lines in the transformed space. 
Assuming that θ0 is not too close to the boundary of the 
simplex, in a sense dependent on the sample size, little of the 
mass of N ((0,µ0), I) is outside the image of the simplex. 
Thus, for the remainder of the argument, we replace these 
line segments with lines intersecting at the singularity (0, 0).

Denote the marginal probability distributions of 
the bivariate normal sample by Z ∼ N (0, 1) and 
Z̄ ∼ N (µ0, 1) . We next determine the squared distance 
of a sample point 

(
Z, Z̄

)
 to each of the three lines.

Considering the first line, x = 0 , the squared Euclid-
ean distance is Z2 . For the line y = γ0x , the closest point 
(X , γ0X) to 

(
Z, Z̄

)
 has X =

(
Z + γ0Z̄

)
/(1+ γ 2

0 ) , so the 
squared distance is

Similarly, for the line y = −γ0x the squared distance is (
sin α0Z + cosα0Z̄

)2 . The claim follows by taking the 
minimum of these squared distances. 	�  �

γ 2
0

1+ γ 2
0

(
Z −

1

γ0
Z̄

)2

=
(
sin α0Z − cosα0Z̄

)2
.

Fig. 12  (L) Regions for which data with an empirical ĈF gives an MLE in the cut model on each of the three cut model lines. The MLE is obtained 
by moving orthogonally to the model line in the same colored region as ĈF . (R) The image of the cut model in �2 under a linear transformation 

to the plane, with 
(
1− 2

3
φ0,

1
3
φ0,

1
3
φ0

)
 mapped to (0,µ0) , and the 3 model lines mapped to the three lines shown. The region of integration 

for G(x) in the proof of Proposition  6 is all shaded regions Ri and their reflections about the vertical line
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For testing purposes, we characterize this distribu-
tion further.

Proposition 6  The probability density function for 
the random variable �̃n of Proposition  5 is, for � > 0 , is 
f
�̃n

(�) with 

f
�̃n

(�) =
1

2
√
2π�

[
exp

(
−
1

2
�

)(
2− erf

(√
� cot β0 + µ0

√
2

)
− erf

(√
� cot β0 − µ0

√
2

))

+ exp

(
−
1

2

(√
�− µ0 cosα0

)2)(
2− erf

(√
� cot α0 + µ0 sin α0

√
2

)
− erf

(√
� cot β0 − µ0 sin α0

√
2

))

+ exp

(
−
1

2

(√
�+ µ0 cosα0

)2)
(
2− erf

(√
� cot α0 − µ0 sin α0

√
2

)
− erf

(√
� cot β0 + µ0 sin α0

√
2

)]
,

where α0 = arctan
(
(3(3− 2φ0))

−1/2
)
 and 

β0 =
1
2

(
π
2 − α0

)
.

Proof  To determine the probability density function for 
the distribution of Proposition  5, let G(x) denote the 

cumulative distribution function of the (non-squared) 
Euclidean distance. This is found by integrating the dis-
tribution N ((0,µ0), I) over the tube of points within dis-
tance x from the image of �0 , with simplifications using 
the symmetry of the region and normal distribution as 
shown in Fig. 12 (R). Although the generating parameter 
(0,µ0) is shown above the origin, for φ0 ∈

(
1, 32

)
 it may 

be below. In fact, α0 is an increasing function of φ0 , with 

α0(0) ≈ 0.322 and lim

φ0→
3

2

−
α0(φ0) =

π

2
.

Then G(x) = 2
∑6

i=1Gi(x) , where Gi is the integral over 
the shaded strip Ri , and the density of the Euclidean dis-
tance is g(x) = 2

∑6
i=1

d
dx
Gi(x).

Considering ddxG1(x) first:

Substituting y = x tan β gives

d

dx
G1(x) =

∫ π
2

α0+β0

d

dx

∫ x
cosβ

0

1

2π
exp

(
−
1

2

(
r2 − 2µ0r sin β + µ2

0

))
r dr dβ

=

∫ π
2

α0+β0

1

2π
exp

(
−
1

2

(
x2

cos2 β
− 2µ0

x

cosβ
sin β + µ2

0

))
x

cos2 β
dβ

=
1

2π
exp

(
−
1

2
x2
) ∫ π

2

α0+β0

exp

(
−
1

2

(
x2 tan2 β − 2µ0x tan β + µ2

0

)) x

cos2 β
dβ .

d

dx
G1(x) =

1

2π
exp

(
−
1

2
x2
)∫ ∞

x tan (α0+β0)

exp

(
−
1

2

(
y− µ0

)2
)
dy

=
1

2
√
2π

exp

(
−
1

2
x2
)(

1− erf

(
1
√
2
(x tan (α0 + β0)− µ0)

))
.
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Next we consider d
dx
G2(x) and d

dx
G3(x) . Rotating the 

figure 2β0 counter-clockwise to simplify the com-
putation, the generating parameter is mapped as 
(0,µ0)  → (−µ0 cosα0,µ0 sin α0) . Then

and

d

dx
G2(x) =

∫ π
2 +β0

π
2

d

dx

∫ − x
cosβ

0

1

2π
exp

(
−
1

2

(
r2 + 2µ0r cos (α0 + β)+ µ2

0

))
r dr dβ

=

∫ π
2 +β0

π
2

1

2π
exp

(
−
1

2

(
x2

cos2 β
− 2µ0x

cos (α0 + β)

cosβ
+ µ2

0

))
x

cos2 β
dβ

=
1

2
√
2π

exp

(
−
1

2
(x − µ0 cosα0)

2

)(
1− erf

(
1
√
2
(x cot β0 − µ0 sin α0)

))

d

dx
G3(x) =

∫ π
2

π
2 −α0

d

dx

∫ x
cosβ

0

1

2π
exp

(
−
1

2

(
r2 + 2µ0r cos (α0 + β)+ µ2

0

))
r dr dβ

=

∫ π
2

π
2 −α0

1

2π
exp

(
−
1

2

(
x2

cos2 β
+ 2µ0x

cos (α0 + β)

cosβ
+ µ2

0

))
x

cos2 β
dβ

=
1

2
√
2π

exp

(
−
1

2
(x + µ0 cosα0)

2

)(
1− erf

(
1
√
2
(x cot α0 − µ0 sin α0)

))
.

Next we consider ddxG4(x) and ddxG5(x) . Rotating the fig-
ure π2 + α0 counter-clockwise, the generating parameter 
becomes (−µ0 cosα0,−µ0 sin α0) . Then

and

d

dx
G4(x) =

∫ π
2 +α0

π
2

d

dx

∫ − x
cosβ

0

1

2π
exp

(
−
1

2

(
r2 + 2µ0r cos (α0 − β)+ µ2

0

))
r dr dβ

=

∫ π
2 +α0

π
2

1

2π
exp

(
−
1

2

(
x2

cos2 β
− 2µ0x

cos (α0 − β)

cosβ
+ µ2

0

))
x

cos2 β
dβ

=
1

2
√
2π

exp

(
−
1

2
(x − µ0 cosα0)

2

)(
1− erf

(
1
√
2
(x cot α0 + µ0 sin α0)

))

d

dx
G5(x) =

∫ π
2

π
2 −β0

d

dx

∫ x
cosβ

0

1

2π
exp

(
−
1

2

(
r2 + 2µ0r cos (α0 − β)+ µ2

0

))
r dr dβ

=

∫ π
2

π
2 −β0

1

2π
exp

(
−
1

2

(
x2

cos2 β
+ 2µ0x

cos (α0 − β)

cosβ
+ µ2

0

))
x

cos2 β
dβ

=
1

2
√
2π

exp

(
−
1

2
(x + µ0 cosα0)

2

)(
1− erf

(
1
√
2
(x cot β0 + µ0 sin α0)

))
.
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Finally, we consider d
dx
G6(x) , which is identical to 

d
dx
G1(x) , but after mapping the generating parameter as 

(0,µ0)  → (0,−µ0) . Then

The claim follows after noting that tan (α0 + β0) = cot β0 
and performing a change of variable to the squared 
Euclidean distance. 	�  �

Using the density of Proposition 6 for judging likeli-
hood ratio statistics is still complicated by its depend-
ence on the unknown true parameter φ0 . While several 
approaches to deal with this are discussed in [28], 
the simplest is to replace φ0 by its MLE under the cut 
model. Although theory does not guarantee the good 
performance of this approach, in the next section we 
investigate performance through simulation.

If an expected qcCF has some small counts, say 
less than 5, and hence its normalization lies near the 
boundary of the simplex, an alternative testing proce-
dure is necessary. In the case of only 2 small counts, 
the geometry of the parameter space far from a vertex 
can be ignored, giving essentially the same situation 
for the T1 and T3 tests already implemented in MSC-
quartets. Either parametric bootstrapping from θ̂0 , 
or a much faster precomputed approximation, can be 
used.

d

dx
G6(x) =

1

2
√
2π

exp

(
−
1

2
x2
)(

1− erf

(
1
√
2
(x tan (α0 + β0)+ µ0)

))
.

If only one expected count is small, the normalization 
lies near an edge of the simplex. Under the cut model, 
the other two counts should be approximately equal and 

approximately binomially distributed. Then a standard 
binomial test can be applied.

C.3 Cut test simulation
Figure 13 shows results of simulations comparing p-val-
ues for the likelihood ratio statistic for simulated qcCFs 
from the cut model, using the distribution of Proposi-
tion 6 with the MLE for φ0 , and a standard χ2

1  distribu-
tion. While neither distribution produces the desired 
cumulative distribution of p-values, that of Proposi-
tion  6 comes closer when µ0 has smaller magnitude. 
The value µ0 = 0 corresponds to the model singularity 
(1/3,  1/3,  1/3), where both tests will perform very con-
servatively for small significance levels, seldom rejecting 
the null model. As µ0 is varied away from 0, performance 
improves.

While µ0 depends on both the true model parameter 
and the sample size n, it has a simple interpretation: if σy 
is the standard deviation of the y-coordinate of the ran-
dom observations, then |µ0|σy is the distance between 
the generating parameter θ0 and the model singularity.

Fig. 13  Cumulative distributions of p-values computed from simulations, for the distribution of the likelihood ratio statistic given in Proposition 6 
using maximum likelihood estimates of φ0 (red), and for the χ2

1 distribution (blue) for sample size n = 106 . The cdf plots are indistinguishable 
for |µ0| large. The diagonal line represents ideal behavior. At and near the model singularity, µ0 = 0 , the distribution of Theorem 6 performs better 
than a χ2

1
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