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Abstract—The increasing reliance on unmanned aerial vehicles
(UAVs) has escalated the associated cyber risks. While machine
learning has enabled intrusion detection systems (IDSs), current
IDSs do not incorporate cyber-physical UAV features, which lim-
its their detection performance. Additionally, the lack of public
UAV’s cyber and physical datasets to develop IDS hinders further
research. Therefore, this paper proposes a novel IDS fusing UAV
cyber and physical features to improve detection capabilities.
First, we developed a testbed that includes UAYV, controller,
and data collection tools to execute cyber-attacks and gather
cyber and physical data under normal and attack conditions.
We made this dataset publicly available. The dataset covers a
range of cyber-attacks including denial-of-service, replay, evil
twin, and false data injection attacks. Then, machine learning-
based IDSs fusing cyber and physical features were trained to
detect cyber-attacks using support vector machines, feedforward
neural networks, recurrent neural networks with long short-
term memory cells, and convolutional neural networks. Extensive
experiments were conducted on varying complexity and range of
attack training data to explore whether (a) fusion of cyber and
physical features enhances detection performance compared to
cyber or physical features alone, (b) fusion enhances detection
when IDS is trained on a single attack type and tested on unseen
attacks of varying complexity, (c) fusion enhances performance
when the range of attack training data increases and models
are tested on unseen attacks. Answering these research questions
provides insights into IDS capabilities using cyber, physical, and
cyber-physical features under different conditions.

Index Terms—UAVs, cyber-physical systems, intrusion detec-
tion systems, and machine learning.

I. INTRODUCTION

NMANNED aerial vehicles (UAVs) are going through

rapid adoption in many sectors from traffic analysis
to smart agriculture to military operations. As UAVs are
performing different tasks, they are often equipped with
various sensors, actuators, and processing units to aid their
particular task. These UAVs are cyber-physical systems that
collect measurements using sensors, receive command signals
from ground controllers, do some processing, and then take
some physical actions using actuators. Like all cyber-physical
systems, UAVs suffer from several security vulnerabilities
that hinder their adoption [1]. It is not hard to imagine the
potential damage if, for example, adversaries target common
surveillance UAVs causing them to malfunction. Likewise,
a malicious actor could potentially hijack a fleet of UAVs
and reroute them to crash into urban areas. Apart from the
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obvious possible physical damages, data theft is also a great
threat. Since nearly all modern drones come equipped with at
least one camera, hijacked video feeds could give competitors
access to private corporate information. All of these examples
show the importance of securing UAVs against cyber-attacks.

Research has been conducted to develop intrusion detection
systems (IDSs) that ensure the secure operation of UAVs
against cyber-attacks. The developed IDSs aim at detecting
replay attacks [2], hijacking attempts [3], spoofing attacks
[4], false data injection (FDI) attacks [5], and denial-of-
service (DoS) attacks [6]. In addition, systems have been
developed to detect faults during the UAV operation [7].
However, existing IDSs have a common limitation as they
do not treat UAVs as cyber-physical systems. Instead, current
IDSs rely solely on either physical features of the UAV (e.g.,
roll, pitch, yaw angles, speed, temperature, etc.) or cyber fea-
tures (e.g., IP addresses, MAC addresses, port numbers, etc.).
Yet, UAVs are cyber-physical systems equipped with sensors,
radios, and actuators that integrate computational and physical
components. Therefore, strategies relying solely on cyber or
physical features do not provide a complete representation of
the UAV system, resulting in limited detection performance.
Moreover, the existing works have not investigated the impacts
of cyber and physical fusion on IDS capabilities under varying
conditions of complexity and range of the attack training data.
Attack complexity refers to the sophistication of the attack that
was used to train the IDS and how this impacts the ability of
the IDS to detect unseen attacks in the testing stage. On the
other hand, the range of the attack training data relates to the
different types of attacks used for model training and how this
impacts the IDS ability to detect unseen attacks. Therefore, this
paper investigates the following research questions:

o Will the fusion of cyber and physical features improve
detection compared to cyber or physical features alone?

o Will the complexity level of the attack training data
impact the ability of the IDS to detect unseen attacks
with various complexities?

o Will the range of the attacks included in the training data
impact the ability of the IDS to detect unseen attacks with
various complexities?

Answering the aforementioned research questions faces sev-
eral key challenges. First, developing effective IDSs requires
datasets that capture system behavior under both normal
and attack conditions across cyber and physical domains.
However, existing UAV datasets do not provide both cyber
and physical features, highlighting the need to develop an
experimental testbed and data collection methodology. Second,
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equipping IDS with numerous cyber and physical features
may overwhelm the model, degrading detection performance.
Therefore, a methodology is needed to identify the most salient
cross-domain features that boost detection capabilities. Finally,
balancing model computational complexity and performance
requires exploring a diverse set of strategies, optimizing their
architectures, and benchmarking their detection performance.

To address these challenges, we carried out the following:

o We developed a testbed that consists of UAV, controller,
and data collection tools. Using this testbed, we executed
four attack types on the UAV, namely, de-authentication
DoS, replay, evil twin, and FDI attacks. We collected
and published in [8] cyber-physical datasets that represent
UAV operations under normal and attack conditions.

e« We performed Shapley additive explanations (SHAP)
analysis to identify the most effective cyber and physical
features for each model. Also, we carried out a grid search
analysis to identify the optimal structure for each machine
learning model. Finally, we studied the learning curves of
each model to examine that a sufficient amount of data
has been provided to each model and that each model is
not under-fitting or over-fitting.

o We used the datasets to train and test a set of IDSs based
on support vector machine (SVM), feedforward neural
network (FNN), recurrent neural network with long-short-
term-memory units (LSTM-RNN), and 1D convolutional
neural network (CNN). We compared three variants for
each model, namely, training and testing using cyber-
only, physical-only, and fused cyber-physical features.

o To provide answers to the aforementioned research ques-
tions, we conducted extensive experiments involving two
assessment scenarios, namely, the complexity of attack
training data and the range of attack training data, based
on the developed models (SVM, FNN, LSTM, and 1D-
CNN) and their variants (cyber, physical, and cyber-
physical). The first scenario reflects cases when models
are trained on a single type of attack and tested against
other unseen attacks. The second scenario reflects cases
when the range of attacks considered in the training
datasets increases and then the model is tested against
other unseen attacks.

The rest of this paper is as follows. Section II reviews
the related works and highlights their limitations. Section III
discusses the testbed and the methodology to collect the be-
nign and malicious datasets. Section IV presents the machine
learning models and hyper-parameter optimization. Section V
presents the detection and SHAP analysis results and provides
discussions. Finally, conclusions are given in Section VL.

II. RELATED WORKS

This section reviews the published works in the area of
IDS in UAVs. To the best of the author’s knowledge, there
is no research work that explores the fusion of cyber-physical
data for intrusion detection in UAVs. Existing works either
use cyber or physical data to develop the IDS. Furthermore,
the vast majority of existing research uses pre-existing cyber
datasets that were not taken from actual UAV communications.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

In the following, we divide the related works into two cate-
gories, namely, IDS based on cyber features and IDS based on
physical features. The limitations of these categories highlight
the contributions of our work.

A. IDS based on Cyber Features

Most of the existing research focuses on developing IDSs
of UAVs using cyber features. For instance, Sedjelmaci et
al. addressed in [5] the balance between detection rates and
false positive rates through the use of a Bayesian game-
theoretic methodology. The dataset used in [5] is obtained
via simulation and is not publicly available. Zhang et al.
developed in [6] a hybrid IDS capable of monitoring a fleet of
UAVs by analyzing Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP) network traffic sent between
the ground controller and the UAV. The work in [6] used
wavelet leader multi-fractal (WLM) analysis along with robust
estimation to form the basis of the IDS. Ferrag and Maglaras
developed in [7] a framework for delivery UAVs using both
blockchain and an IDS called DeliveryCoin. The IDS in
[7] was developed by testing a variety of machine learning
models, namely, decision tree, SVM, CNN, and recurrent
neural network, and finding the best model that is capable
of not only detecting attacks but also classifying them. Tan
et al. proposed in [9] an IDS for UAVs using a deep belief
network based on stacked restricted Boltzmann machines.
The IDS model in [9] was optimized using particle swarm
optimization and the results were found to outperform a neural
network with three layers, SVM, AdaBoost, and a deep neural
network with eight layers. Ouiazzane et al. developed in [10]
an IDS model for UAVs using various agents (sniffers, filters,
feature selectors, decision-makers, etc.). Using a decision tree
structure, the IDS in [10] was able to correctly classify all
instances in the CICIDS-2017 intrusion detection evaluation
dataset. Shrestha et al. developed in [11] an IDS for UAVs
that runs on 5G communications. In the testing of [11], seven
different models were considered, including linear regression,
linear discriminant analysis, K-nearest neighbor, decision tree,
and Gaussian Naive Bayes. From this subset of models, it
was found that decision trees resulted in the best overall
performance across various attacks. Recently, Praveena et al.
employed in [12] a reinforcement learning model optimized
through black widow optimization on the NSL-KDD dataset.
It was shown in [12] that the proposed methodology out-
performs all the existing models including improved deep
belief network, selective and inter-related distillation, deep
learning, density peak clustering-deep belief network, adapted
K-nearest neighbors, decision tree, AdaBoost, random forest,
and SVM. Bouhamaed et al. [13] adopted deep Q-learning for
the detection of cyber-attacks. The authors used the CICIDS-
2017 dataset for the evaluation of the proposed model. Kou et
al. [14] proposed a model consisting of a deep autoencoder and
a CNN for anomaly detection in the UAV communication of
a software-defined network (SDN). The authors evaluated the
performance of the proposed model using the InNSDN dataset.
Han et al. [15] proposed IDS to secure the packet information
using the hierarchical LSTM model. The proposed model
was evaluated using the CICIDS-2017 dataset. Mehmoodat et
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TABLE I
SUMMARY OF RELATED WORKS

Ref. Year Research Focus Detection Mechanism Dataset

[5] 2016 UAV-Aided Networks Bayesian Game-Theory Simulated Cyber

[6] 2018 UAV Communication Signature-based Simulated Cyber

[7] 2019 UAV-Delivery SVM & KNN Irrelevant Cyber (CSE-CIC-IDS-2018)
[9] 2019 UAV Communication Deep Belief Network Irrelevant Cyber (KDD-Cup-99)
[10] 2020 Ad-hoc Communication Decision Tree Irrelevant Cyber (CICIDS-2017)
[11] 2021 | Cellular Connected UAV Networks Decision Tree & KNN Irrelevant Cyber (CSE-CIC IDS-2018)
[12] 2022 UAV Networks Reinforcement Learning Irrelevant Cyber (NSL-KDD)
[13] 2021 UAV Coverage Deep Q-learning Irrelevant Cyber (CICIDS-2017)
[14] 2022 UAV in SDN Autoencoder & CNN Irrelevant Cyber (InSDN)
[15] 2023 UAV Network Hierarchical LSTM Irrelevant Cyber (CICIDS-2017)
[16] 2022 UAV Communication SVM & Random Forest Simulated Cyber

[17] 2021 UAV Communication Autoencoders Actual Physical

[18] 2021 GNSS Communication Parameters-based Actual Physical

[19] 2022 GNSS Communication Kullback-Leibler Divergence Actual Physical
[20] 2019 UAV Monitoring 1D-CNN Actual Physical
[21] 2022 UAV Swarm Deep Neural Network Simulated Physical

al. [16] simulated the UAV communication environment in a
COOIJA simulator and generated the simulated traffic data for
the IDS. The authors used the random forest, SVM, and K-
nearest neighbor for detection purposes.

A common factor in all of the aforementioned works is
that none of the IDSs was developed and tested using real
communications taken from an actual UAV. Instead, all of the
IDS models have been developed and tested using cyber data
that is either simulated, e.g., [5], [6], [16], or adopted from
public intrusion detection datasets irrelevant to UAVs, e.g., [7],
[91-[11], [13]-[15].

B. IDS based on Physical Features

The vast majority of research carried out in this area focuses
on the cyber aspects, as existing works claim that research can
still be conducted through the use of public cyber datasets
irrelevant to UAV communications. However, there are a few
examples that found ways to incorporate physical/behavioral
features of UAVs. For instance, Park et al. used in [17]
two UAV-specific datasets: (a) the UAV dataset that contains
simulated flight logs under normal conditions and cyber-attack
scenarios, and (b) the AirLab failure and anomaly dataset
that consists of actual drone flight logs where component
failures occurred. Using a set of extracted and engineered
features from the physical data, autoencoders were trained to
detect anomalies. Basan et al. developed in [18] a lightweight
methodology for detecting global navigation satellite system
(GNSS) spoofing attacks on UAVs via monitoring a few
parameters and implementing a Poisson distribution model
to find rare events. To validate the proposed model, the
work in [18] recorded GNSS spoofing attacks on UAVs and
successfully detected each instance. The following year, Basan
et al. improved in [19] upon [18] using a Kullback-Leibler
divergence model that is capable of detecting GNSS spoofing
attacks without requiring a large sample of benign data. Ahn
et al. [20] proposed a machine learning-based mechanism to
detect anomalies in UAV behavior. The authors used 1D-CNN
to identify the abnormal behavior of UAVs. In [20], the authors
used only the physical features of the UAV for IDS training
and evaluation purposes. Khanapuri et al. [21] used a deep
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neural network to design IDS for a swarm of UAVs working
in a cooperative localization. However, the authors in [21] used
simulated physical features for the IDS training and evaluation.

C. Limitations

Table I highlights the key features in the related works. As
aforementioned, there is a great need for a dataset that moni-
tors physical logs as well as cyber communications in UAVs
during normal operations as well as under a cyber-attack.
One of the contributions of our paper is the development and
publishing of such a cyber-physical dataset [8] to promote
further research in this area using datasets collected from an
actual UAV. Moreover, all the aforementioned works relied on
either cyber or physical datasets and never published correlated
cyber and physical UAV data. Furthermore, our paper also
presents findings for testing the hypothesis of fusing physical
and cyber data to develop a more effective IDS under different
scenarios involving various attack complexities and ranges.

III. DATASET GENERATION

Since we target a machine learning-based IDS, dataset
availability is a major concern. In our case, there is no publicly
available dataset that includes correlated physical and cyber
data monitoring a UAV in flight under normal operation and
cyber-attack conditions. Therefore, one of our contributions is
the creation and publication of a dataset in [8] that meets such
goals. This section details the process of creating the required
cyber-physical dataset.

A. Equipment

The physical equipment used to create the dataset used
in this paper includes DJI Tello EDU drone and accessories
[22], ALFA AWUSO036ACH antenna [23], computer-1 used
as a controller to fly the UAV over pre-specified routes, and
computer-2 with WiFi card operating in the monitor mode.
The setup of the testbed is shown in Fig. 1.

The DJI Tello EDU is a lightweight (80 g) programmable
drone with dimensions of 98 x 92.5 x 41 mm. It can be
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programmed using the Tello SDK with Python, Scratch, or
Swift. The drone provides approximately 13 minutes of flight
time. It is equipped with a front-facing 720p camera for video
transmission. It uses a vision positioning system that includes a
front camera and two 3D infrared sensors, which are equipped
at the bottom of the drone, for stable hovering. The drone
also contains a time-of-flight (ToF) distance sensor, IMU, and
barometer. It communicates over 2.4GHz 802.11n WiFi using
the UDP protocol. The programmability of the Tello EDU via
the SDK, its sensor suite, and its open software platform make
it an ideal UAV for research and development.

Computer-1 was used to emulate a controller or ground
control station used in operations, which will be discussed
in the next subsection. This computer contains a number of
Python scripts developed to communicate with the UAV and
collect physical readings in real time along the flight. This
computer can be thought of as the legitimate operator of the
UAV. The ALFA AWUSO036ACH antenna was used as a point
to launch attacks while still recording network traffic through a
WiFi card. Computer-2 was running a Linux distribution called
ParrotOS (Security Edition) [24] that comes equipped with a
large number of penetration testing tools that were helpful in
the creation of the cyber part of this dataset. The main software
used on this computer were Aircrack-ng [25], Tcpdump [26],
and Wireshark [27]. This computer can be thought of as the
adversary, which used the Alpha AWUSO036ACH antenna and
the computer’s internal WiFi card to perform attacks and
collect cyber data.

B. Data Collection Methodology

The dataset was gathered in two stages, namely, (a) flights
under normal conditions without any cyber-attacks and (b) the
same flights under four types of cyber-attacks. The first stage
begins with computer-2 putting their WiFi card into wireless
mode and running a tool called airodump-ng from Aircrack-
ng to capture raw IEEE 802.11 frames. This tool listens to
all the WiFi traffic across all channels, finds access points,
and lists their basic service set identifier (BSSID). For each
BSSID, various attributes are collected such as the channel,
authentication protocol, encryption algorithms, cipher, and the
extended service set identification (ESSID). If a BSSID is
already known, there are filter options to display only traffic
associated with that particular access point. For this stage of
data collection, airodump-ng is used to collect all the network
traffic (cyber data) sent to and from the Tello drone.

From here, the Tello drone is powered on and creates its own
wireless access point for clients to connect (through computer-
1) and send commands. Then, computer-1 runs a Python script
that connects to the UAV and begins sending commands to
control the UAV along a predefined path, as shown in Fig. 1.
The Tello comes with four mission pads that were placed in
a line approximately 76 cm from each other. The UAV takes
off from a mission pad labeled as 1 and proceeds to mission
pad 2, 3, and 4 in succession while stopping above each pad.
Once the UAV gets to the 4th pad, it rotates 180 degrees and
repeats the process in reverse order back to mission pad 1.
When the UAV is above each pad, there was a 10% chance
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Fig. 1. Illustration of the testbed. (a) Sketch of the layout, (b) Photo of
the testbed. In the middle, there are the 4 mission pads that the Tello drone
moves in between. The left side shows the operator along with the controller
(computer-1), and the right side shows the adversary and their equipment
(computer-2 and antenna).

to perform a random action, such as moving back and forth,
moving up and down, doing a flip to the left or right, etc.
This flight path was designed to emulate a route used in smart
farming, e.g., checking a row of plants for disease or spraying
fertilizer. Other applications may also involve surveillance.
Throughout the entire process, the UAV is sending the status
of various physical measurements back to computer-1 every
0.5 seconds. These will make up the physical features in the
dataset, which include measurements such as roll, pitch, yaw,
speed along each axis, temperature of motors, etc. Once the
UAV has completed the route and returned to mission pad 1, it
rotates 180 degrees again and lands, ready to start over again.
From here, the UAV is powered off, and airodump-ng running
on computer-2 stops and the collected data is saved into a
PCAP file which will become part of the cyber dataset.

The aforementioned entire process makes up one flight, and
a total of 35 flights were performed. The first 20 flights have
a standard 10% chance of a random action, the next 10 flights
have the rate increased to 20%, and the final 5 flights with
50% chance of a random action from the UAV.

C. Cyber-attacks Under Consideration

The second stage follows the same process as the first stage
but with a cyber-attack launched at a random point along
the UAV’s route. Four attacks were selected to be launched
against the UAV, namely, de-authentication, replay, evil twin,
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Fig. 2.
command that is sending de-authentication frames to the UAV access point
with a spoofed MAC address. Note: -0 specifies that we want to send de-
authentication frames, O specifies that we want to send frames infinitely, -a is
the MAC address of the access point, -c is the MAC address of the client we
are spoofing, -D forces start without waiting for beacon, wlan0 is the name
of the interface we are sending from.

Example of successful de-authentication attack using aireplay-ng

and FDI attacks. A total of 40 flights with attack attempts were
launched such that we have 10 flights for each attack.

1) De-authentication Attack: These attacks are the result
of a vulnerability in the IEEE 802.11 protocol that allows
for a de-authentication frame to be sent to an access point
from a client ending the connection. This vulnerability can be
exploited when an attacker sends a de-authentication frame to
an access point using a spoofed address, which will then end
the victim’s connection with the access point. Furthermore,
this is a generic attack that will work with any protocol (other
than IEEE 802.11) that does not require any authentication
[28]. For this attack, aireplay-ng was used to flood both the
access point (the UAV) and the client (computer-1) with de-
authentication frames.

Fig. 2 shows that the de-authentication packets are being
sent to the communication channel associated with the UAV.
This floods the channel between the UAV and the ground
control station (computer-1), which results in terminating
the connection between them. The communication can be
disconnected for a finite or infinite duration depending on the
attacker’s goals. When computer-2 initiates a de-authentication
attack, it sends a series of de-authentication frames to the UAV,
making it believe that computer-1, the legitimate controller,
has ended the session. This forces the UAV to drop the
connection with computer-1 temporarily. The DJI Tello EDU
is programmed to force land if no signal is received from a
controller within 15 seconds, so this is generally what happens.

2) Replay Attack: Replay attacks can vary widely in func-
tionality depending on the application. Generally, this attack
involves capturing of communication between two parties to be
replayed later in order to achieve some goal. Often, this attack
is used to replay hashed passwords or the address resolution
protocol (ARP) request to break the encryption between a host
and client [29]. For UAVs, replay attacks can also be used to
capture specific commands to be replayed by the attacker to
effectively take control of the UAV [30].

To execute this attack, we utilized the aircrack-ng suite.
We placed the ALFA network adapter into the monitor mode
using the airmon-ng start wlanO command in order
to capture wireless packets. We then initiated the packet
capturing process with the airodump-ng wlanO command
while ensuring the UAV was active and receiving legitimate
commands from its controller. We saved the captured packets
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Fig. 3. Example command to move the UAV 500 cm to the left found in plain
text via Wireshark. This command is captured and replayed by the attacker.

to a PCAP file and used Wireshark filters to examine the
file and isolate the specific UAV command packets. We ex-
ecuted the command aireplay-ng -—inject replay
-r capture.pcap wlan0, where replay refers to replay
mode, capture.pcap is the PCAP file containing the captured
packets. This command replayed the captured command pack-
ets to the target UAV, deceiving it into re-executing the same
commands it had previously received from the legitimate
controller. Through replaying these command packets, the
UAV showed abnormal behavior and was unable to properly
follow its mission plan.

Fig. 3 depicts the Wireshark packet capturing interface. This
shows the intercepted data between the UAV and controller
(computer-1). During this attack, computer-2 captures valid
data packets transmitted from computer-1 to the UAV. Once
captured, computer-2 re-transmits these packets. During this
window of attack, any commands sent by computer-1 to
the UAV are effectively overwritten by the replayed packets,
causing the UAV to execute the replayed commands instead.

3) Evil Twin Attack: To execute this attack, we utilized
the Aircrack-ng and Airgeddon toolkits. The first step was
to establish a rogue wireless access point that mimicked the
legitimate service set identifier (SSID) of the target UAV’s
network. To obtain the actual SSID, the attacker ran the
command sudo airodump-ng wlanO with its wireless
interface in monitor mode as wlan0O. This command listed
the BSSIDs, SSID, and other network information. With the
legitimate SSID acquired, we used the Airgeddon interface to
create an evil twin access point, automatically configuring it
with the cloned SSID of the target UAV network. To ensure
the target UAV would connect to the attacker’s rogue access
point rather than the real one, the attacker needs to make
its signal stronger. We accomplished this by employing the
command iwconfig wlanO txpower 30 to boost the
attacker’s wireless adapter’s transmission power to 30 dBm.
Additionally, we briefly ran a de-authentication attack against
the UAV to temporarily disconnect it from the legitimate
access point, forcing it to reconnect and latch onto the stronger
evil twin signal instead. Once connected to the attacker’s
rogue access point, the UAV became victim to a man-in-
the-middle attack, allowing the attacker to monitor, intercept,
steal, or manipulate data intended for the actual UAV network.
In summary, through cloning the SSID and using a high
transmission power, the attacker was able to successfully make
the UAV connect to an evil twin access point and compromise
its communications.

4) False Data Injection Attack: We utilized the Aircrack-
ng suite, socket library, and custom Python scripts to execute
an FDI attack against the UAV. To inject stealthy sensor
readings and control commands, we first calculated the state-
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space matrices (A, B, C) for the UAV using dynamic mode
decomposition (DMD) and MATLAB’s system identification
toolbox. We focused our attack on three key states, namely,
roll, pitch, and yaw. Next, we designed stealthy attack vectors
with a custom Python script. Specifically, we modified the
roll, pitch, and yaw measurements according to the equation
y = y + , where y is the original sensor measurement and
v is the attack vector targeting the sensor data. Similarly, we
modified the control signal as v = u + 7, where u is the
original control signal and 7 represents the attack vector for
falsifying the command signal. We computed ~ and 7 based
on the (A4, B,C) matrices to minimize residual errors for a
stealthy attack. To inject the false data, we crafted packets
using Python and sent them to the UAV’s IP 192.168.10.1
and controller port 8890. Consequently, the UAV received the
falsified sensor and control data. This led to incorrect state
estimation and control actions, causing irregular behavior as
the UAV failed to maintain its planned mission.

Overall, the four attacks under consideration have clear
manifestations in both cyber and physical domains. For in-
stance, de-authentication attacks can disrupt the communica-
tion between the UAV and its controller, potentially leading
to loss of control and UAV’s hovering without completing
its mission (i.e., cyber-attack leading to physical impact).
Similarly, replay attacks can trick the UAV into accepting old
or previously valid commands (cyber-attack), which lead to
physical impact. Evil twin and FDI attacks follow the same
rationale (cyber-attack with physical impact).

IV. DEVELOPMENT OF UAV INTRUSION DETECTION
SYSTEM

This section discusses the development of an IDS model that
fuses the cyber and physical features to yield improved attack
detection performance. In the experimental results section,
we will compare the IDS with cyber-only and physical-only
IDSs that are trained on cyber or physical features to assess
performance improvement.

A. Data Preparation

The raw data that we published in [8] and generated
using the methodology described in Section III was split into
cyber and physical datasets. Each dataset includes 75 files
representing the recorded flights (35 for normal operation and
40 under cyber-attack). The cyber data was stored as PCAP
files and the physical data was stored as numpy arrays. The
physical data was directly entered into a pandas data frame;
however, the cyber data had to be manually parsed first.

For the cyber data, each PCAP file was opened in Wireshark
and filtered to only include data going to or from the BSSID
associated with the Tello’s access point. From here, each file
was converted into JSON format and further parsed using
a custom Python script to extract 36 cyber features plus an
additional constructed feature that records the elapsed time
since the last packet. At this point, both cyber and physical
datasets were loaded into data frames and added an extra
column indicating whether or not an attack occurred based
on timestamps (i.e., assigned a class label). Within the cyber
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data frame, there were 32,978 samples each with 37 features
plus their associated class. Within the physical data frame,
there were 6,236 samples each with 16 physical features in
addition to their associated class. The list of collected cyber
and physical features is given in Table II.

TABLE II
RAW EXTRACTED FEATURES FROM BOTH CYBER AND PHYSICAL
DATASETS
Cyber Cyber Physical
frame.number ip.id height
frame.len ip.flags x_speed
frame.protocols ip.ttl y_speed
wlan.duration ip.proto z_speed
wlan.ra ip.src pitch
wlan.ta ip.dst roll
wlan.da tcp.sreport yaw
wlan.sa tep.dstport temperature
wlan.bssid tcp.seq_raw distance
wlan.frag tep.ack_raw barometer
wlan.seq tcp.hdr_len flight_time
wlan.fc.type tep.flags battery
wlan.fc.subtype tcp.window_size mp_distance_x
llc.type tcp.options mp_distance_y
ip.hdr_len udp.srcport mp_distance_z
ip.len udp.dstport timestamp_p
udp.length data.data
data.len time_since_last_packet

timestamp_c

The following briefly explains the meaning of the features
listed in Table II. For the 37 cyber features: frame.number
denotes the number of each captured frame, frame.len is the
length of the captured frame in bytes, frame.protocols field
lists all the protocols encapsulated in the frame, wlan.duration
denotes the time taken to transmit the frame on the wireless
medium, wlan.ra is the receiver’s MAC address, wlan.ta is the
transmitter’s MAC address, wlan.da is the destination MAC
address, wlan.sa denotes the source MAC address, wlan.bssid
is the MAC address of the access point, wlan.frag is the Wire-
less LAN fragment number, wlan.seq is the frame’s sequence
number, wlan.fc.type is the frame control type, wlan.fc.subtype
is the subtype of the frame based on the frame control field,
llc.type is the type field of the logical link control, ip.hdr_len
is the length of the IP header in bytes, ip.len is the total
length of the IP packet including header and data, ip.id is the
identification field in the IP header, ip.flags indicates the flags
in the IP header, ip.ttl is the time to live, ip.proto is the protocol
used in the data portion of the IP datagram, ip.src is the source
IP address, ip.dst is the destination IP address, tcp.srcport is
the source port number for the TCP segment, tcp.dstport is the
destination port number, tcp.seq is the sequence number of the
first byte in the TCP segment, tcp.ack is the acknowledgment
number in the TCP header, tcp.hdr_len is the length of the TCP
header in bytes, tcp.flags indicates the flags in the TCP header,
tcp.window size is the size of the receiver’s window in bytes,
tcp.options denotes optional settings for the TCP connection,
udp.srcport is the source port number for UDP, udp.dstport is
the destination port number for UDP, udp.length is the length
of the UDP including header and data, data.data indicates the
raw data of the captured frame, data.len is the length of the



This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TITS.2023.3339728

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

data in the captured frame, and time_since_last_packet is the
time elapsed since the previous packet was received. For the 16
physical features: height is the altitude of the UAV, x_speed,
y_speed, and z_speed denote the speed of the UAV along the
X, y, and z-axes, respectively, pith and roll denote the tilt of the
UAYV in the forward and backward direction, and the side to
side, respectively, yaw is the rotation of the drone around the
z-axis, temperature indicates the temperature reading from the
UAV’s motor, barometer measures the air pressure, flight time
indicates the duration for which the UAV has been flying, the
battery is the current battery level of the UAV, mp_distance_x,
mp_distance_y, and mp_distance_z are the distances along the
X, ¥, and z-axes from a Tello Pad, respectively. Finally, the
timestamp_c and timestamp_p are timestamps for the collected
cyber and physical features, respectively.

Due to the nature of how each dataset was recorded, these
cyber-physical time series are asynchronous which makes
combining them trickier than simply combining the features.
The best way to combine these datasets was found to be by
iterating through each unique timestamp and repeating the
most recent features from either dataset. During this process,
any data points collected before takeoff or after landing were
discarded so as not to interfere with the learning process.

Next, both cyber and physical data frames were normalized
using the min-max method to scale the data in the [0, 1]
range. This scaling is important for our data as it is a
fusion of cyber and physical features with different units
and scales. With normalization, faster convergence can be
achieved during the IDS training. It should be noted that other
normalization methods (e.g., standardization with zero mean
and unit variance) can be used. Furthermore, we removed
some features that were counterproductive. Those features
were ‘frame.number’ so that the IDS models do not simply
learn patterns in the numbering, ‘barometer’ because the
atmospheric pressure has no correlation with cyber-attacks and
could result in learning useless patterns, and finally, both cyber
and physical timestamps were removed in order not to learn
patterns in the time of day that attacks were launched. The
resulting combined dataset was composed of 12,741 benign
samples and 16,843 malicious samples. Data was split into
train and test samples with a split ratio of 3 : 1. For training
and validation, 5-fold cross-validation was used.

B. Model Training and Optimization

To develop an effective UAV IDS, we investigated a
range of machine learning models that represent: shallow and
deep structures, and static and temporal learning models. We
adopted SVM as a shallow model since it captures complex
decision boundaries and offers particularly good performance
at handling binary classification problems, making them suit-
able for intrusion detection tasks where the objective is to
classify activities as normal or malicious. While deep learning
models have gained attention in recent years, FNNs, being
one of the foundational neural network architectures, offer
a balance between complexity and performance. Finally, we
studied models that exploit correlation within the data (LSTM-
RNN and 1D-CNN models) to compare them against models
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that do not exploit correlation within the data (SVM and FNN).
The adopted models have been considered in relevant state-
of-the-art UAV IDS research, e.g., SVM [7], [16], FNN [21],
LSTM [15], and CNN [14], [20].

1) IDS Based on SVM: This is an example of a supervised
model that adopts a shallow structure and does not exploit
the temporal correlation within time-series data. The afore-
mentioned aspects make SVM a model that can be trained
and deployed fairly easily. Four different kernels K were con-
sidered as hyper-parameters including linear, sigmoid, radial
basis function (rbf), and polynomial. Also, different classifier
margins C' were considered, namely, C € {0.1, 1, 10}.
Finally, different scaling factor v was considered, namely,
~v € {0.05,0.1,0.15,0.2}. Random grid search was conducted
using cross-validation with 5-folds to identify the optimal
hyper-parameters for each model.

2) IDS Based on FNN: This model represents a deep
structure that is trained in a supervised manner and handles
static data, i.e., does not exploit the temporal correlation within
the time-series data. Hyper-parameter optimization through a
random grid search performed on validation data was con-
ducted to determine the optimal structure of the model. The
following search space was used while optimizing the hyper-
parameters: number of hidden layers L € {2,3,4,5,6,8},
number of neurons N € {64,128,256,512,1024}, activation
function in the hidden layer ¢, € {Relu,tanh}, activation
function in the output layer ¢, € {sigmoid,softmax}, and
weight initialization function I € {random, glorot, he}. The
random grid search is used to identify the optimal hyper-
parameters for each model.

3) IDS Based on LSTM-RNN: The LSTM-RNN model rep-
resents a deep structure that is trained in a supervised manner.
It exploits the temporal correlation within our time-series data.
The hyper-parameters of this model are optimized via random
grid search. The hyper-parameter search space includes the
following: number of hidden layers L € {1,2, 3,4, 5}, number
of LSTM cells N € {64,128,256,512,1024}, activation
function ¢ € {Relu, tanh}, and weight initialization function
I € {random, glorot, he}.

4) IDS Based on ID-CNN: This model also captures tem-
poral correlations within the time-series data. This is achieved
through convolutional filters that traverse across the sequential
input data during model training and inference. By leveraging
convolutions over the temporal dimension, the 1D-CNN can
discern patterns and anomalies over time in the cyber-physical
data streams. We identify the optimal hyper-parameters for
each model using a random grid search. The hyper-parameter
search space includes the following: number of convolu-
tional layers L € {2,3,4,5,6}, number of convolutional
filters F € {8,16,32,64,128}, kernel size K € {2,5,10},
pooling size P € {2,3,4,5}, number of neurons in the
dense layer N € {32,064, 128,256,512}, and dropout rate
r € {0.1,0.2,0.3,0.4}.

C. Shap Analysis

SHAP analysis [31] was conducted on each dataset (cyber,
physical, and combined/fused) and model. SHAP analysis uses



This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TITS.2023.3339728

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

game theoretically optimal Shapley values to explain how
various machine learning models make decisions. In our work,
SHAP was used as a form of feature selection step informing
our model on the most important features and conversely, the
least important features that might need to be pruned. The
optimal combinations of hyper-parameters found through grid
search were used when running the SHAP analysis.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the detection results of the UAV cyber-
physical IDS. For each machine learning model (SVM, FNN,
LSTM, and 1D-CNN), three versions are developed and tested.
These include versions trained on cyber-only, physical-only,
and cyber-physical (fused/combined) datasets.

To evaluate the performance of the developed models (SVM,
FNN, LSTM, and 1D-CNN) and their variants (cyber, physical,
and cyber-physical), we conducted experiments involving two
main assessment scenarios: complexity and range of attack
training data. The first scenario reflects cases when models
are trained on a single type of attack and tested against other
unseen attacks. This demonstrates how models behave when
trained on simple to advanced complex attacks. The second
scenario reflects cases when the range of attacks considered
in the training datasets increases and then the model is tested
against other unseen attacks. When studying the impact of the
complexity of attack training data, each model variant (cyber,
physical, and cyber-physical) is trained on only one attack
type and tested against all four attack types (including three
unseen attacks). Therefore, each model undergoes 4 training
and 16 tests (one training per attack, four tests per training),
resulting in a total of 48 training and 192 tests for all models
and all variants. When studying the impact of the range of
attack training data, we considered two cases. First, models
were trained on two attack types (evil twin and FDI) and tested
on the combined four attacks. Second, models were trained on
three attack types (evil twin, FDI, replay) and tested on the
combined four attacks. Therefore, each model undergoes 2
training and 2 tests, resulting in a total of 24 training and 24
tests for all models and all variants.

We first show the SHAP analysis results to highlight the
most effective features for the models. Then, for each model,
we show the learning curves to examine whether the developed
models are under or over-fitting. Finally, we compare the
detection performance metrics for all the developed models
in terms of model accuracy, precision, recall, F1 score, area
under the curve (AUC) of the receiver operating characteristics
(ROC). The definitions of these metrics are discussed next.
First, all of the aforementioned metrics involve calculations
using total True Positives (TP), False Positives (FP), True
Negatives (TN), and False Negatives (FN). Accuracy gives an
overall account of how many samples were correctly classified
compared to the total classifications, which is given by

TP + TN !
TP + TN + FP +FN’ M
Precision shows the comparison of correct positive predictions
to total positive predictions, which can be described as

TP
TP + FP’

Accuracy =

Precision =

2
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Fig. 4. SVM-SHAP values for the top 20 features using the fused/combined
cyber-physical data.

Recall shows the comparison of correct positive predictions to
the total correct positive classifications, which is given by

TP
TP + FN’

When dataset classes are uneven in size (i.e., imbalanced), as
in this research and anomaly detection in general, these two
metrics (Precision and Recall) generally offer more insights
than accuracy. The F1 score provides a way to combine
Precision and Recall into one metric using the harmonic mean
through the formula

Recall = 3)

Fl — 2 x Prec%s%on X Recall. @)
Precision + Recall

A. Results of SHAP Analysis

We performed SHAP analysis using 50 random samples
across each dataset and calculated their respective SHAP
values. Due to space limitations, we are showing results for
the SVM and FNN models using the fused cyber-physical
data. The analysis resulted in very similar rankings of feature
importance across all datasets (cyber-only, physical-only, and
cyber-physical fusion) between the two models (SVM and
FNN). Fig. 4 and Fig. 5 show the top 20 features selected
by the SHAP analysis. All the models that are presented next
were trained and tested on these features.

Out of the sixteen physical features listed in Table II,
the following five physical features are deemed most ef-
fective: flight_time, temperature, battery, mp_distance_z, and
mp_distance_x. Changes in these features reflect deviations in
the expected UAV flight behavior, which could indicate poten-
tial intrusions. For instance, the flight duration (flight_time) is
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impacted because the UAV’s operation gets disrupted by some
attacks (de-authentication and evil twin) or the UAV deviates
from the original path (replay and FDI attacks). Also, the
temperature and battery values change when an attack occurs
as the attack could impact the flight duration hence affecting
the UAV motor’s temperature and battery. Similarly, the UAV’s
coordinates expressed by mp_distance_z and mp_distance_x
could change due to a replay attack or FDI attack that causes
the UAV to deviate from its normal path, etc.

Out of the thirty-seven cyber features listed in Table
I, the following sixteen cyber features are deemed most
effective: wlan.fc.type, wlan.duration, ip.hdr_len, ip.dst,
frame.len, ip.proto, frame.protocols, wlan.seq, data.len,
time_since_last_packet, ip.src, ip.ttl, ip.id, wlan.ra, llc.type,
and udp.dstport. Launching an attack would affect the size
of the frame, header, and data packets (frame.len, data.len,
and ip.hdr_len) because the attack might introduce more/less
data in the frame, data packet, and/or header. This also
affects the connection time (wlan.duration and ip.ttl), e.g.,
in case of de-authentication and evil twin attacks. Also, the
source and destination IP addresses, MAC addresses, and
ports differ under attack from the benign case, e.g., in evil
twin and de-authentication attacks, hence, affecting ip.src,
ip.id, ip.dst, udp.dstport, and wlan.ra. Moreover, the packet
transmission rate differs from the usual in some attacks (e.g.,
higher transmission rate for de-authentication attack as in
Fig. 2, which is also manifisted in the evil twin attack),
hence, affecting time_since_last_packet. The attack launching
mechanism would also affect the adopted protocols and frame
sequence number, hence, affecting ip.proto, frame.protocols,
wlan.fc.type, llc.type, and wlan.seq.

As observed in Fig. 4 and Fig. 5, the SHAP analysis
selected a combination of cyber and physical features, hence,
underscoring the value of fusing both data types for robust
UAV intrusion detection. Fusing cyber and physical data
provides a more thorough representation of the UAV state,
which in turn enhances the IDS’s capability to detect attacks.
Also, the SHAP analysis indicated more cyber features than
physical ones. This gives an intuition that cyber-only models
would outperform physical-only models, which will be proven
in Subsection V.C.

B. Learning Curves for the Developed Models

The learning curves show the F1 scores on the training and
validation datasets for the developed models. These curves
are used to assess model fitting and ensure no under-fitting or
over-fitting has occurred. The curves demonstrate the learning
and generalization capabilities of the models.

In total, 216 learning curves were generated for all models
and their variants under all scenarios. However, due to space
constraints, we only include representative learning curves for
each of the LSTM-RNN model variants (cyber, physical, and
cyber-physical) to illustrate proper model fitting, as seen in
Fig. 6. Using the SHAP-identified features and optimal hyper-
parameters from grid search, we observe that the behavior
of the training and validation F1 scores reflects good fitting.
Notably, we employed a patience strategy of 10 epochs, where
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Fig. 5. FNN-SHAP values for the top 20 features using the fused/combined
cyber-physical data.

the model training was stopped if validation loss remained
under 0.01 for 10 consecutive epochs.

The other models (SVM, FNN, and 1D-CNN) exhibit simi-
lar performance to Fig. 6 for all variants (cyber-only, physical-
only, and cyber-physical) indicating a good fitting model with
no under-fitting or over-fitting.

C. Performance Results

In the following, we show the results for the two scenarios,
namely, the complexity and range of attack training data.

1) Complexity of Attack Training Data: In this scenario, we
examine model performance when trained on a single type of
attack (de-authentication, replay, evil twin, or FDI attacks) and
evaluated against the other three (unseen) attacks and the at-
tack type adopted during the model training. Hence, the attack
training data ranges in complexity from the relatively simple
de-authentication attack to the more sophisticated stealthy FDI.

To elaborate, the evaluation procedure is as follows. Each
model variant is trained on only one attack type, such as SVM
cyber-only trained solely on the de-authentication attack. The
trained model is then tested against unseen attacks, i.e., replay,
evil twin, and FDI attacks, along with the de-authentication
attack. This process is repeated for each attack type totaling
four unique trainings per model. For each training, there are
four test scenarios: the three unseen attacks and the attack
type used for training. Therefore, each model undergoes 4
trainings and 16 tests (one training per attack, four tests per
training), resulting in 48 total trainings and 192 tests. However,
due to space limitations, we provide the average performance
per model variant. For example, for the SVM cyber-only
model trained on the de-authentication attack, we average its
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Fig. 6. Learning curves for LSTM model trained on (a) physical-only, (b)
cyber-only, and (b) fused/combined cyber-physical data.

performance on testing against replay, evil twin, FDI, and de-
authentication attacks.

The detection performance for cyber-only, physical-only,
and cyber-physical variants are shown in Fig. 7, Fig. 8§, and
Fig. 9, respectively. The x-axis show the attack training data
and the y-axis gives the average detection metric over all
attacks. The following observations can be made:

o Fig.7 presents the average performance for models trained
and tested on cyber-only data. Across all models, training
on the simple de-authentication attack leads to the lowest
performance in detecting unseen attacks. In contrast,
training on the complex FDI attack results in the highest
model performance against unseen attacks. The 1D-CNN
architecture achieves the highest average Fl-score of
76.82% when trained on FDI attacks.

o Fig. 8 shows average performance for models trained
and tested on physical-only data. Training on de-
authentication attacks again leads to the lowest gener-
alization ability. The 1D-CNN model demonstrates the
highest performance with an average F1-score of 63.82%
when trained on FDI attacks.

o Fig. 9 presents average results for models trained and
tested on combined cyber-physical data. The 1D-CNN
achieves the highest average Fl-score of 80.33% when
trained only on the complex FDI attack.

o The results demonstrate that models achieve higher de-

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

10

tection performance against unseen attacks when trained
on complex attack data such as FDI. The simple de-
authentication attack patterns fail to properly generalize
the model’s ability to detect other unseen attacks.

e Models trained on physical-only features offered the
worst performance. On the other hand, models trained on
cyber-physical features outperformed the models trained
on cyber-only and physical-only features. Specifically, an
improvement of 1 — 4% is observed in the Fl score
across all models when trained on cyber-physical features
versus training on cyber-only features. Similar behavior
is consistent among all other metrics.

2) Range of Attack Training Data: The goal of this assess-
ment is to examine the model performance when the range
of attack data increases during the training. We consider two
cases. In the first case, models were trained on two attack
types, evil twin and FDI, and tested against all four attack
types. In the second case, the models were trained on three
attack types (evil twin, FDI, and replay) and tested on all
four attack types. The detection performance results are shown
in Fig. 10 and Fig. 11, for the two cases, respectively. The
following observation can be made:

e Fig. 10 shows the detection results when models are
trained on two attacks (evil twin and FDI attacks) and
tested on all four attacks. The results here are consistent
with those in Fig. 7 - Fig. 9 where the cyber models
outperform the physical models, and cyber-physical per-
formance was the best with 2 —4% improvement over the
cyber-only models. Again, the 1D-CNN model trained on
cyber-physical has the highest Fl-score i.e., 94.11%.

o Fig. 11 shows results when models are trained on the
dataset from three attacks (replay, evil twin, and FDI
attacks) and tested on all four attacks. It can be seen
clearly that cyber-physical models outperform cyber-only
and physical-only models, with an improvement of 1—3%
over the cyber-only models. The 1D-CNN model offers
the highest detection performance with 96.13% F1-score.

o It can be observed that expanding the range of attacks
during the training stage offers an improvement of 2—7%
in F1 score. Similar behavior is observed for all other
metrics. Systematically increasing the range of attacks in
the training data helps the model generalize and improves
the detection ability.

D. Discussions

The fusion of cyber and physical data provides a compre-
hensive representation of a UAV’s operational state. While
cyber data captures anomalies in communication patterns,
physical data reveals discrepancies in flight dynamics and
sudden changes in behavior such as roll, pitch, yaw angles,
acceleration, etc. By fusing these data streams, we construct a
detailed depiction of the UAV’s state across cyber and physical
domains. This fusion enables accurate detection of attacks that
might be missed when only one type of data is considered.

To improve the IDS generalization ability against unseen
attacks, the model should be trained on complex attack patterns
and a wide range of attacks.
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Fig. 8. Average detection performance for models trained on physical-only

. . - Fig. 10. Detection performance for models trained on two attacks and tested
features for the first scenario - complexity of attack training data.

on all four attacks. CP is cyber-physical.

V1. CONCLUSION AND FUTURE WORK FNN, LSTM-RNN, and 1D-CNN). We performed extensive

In this paper, we developed a testbed that involves a UAV, experiments and carried out two evaluation scenarios that
controller, computers, and antenna for data collection. The assessed the IDS performance for various attack complexity
testbed was used to create a practical published dataset that and range in the training data. Our experimental results demon-
contains both cyber and physical features of UAV operation strated that (a) cyber-physical fusion can improve the detection
under normal and cyber-attack conditions. The dataset was performance in both evaluation scenarios when compared
used to train and test machine learning-based IDSs (SVM, with models that are trained on cyber-only or physical-only
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Fig. 11. Detection performance for models trained on three attacks and tested
on all four attacks. CP is cyber-physical.

datasets, and (b) training IDS on a complex-wide range of
attacks helps improve its generalization ability against unseen
attacks that were not in the training set.

In our future work, we will incorporate more UAVs in the
system and investigate IDS for a swarm of UAVs.
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