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Abstract—Swarms of unmanned aerial vehicles (UAVs) are
widely adopted in civilian and military applications. However, this
cyber-physical system is threatened by cyber-attacks. Recently,
machine learning-based intrusion detection systems have been
successfully adopted to detect cyber-attacks. Yet, the following
questions remain unanswered: (a) Can the fusion of cyber and
physical features collected from the attacked UAV improve the
detection performance? (b) Can the fusion of cyber and physical
features collected from unattacked UAVs in the swarm help to
detect the attack? (c) Can the fusion of cyber and physical
features collected from all UAVs in the swarm (attacked and
unattacked) improve the detection performance? To answer the
aforementioned questions, and due to the absence of practical
datasets, we develop a preliminary testbed of two UAVs flying in
coordination. We launch a range of cyber-attacks on one of the
UAVs including false data injection (FDI), denial-of-service (DoS),
replay, and evil twin attacks. Then, we collect cyber and physical
features from the UAVs under normal operation and attack
conditions. Next, we develop a set of intrusion detection systems
based on shallow and deep machine learning models including
support vector machine (SVM), feedforward neural networks
(FNN), recurrent neural networks (RNN), and convolutional
neural networks (CNN). The developed models are trained using
cyber-only, physical-only, and cyber-physical features collected
from the attacked UAV, the unattacked UAV, and both UAVs
in the swarm. The extensive studies carried out herein provide
answers to the aforementioned questions and pave the way
toward effective intrusion detection systems in UAV swarms.

Index Terms—UAV swarms, cyber-attacks, machine learning,
and intrusion detection systems.

I. INTRODUCTION

Swarms of unmanned aerial vehicles (UAVs) have gained
tremendous attention in recent years due to their diverse civil-
ian and military applications. However, their wide adoption
presents a considerable challenge due to the required system-
atic approach to balancing operational needs and safety/se-
curity concerns. For example, an adversary could potentially
target UAV swarms causing them to malfunction and crash
in urban cities. As such, several ongoing efforts have been
taken to address UAV operational and security challenges. For
instance, NASA has developed an unmanned traffic manage-
ment (UTM) research platform that focuses on UAV operation
within and beyond visual line-of-sight. Furthermore, the U.S.
Department of Defense (DoD) is developing strategies to
secure the operation of multiple/swarms of autonomous UAVs
in hostile environments. Moreover, several research works
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focused on developing intrusion detection systems (IDSs) that
ensure secure operations of UAV swarms against cyber-attacks.
In the literature, several IDSs have been developed to detect
cyber-attacks such as denial-of-service (DoS) [1], false data
injection (FDI) [2], replay [3], hijacking [4], and spoofing
attacks [5]. However, one common aspect among existing
works is that they do not treat UAVs as cyber-physical systems,
and hence, base the IDS on either physical/behavioral features
(e.g., coordinates, speed, etc.) or cyber features (e.g., frame
and packet information). Specifically, UAVs are cyber-physical
systems that are equipped with sensors to collect measure-
ments, radio to receive command signals from a ground control
unit, and actuators to enforce physical behaviors. Hence, the
existing strategies do not portray a complete picture that cap-
tures the cyber and physical features of the UAV system, and
hence, the existing IDSs offer limited performance. Moreover,
when considering UAV swarms, the existing IDSs do not
exploit the coordination patterns within the swarm’s cyber and
physical data to enhance attack detection. In this context, the
following open questions require further investigation:

• Can the fusion of cyber and physical features collected
from attacked UAV improve the detection performance?

• Can cyber-physical fusion of features collected from
unattacked UAVs in the swarm help to detect the attack?

• Can the fusion of cyber and physical features collected
from all UAVs in the swarm (attacked and unattacked)
improve the detection performance?

Answering the aforementioned questions is challenged by
the fact that developing IDSs require datasets that reflect the
system operation in normal and attack conditions. However,
existing works do not provide access to cyber and physical
datasets for a single or swarm of UAVs. This calls for develop-
ing a testbed and designing a data collection methodology. In
addition, providing the IDS with numerous cyber and physical
features may confuse the model, and hence, deteriorates the
detection performance. This calls for a methodology to identify
the most effective cyber and physical features that can improve
detection performance. Finally, reaching a balance between
computational complexity and detection performance requires
exploring a wide range of detection strategies, optimizing their
structure, and comparing their performance.

Consequently, we have carried out the following:
• We developed a testbed that consists of two UAVs (UAV1

and UAV2), an access point, a controller, a network



adapter, and data collection tools. To imitate the attacker’s
behavior, we launched four types of attacks on UAV1,
namely, FDI, de-authentication DoS, replay, and evil twin
attacks. We collected cyber and physical features using
our testbed under both normal and attack conditions.

• We have investigated a range of IDSs using shallow and
deep machine learning models that include support vector
machines (SVM), feedforward neural networks (FNN),
recurrent neural networks (RNN) with long-short term
memory (LSTM) cells, and one-dimensional convolu-
tional neural networks (1D-CNN). To provide answers
to the aforementioned research questions, we explored
nine different cases for each model. Specifically, for
each model, we compare the development of IDS using
cyber-only, physical-only, and cyber-physical data from
UAV1 only, UAV2 only, and both UAVs. These cases are
referred to as UAV1-cyber, UAV1-physical, UAV1-fused,
UAV2-cyber, UAV2-physical, UAV2-fused, central-cyber,
central-physical, and central-fused.

• We performed Shapley additive explanations (SHAP)
analysis on the aforementioned models to identify the
most effective features in each case. Moreover, we opti-
mized the structure of each model by tuning their hyper-
parameters using a random grid search.

Our extensive studies carried out in this paper provide answers
to the aforementioned research questions and pave the way
toward effective IDSs in swarms of UAVs.

The rest of this paper is organized as follows. Section
II summarizes the related works and discusses their limita-
tions. Section III presents the testbed, cyber-attacks, and data
collection methodology. Section IV discusses the data pre-
processing, machine learning models, and feature selection
using SHAP analysis. Section V summarizes the experimental
results and provides answers to the research questions. Con-
clusions are made in Section VI.

II. RELATED WORKS

This section summarizes the related works in attack detec-
tion in UAVs. We categorize the existing strategies as model-
based and data-driven. We further classify data-driven IDSs
as cyber-based or physical-based. Finally, we highlight the
limitations of existing works to motivate our research.

A. Model-based IDSs

Zhao et al. [2] designed an FDI attack by solving an
optimization problem with a constraint on UAV’s energy and
developed a detection strategy using the subspace coding
theory. Xiao et al. [6] designed a sliding innovation sequences
detector to identify the attacks on the UAV’s sensor and
actuator. The detector calculates the norm of the normalized
innovation (residual) sequence within a time window and sub-
sequently initiates an alarm when the computed value exceeds
a predefined threshold. Mousavinejad et al. [7] designed two
ellipsoid sets namely, the prediction set and estimation set,
to detect replay and FDI attacks. Ye et al. [8] designed a

summation detector to detect cyber attacks on a UAV by
utilizing the summation of the innovations. Sedjelmaci et al.
[9] presented a threat estimation model that decides, using
estimated beliefs, the existence of threats within the system.

A common limitation with the aforementioned detectors is
that they require accurate models to design the alarm threshold,
which cannot be developed when certain system parameters
are unknown. As a result, data-driven/machine learning-based
attack detection methods have been adopted in recent years to
overcome this limitation.

B. Data-Driven IDSs

Lee et al. [10] trained a support vector regression model
and principle component analysis for anomaly detection in
UAVs. Abbaspour et al. [11] designed an adaptive neural
network to identify faults and detect FDI attacks on the UAV’s
sensor readings. Bozkut et al. [12] proposed a stochastic game
framework between the attacker and the controller interaction
and adopted linear temporal logic (LTL) to solve the planning
problem using a model-free reinforcement learning strategy.
Park et al. [13] designed stacked autoencoder to detect faults
in UAV states. Praveena et al. [14] used Black Widow opti-
mization to optimize reinforcement learning and designed a
deep belief network to detect cyber attacks. The designed IDS
in [14] is validated using the NSL-KDD Cup dataset, which
incorporates cyber features irrelevant to UAVs’ operation. All
these works have examined an operation of a single UAV to
develop an IDS model.

In a closely related work, Ahn et al. [15] presented a ma-
chine learning-based framework to detect abnormal behavior
in UAV swarms. The author utilized unsupervised learning
techniques and a deep neural network classifier, i.e., 1D-CNN,
to differentiate anomalies from normal behavior. However, the
author only used the physical data, i.e., features associated
with the UAV’s physical behavior, to train the IDS. Also,
[15] do not consider attacks conducted on the UAV swarm.
Khanapuri et al. [16] designed IDS using machine and deep
learning techniques to detect FDI attacks in a multi-UAVs
network. However, simulated datasets are used in [16] to train
the IDS. Ouiazzane et al. [17] proposed an IDS for a swarm
of UAVs operating in an ad-hoc communication network. A
decision tree algorithm is used in [17] following a supervised
learning approach. However, the IDS model in [17] was trained
using the CICIDS2017 Intrusion Detection Evaluation Dataset,
which includes only cyber features that are irrelevant to UAVs.

C. Summary and Limitations

Table I summarizes the related works. None of the existing
works investigated cyber-physical fusion to detect attacks on
UAVs. Instead, the existing works relied on either cyber or
physical data. Moreover, none of the existing works that
relied on cyber data involved real communication with an
actual UAV to obtain benign and malicious data samples.
Instead, all of the utilized datasets have been simulated or
obtained from publicly available datasets that are irrelevant
to UAVs. In addition, existing works have examined IDSs



TABLE I
SUMMARY OF THE RELATED WORKS

Ref. Year Attack Type UAVs Detection Mechanism Dataset
[2] 2020 FDI Single Subspace coding theory Model-based IDS
[6] 2022 FDI/DoS Single Sliding Innovation-Based Technique Model-based IDS
[7] 2018 Replay/FDI Single Ellipsoidal filtering Model-based IDS
[8] 2019 FDI Single Summation Detector Model-based IDS
[9] 2016 FDI/DoS Single Estimation Belief approach Model-based IDS
[10] 2019 Faults Single SVR with PCN Actual Physical
[11] 2016 Faults Single Adaptive Neural Network Simulated Physical
[12] 2021 FDI Single Model-free RL Simulated Physical
[13] 2021 Faults Single Stacked Autoencoder Actual Physical
[14] 2022 DoS Single Reinforcement Learning Irrelevant Cyber
[15] 2019 Faults Swarm Convolutional neural network Actual Physical
[16] 2022 FDI Swarm Fully Connected DNN Simulated Physical
[17] 2020 Faults Swarm Decision Tree Irrelevant Cyber

against either FDI or DoS attacks [10]–[12], [16]. Further-
more, the existing works that investigate the swarm of UAVs
have not investigated whether using cyber and/or physical
data from attacked and/or unattacked UAVs would help in
detecting cyber-attacks. Hence, the existing literature lacks
a comprehensive investigation on the resilience of machine
learning-based attack detection strategies against a diverse set
of cyber-attacks considering both cyber and physical features
within a multi-UAV network (a swarm of UAVs).

III. TESTBED AND DATA COLLECTION

This section discusses the data generation methodology.
As aforementioned, there is no publicly available dataset that
includes both cyber and physical features collected from a
swarm of UAVs under normal operation and attack conditions.
Hence, we discuss herein the development of a testbed and its
usage to collect benign and malicious datasets.

A. Testbed Setup

The testbed setup includes the following equipment: Two
DJI Tello EDU drones [18], Sagemcom SAC2V2s WiFi access
point [19], ALFA AWUS036ACH network adapter (antenna)
[20], and two computers. The architecture of the testbed is
shown in Fig. 1 and its components are detailed next:

• Computer-1 mimics a ground station that is used to
monitor and control the swarm of UAVs. This computer
has a number of Python scripts that are used to connect
the legitimate operator to the UAVs, pass commands, and
receive telemetry physical/behavioral data of the UAVs.

• The WiFi access point establishes a connection between
the ground controller (Computer-1) and the two UAVs to
provide smooth communication and control.

• Computer-2 along with the ALFA AWUS036ACH an-
tenna have dual roles. This computer is running Kali
Linux that runs software such as Aircrack-ng, Tcpdump,
and Wireshark. First, Computer-2 and the antenna are
used to collect the cyber features when operating in the
monitoring mode. Also, Computer-2 and the antenna can
mimic the attacker and launch cyber-attacks on UAV1.

Access Point
192.168.1.1

Controller
(Computer-1)
192.168.1.28

Attacker
(Computer-2 +

Antenna Adapter)

UAV1
192.168.1.70

UAV2
192.168.1.178

Fig. 1. Illustration of the testbed under consideration.

The data collection process was executed in two phases.
The first involved UAV flights under normal operation, which
constructed the benign cyber-physical dataset. The second
phase included UAV flights when UAV1 is under attack, hence,
constructing the malicious cyber-physical dataset. The follow-
ing subsections describe the data collection methodology.

B. Benign Data Collection

The benign data collection phase starts with the initiation
of flight by the Tello EDU drones. The controller (Computer-
1) begins to establish communication with the UAVs through
the access point, thereby receiving physical measurement
data. This data includes a range of sensor readings, such as
Inertial Measurement Units (IMU), thermometers, Time-of-
Flight (ToF) sensors, and barometers, among others. These
readings constitute the physical features of the UAVs.

Simultaneously, a second computer (Computer-2) equipped
with Kali Linux and an Alfa adapter operates in the monitoring
mode. This configuration enables the capture and analysis
of the WiFi traffic between the Tello EDU drones, access
points, and the controller (Computer-1), using the Airodump-
ng tool. This tool captures the WiFi traffic and identifies the



access points and their Basic Service Set Identifier (BSSID).
From each BSSID, various characteristics are collected such
as the channel, authentication protocol, encryption algorithms,
cipher, and the Extended Service Set Identification (ESSID).
Also, numerous cyber features are collected from the UAVs.

To collect the cyber and physical datasets, several flight
missions of varying complexity were conducted. These include
back-and-forth missions, square missions, search missions,
spiral missions, and rectangle missions. The data collection
exercise involved 20 benign flights, in addition to 20 flights
where UAV1 was attacked, totaling 40 flights. Hence, 8 flights
were conducted for each mission, half under normal operating
conditions and half under attack.

C. Malicious Data Collection

In this subsection, we discuss various cyber-attacks that
were launched on UAV1. The collected cyber and physical
datasets from UAV1 and UAV2 during this stage constitute
the malicious dataset.

1) De-authentication Attack: We used the Aircrack-ng
software suite and Wireshark to execute the attack. To ini-
tiate the attack, we first put the ALFA network adapter
into monitor mode using the command airmon-ng start
wlan0, where wlan0 represents the wireless interface. In the
monitor mode, the network adapter captures all the traffic
over the wireless network. Subsequently, we execute sudo
airodump-ng wlan0 command to list all the wireless net-
works, including their BSSIDs (MAC addresses), SSID, signal
strength, channel numbers, and the number of sent data pack-
ets. Once we identified the network of the target UAV (UAV1),
we used the command aireplay-ng --deauth 100
-a [AP mac] -c [target mac] wlan0 to send de-
authentication packets to the target (UAV1). In this command,
100 is the number of de-authentication packets, AP mac is the
MAC address of the access point that the Tello is connected
to, and target mac is the MAC address of the target UAV.
Executing this attack, the target Tello (UAV1) does not receive
commands from the controller (Computer-1), causing it to
hover in place until the connection is re-established.

2) Replay attack: We use the same software suite to launch
this attack. The first step is to capture the packets transmitted
between the target (UAV1) and the controller (Computer-1).
So, we put the ALFA network adapter into monitor mode
using the command airmon-ng start wlan0 and initi-
ate the capturing process with the command airodump-ng
wlan0. During this phase, we ensure that the target UAV is
active and receiving commands from the controller. The goal
is to capture the legitimate commands between the controller
and the target UAV for future replay. We save the captured
packets into a PCAP file and use the Wireshark filter to ex-
amine and separate the target UAV1 command packets. Using
the Aireplay-ng, we executed the command aireplay-ng
--inject replay -r capture.pcap wlan0, where
replay refers to the replay mode and capture.pcap is the PCAP
file containing the captured packets. This command replays the

captured packets, fooling the target UAV into executing the
commands again. By replaying command packets, the target
UAV showed abnormal behavior and was not able to pursue
its normal mission.

3) Evil Twin Attack: We used the Aircrack-ng and Airged-
don tool kits to execute the attack. The first step in this attack
is to establish an Evil Twin access point by creating a rogue
WiFi network that mimics the legitimate Service Set Identifier
(SSID) of the target UAV network. To obtain the SSID,
we executed the command sudo airodump-ng wlan0,
where wlan0 is the network interface in monitor mode. This
command lists the BSSIDs (MAC addresses), SSID, etc. After
acquiring the legitimate SSID, we create an Evil Twin access
point using the Airgeddon interface. Airgeddon is a suite
of tools that automates the process by setting up a new
rogue access point with the same SSID as the targeted UAV
network. To ensure that the targeted UAV (UAV1) connects
to our rogue network, we need to make our signal stronger
than the legitimate network’s signal. For this purpose, we
employed the command iwconfig wlan0 txpower 30,
which sets the transmission power of our network adapter
to 30 dBm. Additionally, we carried out a de-authentication
attack on the target UAV for a short duration to disconnect it
from the legitimate access point, which results in a connection
to our rogue network. Once the target UAV connects to our
rogue access point, it becomes a victim of a man-in-the-middle
(MitM) attack. It allows monitoring, intercepting, stealing, or
manipulating the legitimate data.

4) False Data Injection Attack: We used the Aircrack-ng
suite, Scapy, and custom Python scripts in the execution of
this attack. To inject stealthy readings and commands, we
calculated the state-space matrices (A,B,C) of UAV1 using
Dynamic Mode Decomposition (DMD) and Matlab’s System
Identification Toolbox. We focused on three states of the UAV,
namely, roll, pitch, and yaw. Next, we implemented a custom
Python script to design stealthy attack vectors. Specifically,
we modified the roll, pitch, and yaw measurements according
to the equation y = y + γ, where y represents the original
sensor measurement and γ is the attack vector for sensor
measurements. Similarly, we modified the control signal using
u = u + η, where u represents the original control signal
and η represents the attack vector for a control signal. We
calculated stealthy attack vectors γ and η and the state-space
matrices (A,B,C) such that the residual error is minimized.
To inject the false data, we created a Python script using the
Scapy library to craft and send the necessary packets to the
UAV’s IP address and controller port, namely, 192.168.1.70
and 8890, respectively. As a result, the target UAV received
false readings, leading to incorrect state estimations, and
consequently, improper control actions. The drone’s behavior
became irregular, and it failed to maintain its position within
the swarm.

IV. DESIGNING INTRUSION DETECTION SYSTEM

In this section, we develop IDSs for a swarm of UAVs. First,
we discuss the pre-processing of the data. Then, we discuss



the machine learning models, hyper-parameter optimization,
and feature selection using SHAP analysis.

A. Data Pre-processing

As aforementioned, we collected cyber and physical features
for various missions under normal operations and cyber-
attacks. The recorded data samples were asynchronous as both
features were received at different rates, making fusing them
challenging. To address this issue, we interpolate the lower-
rate data points according to the timestamp of the higher-rate
data points. Initially, we recorded the cyber data in PCAP files,
filter the data between each UAV, access point, and controller,
and export them to JSON format. These JSON data files are
then linked to their respective UAV’s physical data files via the
UAV’s IP address. The physical data files were recorded at the
controller and stored in CSV files. Next, we extracted the cyber
features from the JSON files using a custom Python script
that integrates them into pandas’ data frames. Concurrently,
physical features are also incorporated into the pandas’ data
frames. We extracted a total of 40 cyber features and 20
physical features, which are listed in Table II.

In the following, we provide a brief explanation for
each feature listed in Table II. For the 40 cyber features:
frame.number represents the sequential number of each cap-
tured frame, frame.len length of the captured frame in bytes,
frame.protocols indicate the protocols of the transmission of
the frame, wlan.duration is the time to be transmitted, whereas
wlan.ra, wlan.ta, wlan.da, and wlan.sa represent the receiver,
transmitter, destination, and source MAC addresses, respec-
tively, wlan.bssid is the Basic Service Set Identifier, i.e., MAC
address of the Access Point, wlan.frag is the fragment number,
wlan.seq is the sequence number for packets, wlan.fc.type and
wlan.fc.subtype refer to the type and subtype of the frame
control field, wlan.flags indicates the status flags, wlan.fcs
stands for the frame-checking sequence, ip.len is a IP packet’s
length, whereas udp.length is the length of the User Datagram
Protocol data, data.len is the length of the actual data being
transmitted, signal strength (dbm) is the signal strength, ip.id
is the identification field of the IP header, wlan radio.noise
(dbm), wlan radio.SNR (db), and wlan radio.preamble are
all linked with radio data and indicate noise in decibels
milliwatts, Signal-to-Noise Ratio, and the preamble of the
radio frame, respectively, ip.src and ip.dst indicate the source
and destination IP addresses, respectively, wlan.fcs indicates
frame checking sequence, wlan.fcs.status shows status in-
dicating if errors detected, wlan.qos, wlan.qos.priority, and
wlan.qos.ack all concern the quality-of-service and its priority
and acknowledgment, wlan.ccmp.extiv is a counter mode
with cipher block chaining message authentication code pro-
tocol (ccmp) extended initialization vector, wlan.wep.key is
a wired equivalent privacy (wep) security protocol, radio-
tap.hdr length is header length and radiotap.antenna signal
is the signal strength, radiotap.signal quality shows signal
quality, radiotap.channel.flags.ofdm is for the Orthogonal
Frequency-Division Multiplexing, radiotap.channel.flags.cck

is a complementary code keying (a modulation scheme),
wlan radio.datarate and wlan radio.frequency are the rate and
frequency at which data is being transmitted. For the 20
physical features: x, y, and z represent the UAV’s position
coordinates, pitch, roll, and yaw denote the UAV’s orientation,
x speed (vgx), y speed (vgy), and z speed (vgz) indicate the
speed along the x, y, and z axes, respectively, templ and temph
are the low and high temperatures of the main board in celsius,
tof is the time-of-flight, h is the height relative to the take-
off position, the barometer shows the height measured by the
barometer, agx, agy, and agz show the acceleration along x,
y, z axis, respectively. The timestamp c and timestamp p are
the collected cyber and physical data timestamps, respectively.

TABLE II
RAW EXTRACTED CYBER AND PHYSICAL FEATURES

Cyber Cyber Physical
frame.number ip.id timestamp p

frame.len wlan radio.noise (dbm) x
frame.protocols wlan radio.SNR (db) y
wlan.duration wlan radio.preamble z

wlan.ra ip.src pitch
wlan.ta ip.dst roll
wlan.da wlan.fcs yaw
wlan.sa wlan.fcs.status x speed (vgx)

wlan.bssid wlan.qos y speed (vgy)
wlan.frag wlan.qos.priority z speed (vgz)
wlan.seq wlan.qos.ack templ

wlan.fc.type wlan.ccmp.extiv temph
wlan.fc.subtype wlan.wep.key tof

wlan.flags radiotap.hdr length height
wlan.fcs len radiotap.antenna signal battery

ip.len radiotap.signal quality barometer
udp.length radiotap.channel.flags.ofdm flight time

data.len radiotap.channel.flags.cck agx (cm/s2)
timestamp c wlan radio.datarate agy (cm/s2)

signal strength (dbm) wlan radio.frequency agz (cm/s2)

To synchronize the cyber and physical features, a ratio
is calculated between the cyber and physical data frames.
This enables us to assign an equivalent interval to interpolate
the data within the low-rate data points (physical data) to
synchronize them with the high-rate data points (cyber data).
As a result of this synchronization process, some samples in
the high-rate data (cyber) towards the end of the flight were
discarded as no corresponding physical data were recorded.
The fused cyber-physical data was then standardized utilizing
a Min-Max scaler, labeled as either benign or attacked, stored
in a data frame list, and the process is repeated for the next
consecutive data files. We compiled a total of 160 data files,
80 benign and 80 malicious data files. These are cyber and
physical data files for both UAVs under normal and attacked
conditions. The number of data samples for cyber, physical,
and cyber-physical (fused) features for each UAV and the
combined (central) features are summarized in Table III.

We would like to highlight that some of the collected
features were not contributing to the learning process of
the machine learning models, and instead, were increasing
their complexity. Hence, we removed these features while
training the models, which include the battery, barometer,
frame.number, wlan.bssid, and the cyber and physical times-



tamps. We used a 3 : 1 train to test split ratio for the datasets
and 5-fold cross-validation within the train set.

TABLE III
SIZE OF DATA POINTS/SAMPLES FOR EACH DATASET

Datasets Cyber Samples Physical Samples Fused Samples
UAV1 71, 352 31, 895 65, 802
UAV2 34, 382 22, 035 30, 242
Central 105, 734 53, 930 96, 044

TABLE IV
INVESTIGATED IDS STRATEGIES

Datasets Cyber Physical Fused
UAV1 UAV1 cyber UAV1 physical UAV1 fused
UAV2 UAV2 cyber UAV2 physical UAV2 fused
Central Central cyber Central physical Central fused

B. Investigated Models for IDSs

To develop an effective IDS, a range of machine-learning
models have been investigated including shallow and deep
models and temporal and non-temporal models. The inves-
tigated models are summarized next.

1) Shallow Models: An SVM model is adopted herein.
It represents a supervised model that is trained and tested
on benign and malicious data. Also, it is a non-temporal
model that does not exploit the temporal correlation within
the collected cyber and physical time-series data.

2) Deep Models: These are based on stacked neural net-
works that are capable of learning complex patterns embedded
in the data. They represent supervised models that are trained
and tested on benign and malicious data.

a) FNN: This model stacks dense hidden layers that
process data in a feedforward manner, i.e., it does not leverage
the temporal correlation present in the time-series data.

b) LSTM-RNN: This model is based on the LSTM vari-
ant of the RNN. It is enriched with feedback connections that
enable the model to capture temporal correlations within the
time-series data. The LSTM cells overcome the vanishing-
exploding gradient problem of the RNN by retaining values
over specific time intervals, controlled by input, output, and
forget gates that manage the information flow.

c) 1D-CNN: This model also captures the temporal cor-
relation within the time-series data using convolutional filters
traversing through the sequential data.

Overall, we investigated 9 IDS strategies for each of
the aforementioned models. Each strategy relies on specific
datasets, which are summarized in Table IV. Specifically,
cyber-only models are trained and tested using only the
collected cyber features. These include UAV1 cyber models
trained and tested using cyber features from the attacked
UAV1, UAV2 cyber models trained and tested using cyber
features from the unattacked UAV2, and central cyber models
trained and tested using cyber features from the attacked UAV1
and unattacked UAV2. Similarly, the physical-only models are
trained and tested using only the collected physical features.
Finally, the fused (cyber-physical) models are trained and

TABLE V
OPTIMAL HYPER-PARAMETERS

Detector H UAV1
Cyber

UAV1
Physical

UAV1
Fused

Central
Fused

SVM
C 5 8 10 10
G 0.1 0.25 0.4 0.2
K Linear Linear Linear Poly

FNN

L 4 4 5 5
N 128 128 256 256
D 0.2 0 0.5 0.5
O Adam Adam Adam Adam
A ReLu tanh tanh tanh

LSTM

L 3 3 5 5
N 256 256 256 512
D 0.5 0.7 0.7 0.8
O Adam Adam Adam Adam
A ReLu ReLu ReLu ReLu
W glorot glorot glorot he-uniform

1D-CNN

L 2 2 2 2
N 64 64 128 128
D 0.5 0.5 0.8 0.5
O Adam Adam Adam Adam
A tanh tanh tanh ReLu
S 3 3 3 5

tested using both the cyber and physical features. One can
think of the UAV1 and UAV2 models as IDSs deployed on
the UAV while the central models as IDSs deployed at the
ground controller (Computer-1).

C. Optimal Hyper-parameters

In order to optimize the structure of the aforementioned
models, we executed a sequential grid search to fine-tune each
model’s hyper-parameters. The optimal hyper-parameters H
offering the highest detection rate during the validation phase
were selected. These optimal hyper-parameter values were
selected from a predefined search space P as follows: Number
of layer L = {2, 3, 4, 5, 6, 7, 8}, number of neurons/cells
N = {64, 128, 256, 512}, dropout rate D = {0, 0.4, 0.6, 0.8},
optimizer O = {adam, SGD, Adamax}, and activation function
A = {ReLu, tanh, Sigmoid, softmax}, and weight initialization
W = {he uniform, glorot uniform, glorot normal}. Table
IV-C lists the optimal hyper-parameters of some detection
strategies. For the rest of the strategies, the hyper-parameters
remain the same with slightly different weight initialization.
For 1D-CNN, S is the kernel size of the convolutional layers,
with a max-pooling layer with a pool size of 2. In the case of
LSTM, we also included the l1 and l2 regularization layer with
an l1 = 0.0001 and l2 = 0.001. Exponential learning with a
rate of 0.0001 is adopted for the Adam optimizer. For SVM,
C is the regularization, G is gamma, and K is the kernel.

D. SHAP Analysis

In addition to the grid search, we perform SHAP analy-
sis for each detection strategy. SHAP analysis uses game-
theoretically optimal Shapley values to interpret the decision-
making process of various machine learning models. We use
SHAP as a feature selection mechanism, to select the most
significant features and neglect the less important features for
each developed detection model.



Fig. 2. Top SHAP values for SVM model trained on central fused dataset

V. EXPERIMENTAL RESULTS

This section outlines the detection performance of the IDSs.
For each machine learning model (SVM, FNN, LSTM, and
CNN), nine versions are trained and tested. These versions in-
clude models trained on cyber-only, physical-only, and cyber-
physical (fused) datasets for each UAV and central node, as
described in Table IV. First, we show sample results of the
SHAP analysis to specify the most effective features. Next, we
present sample learning curves to study the learning process.
Finally, we compare the detection performance metrics across
the developed models to answer the research questions.

A. Evaluation Metrics

The IDS performance is described in terms of accuracy,
precision, recall, F1 score, and area under the curve (AUC)
of the receiver operating characteristics (ROC). Accuracy
describes the percentage of samples that have been classified
correctly, which is given by

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. On the other hand, precision
specifies the proportion of correctly identified positive samples
out of the total predicted positives, which is given by

Precision =
TP

TP + FP
. (2)

Furthermore, recall shows the proportion of accurately identi-
fied positive samples out of all actual positive samples, which
is expressed as

Recall =
TP

TP + FN
. (3)

In scenarios with imbalanced data distributions, the precision
and recall metrics provide more valuable insights compared to

Fig. 3. Top SHAP values for CNN model trained on central fused dataset

accuracy. The F1 score harmonizes precision and recall met-
rics, providing an effective analytical measure. It is calculated
as the harmonic mean of Precision and Recall, as follows

F1 = 2× Precision × Recall
Precision + Recall

. (4)

B. Result of the SHAP Analysis

We perform the SHAP analysis for each model using
100 random samples across all datasets and calculated their
respective SHAP values. Due to space limitation, we are
showing the SHAP values for the shallow model (SVM) and
one of the best deep models (CNN) across the central fused
dataset in Fig. 2 and Fig. 3. We show only the top 20 cyber and
physical features which affected the models’ performance the
most. The most effective cyber and physical features obtained
from the SHAP analysis are those that are used in the final
training and testing of the IDS models, whose performance
results are summarized next.

C. Learning Curves

The learning curves show the F1-score for each model
evaluated on training and validation datasets. These are used
to ensure that models are not under or over-fitted. In total,
we have 36 learning curves, and due to space limitations, we
show only the learning curves for one of the best deep models,
namely, the LSTM-RNN trained on cyber-only, physical-only,
and cyber-physical (fused) data of the central access point (i.e.,
combining datasets from both attacked UAV1 and unattacked
UAV2). Using the features specified by SHAP analysis and
the optimal hyper-parameters specified by the grid search, we
can see that the behavior of the F1 score on the training and
validation data shows the model’s learning and generalization
abilities. It should be noted that we adopted the patience 10
strategy, i.e., the model training was stopped if the validation
loss stay less than 0.01 for the consecutive 10 epochs.



D. Performance Results and Discussions
The performance results are shown in Fig. 5, Fig. 6, and

Fig. 7. The following observations can be made:
• Overall, deep learning-based detection models (i.e., FNN,

LSTM-RNN, and CNN) offer better detection perfor-
mance compared with the shallow detection model (i.e.,
SVM). Moreover, IDS models that exploit the correlation
within the data (i.e., LSTM-RNN and CNN) offer better
detection results compared with the other models (i.e.,
SVM and FNN). The improvement in detection perfor-
mance is significant, up to 5−13% in the F1 score when
cyber features are considered (Fig. 5), up to 12− 16% in
the F1 score when physical features are considered (Fig.
6), and up to 6−9% in the F1 score when cyber-physical
features are considered (Fig. 7).

• The considered attacks can be detected using cyber data
or physical data. However, better detection results are
attained when cyber data are considered. Comparing Fig.
5 with Fig. 6, we can see that physical features can detect
attacks with F1 scores up to the level of 83% while cyber
features can detect attacks with F1 score up to the level of
94%. Hence, cyber features offer an improvement in the
F1 score up to 11% compared with the physical features.

• Observing features from the unattacked UAV (UAV2) is
useful in detecting the attack on UAV1. For instance, the
F1 score for detecting an attack on UAV1 by observing
cyber and physical features from UAV2 is up to 85% and
79%, respectively. While these values are 7% and 2% less
than observing corresponding features from the attacked
UAV1, the detection performance based on features from
UAV2 is high. This detection is possible because the two
UAVs achieve their missions in coordination, and hence
when one UAV is attacked (UAV1), this reflects on the
physical and cyber behavior of the other unattacked UAV
(UAV2). This is useful in case the attacker tampers the
IDS on UAV1 so it does not flag an alarm, the unattacked
UAV2 still can detect and report this attack on UAV1.

From Fig. 5 and Fig. 6, we observe that cyber features
outperform physical features in detection performance. Also,
we observe that features collected from UAV1 outperform fea-
tures collected from UAV2 in detection performance. Hence,
if no fusion is considered, cyber features from UAV1 offer the
best detection performance. So, we compare in Table VI the
percentage improvement in the detection performance of IDSs
based on fused models compared with IDS models based on
cyber-only features from UAV1. The considered fused models
are cyber-physical fusion from UAV1, fusing cyber features
from UAV1 and UAV2 in the central node (ground controller),
and fusing cyber-physical features from UAV1 and UAV2 in
the central node. The following observations can be made:

• Fusing the cyber features from UAV1 and UAV2 at the
central node offers 2.6% improvement in the F1 score.
This is because the IDS considers not only the patterns
from individual UAVs but also the coordination carried
out between the two UAVs while making its decision.

(a)

(b)

(c)

Fig. 4. Learning curves for the LSTM model trained on (a) Central cyber,
(b) Central physical, and (b) Central fused datasets.

• Cyber-physical fusion helps to improve detection perfor-
mance. This is because UAVs are cyber-physical systems,
and hence, observing features from both domains (cyber
and physical) provides a complete picture of the system
and results in improved detection results. Considering
cyber-physical fusion only from UAV1 leads to improve-
ment up to 2% in the F1 score (with absolute detection
performance up to 94.5% in the F1 score in Fig. 7). The
improvement is up to 4% when fusing cyber and physical
features at the central node (with absolute detection
performance up to 96.3% in the F1 score in Fig. 7).

VI. CONCLUSIONS

In this paper, we investigated the problem of designing IDS
for a UAV swarm that can detect FDI, DoS, replay, and evil
twin attacks. The considered system involved two UAVs with
only one UAV under attack. The following conclusions can be
made: (a) the fusion of cyber and physical features collected
from the attacked UAV improves the detection performance
up to 2% in the F1 score, (b) the fusion of cyber and physical
features collected from the unattacked UAV offers a high
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Fig. 5. Detection Performance of IDS (a) UAV1 cyber, (b) UAV2 cyber, (c)
Central cyber.
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Fig. 6. Detection Performance of IDS (a) UAV1 physical, (b) UAV2 physical,
(c) Central physical.
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Fig. 7. Detection Performance of IDS (a) UAV1 fused, (b) UAV2 fused, (c)
Central fused.

detection performance with an F1 score up to 87.4%, (c) the
fusion of cyber and physical features from both UAVs at the
ground control station offers the best detection performance
with an F1 score of 96.3%.
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