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The nature of Precambrian metamorphic basement rocks and overall tectonic evolution of the Qaidam block in
northern Tibet remains debated despite being important to understanding the assembly of Asia. Paleogeographic
reconstructions of Precambrian supercontinents rarely consider Phanerozoic tectonic modification of its con-
stituent Precambrian blocks. This issue is particularly relevant for the Qaidam block and its neighboring crustal
fragments, which experienced significant Phanerozoic overprinting from multiple tectonic episodes. To address
this problem, we systematically reviewed key geological observations and regional datasets related to Protero-
zoic magmatism, metamorphism, and sedimentation of major Precambrian blocks in China. This synthesis
provided new constraints on the Proterozoic tectonic evolution of the Qaidam block, including paleogeographic
supercontinent configurations and nature of multiple continental-drift-collision events. New results of field
mapping, geochronological, and geochemical analyses allow us to divide the Precambrian rocks of the Qaidam
block into four divisions: (1) Paleoproterozoic gneiss and schist; (2) Meso- and (3) Neoproterozoic metasedi-
mentary rocks; and (4) Proterozoic intrusions. We propose that the Qaidam block was part of a “Greater North
China” block, which experienced early Paleoproterozoic post-collisional extension and continental collision
along the Paleoproterozoic Northern Margin orogen to form the Columbia-Nuna supercontinent. The Greater
North China block subsequently experienced Mesoproterozoic extension related to supercontinent breakup. In
addition, we propose that the Greater North China block was affixed to the western margin of Laurentia and
Siberia as part of Rodinia in the Neoproterozoic, rifted in the late Neoproterozoic, and drifted in the early
Paleozoic as a series of microcontinents.

1. Introduction

The nature and spatiotemporal evolution of the earliest supercon-

configurations of their constituent crustal fragments and orogens. A key
lasting issue in the paleogeographic reconstructions of these supercon-
tinents is the effect(s) of Phanerozoic tectonic modification on the

tinent cycles remain inadequately understood and may help elucidate
the oldest forms of tectonics in Earth’s history (e.g., Zhang et al., 2012a;
Kusky et al., 2018; Brenner et al., 2020; Brown et al., 2020; Keller and
Harrison, 2020; Korenaga, 2020; Mitchell et al., 2021; Windley et al.,
2021). Although existing models of the Paleoproterozoic Columbia-
Nuna (Rogers and Santosh, 2002; Zhao et al., 2002; Meert, 2012) and
Neoproterozoic Rodinia (Valentine and Moores, 1970; Li et al., 2008a;
Cawood et al., 2010, 2016) supercontinents have been systematically
tested and refined over the past decades, debate persists regarding the
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original shape of their Precambrian continents (e.g., Zuza and Yin, 2017;
Sengor et al., 2022). To address this problem, classical geological
methods and tests of rock correlation can be employed. This problem is
particularly relevant for the Qaidam block of northern Tibet and its
neighboring Precambrian continents (i.e., North China craton, Tarim
craton, and South China block), which have experienced significant
overprinting by post-Rodinia tectonics (e.g., Yin and Harrison, 2000; Lu,
2002; Gehrels et al., 2011; Zhao and Cawood, 2012; Chen et al., 2012;
Zuza and Yin, 2017; Wu et al., 2022a). Specifically, the Qaidam block

Received 24 May 2024; Received in revised form 6 September 2024; Accepted 5 November 2024

Available online 9 November 2024

0012-8252/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.



C. Wuetal

experienced early Neoproterozoic subduction, late Neoproterozoic
continental rifting, Paleozoic to early Mesozoic subduction and conti-
nental collision, Mesozoic extension, and Cenozoic intracontinental
deformation induced by the India-Asia collision (e.g., Yin and Harrison,
2000; Wu et al., 2016). The present-day Qaidam block is covered by a
thick Cenozoic sedimentary succession of the Qaidam Basin, which was
deposited during uplift and erosion of the Qilian Shan to the north,
Eastern Kunlun Range to the south, and Altyn Tagh Range to the west (e.
g., Yin et al., 2008a, 2008b).

Understanding the Precambrian evolution of the Qaidam block has
two fundamental implications: (1) its rock correlations with other con-
tinental fragments provide important constraints for paleogeographic
reconstruction of Asia and global supercontinents; and (2) its deforma-
tion and metamorphic histories provide an observational basis for
regional paleotectonic events. However, there is no consensus regarding
the nature of metamorphic basement rocks of the Qaidam block. This
problem is exemplified by the three existing interpretations of correla-
tion with the Tarim craton, North China craton, and South China block,
which are mainly based on the extrapolation of local geological re-
lationships to adjacent continental fragments. To clarify this issue and
provide a new foundation for studying the Proterozoic tectonic evolu-
tion of the Qaidam block, we examined the Precambrian geology of the
block and its adjacent cratons by combining geological mapping,
geochronology, and geochemical analyses with existing tectonostrati-
graphic, magmatic, and metamorphic records. By removing the effects
of Phanerozoic tectonic modification, we present a new paleogeographic
reconstruction of central Asian Precambrian cratons in the context of
global supercontinents.

2. Major Precambrian blocks of China

The four major Precambrian blocks of China include the North
China, Tarim, South China, and Qaidam blocks (e.g., Zhao and Cawood,
2012). The North China craton is separated from the South China block
by the Qinling-Dabie-Sulu orogen (Fig. 1). In the following sections, we
summarize and compare the rock assemblages, tectonothermal events,
and published ages among these Precambrian blocks.

2.1. North China craton

The North China craton consists of Archean-Paleoproterozoic
metamorphic basement rocks overlain by Meso- and Neoproterozoic,
unmetamorphosed to weakly metamorphosed cover sequences (e.g.,
Zhao et al., 2005; Kroner et al., 2005, 2006; Faure et al., 2007; Zhai
et al., 1993, 2010; Zhai and Santosh, 2011; Zhao and Zhai, 2013; Wan
et al., 2013; Zhang et al., 2014a; Kusky et al., 2016). The North China
craton is traditionally divided into the Archean Eastern and Western
blocks, separated by the ~1,600-km-long, northeast-striking, late
Archean Central Orogenic Belt (Fig. 1A), also known as the Paleo-
proterozoic Trans-North China Orogen in the tectonic models of Zhao
etal. (2001, 2005), Trap et al. (2012), and other papers. However, some
researchers have interpreted that the Archean North China craton
formed via the amalgamation of at least six microcontinents along
Neoarchean greenstone belts (e.g., Zhai and Santosh, 2011; Zhai et al.,
2021). The Paleoproterozoic Northern Margin orogen occurs along the
northern margin of the North China craton (Fig. 1A), also known as the
Inner Mongolia-Northern Hebei orogen of Kusky et al. (2016), and
consists of the ca. 1.9-1.88 Ga Bayan Obo mélange, Yinshan block, and
northern “Khondalite series” (e.g., Kusky et al., 2016; Wu et al., 2018,
2022a, 2023). The western continuation of the Paleoproterozoic
Northern Margin orogen is the Alxa block. Numerous ca. 1.9-1.78 Ga,
high-grade metamorphic rocks occur along the Northern Margin orogen.
All high-pressure granulites are interpreted to have experienced ca.
1.91-1.8 Ga clockwise P-T paths related to continent-continent collision
(e.g., Zhai, 2011, 2014; Zhai et al., 1993; Guo et al., 2015; Zhang et al.,
2022a, 2022b; Zhao et al., 2008; Wan et al., 2009). Ca. 1.93-1.91 Ga,
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(ultra-)high-temperature metamorphic rocks in the Northern Margin
orogen are interpreted to have been generated during subduction of a
spreading ridge (e.g., Peng et al., 2010; Guo et al., 2012) (Fig. 1B).

The Paleo-Neoproterozoic unmetamorphosed rock assemblages of
the North China craton include: (1) sedimentary rocks of the Chang-
cheng, Jixian, and Qingbaikou groups that were deposited between ca.
1.8-1.4 Ga, ca. 1.4-1 Ga, and ca. 1.0-0.78 Ga, respectively; (2) ca.
1.78-1.75 Ga volcanic rocks of the Xiong’er Group and minor ca. 1.45
Gaintrusions (Zhao et al., 2002, 2004; Peng et al., 2008; He et al., 2009);
(3) ca. 1.8-1.63 Ga mafic dyke swarms emplaced mainly in the central
part of the craton (Peng et al., 2022); (4) a ca. 1.74-1.62 Ga anortho-
site-mangerite-alkaline granite-rapakivi granite suite emplaced in the
central and eastern portions of the craton (Zhang et al., 2007a); (5) ca.
1.85-1.0 Ga sedimentary rocks of the Zhaertai, Bayan Obo, and Huade
groups along the northern margin of the craton (Liu et al., 2020a); and
(6) ca. 1.35-1.31 Ga Yanliao diabase sills in the northeastern craton
(Zhang et al., 2009a). Several researchers have proposed the develop-
ment of late Paleoproterozoic—early Neoproterozoic rifts in the North
China craton, including the Late Palaeoproterozoic Xiong’er rift zone in
the south, Mesoproterozoic Yanliao rift zone in the east, and Late
Palaeoproterozoic-Neoproterozoic Zha’ertai-Bayan Obo-Huade rift
zone in the northwest (e.g., Lu et al., 2002; Zhang et al., 2009a, 2017a; Li
et al., 2013a; Peng et al., 2014; Zhou et al., 2018; Liu et al., 2020a).

Magmatism in the Eastern Block of the North China craton peaked
ca. 2.7 Ga and ca. 3.3 Ga, whereas magmatism in the Western Block of
the craton peaked ca. 1.9 Ga (e.g., Wan et al., 2015). Wu et al. (2022a)
compiled detrital zircon crystallization ages and isotope concentrations
to constrain the Neoarchean-Paleoproterozoic magmatic and meta-
morphic history of the northern North China craton (Fig. 1C). The
compilation for the Central Orogenic Belt (n = 10,370) shows the
occurrence of three distinct Neoarchean—Paleoproterozoic igneous age
populations of ca. 2.6-2.45 Ga, ca. 2.2-2 Ga, and ca. 1.9-1.75 Ga with
four respective peaks at ca. 2.52 Ga, ca. 2.15 Ga, ca. 2.05 Ga, and ca.
1.83 Ga. The northern Central Orogenic Belt (n = 1,520) exhibits three
igneous age populations that are similar to those for Central Orogenic
Belt except for a ca. 2.15 Ga peak (Fig. 1C). However, the northern
margin of the North China craton (n = 4,568) exhibits two zircon age
populations of ca. 2.6-2.45 Ga and ca. 2.2-1.72 Ga with two respective
peaks at ca. 2.5 Ga and ca. 1.95 Ga (Fig. 1C). These ages correspond with
magmatic rock ages (n = 3,017) recorded in the northern North China
craton (Fig. 1C). Two metamorphic episodes recorded in both the Cen-
tral Orogenic Belt (n = 432) and Northern Margin orogen (n = 353) have
well defined age populations of ca. 2.58-2.43 and ca. 1.98-1.77 Ga with
respective peaks at ca. 2.5 and ca. 1.85 Ga (Fig. 1C). The ca. 2.5 Ga
metamorphism, commonly associated with an arc-continent collision
event, has been recognized in the Central Orogenic Belt and Northern
Margin orogen, which was overprinted by ca. 1.93-1.8 Ga granulite-
facies metamorphism (e.g., Kusky et al., 2016, 2021, 2022; Wang
et al., 2017a, 2019a; Wu et al., 2018, 2022a, 2023; Zhong et al., 2021,
2022; Han et al., 2020; Ning et al., 2022). Zircon ey¢(t)-age results of the
Central Orogenic Belt suggest an overall continuous evolution from ca.
2.7-1.8 Ga (Wu et al., 2022a, and references therein). In contrast, zircon
epr(t)-age results of Northern Margin orogen suggest two distinct epi-
sodes at ca. 2.7-2.2 Ga and ca. 2.1-1.75 Ga (Wu et al., 2022a, and ref-
erences therein).

Evidence for early Neoproterozoic magmatism is sparse in the North
China craton, as only one ca. 965 Ma granitoid is reported in the
Longshou Shan area along its southwestern margin (Wu et al., 2022b).
Neoproterozoic (ultra)mafic intrusions (ca. 832-827 Ma) in the Long-
shou Shan area are interpreted to be related to continental rifting (e.g.,
Li et al., 2004, Li et al., 2005a, 2005b; Zhang et al., 2010a, 2010b; Tung
etal., 2013; Tang et al., 2014). The Longshou Shan area was proposed to
represent either the western extension of the North China craton since
the Paleoproterozoic or the eastern extension of the North Tarim
continent (e.g., Zhao et al., 2005; Zhai and Santosh, 2011; Zhang et al.,
2012a; Gong et al., 2016; Zhang and Gong, 2018; Wu et al., 2021,
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Fig. 1. (A) Simplified tectonic map of the North China craton and surrounding orogenic belts, modified from Wu et al. (2018). The North China craton is divided into
the Eastern and Western blocks, Central Orogenic belt, and Northern Margin orogen. (B) Simplified tectonic map of the North China Craton, modified from Xiao et al.
(2021) and Wu et al. (2022a). The different color shades represent the distribution density of ca. 2.5 Ga and ca. 1.78-1.95 Ga ages. Darker colors represent high
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2022b). However, some workers argued that the Longshou Shan area is a
block of Proterozoic basement rocks that separated from the Yangtze
block or other Gondwanan subcontinents (e.g., Li et al., 2004; McKenzie
et al., 2011; Dan et al., 2014; Song et al., 2017).

The Longshou Shan area consists of crystalline basement rocks of the
Paleoproterozoic Longshoushan Group overlain by Mesoproter-
ozoic-Paleozoic sedimentary cover sequences (e.g., Gong et al., 2016;
Zhang and Gong, 2018; Wu et al., 2021; Su et al., 2023). The Paleo-
proterozoic Longshoushan Group mainly consists of migmatite interca-
lated with marble, schist, quartzite, and orthogneiss, which experienced
Paleoproterozoic amphibolite-facies metamorphism (e.g., Gong et al.,
2016; Wu et al., 2021). These rocks were subsequently folded and
intruded by ca. 2.05 Ga leucogranites and Neoproterozoic ultramafic
and mafic rocks (e.g., Gong et al., 2016; Zhang and Gong, 2018; Liu
et al., 2020b; Wu et al., 2021). The schist of the Longshoushan Group is
located in the footwall of a thrust containing ca. 2.17 Ga arc granitoid (e.
g., Wu et al., 2022b). A regional angular unconformity separates the
underlying Longshoushan Group from the overlying siliciclastic and
carbonate rocks of the Mesoproterozoic Dunzigou Group (e.g., Gong
et al,, 2016; Wu et al., 2021). Metasedimentary rocks of the Long-
shoushan Group yield three prominent zircon age populations with
peaks at ca. 1.85 Ga, ca. 2.05 Ga, and ca. 2.15 Ga, and a minor older
zircon age population of ca. 2.56 Ga (e.g., Wu et al., 2022b). The Dun-
zigou Group has two major zircon age populations with peaks at ca. 1.82
Ga and ca. 2.05 Ga, and two minor age populations of ca. 2.31 Ga and ca.
2.6 Ga (e.g., Wu et al., 2022b). The youngest zircon age population of ca.
1.85-1.82 Ga from the Longshoushan and Dunzigou groups is inter-
preted to reflect a regional metamorphic event (e.g., Gong et al., 2012a,
2012b, 2016; Zhang and Gong, 2018; Wu et al., 2021, 2022b). The
Archean zircon U-Pb age peak and Lu-Hf isotopes are interpreted to
reflect reworking of ca. 3.04-2.76 Ga crust, which suggests a Meso-
—Archean basement source in the region (e.g., Gong et al., 2016; Zhang
and Gong, 2018). Although Archean basement rocks are not reported in
the Longshou Shan, Lu-Hf-Sr-Nd isotopes of amphibolite-facies orthog-
neisses of the Longshoushan Group show evidence of reworked ca.
2.7-2.4 Ga basement rocks. The Neoproterozoic Hanmushan Group
consists of rift-related siliciclastic rocks, limestone, mafic rocks, and
glacial deposits (e.g., Wu et al., 2022b). Detrital zircon U-Pb ages from
the Hanmushan Group show two prominent age populations with peaks
at ca. 1.15 Ga and ca. 1.4 Ga, and three minor age populations with
peaks at ca. 1 Ga, 1.95 Ga, and 2.5 Ga (Song et al., 2017; Wu et al.,
2022b).

2.2. Precambrian South China block

The South China block formed during the early Neoproterozoic (ca.
980-810 Ma) collision of the Yangtze craton in the northwest and
Cathaysia block in the southeast along the Jiangnan orogen (e.g., Zheng
and Zhang, 2007; Zhang and Zheng, 2013; Zhao and Cawood, 2012; Li
et al., 2014; Zhao, 2015; Cawood et al., 2018; Lin et al., 2018; Shu et al.,
2021) (Fig. 2A). The Kongling Complex of the South China block consists
of sporadically-exposed ca. 3.3-2.7 Ga metamorphic assemblages, along
with the ca. 2.78-2.74 Ga Huangtuling granulites and ca 2.7 Ga
Yudongzi Group restricted to the northern Yangtze block (Fig. 2A).
Paleoproterozoic rocks in the South China block include supracrustal
rocks of the Houhe Complex located along the northern margin of the
Yangtze craton and low-grade volcanic and sedimentary rocks of the
Dahongshan, Dongchuan, and Hekou groups in the southwestern
portion of the Yangtze craton (Fig. 2A). Sparse Paleoproterozoic rocks in
the Cathaysia block include ca. 1.91-1.78 Ma granitoids and the Badu
supracrustal rocks (e.g., Li et al., 2014). Dated Mesoproterozoic rocks
are limited to the southern margin of the Yangtze craton and the Baoban
Group in Hainan Island of the Cathaysia block (Cawood et al., 2018, and
references therein). Scattered Archean and Paleoproterozoic rocks of the
South China block are unconformably overlain by variably deformed
and metamorphosed Neoproterozoic, Paleozoic, and Mesozoic igneous
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and sedimentary rocks (Zhao and Cawood, 2012, and references
therein).

Neoproterozoic rocks are widespread across the South China block.
The Neoproterozoic assembly of the South China block was followed by
the development of the Nanhua rift, which is characterized by ca.
810-730 Ma, bimodal magmatic rocks and associated intracontinental
rift sedimentary sequences (e.g., Wang and Li, 2003; Wang et al., 2012c;
Cao et al.,, 2017). Upper Neoproterozoic strata conformably overlie
Precambrian sequences in the Cathaysia block and unconformably
overlie strata in the Yangtze craton and Jiangnan orogen (e.g., Li et al.,
2014; Wang et al., 2017c). Our compilation of Precambrian zircon U-Pb
ages reflecting magmatism in the South China block (n = 1,783) shows
two prominent age populations with two peaks at ca. 0.82 Ga and ca.
0.98 Ga and two minor age peaks at ca. 1.4 Ga and ca. 2.5 Ga (Fig. 2B).
We performed separate statistics on the magmatic peaks of the Yangtze
craton (i.e., one peak at ca. 0.8 Ga; n = 679), Jiangnan orogen (i.e., one
peak at ca. 0.82 Ga and two minor peaks at ca. 1.78 Ga and ca. 2.5 Ga; n
= 767), and Cathaysia block (i.e., three peaks at ca. 0.83 Ga, ca. 0.98 Ga,
and ca. 1.4 Ga, and one minor peak at ca. 2.5 Ga; n = 337) (Fig. 2B). Our
compilation of Precambrian detrital zircon U-Pb ages of the South China
block (n = 6,456) shows one prominent age population with a peak at
ca. 0.84 Ga and two minor age peaks at ca. 1.83 Ga and ca. 2.5 Ga. These
age peaks also occur in the data for the Yangtze craton, Cathaysia block,
and Jiangnan orogen (Fig. 2C).

2.3. Precambrian Tarim craton

Precambrian rocks are only exposed along the margins of the Tarim
craton, including the Hetian area in the southwest, Akesu area in the
northwest, Kuluketage area in the northeast, North Altyn Tagh Range
and Dunhuang area in the east, and Tiekelike area in the southeast
(Fig. 3A). However, samples from deep drilling wells suggest that
Archean-Paleoproterozoic rocks are widespread beneath the thick
sedimentary sequence of the Tarim Basin (e.g., Xu et al., 2013; Yang
et al., 2018; Cai et al., 2020b). Ge et al. (2018, 2020) reported ca. 3.72
Ga, high-pressure tonalitic gneisses in the North Altyn Tagh Range,
providing evidence for the existence of Eoarchean basement in the
Tarim craton. Although a ca. 3.3 Ga Sm-Nd isochron age was reported in
the Kuruktag area (Hu and Rogers, 1992), Paleoarchean (ca. 3.6-3.2 Ga)
rocks are rare in the Tarim craton. Reported Mesoarchean (ca. 3.2-2.8
Ga) rocks include ca. 2.93 Ga dioritic gneiss (Gehrels et al., 2003a) and
ca. 2.83 Ga granitic gneiss (Lu et al., 2008b) in the North Altyn Tagh
Range, ca. 3.05 Ga granodioritic gneiss in the Dunhuang area, and ca.
3.2-3 Ga tonalite-trondhjemite-granodiorite (TTG) gneisses, ca. 2.81 Ga
high-K granite, and a ca. 3.14 Ga hypersthene granulite in the Tiekelike
area (Guo et al., 2013; Ge et al., 2022). Neoarchean (ca. 2.8-2.5 Ga)
TTG, dioritic and granitic gneisses, and associated metagabbro/
amphibolite are widespread and well documented in the Tarim craton,
mainly in the North Altyn Tagh Range and Dunhuang and Kuruktag
areas (e.g., Hu and Rogers, 1992; Lu et al., 2008b; Long et al., 2014,
2015; Zhang et al., 2014c). Archean basement rocks experienced
regional, high-grade metamorphism at ca. 2-1.8 Ga and ca. 1.1-1 Ga,
and local metamorphism at ca. 2.5 Ga (e.g., Zhao and Cawood, 2012).

In the Tarim craton, Paleoproterozoic basement rocks are spatially
associated with Archean rocks mainly exposed in the Kuruketage and
Dunhuang areas. Available geochronological data show that two distinct
Paleoproterozoic magmatic events occurred at ca. 2.45-2.35 Ga and ca.
1.9 Ga (Zhang et al., 2007b; Lu et al., 2008b; Long et al., 2010; Ge et al.,
2022). Early Paleoproterozoic (ca. 2.4-2.35 Ga), A-type granites are
reported in the Tiekelike area (Zhang et al., 2007b; Wang et al., 2014d;
Ge et al., 2022). Late Mesoproterozoic, low-grade meta-sedimentary-
volcanic rocks and early Neoproterozoic, high-pressure meta-sedimen-
tary rocks occur in the Tarim craton (Lu et al., 2008b). Middle Neo-
proterozoic sedimentary rocks of the Tarim craton are considered to be a
key record for the Neoproterozoic Snowball Earth (Kaufman et al., 1997;
Hoffman et al., 1998; Hoffmann and Schrag, 2000). Neoproterozoic (ca.
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Fig. 2. (A) Simplified tectonic map of the South China block, which is divided into the Yangtze Block, Cathaysia Block, and Jiangnan orogen. The bottom shows
normalized relative probability plots of Precambrian (B) magmatic records and (C) detrital zircon U-Pb ages of the total South China block, Yangtze Block, Cathaysia
Block, and Jiangnan orogen. Data are compiled from: Bai et al., 2010; Cai et al., 2014, 2015, 2020a; Cao et al., 2017; Chen et al., 2016; Chen et al., 2014a, 2018; Chen
et al., 2005; Chen et al., 2009a, 2009b, 2017; Chen et al., 2014b; Cui et al., 2017; Deng et al., 2012, 2017; Deng et al., 2013, 2016a, 2016b; Ding et al., 2008; Dong
et al., 2011, 2012; Du et al., 2009, 2014; Fan et al., 2013; Gao et al., 2009; Gao et al., 2012, 2013, 2014; Gao and Zhang, 2009; Geng et al., 2007, 2017, 2020; Guo
et al., 2007; Guo et al., 2014; Hu et al., 2017; Hu et al., 2015; Huang et al., 2008; Huang et al., 2022a; Jiang et al., 2017; Jiang et al., 2015; Jin et al., 2017; Lai et al.,
2007; Li et al., 2009a; Li et al., 2013b; Li et al., 2018a; Li et al., 2013c; Li and Zhao, 2018; Li, 2010; Li et al., 2008b; Li et al., 1994, 1996, 1998, 2001a,b, 2002a,
2002b, 2003a,b, 2008¢c, 2009b; Li, 1999a, 1999b; Li et al., 2017; Li et al., 1999, 2002b, 2003¢, 2008d; Li et al., 2005a; Lin et al., 2007; Lin, 2010; Lin et al., 2016;
Ling et al., 2003, 2006, 2008; Liu et al., 2011; Liu et al., 2009; Liu et al., 2010, 2017; Liu et al., 2015; Liu et al., 2018a, 2020c; Liu et al., 2018b; Lu et al., 2019; Luo
et al., 2018; Ma et al., 2009; Ma et al., 2016; Meng et al., 2015; Niu et al., 2006; Pei et al., 2009; Peng et al., 2012; Qin et al., 2006; Shi et al., 2007; Shu et al., 2008,
2011a, 2011b; Su et al., 2020; Sun et al., 2013; Sun et al., 2009; Wang et al., 2015a; Wang et al., 2012a, 2013a; Wang et al., 2018; Wang et al., 2011, 2016a, 2016b;
Wang et al., 2017b; Wang et al., 2012b; Wang et al., 2006, Wang et al., 2014a; Wang et al., 2015b; Wang et al., 2013b; Wang et al., 2017c; Wang and Zhou, 2012;
Wang et al., 2004, 2008a, 2012c; Wang et al., 2008b; Wang et al., 2013c, 2016c; Wei et al., 2012; Wu et al., 2005, 2006; Xia et al., 2015; Xiao et al., 2007; Xin et al.,
2017; Xu et al., 2006; Xu et al., 2016; Xue et al., 2010, 2012; Yan et al., 2004; Yan et al., 2015; Yang et al., 2015; Yang et al., 2009; Yang et al., 2012; Yao et al., 2013,
2014a, 2014b, 2015, 2016a, 2016b, 2017; Ye et al., 2007; Yin et al., 2013; Yu et al., 2017a; Yu et al., 2008, 2010; Zhang et al., 2012b; Zhang et al., 2014b; Zhang
et al., 2013a, 2015a; Zhang et al., 2015b; Zhang et al., 2010b; Zhang et al., 2013b, 2015¢; Zhang and Wang, 2016a, 2016b; Zhang et al., 2017b; Zhang et al., 2012c;
Zhang et al., 2012d; Zhao et al., 2006; Zhao and Zhou, 2007, 2009, 2013; Zhao et al., 2010, 2011, 2013a; Zhao and Zhou, 2013; Zhao et al., 2013b; Zhou et al.,
2007b; Zhou et al., 2009; Zhou et al., 2011; Zhou et al., 2002a, 2002b, 2006; Zhou et al., 2007a; Zhou et al., 2020; Zhu et al., 2008a; Zhu et al., 2023; Zhuo

et al., 2015.

820-780 Ma), high-pressure metamorphism may have occurred along
the northern margin of the Tarim craton. Middle to late Neoproterozoic
magmatism in the Kuruketage area is evidenced by ca. 820-800 Ma and
ca. 780-760 Ma ultramafic—-mafic rocks, ca. 740-735 Ma bimodal vol-
canic rocks, and minor ca. 650-635 Ma mafic dykes. Zhao and Cawood
(2012) interpreted that Neoproterozoic magmatism waned since ca. 740
Ma due to the rifting of Tarim craton from the Rodinia supercontinent.
Zhang et al. (2012e) argued that the middle to late Neoproterozoic
magmatic rocks are related to a mantle plume event that led to the
breakup of the Tarim craton from the Rodinia supercontinent.

In this study, we compiled magmatic and detrital zircon U-Pb ages
for the Tarim craton (n = 3,574) (Figs. 3B and 3C). Our compilation
shows the occurrence of distinct Precambrian igneous age populations
with six peaks at ca. 3.65 Ga, ca. 3.15 Ga, ca. 2.46 Ga, ca. 1.85 Ga, ca. 1.4
Ga, and ca. 0.83 Ga (Fig. 3B). We conducted separate statistics on the
magmatic peaks of the central (i.e., one peak at ca. 1.93 Ga; n = 83),
eastern (i.e., three peaks at ca. 1.84 Ga, ca. 2 Ga, ca. 2.5 Ga; n = 1338),
northeastern (i.e., Altyn Tagh Range; four peaks at ca. 0.82 Ga, ca. 0.98
Ga, ca. 1.93 Ga, ca. 2.5 Ga; n = 440), northern (i.e., five peaks at ca. 0.83
Ga, ca. 1.94 Ga, ca. 2.2 Ga, ca. 2.5 Ga, ca. 2.7 Ga; n = 765), and
southeastern areas of the Tarim craton (i.e., six peaks at ca. 1.4 Ga, ca.
1.89 Ga, ca. 2.35 Ga, ca. 2.77 Ga, ca. 3.16 Ga, ca. 3.6 Ga; n = 979)
(Fig. 3B). Our compilation for the Precambrian detrital zircon U-Pb ages
of the Tarim craton (n = 1,504) shows two prominent age populations
with peaks at ca. 0.82 Ga and ca. 1.83 Ga (Fig. 3C). The northeastern
Tarim craton (i.e., Altyn Tagh Range) yields three age peaks at ca. 0.86
Ga, ca. 1.85 Ga, and ca. 2.5 Ga, whereas the southwestern Tarim craton
yields four age peaks at ca. 0.82 Ga, ca. 1.4 Ga, ca. 2.1 Ga, and ca. 2.6 Ga
(Fig. 3Q).

2.4. Precambrian Qaidam block

The northern margin of the Qaidam block is composed of the Pre-
cambrian metamorphic basement rocks of the Quanji Massif, Cambrian
shallow-marine sedimentary rocks, and Ordovician-Silurian magmatic
arc rocks (e.g., Lu, 2002; Lu et al., 2002, 2006; Yin and Harrison, 2000)
(Fig. 4). The geology of the southern margin of the Qaidam block is best
exposed in the Eastern Kunlun Range, which is presently bounded by the
Qaidam Basin in the north and active left-slip Kunlun fault in the south,
the latter of which follows a Triassic suture zone (e.g., Yin and Harrison,
2000; Wu et al., 2016). Precambrian rocks of the Qaidam block are
mainly exposed in the Xitie, Oulongbulak, Buhete, and southern Zong-
wulong mountains along the northeastern margin of the Qaidam Basin,
and Eastern Kunlun Range along the southern margin of the Qaidam
Basin (Fig. 3A). The oldest Precambrian basement rocks of the southern
Qaidam block, exposed in the Eastern Kunlun Range, consist of ca. 1.93
Ga meta-basite, ca. 1.85 Ga meta-granite, and ca. 940-820 Ma meta-

granites that are tectonically interspersed with migmatite and meta-
sedimentary rocks (Tan et al., 2004; Chen et al., 2006a, 2006b; Ma et al.,
2013; Wang et al., 2013d). Metamorphic basement rocks of the southern
Qaidam block are intruded by Neoproterozoic mafic dikes (e.g., Ren
et al., 2010).

The Quanji Massif of the northern Qaidam block is composed of
medium- to high-grade metamorphic rocks of the Delingha Complex and
Dakendaban Group, and low-grade, greenschist-facies Mesoproterozoic
Wandonggou Group (e.g., Lu, 2002; Lu et al., 2002, 2006; Lu and Yuan,
2003; Chen et al., 2007a, 2009, 2012, 2013a, b; Wang et al., 2008c,
2009). Widespread early Paleoproterozoic granitic gneisses of the
Quanji Massif include the Wulan monzogranitic and granodioritic
gneisses and Delingha and Quanjishan monzogranitic gneisses (e.g.,
Gong et al., 2012a, 2012b). Previous studies reported the occurrence of
high-grade, early Paleoproterozoic granites with enclaves of amphibo-
lite and mafic granulite in the Delingha Complex (Lu, 2002; Huang et al.,
2011; Ba et al., 2012; Gong et al., 2012a, 2012b; Liao et al., 2014). The
Dakendaban Group is composed of ca. 2.32-2.2 Ga, amphibolite-facies
meta-volcano-sedimentary rocks and supracrustal metapelites with ca.
2.2-1.96 Ga protolith ages (Lu, 2002; Huang et al., 2011; Chen et al.,
2012). The Delingha Complex and Dakendaban Group underwent
amphibolite-facies and locally granulite-facies metamorphism at ca.
1.95-1.91 Ga (Zhang et al., 2001; Wang et al., 2009; Chen et al., 2013b).
This metamorphism was followed by lower pressure-temperature,
amphibolite-facies metamorphism at ca. 1.82-1.8 Ga (Chen et al,,
2013b). These rocks are intruded by ca. 1.83 Ga mafic dykes and ca.
1.8-1.77 Ga rapakivi granite (Lu et al., 2006; Chen et al., 2012, 2013a;
Liao et al., 2014).

The Late Mesoproterozoic Wandonggou Group consists of
greenschist-facies, carbonate meta-sedimentary rocks with minor mafic
metavolcanics that were deposited after emplacement of ca. 1.8 Ga
rapakivi granite but prior to a ca. 1 Ga low-grade metamorphic event
(Yuetal., 1994; Lu et al., 2006, 2008b). The Neoproterozoic, diamictite-
bearing Quanji Group and unconformably overlying Paleozoic strata
were both deposited unconformably atop Paleoproterozoic meta-
morphic basement rocks (Lu, 2002; Lu et al., 2008a, 2008b). The Quanji
Group is the oldest sedimentary sequence overlying the Precambrian
basement rocks of the northern Qaidam block (Wang et al., 2013a) and
is considered to have been deposited during the Ediacaran, postdating
the Gaskiers glaciation (Shen et al., 2010). However, Zhang et al. (2016)
argued that the Quanji Group was deposited between the Late Paleo-
proterozoic and Neoproterozoic based on the occurrence of ca. 1.64 Ga
tuff within the lower Hongzaoshan Formation of the Quanji Group. Our
compilation of magmatic zircon U-Pb ages for the Qaidam block (n =
874) shows the occurrence of distinct Precambrian igneous age pop-
ulations with six peaks at ca. 2.4 Ga, ca. 1.98 Ga, ca. 1.5 Ga, ca. 1.1 Ga,
ca. 0.95 Ga, and ca. 0.75 Ga (Fig. 3B). A compilation of Precambrian
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Fig. 3. (A) Simplified tectonic map of the Tarim craton and Qaidam block. The bottom shows normalized relative probability plots of Precambrian (B) magmatic
records and (C) detrital zircon U-Pb ages of the Tarim craton. The bottom right shows normalized relative probability plots of Precambrian (D) magmatic records and
(E) detrital zircon U-Pb ages of the Qaidam block. Data for the Tarim craton are compiled from: Cai et al., 2018, 2020b; Chen et al., 2022; Cheng et al., 2017a; Ding
et al., 2015; Gan et al., 2020; Ge et al., 2013, 2014, 2015, 2018, 2020, 2022; Guo et al., 2013; He et al., 2021; He et al., 2013; Jiang et al., 2005; Lei et al., 2012; Li
etal., 2001c; Long et al., 2010, 2011, 2014, 2019; Lu et al., 2008a; Lu and Yuan, 2003; Wang et al., 2020; Wu et al., 2014; Xie et al., 2023; Yang et al., 2018; Ye et al.,
2013; Ye et al., 2016; Yu et al., 2014; Zhang et al., 2018; Zhang et al., 2009, 2012e, 2012f, 2014c; Zhang et al., 2013c; Zhao et al., 2015, 2019; Zhu et al., 2011; Zong
et al., 2013. Data for the Qaidam block are compiled from: Chen et al., 2007a, 2009¢; Cheng et al., 2017b; Fu et al., 2015; Gong et al., 2012b, 2014, 2019; Hao et al.,

2022; Li et al., 2007; Li et al., 2022; Sun et al., 2018, 2019; Teng et al., 2022; Wang et al., 2015¢, 2019b; Wang et al., 2021; Xia et al., 2009; Yu et al., 2017b; Zhang
et al., 2003; Zhang et al., 2012f.
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Fig. 4. Geological map of the northern Qaidam block and surrounding region of northern Tibet. Map is compiled from Pan et al. (2004) and this study.

detrital zircon U-Pb ages of the Qaidam block (n = 1,134) shows five
prominent age populations with peaks at ca. 0.95 Ga, ca. 1.1 Ga, ca. 1.45
Ga, ca. 1.94 Ga, and ca. 2.5 Ga (Fig. 3C).

3. Field observations and sampling of the Precambrian Northern
Qaidam block

We performed geological mapping and collected field observations
in the northern Qaidam Basin with the goal of constraining the Pre-
cambrian metamorphic and magmatic evolution of the Qaidam block
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and northern Tibet (Fig. 4). Precambrian and early Paleozoic meta-
morphic rocks and foliated/undeformed granitoid plutons are wide-
spread in the field area. Previous researchers grouped these rocks as part
of the Paleoproterozoic metamorphic basement complex (Fig. 4).
However, we were able to distinguish lithologic units of the meta-
morphic basement complex based on field observations and geochro-
nology results. We divide the metamorphic basement complex into four
lithologic units: (1) Paleoproterozoic (labeled Pt; in Fig. 5); (2) Meso-
proterozoic (labeled Pt in Fig. 5); (3) Neoproterozoic (labeled Pt3 in
Fig. 5); and (4) intrusions (labeled gry, and grgy in Fig. 5). Both the
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Fig. 5. Geological map of the southern edge of the Zongwulong Shan, northeast of Delingha city, in the northern Qaidam block. Map is based on Qinghai BGMR
(1978) and this study. White lines are topographic contours in meters. Sample locations are shown.
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Paleoproterozoic metamorphic basement rocks and Neoproterozoic
metamorphic rocks experienced early Paleozoic amphibolite-facies
metamorphism and were intruded by early Paleozoic plutonic rocks.
In contrast, the late Paleoproterozoic meta-mafic dikes intrude early
Paleoproterozoic gneiss (Fig. 5). Age assignments of the major lithologic
units are primarily based on observations from Pan et al. (2004) and

Earth-Science Reviews 259 (2024) 104985

Wang et al. (2013e).

Paleoproterozoic, medium- to high-grade metamorphic basement
rocks (i.e., Delingha Complex and Dakendaban Group) are widespread
in the northern Qaidam Basin and divided into three lithologic units
from older to younger: (1) gneiss; (2) metavolcanic; and (3) schist. The
gneiss unit is composed of quartzo-feldspathic gneiss, mylonitic biotite

Neoproterozoic strata experienced
Early Paleozoic amphibolite-facies
metamorphism

mica quartz schist &
plagioclase gneiss

285/83 N o

mica quartz schist &
plagioclase gneiss
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(garnet) mica quartz schist &
(garnet) plagioclase gneiss

I
g

Fig. 6. Field photographs of (A) representative Neoproterozoic rock assemblages and structures and (B) Mesoproterozoic metasedimentary rocks and early Paleozoic
magmatic intrusions. Note that the format of bedding and foliation attitude is strike/dip and dip quadrant.
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orthogneiss, garnet-bearing syenogranite, and paragneiss. The protoliths
of these rocks are inferred to be Paleoproterozoic in age based on pre-
vious geological maps (Pan et al., 2004). Mafic and leucogranite dikes
occur within the gneiss unit. The metavolcanic unit consists of meta-
mafic rocks and garnet amphibolite. The schist unit is characterized
by mica + garnet schist, quartzite, marble, and local phyllite. Late
Mesoproterozoic meta-sedimentary rocks and Neoproterozoic sedi-
mentary rocks are scattered in the field area. The weakly foliated,
amphibolite-facies metamorphic basement rocks are intruded by early
Paleozoic granitoids. The oldest unconformity in the field area, which is
also widespread along the northern margin of the Qaidam block, occurs
between the overlying Neoproterozoic Quanji Group and underlying
Paleoproterozoic metamorphic basement rocks and local Mesoproter-
ozoic rocks. Sedimentary bedding and metamorphic foliation generally
trend northwest-southeast or north-south, parallel to the trends of
mountain ranges and strikes of thrust faults.

Mesoproterozoic metasedimentary rocks exposed in the southern
Zongwulong Shan consist of mica quartz schist surrounded and intruded
by voluminous early Paleozoic granitoids (Figs. 5 and 6A). In the
southern Zongwulong Shan, northeast of Delingha city, Neoproterozoic
rocks are thrust atop Paleo- and Mesoproterozoic metamorphic rocks as
a result of multiple deformation episodes. These Neoproterozoic rocks
are intruded by early Paleozoic granitoids (Fig. 6B). In the north,
Carboniferous and Permian sedimentary rocks were deposited atop the
Precambrian rocks and the Precambrian rocks are thrust over the Per-
mian—Cretaceous strata (Fig. 5). Neoproterozoic metamorphic rocks
consist of well-layered garnet mica quartz schist, garnet plagioclase
gneiss, marble, plagioclase amphibolite, and migmatitic gneiss (Fig. 6B).
The observed younger-over-older stratigraphic relationships and
shallow crustal intrusions suggest that the Zongwulong Shan experi-
enced several tectonic events since the late Paleozoic (Fig. 5). These
metamorphic rocks are intruded by undeformed, late Paleozoic leu-
cogranite dikes (Fig. 6B). Field observations suggest that Neoproterozoic
rocks exposed along the southern Zongwulong Shan are a suite of
supracrustal sedimentary rocks that experienced early Paleozoic,
amphibolite-facies metamorphism.

We collected and dated major Precambrian lithologic units of the
northern Qaidam block, which consist of porphyritic gneiss, meta-mafic
dikes, schist, meta-sandstone, quartzite, granitoid, and hornblende
gabbro dikes (Fig. 7). Paleoproterozoic pink-red foliated granitic gneiss
(i.e., samples QL20220711-2A, QL20220711-2B, QL20220711-3, and
QL20220703-3) are intruded by ~3-5-m-wide, late Paleoproterozoic
meta-mafic dikes (i.e., samples QL20220711-1A and QL20220711-1B)
(Figs. 7A-D). Along the southern edge of the Zongwulong Shan, Paleo-
proterozoic gneiss is intruded by late Paleoproterozoic-Mesoproterozoic
granitic dikes (i.e., samples QL20220629-2, QL20220629-3, and
QL20220711-4) (Figs. 7E-G). Mesoproterozoic mica quartz schist sam-
ple QL20220713-6 is intruded by late Paleozoic granitic dikes (Fig. 7H).
We also collected garnet-bearing mica quartz schist sample
QL20220713-14 from the southern Zongwulong Shan and meta-
sandstone sample QL20220701-5 from the core of the Zongwulong
Shan (Figs. 7I-J). Mineral compositions and microscopic characteristics
of these samples are shown in Fig. 8.

4. Analytical methods and results

A total of twelve Precambrian samples from the Qaidam block were
analyzed via zircon U-Pb geochronology in this study. These samples
include four early Paleoproterozoic gneiss samples, two late Paleo-
proterozoic meta-mafic dike samples, three Paleoproterozoic and Mes-
oproterozoic gneissic granitoid samples, one Mesoproterozoic schist
sample, and two Neoproterozoic metasedimentary rocks samples. In
addition, a total of eight samples from the Qaidam block were analyzed
for their whole-rock, major-oxide, and trace-element geochemistry and
Lu-Hf and Sr-Nd isotopes. These samples include four Paleoproterozoic
gneiss samples, two late Paleoproterozoic meta-mafic dike samples,
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three Paleoproterozoic and Mesoproterozoic gneissic granitoid samples.
4.1. Zircon U-Pb geochronology and Hf isotopic compositions

Zircon grains used for U-Pb geochronology were separated from
thirteen samples using traditional methods involving crushing, sieving,
and magnetic and density separations. Individual zircon grains were
picked under a binocular microscope and mounted in epoxy with stan-
dard zircon grains. Cathodoluminescence images of zircon grains were
collected using a JXA-880 electron microscope with operating condi-
tions of 20 kV and 20 nA at the Institute of Mineral Resources, Chinese
Academy of Geological Sciences, Beijing.

Zircon grains were analyzed via inductively coupled plasma mass
spectrometry (ICP-MS) using an Agilent 7500a instrument coupled with
a New Wave Research UP193FX Excimer Laser Ablation System at the
State Key Laboratory of Tibetan Plateau Earth System, Environment and
Resources, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing. Common Pb corrections were performed assuming an
initial Pb composition from Stacey and Kramers (1975). The primary
standard used was GJ1 (Jackson et al., 2004). Secondary standards
included 91500 (*3%U/2°°pb age of ca. 1,065 Ma; Wiedenbeck et al.,
1995) and Plesovice (238U/2%°pb age of ca. 337 Ma; Slama et al., 2008).
Reported U-Pb ages are 2°°Pb*/297Pb* ages for grains older than 1,000
Ma. Crystallization ages are interpreted from analyses with <10%
discordance. Concordia diagrams and weighted mean U-Pb ages were
processed using Isoplot v.3 (Ludwig, 2003). Age data and concordia
plots are reported with 26 error (Fig. 9). Uncertainties of weighted mean
ages are presented at the 95% confidence level (Andersen, 2002).
Sample locations and results of zircon U-Pb geochronology are shown in
Table 1. Details of geochronology analyses are shown in the Supple-
mentary Table S1.

Zircon Hf isotopes were measured in situ on a Nu Plasma II multi-
collector inductively coupled plasma mass spectrometer (MC-ICP-MS,
Nu Instruments Ltd., United Kingdom), which is coupled to a 193-nm
New Wave laser ablation system. A beam diameter of ca. 45 pm, a 6-
Hz repetition rate, and an energy density of 11.6 J/cm? were used
during the analyses. Each measurement consists of a 10-sec pre-ablation,
a 45-sec ablation, and a 30-sec washout delay. Hf isotopes were calcu-
lated using Iolite V4 (University of Melbourne). The measured Hf iso-
topic values are 0.282302 + 19 for 91500, 0.281998 + 15 for GJ-1, and
0.282475 + 11 for Plesovice, consistent with recommended values.
Details of zircon Lu-Hf isotope analyses are shown in Supplementary
Table S2.

More than thirty zircon grains for each of the four granitic gneiss
samples yield weighted mean Pb-Pb ages of 2,345 + 32 Ma (MSWD =
0.64; n = 34; sample QL20220711-2A), 2,448 + 24 Ma (MSWD = 0.49;
n = 13; sample QL20220711-2B), 2,344 + 50 Ma (MSWD = 0.052; n =
30; sample QL20220711-3), and 2,353 + 14 Ma (MSWD = 0.13; n = 15;
sample QL20220703-3) (Figs. 9A-9D). Zircon grains for these early
Paleoproterozoic granitic gneiss samples have ey¢(t) values of +0.2 to
+7.5 (Tpm = 2,753-2,515 Ma, Tpyc = 2,924-2,532 Ma) (Fig. 10).

Thirty zircon grains were analyzed from each of the two meta-mafic
(meta-gabbro) dike samples (i.e., QL20220711-1A and QL20220711-
1B) (Figs. 9E-9F). Sample QL20220711-1A yields ages ranging from
ca. 826 Ma (U-Pb) to ca. 1,879 Ma (Pb-Pb). For this sample, the weighted
mean U-Pb age of twenty-seven concordant analyses is 1,841 + 38 Ma
(MSWD = 0.061) (Fig. 9E). Sample QL20220711-1B yields ages ranging
from a U-Pb age of ca. 268 Ma (U-Pb) to ca. 2,356 Ma (Pb-Pb). For this
sample, the weighted mean U-Pb age of twenty-five concordant analyses
is 1,862 + 40 Ma (MSWD = 0.24) (Fig. 9F). The other analyses were
excluded because of discordance or low radiogenic Pb. Zircon grains for
these two Paleoproterozoic gabbro samples have ey¢(t) values of +-0.44
to +9.79 (Tpm = 2,439-1,884 Ma, Tpmc = 2,438-1,884 Ma) (Fig. 10).

Late Paleoproterozoic granite dike sample QL20220629-3 yields Pb-
Pb ages ranging from ca. 1,953-1,462 Ma. For this sample, the weighted
mean Pb-Pb age is 1,746 + 19 Ma (MSWD = 1.2; n = 7) (Fig. 9G). Zircon
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Fig. 7. Field photographs from the northern Qaidam block showing sampled Precambrian rocks. (A-D) Paleoproterozoic granitic gneiss (samples QL20220711-2A,
QL20220711-2B, QL20220711-3, and QL20220703-3) is intruded by late Paleoproterozoic meta-mafic dikes (samples QL20220711-1A and QL20220711-1B). An
early Mesoproterozoic granitic dike (sample QL20220629-2) contains (E) a Paleoproterozoic gneiss xenolith and (F) late Paleoproterozoic granitic dike (sample
QL20220629-3). (G) A pink Mesoproterozoic granitic dike (sample QL20220711-4) intrudes Paleoproterozoic gneiss. (H) Mesoproterozoic metasedimentary rocks
(sample QL20220713-6) are intruded by Paleozoic granitic dikes. (I) Neoproterozoic metasandstone (sample QL.20220701-5) exposed in the core of the Zongwulong
Shan. (J) Neoproterozoic garnet-bearing mica quartz schist (sample QL20220713-14) exposed along the southern edge of the Zongwulong Shan. Note that the format

of bedding and foliation attitude is strike/dip and dip quadrant.

grains from this sample have ey¢(t) values of -3.78 to +6.67 at 1,746 Ma
(Tpm = 2,299-1,945 Ma, Tpyc = 2,638-2,037 Ma) (Fig. 10). Early
Mesoproterozoic granite dike sample QL20220629-2 yields a weighted
mean Pb-Pb age of 1,506 + 24 Ma (MSWD = 1.4; n =9) (Fig. 9H). Zircon
grains from this sample have ey(t) values of +-0.81 to +7.06 at 1,506 Ma
(Tpm = 1,993-1,767 Ma, Tpyc = 2,217-1,904 Ma) (Fig. 10). Meso-
proterozoic granite dike sample QL20220711-4 yields a weighted mean
Pb-Pb age of 1,349 + 24 Ma (MSWD = 1.8; n = 6) (Fig. 9I). Zircon grains
from this sample have ey¢(t) values of +0.12 to +6.14 at 1,349 Ma (Tpy
=1,847-1,564 Ma, Tpyc = 2,116-1,705 Ma) (Fig. 10). Early Paleozoic
migmatite vein sample QL20220713-9 yields ages ranging from ca. 435
Ma to ca. 710 Ma. For this sample, the weighted mean U-Pb age of
concordant analyses is 506 + 6 Ma (MSWD = 0.39; n=25) (Fig. 9J).

Mica quartz schist sample QL20220713-6 has detrital zircon age
populations of ca. 1,900-1,400 Ma and ca. 2,676-2,275 Ma, with two
prominent peaks at ca. 1,740 Ma and ca. 2,500 Ma, respectively
(Fig. 9K). The youngest zircons grains of this sample overlap in age and
have a weighted mean age of 1,367 + 16 Ma (MSWD = 0.002; n = 5)
(Fig. 9K), which we interpret to be the maximum depositional age for
the protolith of the schist. The single youngest zircon age of the sample is
ca. 1,277 Ma (Supplementary Table S1).

One hundred zircon grains were dated for each of the two Neo-
proterozoic metamorphic rock samples, including meta-sandstone
sample QL20220701-5 and mica quartz schist sample QL20220713-14
(Figs. 9L-9M). Sample QL20220701-5 has zircon age populations be-
tween ca. 809-721 Ma and ca. 1,995-1,738 Ma, with two prominent
peaks at ca. 758 Ma and ca. 1,845 Ma, respectively (Fig. 9L). Two minor
age populations are ca. 2,791-2,721 Ma and ca. 2,226-2,060 Ma. The
three youngest zircon grains of this sample with overlapping ages have a
weighted mean age of 725 + 20 Ma (MSWD = 0.062) (Fig. 9M). Sample
QL20220713-14 has a zircon age population between ca. 995-603 Ma,
with a peak at ca. 840 Ma (Fig. 9M). This sample also yields some
Archean zircon ages (Fig. 9M). The three youngest zircon grains of this
sample with overlapping ages have a weighted mean age of 634 + 53 Ma
(MSWD = 0.31) (Fig. 9M).

4.2. Whole-rock major-oxide, trace-element, and Sr-Nd isotope
geochemistry

A total of eight Precambrian granitoid, granitic gneiss, and mafic
dike samples were analyzed for their whole-rock major oxide, trace
element, and Sr-Nd isotope compositions at the Wuhan Sample Solution
Analytical Technology Co., Ltd. in Hubei, China. Prior to analysis,
weathered surfaces were removed from whole-rock samples. Samples
were then crushed and ground into powder (>200 mesh) using a ball
mill. Major element compositions were determined via X-ray fluores-
cence spectrometry, which has an analytical precision of better than 2%.
Trace element compositions were measured via ICP-MS, which has an
analytical precision of better than 5%. Sr-Nd isotopes were measured
using a Neptune Plus multi-collector ICP-MS with spectral analysis ac-
curacy better than 0.002%. Before isotope analysis, sample dissolution
was performed using acid digestion (HF + HCLO4 + HNO3). Background
isotope measurements were conducted within the error range. Aliquots
of NIST SRM 987, JNDI-1, and JMC international standard solutions
were regularly used to evaluate the reproducibility and accuracy of the
instrument. Analytical results of standard sample BCR-2 (basalt) are
143Nd/1“Nd = 0.512641 + 11 (2 standard deviation) and Sr/%°Sr =
0.705012 + 22 (2 standard deviation) (Zhang and Hu, 2020). Data
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reduction for analyses of Sr isotope ratios was conducted using Iso-
Compass software (Zhang and Hu, 2020). Whole-rock geochemical
and Sr-Nd isotopic results are presented in Supplementary Tables S3-S4,
respectively.

Three early Paleoproterozoic (ca. 2,448-2,344 Ma) granitic gneiss
samples (i.e., QL20220711-2A, QL20220711-2B, QL20220711-3) have
Si0, of 68.5-76.2 wt% and K50 + NayO of 8.5-9.1 wt%. The samples are
classified as granite and monzonite on the K20 + NayO versus SiO- plot
(Middlemost, 1994) (Fig. 11A). On the Ko0 versus SiO, diagram (Le
Maitre et al., 1989; Rickwood, 1989), the samples plot in the high-
potassium calc-alkaline series field (Le Maitre et al., 1989; Rickwood,
1989) (Fig. 11B). The samples are slightly metaluminous, as indicated
by their molar A/CNK of 1-0.97 and A/NK of 1.23-1.1 (Maniar and
Piccoli, 1989) (Fig. 11C). On primitive mantle-normalized spider dia-
grams, the samples are enriched in large-ion lithophile elements (LILES),
depleted in high-field strength elements (HFSEs) (Fig. 11D), and display
no distinct Ce anomalies (Fig. 11D). Chondrite-normalized rare-earth
element (REE) patterns are characterized by significant light rare earth
element (LREE) enrichment and heavy rare-earth element (HREE)
depletion, with a strong negative Eu (Eu/Eu* = 0.57-0.59) anomaly
(Fig. 11E).

Late Paleoproterozoic granite dike sample QL20220629-3 (ca. 1,736
Ma) has SiO; of 72.4 wt% and K;0 + NayO of 6.3 wt%. The sample is
peraluminous, as indicated by its molar A/CNK of 1.3 and A/NK of 1.6
(Maniar and Piccoli, 1989) (Figs. 11A and 11C). The sample plots in the
high K calc-alkaline series field (Le Maitre et al., 1989; Rickwood, 1989)
(Fig. 11B). The chondrite-normalized REE pattern is characterized by
LREE enrichment and slightly flat HREE slopes, with a significant
negative Eu (Eu/Eu* = 0.74) anomaly and high (La/Yb)y ratio of 8
(Fig. 11E).

Mesoproterozoic granitoid dike sample QL20220711-4 (ca. 1,349
Ma) has SiO of 67.75 wt% and a relatively higher Al;O3 of 17.14 wt%
and K20 + NayO of 7.81 wt%. The sample is peraluminous, as indicated
by its molar A/CNK of 2.85 and A/NK of 3.07 (Maniar and Piccoli, 1989)
(Figs. 11A and 11C). The sample falls in the shoshonitic series field (Le
Maitre et al., 1989; Rickwood, 1989) (Fig. 11B). The chondrite-
normalized REE pattern of the sample is characterized by significant
LREE enrichment and HREE depletion, with a strong negative Eu (Eu/
Eu* = 0.55) anomaly and high (La/Yb)y ratio of 9.87 (Fig. 11E). On the
primitive mantle-normalized spider diagram, the sample is enriched in
LILE and depleted in HFSEs and REEs, without distinct Ce anomalies
(Fig. 11D). The sample shares common trace element geochemistry of A-
type granitoids (Figs. 11F-11H), specifically high Ga, Zn, Zr, Nb, and Y,
and low Ba and Sr, with some variation in Rb (e.g., Collins et al., 1982;
Whalen et al., 1987).

Early Mesoproterozoic granitoid dike sample QL20220629-2 (ca.
1,506 Ma) has SiO, of 74.82 wt%, KoO + NasO of 7.81 wt%, and low
P,0s5 concentrations. The sample is peraluminous as indicated by its
molar A/CNK of 1.13 and A/NK of 1.34 (Maniar and Piccoli, 1989)
(Figs. 11A and 11C). The sample plots in the field of the high K calc-
alkaline series (Le Maitre et al., 1989; Rickwood, 1989) (Fig. 11B).
The chondrite-normalized REE pattern of the sample is characterized by
LREE enrichment and slight flat HREE slopes, with a significant negative
Eu (Eu/Eu* = 0.51) anomaly and high (La/Yb)y ratio of 11.26
(Fig. 11E). On the primitive mantle-normalized spider diagram, the
sample is enriched in LILEs and slightly depleted in HFSEs (Fig. 11D),
suggesting a possible I-type protolith (Figs. 11F-11H). Negative Eu, Sr,
Nb, Ta, and Ti anomalies suggest that plagioclase and rutile occurred as
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Fig. 8. Microphotographs of representative samples collected in this study.

residual phases in the source. As such, the precursor magma was likely Two late Paleoproterozoic gabbro dike samples QL20220711-1A and
produced by dehydration melting in a predominantly lower crustal QL20220711-1B (ca. 1,862-1,841 Ma) have SiO, of 46.3-49.0 wt%,
setting under relatively low pressures. high MgO of 5.5-6.8 wt%, and Ni of 71.5-84.3 ppm. The samples are
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Fig. 8. (continued).

metaluminous, as indicated by their molar A/CNK of 0.59-0.77 and A/
NK of 2.02-2.46 (Maniar and Piccoli, 1989) (Figs. 11A and 11C).
Chondrite-normalized REE patterns of the samples are characterized by
slight LREE enrichment (Lay/Yby = 2.10-2.41) and flat HREE slopes
with no obvious Eu anomaly (Eu/Eu* = 0.91-1) (Fig. 11E). On primitive
mantle-normalized spider diagrams, the samples are enriched in LILES
(e.g., U and K) and depleted in HFSEs (e.g., Nb and Ta) (Fig. 11E).
Three granitic gneiss samples QL20220711-2A, QL20220711-2B,
QL20220711-3 (ca. 2,344-2,335 Ma) have consistent lower initial 3Sr/
86gr ratios of 0.702914-0.688088 and eyg(t) values of 1.85 to 3.14
(Fig. 11I). Two meta-gabbro samples QL20220711-1A and
QL20220711-1B (ca. 1,862-1,841 Ma) have consistent lower initial
8751/ 865y ratios of 0.706941-0.694602 and exq(t) values of 0.63-0.64
(Fig. 11I). In contrast, granite dike sample QL20220629-3 (ca. 1,746
Ma) has higher initial 87Sr/ 8%Sr ratios of 0.741077 and end(t) values of
2.09 (Fig. 11I). Granitoid sample QL20220629-2 (ca. 1,506 Ma) has
initial 8”Sr/ 8°Sr ratios of 0.696976 and end(t) values of -3.67 (Fig. 111),
whereas granitoid sample QL20220711-4 (ca. 1,349 Ma) has anomalous
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Rb/Sr ratio with no usual /Sr/ 8°sr analyze and enq(t) values of -11.42
(Fig. 11I). Our study shows that the whole rock Nd-Hf isotopes of these
samples yield linear trends in Nd-Hf space that mostly overlap with the
terrestrial array (Fig. 11J).

5. Discussion
5.1. Precambrian magmatism of the Qaidam block

Zircon Pb-Pb ages of Precambrian granitoid samples from the
northern Qaidam block fall into six main age groups (Fig. 3E): (1) an
early Paleoproterozoic group with a ca. 2.4 Ga peak; (2) a late Paleo-
proterozoic group with a ca. 1.98 Ga peak; (3) an early Mesoproterozoic
group with a ca. 1.5 Ga peak; (4) a late Mesoproterozoic group with a ca.
1.1 Ga peak; (5) an early Neoproterozoic group with a ca. 0.95 Ga peak;
and (6) a middle Neoproterozoic group with a ca. 0.75 Ga peak.
Contemporary debate regarding the evolution of the Qaidam block has
focused on the tectonic settings during emplacement of the early
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Fig. 9. U-Pb concordia diagrams showing results of single-shot zircon analyses. Error ellipses are 2. Circles represent ~30 pm analyzed spots. Insets show the
weighted mean age for selected zircon grains. MSWD-mean square of weighted deviates.

Paleoproterozoic (ca. 2.4 Ga) granitic gneisses; specifically, whether the
granitic gneisses were generated in a magmatic arc during subduction or
rifting associated with continental breakup (e.g., Lu et al., 2006, 2008b;
Gong et al., 2012a, 2012b; Yu et al., 2017b). Our granitic gneiss samples
have major and trace elements characteristics similar to typical adakites
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with their depleted in HREE, high Sr, and low Y contents. However, low
MgO, Cr, Ni, and Sc contents and Mg” suggest that the magma was not
derived from a subducted oceanic slab. Positive eyg(t) values indicate
that the granitic gneisses are derived from a depleted mantle source. A
low initial Sr ratio implies that portions of this source magma are
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Fig. 9. (continued).

possibly derived from partial melting of juvenile crust, resulting in high
temperature-pressure metamorphism. This magma may have been
supplied via mantle upwelling and underplating in an extensional
setting following collision and crustal thickening. Therefore, we inter-
pret that the ca. 2.4 Ga granitic gneisses were generated during regional
extension.

Previously reported geochemistry results for both the Ilate

Paleoproterozoic and late Mesoproterozoic—early Neoproterozoic gran-
itoids with ca. 1.98 Ga and ca. 1.1-0.9 Ga zircon age peaks, respectively,
suggest generation in a magmatic arc (e.g., Gehrels et al., 2003a).
Emplacement of the late Paleoproterozoic gabbro dikes (ca. 1.86-1.84
Ga) is thought to have occurred during regional extension. In this study,
the major- and trace-element and Sr-Nd isotope geochemistry of late
Paleoproterozoic gabbro samples exhibit a strong affinity with magma
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Table 1
Summary of sample locations and geochronology results from this study.
Sample number Rock type Lattitude Longitude Elevation Methods Ages
CN) (°E) (m)
QL20220711- zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd 2345 + 32
2A granitic gneiss 37°23'31.60"  97°22'04.10" 3006 isotope Ma
QL20220711- zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd 2448 + 24
2B granitic gneiss 37°23'31.60"  97°22'04.10" 3006 isotope Ma
zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd 2344 + 50
QL20220711-3 granitic gneiss 37°2331.60"  97°22'04.10" 3006 isotope Ma
2353 £ 14
QL20220703-3 granitic gneiss 37°27'00.30"  97°15'04.60" 3469 zircon U-Pb/zircon Lu-Hf Ma
QL20220711- zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd 1841 + 38
1A meta-gabbro dike 37°23'31.79"  97°22'04.03" 3009 isotope Ma
QL20220711- zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd 1862 + 40
1B meta-gabbro dike 37°23'31.60"  97°22'04.10" 3006 isotope Ma
zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd 1746 £ 19
QL20220629-3 granitic dike 37°24'49.36" 97°26'56.64" 3236 isotope Ma
zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd 1506 + 24
QL20220629-2 granitic dike 37°24'44.09" 97°26/55.19" 3240 isotope Ma
zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd 1349 + 24
QL20220711-4 granitic dike 37°2311.10" 97°21'40.00" 3008 isotope Ma
migmatized gneiss
QL20220713-9 vein 37°25'14.73" 97°28'15.27" 3401 zircon U-Pb 506 + 6 Ma
QL20220713-6 mica quartz schist 37°24'27.10" 97°28'13.76" 3271 zircon U-Pb
QL20220701-5 meta-sandstone 37°30'30.87"  98°08'54.89" 4066 zircon U-Pb
QL20220713-14  mica quartz schist 37°25'16.54"  97°28'15.79" 3404 zircon U-Pb
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Fig. 10. Plot of zircon age versus zircon eyg(t). Data for magmatic zircons from Precambrian intrusions in the North Qaidam block (Fu et al., 2015; Wang et al., 2021;
Teng et al., 2022; Chen et al., 2007a, 2007b, 2009; Hao et al., 2022; Li et al., 2007) are shown for comparison.

derived from ocean island basalt-type sources. Ca. 1.74 Ga and ca. 1.35
Ga granite dikes analyzed in this study show A-type granite and “within-
plate” geochemical characteristics generally associated with extension
regardless of the origin of the magma source (e.g., Whalen et al., 1987;
Eby, 1990, 1992; Turner et al., 1992). The REE pattern of the A-type
intrusions seems to reflect the tetrad effect attributed to melt-fluid
interaction during a late stage of the magma evolution (Jahn et al.,
2001). Positive eng(t) and Sr isotopes indicate that the source magma of
the granitic dikes is derived from the partial melting of juvenile lower
crust that originated from a depleted mantle. These high-K, calc-alkaline
series granitic dikes are possibly a product of post-orogenic magmatism.
Previously reported geochemical results (e.g., Wang et al., 2016d; Wang
et al., 2021) and the ca. 1.5 Ga, I-type granitic gneiss analyzed in this
study suggest generation in an anorogenic setting, possibly a rift
featuring mantle upwelling. Early Neoproterozoic magmatism and
continent-continent collision in the northern Qaidam block were
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followed by ca. 0.75-0.53 Ga, rift-related magmatic and/or plume ac-
tivity, which are generally associated with opening of the Qilian Ocean
in the north and Paleo-Kunlun Ocean in the south (e.g., Wu et al., 2016;
Zuza et al., 2018). Neoproterozoic rifting and continental breakup were
followed by deposition of passive continental margin sequences in the
Qaidam block and surrounding regions (e.g., Wu et al., 2016, 2017).

5.2. Proterozoic tectonostratigraphy of the Qaidam block

The metamorphic basement of the Qaidam block is referred to as the
Quanji massif, which consists of the Delingha complex, Dakendaban
Group, and Wandonggou Group. The oldest basement rock of the Qai-
dam block is the Delingha complex, which includes ca. 2.4-2.2 Ga,
highly metamorphosed granitic gneiss, and amphibolite and mafic
granulite enclaves. The geochemistry and isotope characteristics of ca.
2.39-2.34 Ga granodioritic and monzonitic gneisses from previous
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Fig. 11. Geochemical plots of the Precambrian rock samples collected in this study. Data for Precambrian intrusions in the North Qaidam block (Fu et al., 2015;
Wang et al., 2021; Cheng et al., 2017b; Gong et al., 2014, 2019; Teng et al., 2022; Chen et al., 2007a, 2007b, 2009; Hao et al., 2022; Yu et al., 2017b; Li et al., 2007)
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versus A/NK plot (Maniar and Piccoli, 1989). (D) Primitive mantle-normalized and (E) chondrite-normalized rare earth element multi-element patterns. Primitive
mantle and chondrite data are from McDonough and Sun (1995). (F-H) Plots of Zr, Nb, and Y versus 10,000*Ga/Al. (I) Plots of whole-rock (®7Sr/808r); versus eNd(t)
and (J) whole-rock eNd(t) versus zircon eHf(t). Oceanic sediments including Fe-Mn crust and nodules, deep-sea clays and biogenic sediments, sands, Himalayan
continental sediments, the seawater array, and terrestrial array are from Chauvel et al. (2008) and Vervoort et al. (2011). Literature data are from Wang et al. (2018).

18



C. Wuetal

studies and this study suggest generation in a post-collisional environ-
ment (Lu et al., 2008b; Gong et al., 2012a, 2012b; Wang et al., 2015c; He
et al., 2018). These granitic gneisses are correlative with similar-aged
granitic gneisses in the North Tarim-North China craton. Specifically,
Paleoproterozoic tectono-thermal events in both the Delingha Complex
and North Tarim-North China craton include: (1) ca. 1.96-1.9 Ga, me-
dium pressure-temperature, amphibolite-facies metamorphism and
local granulite-facies metamorphism (Chen et al., 2013b; Yu et al.,,
2017a, 2017b); (2) ca. 1.85-1.83 Ga emplacement of amphibolite dykes
with arc-related geochemical features that formed in a back-arc basin
(Liao et al., 2014); and (3) ca. 1.82-1.8 Ga, medium pressure-
temperature, amphibolite-facies metamorphism related to continental
collision (Chen et al., 2013b). Detrital zircon U-Pb data from late Pale-
oproterozoic metasedimentary rocks of the Quanji massif yield two
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distinct age populations of ca. 2.5-2.2 Ga and ca. 2.05-1.75 Ga (Sun
et al., 2019). These age populations reflect a single regionally extensive
unit that extended from the North Tarim to the North China craton.
Detrital zircon U-Pb ages commonly represent the timing of crys-
tallization of an igneous source rock and/or metamorphic overprinting,
and thus, can only be used to estimate a maximum depositional age of
detrital zircon-hosting strata. For metasedimentary rocks of the Qaidam
block, detrital zircon U-Pb ages constrain their provenance. Here, we
revise the debated stratigraphic divisions of Precambrian metamorphic
and metasedimentary rocks in the Qaidam block based on their zircon
ages. Detrital zircon U-Pb ages of late Paleoproterozoic-early Meso-
proterozoic metasedimentary rocks of the Quanji massif yield two
distinct age populations with ca. 2.6-2.2 Ga and ca. 2.05-1.75 Ga peaks
and a maximum depositional age of ca. 1.65 Ga (Zhang et al., 2012g; Li

E. upper section of Neoproterozoic
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Fig. 12. Normalized probability plot of Precambrian detrital zircon ages from the Qaidam block. Data are from: Zhang et al., 2012f; Li et al., 2018a, 2018b; Sun et al.,

2019, Wang et al., 2019a, 2019b; Li et al., 2022; and this study.
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etal.,, 2018a, 2018b; Sun et al., 2019, Wang et al., 2019b; Li et al., 2022)
(Fig. 12). Metavolcanic tuff layers aged at ca. 1.65-1.64 Ga are also
present in the late Paleoproterozoic—early Mesoproterozoic metasedi-
mentary rocks (Zhang et al., 2016). Field observations show ca. 1.5 Ga
trondhjemite intruded the late Paleoproterozoic-early Mesoproterozoic
metasedimentary rocks (Wang et al., 2016d and this study), all of which
subsequently experienced ca. 1.47-1.3 Ga regional metamorphism and
anatexis (Wang et al., 2021; Li et al., 2022). These ages constrain the
deposition of the protoliths of the metasedimentary rocks to between ca.
1.65-1.5 Ga, potentially in a rift basin (Wang et al., 2019b). The prov-
enance of the late Paleoproterozoic—early Mesoproterozoic metasedi-
mentary rocks may be the Neoarchean-Paleoproterozoic North Tarim-
North China craton and Paleoproterozoic gneiss and intrusions in the
Qaidam block.

Mesoproterozoic mica quartz schist sample (QL20220713-6) has a
maximum depositional age of ca. 1.37 Ga and contains a single youngest
zircon grain age of ca. 1,277 Ma (Fig. 12), which confirms Meso-
proterozoic deposition. In addition, two prominent zircon age pop-
ulations with ca. 1.74 Ga and ca. 2.5 Ga peaks suggest a source in the
North Tarim-North China craton and local Qaidam block. The detrital
zircon ages of the late Mesoproterozoic—early Neoproterozoic meta-
sedimentary rocks yield age peaks at ca. 1.43 Ga, ca. 1.3-1.2 Ga, ca. 1.1
Ga, and ca. 0.95 Ga, with a ca. 0.93 Ga maximum depositional age
(Wang et al., 2019b) (Fig. 12). In addition, these metasedimentary rocks
contain a ca. 1.1 Ga metavolcanic tuff layer (Wang et al., 2019a, 2019b)
and are intruded by ca. 0.9 Ga garnet-bearing granitic gneiss (Ma et al.,
2018). Correlative Proterozoic rocks have been reported in northern
Tibet. Gehrels et al. (2003b) reported detrital zircon ages from two
Proterozoic samples, one in the central Qilian Shan and another from the
Altyn Tagh Range, both of which are intruded by ca. 925 Ma granitoid
(Gehrels et al., 2003a, 2003b). Wu et al. (2017) and Zuza et al. (2018)
reported two Mesoproterozoic quartzo-feldspathic schist samples in the
central Qilian block that were deposited between ca. 1,200-960 Ma
based on their detrital zircon ages and intrusive relationships with early
Neoproterozoic arc granitoids. In addition, the northern and south-
western North China craton contain numerous correlative rocks (e.g.,
Wu et al., 2017, 2021, Wu et al., 2022a, 2022b, 2022c). Thus, we
interpret that the North China craton, local Qaidam block, and western
Laurentia were sources of the late Mesoproterozoic-early Neo-
proterozoic metasedimentary rocks examined in this study (e.g., Wen
et al., 2017; Wu et al., 2017; Zuza and Yin, 2017; Wang et al., 2019b).

In the Qaidam block, we mapped a Neoproterozoic metasedimentary
sequence, which can be divided into two sections (Fig. 12). The lower
section consists of undeformed metasandstone and metavolcanic layers
in the northern part of the study area. The upper section consists of
deformed garnet mica quartz schist intruded by ca. 506 Ma gneiss in the
southern part of the study area. A metasandstone sample from the lower
section has two main zircon age populations of ca. 809-721 Ma and ca.
1,995-1,738 Ma, and a ca. 725 Ma maximum depositional age (Fig. 12).
In this sample, two minor age populations occur at ca. 2,226-2,060 Ma
and ca. 2,791- 2,721 Ma. Metavolcanic layers in the lower section are
ca. 740-734 Ma (Ji et al., 2018; Bai et al., 2019). A schist sample from
the upper section has a dominant age population of ca. 995-603 Ma with
one peak at ca. 840 Ma and a few Archean ages. For this sample, the
deposition age is estimated to be ca. 634-506 Ma (Fig. 12). The Archean
and Paleoproterozoic aged zircon grains from this sample may be
sourced from the North Tarim-North China craton and local Qaidam
block. Although Li et al. (2019) argued a Gondwanan provenance for the
Neoproterozoic-aged zircon grains, the local Qaidam block, central
Qilian-Altyn Tagh terrane, and western North China craton are likely
detrital sources for the Neoproterozoic metasedimentary sequence (e.g.,
Gebhrels et al., 2003a, 2003b, 2011; Wu et al., 2017, 2019, 2021, 2022a;
Zuza and Yin, 2017; Zuza et al., 2018). We observed that the Neo-
proterozoic metasedimentary sequence and early Paleozoic gneiss
intrusion are thrust over Paleoproterozoic gneiss. Some researchers have
linked northern Tibet to the Yangtze block of southern China or other
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Gondwana continents based on records of ca. 1.3-0.9 Ga magmatism (e.
g., Wan et al., 2006; Tung et al., 2013; Xu et al., 2007; Lu et al., 2008b,
2009; Han et al., 2016). However, we note that these ca. 1.3-0.9 Ga ages
are not particularly useful for correlating continents, as such ages are
found in East Antarctica, India, Australia, central Asia, southern China,
southwestern North China, and Tarim (e.g., Fitzsimons, 2000; Ling et al.,
2003; Chen et al., 2006a; Wu et al., 2006; Ye et al., 2007; Hu et al., 2010;
Song et al., 2012; Kroner et al., 2013; Meng et al., 2013; Xu et al., 2013;
Dan et al., 2014; Wang et al., 2014b; Wang et al., 2014c; Chattopadhyay
et al., 2015; Wu et al., 2017, 2022a).

5.3. Precambrian tectonic evolution of the Qaidam block

Based on our results and a regional synthesis of the Precambrian
tectonostratigraphy and magmatic records (Figs. 13-14), we describe
the Proterozoic tectonic evolution of the Qaidam block and its re-
lationships to the neighboring North China craton, Tarim craton, and
South China block. In our Proterozoic reconstruction of the Qaidam
block, we interpret a combined Tarim—North China continental strip (i.
e., Greater North China), which separated the Paleo-Asian and Tethyan
oceans in the Neoproterozoic-Paleozoic following global Neo-
proterozoic rifting. We also assume that the Neoproterozoic shape of the
northern margin of the North China-Tarim craton was modified by
rifting in the Neoproterozoic-Cambrian. The Tarim craton consists of
the North Tarim and South Tarim blocks that were sutured in the Pro-
terozoic (e.g., Guo et al., 2005; Xu et al., 2013). South Tarim correlates
with the Kunlun-Qaidam continent and North Tarim correlates with the
North China craton. We also suggest the Songpan-Ganzi terrane is the
westward extension of the Yangtze craton of western South China since
the Mesoproterozoic (i.e., Greater South China; e.g., Wu et al., 2016).
Lastly, restoring Cenozoic slip on the Altyn Tagh fault and removing
effects of the early Paleozoic Qilian orogeny suggests that the Kunlun-
Qaidam-Qilian continent was part of the North China-Tarim craton in
the Neoproterozoic. This interpretation is viable according to global
plate reconstructions that imply Tarim and North China were adjacent
throughout the Phanerozoic (e.g., Domeier and Torsvik, 2014).

In the North Tarim-North China continent and Quanji massif of the
Qaidam block, ca. 2.45-2.34 Ga, highly metamorphosed granitic gneiss,
ca. 2.32-1.96 Ga amphibolite-facies, metavolcanic-sedimentary and
supracrustal rocks, and late Paleoproterozoic metamorphic rocks were
emplaced, which supports a close connection between the Qaidam block
and North Tarim-North China continent in the Paleoproterozoic
(Fig. 13A). In addition, the Qaidam block contains ca. 2 Ga arc granitoid,
ca. 1.86-1.83 Ga meta-mafic dikes, ca. 1.8-1.77 Ga rapakivi granites, ca.
1.74 Ga A-type granite, and evidence of late Paleoproterozoic—early
Mesoproterozoic (ca. 1.65-1.5 Ga) rifting. From this, we interpret that
modern-style plate tectonics operated in the Paleoproterozoic during the
assembly of the Columbia-Nuna supercontinent, including oceanic
subduction, continent-continent collision, and post-collisional extension
(Figs. 13B-13E). Furthermore, the occurrence of ca. 1.5-1.4 Ga anoro-
genic magmatic, metamorphic, and anatectic events in the North Qai-
dam block may have been related to the initial break-up of the
Columbia-Nuna supercontinent (e.g., Fan et al., 2013; Wu et al., 2014;
Wang et al., 2016d, 2019b; Wu et al., 2017; Sun et al., 2019; Wang et al.,
2021; Li et al., 2024), which may have continued to ca. 1.37-1.35 Ga
(Fig. 13E). An analogous tectonic event is proposed for the North China
craton (e.g., Zhang et al., 2022a, 2022b; Liu et al., 2023; Zhou et al.,
2018).

Wu et al. (2016) suggested that the Paleo-Qilian Ocean opened be-
tween the North China-Tarim craton and Qilian-Qaidam-Kunlun conti-
nent within the Greater North China craton (e.g., Wu et al., 2022bj; i.e.,
part of the larger Balkatach continent of Zuza and Yin, 2017). They also
interpreted that the Proto-Kunlun Ocean opened between the Songpan-
Ganzi terrane and Qilian-Qaidam-Kunlun continent beginning in the
Mesoproterozoic (Fig. 14A). Early Neoproterozoic (ca. 1-0.9 Ga)
magmatic arcs developed along the northern and southern margins of
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Fig. 13. Schematic, lithospheric-scale cross sections and block diagrams
depicting the tectonic evolution of the Qaidam block from the onset of the
Paleoproterozoic to the Mesoproterozoic: (A) ca. 2.45-2.3 Ga, (B) ca. 2 Ga, (C)
1.9-1.88 Ga, (D) 1.86-1.74 Ga, and (E) ca. 1.5-1.35 Ga.

the Qilian-Qaidam-Kunlun continent during subduction of Paleo-Qilian
and Proto-Kunlun oceanic lithosphere (Fig. 14A). Closure of these ocean
basin and cessation of subduction occurred ca. 0.85-0.75 Ma (e.g., Wu
et al.,, 2016, 2017, 2022b; Zuza and Yin, 2017; Zuza et al., 2018)
(Fig. 14B). Late Neoproterozoic rifting of this sutured continental
landmass opened the Qilian oceans in the south and the Paleo-Asian
Ocean in the north. The lack of Phanerozoic sutures or amalgamation
structures between the South Tarim and Qaidam blocks suggests that the
landmasses were connected prior to and during the opening of the Qilian
oceans (e.g., Wu et al., 2017; Zuza et al., 2018). Evidence for bimodal
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volcanism and passive-margin sedimentation in the North Tarim and
North China cratons suggest that the opening of the Paleo-Asian Ocean
started ca. 0.8 Ga (e.g., Li et al., 2005a, 2005b; Zhu et al., 2008b; Turner,
2010; Shu et al., 2011a; Wu et al., 2016; Zuza and Yin, 2017) (Fig. 14B).
Opening of the North and South Qilian oceans may have commenced ca.
750-730 Ma, whereas opening of the Paleo-Kunlun Ocean occurred just
prior to ca. 680 Ma (Wu et al., 2016, 2017, 2019, 2022b; Zuza et al.,
2018) (Fig. 14C).

5.4. Proterozoic supercontinent reconstruction

Debate has focused on the paleogeographic configuration of the
North China craton in the Columbia-Nuna supercontinent. Most re-
searchers have interpreted that the north-south-striking Trans-North
China orogen in the center of the North China craton is a collisional
suture. The Trans-North China orogen between the Eastern and Western
blocks (Zhao et al., 2001, 2005; Zhao et al., 2012) was delineated by its
regional high-grade metamorphism and clockwise P-T-t paths at ca. 1.85
Ga. However, others have argued that a ~1600-km-long,
east-west-striking collisional orogen occurs along the northern margin of
the North China craton, marking the suture where the craton joined the
Columbia-Nuna supercontinent. In this model, the center of the North
China craton formed via arc-continent collision in the Neoarchean (ca.
2.5 Ga), during which at least one intra-oceanic arc accreted to the
eastern margin of the craton. This proposed collisional orogen is referred
to as the Central Orogenic Belt (Kusky and Li, 2003; Kusky et al., 2007,
2016), which is thought to have formed by the accretion of magmatic
arcs between ca. 2.7-2.55 Ga (Kusky et al., 2016; Zhai et al., 2021; Peng
et al., 2023). In this collisional orogen, field-based studies document: (1)
ca. 2.55-2.5 Ga ophiolite fragments and mélanges (Kusky et al., 2001,
2007, 2016; Wang et al., 2017a, 2019a; Ning et al., 2020); (2) ca. 2.7 Ga
and ca. 2.55 Ga fore-arc subduction sequences and accretionary nappes
(Ning et al., 2020; Zhong et al., 2021; Huang et al., 2023); (3) ca. 2.5 Ga
paired metamorphic belts and foreland basin sequences with ages
reflecting ca. 2.5 Ga arc/continent collision (Huang et al., 2020, 2022b);
and (4) evidence of ca. 2.5-2.45 Ga erosion denudation of the orogen.
Intracontinental rifting of Archean cratons since ca. 2.4 Ga, prior to
subduction initiation, may reflect the onset of the Paleoproterozoic
Columbia-Nuna supercontinent cycle (e.g., Zhou and Zhai, 2022; Zhou
et al., 2024) (Fig. 13A).

Following the arc(s)/protocontinent collision, subduction polarity
flipped (e.g., Kusky et al., 2007; Wang et al., 2017a) and a new east-
dipping subduction zone resulted in the accretion of new crustal frag-
ments, including the Ordos Block (i.e., a possible oceanic plateau; Kusky
and Mooney, 2015) and the Yinshan ribbon continent (i.e., the Khon-
dalite belt after its metamorphic grade). By ca. 2.3 Ga, subduction and
magmatism were initiated along the present-day northern margin of the
craton (Kusky et al., 2016). In this model, subduction and magmatism
along the northern cratonic margin occurred along a ~600-km-long
distance and protracted duration from ca. 2.3-1.85 Ga, both similar to
the modern southern Andes (e.g., Horton et al., 2022). During this time,
many episodes of slab rollback, ridge subduction, back-arc extension,
and sedimentation/magmatism occurred. Subduction ceased when the
possible Siberian craton collided with the growing Columbia-Nuna Su-
percontinent (Fig. 13B). Wu et al. (2018) initially recognized an east-
west-striking, ca. 1.9-1.88 Ga tectonic mélange and mylonitic shear
zones along the northern margin of the craton. Further field studies by
Wu et al. (2022b, 2023) documented the presence of an east-west
striking belt of ca. 2.2-2 Ga magmatic arc rocks (Fig. 13B) and lower
Paleoproterozoic strata folded by north-south-oriented contraction, all
of which experienced ca. 1.9-1.8 Ga, granulite-facies metamorphism
(Fig. 13C). The Paleoproterozoic Northern Margin orogen contains ev-
idence of overprinting by a ca. 1.85 Ga metamorphic event and intrusion
by ca. 1.87-1.78 plutons in a post- collisional setting, such as in the
Rodinian belts. In this context, the ca. 2.45-2.34 Ga, highly meta-
morphosed and extension-related gneiss, ca. 2.32-1.96 Ga amphibolite-
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Fig. 14. Map-view diagrams depicting the Neoproterozoic tectonic evolution of the Qaidam block at (A) ca. 1,100-900 Ma, (B) ca. 800 Ma, and (C) ca. 700 Ma.

facies rocks, and ca. 1.86-1.74 Ga extension-related intrusions also
developed in the North Tarim and Qaidam block (Fig. 13C). The
occurrence of these rocks supports a contiguous North Tarim-North
China-Qaidam continent for the Neoarchean arc-continent and Paleo-
proterozoic continent-continent collisional orogens.

Supercontinent reconstructions are partly based on spatial and
temporal correlations of key geological features. Zhao et al. (2002)
established connections between the North China and Indian cratons
based on a similar ca. 1.85 Ga orogeny. The reconstruction of Kusky and
Santosh (2009) used the Paleoproterozoic Northern Margin orogen to fit

22

the North China craton into a supercontinent, correlating the orogen
with the Trans-Amazonian of South America and Eburnian/Birimian
orogens of West Africa. Grenholm (2019) fits most cratons of Columbia
into the “Atlantica” configuration, wherein the Northern Margin orogen
of the North China craton accreted with the Birimian terranes during the
Eburnia orogeny (Kusky and Traore, 2023). Wu et al. (2021) suggested a
correlation between the Limpopo belt in South Africa and Longshou
Shan along the southwestern margin of the North China craton.
Although these hypotheses successfully link specific features and
piercing points, ambiguous paleomagnetic data and non-unique linkages
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open these configurations to new interpretations. Here, we emphasize
the importance of using the Northern Margin orogen to fit the North
China craton into the Columbia-Nuna Supercontinent reconstruction.
In many Rodinia reconstructions, the North China craton is
commonly placed on the outside of the supercontinent, and its shape is
considered limited based on the geographically defined, modern shape
of northern China, north of the Qinling-Dabie orogenic belt (e.g., Halls
et al., 2000; Zhang et al., 2006; Li et al., 2008d). Three fundamental
issues exist with this configuration: (1) the North China craton was much
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larger in the Precambrian, as far west in present coordinates as the
Karakum or potentially Baltica cratons (e.g., Yin and Nie, 1996; Heubeck
et al., 2001; Zuza and Yin, 2017; Wu et al., 2022a); (2) Paleo- and
Mesoproterozoic structures are truncated by Neoproterozoic rift and
passive margin sequences (e.g., Badarch et al., 2002; Guo et al., 2005),
which requires the North China craton to fit into a larger continental
assemblage before this time; and (3) Paleozoic arc-continent collisional
events across central Asia and Cenozoic intracontinental deformation (e.
g., Sengor and Natal'in, 1996; Yin, 2010) significantly modified the
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original shape of the craton. The northern rim of the Neoproterozoic
North China-Tarim craton was significantly modified by the Paleo-
zoic—early Mesozoic arc-continent collisional events and Cenozoic
deformation. This modification is most evident in the Cenozoic Tian
Shan, where the northern margin of the Tarim craton has subducted
beneath the Tian Shan range up to 200 km in the west (e.g., Burtman,
2012). The northern continental margin of the Tarim craton may have
subducted beneath a Devonian magmatic arc (e.g., Charvet et al., 2011),
implying its original size is larger than its present exposure. The original
Neoproterozoic shape of the northern margin of the North China-Tarim
craton has further been modified by Neoproterozoic-Cambrian rifting
(e.g., Zuza and Yin, 2017). Greater North China likely contributed the
micro-continental fragments that formed the eventual building blocks of
the Paleozoic Central Asian Orogenic System (e.g., Kelty et al., 2008;
Briggs et al., 2009; Sengor et al., 1993; Windley et al., 2007; Kroner
et al.,, 2013; Zuza and Yin, 2017). Sedimentological, paleontological,
and geochronological data indicate that the Kazak-Yili-Tian Shan (Biske
and Seltmann, 2010; Levashova et al., 2011; Meert, 2012), Tuva-Mongol
(Rojas-Agramonte et al., 2011), and Erguna-Xing’an-Songliao (Han
et al., 2011) microcontinents were linked to the northern margin of
Tarim and North China in the Neoproterozoic.

The issue of which continent(s) were once linked with the western
margin of Laurentia as part of Rodinia remains controversial (e.g.,
Dalziel, 1991; Hoffman, 1991; Moores, 1991; Li et al., 1995; Karlstrom
et al., 1999; Burrett and Berry, 2000; Wingate et al., 2002; Wang et al.,
2022). As described above, our newly reconstructed and previously
unrecognized Greater North China must fit in a Rodinia configuration
(Fig. 15A). We propose that Greater North China was affixed in a north-
south orientation along the western margin of Laurentia (e.g., Zuza and
Yin, 2017; Wu et al., 2022a) (Fig. 15A). If Siberia was in a slightly
modified position from that proposed by Rainbird et al. (1998), Greater
North China fits along this western margin (e.g., Zuza and Yin, 2017; Wu
etal., 2022a) (Fig. 15A). The major cratons in western Laurentia include
the Wyoming craton and Medicine Hat-Hearne provinces, which are
joined by the ca. 1.86-1.8 Ga, granulite-facies Great Falls Tectonic Zone
(e.g., Mueller et al., 2002; Foster et al., 2006). The presence of a north-
dipping, paleo-subducted slab under the Medicine Hat block, imaged by
geophysical studies (Kanasewich et al., 2002; Ross and Eaton, 2002),
and a ca. 1.86 Ga calc-alkaline suite (i.e., the Little Belt arc) in the same
block suggest that north-dipping subduction accommodated conver-
gence of the Wyoming craton and Medicine Hat block before collision.
The westernmost cratons (i.e., those that would have been in contact
with Greater North China) include the Grouse Creek and Priest River
blocks. The Grouse Creek orthogneiss complex contains ca. 2.55-2.53
Ga leucogranite that intrudes older schist with >3-2.5 Ga detrital zircon
ages (e.g., Strickland et al., 2011). These rocks are exposed in northern
Nevada and Utah, just west of the Wyoming craton. The Priest River
block is a complex assemblage of ca. 2.67-2.56 Ga migmatitic para-
gneiss, lenses of coarse-grained amphibolite, and quartzo-feldspathic
orthogneiss, which are intruded by ca. 1.58 Ga felsic granitoids (e.g.,
Doughty et al., 1998). Evidence of a similar Neoarchean orogeny is
observed in the Central Orogenic belt of the North China craton (cf.
Kusky et al., 2007; Trap et al., 2012). Between these Archean cratons
within Laurentia is the Selway terrane, which consists of ca. 2.4-1.8 Ga
arc fragments (e.g., Foster et al., 2006). We note that ca. 1.7-1.6 Ga
detrital zircon ages are observed in the northern North China and
Longshou Shan regions (e.g., Zhou et al., 2018; Liu et al., 2020a; Wu
et al., 2021, 2022b; ZJ Wu et al., 2022c), suggesting that the western
margin of Laurentia may have contributed detritus at that time.

The occurrence of plate tectonic processes on Earth during the
Paleoproterozoic along the northern margin of the North China-Tarim
craton is supported by ca. 2.2-1.8 Ga subduction-collision orogens
associated with the assembly of the Columbia-Nuna supercontinent (e.
g., Kusky et al., 2016; Wu et al., 2018, 2022a, 2022b, 2022c, 2023). The
basement rocks of Greater North China and Laurentia both involve
similar Archean cratons that collided in the Paleoproterozoic. This
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stabilized craton, with the Eastern domain of Greater North China (e.g.,
Zuza and Yin, 2017; Wu et al., 2022a, 2022b, 2022c), also consisted of
Siberia to the north. With our proposed fit, the Northern Margin orogen
is linked with the Great Falls Tectonic Zone. Overlying these meta-
morphic basement rocks are thick Proterozoic sequences of low-grade to
unmetamorphosed sedimentary strata. A majority of the exposed base-
ment rocks in the Karakum and Tajikistan terranes consist of ca. 1.9-1.8
Ga gneiss and greenstone rocks (e.g., Zonenshain et al., 1990). These
terranes are interpreted to align with the ca. 1.9-1.85 Ga Fort Simpson
belt (Ross et al., 2000) in western Laurentia. The Belt-Purcell Super-
group (ca. 1.47-1.35 Ga; Winston, 1986) spatially and temporally cor-
relates with similarly-aged Jixian strata in the North China craton (e.g.,
Zhang et al., 2007a). Both sedimentary sequences are thick (i.e., >10
km) and consist of carbonate and mudrock strata deposited in rift basins
(e.g., Ross et al., 1992; Zhang et al., 2007a; Meng et al., 2011; Liu et al.,
2023).

Recent paleomagnetic datasets from both Tarim and North China
have been used to support the separate linkage of each continent to the
western margin of Laurentia in the Neoproterozoic (e.g., Wen et al.,
2017, 2018; Ding et al., 2021). In these reconstructions, the traditional
Tarim and North China cratons are separated in the Neoproterozoic.
However, we interpret these datasets to suggest that these two conti-
nental regions were at similar paleo-latitudes along the western margin
of Laurentia in the Neoproterozoic, and thus, the simplest interpretation
is that they were connected and contiguous. For example, a problem
with the reconstruction of Ding et al. (2021), which places eastern North
China adjacent to the western Tarim craton, requires the collision of the
two continents after Neoproterozoic rifting. The products of such a
collision, and preceding arc subduction, have not been identified be-
tween the two cratons, as outlined in this work and Zuza and Yin (2017).

Additional support for the linkage between Greater North China and
western Laurentia is the potential correlation of the ca. 1.4-1.3 Ga
carbonatite-related REE deposits in Mountain Pass of western North
America and Bayan Obo of northern China within an intra-plate rift
system (Zhang et al., 2022a, 2022b). These regions are the two of the
largest and most economically productive REE deposits in the world. In
our proposed reconstruction, the ca. 1.3 Ga Bayan Obo rocks (e.g., Li
etal., 2021; Zhou et al., 2018; Liu et al., 2020a) are contiguous with the
ca. 1.38 Ga Mountain Pass rocks (Castor and Hedrick, 2006; Watts et al.,
2022).

In light of the proposed linkages described above, we interpret that
Greater North China and Laurentia became separated in the late Neo-
proterozoic, forming the Paleo-Asian and Pacific oceans. The Central
Asian microcontinents formed during this rifting, and the final division
of the Paleo-Asian and Pacific oceans occurred in the late Paleozoic.
Possible east-dipping subduction facilitated the motion of western
Greater North China toward Laurentia-Siberia (Zuza and Yin, 2017)
(Fig. 15B). The collision of western Greater North China was dia-
chronous from south to north with final suturing occurring by ca. 800
Ma (Fig. 15A). Following collision events in the north, western Laurentia
and Greater North China experienced coeval Neoproterozoic rifting. In
western Laurentia, unsuccessful rifting started at ca. 750 Ma and pro-
gressed northward (Fig. 15C), leading to the development of widespread
intracontinental basins. Final rift separation was complete by ca. 550
Ma, leading to the development of a Cambrian passive continental
margin outboard of Laurentia (e.g., Lund et al., 2010; Balgord et al.,
2013) (Fig. 15D). Neoproterozoic rift deposits and bimodal volcanic
rocks are widespread in the northern Tarim craton, North China craton,
and Central Asian microcontinents (e.g., Han et al., 2011; Meert et al.,
2011; Shu et al., 2011a).

The observations described above also suggest that rifting started ca.
765 Ma (Levashova et al., 2011) and fully developed in the latest Neo-
proterozoic to earliest Cambrian (e.g., Levashova et al., 2010). The rifted
Central Asian microcontinents can be thought to be the result of “tec-
tonic calving” during extension and asymmetric rift development—a
process that may have been thermally enhanced by diffuse bimodal
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volcanism and a warmed lithosphere (e.g., Miiller et al., 2001). Addi-
tionally, similar-aged (i.e., ca. 710 Ma, ca. 655 Ma, and ca. 630 Ma)
diamictites in the Windermere (Lund et al., 2003, 2010; Balgord et al.,
2013) and Qurutagh groups (Xu et al., 2005; Shu et al., 2011a), as well
as in the Central Asian microcontinents (Levashova et al., 2011; Meert
et al., 2011), further support coeval rifting of Greater North China and
Laurentia in a similar paleogeographic position. By the early Cambrian,
both the Greater North China and Laurentian margins experienced
passive-margin sedimentation as the cratons and terranes separated.
With progressive continental separation, Laurentia was removed from
the Central Asian microcontinents that accreted to form the Central
Asian Orogenic System in the Paleozoic (e.g., Windley et al., 2007;
Rojas-Agramonte et al., 2014; Zuza and Yin, 2017; Wu et al., 2022b).

6. Conclusions

In this study, we compiled a large dataset of previous and new U-Pb
zircon and Lu-Hf isotope, whole-rock major, trace-element, and Sr-Nd
isotopic results for Precambrian metamorphic, magmatic, and sedi-
mentary sequences of the Qaidam block. Zircon Pb-Pb ages of Precam-
brian magmatic rocks fall into six main age groups with peaks at ca. 2.4
Ga, ca. 1.98 Ga, ca. 1.5 Ga, ca. 1.1 Ga, ca. 0.95 Ga, and ca. 0.75 Ga.
Geochemistry results support an interpretation that magmatism at ca.
2.4 Ga, ca. 1.5 Ga, and ca. 0.75 Ga was associated with post-collisional
extension, whereas magmatism at ca. 1.1 Ga and ca. 0.95 Ga was asso-
ciated with subduction. Newly reported ca. 1.86-1.84 Ga gabbro, ca.
1.74 Ga and ca. 1.35 Ga A-type granitoids, and ca. 1.5 Ga I-type gran-
itoids in the northern Qaidam block are attributed to magmatism during
intracontinental extension. Detrital zircon ages of late Paleo- to Meso-
proterozoic metasedimentary rocks reflect sources in the coherent
Tarim-North China craton and Paleoproterozoic Quanji massif of the
northern Qaidam block. Western Laurentia was an additional detrital
source of late Mesoproterozoic—early Neoproterozoic metasedimentary
rocks in the Qaidam block. However, the Qaidam block, central Qilian-
Altyn Tagh terrane, and western North China craton (i.e., Longshou
Shan) likely were the detrital sources of Neoproterozoic metasedi-
mentary rocks in the northern Qaidam block. Based on the data collected
in this study and a regional synthesis of Precambrian tectonostratig-
raphy and magmatic records, we present a new model for the protracted
Proterozoic tectonic evolution of the Qaidam block and relationships to
the neighboring cratons. We interpret that the Qaidam block was part of
a combined “Greater North China” continental strip. When placing our
results in the global context, Greater North China fits within the
paleogeographic configurations of the Columbia-Nuna and Rodinia su-
percontinents. Great North China subsequently separated from Lau-
rentia during global Neoproterozoic rifting.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.earscirev.2024.104985.
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