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Abstract—Unmanned aerial vehicle (UAV) swarms present
significant potential in both civil and military applications, yet
the security of swarm communications remains a critical chal-
lenge. While machine learning-based intrusion detection systems
(IDS) have advanced, their effectiveness is often hindered by
the reliance on simulated or irrelevant datasets that do not
adequately capture the unique characteristics of UAV swarm
communications. Furthermore, existing IDS have predominantly
focused on temporal information, overlooking the potential of
spatial relationships within the UAV network. To address these
limitations, this research establishes a testbed of six UAVs forming
an hexagonal graph where each UAV acts as a node and commu-
nicates with its immediate neighbors. We then execute various
cyber-attacks such as false data injection, evil twin, replay, and
denial-of-service attacks on each of the UAVs in the swarm. This
allows us to collect spatial and temporal data under normal
operations and attack conditions. We propose a graph neural
network (GNN)-based IDS that exploits spatial and temporal
information patterns. This research seeks to answer the following
question: Can leveraging the spatial relationships within a UAV
swarm improve detection performance compared to IDS relying
solely on temporal information? Through extensive experiments
and comparison with traditional deep neural network models, we
evaluate the effectiveness of this topology-aware GNN approach
in securing UAV swarm communications.

Index Terms—Graph Neural Networks, UAVs, cyber-physical
systems, intrusion detection systems, and machine learning.

I. INTRODUCTION

WARM of unmanned aerial vehicles (UAVs) have gained

significant attention due to their diverse civilian and mil-
itary applications. The coordinated operation of UAV swarms
enables novel functionalities and facilitates tasks such as
surveillance, coverage, and disaster management, which would
be unattainable if UAVs operated individually [1]. However,
the security of these networked systems is paramount, as vul-
nerabilities could lead to catastrophic consequences, including
physical harm and data breaches [2].

Previous research has investigated intrusion detection sys-
tems (IDS) to protect UAV swarm networks against a range
of cyber-attacks, including denial-of-service, false data injec-
tion, replay, hijacking, and spoofing [2]. Yet, these existing
solutions often overlook the unique characteristics of swarm
communication, such as coordination patterns, ground station
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control, and local data processing. Additionally, the propaga-
tion of cyber-attacks within the swarm and the potential impact
on other UAVs remain under-explored.

Critically, current IDS primarily rely on temporal data, ne-
glecting the valuable insights that spatial relationships within
the swarm can offer for intrusion detection. To address these
research gaps, this paper investigates the following questions:

o Will exploiting temporal and spatial correlations within
the data improve the detection performance?

o« How do the detection capabilities of topology-aware
IDS, which consider the spatial structure of the swarm,
compare to those of topology-unaware IDS?

Answering these questions presents challenges. First, there
is a lack of a dataset that captures the spatial and temporal
correlation patterns inherent within the swarm communication.
Second, existing datasets do not exhibit normal and malicious
swarm behavior examples, which are required for training
effective models. Moreover, training an IDS model requires
careful feature engineering to identify optimal features, as
irrelevant features can hinder model performance. To tackle
these challenges, we carry out the following:

o We developed a testbed comprising of six UAVs (UAV1-
UAV6) arranged in an hexagonal topology, along with
an access point, controller, data collection tools, and an
attacker execution environment. This testbed enables the
controlled execution of cyber-attacks and the collection
of data under both normal and attack conditions.

o We created a comprehensive dataset capturing both nor-
mal and malicious UAV swarm communication patterns.
Specifically, four distinct attacks such as false data
injection, evil twin, replay, and denial-of-service were
executed on each of the UAVs within the swarm. The
dataset includes both spatial and temporal features of
swarm communications.

e We proposed a GNN-based topology aware IDS that
incorporates spatial and temporal relationships between
UAVs. We evaluated the performance against several
benchmark topology-unaware deep learning models, in-
cluding feedforward neural networks (FNN), recurrent
neural networks (RNNs) with long short-term memory
(LSTM) cells, and 1D-convolutional neural networks.

The remainder of this paper is organized as follows. Section



II delves into relevant prior work and its limitations. Section III
details the testbed setup, data collection, and the specific cyber-
attacks considered. Section IV explores data preprocessing and
feature extraction techniques. Section V outlines the proposed
GNN-based IDS. Section VI presents the experimental results,
and Section VII concludes the paper.

II. RELATED WORK

Existing research on IDS for UAV swarm communications
has predominantly focused on three main approaches:

1) Cyber-only IDS: These IDS models are trained exclu-
sively on cyber features, such as packet information, frame
numbers, and payload characteristics. For instance, Mehmood
et al. [3] simulated UAV communications within the COOJA
simulator and generated traffic data to train support vector
machine (SVM), random forest, and K-nearest neighbor-based
IDS. Kou et al. [4] proposed a combined deep autoencoder
and convolutional neural network (CNN) model for anomaly
detection in UAV communications using the InSDN dataset.
Han et al. [5] developed an LSTM-based IDS to detect
anomalies in packets from the CICIDS-2017 dataset.

2) Physical-only IDS: Conversely, physical-only IDS mod-
els are trained solely on physical behavioral features of UAVs,
such as speed, velocity, and temperature. Park et al. [6]
designed a stacked autoencoder for fault detection in UAV
states. Ahn et al. [7] utilized a 1D-CNN to develop an IDS
for identifying anomalies, while Khanapuri et al. [8] employed
a fully connected deep neural network trained on simulated
physical data.

3) Cyber-Physical Fused IDS: A more recent approach
involves fusing both cyber and physical features to enhance
IDS performance. Hassler et al. [9] developed an IDS that
combines both types of features using various deep learning
models, including SVM, FNN, LSTM, and 1D-CNN.

A. Limitations of Existing Work

While these existing approaches have made significant con-
tributions to the field, they all share a common limitation: a
reliance on temporal information alone. None of the existing
research has explored the potential of leveraging spatial rela-
tionships within the UAV swarm for intrusion detection. This
oversight leaves a gap in the understanding of how spatial
information, such as the relative positions and orientations of
UAVs, can be exploited to identify anomalies in a swarm.
Furthermore, there is a lack of publicly available datasets that
capture both the spatial and temporal aspects of UAV swarm
communication under normal and attacked conditions.

III. TESTBED AND DATASET COLLECTION

This section details the equipment, experimental setup, and
methodology used for data collection during both normal and
attacked UAV swarm operations.

(b)

Fig. 1. Illustration of the testbed. (a) Tested setup and equipment. The
computer on the right acts as a ground control station, the computer on the left
acts as an attacker equipped with a network adapter, and the black tower is
the access point; (b) Cartesian 2D Flight Map for the decentralized positional
coordinate system.

A. Equipment

The equipment used includes six DJI Tello EDU drones,
a flight map, a Sagemcom SAC2V2s WiFi access point, an
ALFA AWUSO36ACH network adapter with antenna, and two
computers as shown in Fig. 1.

o The first computer (Computer 1) acts as the ground
control station, connecting to the UAVs and running
Python scripts to send control commands and receive
status telemetry reports from each drone. These reports
contain behavioral data such as barometer readings and
IMU measurements. This data is termed as physical data.

o The flight map provides positional coordinates for en-
abling decentralized UAV-to-UAV communication.

o The access point facilitates the connection between the
UAVs and the ground control station, ensuring seamless
control and coordination of the swarm.

¢ The second computer (Computer 2) mimics an attacker,
equipped with the ALFA adapter and running Kali Linux
along with various tools like Aircrack-ng, Airgeddon,
TCPdump, Scapy, and Wireshark. This computer serves
two primary functions: capturing cyber data exchanged
between the UAVs and the ground station, and executing
cyber-attacks on the swarm.

B. Testbed Setup

Our experimental setup employed six UAVs configured
to establish an hexagonal communication graph through a
consensus-based decentralized control protocol. The testbed
environment consists of the following components:

1) Flight Map: A 2D Cartesian coordinate flight map
with dimensions of 3 x 3 meters was utilized. As illustrated
in Fig. 1b, this flight map serves as a reference for UAV



positioning and enables decentralized communication. This
implementation is essential because Tello EDU drones, pri-
marily designed for indoor use, lack global positioning system
(GPS) or other positional sensors. Instead, they rely on a vision
positioning system comprising a 720p camera and two 3D
infrared sensors for stable hovering. By detecting the flight
map, the drones transmit their positional coordinates (x-axis,
y-axis, and z-axis) and additional telemetry data (roll, pitch,
yaw, etc.) to the ground control station.

2) Onboard PID Controller: Each UAV was equipped
with an independent proportional-integral-derivative (PID)
controller to govern its flight dynamics. This controller em-
ploys feedback mechanisms to maintain desired performance
metrics. The control output u(t) is given as

de(t)
dt ’

where K,,, K;, and Ky are the proportional, integral, and
derivative gains, respectively. The term e(7) represents the
error between the measured output and the desired setpoint
at time ¢t. The proportional term adjusts the control signal in
proportion to the current error. The integral term accounts for
the accumulated past errors, mitigating steady-state deviations.
The derivative term responds to the rate of change of the error.
Tuning these gains ensures stable flight for each UAV.

3) Consensus-based Decentralized Control Protocol: In
addition to the onboard PID controllers, we implemented a
consensus-based decentralized control protocol to coordinate
movement within a swarm. This protocol leverages local
communication and cooperation among the UAVs to reach a
consensus on their collective behavior. The inter-UAV commu-
nication network is modeled as an undirected graph as follows:

g=me) @)

where )V represents the set of nodes (UAVs), £ represents
the edges (communication links) between the adjacent UAVs
to exchange information. The interaction between UAVs are
encoded into the adjacency matrix A as follows:

¢
u(t) = Kpe(t) + Ki/ e(r)dr + K4 (1)
0
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The adjacency matrix A represents the hexagonal commu-
nication topology among the six UAVs, where a non-zero
entry a;; indicates a communication link between UAV 7 and
UAV j. The consensus algorithm employed is a weighted
average consensus protocol, detailed in [10]. At each time
step k, each UAV updates its state x;(k) based on the states
of its neighbors, weighted by the elements of a weight matrix.
In our implementation, all weights are set to 1 for uniform
interaction. The state update rule is given by:

vk +1) = zi(k) +e > aglw;(k) —ai(k), @

JEN;

where ¢ is a step-size parameter or consensus gain controlling
the convergence rate, NV; denotes the set of neighbors of UAV
1, defined by the communication topology represented by the
adjacency matrix A. Through the iterative execution of this
protocol, the swarm gradually converges to a common state,
enabling coordinated movement. More information about the
consensus control algorithm can be found in [10], [11].

C. Data Collection Methodology

The dataset was collected in two distinct phases: normal
flights and flights under cyber-attacks. The normal phase
involved UAVs performing standard flight operations to gather
benign data. In the second phase, the UAV swarm was
subjected to four different cyber-attacks, with data collected
during this phase labeled as malicious. To collect benign data,
we conducted 20 flights under normal operating conditions.
For the malicious dataset, we subjected each of the six UAVs
to four distinct cyber-attack types, resulting in a total of 24
attack flights.
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Fig. 2. Illustration of UAVs making a hexagonal graph.

D. Cyber-Attacks Execution

This subsection outlines the cyberattacks executed on each
of the UAV in the swarm to collect the malicious dataset. The
attacks are explained next.

1) De-authentication Attack: A de-authentication attack
aims to disconnect legitimate users from a network. We
executed this attack using the Aircrack-ng suite and Wire-
shark. Initially, the ALFA wireless network adapter was
placed into monitor mode via the command airmon-ng
start wlanO, enabling passive monitoring of Wi-Fi traffic.
The sudo airodump-ng wlanO command then identi-
fied the target UAV’s network. Finally, 100 de-authentication



packets were transmitted using aireplay-ng —-deauth
100 —-a [AP mac] -c [target mac] wlanO, where
AP mac and target mac are the respective MAC addresses
of the access point and the targeted UAV. This attack forcibly
disconnected the victim UAV, triggering its 15-second inactiv-
ity landing protocol and resulting in a forced landing.

2) Replay attack: In a replay attack, the attacker cap-
tures legitimate communication packets and retransmits them.
We utilized the Aircrack-ng suite for this as well. The
steps involved placing the ALFA adapter into monitor mode
(airmon-ng start wlan0O) and initializing packet cap-
ture (airodump-ng wlan0). Legitimate command traf-
fic between the target UAV and Computer 1 was cap-
tured and saved to a PCAP file. Using Wireshark, we fil-
tered for command packets specifically targeting the victim
UAV. The command aireplay-ng --inject replay
-r capture.pcap wlan0O was then used to replay the
captured packets, causing the UAV to repeatedly execute
the same commands. This attack led to abnormal behavior,
preventing the UAV from performing its intended mission and
responding to new commands.

3) Evil Twin Attack: An evil twin attack creates a rogue
access point mimicking the legitimate network. In our ex-
periment, the target UAV’s SSID was identified using the
command sudo airodump-ng wlanO. A rogue AP with
the same SSID was then established using Airgeddon, and
its signal strength was boosted using iwconfig wlanO
txpower 30. A brief de-authentication attack forced the
UAV to disconnect from the legitimate AP and connect to the
evil twin, enabling a man-in-the-middle attack scenario where
the attacker could monitor, intercept, or manipulate the UAV’s
communication.

4) False Data Injection Attack: In a false data injection
attack, malicious data is introduced to disrupt system op-
erations. Utilizing the Aircrack-ng suite, Scapy, and custom
Python scripts, we derived the state-space matrices of the
target UAV’s roll, pitch, and yaw using dynamic mode de-
composition (DMD). Stealthy attack vectors were then crafted,
modifying these measurements and control signals according
to the equations y = y++y and u = u+n, respectively, where y
and u represent the original values, and « and 7 are the attack
vectors. These falsified data packets were transmitted to the
target UAV, causing it to receive incorrect sensor readings and
execute erroneous control actions.

IV. DATA PREPROCESSING AND FEATURE EXTRACTION

This section outlines the preprocessing steps applied to
the collected cyber and physical data. Cyber data means
communication data between the UAVs and the ground control
station, while physical data means the physical behavioral
characteristics of the UAV in space. We have extracted each
data’s spatial and temporal features, which are explained next.

A. Data Preprocessing and Fusion

Cyber data was initially stored in PCAP files. These files
were processed in Wireshark to filter data based on the MAC
addresses of each UAV. The filtered data was then converted to

JSON format for further analysis. A custom Python script was
developed to extract relevant cyber features from the JSON
files and integrate them into Pandas DataFrames.

On the other hand, physical data was collected in .csv
format. The data was received at a microsecond rate, at which
it exhibited repetitions and missing values. A Python script
was used to clean and restructure this data and finally store it
in a .csv file.

To enable data fusion, the asynchronous cyber and phys-
ical datasets were aligned using interpolation based on the
timestamps of the higher-frequency data. The fused dataset
was then standardized using StandardScaler, which preserves
the distribution of data while handling outliers effectively.
This is in contrast to MinMaxScaler which scales all the
negative values to zero, leading to the distortion of important
coordination patterns of the swarm communication. In total, 88
data files were compiled containing cyber and physical data,
including 40 benign files and 48 malicious files. The number
of data samples for cyber, physical, and cyber-physical (fused)
features are summarized in Table I.

TABLE I
SIZE OF DATA POINTS/SAMPLES FOR EACH DATASET

Datasets Cyber Samples | Physical Samples | Fused Samples
UAV1 22,440 19,012 21,036
UAV2 21,552 18,132 20,152
UAV3 20, 269 18,072 19,041
UAV4 19,357 18,341 18,607
UAVS 20, 244 17,936 19,042
UAV6 20,053 18,098 19, 504

B. Feature Extraction

From the preprocessed data, we extracted spatial and tem-
poral features, crucial for constructing a graph representation
of the UAV swarm and training GNN-based IDS.

1) Spatial Features: Spatial features, such as positions, ori-
entations, and relative distances, define the geometric structure
of the graph, representing the location of each drone and its
spatial relationship to others. These features, listed in Table II,
are categorized as physical and cyber features.

a) Spatial Physical Features: The brief explanation of
the spatial physical features is as follows: The x-axis (map),
y-axis (map), and z-axis (map) represent the spatial position
coordinates of the UAVs according to flight map; roll_(map),
pitch_(map), and yaw_(map) denote the angular orientation of
the UAV according to the flight map; relative_dx, relative_dy,
and relative_dz are the relative distance between the UAVs;
X-axis, y-axis, and z-axis are the absolute spatial position of
the UAVs in space; relative_px, relative_py, and relative_pz
correspond to the relative positioning; and pitch, roll, and yaw
denote the absolute angular orientation in a global frame.

b) Spatial Cyber Features: The following wireless com-
munication data features are derived to be used as proxies for
spatial information: signal_strength (dBm) is the strength of
the received signal; wlan_radio.SNR (dB) is a radio signal-
to-noise ratio that indicates the quality of the received signal;
radiotap.signal_quality represents the overall signal and link
quality; wlan.sa and wlan.ra are the source and receiver MAC



TABLE II
RAW SPATIAL FEATURES

Spatial Features

Spatial Physical Features Spatial Cyber Features

Physical Physical Cyber
x-axis (map) X-axis signal_strength (dBm)
y-axis (map) y-axis wlan radio.SNR (dB)
z-axis (map) Z-axis radiotap.signal_quality

roll_angle_(map) relative_px wlan.sa

pitch_angle_(map) | relative_py wlan.ra

yaw_angle_(map) relative_pz

relative_dx roll_angle

relative_dy pitch_angle

relative_dz yaw_angle

TABLE III
RAW TEMPORAL FEATURES

Temporal Features
Temporal Temporal
Physical Features Cyber Features
timestamp_p frame.number ip.id
x_speed frame.len wlan_radio.noise (dBm)
y_speed frame.protocols timestamp_c
z_speed wlan.duration wlan_radio.preamble
templ wlan_radio.frequency ip.src
temph wlan_radio.datarate ip.dst
tof wlan.da wlan.fcs
height wlan.ta wlan.fcs.status
battery wlan.bssid wlan.qos
barometer wlan.frag wlan.qos.priority
flight time wlan.seq wlan.qos.ack
x_acceleration wlan.fc.type wlan.ccmp.extiv
y_acceleration wlan.fc.subtype wlan.wep.key
z_acceleration wlan.flags radiotap.hdr_length
cntrl_x wlan.fcs_len radiotap.antenna_signal
cntrl_y vip.len radiotap.channel.flags.cck
cntrl_z udp.length radiotap.channel.flags.ofdm
data.len

addresses used to identify individual UAVs and infer relative
distances corresponding to their signal strengths. Note that the
signal strength and SNR can be correlated with distance in
space because higher SNR values are typically observed at
shorter distances.

2) Temporal Features: Temporal features capture changes
over time in individual and swarm behaviors, including vari-
ations in velocity, acceleration, communication patterns, and
environmental conditions. Table III lists the physical and cyber
spatial features.

a) Temporal Physical Features: The brief explanation of
the temporal physical features is as follows: timestamp_p is
the timestep; x_speed, y_speed, z_speed represent the speed
measurement across each axis; temph and templ represent
the high and low temperature of the UAV in celsius, re-
spectively; tof denotes the time-of-flight distance to measure
the depth; height indicates altitude above a reference point;
battery shows the remaining power; barometer measures the
air pressure and use for altitude measurements; flight time is
the elapsed operating duration; x_acceleration, y_acceleration,
z_acceleration represent the acceleration along each axis; and
cntrl_x, cntrl_y, cntrl_z correspond to the control inputs from
the PID controller applied along each axis.

b) Temporal Cyber Features: A brief explanation of each
temporal cyber feature listed is as follows: frame.number is
the sequential identifier for each captured frame; frame.len
indicates frame length in bytes; frame.protocols specify the en-
capsulated network protocols like TCP or UDP; wlan.duration
is the reservation time in microseconds to transmit the
frame, while wlan.ta and wlan.sa are the receiver and source
MAC addresses, respectively; wlan.bssid is the MAC ad-
dress of the access point; wlan.frag is the fragment num-
ber; wlan.seq is the sequence number; wlan.fc.type and
wlan.fc.subtype categorize the frame type and subtype, re-
spectively; wlan.flags are the control indicators; wlan.fcs is
the frame check sequence; ip.len is the IP packet length;
udp.length and data.len are the UDP segment length and
packet data length, respectively; ip.id is the IP header ID;
wlan_radio.noise (dBm) and wlan_radio.preamble indicate
radio noise and preamble, respectively; ip.src and ip.dst
are the source and destination IP addresses, respectively;
wlan.fcs.status shows the integrity check result, wlan.qos,
wlan.qos.priority, and wlan.qos.ack relate to quality-of-service
settings; wlan.ccmp.extiv is the extended initialization vector;
wlan.wep.key is the WEP encryption key; radiotap.hdr_length
is the header size; radiotap.antenna_signal is the antenna signal
strength; radiotap channel flags indicate modulation types;
and wlan_radio.datarate and wlan_radio.frequency show the
transmission rate and frequency, respectively. Features adding
complexity in model learning were removed.

V. GNN-BASED INTRUSION DETECTION SYSTEM

The proposed IDS employs a GNN to model the interactions
and behaviors of a swarm of six UAVs arranged in an
hexagonal communication topology. Each UAV is represented
as a node in the graph, characterized by both spatial fea-
tures (position, orientation, relative distances) and temporal
features (velocity, acceleration, control signals). Edges connect
neighboring nodes as defined by the adjacency matrix of the
hexagon, weighted by the communication links. Given the link
connections within the hexagonal structure, a neighborhood
order of 1 is sufficient to capture relevant spatial dependencies.
The architecture begins by inputting the UAVs’ raw spatial and
temporal features, which are concatenated into a comprehen-
sive feature vector for each node.

The GNN architecture consists of two Chebyshev graph
convolutional layers with 64 and 128 output channels that
aggregate information from the immediate neighbors of each
node using the Chebyshev polynomial filters to capture the
localized structural patterns of the graph. These node em-
beddings then undergo non-linear transformations using Relu
activation function, followed by a batch normalization layer
for stable training. Next, the max pooling layer aggregates the
final node embeddings into a single graph-level representation
to capture the overall behavioral pattern of the UAV network.
This graph-level representation is fed into the fully connected
dense layer with a sigmoid activation function to detect
whether the UAV behavior is normal or malicious in a network.
The model is trained using the Adam optimizer with a learning
rate of 0.001 and binary cross-entropy as the loss function. A
batch size of 32 is used during training.
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Fig. 3. Detection Performance of IDS Models.

TABLE IV
IMPROVEMENT OF DIFFERENT IDS MODELS WITH RESPECT TO GNN ON
CYBER-PHYSICAL (CP) FUSED DATASET

Model Dataset | Accuracy | Precision | Recall F1
FNN CP 6% 4.2% 5.56% | 4.92%
LSTM CP 3.18% 3.99% 2.93% | 3.46%
ID-CNN CP 2.01% 1.61% 2.54% | 2.08%

VI. EXPERIMENTAL RESULTS

This section presents the experimental results of the pro-
posed GNN model. We have compared the GNN model
performance with the conventional deep learning models such
as FNN, recurrent LSTM networks, and 1D-CNN. We com-
pared the performance of these models in terms of accuracy,
precision, recall, and Fl-score metrics across three distinct
datasets: cyber-only, physical-only, and a fused cyber-physical
dataset. Grid search is used to find optimal hyperparameters.

o Fig. 3 represents the detection performance of the
GNN model compared to conventional deep learning
models (FNN, LSTM, and 1D-CNN). It can be ob-
served that GNN-IDS outperforms the benchmark mod-
els across cyber-only, physical-only, and cyber-physical
fused datasets. In addition, the GNN model achieved
superior detection on a cyber-physical fused dataset com-
pared to the cyber and physical dataset alone. Notably, we
can see the GNN model achieved the highest detection
performance with an Fl-score of 98.91%.

« In specific, Table IV shows the performance enhancement
of the GNN model over other deep learning IDS models
on the cyber-physical dataset, which exhibited the highest
overall detection rates. The GNN model demonstrates a
substantial improvement, with a 4.92% increase in F1-
score over FNN, a 3.46% increase over LSTM, and a
2.08% increase over 1D-CNN.

Why GNN Performs Better?

GNN outperforms traditional deep learning models due to
its ability to exploit both spatial and temporal information
within the UAV swarm communication. Unlike traditional
deep learning models (FNN, LSTM, 1D-CNN) that focus
solely on temporal patterns, the GNN incorporates the swarm’s
graph structure, capturing spatial relationships between UAVs.
This topological awareness enables the GNN to identify
anomalies based on deviations from both temporal and spatial
patterns, thereby enhancing its detection capabilities compared
to topology-unaware models.

I FNN [EILSTM [C]CNN [GNN
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VII. CONCLUSIONS

In this paper, we developed a testbed of six UAVs com-
municating in an hexagonal graph topology. We collected a
dataset encompassing both normal swarm operation and swarm
operation under various cyber-attacks (false data injection, evil
twin, replay, and denial-of-service). We developed a GNN-
based IDS and compared its performance against benchmark
IDS models such as FNN, LSTM, and 1D-CNN. Our inves-
tigations revealed that the GNN-IDS outperforms the other
models, achieving a 4.92%, 3.46%, and 2.08% higher detection
rate on unseen data compared to FNN, LSTM, and 1D-CNN,
respectively. This highlights the effectiveness of topology-
aware IDS in UAV swarm communication security.

In future work, we will incorporate more swarm topologies
into the network and evaluate the robustness of the GNN-IDS
on unseen topology data.
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