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Abstract—Unmanned aerial vehicle (UAV) swarms present
significant potential in both civil and military applications, yet
the security of swarm communications remains a critical chal-
lenge. While machine learning-based intrusion detection systems
(IDS) have advanced, their effectiveness is often hindered by
the reliance on simulated or irrelevant datasets that do not
adequately capture the unique characteristics of UAV swarm
communications. Furthermore, existing IDS have predominantly
focused on temporal information, overlooking the potential of
spatial relationships within the UAV network. To address these
limitations, this research establishes a testbed of six UAVs forming
an hexagonal graph where each UAV acts as a node and commu-
nicates with its immediate neighbors. We then execute various
cyber-attacks such as false data injection, evil twin, replay, and
denial-of-service attacks on each of the UAVs in the swarm. This
allows us to collect spatial and temporal data under normal
operations and attack conditions. We propose a graph neural
network (GNN)-based IDS that exploits spatial and temporal
information patterns. This research seeks to answer the following
question: Can leveraging the spatial relationships within a UAV
swarm improve detection performance compared to IDS relying
solely on temporal information? Through extensive experiments
and comparison with traditional deep neural network models, we
evaluate the effectiveness of this topology-aware GNN approach
in securing UAV swarm communications.

Index Terms—Graph Neural Networks, UAVs, cyber-physical
systems, intrusion detection systems, and machine learning.

I. INTRODUCTION

S
WARM of unmanned aerial vehicles (UAVs) have gained

significant attention due to their diverse civilian and mil-

itary applications. The coordinated operation of UAV swarms

enables novel functionalities and facilitates tasks such as

surveillance, coverage, and disaster management, which would

be unattainable if UAVs operated individually [1]. However,

the security of these networked systems is paramount, as vul-

nerabilities could lead to catastrophic consequences, including

physical harm and data breaches [2].

Previous research has investigated intrusion detection sys-

tems (IDS) to protect UAV swarm networks against a range

of cyber-attacks, including denial-of-service, false data injec-

tion, replay, hijacking, and spoofing [2]. Yet, these existing

solutions often overlook the unique characteristics of swarm

communication, such as coordination patterns, ground station
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control, and local data processing. Additionally, the propaga-

tion of cyber-attacks within the swarm and the potential impact

on other UAVs remain under-explored.

Critically, current IDS primarily rely on temporal data, ne-

glecting the valuable insights that spatial relationships within

the swarm can offer for intrusion detection. To address these

research gaps, this paper investigates the following questions:

• Will exploiting temporal and spatial correlations within

the data improve the detection performance?

• How do the detection capabilities of topology-aware

IDS, which consider the spatial structure of the swarm,

compare to those of topology-unaware IDS?

Answering these questions presents challenges. First, there

is a lack of a dataset that captures the spatial and temporal

correlation patterns inherent within the swarm communication.

Second, existing datasets do not exhibit normal and malicious

swarm behavior examples, which are required for training

effective models. Moreover, training an IDS model requires

careful feature engineering to identify optimal features, as

irrelevant features can hinder model performance. To tackle

these challenges, we carry out the following:

• We developed a testbed comprising of six UAVs (UAV1-

UAV6) arranged in an hexagonal topology, along with

an access point, controller, data collection tools, and an

attacker execution environment. This testbed enables the

controlled execution of cyber-attacks and the collection

of data under both normal and attack conditions.

• We created a comprehensive dataset capturing both nor-

mal and malicious UAV swarm communication patterns.

Specifically, four distinct attacks such as false data

injection, evil twin, replay, and denial-of-service were

executed on each of the UAVs within the swarm. The

dataset includes both spatial and temporal features of

swarm communications.

• We proposed a GNN-based topology aware IDS that

incorporates spatial and temporal relationships between

UAVs. We evaluated the performance against several

benchmark topology-unaware deep learning models, in-

cluding feedforward neural networks (FNN), recurrent

neural networks (RNNs) with long short-term memory

(LSTM) cells, and 1D-convolutional neural networks.

The remainder of this paper is organized as follows. Section
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II delves into relevant prior work and its limitations. Section III

details the testbed setup, data collection, and the specific cyber-

attacks considered. Section IV explores data preprocessing and

feature extraction techniques. Section V outlines the proposed

GNN-based IDS. Section VI presents the experimental results,

and Section VII concludes the paper.

II. RELATED WORK

Existing research on IDS for UAV swarm communications

has predominantly focused on three main approaches:

1) Cyber-only IDS: These IDS models are trained exclu-

sively on cyber features, such as packet information, frame

numbers, and payload characteristics. For instance, Mehmood

et al. [3] simulated UAV communications within the COOJA

simulator and generated traffic data to train support vector

machine (SVM), random forest, and K-nearest neighbor-based

IDS. Kou et al. [4] proposed a combined deep autoencoder

and convolutional neural network (CNN) model for anomaly

detection in UAV communications using the InSDN dataset.

Han et al. [5] developed an LSTM-based IDS to detect

anomalies in packets from the CICIDS-2017 dataset.

2) Physical-only IDS: Conversely, physical-only IDS mod-

els are trained solely on physical behavioral features of UAVs,

such as speed, velocity, and temperature. Park et al. [6]

designed a stacked autoencoder for fault detection in UAV

states. Ahn et al. [7] utilized a 1D-CNN to develop an IDS

for identifying anomalies, while Khanapuri et al. [8] employed

a fully connected deep neural network trained on simulated

physical data.

3) Cyber-Physical Fused IDS: A more recent approach

involves fusing both cyber and physical features to enhance

IDS performance. Hassler et al. [9] developed an IDS that

combines both types of features using various deep learning

models, including SVM, FNN, LSTM, and 1D-CNN.

A. Limitations of Existing Work

While these existing approaches have made significant con-

tributions to the field, they all share a common limitation: a

reliance on temporal information alone. None of the existing

research has explored the potential of leveraging spatial rela-

tionships within the UAV swarm for intrusion detection. This

oversight leaves a gap in the understanding of how spatial

information, such as the relative positions and orientations of

UAVs, can be exploited to identify anomalies in a swarm.

Furthermore, there is a lack of publicly available datasets that

capture both the spatial and temporal aspects of UAV swarm

communication under normal and attacked conditions.

III. TESTBED AND DATASET COLLECTION

This section details the equipment, experimental setup, and

methodology used for data collection during both normal and

attacked UAV swarm operations.

(a)

(b)

Fig. 1. Illustration of the testbed. (a) Tested setup and equipment. The
computer on the right acts as a ground control station, the computer on the left
acts as an attacker equipped with a network adapter, and the black tower is
the access point; (b) Cartesian 2D Flight Map for the decentralized positional
coordinate system.

A. Equipment

The equipment used includes six DJI Tello EDU drones,

a flight map, a Sagemcom SAC2V2s WiFi access point, an

ALFA AWUS036ACH network adapter with antenna, and two

computers as shown in Fig. 1.

• The first computer (Computer 1) acts as the ground

control station, connecting to the UAVs and running

Python scripts to send control commands and receive

status telemetry reports from each drone. These reports

contain behavioral data such as barometer readings and

IMU measurements. This data is termed as physical data.

• The flight map provides positional coordinates for en-

abling decentralized UAV-to-UAV communication.

• The access point facilitates the connection between the

UAVs and the ground control station, ensuring seamless

control and coordination of the swarm.

• The second computer (Computer 2) mimics an attacker,

equipped with the ALFA adapter and running Kali Linux

along with various tools like Aircrack-ng, Airgeddon,

TCPdump, Scapy, and Wireshark. This computer serves

two primary functions: capturing cyber data exchanged

between the UAVs and the ground station, and executing

cyber-attacks on the swarm.

B. Testbed Setup

Our experimental setup employed six UAVs configured

to establish an hexagonal communication graph through a

consensus-based decentralized control protocol. The testbed

environment consists of the following components:

1) Flight Map: A 2D Cartesian coordinate flight map

with dimensions of 3 × 3 meters was utilized. As illustrated

in Fig. 1b, this flight map serves as a reference for UAV
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positioning and enables decentralized communication. This

implementation is essential because Tello EDU drones, pri-

marily designed for indoor use, lack global positioning system

(GPS) or other positional sensors. Instead, they rely on a vision

positioning system comprising a 720p camera and two 3D

infrared sensors for stable hovering. By detecting the flight

map, the drones transmit their positional coordinates (x-axis,

y-axis, and z-axis) and additional telemetry data (roll, pitch,

yaw, etc.) to the ground control station.

2) Onboard PID Controller: Each UAV was equipped

with an independent proportional-integral-derivative (PID)

controller to govern its flight dynamics. This controller em-

ploys feedback mechanisms to maintain desired performance

metrics. The control output u(t) is given as

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd

de(t)

dt
, (1)

where Kp, Ki, and Kd are the proportional, integral, and

derivative gains, respectively. The term e(τ) represents the

error between the measured output and the desired setpoint

at time t. The proportional term adjusts the control signal in

proportion to the current error. The integral term accounts for

the accumulated past errors, mitigating steady-state deviations.

The derivative term responds to the rate of change of the error.

Tuning these gains ensures stable flight for each UAV.

3) Consensus-based Decentralized Control Protocol: In

addition to the onboard PID controllers, we implemented a

consensus-based decentralized control protocol to coordinate

movement within a swarm. This protocol leverages local

communication and cooperation among the UAVs to reach a

consensus on their collective behavior. The inter-UAV commu-

nication network is modeled as an undirected graph as follows:

G = (V, E) (2)

where V represents the set of nodes (UAVs), E represents

the edges (communication links) between the adjacent UAVs

to exchange information. The interaction between UAVs are

encoded into the adjacency matrix A as follows:

A =

















0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

















(3)

The adjacency matrix A represents the hexagonal commu-

nication topology among the six UAVs, where a non-zero

entry aij indicates a communication link between UAV i and

UAV j. The consensus algorithm employed is a weighted

average consensus protocol, detailed in [10]. At each time

step k, each UAV updates its state xi(k) based on the states

of its neighbors, weighted by the elements of a weight matrix.

In our implementation, all weights are set to 1 for uniform

interaction. The state update rule is given by:

xi(k + 1) = xi(k) + ε
∑

j∈Ni

aij(xj(k)− xi(k)), (4)

where ε is a step-size parameter or consensus gain controlling

the convergence rate, Ni denotes the set of neighbors of UAV

i, defined by the communication topology represented by the

adjacency matrix A. Through the iterative execution of this

protocol, the swarm gradually converges to a common state,

enabling coordinated movement. More information about the

consensus control algorithm can be found in [10], [11].

C. Data Collection Methodology

The dataset was collected in two distinct phases: normal

flights and flights under cyber-attacks. The normal phase

involved UAVs performing standard flight operations to gather

benign data. In the second phase, the UAV swarm was

subjected to four different cyber-attacks, with data collected

during this phase labeled as malicious. To collect benign data,

we conducted 20 flights under normal operating conditions.

For the malicious dataset, we subjected each of the six UAVs

to four distinct cyber-attack types, resulting in a total of 24

attack flights.

(a)
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(b)

Fig. 2. Illustration of UAVs making a hexagonal graph.

D. Cyber-Attacks Execution

This subsection outlines the cyberattacks executed on each

of the UAV in the swarm to collect the malicious dataset. The

attacks are explained next.

1) De-authentication Attack: A de-authentication attack

aims to disconnect legitimate users from a network. We

executed this attack using the Aircrack-ng suite and Wire-

shark. Initially, the ALFA wireless network adapter was

placed into monitor mode via the command airmon-ng

start wlan0, enabling passive monitoring of Wi-Fi traffic.

The sudo airodump-ng wlan0 command then identi-

fied the target UAV’s network. Finally, 100 de-authentication



4

packets were transmitted using aireplay-ng --deauth

100 -a [AP mac] -c [target mac] wlan0, where

AP mac and target mac are the respective MAC addresses

of the access point and the targeted UAV. This attack forcibly

disconnected the victim UAV, triggering its 15-second inactiv-

ity landing protocol and resulting in a forced landing.

2) Replay attack: In a replay attack, the attacker cap-

tures legitimate communication packets and retransmits them.

We utilized the Aircrack-ng suite for this as well. The

steps involved placing the ALFA adapter into monitor mode

(airmon-ng start wlan0) and initializing packet cap-

ture (airodump-ng wlan0). Legitimate command traf-

fic between the target UAV and Computer 1 was cap-

tured and saved to a PCAP file. Using Wireshark, we fil-

tered for command packets specifically targeting the victim

UAV. The command aireplay-ng --inject replay

-r capture.pcap wlan0 was then used to replay the

captured packets, causing the UAV to repeatedly execute

the same commands. This attack led to abnormal behavior,

preventing the UAV from performing its intended mission and

responding to new commands.

3) Evil Twin Attack: An evil twin attack creates a rogue

access point mimicking the legitimate network. In our ex-

periment, the target UAV’s SSID was identified using the

command sudo airodump-ng wlan0. A rogue AP with

the same SSID was then established using Airgeddon, and

its signal strength was boosted using iwconfig wlan0

txpower 30. A brief de-authentication attack forced the

UAV to disconnect from the legitimate AP and connect to the

evil twin, enabling a man-in-the-middle attack scenario where

the attacker could monitor, intercept, or manipulate the UAV’s

communication.

4) False Data Injection Attack: In a false data injection

attack, malicious data is introduced to disrupt system op-

erations. Utilizing the Aircrack-ng suite, Scapy, and custom

Python scripts, we derived the state-space matrices of the

target UAV’s roll, pitch, and yaw using dynamic mode de-

composition (DMD). Stealthy attack vectors were then crafted,

modifying these measurements and control signals according

to the equations y = y+γ and u = u+η, respectively, where y

and u represent the original values, and γ and η are the attack

vectors. These falsified data packets were transmitted to the

target UAV, causing it to receive incorrect sensor readings and

execute erroneous control actions.

IV. DATA PREPROCESSING AND FEATURE EXTRACTION

This section outlines the preprocessing steps applied to

the collected cyber and physical data. Cyber data means

communication data between the UAVs and the ground control

station, while physical data means the physical behavioral

characteristics of the UAV in space. We have extracted each

data’s spatial and temporal features, which are explained next.

A. Data Preprocessing and Fusion

Cyber data was initially stored in PCAP files. These files

were processed in Wireshark to filter data based on the MAC

addresses of each UAV. The filtered data was then converted to

JSON format for further analysis. A custom Python script was

developed to extract relevant cyber features from the JSON

files and integrate them into Pandas DataFrames.

On the other hand, physical data was collected in .csv

format. The data was received at a microsecond rate, at which

it exhibited repetitions and missing values. A Python script

was used to clean and restructure this data and finally store it

in a .csv file.

To enable data fusion, the asynchronous cyber and phys-

ical datasets were aligned using interpolation based on the

timestamps of the higher-frequency data. The fused dataset

was then standardized using StandardScaler, which preserves

the distribution of data while handling outliers effectively.

This is in contrast to MinMaxScaler which scales all the

negative values to zero, leading to the distortion of important

coordination patterns of the swarm communication. In total, 88

data files were compiled containing cyber and physical data,

including 40 benign files and 48 malicious files. The number

of data samples for cyber, physical, and cyber-physical (fused)

features are summarized in Table I.

TABLE I
SIZE OF DATA POINTS/SAMPLES FOR EACH DATASET

Datasets Cyber Samples Physical Samples Fused Samples

UAV1 22, 440 19, 012 21, 036

UAV2 21, 552 18, 132 20, 152

UAV3 20, 269 18, 072 19, 041

UAV4 19, 357 18, 341 18, 607

UAV5 20, 244 17, 936 19, 042

UAV6 20, 053 18, 098 19, 504

B. Feature Extraction

From the preprocessed data, we extracted spatial and tem-

poral features, crucial for constructing a graph representation

of the UAV swarm and training GNN-based IDS.

1) Spatial Features: Spatial features, such as positions, ori-

entations, and relative distances, define the geometric structure

of the graph, representing the location of each drone and its

spatial relationship to others. These features, listed in Table II,

are categorized as physical and cyber features.

a) Spatial Physical Features: The brief explanation of

the spatial physical features is as follows: The x-axis (map),

y-axis (map), and z-axis (map) represent the spatial position

coordinates of the UAVs according to flight map; roll (map),

pitch (map), and yaw (map) denote the angular orientation of

the UAV according to the flight map; relative dx, relative dy,

and relative dz are the relative distance between the UAVs;

x-axis, y-axis, and z-axis are the absolute spatial position of

the UAVs in space; relative px, relative py, and relative pz

correspond to the relative positioning; and pitch, roll, and yaw

denote the absolute angular orientation in a global frame.

b) Spatial Cyber Features: The following wireless com-

munication data features are derived to be used as proxies for

spatial information: signal strength (dBm) is the strength of

the received signal; wlan radio.SNR (dB) is a radio signal-

to-noise ratio that indicates the quality of the received signal;

radiotap.signal quality represents the overall signal and link

quality; wlan.sa and wlan.ra are the source and receiver MAC
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TABLE II
RAW SPATIAL FEATURES

Spatial Features

Spatial Physical Features Spatial Cyber Features

Physical Physical Cyber

x-axis (map) x-axis signal strength (dBm)

y-axis (map) y-axis wlan radio.SNR (dB)

z-axis (map) z-axis radiotap.signal quality

roll angle (map) relative px wlan.sa

pitch angle (map) relative py wlan.ra

yaw angle (map) relative pz

relative dx roll angle

relative dy pitch angle

relative dz yaw angle

TABLE III
RAW TEMPORAL FEATURES

Temporal Features

Temporal

Physical Features

Temporal

Cyber Features

timestamp p frame.number ip.id

x speed frame.len wlan radio.noise (dBm)

y speed frame.protocols timestamp c

z speed wlan.duration wlan radio.preamble

templ wlan radio.frequency ip.src

temph wlan radio.datarate ip.dst

tof wlan.da wlan.fcs

height wlan.ta wlan.fcs.status

battery wlan.bssid wlan.qos

barometer wlan.frag wlan.qos.priority

flight time wlan.seq wlan.qos.ack

x acceleration wlan.fc.type wlan.ccmp.extiv

y acceleration wlan.fc.subtype wlan.wep.key

z acceleration wlan.flags radiotap.hdr length

cntrl x wlan.fcs len radiotap.antenna signal

cntrl y vip.len radiotap.channel.flags.cck

cntrl z udp.length radiotap.channel.flags.ofdm

data.len

addresses used to identify individual UAVs and infer relative

distances corresponding to their signal strengths. Note that the

signal strength and SNR can be correlated with distance in

space because higher SNR values are typically observed at

shorter distances.

2) Temporal Features: Temporal features capture changes

over time in individual and swarm behaviors, including vari-

ations in velocity, acceleration, communication patterns, and

environmental conditions. Table III lists the physical and cyber

spatial features.

a) Temporal Physical Features: The brief explanation of

the temporal physical features is as follows: timestamp p is

the timestep; x speed, y speed, z speed represent the speed

measurement across each axis; temph and templ represent

the high and low temperature of the UAV in celsius, re-

spectively; tof denotes the time-of-flight distance to measure

the depth; height indicates altitude above a reference point;

battery shows the remaining power; barometer measures the

air pressure and use for altitude measurements; flight time is

the elapsed operating duration; x acceleration, y acceleration,

z acceleration represent the acceleration along each axis; and

cntrl x, cntrl y, cntrl z correspond to the control inputs from

the PID controller applied along each axis.

b) Temporal Cyber Features: A brief explanation of each

temporal cyber feature listed is as follows: frame.number is

the sequential identifier for each captured frame; frame.len

indicates frame length in bytes; frame.protocols specify the en-

capsulated network protocols like TCP or UDP; wlan.duration

is the reservation time in microseconds to transmit the

frame, while wlan.ta and wlan.sa are the receiver and source

MAC addresses, respectively; wlan.bssid is the MAC ad-

dress of the access point; wlan.frag is the fragment num-

ber; wlan.seq is the sequence number; wlan.fc.type and

wlan.fc.subtype categorize the frame type and subtype, re-

spectively; wlan.flags are the control indicators; wlan.fcs is

the frame check sequence; ip.len is the IP packet length;

udp.length and data.len are the UDP segment length and

packet data length, respectively; ip.id is the IP header ID;

wlan radio.noise (dBm) and wlan radio.preamble indicate

radio noise and preamble, respectively; ip.src and ip.dst

are the source and destination IP addresses, respectively;

wlan.fcs.status shows the integrity check result, wlan.qos,

wlan.qos.priority, and wlan.qos.ack relate to quality-of-service

settings; wlan.ccmp.extiv is the extended initialization vector;

wlan.wep.key is the WEP encryption key; radiotap.hdr length

is the header size; radiotap.antenna signal is the antenna signal

strength; radiotap channel flags indicate modulation types;

and wlan radio.datarate and wlan radio.frequency show the

transmission rate and frequency, respectively. Features adding

complexity in model learning were removed.

V. GNN-BASED INTRUSION DETECTION SYSTEM

The proposed IDS employs a GNN to model the interactions

and behaviors of a swarm of six UAVs arranged in an

hexagonal communication topology. Each UAV is represented

as a node in the graph, characterized by both spatial fea-

tures (position, orientation, relative distances) and temporal

features (velocity, acceleration, control signals). Edges connect

neighboring nodes as defined by the adjacency matrix of the

hexagon, weighted by the communication links. Given the link

connections within the hexagonal structure, a neighborhood

order of 1 is sufficient to capture relevant spatial dependencies.

The architecture begins by inputting the UAVs’ raw spatial and

temporal features, which are concatenated into a comprehen-

sive feature vector for each node.

The GNN architecture consists of two Chebyshev graph

convolutional layers with 64 and 128 output channels that

aggregate information from the immediate neighbors of each

node using the Chebyshev polynomial filters to capture the

localized structural patterns of the graph. These node em-

beddings then undergo non-linear transformations using Relu

activation function, followed by a batch normalization layer

for stable training. Next, the max pooling layer aggregates the

final node embeddings into a single graph-level representation

to capture the overall behavioral pattern of the UAV network.

This graph-level representation is fed into the fully connected

dense layer with a sigmoid activation function to detect

whether the UAV behavior is normal or malicious in a network.

The model is trained using the Adam optimizer with a learning

rate of 0.001 and binary cross-entropy as the loss function. A

batch size of 32 is used during training.
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Fig. 3. Detection Performance of IDS Models.

TABLE IV
IMPROVEMENT OF DIFFERENT IDS MODELS WITH RESPECT TO GNN ON

CYBER-PHYSICAL (CP) FUSED DATASET

Model Dataset Accuracy Precision Recall F1

FNN CP 6% 4.2% 5.56% 4.92%

LSTM CP 3.18% 3.99% 2.93% 3.46%

1D-CNN CP 2.01% 1.61% 2.54% 2.08%

VI. EXPERIMENTAL RESULTS

This section presents the experimental results of the pro-

posed GNN model. We have compared the GNN model

performance with the conventional deep learning models such

as FNN, recurrent LSTM networks, and 1D-CNN. We com-

pared the performance of these models in terms of accuracy,

precision, recall, and F1-score metrics across three distinct

datasets: cyber-only, physical-only, and a fused cyber-physical

dataset. Grid search is used to find optimal hyperparameters.

• Fig. 3 represents the detection performance of the

GNN model compared to conventional deep learning

models (FNN, LSTM, and 1D-CNN). It can be ob-

served that GNN-IDS outperforms the benchmark mod-

els across cyber-only, physical-only, and cyber-physical

fused datasets. In addition, the GNN model achieved

superior detection on a cyber-physical fused dataset com-

pared to the cyber and physical dataset alone. Notably, we

can see the GNN model achieved the highest detection

performance with an F1-score of 98.91%.

• In specific, Table IV shows the performance enhancement

of the GNN model over other deep learning IDS models

on the cyber-physical dataset, which exhibited the highest

overall detection rates. The GNN model demonstrates a

substantial improvement, with a 4.92% increase in F1-

score over FNN, a 3.46% increase over LSTM, and a

2.08% increase over 1D-CNN.

Why GNN Performs Better?

GNN outperforms traditional deep learning models due to

its ability to exploit both spatial and temporal information

within the UAV swarm communication. Unlike traditional

deep learning models (FNN, LSTM, 1D-CNN) that focus

solely on temporal patterns, the GNN incorporates the swarm’s

graph structure, capturing spatial relationships between UAVs.

This topological awareness enables the GNN to identify

anomalies based on deviations from both temporal and spatial

patterns, thereby enhancing its detection capabilities compared

to topology-unaware models.

VII. CONCLUSIONS

In this paper, we developed a testbed of six UAVs com-

municating in an hexagonal graph topology. We collected a

dataset encompassing both normal swarm operation and swarm

operation under various cyber-attacks (false data injection, evil

twin, replay, and denial-of-service). We developed a GNN-

based IDS and compared its performance against benchmark

IDS models such as FNN, LSTM, and 1D-CNN. Our inves-

tigations revealed that the GNN-IDS outperforms the other

models, achieving a 4.92%, 3.46%, and 2.08% higher detection

rate on unseen data compared to FNN, LSTM, and 1D-CNN,

respectively. This highlights the effectiveness of topology-

aware IDS in UAV swarm communication security.

In future work, we will incorporate more swarm topologies

into the network and evaluate the robustness of the GNN-IDS

on unseen topology data.
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