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ABSTRACT Cyberattacks on power systems have doubled due to digitization, impacting healthcare, social,
and economic sectors. False data injection attacks (FDIAs) are a significant threat, allowing attackers to
manipulate power measurements and transfer malicious data to control centers. In this paper, we propose the
use of graphon neural networks (WNNs) for detecting various FDIAs. Unlike existing graph neural network
(GNN)-based detectors, WNNs are efficient as they make use of the non-parametric graph processing method
known as graphon, which is a limiting object of a sequence of dense graphs, whose family members share
similar characteristics. This allows to leverage the learning by transference on the graphs to address the
computational complexity and environmental concerns of training on large-scale systems, and the dynamicity
resulting from the spatio-temporal evolution of power systems. Through experimental simulations, we show
that WNN significantly improves FDIAs detection, training time, and real-time decision making under
topological reconfigurations and growing system size with generalization and scalability benefits compared
to conventional GNNs.

INDEX TERMS Power grids, graphon neural networks, attacks detection, transfer learning, dynamic graphs.

I. INTRODUCTION AND MOTIVATION

CYBERATTACKS on power systems are on the rise.
According to the 2022 Microsoft Digital Defense

Report [1], the number of attacks on critical infrastructures
around the world doubled from 20% to 40% compared to
2021. These threats are made easier by the digitization of
power systems. In recent years, cyberattacks have wreaked
havoc on the healthcare, social, and economic sectors, leading
to devastating consequences. Of the 45 cybersecurity inci-
dents mentioned targeting the energy sector since 2017, 13 of
them occurred in 2022, according to a report by S&P Global
Energy Security Sentinel [2]. These reports emphasize how
crucial it is to protect these systems and reduce the damage
impact. Smart meters are crucial components inmodern smart
grid systems. They provide real-time data collection, enable

remote monitoring and control, enhance grid management,
and engage consumers by providing detailed information
about their energy usage. However, the power measurements
collected by these smart meters are subject to a range of
cyberattacks, including data spoofing and injection, denial
of service, man-in-the-middle, false data injection attacks
(FDIAs), etc. In particular, FDIAs pose the greatest threat
to power systems and have gained popularity recently [3].
In FDIAs, an attacker can simply alter or manipulate the
power measurements via field devices and transfer the mali-
cious data to the control center. One recent FDIA example
is the October 2022 Russian cyberattack on Ukraine’s power
grid, where hackers gained access to the network hosting a
supervisory control and data acquisition (SCADA) instance,
and then injected a malware [4].
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Data-driven approaches for attacks detection are favored
over model-driven approaches for several reasons. Data-
driven deep learning methods offer a promising solution
for modeling complex system interactions without explicit
knowledge. They detect anomalies, identify patterns, and
adapt to changes in behavior, making them ideal for dynamic
environments. Conversely, model-based approaches detect
FDIAs through the use of mathematical models, such as state
estimation techniques, where attacks are detected based on
the differences between the estimated states and the actual
measurements in the system [5]. These methods present sev-
eral shortcomings, one of which is that they need accurate
knowledge of the properties of the underlying systems, which
is not always possible [6]. In addition, capturing all the com-
plex interactions among the power system components via
equations is very challenging and often impractical.

Power systems can be modeled as graphs, where a node
defines a bus, and an edge represents a power line [7], [8].
Such a graph representation can be used to model and analyze
complex network topologies by capturing spatial dependen-
cies among different nodes in the power grid, while handling
temporal dependencies. Due to their features, graph neural
networks (GNNs) have been employed in a variety of power
systems applications including power system state estima-
tion, fault analysis, load prediction, and cybersecurity. GNNs
represent a powerful modeling framework for cyber attacks
detection in large-scale power systems.

Utilizing data-driven techniques like GNNs for detecting
FDIAs in power systems presents several challenges:

• Limited dataset for training: Research on power
systems faces limitations due to restricted access to
confidential data. In the U.S., data related to energy
production, generation, transmission, and distribution is
not available for research, and studies on actual power
systems are non-disclosure agreements [9].

• Assumptions on synthetic systems: Synthetic power
systems have been proposed [10], [11], [12] to mimic
the features of actual power grids, but these models rely
on assumptions like geographical area, region structure,
topological and electrical statistics, and present limited
test cases. Scaling to large-scale power systems is diffi-
cult, and research is conducted on size-specific synthetic
test cases, resulting in case-dependent results.

• Computational complexity: The computational com-
plexity of training and testing deep learning methods
represents a critical issue, especially that power sys-
tems are massive systems that can span entire nations.
For instance, the U.S. power grid connects thousands
of power plants to 150 million customers via over
five million miles of power lines and about 3,300
utilities [13].

• Dynamicity of power systems: Power systems are con-
stantly growing to accommodate the increase in the
population. Additionally, due to topological changes,
seasonal reconfigurations such as integration of renew-
able energy sources, addition of new buses and lines,

etc., power systems are constantly changing in both
space and time.

• Environmental concerns: Large-scale data training
models consume a considerable amount of power, which
raises environmental concerns. For instance, large data
centers that store and train massive data can consume
more than 100 megawatts of power, which is equivalent
to powering 80,000 U.S. households [14].

In this paper, we attempt to address all of the above chal-
lenges by developing an FDIAs detector using graphon neural
networks (WNNs). The acronym WNN is consistent with
the terminology found in the literature, referring to the use
of graphons, usually represented by W, in neural network
architecture tomodel continuous density functions. Graphons
belong to the family of non-parametric graph processing tech-
niques and can be defined as limiting objects of a sequence
of graphs with a large number of nodes, in which members
of the same graph family share similar structures even if their
corresponding number of nodes is different [15]. Since the
number of parameters that describe the features and structure
of the network does not have to be fixed or even finite, they are
regarded as non-parametric models. Graphons offer a more
versatile and expressive framework for simulating intricate
graph structures because they support an infinite number
of parameters. When working with complex real-world net-
works, where the underlying structures might be difficult
to capture by a fixed set of parameters, the non-parametric
nature of graphons is especially helpful. The graphon model
allows to predict how power systems massively expand over
space and time by taking the graphs to their limits—that is,
to an infinite number of vertices and edges. This idea from
graph theory makes it possible to produce both deterministic
and random power graphs that match the observed real power
grid. As a matter of fact, in our prior work [16], we esti-
mated the graphon model of the IEEE 39-bus New England
system and we showed that any graph sampled from the esti-
mated graphon achieves an average similarity score of 88%
with the actual system in terms of topological characteristics
such as the eigenvalues spread, graph diameter, betweenness
centrality, closeness centrality, nodal degree, and clustering
coefficients.

By estimating the graphon model of power systems,
we resort to WNNs to overcome the computational burden
of training GNNs, since graph convolutions in GNNs involve
large matrix operations. The computational efficiency of
WNNs is controlled via learning by transference where the
learnable parameters of one graph is transferred to another,
as will be explained later in this paper.

A. RELATED WORK
To the best of the authors’ knowledge, the idea of using
WNNs for attacks detection in power systems is novel and has
not been investigated in literature. Next, we will summarize
the recent papers that proposed attacks detectors usingGNNs,
and we list their common limitations.
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In [17], we proposed a graph neural network-based, scal-
able, and real-time detector of FDIAs, which outperforms
existing solutions in F1 score for standard IEEE testbeds.
Moreover, in [18] and [19], we proposed a graph autoencoder
(GAE)-based detector against FDIAs and data poisoning in
power systems. The detector aimed at improving detection
performance and generalization against unseen attacks by
capturing spatio-temporal power system features on differ-
ent topological configurations. However, all these works did
not consider the dynamicity of power system topologies as
well as the computational burden and environmental con-
cerns of training large-scale systems. In [20], the authors
proposed a canonical variate analysis-based detectionmethod
to defend against FDIAs in power systems. The method
monitored variation of detection indicators before and after
attacks, demonstrating effectiveness and accuracy. In [21],
a novel unsupervised method for detecting FDIAs in power
systems was proposed, combining the strengths of dual
graph-convolutional autoencoder and generative adversarial
network. In [22], the authors proposed a GNN-based detec-
tor that uses auto-regressive moving average type graph
filters to detect and localize FDIA in power systems, mak-
ing them more adaptable to spectral changes compared to
polynomial type graph filters like Chebyshev. In [23], the
authors introduced a novel online cyber attack situational
awareness method by identifying and localizing active attack
locations in Operational Technology networks in real-time
using a hybrid graph convolutional Long Short-Term Mem-
ory (LSTM) and a deep convolutional network. In [24], the
authors proposed a false data detection method using a GNN
to extract spatial features of power grid topology information
and operation data, using an attention mechanism to enhance
node representation. In [25], the authors proposed a detection
and defense model for load frequency control systems against
invisible FDIAs, using attack-detection evolutionary game
model and Kalman filtering algorithms. The model used
support vector machines and K-Nearest neighbor detection
algorithms for optimal control signal. In [26], the authors
introduced a graph convolutional network (GCN) framework
for detecting FDIAs, which analyzed fluctuating state estima-
tion values and identified attack locations by means of power
network graphical structures.

While effective, the mentioned works do not leverage the
structural advantages of GNNs; in contrast, our work uses
WNNs to enhance detection performance under dynamic
topological reconfigurations. Our method leverages transfer
learning on large-scale systems with thousands of buses,
enhancing generalization and scalability. Additionally, our
approach significantly reduces training time and energy con-
sumption, making it more efficient and robust in real-time
detection. By focusing on scalable WNNmodels, we address
limited data availability and improve detection capabilities,
ensuring improved generalization and energy efficiency.

Next, we summarize the related works to WNNs. In [27],
the authors introducedWNNs as limit objects of GNNs. They

proved a bound on the difference between GNN output and
limit WNNs, which vanishes with increasing node count if
the graph convolutional filters are bandlimited. In [28], the
authors explored transferability in graphon analysis, prov-
ing that fixed GCNs with continuous filters are transferable
under graphs that approximate the same graphon. They also
proved the asymptotic transferability for graphs approximat-
ing unbounded graphon shift operators. In [29], the authors
definedWNNs and analyzed their stability to graphon pertur-
bations. They interpreted the WNN as a generating model for
GNNs on deterministic and stochastic graphs. They showed
that the stability bound decreased asymptotically with graph
size. In [30], the authors proposed a new strategy for pooling
and sampling on GNNs using graphons, preserving the spec-
tral properties of the graph. By considering graph layers as
elements of a sequence convergent to a graphon, node label-
ing remained consistent and signals were mapped without
ambiguity. In [31], the authors demonstrated that the learning
distance between GNN and WNN decreases asymptotically
with graph size, and gradient descent followed the WNN’s
learning direction when training on growing graphs. The
authors proposed a novel algorithm for learning GNNs on
large-scale graphs, gradually increasing the graph size dur-
ing training. In [32], the authors proposed a GNN training
method using resampling from a graphon estimate from the
underlying network data. This mitigated over-smoothing in
GNNs, rendering the framework computationally efficient
with minimal required tuning.

Existing literature employed GNNs for intrusion detection
in power systems. The main issue with GNNs is that they
involve large matrix operations. One distinctive feature of
GNNs is that the number of parameters is independent of the
number of nodes. This is so because graph shifts determine
graph convolutions. Consequently, GNNs can be transferred
from one graph to another since GNNs parametrization
and graph size are independent. However, when the graph
changes, particularly when moving to larger graphs, the
performance of GNNs may not be preserved [27]. Further-
more, the scalability of large-scale convolutions is limited
due to their high computational costs [27]. Moreover, GNNs
may not be resilient when the size of the network changes
over time due to nodes being added or removed. In addi-
tion, exisitng works did not consider dynamicity of system
topologies and computational burden of training large-scale
systems. To address all of these issues, recent research [27],
[28], [29], [30], [31], [32], [33] has focused onWNNs, which
are the limiting object of GNNs. WNNs can be learned on
very large graphs by leveraging the limit object of a sequence
of growing graphs, {Gn}, called the graphon. When training
on large graph of size N , the graph convolutions of GNNs
would require O(N 2) matrix multiplications. With WNNs,
this reduces to O(n2) computations, where n < N , without
compromising optimality [33]. Thus, instead of considering
the graph to be a fixed hyperparameter, we can think of it as
a learnable parameter with weights.
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Our work builds on the findings of [27], [28], [29], [30],
[31], [32], and [33] by applying WNNs to power systems,
demonstrating their practical benefits in FDIA detection and
showing that WNNs improve generalization and scalability
compared to GNNs. By enhancing FDIA detection under
dynamic conditions, we improve the efficiency and robust-
ness of our detection framework. Additionally,WNN training
is significantly more efficient, consuming less energy while
maintaining performance, thus enhancing overall detection
performance and training efficiency.

B. CONTRIBUTIONS AND ORGANIZATION
The contributions of this paper are summarized as follows:

• Graphon model estimation and sampling: We present
a novel method to estimate the graphon model from
real power systems. This approach enables accurate
sampling of graphs and the statistical assignment of
electrical parameters, providing a robust framework for
effectively representing power system topologies.

• Generation of training and attack samples: We pro-
pose a method to generate benign and FDIA samples
usingMATLAB’s MATPOWER toolbox for power flow
analysis and normalized ERCOT load data. Dynamic
variations are introduced to time-series data using a nor-
mal distribution, modeling realistic system fluctuations.
By leveraging topological and temporal variability, this
approach creates diverse datasets that closely resemble
real-world scenarios, enhancing the robustness and util-
ity of deep learning models in power systems.

• Learning by transference with the WNN Model: We
leverage the concept of learning by transference using
the WNN model. Our results demonstrate that WNN
significantly improves generalization and scalability
compared to conventional GNNs. Specifically, WNN
enhances FDIA detection performance under vari-
ous topological reconfigurations and increasing system
sizes. Moreover, WNN training time is notably reduced,
consuming 60% less energy than GNN, showcasing its
efficiency and practical applicability.

With these specific contributions in mind, our paper aims
to provide significant advancements in the application of
graphon neural networks for power systems, offering theo-
retical and practical enhancements to the existing approaches
in terms of model accuracy and computational complexity.

The remainder of this paper is organized as follows.
Section II describes the approach of estimating the graphon
from an actual power system. Section III describes the
benign and malicious dataset generation. Section IV presents
the WNNs architecture. The experimental setup, simulation
results, and discussions are provided in Section V. Finally,
the paper is concluded in Section VI.

II. GRAPHON MODEL ESTIMATION
In this section, we describe what graphon is, how to estimate
a graphonmodel from an actual power system to sample from

it, and how to statistically assign electrical parameters for a
convergent power flow.

A. WHAT IS A GRAPHON?
Large-scale graphs are often represented using graphons in
the realm of graph theory. They make it possible to examine
how graphs behave as they get larger by capturing the edge
density between pairs of vertices. Graphons are useful to
investigate and predict the features of complicated networks.
A graphon is a symmetricmeasurable functionW : [0, 1]2 →
[0, 1] that maps the unit square to the unit interval. It is com-
parable to the weight matrix W of an infinitely large graph,
where the weights of the edges are denoted by W(ui, uj) =

W(uj, ui) for undirected graphs [15], and the node variables
are (ui, uj) ∈ [0, 1]. Each pair of nodes (ui, uj) is assigned
a probability 0 ≤ W(ui, uj) ≤ 1 for connecting them on
the large sampled graph. This becomes useful when creating
large-scale dense graphs. Parameterizing graph operations on
graph data is done through the graph shift operator (GSO),
S ∈ Rn×n, where GSO can represent the adjacency matrix or
the graph Laplacian. Thus, the sparsity pattern of a graph G
is encoded in GSO [S] = sij ̸= 0 when (i, j) belongs to the
set of edges in G [29].
There are two approaches for sampling graphs from the

graphon: i) deterministic and ii) stochastic. To sample a deter-
ministic graph of size n, a regular partition ui = (i− 1)/n of
[0, 1] for 1 ≤ i ≤ n is built. Then, each point ui is assigned
to node i. Each GSO element [S̄n]ij of a deterministic graph
Gn is equal to W(ui, uj). As for sampling a stochastic graph,
edges connecting a pair of nodes (ui, uj) are sampled from a
Bernoulli distribution. Thus, each GSO element is a Bernoulli
random variable as [Sn]ij ∼ Bernoulli([S̄n]ij) [29]. Since S is
symmetric, it can be diagonlized as S = V3VH , where 3

is a diagonal matrix containing the graph eigenvalues and V
stands for the graph eigenvectors or graph spectral basis.

In an analogy to a graph signal that associates a value to
a node, we define a graphon signal X in the graphon domain
L2([0, 1]). Graphon signals can be interpreted as generating
models for graph signals supported on either the determin-
istic graph or the stochastic graph, or can be thought of as
limits of graph signals supported on graphs converging to a
graphon [34]. Moreover, similar to GSO, we can define the
graphon shift operator (WSO) as [29]

(TWX )(v) :=
∫ 1

0
W(u, v)X (u)du, (1)

where TW is a linear Hilbert-Schmidt operator that defines the
stride of convolution or the interval between successive appli-
cations of the convolutional filter to the input signal. In the
operator’s spectral basis, we can use eigen decomposition of
W to express it asW(u, v) =

∑
i∈Z\{0} λiϕi(u)ϕ(v) and

(TWX )(v) =
∑

i∈Z\{0}
λiϕi(v)

∫ 1

0
ϕ(u)X (u)du, (2)
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where λi are the eigenvalues ordered in decreasing order with
associated eigenfunctions ϕi. As i → ∞, the eigenvalues of
the graphon accumulate near zero [35, Theorem 3,Ch. 28].
Graphon convolutions refer to the process of repeat-

edly applying WSO and taking their weighted sum. The
graphon convolution filter is expressed as Y = h∗WX =∑K−1

k=0 hk (T
(k)
W X )(v), with (T (k)

W X )(v) =
∫ 1
0 W(u, v)(T (k−1)

W X )
(u)du, where h = [h0, · · · , hK−1] are the graphon filter
convolution coefficients; ∗W is the convolution operationwith
WSOW; and T (0)

W = I is the identity.
Any one of the consistent estimators proposed in the lit-

erature can be used to estimate the graphon model of a
given power system: Stochastic blockmodel approximation
(SBA) [36], Universal Singular Value Thresholding (USVT)
concept [37], Sort and Smooth (SAS) [38], Largest Gap [39],
and Matrix Completion [40].
Estimating a graphon for a power system involves repre-

senting the power grid’s connectivity through graph theory,
extracting meaningful structures, and smoothing them for
sampling. The adjacency matrix of the power system graph
is derived and processed via the SAS function, which uses
empirical degree sorting, histogram filtering, and total vari-
ation denoising to estimate the graphon’s structure. The
resulting graphon matrix encapsulates the probabilistic con-
nectivity pattern of the network. A sampled graph is then
generated by creating a synthetic adjacency matrix based on
the smoothed graphon and the desired sample size. Random
permutations and component analysis are performed on the
sample to study its structure, capturing the essential con-
nectivity traits of the original grid. This approach combines
statistical and graphical techniques to model and analyze
complex network behavior.

B. STATISTICAL ASSIGNMENT OF ELECTRICAL
PARAMETERS
After estimating the graphon, we can uniformly draw n sam-
ples from [0, 1] representing node variables and map them
to node labels. Next, edges are added between every pair of
nodes, (ui, uj), based on the edge probability, W(ui, uj), that
was determined from the estimated graphon. After obtaining
the topological configuration of the sampled graph, we resort
to a statistical approach to assign electrical parameters to
nodes and edges. We use the exponential distribution [41]
to generate a random set of active/reactive power values.
At this stage, we have the normalized active/reactive power
values and nodal degree for each node in the real and sampled
systems. By comparing the probability mass function (PMF)
of the two normalized variables in the sampled power system
with the PMF of the normalized variables in the real power
system, the load values are re-ordered to the appropriate
nodes after the probability values in the two systems match.
Next, based on their degrees, buses are assigned the actual
unnormalized active/reactive power values. [41]. In addition,
to provide line impedance values, we employ the empiri-
cal data from IEEE bus systems and the NYISO system

in [42, Table 5], which models line impedance using different
distributions depending on the system size. Next, a proba-
bilistic match is carried out between the obtained values and
the actual real values. Lastly, we run a continuation power
flow that progressively increases the loading/generation to
check if the system load surpasses the steady-state loading
capacity. When the load surpasses the steady-state loading
limit, we scale down all load values to obtain a convergent
power flow solution.

C. SPATIO-TEMPORAL DYNAMIC POWER GRAPHS
The novelty of our approach lies in the integration of power
system characteristics with WNNs, particularly in address-
ing the spatiotemporal dynamics of power systems. Power
systems are continuously evolving in space and time due to
topologicalmodifications, seasonal reconfigurations, integra-
tion of renewable energy sources, and the addition of new
buses and power lines. These dynamic features introduce new
challenges that our proposed WNN method is specifically
designed to handle.

The general power system graph representation that we
developed by employing the graphon allows to address the
dynamicity of power topologies. More specifically, to repre-
sent dynamic topological changes in power systems graphs
over time t1, t2, · · · , tf , where ti can represent months or
years, we start by sampling a graph of size that matches the
final representing size of the system. Then, moving back-
ward in time from tf down to t1, each time we partition
the topology into smaller subgraphs so that the resulting
topology meets the required number of generator and load
substations [43]. The graphon approach allows us to model
the power system’s spatiotemporal dynamics, which are cru-
cial for accurately representing power system behavior over
different time scales (e.g., months or years). This capability
is essential for detecting FDIAs under varying conditions
and configurations, which are common in real-world power
systems.

An illustration of dynamic power system topologies is
depicted in Fig. 1, where the graphon model of the 2000-bus
transmission system geographically situated in the US state
of Texas [10] was estimated from the SAS estimator. This
power system model captures the intricate interconnections
between thousands of buses and transmission lines, reflect-
ing the real-world complexities of power grid infrastructure.
Because of its extensive and complex power grid, it is
an ideal testbed for anomaly detection methods, allowing
exploration of dynamic power system topologies. Then, fol-
lowing real-world power systems evolution statistics [44],
we obtained the different spatio-temporal topological config-
urations representing 10 different time periods such as years.
To elaborate further on the decomposition process, we briefly
present our approach as follows.

The decomposition process systematically partitions the
power system topology into smaller, manageable subgraphs
while preserving critical transmission interconnections. This
is accomplished by ensuring that the graph’s cut edges,
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FIGURE 1. Graphon-based spatio-temporal dynamic topological configurations of 2000-bus system (upper left representing the power
topology at t1, while the lower right stands for the final topology at t10).

representing key transmission lines, align with real-world
operational requirements.

• Ensuring Connectivity: During the process, we itera-
tively refine the sampled graph to eliminate discon-
nected components, ensuring that all nodes belong to
a single connected component. This guarantees that
the graph is cohesive and suitable for further analysis,
maintaining operational interconnectivity between criti-
cal elements.

• Power Flow Validation: Once a connected graph is
obtained, we integrate MATPOWER to verify power
flow feasibility. The process iterates until the generated
subgraph satisfies generation and load balance con-
straints, ensuring the network is physically viable and
consistent with realistic grid conditions. This validation
step prevents the creation of subgraphs that fail opera-
tional or capacity requirements.

• Iterative Reduction Strategy: The reduction strategy
begins with high-degree generator nodes and progres-
sively constructs partitions that meet the following
criteria:

– The counts of generators and loads within each sub-
graph remain within acceptable operational ranges.

– Subgraphs remain connected to preserve neighbor-
hood relationships and functional coherence.

• Statistical Refinement: Generator and load statistics are
computed for each subgraph, and the partitions are

FIGURE 2. Number of loads and generator substations over
10 years.

iteratively refined to ensure they fall within predefined
tolerances. This reduction approach ensures the preser-
vation of both functional and topological structures
while balancing computational tractability and physical
realism.

These steps collectively create subgraphs that are oper-
ationally feasible and consistent with realistic power grid
conditions. To shed further light on the dynamicity of the
topologies, we plot in Fig. 2 a bar chart showing the number
of generators and loads in each year. Moreover, Fig. 3 depicts
the capacity evolution of loads and generators over the years.

VOLUME 12, 2025 29



FIGURE 3. Power capacity of loads and generator substations
over 10 years.

III. DATASET GENERATION
In this section, we describe the benign and malicious dataset
generation, which will be used in the WNNmodel to develop
an FDIAs detector.

A. BENIGN DATASET GENERATION
In the previous section, we described how to estimate the
graphon from an actual power system, how to sample from the
graphon, and how to assign electrical parameters to nodes and
edges. We also showed how we obtained the spatio-temporal
dynamic power system graphs belonging to the same graphon
family, where each graph reflects the system’s topological
and power states for a specific period of time. In this section,
we generate benign dataset measurements for each of the
dynamic power system graphs for purposes of training the
WNN.

Given that a power grid can be represented as a graph
sampled from the graphon, the best FDIAs detection strat-
egy can be created using WNN techniques. A graph GP =

(VP,EP,WP) can be used to represent the power system, with
|VP| = N representing the set of nodes, either load/demand
substations or generator substations. The substations are con-
nected by power lines (edges), which are represented by EP.
Power lines are defined by active/reactive power flows that
are dictated by line impedance, whereas power nodes are
characterized by distinct voltage angles and magnitudes. The
weighted adjacency matrix, WP ∈ RN×N , is determined
by the line impedance matrix. Each node consists of spatial
and temporal features. The spatial features stem from the
spatial distribution of nodes and their connectivities, while
the temporal features emanate from the time-series data of
active power (MW) and reactive power (MVAr) values.

We generate the temporal features or time-series data
needed to model the power flow in every graph topology.
We perform the power flow analysis using Newton’s method
for each topology, using MATLAB’s MATPOWER tool-
box [45], to determine the active and reactive power flows.
The load data profile from the Electric Reliability Council
of Texas (ERCOT) [46] is first normalized to a zero mean

and unit standard deviation scalar vector f = [f1, f2, · · · , fT ]
so that it can be easily adapted to our test system, where ft
is the scalar value at timestamp t . This allows to generate
the time-series active and reactive power values. To obtain
a dynamic variation in the time-series values (P and Q)
with respect to their static case (fixed values), we multiply
the active P and reactive Q power values at the previous
timestamp by a scaling sample taken from a normal distri-
bution with 1+ 0.025× ft mean and 0.01 standard deviation.
Consequently, because of the characteristics of the normal
distribution, a dynamic range of load values is produced. For
each power system graph, we generated 500 power dynamics
timestamps.

B. THREAT MODEL
The threat model that we are considering in this paper
is FDIAs, where the attackers use malware, compromised
devices, or unauthorized access to network infrastructure to
manipulate the powermeasurements collected by the SCADA
system for control decisions. By compromising the data
integrity, FDIAs can affect voltage stability, imbalance power
supply and demand, cause overloading, and potentially result
in equipment malfunction [47]. The objective is to develop
an FDIAs detector with generalization capability with respect
to the system dynamicity and topological configuration. The
system operators can use such a robust detector to identify
FDIAs, which will enable them to make more informed
decisions and enhance the stability of the power grid. Next,
we describe the specifics of the malicious datasets and the
procedure used to create attack samples that mimic the exis-
tence of FDIAs.

We consider five different types of FDIAs: three types of
data replay attacks, a general attack, and a random attack. The
difference between the altered and true measurement data is
kept below a threshold value that is deemed acceptable yet
effective to get around the traditional bad data detection of
power systems, ensuring the stealthiness of such attacks while
avoiding detection.

1) Random Attack: In this method, measurement data is
altered by applying a small perturbation value α to benign
samples, thereby affecting their integrity. The following
equation generates a malicious sample, Xs(t, i), at timestamp
t for bus i:

Xs(t, i) = Xb(t, i)+ αXb(t, i), (3)

where α is a random variable that represents the amount of
perturbation applied at random to a specific benign sample,
Xb(t, i) at timestamp t and bus i. This attack’s primary goal is
to destabilize the measurement integrity without triggering
detection algorithms. While the changes are minimal, the
accumulation of such attacks can cause slight disruptions in
system stability, potentially leading to errors in power flow
calculations. 2) General attack: the malicious samples are
generated as

Xs(t, i) = Xb(t, i)+ (−1)βζγRange(Xb(t, i)), (4)
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where ζ and β represent a binary random variable and the
magnitude of the attack, respectively; γ is a uniform random
variable between 0 and 1; and Range(Xb(t, i)) denotes the true
measurements range at timestamp t and bus i. In this case,
the attack is generated by applying a random perturbation
with a specific magnitude, either adding or subtracting from
the benign measurement. This attack is designed to introduce
more controlled deviations. This type of attack can create
significant measurement discrepancies that affect power flow
and voltage stability. The system may experience imbalances
in supply and demand or incorrect load balancing, causing
inefficiencies in power distribution.

3) Replay Attacks: three instances of replay attacks are
examined. One-step and random replay attacks are the first
two types of attacks that call for choosing a benign sample and
substituting a true measurement value from a prior timestamp
for it. The one-step replay attack involves repeating data from
a previous timestamp t − 1, where Xs(t, i) is expressed as

Xs(t, i) = Xb(t − 1, i). (5)

The main goal is to manipulate the system by repeating old
data, potentially leading to control decisions based on out-
dated information. This can cause transient instability as the
system reacts to ‘‘stale’’ inputs, creating delays in adjusting
to real-time conditions.

Data from a randomly chosen prior timestamp t̂ is repeated
in the random replay attack, where Xs(t, i) is expressed as

Xs(t, i) = Xb(t − t̂, i). (6)

This attack can be harder to predict and its impact can vary
depending on the data reused but may lead to unexpected
fluctuations in system performance, affecting load balancing
and voltage regulation.

Repeating a single attack sample at a time was the goal
of the first two replay attacks. The last type of replay attack
is interval replay attack, which introduces a sequence of
consecutive attack samples that adhere to benign patterns, and
therefore regarded as stealthier because they repeat a series
of benign readings. In particular, a sequence of consecutive
benign samples [Xb(tn, i) · · ·Xb(tm, i)] within time interval
[tn, · · · , tm] are replaced with a sequence of consecutive true
measurement values from earlier timestamps [t̂n, · · · , t̂m].
Mathematically, we can express interval replay attack as

[Xs(tn, i) · · ·Xs(tm, i)] = [Xb(t̂n, i) · · ·Xb(t̂m, i)]. (7)

Because this attack mimics benign patterns, it is stealthier
and more difficult to detect. However, it can cause long-term
disruptions in system performance, particularly in dynamic
environments where real-time adjustments are critical.

IV. GRAPHON NEURAL NETWORKS
One distinctive feature of GNNs is that the number of
parameters is independent of the graph’s size due to graph
convolutions being determined by graph shifts. Consequently,
GNNs can be transferred from one graph to another since

GNN parametrization and graph size are independent. How-
ever, when the graph changes, particularly when moving
to larger graphs, the performance of GNNs might not be
maintained [27]. Furthermore, the scalability of large-scale
convolutions is limited due to their high computational
costs [27].Moreover, GNNsmight not be resilient if the graph
size fluctuates over time as a result of new or deleted nodes.
Recent works [27], [28], [29], [30], [31], [32] have focused
on WNNs, the limiting object of GNNs, to address all these
issues. By utilizing the graphon, which is the limit object of
a sequence of growing graphs {Gn}, WNNs can be trained on
extremely large graphs.

WNNs can be transferred because the underlying graphs
have similar structural properties. A fixed error term associ-
ated with training performance and a transferability constant
are used to quantify WNN’s performance guarantee [27].
The graphon variability, width, depth, and convolution filter
parameters all affect the transferability constant. For filters to
be transferrable, GNN filters need to match the eigenvalues
of the source and target graphs. The eigenvalues of every
sampled graphGn converge to the graphon eigenvalues as the
number of nodes gets closer to infinity. For small eigenvalues,
matching becomes challenging. This means that some spec-
tral components cannot be transferred, even for large graphs,
because the graphon’s eigenvalues accumulate near zero.
Asymptotically, the transferability constant rises for filters
with narrow passing bands. In [27], it was demonstrated that
the smaller graph dominates the transferability bound and
that the fixed error term and transferability constant decay
with O(1/

√
min (n1, n2)), where n1 and n2 are the sizes of

the transferable learning graphs.
With learning by transference, the transfer learning

approach involves expanding the graph size every epoch. The
learning direction (gradients) on the graph and on the graphon
are aligned if GNNs have a large number of nodes [31], [33].
We aim for a small discretization of the gradient in order to
follow the gradient direction of the graphon learning problem.
We begin with a small graph size and increase it step by step
until it reaches the total number of nodes; the upper bound
on the number of nodes to be added is set by the data that
is currently available. A term that asymptotically decreases
with graph size bounds the distance between gradient descent
steps on the WNNs and on the trained family of GNNs. The
iteration on the graphon learning problem will follow the true
gradient if the expected difference between gradients is small.
Then, we keep increasing the number of nodes until the norm
of the GNN gradient is smaller than the non-transferrable
constant.

Using the learning by transference characteristic ofWNNs,
we will start by training smaller graphs using a hybrid GNN
and LSTM and then progressively increasing their sizes as
shown in Fig. 4. For each GNN-LSTM, the graph convolu-
tional layers extract the spatial features from the graph Gn,
while the temporal data measurement values [Pi,Qi] ∈ Rn×2

are captured by the LSTM module. Each time the model
is trained, the learnable parameters are passed to the next
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FIGURE 4. Illustration of the proposed WNN detection.

larger graph. This iterative approach allows i) to reduce the
computation burden of conventional GNNs, ii) to address
the dynamicity of topological reconfigurations as new nodes
and edges are added in the system, and iii) to deal with the
scalability issue of large-scale complex systems.

V. EXPERIMENTAL RESULTS
This section presents the experimental setup and the used
metrics to evaluate the models along with the optimal hyper-
parameters. Then, a comparison between the benchmark
GNN-LSTM (simply referred to as GNN) and the proposed
WNN model is provided in terms of detection performance,
generalization abilities, scalability, and computational
complexity.

A. EXPERIMENTAL SETUP
We compare the performance of the proposed WNN model
with a traditional convolutional GNN model as a benchmark.

Both models are trained, validated, and tested on all the
ten topological configurations. For each configuration, 70%,
10%, and 20% of the data is used for training, validation,
and testing, respectively. To ensure results generalization,
k-fold cross-validation, with k = 10, is carried out for
each topological configuration. To avoid bias, the number
of benign and malicious samples is equal and samples from
all attack types are equally injected. For the WNN model,
unlike traditional GNN, the learned parameters are carried
out from one graph to the other, which results in boosting the
detection performance and model efficiency, as will be seen
in Sections V-D and V-E.

B. DETECTION PERFORMANCE METRICS
To evaluate the models comprehensively, we use the detec-
tion rate (DR), which reflects how well the model identifies
attack samples. Additionally, we report the false alarm rate
(FAR) to determine the proportion of benign instances that
are incorrectly identified as attack instances. We also report
the accuracy (ACC) of the models to reflect how well they
identify each sample type [48].

C. OPTIMAL HYPERPARAMETERS
To determine the optimal hyperparameter settings for the
GNN and WNN models, we use a sequential grid-search
hyperparameter selection algorithm [49]. Each hyperpa-
rameter is selected in a stage from a predefined list of
possible hyperparameter values. The hyperparameter value
that provides the highest DR against the validation set is
selected [19]. Specifically, the optimal number of layers
for the models is 6, which is selected from {4, 5, 6, 8}.
The optimal number of units is 32, which is selected from
{16, 32, 64}. The optimal dropout rate is 0.4, which is
selected from {0, 0.2, 0.4}. The optimal optimizer is Adam,
which is selected from {SGD, Adam, Adagrad, Rmsprop}.
The optimal activation function is Relu, which is selected
from {Relu, Sigmoid, ELU, Tanh}.

D. DETECTION PERFORMANCE
Table 1 reports the detection performance of the GNN and
WNNmodels against the ten topological configurations. Due
to the parameter transfer learning capabilities of the WNN
model, it is able to provide improved detection performance
by up to 4.1%, 3.7%, and 4.7% in DR, FAR, and ACC,
respectively, compared to the GNN model. Fig. 5 visualizes
the generalization ability and scalability of the WNN model
compared to the GNN model. The WNN model generalizes
well over multiple graph topological configurations while
offering improved detection performance. The WNN model
is capable of maintaining consistent detection accuracy and
reliability, even in the presence of diverse topological con-
figurations. This ability underscores the model’s reliability
in adapting to different network environments and rein-
forces its effectiveness in detecting anomalies under varying
conditions.
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TABLE 1. Detection performance of WNN compared to GNN.

FIGURE 5. Detection performance of the WNN and GNN models.

Moreover, the WNN model offers scalability to larger sys-
tems since detection performance improves as the system size
increases. Specifically, with the largest system size, theWNN
model offers enhanced detection performance by 11.9%,
16.6%, and 12.8% in DR, FAR, and ACC, respectively, com-
pared to the smallest system. This improvement underscores
the model’s ability to effectively handle the increased com-
plexity and size of larger power grid networks, demonstrating
its scalability and suitability for real-world deployment.

In addition, it is worth mentioning that WNN offers
enhanced generalization ability and scalability compared to
theGNNmodel since the detection performance of the former
keeps improving steeply in the presence of topological recon-
figurations and increase in the system size. However, the
detection performance of the GNN model saturates (reaches
its maximum detection performance) after the seventh topol-
ogy, while the detection performance of the WNN model
keeps improving as system size grows. This distinction
underscores the WNN model’s superior ability to adapt to
changing network conditions and its potential for continued
improvement as system size grows. These capabilities and the
improvement in theWNNmodel’s detection performance are
caused by the model’s ability to transfer parameters between
graphs that are all members of the same graphon family as
the system’s size grows. This mechanism enables the model
to leverage knowledge learned from smaller networks to
improve detection accuracy in larger ones, highlighting the
importance of parameter sharing and knowledge transfer in
achieving scalability and reliability.

To summarize, the primary advantage of the proposed
WNN model lies in its ability to transfer learned parameters
across different topological configurations, which signifi-
cantly enhances its generalization across various system sizes

and topologies. Unlike traditional neural networks, such as
GNNs, which may struggle with adaptation to new topolog-
ical changes, the WNN model leverages knowledge transfer
from one graph to another within the same graphon family.
This transfer mechanism allows the WNN model to maintain
high detection performance as the system size increases or as
the network topology changes, making it more scalable and
adaptable in real-world applications. As a result, the WNN
model outperforms existing neural networks in terms of both
detection accuracy and computational efficiency, especially
in large and dynamic network environments.

E. COMPUTATIONAL COMPLEXITY
Training and testing the models are carried out on a per-
sonal machine with an RTX 2080 hardware accelerator using
Python. Therefore, the numerical results presented may vary
depending on the used computational resources while offer-
ing similar trends. The offline training and real-time decision
(testing) time with the energy consumption are discussed
next.

1) TRAINING AND DECISION TIME
In Fig. 6, we plot the offline training time in hours (hr) along
with the online (real-time) decision time inmilliseconds (ms).
For the GNN model, training time of the largest system
takes 7 times more hours than training the smallest system,
whereas it takes 3 times for the WNN model since parameter
knowledge is being transferred among the different graphs.
Specifically, training the WNN model requires significantly
less number of hours, around 60% less compared to the GNN
model with the largest system. For the WNN model, it takes
around 3 ms (which satisfies the power systems latency
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FIGURE 6. Computational comparisons between the WNN and GNN models.

requirements [19]) to provide a decision on a sample, which
is half the amount of time that takes the GNN model.

In our analysis, we observed that the WNN model signifi-
cantly outperforms the GNN model in terms of training time,
particularly for larger systems. WNN model’s reduced train-
ing time directly translates to improved scalability compared
to the GNNmodel. This improvement is attributed to WNN’s
parameter transfer mechanism, which allows the model to
efficiently handle increasing system sizes while maintaining
computational efficiency.

2) ENERGY CONSUMPTION
Transferring the parameters among the different topological
configurations not only leads to enhanced detection perfor-
mance, but also enhances the training efficiency in terms of
the energy consumption during the training stage. Fig. 6 also
plots the energy consumed in kiloWatt hours (kWh) during
the training stage of the WNN and GNN models. For the
GNN model, training the largest system requires 20 times
more energy than the smallest system, whereas for the WNN
model, it requires 8 times to train the largest system compared
to the smallest one. This means that training the WNNmodel
consumes around (20 − 8)/20 = 0.6 or 60% less energy
compared to training the GNN model with the largest graph
size. However, the energy consumption here is estimated
indirectly through the computation time, which serves as a
proxy for energy usage. We inferred energy consumption
from processing time on the hardware, assuming a consis-
tent system configuration and a direct relationship between
computation time and energy use. These energy savings are
approximations based on this assumption; however, direct
energy measurements will be necessary in future studies to
validate these comparisons.

VI. CONCLUSION
In this paper, we proposed the use of WNN to exploit the
learning by transference on the sequence of growing graphs
belonging to the same graphon family. We showed that
when compared to conventional GNN, WNN significantly
improves FDIAs detection under topological reconfigura-
tions and growing system size with benefits in generalization
and scalability. Specifically, the training and real-time deci-
sion making were cut by more than half compared to GNN.

Moreover, training on a WNN was found to be much more
energy efficient than GNN as it consumed 60% less energy.
These findings shed light on the promising potential of
WNNs as a viable alternative to GNNs in various applica-
tions. Further research and development in this area could
lead to the wide adoption of WNNs, revolutionizing the field
of artificial intelligence.
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