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Abstract—Smart power grids are vulnerable to security threats
due to their cyber-physical nature. Existing data-driven detectors
aim to address simple traditional false data injection attacks
(FDIAs). However, adversarial false data injection evasion attacks
(FDIEAs) present a more serious threat as adversaries, with
different levels of knowledge about the system, inject adversarial
samples to circumvent the grid’s attack detection system. The
robustness of state-of-the-art graph-based detectors has not been
investigated against sophisticated FDIEAs. Hence, this paper
answers three research questions: (a) What is the impact of
utilizing spatio-temporal features to craft adversarial samples
and how to select attack nodes? (b) How can adversaries generate
surrogate spatio-temporal data when they lack knowledge about
the system topology? (c) What are the required model char-
acteristics for a robust detection against adversarial FDIEAs?
To answer the questions, we examine the robustness of several
detectors against five attack cases and conclude the following:
(a) Attack generation with full knowledge using spatio-temporal
features leads to 5 − 26% and 2 − 5% higher degradation in
detection rate (DR) compared to traditional FDIAs and using
temporal features, respectively, whereas centrality analysis-based
attack node selection leads to 3−11% higher degradation in DR
compared to a random selection; (b) Stochastic geometry-based
graph generation to create surrogate adversarial topologies and
samples leads to 3−13% higher degradation in DR compared to
traditional FDIAs; (c) Adopting an unsupervised spatio-temporal
graph autoencoder (STGAE)-based detector enhances the DR by
5− 53% compared to benchmark detectors against FDIEAs.

Impact Statement—Cyber-physical systems, such as smart
power grids, generate and exchange lots of data among their
components, which makes them vulnerable to various attack
types. To detect such attacks, tools based on artificial intelligence
(AI) are being proposed since they can learn the system behavior.
Simple attack types present obvious deviations in the data
patterns and can be spotted using classical AI-based attack
detectors. However, complex attack types can be injected in a
stealthy way and bypass the detectors, especially when attackers
have access to leaked information about the system. Such cases
lead to further degradation in the attack detection rates of
existing detectors by up to 26% compared to simple attacks,
causing system instability. This paper answers questions on
what is required for an AI-based detector to be robust against
such complex attacks when attackers have full, partial, and no
knowledge about the system. It turns out that detectors that
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capture information about the grid connectivity and temporal
aspects lead to enhanced attack detection rates of up to 53%
compared to classical AI-based detectors. The provided answers
in this paper are relevant to wider applications in cyber-physical
systems, industries, and internet of things since they follow
similar environments.

Index Terms—cyber-physical systems security, cyberattacks,
evasion attacks, false data injection attacks, graph autoencoder,
graph neural networks, machine learning, smart grids.

I. INTRODUCTION

THE integration of cyber and physical elements within a
smart power grid renders it a highly complex system,

characterized by the continuous exchange of measurement data
among these components [1]. Smart power grids present cyber-
physical systems that necessitate accurate measurement data
for the attainment of optimal operation, decision-making, and
situational awareness [2]. Thus, ensuring data integrity is es-
sential to maintain power system reliability [3]. Nevertheless,
the occurrence of false data injection attacks (FDIAs) can
compromise the integrity of measurement data [4] due to the
manipulation of sensor data by malicious entities (adversaries).
Such actions can lead to system overload, owing to the
emergence of incorrect operational decisions. FDIAs pose
a significant challenge when executed in a stealthy manner
[5], especially adversarial false data injection evasion at-
tacks (FDIEAs) that circumvent traditional bad data detection
(BDD) systems.

A. Related Work and Limitations

Existing data-driven approaches mostly focus on detecting
traditional FDIAs such as replay attacks on smart power grids.
However, while evasion attacks present a major threat to cyber-
physical systems [6], the detection of adversarial FDIEAs is
limited in smart grid literature. We review existing traditional
and adversarial detectors next.

1) Detection of Traditional FDIAs: We classify data-driven
approaches based on their ability of capturing spatial (i.e., grid
power topology) and temporal (i.e., time-series correlations)
aspects as follows.

a) Spatially-Unaware Detection: The relevant detectors
rely on classical machine learning-based approaches with
shallow or deep structures that do not capture the topological
aspect of the grid. These detectors aim to detect traditional
FDIAs only. Among the most notable results, shallow support
vector machine (SVM) [7] and decision tree [8] detection
schemes offered F1-Scores of 82% and 88%, respectively. A
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shallow random forest-based scheme reported a detection rate
(DR) of 93% against basic attacks [9]. Such shallow detectors
offer limited detection capabilities since they fail to fully
capture the complex patterns present within the measurement
data of different grid components [10]. Therefore, machine
learning-based detectors with shallow structures present un-
reliable solutions. Detectors that are built using artificial
neural networks overcome the pattern complexity limitation by
employing deep structures with stacked layers as follows. Dif-
ferent feedforward neural network (FNN)-based approaches
offered accuracy scores of 90− 99% [11], [12]. Autoencoder
and recurrent neural network (RNN)-based approaches pro-
vided DRs of 96% [13], [14]. A convolutional neural network
(CNN)-based approach yielded a row accuracy of 97% [15].
Despite the improved reported detection performance due to
capturing complex patterns, such models still do not capture
the spatial aspect of the grid topology [5] and hence we refer
to them as “spatially-unaware” detectors.

b) Spatially-Aware Detection: Spatially-aware detectors
based on graph signal processing (GSP) [16] and graph
neural networks (GNNs) were proposed to capture the spatial
topological aspects. The GSP-based tools offered 90% in DR
while requiring manual designing of custom filters [17], [18].
Such a limitation restricts the scalability of the model to a
specific network size. Hence, GSP-based approaches are also
not considered reliable despite capturing the spatial features
[5]. A GNN-based approach that utilizes undirected graphs to
model the power system provided DRs of 83 − 96% using
a convolutional GNN (CGNN) structure [3]. Such a detector
employs a supervised learning model trained on labeled data
with a finite number of attack types. Thus, supervised GNNs
are vulnerable to unseen (zero-day) attacks that are not part of
their training sets [19]. Also, due to the lack of recurrent layers
within the model, the CGNN-based detector does not capture
the temporal correlations within the grid’s time-series datasets.
Besides, such a detector fails to generalize a detection strategy
in case of system seasonal topological reconfigurations as
it is trained on a specific topological configuration [5]. To
overcome the generalization limitation, a state-of-the-art gen-
eralized graph autoencoder (GAE)-based detector trained on
multiple topological configurations reported 94−99% in DRs
against only simple traditional FDIAs in unseen topologies
[5], yet it lacks apprehending the temporal aspects due to its
feedforward structure.

c) Spatio-Temporal-Aware Detection: Since smart grids
rely on temporal (time-series) data with spatial aspects, spatio-
temporal-aware FDIA detectors capturing both aspects were
proposed. A spatio-temporal RNN (STRNN) model offered
an accuracy of 91% on IEEE 118 and 300-bus systems [20].
A spatio-temporal graph neural network (STGNN) approach
that classifies cyber events using supervised learning offered an
accuracy of 96% on a test distribution system [21]. A spatio-
temporal autoencoder (STAE) model showed an accuracy of
98% on an IEEE 39-bus system [22]. A spatio-temporal
CNN (STCNN) model offered an accuracy of 99% on an
IEEE 39-bus system [23]. A spatio-temporal fully-connected
neural network (STFNN) approach offered a precision of
99% on 95 and 255-bus systems [24]. A spectrum-based

neural network approach offered an accuracy of 99% on
IEEE 9, 39, and 118-bus systems [25]. A spatio-temporal
federated learning approach provided an accuracy of 99%
on IEEE 14 and 118-bus systems [26]. Despite reporting
high detection performance, such studies lack at least one
of the following aspects. First, they offer supervised and
static detection that is limited to the attack types and system
configuration that they are trained on. Thus, such detectors
present vulnerability to new unseen attacks as well as system
reconfigurations. Second, they offer detection against simple
FDIAs, without investigating the robustness against adversarial
FDIEAs. Third, they implement non-graph approaches, which
limits their detection performance compared to graph-based
detectors that capture the grid’s topological configurations
via the Chebyshev graph convolution operator. Fourth, they
are tested against specific system sizes, which limits their
generalization and scalability abilities [5]. Such drawbacks
lead to limited detection performance (as will be discussed in
Section V-C2) compared to other spatio-temporal graph-based
detectors.

The detection performance of the aforementioned detectors
[3], [5], [7] - [9], [11] - [15], [17], [18], [23] - [26] is reported
only against simple traditional FDAIs with the aim of deceiv-
ing the grid’s control systems and operations. This means that
such studies neglect an important cybersecurity aspect, which
is adversarial FDIEAs that circumvent the machine learning-
based detectors via injecting adversarial attack samples that
have similar patterns to benign ones [6]. Specifically, the
aforementioned detectors have not been tested against complex
adversarial FDIEAs that are more challenging to detect due
to the presented similarity between adversarial and benign
samples. Next, we review studies that attempt to capture
adversarial attacks.

2) Detection of Adversarial FDIEAs: Such attacks may take
place in two forms; data poisoning [27] or evasion attacks [6].
Data poisoning denotes incorrectly labeled malicious samples
in the training set [28]. Evasion attacks present cases where
malicious entities inject adversarial samples into the system to
fool the adopted detectors [6]. In evasion attacks, the injected
adversarial samples present similar patterns to benign samples
and hence circumvent the detector, which is the focus of this
paper. Next, we review adversarial attack detectors in power
grids and common adversarial detectors in different domains.

a) Adversarial-Specific Detectors in Power Grids: Sev-
eral studies concluded that evasion attacks severely deteriorate
the detection performance in power systems [29], [30], [31].
Therefore, the following adversarial-specific detectors (i.e.,
detectors that are designed specifically to only detect adver-
sarial attacks) have been proposed. An integrated generative
adversarial network (GAN) approach offered 96% in accuracy
on IEEE 13 and 123-bus systems [32]. A spatio-temporal
generative adversarial network (STGAN) approach provided
97% in accuracy on IEEE 13 and 33-bus systems [33]. An
adversarial machine learning approach offered 99% in accu-
racy on IEEE 14, 30 118-bus systems [34]. Other approaches
based on adversarial training (AT) and sequential ensemble
learning (SEL) offered 91% and 95% in accuracy, respectively,
against electricity theft evasion attacks [35] [6]. However, such
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solutions present at least one of the following limitations. First,
they offer adversarial attack-specific detection solutions, which
means that they are designed specifically to detect adversarial
attacks, whereas in reality, power systems could encounter
other attack types (e.g., traditional FDIAs) [36]. Second, such
solutions require implementing an additional block to the
detection mechanism specifically to detect adversarial attacks,
which increases computational complexity. Third, they present
supervised learning that requires including adversarial samples
in the training set of the models, which limits the detection to
seen attack types only. Fourth, they do not capture the spatio-
temporal aspects of smart power grids.

b) Adversarial Detectors in Other Domains: Other de-
fense approaches against evasion attacks have been proposed
in different domains. First, an adversarial training-based ap-
proach [37] that incorporates adversarial samples into the
training set was proposed to familiarize the model with
such samples. However, malicious entities may launch new
adversarial attack samples that are not part of the training set.
Second, a certified defense-based approach [38] was proposed
to issue a robustness certificate for a fixed network size.
However, network sizes vary according to the application.
Third, an approach utilizing a reformer model was proposed to
bring adversarial samples closer in proximity to a manifold of
benign samples [39]. However, such a solution is limited to one
attack setting where adversaries have full knowledge about the
detection details, but in reality, adversaries may have different
knowledge levels, as will be discussed in Section II-B6.

3) Additional Remarks: The reviewed studies lack a com-
mon comparison ground as they report multiple detection
performance metrics from various domains based on different
experiments conducted on multiple system sizes with various
injection levels, which makes it challenging to draw con-
clusions using only the reported detection performance. A
high reported detection performance (e.g., 99% in DR) in
the literature does not necessarily reflect the effectiveness and
reliability of the model since the results are mostly limited to
detecting simple FDIA types (included during training) using
relatively small datasets while being trained and tested on
the same topological configurations, which limits the model’s
scalability. It is also worth noting that the reviewed studies
resorted to utilizing computer software and simulation tools
to generate normal operation and attack samples due to the
lack of readily available benign and attack datasets.

B. Research Questions
To the best of our knowledge, generalized state-of-the-art

spatially-aware FDIA detectors have been only tested against
simple attacks on random nodes [5]. Thus, it is worth inves-
tigating the robustness of such detectors against sophisticated
adversarial FDIEAs with multiple attack cases, which prompts
the following research questions that this paper addresses:

• Since existing studies only utilized temporal features to
craft adversarial samples, what is the impact of utilizing
spatio-temporal features to craft adversarial samples and
how to select attack nodes?

• In case utilizing spatio-temporal features increases the ad-
versarial FDIEAs impact, how can adversaries generate

surrogate spatio-temporal data when they lack knowledge
about the system topology?

• From a defense perspective, what are the required model
characteristics for a robust detection against adversarial
FDIEAs?

C. Contributions

The aforementioned limitations motivate the goal of in-
vestigating the robustness of spatially-unaware, spatially-
aware, spatio-temporal-aware, and adversarial-specific detec-
tors against FDIA and adversarial FDIEAs in smart power
grids in different attack settings. Toward this objective, this
paper provides the following contributions:

• We introduce highly damaging adversarial FDIEAs using
three dynamic attack functions that lead to higher degra-
dation in DR by 5− 12% compared to static benchmark
ones. The generated adversarial samples are injected
using multiple levels and settings based on the adversary’s
knowledge about the adopted detection system, data
(features), and grid topology. Knowledge levels include
full, partial, and no knowledge reflecting white, gray, and
black-box attack settings, respectively. We found out that
adversarial FDIAEs generated utilizing spatio-temporal
features lead to 5− 26% and 2− 5% higher degradation
in DR compared to traditional FDIAs and utilizing only
temporal features, respectively, in white-box settings.

• We propose a node selection strategy to increase the
strength of evasion attacks in white-box settings based on
the betweenness and degree centrality analysis. We found
out that injecting attacks into nodes with high centrality
leads to 3 − 11% higher DR degradation compared to
randomly selecting attack nodes.

• We propose a graph-generation process in gray and black-
box settings to craft attack vectors where adversaries
lack knowledge about the grid topology and data used
by operators. The process involves generating surrogate
spatio-temporal features based on a stochastic geometry
approach where adversaries create an adversarial environ-
ment with realistic spatial data (graphs and connectivity)
and conduct a power flow analysis to generate temporal
data to mimic a realistic system. The crafted adversarial
samples using the adversarial environment are then used
to fool the operator’s detector, leading to 3−13% higher
degradation in DR compared to traditional FDIAs.

• Our experiments revealed that adopting a spatio-temporal
graph autoencoder (STGAE)-based detector offers a ro-
bust detection against adversarial FDIEAs. The STGAE
model presents an unsupervised model (autoencoder with
attention) that identifies unseen adversarial samples, a
recurrent mechanism (LSTM cells) that models temporal
aspects, and spatial layers (graph convolution) that cap-
ture topological configurations. Such characteristics lead
to 5−53% improved DR compared to spatially-unaware,
spatially-aware graph, and spatio-temporal-aware non-
graph benchmark detectors against adversarial FDIAEs.

The remainder of the paper is organized as follows. Section
II describes the data preparation, threat model, and benchmark
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detectors. Section III explores the impact of utilizing spatio-
temporal features for generating adversarial samples in white-
box settings and introduces the proposed attack node selection
strategy. Section IV presents the stochastic geometry-based
generative model to generate surrogate adversarial environ-
ments in gray and black-box settings. Section V describes
the STGAE model, examines the robustness of the detectors,
and presents the characteristics of the robust STGAE-based
detector. Section VI presents the conclusions.

II. PRELIMINARIES

This section presents the data preparation for the conducted
experiments, threat model in terms of generating traditional
FDIAs along with adversarial FDIEAs, and benchmark detec-
tors.

A. Data Preparation

From a defense (system operator) perspective, building a
data-driven attack detector requires comprehensive datasets
with different system features for training, validation, and
testing. The ideal approach would be utilizing huge amounts
of real historical spatio-temporal datasets from real power
systems of different sizes and configurations. However, such
dynamic datasets are not readily available to use due to
regional legal agreement policies and security reasons [40].
Therefore, as discussed in Section I-A, existing research has
been utilizing IEEE test systems and computer software to
simulate power flow to generate normal operation and at-
tack data. Thus, getting realistic and reliable results requires
performing three tasks. The first task is adopting realistic
power systems, where we consider the IEEE 14, 39, and 118-
bus systems. The second task is introducing dynamicity to
such systems for generalization abilities, where we utilize an
approach based on stochastic geometry [41] to build multiple
topologies/graphs out of the IEEE 14, 39, and 118-bus systems
with nodes and edges mimicking real power grids topological
characteristics. The third task is obtaining temporal data,
where we utilize Newton’s method to generate power systems
measurement data for each topology [27]. Details on the three
tasks are described next.

1) IEEE Bus Systems: To perform the first task, we utilize
IEEE standard bus systems that are widely adopted in power
systems applications as seen in Section I-A. To examine the
scalability of the detectors, we utilize three IEEE standard
bus systems with small, medium, and large sizes, namely, the
IEEE 14, 39, and 118-bus systems, respectively. The IEEE
14-bus represents an American Electric Power system with 14
buses, 5 generators, 11 loads, and 20 lines [42]. The IEEE 39-
bus system represents the New-England Power System with
39 buses, 10 generators, 19 loads, and 46 lines. [43]. The
IEEE 118-bus system represents a Midwest American Electric
Power system with 118 buses, 19 generators, 91 loads, 35
synchronous condensers, 9 transformers, and 177 lines [44].

2) Spatial Data: To perform the second task, we utilize
stochastic geometry, which is a powerful tool when it comes
to considering the physical constraints of connecting the
power elements as well as capturing the spatial coupling and

correlations of electrical elements [5], [27], [45], [46]. The
stochastic geometric morphogenesis of cities utilizing iterated
Poisson tessellations matches the aforementioned IEEE 14,39,
and 118-bus systems, presenting real world systems [47],
which has been validated against real power grids and IEEE
test systems [41]. In this work, the generative stochastic
geometry approach serves two purposes; to construct multiple
topological configurations to build generalized data-driven
attack detectors (graph generation is discussed in Section
IV-C1c), and to construct additional surrogate topological
configurations for adversaries that do not have access to the
operator data (discussed in Section IV-C). In both cases,
ten different topological configurations are generated for 14,
39, and 118-bus systems. From a defense perspective, the
investigated detectors are trained on several topological con-
figurations of 14, 39, and 118-bus systems and are then tested
against unseen topological configurations. The configurations
are represented as Γ = [1, 2, ..., 10] for each system size,
where training, testing, and validating topologies are selected
according to a leave-one-out method [48]. Specifically, we per-
form eight separate generalized experiments for each system
size. Each experiment utilizes seven, one, and two topologies
presenting a training set XTR, validation set XVAL, and test
set XTST, respectively. The average detection performance
of the experiments is then reported against the remaining
unseen topological configurations. The reason behind such an
experimental setting is to achieve a generalization ability that
captures the dynamic aspect of power grids where topological
reconfigurations take place [5], [27].

3) Temporal Data: To perform the third task, we adopt
a power flow analysis under steady-state conditions using
Newton’s method via MATLAB’s MATPOWER toolbox [49]
to determine the temporal features for the IEEE 14, 39, and
118 bus systems along with the constructed graphs/topologies
of these systems [5]. The temporal features present time-series
data in the form of active power Pi in megawatt (MW) and
reactive power Qi in megavolt amperes (MVAr). Specifically,
the load data profile from the Electric Reliability Council of
Texas (ERCOT) [50] is utilized [45], [51] and normalized
with a zero mean and unit standard deviation scalar vector.
We multiply the power values by a scaling sample from a
normal distribution (i.e., 1+0.025∗𭟋t mean and 0.01 standard
deviation) such that 𭟋t denotes the scalar value at timestamp
t. This way, we achieve a dynamic variation in the mea-
surement values, resulting in a dynamic range of load values
with respect to the properties of normal distribution. In this
work, the power flow analysis is used to serve two purposes;
to construct the benign samples to build generalized data-
driven attack detectors, and to construct additional surrogate
temporal features for adversaries that lack knowledge about
the operator data (discussed in Section IV-C2). To build the
data-driven attack detectors, for each topology, we include 4
power dynamics timestamps per hour, resulting in 96 daily
power dynamics timestamps during a period of 180 days,
yielding a total of around 17, 000 timestamps. The resulting
data represent the benign samples (under normal operation)
where a benign sample is expressed as Xb(t, i) ∈ X b such
that t and i present a given timestamp and bus, respectively,
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TABLE I
TRADITIONAL FDIA FUNCTIONS

Attack Attack function
Random

attack
f1(Xm(t, i)) = Xb(t, i) + α.Xb(t, i)

General
attack

f2(Xm(t, i)) = Xb(t, i) + (−1)βα.γ.Range(Xb(t, i))

One-step
replay

f3(Xm(t, i)) = Xb(t− 1, i)

Random
replay

f4(Xm(t, i)) = Xb(t− t̂, i)

Interval
replay

f5([Xm(tn, i), ..,Xm(tm, i)]) = [Xb(tn̂, i), ..,Xb(tm̂, i)]

Target
replay

f6([Xm(tn, i), ..,Xm(tm, i)]) = [Xb(tṅ, i), ..,Xb(tṁ, i)]

and X b denotes all benign samples. All samples X b have
correct benign labeling information of y = 0. Samples X b are
then manipulated using the attack functions described next to
construct traditional FDIA and adversarial FDIEA samples.

B. Threat Model

We investigate the impact of two cyber threats on power
grids, namely, traditional FDIAs and adversarial FDIEAs. We
examine the robustness of these threats in five attack cases
(discussed in II-B6). In traditional FDIAs, malicious entities
manipulate the exchanged data with the aim of deceiving the
grid’s control systems and operations, resulting in inaccurate
decision making and blackouts in severe cases. The limitation
of traditional FDIAs is that they present simple attacks that
may bypass traditional BDD systems, but may be spotted using
machine learning-based detectors [27]. Adversarial FDIEAs
present a more serious threat as adversaries inject adversarial
samples with the aim of circumventing the grid’s attack detec-
tion system itself since they present similar patterns to benign
ones and hence fool the machine learning-based detector [6].
Thus, detecting adversarial FDIEAs is more challenging than
traditional FDIAs. Next, we describe how both threat types
may take place in real life along with the system vulnerability.
We then describe the attack implementation and how we end
up with the generated attack and adversarial samples.

1) Smart Grid Vulnerability: As cyber-physical systems,
smart power grids are susceptible to cyberattacks due to the
interconnected nature of the grid and reliance on communica-
tion networks. Since data communication takes place, attackers
(whether they have full, partial, or no system knowledge), in a
real life scenario, could monitor and intercept the data traffic
using network traffic monitoring tools such as Wireshark,
tcpdump, or Nmap. With such tools, attackers can identify
vulnerabilities in network protocols or devices within the grid
infrastructure. By analyzing captured traffic, attackers may
discover weaknesses. The utilized vulnerabilities (i.e., system
entry points) such as buffer overflows or authentication by-
passes could be exploited to compromise the communication.
After identifying the vulnerability, the attacker acts as a man-
in-the-middle where intercepted signals are manipulated using
the attacks described in Tables I and II, resulting in false

TABLE II
ADVERSARIAL FDIEA FUNCTIONS

Attack Attack function

FGSM f7(Xa(t, i)) = Xb(t, i) + ε sign∇Xb(t,i)
J(ϕ,Xb(t, i),y)

BIM
f8(Xa(t+ 1, i)) =

ClipXb(t,i),ε̂
{Xa(t, i) + ε sign∇Xb(t,i)

J(ϕ,Xa(t, i),y}

C&W f9(Xa(t, i)) = min
ε

ω(Xb(t, i),Xb(t, i) + ε)

DMP
f10(Xa(t+ 1, i)) =

ClipXb(t,i),k
{Xa(t, i) + ε sign∇Xb(t,i)

J(ϕ,Xa(t, i),y}

DMD f11(Xa(t, i)) = min
ε

ω(Xb(t, i), ε) where ε = ε̄ Xb(t, i)

DMA
f12(Xa(t, i)) = min

ε
∥ε∥p + c · f(Xb(t, i) + ε,y)

where ε = ε̄ Xb(t, i)

data. Utilizing the identified vulnerability, the false data is
then injected back into the system via tools such as Ettercap
[52] that can facilitate the man-in-the-middle attack scenario.

2) Traditional FDIA Samples: The traditional FDIA sam-
ples are generated using the six FDIA functions presented in
Table I. In such traditional attacks, attackers do not require
any knowledge about the system, topology, or used detector
where network traffic analysis software may be used to collect
readings to manipulate and falsely inject them into the system.
To capture such a case, we consider the following traditional
random, general, and replay FDIA functions.

As shown in Table I, a malicious sample Xm(t, i) ∈ Xm
is produced using traditional FDIA functions (f1(·) − f6(·)).
In the random attack (f1(·)), a benign sample is randomly
selected, where a bounded noise α with a magnitude of
−0.05 ≤ α ≤ 0.05 is applied to that sample. In the general
attack (f2(·)), β and γ depict a binary random variable and
uniform random variable between 0 and 1, respectively, where
the Range term depicts the range of true measurements at
timestamp t and bus i. The replay attacks falsely repeat
benign samples from a previous timestamp or a series of
timestamps. In the one-step replay attack (f3(·)), a sample
from one previous timestamp (t − 1) is repeated, whereas a
sample from a randomly selected previous timestamp 2 ≤
t̂ ≤ 5 is repeated in the random replay attack (f4(·)). In
the interval replay (f5(·)) and target replay (f6(·)) attacks,
a series of benign readings [Xb(tn, i), · · · ,Xb(tm, i)] from
previous consecutive timestamps is repeated where the time
interval length is randomly selected between 2 and 5 to present
similarities in readings without being spotted by the detectors.
In f5(·), the repeated malicious samples are presented as
[Xb(tn̂, i), · · · ,Xb(tm̂, i)]. In f6(·), the repeated malicious
samples are presented as [Xb(tṅ, i), · · · ,Xb(tṁ, i)], where
such samples must present measurements with higher/lower
values than [Xb(tn, i), · · · ,Xb(tm, i)] so that measurements
with lower values get replaced with higher values from a
series of previous consecutive timestamps and vice versa.
Attack functions f5(·) and f6(·) present stronger attacks than
f1(·)−f4(·) since they repeat intervals of benign readings and
hence introduce benign patterns in a stealthy manner.

3) Adversarial FDIEA Samples: Generating adversarial
samples requires introducing sophisticated adversarial mea-
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TABLE III
CASES OF EVASION ATTACK SETTINGS DEPENDING ON THE ADVERSARIES KNOWLEDGE ON THE DETECTION SYSTEM DETAILS

Setting Case Knowledge Used detector Used topology Used features Node selection

White-box
Case 1 Full Same as opr. Same as opr. Temporal Random
Case 2 Full Same as opr. Same as opr. Spatio-temporal Random
Case 3 Full Same as opr. Same as opr. Spatio-temporal Centrality analysis

Gray-box Case 4 Partial Same as opr. Different from opr. Spatio-temporal Random
Black-box Case 5 None Different from opr. Different from opr. Spatio-temporal Random

surement data in a stealthy way that fools the implemented
detector to be falsely identified as benign. Hence, we apply
static and dynamic adversarial FDIEA functions to mimic a
system that encounters adversarial FDIEAs. As shown in Table
II, an adversarial sample Xa(t, i) ∈ X a is crafted using the
adversarial FDIEA functions f7(·)− f12(·) discussed next.

a) Static Evasion Attack Functions: Adversarial FDIEA
functions f7(·) - f9(·) present benchmark static attacks since
they generate one adversarial sample Xa(t, i) based on one
benign sample Xb(t, i) utilizing bounded perturbations. The
fast gradient sign method (FGSM) [37] attack function f7(·)
applies a perturbation value ε to a benign sample to fool
the detector. Specifically, f7(·) uses the model’s loss function
gradient with respect to Xb(t, i) such that an adversarial
sample Xa(t, i) is created while maximizing the loss. The
process of maximizing the model’s loss is carried out through
a one-step gradient update along the direction of the gradient’s
sign at a given t. In f7(·), ε, sign, and y denote the perturba-
tion magnitude, signum function, and true label, respectively,
whereas ∇, J , and ϕ depict the model’s gradient, loss function,
and parameters, respectively. The basic iterative method (BIM)
[53] attack function f8(·) applies f7(·) iteratively over several
timestamps and uses the clip function to clip the obtained
elements after each timestamp, which guarantees that Xa(t, i)
and Xb(t, i) present similar patterns. In f8(·), ε depicts a small
perturbation value at each t. ε̂ = 0.1 is tuned and denotes the
maximum perturbation magnitude to increase the chance of
fooling the detector while maximizing the loss. The Carlini &
Wagner (C&W) [54] attack function f9(·) operates based on
the minimization of the Euclidean distance (root-mean-square)
ω between Xb(t, i) and Xb(t, i)− ε [6].

b) Dynamic Evasion Attack Functions: For a stronger
evasion impact, adversarial FDIEA functions f10(·) - f12(·)
present dynamic attack functions where ε varies for each
adversarial sample Xa(t, i) based on the dynamic mean ε̄
of Xb(t, i) and k neighboring readings. The dynamic mean
perturbation (DMP) attack function f10(·) applies ε̄ such
that ε varies for each reading and perturbation values are
not bounded by ε̂. Similarly, in the dynamic mean distance
(DMD) attack function f11(·), ω varies based on the mean of
Xb(t, i) and k neighboring readings. Therefore, ε also varies
for each generated Xa(t, i), where ω denotes the Euclidean
distance between Xb(t, i) and ε, where ε = ε̄ Xb(t, i). In
the dynamic mean elastic-net (DME) attack function f12(·),
we apply a modified version of the elastic-net attacks on deep
neural networks [55], which aims to minimize the combined
perturbation norm ∥ε∥ of ε with respect to norm p that
determines the magnitude of ε. In f12(·), parameter c is used

to control the trade-off between ε and the loss function value
while scaling the regularization importance with respect to the
loss term.

4) Attack Magnitude and Signals: The attack magnitude and
number of attack signals rely on the values of ε and k, which
are crucial when it comes to the stealthiness and detectability
of the attacks. Determining ε and k vary based on the level
of knowledge that adversaries have. When adversaries have
access to the details of the operator’s detector, we assume that
adversaries will adopt a trial-and-error approach to find the
largest ε and k values that fool the model. Thus, adversaries
tend to apply smaller ε and k values and report the false
negative rate (FNR) as ε and k increase. The largest ε and k
that report the highest FNR are then applied, which turns out
to be 0.4 ≤ ε < 0.9 (with 0.01 increments) and 2 ≤ k ≤ 16.
In cases where adversaries do not have knowledge about the
adopted detector, they tend to maintain ε and k values below
certain thresholds to avoid being detected, which turn out to
be ε = 0.65 and k = 2.

5) Attack Levels: We examine the robustness of the detec-
tors against a combination of traditional FDIAs and adversarial
FDIEAs in multiple attack injection levels. To avoid biased
results, half of the test samples are benign samples, whereas
the other half is split equally among the attack functions in
multiple injection levels. The first injection level contains 0%
and 100% adversarial FDIEA and traditional FDIA samples,
respectively. The second injection level contains 25% and 75%
adversarial FDIEA and traditional FDIA samples, respectively.
The third injection level contains 50% from each adversarial
FDIEA and traditional FDIA. The fourth injection level con-
tains 75% and 25% adversarial FDIEA and traditional FDIA
samples, respectively. The fifth injection level contains 100%
and 0% adversarial FDIEA and traditional FDIA samples,
respectively.

6) Attack Cases: For a comprehensive analysis on the
robustness of the investigated detectors, we consider several
attack cases based on the level of knowledge an adversary
has. Table III summarizes the attack cases where an adversary
has full (white-box), partial (gray-box), and no (black-box)
knowledge about the operator (opr.) system. Further details
will be discussed in Sections III and IV.

C. Benchmark Detectors

We provide a comprehensive robustness analysis of de-
tectors equipped with multiple characteristics presenting
spatially-unaware, spatially-aware, spatio-temporal-aware, and
adversarial-specific models with feedforward or temporal
mechanisms employing supervised or unsupervised detection
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with shallow, deep, or graph structures. Due to their nature,
supervised models are trained on labeled benign and malicious
samples, whereas unsupervised models are only trained on
benign samples. All detector types are tested on benign,
malicious, and adversarial samples. All sample types have
equal number of samples. We adopt a sequential grid-search
hyperparameter selection process [56] to achieve the best
outcomes in terms of the offered DR against the validation set.
The hyperparameters are selected from a list of possible values
as follows. For the shallow models, the differencing degree
and moving average parameters are selected from {0, 1, 2, 3}.
The kernel, gamma, and regularization parameters are selected
from {Linear, Sigmoid, RBF}, {scale, auto}, and {1, 10, 100},
respectively. For the deep and graph models, the number of
layers and units is selected from L = {2, 3, 4, 5, 6, 8} and
U = {4, 8, 16, 32, 64}, respectively. The dropout rate, neigh-
borhood order, optimizer, and activation function are selected
from D = {0, 0.2, 0.4}, K = {2, 3, 4, 5}, O = {Adam,
Adamax, SGD, RMSprop}, and A = {Sigmoid, Tanh, ReLu,
Elu}, respectively. For unsupervised models, test samples are
labeled using a detection threshold ψ (discussed in Section
V-B).

1) Spatially-Unaware Benchmark Detection: The unsuper-
vised autoregressive integrated moving average (ARIMA) [57]
detector is based on a shallow temporal model that predicts
future measurements using benign samples and detects attack
samples based on deviations from such predictions with dif-
ferencing degree and moving average optimal parameters of
1 and 0, respectively, and ψ = 0.42. The supervised SVM
[7] detector is based on a shallow static model that sepa-
rates benign from attack samples using a decision boundary
with kernel, gamma, and regularization optimal parameters
of Sigmoid, auto, and 1, respectively. The supervised FNN
[11] detector is based on a deep static model that captures
features using stacked feedforward layers with L = 5, U = 32,
D = 0, O = Adam, and A = ReLu optimal parameters. The
supervised RNN [14] detector is based on a deep temporal
model that captures time-series dependencies using recurrent
layers while holding past states with L = 3, U = 32,
D = 0.2, O = Adam, and A = ReLu optimal parameters. The
supervised CNN [15] detector is based on a deep model that
employs convolutions to extract features from data with L = 4,
U = 32, K = 5, O = RMSprop, and A = ReLu optimal
parameters. The unsupervised SEL [28] detector is based on
a three-stage model that handles data sequentially through
autoencoder, temporal, and feedforward neural networks with
L = 8, U = 32, D = 0.2, O = SGD, and A = Sigmoid
optimal parameters and ψ = 0.53.

2) Spatially-Aware Benchmark Detection: Such detectors
apprehend the spatial aspects of the power grid by employing
graph-based approaches. The supervised CGNN [3] detector
is based on a feedforward static GNN model that employs
the graph convolution operation [58] with L = 5, U = 16,
K = 3, O = RMSprop, and A = ReLu optimal parameters.
The unsupervised GAE [5] detector is based on a graph model
that employs the graph convolution operation as part of an
autoencoder with L = 6, U = 64, K = 5, O = Adam, and
A = ReLu optimal parameters.

3) Spatio-Temporal-Aware Benchmark Detection: Such de-
tectors apprehend the spatial and temporal aspects of the
power grid. We examine six spatio-temporal-aware bench-
mark detectors including supervised STFNN [24], STRNN
[20], STCNN [23], and STGNN [21] models as well as
unsupervised STAE [22] and STGAN [33] models using the
aforementioned optimal hyperparameters.

4) Adversarial-Specific Benchmark Detection: Such detec-
tors are designed to detect adversarial samples using super-
vised learning. AT [35] introduces adversarial samples in the
training stage to familiarize the model with such patterns.
GAN-based detection [32], consisting of a generator and
discriminator, generates data to fool a discriminator refining
the generator’s output.

5) Evaluation Metrics: We report how well the models
detect attack samples using detection rate (DR = TP/(TP +
FN)), where TP and FN denote the number of true positive
and false negative samples, respectively. We also report the
percentage of incorrectly marked benign samples as attack
samples using false alarm rate (FAR = FP/(FP + TN)), where
FP and TN stand for the number of false positive and true
negative samples, respectively. The reported results are based
on the average detection performance of generalized detectors
built using the topological configurations of the 14, 39, and
118-bus systems and tested against levels of traditional FDIA
and adversarial FDIEA samples on unseen topological config-
urations. This way, the generalization ability of the detectors
against dynamic environments is also examined.

6) Model Complexity: The experiments are conducted of-
fline on an NVIDIA GeForce RTX 4060 hardware accelerator
using Python. Spatially-unaware, spatially-aware, and spatio-
temporal-aware models take 3.5 − 5, 7 − 7.5, and 8 − 9
hours, respectively, for offline training while adversarial-
specific models require 1.5 − 2 additional hours. The online
(real-time) testing takes 2− 5 milliseconds to label a reading,
which meets grid systems latency requirements. The size of
spatially-unaware, spatially-aware, and spatio-temporal-aware
models is roughly 10 − 35, 70 − 120, and 180 − 210
megabytes, respectively. The additional time (i.e., training
period) and space (i.e., model size) overhead of the robust
STGAE model are associated with capturing more distinctive
features from the data, requiring more training parameters.
From the operator side, both aspects (time and space) do not
pose further constraints since operators can perform offline
training periodically and store the models at the control center.

III. SPATIO-TEMPORAL AND NODE SELECTION ATTACKS

This section answers the research question: What is the
impact of utilizing spatio-temporal features to craft adversar-
ial samples and how to select attack nodes? To address this
question, we first introduce three attack cases in the white-
box setting, where adversaries are considered insiders with full
knowledge about the adopted detector, data, and topological
configurations, which means that adversaries could utilize the
IEEE 14, 39, and 118-bus test system configurations since
they are publicly available. The rationale behind considering
such attack cases is that information about the system could be
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Fig. 1. Sample topological configurations of a 14-bus system.

accessed or leaked by insiders (i.e., system operators), which
results in white-box attacks with full system knowledge. Thus,
adversaries utilize the same detection type, model parameters,
data, and topological configurations as the operator. We then
propose an attack node selection strategy to achieve a higher
evasion damaging impact. The white-box attack cases as
described next.

A. White-Box Attack Cases

Case 1 (Temporal): In this attack case, although the
adversaries have full knowledge about the temporal features
and topological configurations, they opt to utilize the temporal
features in the evasion attack vector. This case acts as a
benchmark evasion attack mimicking existing studies that only
adopt temporal features for adversarial samples generation.
This means that adversarial samples crafted using temporal
features in bus i are only injected into the same bus i. The
adversaries herein utilize the same detection type and temporal
data adopted by the operator to craft adversarial samples.

Case 2 (Spatio-Temporal): In this attack case, the adver-
saries have full knowledge about the temporal features and
topological configurations. Besides utilizing the temporal fea-
tures, they also include the spatial features in the evasion attack
vector. Consequently, adversarial samples crafted using spatio-
temporal features in bus i are injected into a randomly selected
bus j. The adversaries herein utilize the same detection type
and data as the operator to craft adversarial samples.

Case 3 (Centrality Analysis): In this attack case, the ad-
versaries have full knowledge about the temporal features and
topological configurations and utilize spatio-temporal features
in the evasion attack vector. However, adversarial samples
crafted using spatio-temporal features in bus i are injected into
bus j that the adversaries strategically select. In particular, we
propose an attack node selection strategy where an adversary
selects nodes to attack based on the calculated betweenness
centrality CB , which measures the extent to which that node
lies on the shortest paths between other pairs of nodes in the
network [59]. The adversary’s motivation in selecting such
nodes is that nodes with higher CB are considered the most
influential hence vulnerable in the network. Thus, injecting
attacks into such nodes would lead to higher performance
deterioration. For example, in the graph representation of the

IEEE 14-bus system illustrated in Fig. 1(a), nodes 4 and 5
are selected to be attacked since they present the highest CB .
The betweenness centrality CB(v) of node v is expressed as
follows

CB(v) =
∑
i,j∈V

σ(i, j|v)
σ(i, j)

, (1)

where σ(i, j|v) presents the number of shortest paths among
nodes i and j that pass through node v, and σ(i, j) denotes
the number of shortest paths between nodes i and j. If nodes
have the same CB , the adversary resolves this using the
degree centrality CD score, which quantifies the importance
or influence of the node based on its degree [59]. The degree
centrality CD(v) of node v is expressed as follows

CD(v) =
deg(v)

max(deg)
, (2)

such that deg(v) depicts the number of edges connected to
node v, whereas max(deg) denotes the maximum degree
reported of any given node in graph G. The aforementioned
node selection strategy is only applicable to the white-box
setting where adversaries have full system access, and hence,
have the capability to strategically select nodes to attack.

B. Impact of Adversarial FDIEAs in White-Box Settings

This section presents the detection performance of the
benchmark detectors against static and dynamic adversarial
FDIEAs in white-box settings. Table IV reports the average
detection performance of the detectors against all investigated
attack types and injection levels. On average, adversarial
FDIAEs in white-box settings lead to higher degradation of
4.3− 26.4% in DR compared to traditional FDIAs since they
present samples similar to benign ones and hence fool the
detector. Next, we present the impact of adversarial FDIAEs
generated using temporal features, spatio-temporal features,
and centrality analysis-based node selection.

1) Impact of Utilizing Spatio-Temporal Features: In Table
IV, we compare the performance degradation of the temporal
and spatio-temporal white-box attack cases against the bench-
mark detectors. Specifically, higher degradation of 1.5−5.2%
in DR is reported when adversaries utilize spatio-temporal fea-
tures (case 2) compared to utilizing temporal features (case 1)
to craft adversarial samples using spatially-unaware detectors.
Such a higher performance degradation is due to capturing the
additional spatial aspect of the topological configurations and
data adopted by the operator in generating adversarial samples
that are then injected into a randomly selected node, compared
to injecting them into the same node.

2) Impact of Attack Node Selection: In Table IV, we also
compare the performance degradation of the spatio-temporal
and centrality analysis-based node selection white-box attack
cases against the detectors. Specifically, higher degradation of
3−6.1% and 3.8−11.2% in DR are reported when adversaries
utilize spatio-temporal centrality analysis-based node selection
(attack case 3) compared to random node selection using
spatio-temporal features (case 2) and temporal features (case
1), respectively, to craft adversarial samples. Thus, injecting
adversarial samples into the most influential nodes leads to
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TABLE IV
IMPACT OF TRADITIONAL FDIAS AND ADVERSARIAL FDIEAS ON THE INVESTIGATED DETECTORS (%)

Detection
type

Model
type

Model Metric Traditional
FDIAs

Adversarial FDIEA case setting
White-box Gray-box Black-box

Case 1 Case 2 Case 3 Case 4 Case 5

Spatially-
unaware

Non-
graph

ARIMA DR 68.6 53.5 48.3 42.3 55.8 57.7
FA 40.3 54.0 59.2 65.2 51.5 49.6

SVM DR 71.6 57.1 51.9 46.0 59.4 61.4
FA 32.3 44.5 49.6 55.4 42.4 40.6

FNN DR 76.0 62.3 57.2 51.4 65.2 66.9
FA 25.5 37.7 42.7 48.6 34.6 33.0

RNN DR 81.3 68.0 63.2 57.5 70.7 72.2
FA 19.4 32.2 37.0 42.7 28.9 28.2

CNN DR 84.9 72.5 67.9 62.3 75.8 77.4
FA 13.8 24.8 29.4 35.1 22.0 20.1

SEL DR 89.4 78.2 73.7 68.1 80.6 82.3
FA 9.1 19.3 23.6 29.3 19.6 16.5

Spatially-
aware

Graph
GNN DR 94.1 90.7 89.3 87.8 91.5 92.2

FA 5.2 9.3 9.9 11.5 7.7 6.9

GAE DR 95.2 91.9 90.7 89.1 92.5 93.4
FA 3.5 6.5 7.6 9.7 6.1 5.3

Spatio-
temporal-

aware

Non-
graph

STNN DR 90.5 83.8 83.3 82 85.1 85.5
FA 12.4 18.9 19.8 20.6 17.8 17.1

STRNN DR 91.2 86 85.1 83.7 87 88
FA 11.7 17.2 18.3 18.8 15.9 15.1

STGAN DR 91.7 87.4 86.8 84.4 88.2 88.5
FA 10.3 14.4 15.8 17.9 13.8 13.3

STCNN DR 92.2 88.1 87.1 86 89 89.7
FA 9.4 13.6 14.6 15.4 12.7 11.9

STAE DR 92.8 89.4 88.2 87.2 90.4 90.8
FA 8.5 11.8 13 13.7 10.9 10.5

Graph
STGNN DR 94.7 91.1 89.9 88.2 91.9 92.8

FA 4.8 9 9.5 11.1 7.2 6.7
Robust
STGAE

DR 97.5 96.3 95.6 95.4 96.6 97.1
FA 1.9 3.3 3.6 4.0 2.9 2.4

the highest performance degradation since the impact of the
adversarial sample becomes higher in the network, resulting
in circumventing the detectors.

3) Remarks: This section answered the research question:
What is the impact of utilizing spatio-temporal features to craft
adversarial samples and how to select attack nodes?

• Utilizing spatio-temporal features in attack generation
(cases 2&3) led to 4.5 − 26.4% higher degradation in
DR compared to traditional FDIAs since the generated
samples present similar patterns to benign ones, which
fool the detector.

• Utilizing spatio-temporal features in attack generation
(case 2) led to 1.5 − 5.2% higher degradation in DR
compared to utilizing temporal features (case 1) due to
capturing topological aspects to craft adversarial samples
that are then injected into a randomly selected node.

• Strategically selecting attack nodes via centrality analysis
(case 3) led to 3 − 11.2% higher degradation in DR
compared to a random selection (cases 1&2) due to
injecting attacks into the most influential nodes (using
CB and CD) in the topology.

IV. DESIGNING SPATIO-TEMPORAL SURROGATE DATA

This section answers the research question: How can ad-
versaries generate surrogate spatio-temporal data when they
lack knowledge about the system topology? To address this
question, we first introduce gray and black-box attack cases.
The rationale behind considering such attack cases is that
partial information about the system could be accessed or
leaked, which results in gray-box attacks carried out by either
insiders or outsiders. A black-box attack case could take
place by outsider adversaries that lack knowledge about the
system information. We then propose utilizing a generative
model based on stochastic geometry and Newton’s method
to construct surrogate adversarial data with realistic graphs
to craft adversarial samples to be injected into real systems.
Adversaries in gray and black-box attack cases could utilize
the IEEE 14, 39, and 118-bus test system configurations since
they are publicly available. The attack cases are described next.

A. Gray-Box Attack Case

The gray-box attack case assumes that adversaries have
partial knowledge. This includes knowledge about the operator
detector. Thus, adversaries use the same detection type as
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the operator, but utilize surrogate datasets and topological
configurations. The gray-box attack case is described next.

Case 4 (Spatio-Temporal): In this attack case, we assume
that adversaries use the same detector and model parameters as
the operator. However, they lack knowledge about the adopted
data and topological configurations by the operator. Thus, we
propose utilizing surrogate spatio-temporal datasets to create
attacks on and generate adversarial samples in bus i in the
adversarial environment, then injecting them into a randomly
selected bus j in the real system since they lack knowledge
about the real system’s topology. The proposed generation
process of the surrogate adversarial spatio-temporal datasets
is discussed in Section IV-C.

B. Black-Box Attack Case

In the black-box attack case, we assume that adversaries
lack knowledge about the adopted detector and topologies.
Thus, adversaries in such a setting also resort to utilizing sur-
rogate data and different detection schemes than the adopted
ones to craft adversarial samples. Since adversaries in this case
utilize a different detection type than the operator, the reported
results herein present the average detection performance of
all possible combinations of the investigated detectors. An
example of a combination is that an adversary utilizes an SVM
model while the operator adopts an FNN-based detector. The
black-box attack case is described next.

Case 5 (Spatio-Temporal): In this attack case, we assume
that the adversaries utilize different detector types and data
than adopted by the operator. We also propose utilizing surro-
gate spatio-temporal datasets to craft adversarial samples while
using different detection types than the operator.

C. Adversarial Surrogate Data

In attack cases 4 and 5, adversaries lack knowledge about
the system’s topological configuration, which makes it chal-
lenging to investigate the robustness of the detectors against
such attack cases. Therefore, we propose an attack strategy
where adversaries build surrogate datasets (adversarial en-
vironments) with adversarial spatial and temporal features.
Adversarial spatial features are created using stochastic ge-
ometry to generate surrogate topological configurations that
follow matching spatial distributions to real systems. Adver-
sarial temporal features are simulated by performing a power
flow analysis through Newton’s method [49]. Specifically,
we utilize ten surrogate topological configurations of 14, 39,
and 118-bus systems to mimic the behavior of an adversary
designing evasion attacks on datasets that are different from
the ones adopted by the operators. The reason behind adopting
a separate dataset for adversaries is that evasion attacks rely
on benign samples and model parameters to be crafted, and
in reality, adversaries might not have access to the adopted
detectors, model parameters, topologies, or data. We capture
the spatial aspects (i.e., spatial distribution of buses and
connectivity data) along with the temporal aspects (i.e., power
injections and flow data) of 14, 39, and 118-bus systems. To
create a realistic adversarial environment, we generate multiple
topological configurations of these systems using stochastic

geometry [41]. In Fig. 1, the graph representations illustrated
in (b) and (c) reflect two sample configurations derived from
the IEEE 14-bus system illustrated in (a) using stochastic
geometry. We resort to utilizing stochastic geometry since we
require large-scale datasets with spatial and temporal features,
which are not publicly available as discussed in Section II-A.

1) Adversarial Spatial Features: The stochastic geometry
approach is adopted in gray and black-box settings to construct
multiple topological configurations since it offers the following
advantages. First, it effectively captures necessary physical
constraints in interconnecting power elements [45]. Second, it
incorporates spatial coupling and correlations of the electrical
elements [46]. Such an approach of modeling cities using
iterated Poisson structures exhibits a high degree of similarity
to real-world systems [47]. Such an approach is validated
against real power grids and IEEE test systems [41].

a) Generating an Adversarial Topological Configuration:
Towards the objective of constructing a topological configura-
tion for a given system (i.e., 14-bus system), we represent the
geographical area by utilizing the Poisson line process with a
disk radius R. The disk encompasses N lines formed as per the
Poisson line density λn. A line Υn presents an angle direction
θn and length υn subject to 0 ≤ θn < 2π and 0 ≤ υn < R,
respectively. |V| buses are also created by utilizing the process
of one-dimensional homogeneous Poisson point (HPP) with
density represented as λ|V| =

∑N
ℓ=1 λ|V|n . This process was

proved to accurately capture the distribution of bus nodes in
realistic power systems [45]. To connect the buses within the
system, we use the near-geodesic route approach according to
the physical paths along with the degree shifted sum of expo-
nential distributions [45]. To make sure that power is delivered
to the loads, buses are linked using the shortest pathways. Load
capacities are assigned to buses via a probabilistic matching
technique between the generated topology and an IEEE bus
test system of equivalent size to ensure system similarity with
real systems [60]. Line impedance values are allocated through
the IEEE bus systems and New York independent system
operator (NYISO) empirical data [61] that models impedance
according to different system-based distributions. Then, the
acquired values are statistically linked to real values of a same-
size real or test system [27].

b) Generating Multiple Adversarial Topological Config-
urations: To generate such configurations, we reproduce the
aforementioned processes using a constant λ|V|. This is carried
out to ensure that the generated topological configurations
present high similarities to real ones in terms of the spatial
aspects (i.e., eigenvalue spread and nodal degree). In Fig. 1,
the graph representations illustrated in (b) and (c) present high
similarity to the IEEE 14-bus system illustrated in (a) in terms
of spatial aspects to ensure the reliability of the conducted
experiments, which allows generating multiple topological
configurations of multiple system sizes. To mimic an adversary
behavior that lacks knowledge about the grid’s topology, we
utilize such an approach to create an adversary (surrogate)
environment that is used to craft adversarial samples to be
injected into the real environment.

c) Adversarial Graph Structure: To model the power
system using a graph G, buses and power lines are represented
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as nodes V and edges E . An undirected graph is expressed as
G = (V, E ,W ), where W ∈ Rn×n denotes the weighted
adjacency matrix (i.e., the line admittance). For instance,
within a graph G, when buses i and j are connected, a
weight Wij is associated to the edge e = (i, j). Specifically,
we construct 30 different configurations; ten for each system
size (14, 39, and 118-bus systems) presenting the surrogate
adversarial spatial features.

2) Adversarial Temporal Features: Nodes V of a given
graph G of the constructed configurations are associated with
time-series data (temporal features) where we generate active
power Pi (MW) and reactive power Qi (MVAr). Within each
topology, the temporal features are simulated by performing a
power flow analysis through Newton’s method with the use of
the MATLAB MATPOWER toolbox [49]. For each generated
configuration, we include 4 power dynamics timestamps per
hour, resulting in 96 daily timestamps during a period of
180 days. This yields around 17, 000 measurement timestamps
presenting the surrogate adversarial temporal features.

D. Impact of FDIEAs in gray and black-Box Settings

This section reports the performance of benchmark detectors
against adversarial FDIEAs crafted using surrogate spatio-
temporal features built via the stochastic geometry model.

1) Impact of Utilizing Surrogate Environments in Gray-Box
Settings: In Table IV, we report the impact of the gray-box
attack setting for benchmark detectors. Using the stochastic
geometry model to generate adversarial environments with sur-
rogate spatio-temporal features leads to a higher degradation
of 3.4 − 12.8% in DR compared to traditional FDIAs. Such
a higher degradation reflects the vulnerability of spatially-
unaware detectors even in cases where adversaries utilize
surrogate features to generate adversarial samples.

2) Impact of Utilizing Surrogate Environments in Black-
Box Settings: In Table IV, we also report the impact of
the black-box attack setting for benchmark detectors. Us-
ing the stochastic geometry model to generate adversarial
environments with surrogate spatio-temporal features leads
to a higher degradation of 2.8 − 11% in DR compared to
traditional FDIAs. This means that spatially-unaware detectors
are still vulnerable to adversarial FDIEAs even in cases where
adversaries lack knowledge about the system topology and
detection type. This is because adversaries are able to generate
adversarial environments with surrogate datasets that present
high similarity to real systems using stochastic geometry.

3) Remarks: This section answered the research question:
How can adversaries generate surrogate spatio-temporal data
when they lack knowledge about the system topology?

• Adopting a generative spatio-temporal model using
stochastic geometry led to generating adversarial samples
that are capable of deceiving benchmark detectors.

• Generating adversarial samples using surrogate spatio-
temporal features led to higher degradation of 2.8−12.8%
in DR compared to traditional FDIAs, reflecting the
detectors’ vulnerability, due to the high similarity present
between surrogate adversarial and benign samples.
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Fig. 2. Structure of the STGAE-based detector.

V. SPATIO-TEMPORAL GRAPH-BASED DETECTION

This section answers the research question: What are the
required model characteristics for a robust detection against
adversarial FDIEAs? To address this question, we examine
the robustness of a STGAE-based detector, that overcomes the
limitations of benchmark detectors, against traditional FDIAs
and adversarial FDIAEs.

A. Spatio-Temporal Graph Autoencoder-Based Detection

To capture the complex, spatial, and temporal aspects of
smart power grids’ data, we implement an STGAE-based
detector that employs stacked graph convolutions to capture
the spatial aspects as well as a recurrent mechanism to capture
the temporal aspects. The STGAE model also employs an
attention mechanism to focus on most relevant information
during data processing. The detector also achieves unsuper-
vised generalization abilities as it is trained on multiple graph
representations of normal (benign) operation. The structure
of the STGAE model is illustrated in Fig. 2 and expressed
in Algorithm 1. The model adopts a graph-reconstruction
process that learns the graph representations of benign data
only. Overall, the model consists of an input (X b), a graph
encoder (E), an attention layer (LA), a latent layer (LS), a
graph decoder (D), and an output X̃ as follows.

1) Input Block: The first stage in the STGAE model is
the input stage. As inputs, the STGAE model takes the
graph representations of benign samples X b during normal
operation. This includes the Pi and Qi measurement values at
a given node i expressed as [Pi, Qi] ∈ Rn×2.

2) Graph Encoder Block: The second stage is the graph
encoder E, which consists of stacked spatio-temporal graph
Chebyshev encoding layers LE, each with clE

channels. A
spatio-temporal graph encoding layer lE ∈ LE outputs X lE ∈
Rn×clE while taking the input of X lE−1 ∈ Rn×clE−1 . After-
wards, for a nonlinear capability, bias and ReLu activation
are incorporated [62], resulting in an output tensor expressed
in line 8 of Algorithm 1, where µlE ∈ RK×clE−1×cl , ∗G , and
blE ∈ RclE denote the Chebyshev coefficients (K order), graph
convolution operator, and bias, respectively. The operator ∗G
handles the spatial aspects of the data. To handle the temporal
aspect along with the issue of vanishing/exploding gradient
with lengthy intervals, we implement long short-term memory
(LSTM) units with slE

t and hlE
t cell state and hidden state,
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Algorithm 1: Training of the STGAE model.

1 Input Block: XTR

2 Initialization: Φ, hLD

t−1, and X̃
3 for each topology Γ do
4 for X ∈ XTR do
5 Feed forward:
6 Graph Encoder Block (E):
7 for lE ∈ LE do
8 X lE = ReLU(µlE ∗G X lE−1 + blE)
9 for t ∈ T do

10 ilE
t = φ(W lE

i XlE
t +U lE

i hlE
t−1 + V lE

i slE
t−1 + blE

i )

11 olE
t = φ(W lE

o XlE
t +U lE

o hlE
t−1 + V lE

o slE
t + blE

o )

12 f lE
t = φ(W lE

f XlE
t +U lE

f hlE
t−1 + V lE

f slE
t−1 + blE

f )

13 slE
t = f lE

t slE
t−1+ilE

t tanh(W lE
s XlE

t +U lE
s hlE

t−1+blE
s )

14 hlE
t = olE

t tanh(slE
t ).

15 end
16 end
17 Attention Mechanism Block (LA):
18 κ = ξ(hLE

t ,hLD
t−1)

19 Ω =
exp(κ)∑
|κ| exp(κ)

20 Λt =
∑

T Ω× hLE
t

21 Latent Block (LS):
22 X̆ =

∑
(Λt, X̃)

23 Graph Decoder Block (D):
24 for lD ∈ LD do
25 X̆

lD
= ReLU(µlD ∗G X̆

lD−1
+ blD )

26 for t ∈ T do
27 Compute ilD

t , olD
t , f lD

t , slD
t , and hlD

t
28 end
29 X̃

lD
= ReLU(µlD ∗G X̆

lD−1
+ blD )

30 end
31 Back propagation:
32 Compute min

Φ
C(X, gΦ(fΦ(X))), ∇

µ
l(·)C, ∇

b
l(·)C,

∇
W

l(·)
(·)

C, ∇
U

l(·)
(·)

C, and ∇
V

l(·)
(·)

C

33 end
34 Parameter update:
35 µl(·) = µl(·) − η

|XTR|
∑

x ∇
µ

l(·)C

36 bl(·) = bl(·) − η
|XTR|

∑
x ∇

b
l(·)C

37 W
l(·)
(·) = W

l(·)
(·) − η

|XTR|
∑

x ∇
W

l(·)
(·)

C

38 U
l(·)
(·) = U

l(·)
(·) − η

|XTR|
∑

x ∇
U

l(·)
(·)

C

39 V
l(·)
(·) = V

l(·)
(·) − η

|XTR|
∑

x ∇
V

l(·)
(·)

C

40 end
41 Output: Optimal µl(·) , bl(·) , W

l(·)
(·) , U

l(·)
(·) , and V

l(·)
(·)

respectively, at timestamp t. Specifically, input ilE
t , output olE

t ,
and forget f lE

t gates control the flow of information within
the LSTM cells. The calculations of ilE

t ,olE
t , f lE

t , slE
t , and hlE

t

are expressed in lines 10 - 14 of Algorithm 1 with activation
functions φ(·) and learnable weights W (·), U (·), and V (·).

3) Attention Mechanism Block: The third stage is an at-
tention mechanism where we place an attention layer LA to
selectively focus on relevant timestamps within a sequence of
measurements [19]. To achieve this, hidden states hLE

t and
hLD

t−1 of the last encoding and decoding layers, respectively,
are passed to LA. The calculations of the alignment score κ,

Softmax Ω, and context vector Λt of the attention mechanism
are shown in lines 18 - 20 of Algorithm 1 with ξ depicting an
alignment function that is trained jointly using hLE

t and hLD

t−1.
Then, the attention weight is expressed as a Softmax function
applied to alignment scores [27].

4) Latent Block: The fourth stage represents the latent
layer LS that incorporates the compressed data from D with
simpler representations to enhance the learning process. The
concatenation X̆ depicted in line 22 of Algorithm 1 occurs
with X̃ denoting the reconstructed output from D.

5) Graph Decoder Block: The fifth block presents the graph
decoder D that is responsible for reconstructing the data via
stacked spatio-temporal graph Chebyshev decoding layers LD,
each with clD

channels. The graph decoder takes X̆ as an input
then produces X̃ . The flow of information is controlled using
input ilD

t , output olD
t , and forget f lD

t gates with slD
t and hlD

t cell
state and hidden state, respectively. A spatio-temporal graph
decoding layer lD ∈ LD outputs X̆

lD ∈ Rn×clD while taking
the input of X̆

lD−1
∈ Rn×clD−1 . Bias and ReLu activation are

also incorporated, resulting in an output tensor expressed in
line 25 of Algorithm 1.

6) Output Block: The sixth block is the reconstructed output
X̃ through the graph decoding layers, which is present at the
output layer of the STGAE model. The formulation of X̃

lD is
expressed in line 29 of Algorithm 1.

B. Model Training and Testing

During training, the STGAE model learns the graph rep-
resentations of the benign samples only. During testing, the
model flags attack (traditional FDIA and adversarial FDIEA)
samples based on the presented dissimilarities between their
graph representations and benign ones. Assessing the dissim-
ilarities is carried out according to the reconstruction error
ζ presented during the graph autoencoder’s reconstruction
process. Let E = fΦ(X) and D = gΦ(X), with Φ denoting
the model parameters. Then, we define a cost function C that
penalizes gΦ(fΦ(X))) for the introduced deviation from X
as depicted in line 32 of Algorithm 1. The training objective
is obtaining Φ (including µl(·) , bl(·) , W (·), U (·), and V (·))
that optimize the cost function with L = 6, U = 64, K = 5,
O = Adam, and A = ReLu optimal parameters. We adopt
an iterative gradient descent algorithm employing a stochastic
gradient to achieve such minimization. In lines 32 - 39 of
Algorithm 1, we denote the partial derivative, learning rate,
and number of training samples using ∇, η, and |XTR|, re-
spectively. In the training stage, the training (benign) samples
X ∈ XTR are divided into batches with equal sizes and fed
into the model in epochs. In the testing stage, the decision
whether a test sample X ∈ XTST is benign or malicious is
made using a comparison among the reconstruction error ζ and
a threshold ψ. A small ζ value reflects the model’s familiarity
with a test sample. We determine the value of ψ based on
the median of the interquartile range of the receiver operating
characteristic curve. Specifically, we use the cost function to
determine ζ between X and X̃ . Then, if ζ exceeds ψ, an attack
sample is detected and assigned a “y = 1” label. Otherwise,
the sample is considered benign and assigned a “y = 0” label.
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C. Model Robustness
This section analyzes the robustness of the STGAE-based

detector compared to the investigated benchmark detectors
against traditional FDIA and adversarial FDIEAs with multiple
injection levels in five attack cases as follows.

1) Spatially-Aware Vs. Spatially-Unaware Benchmarks:
Table IV reports the detection performance of the investi-
gated spatially-aware graph-based detectors against adversarial
FDIEAs. Spatially-aware graph-based detectors detectors en-
hance the DR by 12.6− 46.9%, 10.9− 36.7, and 9.9− 35.8%
in white, gray, and black-box settings, respectively, compared
to spatially-unaware ones. Such an enhancement is because
graph-based detectors are able to capture an additional aspect
of the data, which is the topological configurations including
the node connectivity. Hence, higher robustness is reported
with graph-based models against adversarial FDIEAs even in
white-box attack cases where adversaries have full knowledge
and adopt the same detector type and topology as the operator.

2) Spatio-Temporal-Aware Vs. Spatially-Aware Bench-
marks: Table IV also reports the detection performance
of spatio-temporal-aware benchmark detectors compared to
spatially-aware benchmark detectors. The spatially-aware
graph-based benchmarks outperform the DR of the non-graph
spatio-temporal-aware benchmarks by 0.6 − 8.1%, 1.1 − 7.4,
and 1.4 − 7.9% in white, gray, and black-box settings, re-
spectively. This is because the graph-based detectors imple-
ment the Chebyshev graph convolution operator that helps
in apprehending the grid’s topological configurations. The
unsupervised spatially-aware GAE benchmark detector outper-
forms the supervised spatio-temporal-aware graph benchmark
detector by around 1% in DR since it offers unsupervised
detection that is not limited to predefined lists of attacks.

3) Classical Vs. Adversarial Detection: Table V com-
pares classic detection types (classical machine learning) to
adversarial-specific detectors (AT and GAN). AT and GAN
enhance the DR by 1−4.4% and 1.6−5.7%, respectively, com-
pared to classical benchmark supervised training. Although AT
and GAN enhance the detection compared to classical training,
they introduce malicious samples during training, which limits
the detection to attacks that are part of their training sets.

4) Dynamic Vs. Static Attacks: Table VI reports the DR
of the best performing spatially-unaware (SEL), spatially-
aware (GAE), spatio-temporal-aware (STGNN) benchmark
detectors compared to the robust detector (STGAE) against the
considered FDIAEs separately. The proposed dynamic evasion
attacks lead to 5.2−12.2% higher DR degradation compared to
static ones. Such a degradation is because adversarial samples
generated using dynamic attacks are designed using a series of
benign samples with unbounded perturbation values, whereas
adversarial samples generated using static attacks are designed
using one benign sample with bounded perturbation values.
Hence, dynamic attacks generate samples that present similar
patterns to benign ones, making them harder to detect.

5) STGAE Vs. Benchmarks: Table IV shows that the
STGAE-based detector offers the highest robustness against
adversarial FDIEAs as it enhances the DR by 35.8 − 53.2%
and 14.8 − 44% compared to shallow and deep spatially-
unaware benchmarks, respectively. It also offers enhanced

TABLE V
IMPACT OF ADVERSARIAL-BASED DETECTION ON SUPERVISED MODELS

COMPARED TO THE UNSUPERVISED ROBUST STGAE MODEL (%)

Attack case Model Detection type
Classic AT GAN

Case 1

FNN 62.3 65.9 67.1
RNN 68.0 71.9 72.9
CNN 72.5 76.6 77.7
GNN 90.7 91.9 92.5

STGAE 96.3 - -

Case 2

FNN 57.2 60.3 61.5
RNN 63.2 66.6 67.6
CNN 67.9 71.5 71.6
GNN 89.3 90.4 91.0

STGAE 95.6 - -

Case 3

FNN 51.4 54.3 55.6
RNN 57.5 60.7 61.7
CNN 62.3 65.8 65.9
GNN 87.8 88.8 89.4

STGAE 95.4 - -

Case 4

FNN 65.2 69.0 70.3
RNN 70.7 74.6 75.8
CNN 75.8 80.0 81.2
GNN 91.5 92.9 93.4

STGAE 96.6 - -

Case 5

FNN 66.9 70.9 72.3
RNN 72.2 76.5 77.8
CNN 77.4 81.8 83.1
GNN 92.2 93.7 94.1

STGAE 97.1 - -

TABLE VI
IMPACT OF ADVERSARIAL FDIEAS ON THE DRS OF THE DETECTORS (%)

Adversarial
FDIEA fucntion

Model Adversarial FDIEA case setting
1 2 3 4 5

St
at

ic

FGSM

SEL 84.3 79.8 74.1 86.8 88.3
GAE 94.9 93.7 92.1 95.0 95.4

STGNN 94.1 92.9 91.2 94.3 94.3
STGAE 97.0 96.3 96.1 97.3 97.5

BIM

SEL 83.1 78.7 73.0 85.7 87.2
GAE 94.4 93.2 91.6 94.8 95.2

STGNN 93.6 92.4 90.7 94.1 94.1
STGAE 96.8 96.1 95.9 97.1 97.5

C&W

SEL 81.9 77.6 71.9 84.6 86.1
GAE 93.9 92.7 91.1 94.5 94.9

STGNN 93.1 91.9 90.2 93.8 93.8
STGAE 96.6 95.9 95.7 96.9 97.4

D
yn

am
ic

DMP

SEL 74.4 69.9 64.2 76.8 78.6
GAE 88.4 87.2 85.6 89.0 90.9

STGNN 87.6 86.4 84.7 88.3 89.8
STGAE 96.0 95.3 95.1 96.3 96.8

DMD

SEL 73.2 68.8 63.1 75.6 77.4
GAE 88.2 87.0 85.4 88.8 90.7

STGNN 87.4 86.2 84.5 88.1 89.6
STGAE 95.8 95.1 94.9 96.1 96.6

DMA

SEL 72.0 67.6 62.0 74.5 76.3
GAE 87.9 86.7 85.1 88.5 90.4

STGNN 87.1 85.9 84.2 87.8 89.3
STGAE 95.6 94.9 94.7 95.9 96.4
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DR by 4.7 − 7.6% compared to spatially-aware graph-based
benchmarks due to its robust graph recurrent structure that
captures spatial and temporal features. The STGAE-based
detector also enhances the DR by 4.8 − 13.4% compared to
spatio-temporal-aware benchmarks since it implements an un-
supervised recurrent graph structure that captures the topolog-
ical configurations besides capturing the temporal correlations
within measurement data. Table V shows the superiority of
the unsupervised STGAE-based detection as it offers improved
DR by 3−41.1% compared to other models with AT and GAN-
based detection. This is due to its deep graph unsupervised AE
structure that distinguishes between benign and attack samples
by learning benign patterns well during training without the
need of including attack samples in the training set.

D. Advantages of the STGAE Model
The aforementioned performance enhancements of the

STAGE model are due to the characteristics that the STGAE
model offers. First, it presents an autoencoder that learns the
representations of benign samples during the reconstruction
process while assigning higher importance to higher times-
tamps using the attention layer. Second, the recurrent nature
of the model allows it to capture the temporal features. Third,
the graph convolution layers allows it to capture the spatial
features. Fourth, due to its generalized unsupervised training
nature, the STGAE leads to a robust generalized detection of
unseen attack samples in unseen topological configurations.
All of these characteristics resulted in a robust detector against
adversarial FDIEAs regardless of the level of knowledge
that adversaries have. A major advantage of the STGAE-
based detector is that it is not designed specifically to detect
adversarial FDIEAs only. Instead, its unsupervised nature,
being trained only on benign samples, makes it robust against
other attack types as well since it makes decisions based on the
reconstruction error. Thus, unseen attack samples, regardless
of their type, will present high reconstruction error and hence
will be marked as attack samples.

E. Remarks
This section answered the research question: What are the

required model characteristics for a robust detection against
adversarial FDIEAs?

• Adopting spatially-aware detectors improved the DR by
9.9 − 46.9% and 0.6 − 8.1% compared to spatially-
unaware and spatio-temporal-aware non-graph ones, re-
spectively, as they capture more data aspects (i.e., topo-
logical configurations including the node connectivity)
via the Chebyshev graph convolution operator.

• Adopting the STGAE-based detector led to a superior ro-
bust detection against adversarial FDIEAs. The required
model characteristics to achieve a robust detection are:
unsupervised training nature (autoencoder with attention)
to capture unseen adversarial samples, recurrent mecha-
nism (LSTM cells) to capture the temporal aspect, and
spatial layers (graph convolution) to capture the topo-
logical configurations. Incorporating these characteristics
led to an improved DR by 4.7 − 53.2% compared to
benchmark detectors.

VI. CONCLUSIONS AND FUTURE WORK

This paper provided a comprehensive analysis on the impact
of traditional FDIAs and adversarial FDIEAs on various detec-
tors with different attack cases based on adversarial knowledge
levels. Our experiments showed that adversarial FDIEA cases
1, 2, 3, 4, and 5 led to degradation in DR by 3.7 − 15.2%,
4.5−20.3%, 7.5−26.4%, 3.4−12.8%, and 2.8−11%, respec-
tively, compared to traditional FDIAs, where we reached the
following conclusions. First, adversarial FDIEAs led to higher
degradation in DR than traditional FDIAs by 2.8−26.4% due
to presenting samples with similar patterns as benign ones that
fool the detectors. Second, with adversarial full knowledge,
adversarial samples generation using spatio-temporal features
leads to around 1.5 − 5.2% higher degradation in DR com-
pared to utilizing temporal features only due to capturing
the grid’s topology and hence producing similar samples to
real ones, which circumvent the detector. Third, centrality
analysis-based attack node selection leads to 3−11.2% higher
degradation in DR compared to a random selection due to
selecting the most influential (vulnerable) node in the system,
leading to a more damaging impact. Fourth, when adversaries
lack knowledge about the system topology, using stochastic
geometry to create surrogate adversarial topologies led to
2.8−12.8% higher degradation in DR compared to traditional
FDIAs. This means that benchmark detectors are vulnerable to
FDIEAs even when adversaries use surrogate environments to
generate adversarial samples. Fifth, adopting an unsupervised
spatio-temporal graph autoencoder (STGAE)-based detector
enhances the DR by 4.7 − 53.2% compared to benchmark
detectors due to the presence of an autoencoder with attention,
LSTM cells, and graph convolution that capture the benign
patterns, temporal features, and spatial topological aspects.
Future work will focus on joint detection and localization of
adversarial samples.
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