F THE GEOLOGICAL SOCIETY

‘ OF AMERICA®

Multicyclic Phanerozoic orogeny recorded in the Qaidam

continent, northern Tibet: Implications for the tectonic

evolution of the Tethyan orogenic system

Chen Wul~", Yonghui Zhao'?2, Jie Li3, Wenyou Liu*, Andrew V. Zuza®, Peter J. Haproff®, and Lin Ding!
IState Key Laboratory of Tibetan Plateau Earth System and Resources Environment (TPESRE), Institute of Tibetan Plateau
Research, Chinese Academy of Sciences, Beijing 100101, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Chongqing Key Laboratory of Complex Oil and Gas Field Exploration and Development, Chongqing University of Science and

Technology, Chongqing 401331, China

4School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
SNevada Bureau of Mines and Geology, Nevada Geosciences, University of Nevada, Reno, Nevada 89557, USA
SDepartment of Earth and Ocean Sciences, University of North Carolina, Wilmington, North Carolina 28403, USA

ABSTRACT

The growth and evolution of the Eurasian
continent involved the progressive closure
of major ocean basins during the Phanero-
zoic, including the Tethyan and Paleo-Asian
oceanic realms. Unraveling this complicated
history requires interpreting multiple over-
printed episodes of subduction-related mag-
matism and collisional orogeny, the products
of which were later affected by the Cenozoic
construction of the Himalayan-Tibetan oro-
gen due to the India-Asia collision. In par-
ticular, the tectonic evolution of northern
Tibet surrounding the Cenozoic Qaidam Ba-
sin is poorly resolved due to several phases
of Phanerozoic orogeny that have been re-
activated during the Cenozoic deformation.
In this study, we investigated the geology
of the northern Qaidam continent, which
experienced Paleozoic—Mesozoic tectonic
activity associated with the development of
the Eastern Kunlun orogen to the south and
the Qilian orogen to the north. We combined
new and published field observations, geo-
chronologic and thermochronologic ages,
and geochemical data to construct regional
tectonostratigraphic sections and bracket
phases of Paleozoic—Mesozoic magmatism
associated with oceanic subduction and con-
tinental collision. Results suggest that the
Qaidam continent experienced two major
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phases of subduction magmatism and col-
lision. First, a Cambrian-Ordovician mag-
matic arc developed in the northern Qaidam
continent due to south-dipping subduction.
This phase was followed by the closure of
the Qilian Ocean and the collision of the
North China craton and Qaidam continent,
resulting in Silurian-Devonian orogeny and
the development of a regional unconformity
across northern Tibet. A subsequent Perm-
ian-Triassic magmatic arc developed across
the northern Qaidam continent due to north-
dipping subduction. This phase was followed
by the closure of the Neo-Kunlun Ocean and
the collision of the Songpan Ganzi terrane in
the south and Qaidam continent. These inter-
pretations are incorporated into a new and
comprehensive model for the Phanerozoic
formation of northern Tibet and the Eurasia
continent.

1. INTRODUCTION

Eurasia is the only major continent assem-
bled during the Phanerozoic (e.g., Sengor and
Natal’in, 1996; Yin and Nie, 1996), and under-
standing its formation and evolution greatly
impacts our knowledge of continental tectonics
and crustal growth (e.g., Molnar, 1988; Scotese
and McKerrow, 1990; Yin and Nie, 1996; Sengor
and Natal’in, 1996; Yin and Harrison, 2000; Wu
et al., 2016). The construction of Eurasia was
accomplished by several continental collisions
associated with the closure of the Paleo-Asian
and Tethyan oceanic domains in north-central
and southern Asia, respectively (e.g., Zonens-
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hain et al., 1990; Yin and Nie, 1996; Sengor and
Natal’in, 1996; Sengor et al., 1988; Heubeck,
2001; Badarch et al., 2002; Stampfli and Borel,
2002; Biske and Seltmann, 2010; Dong et al.,
2018; Wu et al., 2016; Zuza and Yin, 2017; Li
et al., 2018; Allen et al., 2023). A key region of
the Eurasian continent is northern Tibet (Fig. 1),
which is composed of several orogenic belts that
formed via repeated episodes of ocean closure,
craton/terrane collision, and intracontinental
deformation spanning the development of the
early Neoproterozoic Rodinia supercontinent to
the Cenozoic Tibetan Plateau (e.g., Xiao et al.,
2009; Pan et al., 2012; Song et al., 2013, 2014a;
Wuetal., 2016, 2021; Zhang et al., 2019b; Zuza
et al., 2018; Yin et al., 2007a, 2008a, 2008b).
Northern Tibet is located at the junction of
multiple continental blocks (Fig. 1), making the
region ideal for examining orogenic and moun-
tain-building processes. Northern Tibet expe-
rienced a protracted tectonic history that spans
early Neoproterozoic subduction and late Neo-
proterozoic continental rifting, Paleozoic—early
Mesozoic subduction and continental collision,
Mesozoic extension, and Cenozoic intraconti-
nental deformation related to the India-Asia col-
lision (e.g., Hsii et al., 1995; Yin and Harrison,
2000; Sun et al., 2006, 2022; Xiao et al., 2009;
Song et al., 2013, 2014a; Wu et al., 2016; Zhang
etal., 2019b; Zuza et al., 2018; Yin et al., 2007a,
2008a, 2008b; Yin, 2010; Qian et al., 2021a).
Continental blocks within northern Tibet are
bounded by suture zones that contain dismem-
bered ophiolitic mélanges and marine sedimen-
tary sequences. These suture zones have been
overprinted by younger deformation (Fig. 1;
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Figure 1. (A) Tectonic map of northern Tibet showing major tectonic units, suture zones, and Cenozoic structures based on Yin and Har-
rison (2000), Wu et al. (2016, 2020, 2022a), and Zuza et al. (2018). (B) Simplified geologic map of northern Tibet modified from Pan et al.
(2004), Wang et al. (2013), and this study. The location of Figure 3 in the southern Zongwulong Shan is shown. Bottom-right inset shows
the location of Figure 1B in the context of the globe. KLS—Kunlun suture; SQS—South Qilian suture; NQS—North Qilian suture; HLB—
Hongliugou-Lapeiquan ophiolitic mélange belt; AMB—Apa-Mangai ophiolitic mélange belt; SGT—Songpan-Ganzi terrane; KQT—Kun-
lun-Qaidam terrane; CQT—Central Qilian terrane.
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e.g., Yin and Harrison, 2000; Yang et al., 1996;
Yin et al., 2007b; Li et al., 2024; Wu et al., 2016;
Zuza et al., 2018; Zuza and Yin, 2017; Song
et al., 2019; Allen et al., 2023).

The Qaidam continent of northern Tibet
mainly consists of Precambrian basement
metamorphic rocks, early Paleozoic magmatic
arc rocks, late Paleozoic—Mesozoic shallow-
marine limestone, and clastic and volcanic
rocks, mostly exposed along the margins of
the present-day Qaidam Basin (Fig. 1; e.g., Yin
etal., 2007a, 2007b, 2008a, 2008b; Chen et al.,
2012b, 2015; Wu et al., 2016; Zhang et al.,
2019b; Qian et al., 2021a; Sun et al., 2022).
The northern portion of the Qaidam conti-
nent is composed of Precambrian basement
metamorphic rocks, Cambrian shallow-marine
strata, and Ordovician—Silurian magmatic arc
rocks (Fig. 1; e.g., Yin and Harrison, 2000; Pan
et al., 2004, 2012; Lu et al., 2002; Wu et al.,
2016; Sun et al., 2022). The southern portion
of the Qaidam continent is best exposed in the
Eastern Kunlun Range, which is bounded by
the present-day Qaidam Basin in the north and
the active left-slip Kunlun fault in the south,
the latter of which follows the Triassic Any-
imagen-Kunlun-Muztagh suture zone (Fig. 1;
e.g., Jiang et al., 1992; Yang et al., 1996; Yin
and Harrison, 2000; Yin et al., 2008a, 2008b;
Wuetal., 2016, 2019a; Dong et al., 2018). End-
member models for the tectonic development of
the Eastern Kunlun orogen and Qilian orogen
to the north (Fig. 1) differ primarily based on
their numbers of magmatic arcs and the base-
ment rocks upon which the arc(s) was (were)
constructed, in addition to subduction polari-
ties, timings of collision, and processes respon-
sible for ultrahigh-pressure metamorphism and
exhumation (e.g., Wu et al., 2016; Zuza et al.,
2018; Allen et al., 2023). The role the Qaidam
continent played during the evolution of north-
ern Tibet remains controversial.

In this contribution, we investigated the
Phanerozoic tectonic evolution of northern
Tibet recorded in the Qaidam continent,
located at the intersection of the Kunlun-
Qaidam-Qilian, Tarim—North China, and
Songpan-Ganzi continents, based on new
and existing field observations, geochro-
nologic and thermochronologic results, and
geochemical data. Our findings allowed us
to construct regional tectonostratigraphic
sections, assign detrital provenance, and
constrain the spatial and temporal extents
of arc magmatism associated with Paleo-
zoic Wilson cycles and Mesozoic—Cenozoic
intracontinental deformation. This work
provides a new, comprehensive view of the
Phanerozoic formation of northern Tibet
and Eurasia.
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Phanerozoic tectonics in the Qaidam continent

2. PHANEROZOIC OROGENS OF
NORTHERN TIBET

2.1. Early Paleozoic Qilian Orogen

The early Paleozoic Qilian orogen, exposed
in the Qilian Shan, contains several subparallel
ophiolitic mélange belts of the North and South
Qilian suture zones located between the Qaidam
continent in the south and the combined North
Tarim—North China craton in the north (Fig. 1A;
e.g., Xiao et al., 2009; Song et al., 2013; Zuza
and Yin, 2017; Wu et al., 2016; Allen et al.,
2023). In general, the primary tectonic domains
of the early Paleozoic Qilian orogen from north
to south consist of (1) the southern margin of
the North China craton, including Paleoprotero-
zoic basement metamorphic rocks overlain by
Mesoproterozoic sedimentary rocks and Neo-
proterozoic passive-margin strata and postcol-
lisional intrusions; (2) the North Qilian suture
zone, composed of discontinuously exposed,
blueschist-facies ophiolitic rocks; (3) the Central
Qilian terrane, composed of Precambrian base-
ment rocks and early Neoproterozoic plutons
(ca. 1100-900 Ma); (4) the South Qilian suture
zone (i.e., Danghe Nanshan—Laji Shan ophiolitic
mélange), composed of weakly metamorphosed
ophiolitic rocks; (5) widely exposed Qilian vol-
canic and magmatic arc rocks, which overlie
and/or intrude amphibolite-facies rocks; and (6)
the northern Qaidam continent, composed of
ultrahigh-pressure metamorphic rocks and the
Zongwulong ophiolitic complex (Fig. 1B; e.g.,
Yin and Harrison, 2000; Pan et al., 2004, 2012;
Zuza et al., 2018; Wu et al., 2022a).

The key reported geologic relationships and
geochronologic ages of the North, Central, and
South Qilian Shan are summarized in four simpli-
fied tectonostratigraphic columns and regional-
scale geologic maps in Figure 2 (Wu et al.,
2022a). Here, we summarize the tectonostrati-
graphic evolution of the early Paleozoic Qilian
orogen based on its major divisions, including
the North Qilian orogen, Central Qilian terrane,
South Qilian orogen, and North Qaidam tectonic
zone or metamorphic belt (Fig. 2).

The North Qilian orogen consists of
Paleoproterozoic (ca. 2300-1800 Ma)
basement metamorphic rocks, which are
overlain by Mesoproterozoic sedimentary
rocks along an unconformity. Paleoproterozoic
rocks experienced amphibolite-facies
regional metamorphism. In contrast, the
Mesoproterozoic sedimentary rocks consist
of weakly metamorphosed siliciclastic and
carbonate rocks. Neoproterozoic passive-
margin strata consist of rift-related siliciclastic
rocks, limestone, mafic rocks, and glacial
deposits, which are intruded by postorogenic
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early Paleozoic granitoids (Fig. 2A). Cambrian—
Ordovician marine strata of the North Qilian
orogen probably represent a complex mélange of
forearc, accretionary wedge, and foreland basin
strata. Silurian strata are considered to have been
deposited in a flysch basin that transitions into
molasse (Fig. 2). The North Qilian suture zone
contains discontinuously exposed, ophiolitic
rocks that locally experienced blueschist-facies
metamorphism. These ophiolitic rocks include
the ca. 490445 Ma back-arc Sunan-Laohushan
ophiolitic mélange and the ca. 517-487 Ma
forearc Yushigou-Yieniugou-Qingshuigou
ophiolitic mélange located north of the Tuolai
Shan (e.g., Shi et al., 2004; Song et al., 2013,
2019; Fu et al., 2020a, 2020b). The oldest
ophiolites representing the North Qilian oceanic
crust are ca. 550 Ma (e.g., Shi et al., 2004).
Silurian and Devonian strata are divided by a
regional unconformity marked by conglomerate
(Fig. 2A). Carboniferous strata overlie early
Paleozoic rocks along a regional angular
unconformity, which was deformed along shaley
coal-bearing shale beds (Fig. 2A). Carboniferous
and early Paleozoic rocks are overlain by
Triassic strata. Overlying Jurassic strata are
generally parallel to Triassic strata along a
regional disconformity (Fig. 2A). Cretaceous
strata are widespread in the North Qilian orogen
and consist of polymictic conglomerate and
red-colored, coarse-grained sandstone (Fig. 2A;
Wau et al., 2021; Wang et al., 2022). Sandstone
beds commonly exhibit growth strata and are
interpreted to have been deposited in extensional
basins (Wang et al., 2022). Cenozoic rocks are
predominantly Miocene—Pliocene and consist
of red-colored, gypsum-bearing fluvial and
lacustrine strata (Wu et al., 2017, 2021; Zuza
etal., 2018; Wang et al., 2022). Quaternary rocks
consist of alluvial, fluvial, and glaciofluvial
strata (Wu et al., 2017; Zuza et al., 2018).

The oldest basement metamorphic rocks
exposed in the Central Qilian terrane are
gneisses, dolomitic schists, marbles, and
amphibolites of the Tuolai and Huangyuan
Groups, which are mainly exposed in the Tuo-
lai Mountains, Tuolai Nanshan Mountains, and
Huangyuan region (Wu et al., 2017; Liu et al.,
2018; Zuza et al., 2018). These rocks have been
interpreted as part of a Proterozoic passive mar-
gin (Gehrels et al., 2003a, 2003b, 2011; Wu
et al., 2017). The metasedimentary portion of
the Tuolai and Huangyuan Groups yielded ca.
1800 Ma detrital zircon ages (Tung et al., 2007),
and it has been interpreted to have been depos-
ited in a passive-margin (Tung et al., 2007) or
magmatic arc setting (Wan et al., 2001; Smith,
2006). Zuza et al. (2018) reported that the three
youngest zircon grains from a biotite-plagioclase
paragneiss of the Tuolai Group gave a weighted
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Phanerozoic tectonics in the Qaidam continent

Figure 2. Lithostratigraphy of the (A) North, (B) Central, and (C) South Qilian Shan, (D) northern Qaidam, and (E) Eastern Kunlun Range,
northern Tibet. Ages are compiled from Qinghai BGMR (1997), Pan et al. (2004), Wang et al. (2013), Wu et al. (2022a), and this study. cl—
clay; si—silt; ss—sand cg—conglomerate; Pt—Proterozoic.

<

<

mean age of ca. 1500 Ma, which reflects deposi-
tion in the Mesoproterozoic. Basement rocks of
the Central Qilian terrane are overlain by mas-
sive limestone and dolostone of the Tuolai Nan-
shan Group, which have been commonly meta-
morphosed to marble and are interbedded with
low-grade meta-basalt and meta-volcaniclastic
layers (Fig. 2B). The regional geologic map of
Pan et al. (2004) assigned a Changchengian age
for this unit (i.e., Paleoproterozoic or Mesopro-
terozoic) based on an older regional geologic
survey (Gansu Bureau of Geology and Mineral
Resources, 1974). However, Wu et al. (2017) and
Zuza et al. (2018) reassigned a Neoproterozoic
age for this unit based on more recent geochro-
nology of widespread meta-basalt (zircon U-Pb
ages of ca. 600-580 Ma; Xu et al., 2015) inter-
bedded with carbonate strata (Mao et al., 1998;
Xia et al., 1999).

Cambrian strata are sporadically exposed in
the Datong region of the Central Qilian terrane
and mainly consist of limestone and slate with
basic volcanic rocks (Fig. 2B). Ordovician strata
consist of low-grade meta-sandstone, meta-silt-
stone, and meta-limestone with minor metavol-
canic and meta-volcaniclastic rocks (Fig. 2B;
Zuza et al., 2018). Lowermost Ordovician strata
are intruded by granitoids and intermediate to
mafic dikes (Fig. 2B). Ordovician strata are vari-
ably deformed, and their original sedimentary
structures are obscured (Zuza et al., 2018; Wu
et al., 2024). Silurian strata in the Central Qilian
terrane are a widely distributed, thick sequence
of continental-margin clastic rocks, which
unconformably overlie Ordovician strata and
often form isoclinal folds with transposed bed-
ding (Fig. 2B). Silurian strata include flysch that
transitions upward to molasse (Du et al., 2003).

Devonian strata are mostly absent from the
Central Qilian terrane except for sporadic out-
crops in the north and south. There, Devonian
strata unconformably overlie deformed Protero-
zoic—early Paleozoic strata and are disconform-
ably overlain by younger strata (Fig. 2B; Wu
et al., 2022a). The Devonian sequence does not
exceed ~300 m in thickness and consists of ter-
restrial conglomerate, sandstone, mudstone, and
minor volcanic rocks (Qinghai BGMR, 1991).
This sequence is interpreted to be molasse
deposited in intermontane and/or foreland basins
during the Qilian orogeny (e.g., Xia et al., 2003;
Yan et al., 2007).

Carboniferous strata overlie Ordovician—
Devonian strata and other nonsedimentary rocks
along a regional angular unconformity. Carbon-
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iferous strata consist of quartz sandstone, silt-
stone, shale, and sandy limestone interbedded
with coal and gypsum beds (Fig. 2B; Zuza et al.,
2018). The Lower Permian section of the Cen-
tral Qilian terrane consists of distinctive pink-
red— and white-gray—colored, coarse-grained
sandstone and siltstone. The Upper Permian
section is composed of arkosic and quartz sand-
stone interbedded with siltstone and shale and
sandy limestone (Fig. 2B; Zuza et al., 2018).
The conformably overlying Triassic section is
>4 km thick and divided into Lower, Middle,
and Upper Triassic sections. The Lower Trias-
sic section consists of massive, cross-bedded,
gray-colored sandstone overlain by arkosic and
quartz sandstone, sandy limestone, siltstone,
and calcareous siltstone (Fig. 2B; Zuza et al.,
2018). The Middle Triassic section is dominated
by sandy conglomerate at its base and overly-
ing cross-bedded arkosic and quartz sandstone
with minor siltstone. The Upper Triassic section
consists of a basal conglomerate and overlying
arkosic sandstone interbedded with calcareous
siltstone, organic-rich shale, and distinctive coal
layers. Overlying Jurassic strata are generally
parallel to Upper Triassic strata along a regional
disconformity (Fig. 2B; Yin et al., 2008b).
Jurassic strata are ~800 m thick and consist of
a basal conglomerate overlain by arkosic sand-
stone interbedded with siltstone, organic-rich
shale, and numerous coal beds. Jurassic strata
are generally restricted to valleys in the central
Qilian Shan (Fig. 2B; Zuza et al., 2018). Cre-
taceous strata consist of polymictic conglomer-
ate and red-colored, coarse-grained sandstone
(Wu et al., 2021; Wang et al., 2022) exposed
on both sides of the Tuo Lai Shan. Map-view
relationships require the Cretaceous section to
be >270 m thick (Fig. 2B). In the Hexi Corridor,
the Cretaceous section is >3 km thick (Zhiyi
and Dean, 1996; Zuza et al., 2016; Wang et al.,
2022). These strata often exhibit growth strata
and are interpreted to have been deposited in an
extensional setting (Yin et al., 2008b). Cenozoic
strata are predominantly Miocene—Pliocene
(Qinghai BGMR, 1991; Zhiyi and Dean, 1996;
Bovet et al., 2009), although the southernmost
strata may be Oligocene (e.g., Zhuang et al.,
2011). Cenozoic strata consist of red-colored
fluvial and lacustrine strata and conglomerate,
sandstone, and mudstone. These strata have a
clay, marl, or limestone matrix, and gypsum
layers are prevalent (Fig. 2B; Wu et al., 2021;
Wang et al., 2022). Quaternary rocks consist
of alluvial, fluvial, and glaciofluvial strata (Li
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and Yang, 1998), which are distinguished in the
central Qilian Shan as active axial river depos-
its, active alluvial deposits, and inactive alluvial
deposits (Wu et al., 2017; Zuza et al., 2018).

The South Qilian orogen is bounded by
the Central Qilian terrane to the north and
Qaidam Basin to the south along the South-
ern Central Qilian fault and Northern Qaidam
fault, respectively (Fig. 1). Basement meta-
morphic rocks of the South Qilian orogen
(i.e., Neoproterozoic Hualong Group/Com-
plex) are only exposed at its eastern end and
consist of mafic to felsic plutons, chert, and
turbiditic strata, some of which experienced
amphibolite-facies metamorphism (Fig. 2C;
e.g., Yanetal., 2015). The Cambrian Lajishan
ophiolite complex is exposed along the south-
ern margin of the South Qilian Shan (Fig. 2C;
e.g., Fuetal., 2018, 2022a). The oldest sedi-
mentary rocks of the South Qilian orogen are
a >4-km-thick section of Ordovician pyro-
clastic rocks and volcanic rocks, which are
mainly distributed near the bounding faults
(Fig. 2C; Yang, 1983). Overlying Silurian
phyllite, sandstone, and slate are widely dis-
tributed in the South Qilian orogen (Fig. 2C;
Xie et al., 2014) and interpreted to be marine
flysch deposits (Xu et al., 2006; Song et al.,
2013). Devonian strata are generally absent in
the South Qilian orogen. Minor Carbonifer-
ous strata occur along the northern margin of
the South Qilian orogen. The Lower Carbon-
iferous section consists of a basal conglomer-
ate and sandstone. The Upper Carboniferous
section is composed of feldspar quartz sand-
stone (Fig. 2C; Yan et al., 2019). Carbonifer-
ous strata exposed in the Zongwulong Shan
along the southern margin of South Qilian
orogen are mainly composed of marine volca-
nic sedimentary rocks with thin siliceous beds
(Guo et al., 2009). Overlying Permian rocks
are composed of clastic and carbonate strata.
Triassic rocks consist of clastic and carbon-
ate strata interbedded with lacustrine carbo-
naceous shale and coal beds (Fig. 2C; e.g.,
Yan et al., 2019; Fu et al., 2022a). Jurassic
continental, coal-bearing strata and Cenozoic
clastic strata occur in the South Qilian orogen
(e.g., Yan et al., 2019).

2.2. Altyn Tagh Orogen
The Altyn Tagh orogen is exposed in the

~600-km-long northeast-trending Altyn-Tagh
Range, located between the Tarim Basin to the
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west and Qaidam Basin and Kunlun Range to
the east (Fig. 1). The main tectonic units of the
Altyn Tagh orogen from north to south include
(1) Archean basement metamorphic rocks, which
are commonly combined with an Archean—
Paleoproterozoic complex of the northern Altyn-
Tagh Range; (2) the early—middle Cambrian
to early Silurian Hongliugou-Lapeiquan ophi-
olitic mélange, which is bounded by Archean
basement metamorphic rocks to the north and
Mesoproterozoic to Neoproterozoic rocks to the
south; (3) Mesoproterozoic to Neoproterozoic,
stromatolite-bearing quartzite and cherty lime-
stone exposed in the central and eastern Altyn
Tagh; and (4) the early Paleozoic Apa-Mangai
ophiolitic mélange, which is mainly exposed
in the southwestern Altyn Tagh and extending
~250-300 km west of Mangai to south of Qiemo
(e.g., Xinjiang BGMR, 2003; Che and Sun, 1996;
Liu et al., 1998; Cowgill et al., 2003; Chen et al.,
2003; Zhang et al., 2005). The Archean basement
rocks consist of ca. 2800-2500 Ma tonalite-
trondhjemite-granodiorite, granulite, amphibo-
lite, and paragneiss that experienced amphibolite-
facies metamorphism (e.g., Zhang et al., 2011a;
Long et al., 2014; Wang et al., 2020). These
Archean rocks are considered to be the basement
of the Tarim craton (Zhang et al., 2011a; Wang
et al., 2020).

Early Paleozoic volcanic and marine sedi-
ments are exclusively exposed in the eastern
Altyn-Tagh Range (Xinjiang BGMR, 1993;
Cowgill et al., 2003; Chen et al., 2003) and
are composed of the Ordovician Erantag and
Huanxingshan Formations (Xinjiang BGMR,
2003). Jurassic coal-bearing terrestrial strata are
widespread in the eastern Altyn-Tagh Range,
whereas Cretaceous strata are only exposed
along the southwestern edge of the range (Cow-
gill et al., 2003; Chen et al., 2003). The Hongliu-
gou-Lapeiquan ophiolitic mélange is composed
of ultramafic and mafic rocks, serpentinite, pil-
low lavas, plagiogranite, chert, and mafic dikes.
These rocks yield enriched mid-ocean-ridge
basalt (E-MORB)-type geochemistry and ca.
521-449 Ma ages (e.g., Liu et al., 1998, 2021;
Zhang et al., 2005; Gao et al., 2011). The Apa-
Mangai ophiolitic mélange mainly consists of
serpentinite, gabbro, basalt, plagiogranite, dia-
base, and chert blocks (Zhang et al., 2009a) with
ca. 510-445 Ma ages (e.g., Liu et al., 1998; Yao
et al., 2021). These ophiolitic mélange rocks
have been interpreted to have been generated in
a continental rift (Ma et al., 2009; Guo et al.,
2014), mid-ocean ridge (Liu et al., 1998; Zhang
et al., 2009b; Liu et al., 2024a), or oceanic sub-
duction zone (Yao et al., 2021).

Early Paleozoic granitoid plutons are exposed
throughout the northern Altyn-Tagh Range.
These plutons have ca. 500-405 Ma ages and
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are thought to have been emplaced during three
distinct episodes: (1) ca. 500480 Ma island-
arc magmatism related to subduction (e.g., Qi
etal., 2005; Wu et al., 2006b, 2009b; Kang et al.,
2011); (2) ca. 475-445 Ma syncollisional mag-
matism (e.g., Wu et al., 2006b, 2009b; Hao et al.,
2006), except for subduction-related emplace-
ment of a ca. 443 Ma porphyritic granite pluton
(Chen et al., 2003); and (3) ca. 435-405 Ma
calc-alkaline magmatism related to postcolli-
sional extension (e.g., Qi et al., 2005; Wu et al.,
2006b, 2009b). Late Cambrian—Silurian granitic
plutons (ca. 491-414 Ma) sporadically occur in
the southern Altyn-Tagh Range (e.g., Xinjiang
BGMR, 2003; Sobel and Arnaud, 1999; Cowgill
et al., 2003; Gehrels et al., 2003a; Dong et al.,
2011b). The reported absence of Neoproterozoic
and late Paleozoic granitoids in the southern
Altyn-Tagh Range is most likely the result of
limited geologic studies.

2.3. Eastern Kunlun Orogen

The Eastern Kunlun orogen is exposed in
the Eastern Kunlun Range, located between the
Qaidam Basin to the north and active left-slip
Kunlun fault to the south (Fig. 1). The Eastern
Kunlun orogen mainly comprises three tectonic
units from north to south: (1) Paleoproterozoic
basement metamorphic rocks and Phanerozoic
cover sequences along the southern margin of
the Qaidam Basin; (2) a central zone of volcanic
and plutonic rocks associated with the Kunlun
magmatic arc(s) and intermittently exposed
(ultra)mafic rocks and ophiolitic fragments
that occur within Precambrian—early Paleozoic
metamorphic complexes; and (3) the Triassic
Anyimagen-Kunlun-Muztagh suture zone,
which separates the Kunlun magmatic arc(s)
to the north and the South China craton and
Songpan-Ganzi flysch complex to the south
(e.g., Dewey et al., 1988; Yin and Harrison,
2000; Jiang et al., 1992; Yang et al., 1996;
Konstantinovskaia et al., 2003; Bian et al., 2004;
Dingetal., 2013; Wu et al., 2016, 2019a, 2022a;
Tang et al., 2023). The Triassic Anyimagen-
Kunlun-Muztagh suture zone represents the
northern margin of a triangular-shaped ocean
basin situated between the composite Kunlun—
Qaidam—North China craton to the north, South
China block to the east, and Songpan-Ganzi and
Qiangtang terranes to the southwest (Yin and
Nie, 1996; Nie et al., 1994; Zhou and Graham,
1996; Yin and Harrison, 2000; She et al., 2006;
Weislogel et al., 2006; Enkelmann et al., 2007;
Weislogel, 2008).

The oldest metamorphosed basement rocks
exposed in the Eastern Kunlun Range are gneiss,
metavolcanics, and schist of the Paleoprotero-
zoic Kuhai and Baishahe Groups (Fig. 2D).
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The gneiss unit is the oldest unit, and it is com-
posed of quartzofeldspathic gneiss, mylonitic
biotite orthogneiss with migmatite layers, and
paragneiss. A ca. 1441 Ma fine-grained gneissic
intrusion occurs within the Kuhai Group (Liu
et al., 2005). The metavolcanic unit consists of
metamorphosed (ultra)mafic rocks and foliated
amphibolite. The schist unit is characterized by
mica garnet schist, quartzite, and marble, and
local dolomite/limestone, phyllite, and slate. The
Mesoproterozoic Xiaomiao Formation, exposed
along the southern margin of the Qaidam Basin,
is composed of gneiss, quartz schist, marble, and
plagioclase amphibolite (Fig. 2D). U-Pb detrital
zircon ages of the Xiaomiao Formation suggest
a ca. 1683-1554 Ma maximum depositional
age (Chen et al., 2011). The oldest sedimentary
strata exposed in the Eastern Kunlun Range are
greenschist-facies, massive limestone, schistose
quartz sandstone, and intermediate to basic vol-
canic rocks of the Neoproterozoic Wanbaogou
Formation, which are thought to be a passive-
margin sequence (Fig. 2D; Jiang et al., 1992;
Wang et al.,, 2013). Neoproterozoic granite
and mafic dikes intruded Proterozoic basement
metamorphic rocks and experienced amphibo-
lite- to granulite-facies metamorphism (e.g., Ren
etal., 2010).

Precambrian metamorphic rocks of the
Eastern Kunlun orogen are unconformably
overlain by Cambrian—Ordovician, shallow-
and deep-water marine sedimentary rocks
(Fig. 2D). Cambrian strata are divided into
a lower metavolcanic section and an upper
metasedimentary section composed of quartz
schist, biotite granulite, marble, limestone, and
siliceous rocks (Fig. 2D). The Cambrian strata
were deposited between ca. 533-526 Ma and
ca. 443 Ma based on detrital zircon ages and an
early Paleozoic intrusion (Wu et al., 2019a). The
Ordovician—Silurian Naij Tal Group includes
shallow- and deep-water marine clastic strata,
carbonate, volcanic rocks, and volcaniclastic
rocks (Wang et al., 2013), which may represent
a magmatic arc sequence. Wu et al. (2019a) sug-
gested that the deep-water marine clastic strata
of the Naij Tal Group were deposited between
ca. 447 Ma and 440 Ma, based on detrital zircon
ages and intrusive relationships with Late Ordo-
vician to early Silurian granitoids. The Silurian
Saishenteng Formation conformably overlies
these rocks and is dominated by basal medium-
to coarse-grained, weakly metamorphosed
sandstone and cordierite-bearing schist, meta-
conglomerate, and meta-sandstone with minor
sandy slate (Fig. 2D). The Devonian Maoni-
ushan Formation overlies these rocks along an
angular unconformity (Fig. 2D) and consists
of gray-purple—colored, medium- to coarse-
grained, massive conglomerate, sandstone, ca.
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388-368 Ma andesite, trachyandesite, ca. 423—
399 Ma dacite and rhyolite, and lava breccia
(e.g., Qinghai BGMR, 1997; Feng et al., 2015;
Luetal.,2010; Zhang et al., 2010, 2019a; Xiang
etal., 2014). Wu et al. (2019a) reported that the
clastic strata of the Maoniushan Formation were
deposited between ca. 393 Ma and 389 Ma,
based on detrital zircon ages and an undeformed
Devonian intrusion. Devonian strata only occur
in the northeastern part of the Eastern Kunlun
Range (Wang et al., 2013; Wu et al., 2016,
2019a). Overlying Carboniferous strata consist
of basal sandy conglomerate overlain by arkosic
sandstone, massive limestone interbedded with
carbonaceous shale, and siltstone interbedded
with volcanic rocks (Fig. 2D). Clastic strata
contain dominantly volcanic and granitic gneiss
clasts. Most of the mapped sedimentary sections
are interpreted to be turbidite sequences with
interfingering conglomerate beds. A ca. 357 Ma
volcanic tuff occurs within the Lower Carbonif-
erous section (Wu et al., 2020).

Lower to Middle Permian strata are dominated
by basal breccia and massive limestone and do
not exceed 1 km in total thickness (Fig. 2D).
The overlying Permian Marerzheng Forma-
tion consists of basalt, arkosic and quartz sand-
stone, and sandy slate (e.g., Qinghai BGMR,
1997; Ren et al., 2012; Zhao et al., 2016).
Conformably overlying these rocks, there are
Triassic strata, which are mainly composed of
synorogenic conglomerate and coarse-grained
lithic sandstone interbedded with limestone
(Fig. 2D; e.g., Ding et al., 2013; Wang et al.,
2013; Wu et al., 2019a). Lower Triassic strata
are composed of massive arkosic and quartz
sandstone overlain by conglomerate-bearing
sandstone and calcareous slate interbedded with
limestone and siltstone. Middle Triassic strata
are dominated by basal conglomerate-bearing
sandstone interbedded with limestone, cross-
bedded arkosic and quartz sandstone, and minor
siltstone. Upper Triassic rocks consist of basal
conglomerate and overlying arkosic sandstone
interbedded with calcareous siltstone, andes-
ite, and feldspar sandstone. Calc-alkaline vol-
canic rocks of island-arc affinity occur within
the Upper Triassic strata. Triassic strata are
unconformably overlain by Upper Jurassic ter-
restrial, coal-bearing strata (Fig. 2D; e.g., Ding
et al., 2013; Tong et al., 2004; Wu et al., 2010,
2016). Jurassic strata consist of basal sandy con-
glomerate overlain by cross-bedded arkosic and
quartz sandstone and minor siltstone and shale,
darker organic-rich shale, and distinctive coal
beds (Fig. 2D; Wu et al., 2019b). Lower Creta-
ceous strata are only exposed in the northeastern
part of the Eastern Kunlun Range as a north-
west-trending ribbon (Qinghai BGMR, 1997).
These strata include basal sandy conglomerate

Geological Society of America Bulletin, v. 137, no. 3/4

Phanerozoic tectonics in the Qaidam continent

and red-colored, cross-bedded, fine-grained
sandstone and siltstone interbedded with silty
mudstone (Fig. 2D; Qinghai BGMR, 1997; Wu
et al., 2019b). Cenozoic terrestrial clastic sedi-
ments are predominantly Paleocene—Pliocene
and have been dated via magnetostratigraphy,
palynology, and detrital zircon U-Pb geochro-
nology (e.g., Liu and Wang, 2001; Bush et al.,
2016; Cheng et al., 2016; Wang et al., 2017; Wu
et al., 2019b). These strata consist of red-col-
ored fluvial and lacustrine sediments, including
conglomerate, sandstone, and mudstone with
a clay, marl, or limestone matrix (Fig. 2D; Wu
et al., 2019b).

3. FIELD OBSERVATIONS AND
SAMPLING OF THE NORTH QAIDAM
CONTINENT

The northern Qaidam continent exposes
the Precambrian Delingha complex and
Dakendaban Group metamorphic rocks, overlain
by Neoproterozoic—Cambrian strata, ultrahigh-
pressure metamorphic rocks, and Ordovician—
Silurian metagraywacke and metavolcanic rocks.
Unmetamorphosed rocks include Devonian
continental strata, Carboniferous shallow-
marine strata, Permian—Triassic continental
sedimentary and volcanic rocks, and Mesozoic—
Cenozoic lacustrine and fluvial strata (Fig. 2E).
Detailed structural mapping by Yin et al. (2007b)
indicated that high-grade metamorphic rocks are
located at different structural positions along a
regional detachment fault. The original bedding
of both the high-grade metamorphic rocks
of the Dakendaban Group and Ordovician—
Silurian metasedimentary rocks is transposed
by younger cleavage and gneissic foliation
associated with isoclinal folding. In contrast,
Devonian and younger strata are devoid of
ductile deformation (Fig. 2E). The North
Qaidam ultrahigh-pressure metamorphic belt is
located along the southernmost Qilian orogen,
which is bounded in the north and south by a
Cenozoic north-dipping thrust (Yin et al., 2007b;
Menold et al., 2009). The ultrahigh-pressure
metamorphic rocks are mostly garnet-bearing
quartzofeldspathic gneisses with entrained
eclogite and garnet peridotite blocks (e.g., Yang
et al., 2001; Zhang et al., 2005; Xu et al., 2006;
Song et al., 2004, 2014a; Yu et al., 2019a).
The Zongwulong ophiolitic complex consists
of serpentinized peridotite, gabbro, sheeted
dikes, and basalt, all of which are penetratively
deformed and experienced epidote-amphibolite—
facies metamorphism (e.g., Guo et al., 2009; Fu
et al., 2022a). The detachment fault divided
these ophiolitic rocks in its hanging wall from
ultrahigh-pressure garnet peridotite in its
footwall (Yang et al., 2001; Song et al., 2003,
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2005). Results of whole-rock geochemistry
suggest that the ophiolitic rocks formed in a
marginal or back-arc setting (e.g., Guo et al.,
2009; Fu et al., 2022a).

Detailed field observations for this study
focused on the northern Qaidam continent, with
the goal of constraining the Precambrian and
early Paleozoic metamorphic and magmatic
evolution of northern Tibet (Fig. 3). Stratigraphic
age assignments of major lithologic units
are primarily based on Pan et al. (2004) and
Wang et al. (2013), whereas the more detailed
framework used in this study is based on our field
observations (Fig. 2E). Specifically, detailed
geologic mapping and structural analyses
were performed in the Zongwulong Shan and
Qinghai Nanshan regions (Fig. 3). We observed
widespread Precambrian and early Paleozoic
metamorphic rocks and foliated/undeformed
granitoid plutons (Fig. 3), which previous
researchers grouped as a Paleoproterozoic
basement metamorphic complex. Here, we
mapped and divided these rocks based on
detailed field observations and geochronology.
Both the Paleoproterozoic basement rocks
and Mesoproterozoic to Neoproterozoic,
weakly metamorphosed sedimentary rocks
experienced early Paleozoic amphibolite-facies
metamorphism and were intruded by the early
Paleozoic granitoids and gabbros (Fig. 3).

Paleoproterozoic medium- to high-grade
basement rocks (labeled Pt; in Fig. 3; mixed
with the Delingha complex and Dakendaban
Group) are widespread in the northern Qaidam
continent and are divided into a lowermost
gneiss unit, a middle metavolcanic unit, and an
uppermost schist unit. The gneiss unit is com-
posed of quartzofeldspathic gneiss, mylonitic
biotite orthogneiss, garnet-bearing syenogran-
ite, and paragneiss. These rocks are inferred
to be Paleoproterozoic in age based on previ-
ous age assignments. Mafic and leucocratic
dikes occur within the gneiss unit (Fig. 3).
The metavolcanic unit consists of gray-green—
colored meta-mafic rocks and foliated garnet
amphibolite. The schist unit is characterized
by mica + garnet schist, quartzite, marble,
and local phyllite. These basement rocks are
intruded by early Paleozoic, amphibolite-facies,
weakly foliated granitoids. Mesoproterozoic
and Neoproterozoic metasedimentary rocks
(labeled Pt, and Pt; in Fig. 3, respectively) are
scattered in the northern Qaidam continent.
Silurian metasedimentary strata (labeled S in
Fig. 3) consist of medium- to low-grade meta-
sandstone, amphibolite schist, altered metavol-
canic rocks, meta-siltstone, meta-conglomerate,
and slate, with minor meta-limestone and chert.
Minor metavolcanic tuff occurs in the upper-
most section. Precambrian basement metamor-
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clastic deposits

Quaternary active alluvial deposits
Quaternary inactive alluvial deposits

Pleistocene alluvial deposits

Quaternary active axial river deposits Cretaceous red fluvial and alluvial

Jurassic red alluvial and lacustrine
clastic deposits with coal layers

Triassic sandstone, conglomerate,
and limestone

Permian sandstone, shale, conglomerate,
and limestone
Carboniferous limestone, dolomite,
phyllite, and slate
Neoproterozoic marble, (garnet) mica
schist, plagioclase gneiss, amphibolite,

and migmatized gneiss

- Mesoproterozoic mica quartz schist

Paleoproterozoic Dakendaban Group,

including mica schist, gneiss, marble, =

migmatite, plagioclase amphibolite
- Early Paleozoic granitoids

- Early Paleozoic gabbro

Unconformity contact
4——4  Thrust fault
Strike-slip fault
------ Inferred/buried fault

A 0

5km

Figure 3. Geologic map of the southern Zongwulong Shan near Delingha city, northern Qaidam continent, based on Qinghai BGMR (1978)
and this study. White lines are topographic contours in meters. Locations of samples are shown.

phic rocks are thrust over Silurian metasedimen-
tary rocks. Carboniferous strata (labeled C in
Fig. 3) are thrust over Precambrian and early
Paleozoic rocks. Strong deformation of Carbon-
iferous strata is localized along basal arkosic
and quartz sandstone, slate, phyllite, and minor
limestone beds. The Upper Carboniferous strata
are composed of thickly bedded limestone and
marble. Permian strata are mapped as a single
unit (labeled P in Fig. 3) and consist of basal
conglomerate, sandy limestone, and arkosic
and quartz sandstone. Conformably overlying
Triassic strata (labeled T in Fig. 3) are domi-
nated by basal arkosic and quartz sandstone and
overlying minor sandy limestone and calcareous
siltstone. Overlying Jurassic strata (labeled J in
Fig. 3) are generally parallel to Triassic strata
along a regional disconformity (e.g., Yin et al.,
2008b; Wu et al., 2017; Zuza et al., 2018; Fu
et al., 2022a). Jurassic strata consist of a basal
conglomerate overlain by interbedded arkosic
sandstone and pink-colored siltstone, organic-
rich shale, and coal beds (Fig. 2E). Overlying
Cretaceous rocks (labeled K in Fig. 3) mainly
consist of polymictic conglomerate and red-
colored, coarse-grained sandstone.

We recognized seven distinct unconformi-
ties in the northern Qaidam continent, which
are named for their overlying units (Fig. 2E).
The oldest and most widespread unconfor-
mity divides the Neoproterozoic Quanji Group
from underlying Paleoproterozoic basement
metamorphic rocks and local Mesoproterozoic
rocks. Two early Paleozoic parallel unconformi-
ties occur at the bases of Cambrian and Ordovi-
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cian strata. The most widespread Phanerozoic
unconformity divides Carboniferous strata from
underlying Proterozoic basement rocks and early
Paleozoic magmatic arc rocks. Two Mesozoic
unconformities divide Proterozoic and Paleo-
zoic strata from underlying Jurassic and/or Cre-
taceous strata, and these likely were related to
the initiation of extension across northern Tibet
(e.g., Lietal., 2024). The Jurassic unconformity
is angular, whereas the Cretaceous unconformity
is parallel to underlying strata. A parallel uncon-
formity divides Jurassic and Cretaceous strata
from overlying Cenozoic strata. This relation-
ship indicates that prior to Cenozoic deforma-
tion, Mesozoic strata were not significantly tilted
at the surface despite local Mesozoic deforma-
tion (e.g., Li et al., 2024). The development of
this unconformity likely represents the initiation
of Cenozoic deformation related to the Himala-
yan-Tibetan orogen.

Structures in the northern Qaidam continent
generally trend northwest or north, including
the trends of ranges, strikes of sedimentary
strata, foliation within metamorphic rocks,
and surface traces of faults (Fig. 3). We did not
directly observe evidence of Mesozoic normal
faulting, although previous field observations
are consistent with Jurassic—Cretaceous
synextensional sedimentation (Vincent and
Allen, 1999; Chen et al., 2003; Yin et al., 2008b),
including fining-upward sequences, growth
strata, and normal faults in seismic profiles (e.g.,
Yu et al., 2023). We interpret that the observed
contractional deformation of Carboniferous and
younger strata occurred during the Cenozoic
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based on the following observations: (1) Most
observed faults and folds in Carboniferous and
younger strata merge with range-bounding
thrusts; (2) these same faults truncate Cenozoic
terrestrial strata and Quaternary alluvium along
strike; (3) parallel Carboniferous—Triassic,
shallow-marine, lacustrine, and continental-shelf
strata are not associated with coeval structures;
and (4) Jurassic—Cretaceous strata were
deposited during extension (e.g., Vincent and
Allen, 1999; Chen et al., 2003; Yin et al., 2008a,
2008b) (Fig. 3). These observations also imply
that folding and duplication of the Carboniferous
unconformity occurred in the Cenozoic (Fig. 3).

Early Paleozoic records of magmatism and
metamorphism are widespread in Precambrian
rocks of the northern Qaidam continent. For
this study, we collected 10 samples of early
Paleozoic rocks for geochronology and geo-
chemistry (Fig. 4). Hornblende gabbro sample
QL20220713-18 was collected from a gabbro
intrusion within the Paleoproterozoic Dak-
endaban Group. This gabbro is intruded by
~10-100-cm-wide, pink-colored pegmatite
dikes (sample QL20220713-19; Figs. 4A and
4B). Dark gray—colored, garnet-bearing pla-
gioclase amphibolite samples QL20220713-12
and QL20220713-13 were collected from Neo-
proterozoic rocks, which consist of plagioclase
amphibolite, garnet-bearing schist, marble, and
garnet-bearing plagioclase amphibolite. These
Neoproterozoic rocks experienced early Paleo-
zoic amphibolite-facies metamorphism and
were intruded by leucogranite dikes (Figs. 4B—
4D). Pink-colored, altered granitoid sample

Geological Society of America Bulletin, v. 137, no. 3/4



QL20220706-2 was collected from an early
Paleozoic granitoid, which intrudes the Paleo-
proterozoic Dakendaban Group (Fig. 3) and is
exposed adjacent to a fault zone (Fig. 4D). Cal-
cite veins occur along this fault zone (Fig. 4E).
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Mesoproterozoic mica quartz schist is intruded
by early Paleozoic granitoids and dikes
(samples QL20220713-2, QL20220713-3,
QL20220713-4, and QL20220713-5; Figs. 4E—
41). Sample QL20220708-4 is a red-colored,
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Q12022071353

Figure 4. Field photographs from
the northern Qaidam continent
showing collected rock samples.
(A) Hornblende gabbro (sample
QL20220713-18) intruded by
pink pegmatite veins (sample
QL20220713-19). (B) Garnet-
bearing plagioclase amphibolite
(sample QL20220713-12) intruded
by late Paleozoic leucogranite
dikes. (C) Neoproterozoic meta-
morphic rocks including (gar-
net-)plagioclase amphibolite
(sample QL20220713-13), gar-
net-bearing schist, and marble.
(D) Road-cut exposure of a fault
zone that places Carbonifer-
ous limestone over altered gran-
itoid (sample QL20220706-2).
(E-I) Mesoproterozoic metasedi-
mentary rocks intruded by early
Paleozoic  granitoids (samples
QL20220713-2, (QL20220713-3,
QL20220713-4, and QL20220713-
5). (J) Mylonitic syenogranite
pebbles within Permian strata
(sample QL20220708-4).

mylonitic syenogranite pebble collected from
Permian strata, which unconformably overlie
Paleoproterozoic rocks (Fig. 4]). Photomicro-
graphs of the collected samples are shown in
Figure 5.
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Figure 5. Photomicrographs
in cross-polarized light of
representative samples collected
for this study. (A) Gabbro
(sample QL20220713-18). (B)
Pegmatite dike (sample QL2022
0713-19). (C, D) Garnet-bearing
plagioclase amphibolite (sam-
ples  QL20220713-12 and
QL20220713-13). (E-I) Gran-
ite (samples QL20220706-2,
QL20220713-2, QL20220713-
3, QL20220713-4, and
QL20220713-5). (J) Mylonitic
syenogranite pebble (sample
QL20220708-4).  Bt—biotite;
Cal—calcite; Cpx—clinopyrox-
ene; Hbl—hornblende; Kfs—
K-feldspar; Mus—muscovite;
Pl—plagioclase; Qtz—quartz.



4. ANALYTICAL METHODS

In this study, we performed zircon U-Pb
geochronology and Lu-Hf isotope analyses of
10 samples of early Paleozoic gabbro, garnet-
bearing plagioclase amphibolite, migmatite and
pegmatite dikes, and granitoid to constrain their
crystallization histories. Seven samples, includ-
ing the gabbro, pegmatite dike, and granitoid
samples, were analyzed for their whole-rock
major-oxide, trace-element, and Sr-Nd isotope
compositions to determine the petrogenetic
settings.

Zircon grains used for U-Pb geochronology
and Lu-Hf isotope analyses were separated
from whole-rock samples using traditional
methods involving crushing, sieving, and mag-
netic and density separations. Individual zircon
grains were picked under a binocular micro-
scope and mounted in epoxy with standard
zircon grains. Cathodoluminescence images of
zircon grains were collected using a JXA-880
electron microscope with operating conditions
of 20kV and 20 nA at the Institute of Mineral
Resources, Chinese Academy of Geological
Sciences, Beijing, China. Zircon grains were
analyzed via inductively coupled plasma—mass
spectrometry (ICP-MS) using an Agilent 7500a
instrument coupled with a New Wave Research
UP193FX excimer laser-ablation system at the
State Key Laboratory of Tibetan Plateau Earth
System, Environment and Resources, Institute of
Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing. Common Pb corrections were
performed assuming an initial Pb composition
from Stacey and Kramers (1975). The primary
zircon standard used was GJ1 (Jackson et al.,
2004). Secondary zircon standards included
91500 (299U/*%Pb age of 1065 Ma; Wieden-
beck et al., 1995) and PleSovice (2°°U/?**Pb
age of 337 Ma; Slama et al., 2008). Common-
Pb corrections were made using the method
of Andersen (2002). Reported U-Pb ages are
206ph*/207Pb* ages for grains older than 1000 Ma

Phanerozoic tectonics in the Qaidam continent

and 20Pb*/238U* ages for grains younger than
1000 Ma. Crystallization ages were interpreted
from analyses with <10% discordance. Concor-
dia diagrams and weighted mean U-Pb ages were
processed using Isoplot v.3 (Ludwig, 2003). Age
data and concordia plots are reported with 2o
error. Uncertainties of weighted mean ages are
presented at the 95% confidence level. Zircon Hf
isotopes were measured in situ on a Nu Plasma
Il multicollector (MC) ICP-MS (Nu Instruments
Ltd., UK), which was coupled to a 193 nm New
Wave laser-ablation system. Analyses involved
a beam diameter of ~45 pm, repetition rate of
6 Hz, and energy density of ~11.6 J/cm?. Each
measurement consisted of 10 s pre-ablation, 45 s
ablation, and 30 s washout delay. Hf isotopes
were calculated using lolite v.4 (University of
Melbourne). The measured Hf isotopic values
were 0.282302 £ 19 for 91500, 0.281998 + 15
for GJ-1, and 0.282475 + 11 for PleSovice, con-
sistent with recommended values. Sample loca-
tions and U-Pb zircon geochronology results are
shown in Table 1. Details of geochronology and
Lu-Hf isotope analyses are shown in Table S1
and Table S2,' respectively.

Seven early Paleozoic rock samples were
analyzed for their geochemistry at the Wuhan
Sample Solution Analytical Technology
Co., Ltd., in Hubei, China. Before analysis,
weathered sample surfaces were removed.
Samples were then crushed and ground

ISupplemental Material. Table S1: LA-ICP-MS
results of zircon U-Pb geochronology for this study.
Table S2: Zircon Lu-Hf results of the samples
collected for this study. Table S3: Whole-rock major
and trace elements of the samples collected for
this study. Table S4: Whole-rock Sr-Nd isotopes of
the samples collected for this study. Table S5: LA-
ICP-MS results of zircon U-Pb geochronology and
zircon Lu-Hf, whole-rock major- and trace-element,
and whole-rock Sr-Nd isotope analyses from previous
studies. Please visit https://doi.org/10.1130/GSAB
.S.27153996 to access the supplemental material;
contact editing @ geosociety.org with any questions.

into powder (>200 mesh) using a ball mill.
Major-element compositions were determined
via X-ray fluorescence spectrometry with
analytical accuracy better than 2%. Trace-
element compositions were measured via
ICP-MS with an analytical accuracy better
than 5%. Sr-Nd isotopes were measured using
a Neptune Plus MC-ICP-MS with spectral
analysis accuracy better than 0.002%. Sample
dissolution was performed using acid digestion
(HF + HCLO, + HNO;). Background isotope
measurements were conducted within the error
range. Aliquots of NIST SRM 987, JNDI-
1, and JMC international standard solutions
were regularly used to evaluate instrumental
reproducibility and accuracy. Analytical results
of standard sample BCR-2 (basalt) included
IBNd/1Nd = 0.512641 £ 11 (2 standard
deviation [S.D.]) and ¥’Sr/8Sr = 0.705012 4 22
(2S.D.; see Zhang and Hu, 2020). Data reduction
for analyses of Sr isotope ratios was conducted
using Iso-Compass software (Zhang and Hu,
2020). Whole-rock geochemical and Sr-Nd
isotopic results are presented in Table S3 and
Table S4, respectively.

5. ANALYTICAL RESULTS

5.1. Zircon U-Pb Geochronology and Lu-Hf
Isotope Geochemistry

Forty zircon grains from gabbro sample
QL20220713-18 yielded convergent U-Pb ages
ranging from ca. 493 Ma to 463 Ma (Fig. 6A).
The weighted mean U-Pb age of 37 concor-
dant analyses is 477 £ 17 Ma (mean square of
weighted deviates [MSWD] = 0.016; Fig. 6A).
Zircon grains from this gabbro sample have eHf ;)
values of —5.0 to —2.9 (depleted mantle model
age [Tpyl = 1275-1198 Ma, crustal depleted
mantle model age [Tpycl = 1762-1638 Ma;
Table S2).

Thirty zircon grains from migmatite sample
QL20220713-9 yielded diverse U-Pb ages rang-

TABLE 1. SUMMARY OF SAMPLE LOCATIONS AND GEOCHRONOLOGY RESULTS, NORTHERN QAIDAM CONTINENT (NORTHERN TIBET)

Sample number Rock type Latitude Longitude Elevation Methods Age
CN) (E) (m) (Ma)
QL20220706-2  Granite 37°27/13.80” 97°43/33.16" 3346 Zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd isotope 450 + 5
QL20220708-4  Mylonitic syenogranite 37°26/14.38"” 97°42/31.18" 3372 Zircon U-Pb/zircon Lu-Hf 418 + 4
ebble
QL20220713-2 Grgnite 37°24/25.95" 97°28/15.43" 3282 Zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd isotope 426 + 6
QL20220713-3  Granite 37°24/26.91” 97°28/14.15" 3280 Zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd isotope 443 + 5
QL20220713-4  Granite 37°24'2710"  97°28/13.76" 3271 Zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd isotope 436 + 5
QL20220713-5  Granite 37°24'26.69” 97°28/13.96" 3288 Zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd isotope 439 + 10
QL20220713-9  Migmatite gneiss 37°25'14.73"  97°28/'15.27" 3401 Zircon U-Pb/zircon Lu-Hf 510+ 6
QL20220713-12 Garnet-bearing 37°25/15.60” 97°28/15.63" 3413 Zircon U-Pb/zircon Lu-Hf 423+9
plagioclase amphibolite
QL20220713-13  Garnet-bearing 37°25/16.27" 97°28/16.11" 3395 Zircon U-Pb/zircon Lu-Hf 431 +£13
plagioclase amphibolite
QL20220713-18 Gabbro 37°23/53.18"” 97°31/55.08" 3418 Zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd isotope 477 + 17
QL20220713-19 Pegmatite dike 37°23/53.18"” 97°31/55.08" 3418 Zircon U-Pb/zircon Lu-Hf/whole-rock geochemistry/Sr-Nd isotope 424 + 8
Geological Society of America Bulletin, v. 137, no. 3/4 1563
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Figure 6. (Continued)

ing from ca. 710 Ma to 435 Ma. The weighted
mean U-Pb age of 25 concordant analyses is
510 £ 6 Ma (MSWD = 0.39). Zircon grains
from this granite sample have cHf,, values
of —10.2 to —2.4 (Tpy = 1492-1184 Ma;
Tpme = 2101-1613 Ma; Table S2).

Thirty zircon grains of pegmatite dike sample
QL20220713-19 yielded convergent U-Pb ages
ranging from ca. 695 Ma to 241 Ma (Fig. 6B).
The weighted mean U-Pb age of 12 concor-
dant analyses is 424 + 8 Ma (MSWD = 1.18;
Fig. 6B). Zircon grains from this pegmatite
dike sample have eHf, values of —9.5 to
—6.5 (Tpy = 2012-1816 Ma; Tpye = 1762—
1638 Ma; Table S2).

Thirty zircon grains each from two garnet-
bearing plagioclase amphibolite samples,
QL20220713-12 and QL20220713-13, yielded

Geological Society of America Bulletin, v. 137, no. 3/4

convergent U-Pb ages ranging from ca. 547 Ma
to 389 Ma and from ca. 501 Ma to 362 Ma,
respectively (Figs. 6C and 6D). The weighted
mean U-Pb ages of 24 and 16 concordant
analyses are 423 + 9 Ma (MSWD = 0.68) and
431 &£ 13 Ma (MSWD = 0.2), respectively
(Figs. 6C and 6D). Zircon grains from these
garnet-bearing plagioclase amphibolite samples
have eHf ;) values of +2.8 to +5.5 (Tpy = 918~
821 Ma; Tpyc = 1223-1062 Ma; Table S2).
Twenty zircon grains from altered granitoid
sample QL20220706-2 yielded U-Pb ages rang-
ing from ca. 473 Ma to 437 Ma (Fig. 6E). The
weighted mean U-Pb age of 19 concordant anal-
yses is 450 + 5 Ma (MSWD = 0.62; Fig. 6E).
Zircon grains from this granite sample have
eHf, values of —10.1 to —5.8 (Tpy = 1472~
1317 Ma; Tpye = 2052-1792 Ma; Table S2).
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Thirty zircon grains of granite sample
QL20220713-2 yielded diverse U-Pb ages rang-
ing from ca. 917 Ma to 365 Ma (Fig. 6F). The
weighted mean U-Pb age of 17 concordant anal-
yses is 426 + 6 Ma (MSWD = 1.18; Fig. 6F).
Zircon grains from this granite sample have
eHf, values of —11.4 to —6.0 (Tpy = 1483—
1276 Ma; Tppye = 2119-1774 Ma).

Thirty zircon grains from granite sample
QL20220713-3 yielded convergent U-Pb ages
ranging from ca. 513 Ma to 432 Ma (Fig. 6G).
The weighted mean U-Pb age of 17 concor-
dant analyses is 443 £ 5 Ma (MSWD = 0.54;
Fig. 6G). Zircon grains for this granite sample
have eHf, values of —11.0 to —5.7 (T = 1478~
1283 Ma; Ty = 2111-1776 Ma; Table S2).

Thirty zircon grains from granite sample
QL20220713-4 yielded convergent U-Pb ages
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ranging from ca. 451 Ma to 421 Ma (Fig. 6H).
The weighted mean U-Pb age of 29 concor-
dant analyses is 436 + 5 Ma (MSWD = 0.45;
Fig. 6H). Zircon grains for this granite sample
have eHf,, values of —13.1t0 —0.3 (T, = 1445-
1056 Ma; Tpye = 2230-1432 Ma; Table S2).
Thirty zircon grains from granite sample
QL20220713-5 yielded diverse ages ranging
from ca. 2250 Ma (Pb-Pb) to ca. 427 Ma (U-Pb;
Fig. 6I). The older population of 14 grains
yields a weighted mean age of 1822 4+ 28 Ma
(MSWD = 2.9) and is interpreted to be
inherited. The younger population of five grains
yields a weighted mean age of 439 £ 10 Ma
(MSWD = 0.76), which is interpreted as
the crystallization age of this granite sample
(Fig. 6]). Zircon grains from this granite sample
have eHf|,, values of —9.9 to —6.8 (Tpy, = 1447-
1313 Ma; Tpye = 2046-1828 Ma; Table S2).
One-hundred zircon grains from mylonitic
syenogranite pebble sample QL20220708-4
collected from Permian strata yielded U-Pb
ages ranging from ca. 527 Ma to 241 Ma. The
weighted mean U-Pb age of 63 concordant anal-
yses is 418 £ 4 Ma (MSWD = 0.76; Fig. 6J).

5.2. Whole-Rock Geochemistry

Early Paleozoic granite samples (ca. 443—
426 Ma) have high SiO, of 73.98-74.45 wt%,
MgO of 0.16-0.34 wt%, Al,O; of 13.27-
13.84 wt%, TiO, of 0.07-0.28 wt%, and
K,0 + Na,O of 7.89-9.51 wt%. Circa 450 Ma
granite sample QL20220706-2 has higher SiO,
of 81.74 wt%, K,O + Na,O of 0.76 wt%, Al,O5
of 1.33 wt%, CaO of 5.79 wt%, and ablation
(loss on ignition [LOI] = 7.06). We interpret
that this sample was likely altered, given the
observed calcite veining. The early Paleozoic
granite samples are classified as granite on
the (K,O + Na,O) versus SiO, plot (Fig. 7A;
Middlemost, 1994). In the K,O versus SiO, plot
(Le Maitre et al., 1989; Rickwood, 1989), most
samples plot within the shoshonitic series field,
with the exception of altered granite sample
QL20220706-2, which falls within the tholei-
itic series field (Fig. 7B). These early Paleozoic
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samples are peraluminous, as indicated by molar
A/CNK of 1.11-1.18 (where A/CNK = molar
ratio of Al,O3/[CaO + K,O + Na,O]) and A/
NK of 1.19-1.34 (where A/NK = molar ratio
of AL,O4/[K,O + Na,OJ; Fig. 7C; Maniar and
Piccoli, 1989). In Harker diagrams, MgO, CaO,
TiO,, TFe,0;, and Al,O; contents decrease with
increasing SiO, contents (Figs. 7D-7I). Altered
granite sample QL20220713-2 (ca. 426 Ma)
falls within the A-type granite field (Figs. 7J-
7L), which is generally associated with exten-
sion regardless of the magma source (e.g., Wha-
len et al., 1987; Eby, 1990, 1992; Turner et al.,
1992). Trace-element discrimination diagrams
allow further refinement of the assigned tectonic
environments of these four granite samples (ca.
443-426 Ma), which plot in the syncollisional
granite field (Figs. 7M-70). Chondrite-normal-
ized, rare earth element (REE) patterns of these
granite samples are characterized by significant
light rare earth element (LREE) enrichment
and heavy rare earth element (HREE) depletion
trends (Fig. 8A). These samples have strongly
negative Eu (Euw/Eu* = 0.59-0.17) anomalies,
with the exception of early Paleozoic granite
sample QL20220713-5 (ca. 439 Ma), which has
a slightly positive Eu anomaly (Euw/Eu* = 1.14)
(Fig. 8A). In primitive mantle-normalized spider
diagrams, these granitoid samples are enriched
in large ion lithophile elements (LILES) and
depleted in high field strength elements (HFSEs).
These granitoid samples display no distinct Ce
anomalies (Fig. 8B).

Circa 477 Ma gabbro sample QL20220713-
18 has lower SiO, of 51.39 wt%, higher MgO
of 7.92 wt%, Al,O; of 16.27 wt%, TiO, of
0.61 wt%, and lower K,O + Na,O of 3.70 wt%,
and Ni of 151.25 ppm. The chondrite-normal-
ized REE pattern of this gabbro sample is char-
acterized by moderate LREE enrichment and
HREE depletion (Lay/Yby = 14.04), with a
slightly negative Eu anomaly (Eu/Eu* = 0.79;
Fig. 8A). In primitive mantle-normalized spi-
der diagrams, this gabbro sample is depleted in
LILES (e.g., Th, U, K) and enriched in HFSEs
(e.g., Nb and Ta; Fig. 8B). The gabbro sample
is metaluminous, as indicated by molar A/CNK

of 0.66 and A/NK of 2.90 (Fig. 7C; Maniar and
Piccoli, 1989). The ca. 424 Ma pegmatite dike
sample QL20220713-19 has SiO, of 60.81 wt%,
MgO of 7.92 wt%, Al,O; of 10.61 wt%, TiO, of
0.02 wt%, and K,O + Na,O of 8.07 wt%. The
chondrite-normalized REE pattern of this peg-
matite dike sample is characterized by significant
LREE enrichment and HREE depletion, with a
negative Eu (Eu/Eu* = 0.62) anomaly (Fig. 8A).
In the primitive mantle-normalized spider dia-
gram, this pegmatite dike sample is enriched in
LILEs and depleted in HFSEs (Fig. 8B). This
pegmatite dike sample is classified as monzonite
on the (K,O + Na,O) versus SiO, plot (Fig. 7A;
Middlemost, 1994) and as calc-alkaline series in
the K,O versus SiO, plot (Fig. 7B; Le Maitre
et al., 1989; Rickwood, 1989), and it is peralu-
minous as indicated by molar A/CNK of 0.35
and A/NK of 1.05 (Fig. 7C; Maniar and Piccoli,
1989). High-ablation LOI contents of 2.26% for
the gabbro sample and 8.07% for the pegmatite
dike sample were measured, indicating potential
postmagmatic alteration (Polat et al., 2009).
The ca. 477 Ma gabbro sample QL20220713-
18 has an initial Sr/%Sr ratio of 0.71214108
and eNd, value of —5.96837, whereas the ca.
424 Ma pegmatite dike sample QL20220713-
19 has an initial $7Sr/%Sr ratio of 0.71468586
and eNd,,, value of —7.50694 (Fig. 8C). Five
early Paleozoic granite samples (ca. 450—
426 Ma) have varied initial 8’Sr/3¢Sr ratios of
0.71786482-0.75683854 and consistent eNd,,)
values of —10.3556 to —8.83168 (Fig. 8C).

6. DISCUSSION

6.1. Paleozoic—Mesozoic Magmatism in the
North Qaidam Continent

The oldest reported intrusion of the north-
ern Qaidam continent is ca. 510 Ma migma-
tite gneiss from this study. Early Paleozoic
granitoids and gabbros (ca. 490-410 Ma) are
widespread in the northern Qaidam continent.
Geochemistry results indicate that the ca. 493—
460 Ma granitoids and ca. 490-485 oceanic-
island basalt (OIB)-like gabbros were likely

»
>

Figure 7. (A) SiO, versus (K,O + Na,O) total alkali-silica (TAS) diagram for intrusive rocks. Normalization values are from Middlemost
(1994). (B) K,O versus SiO, diagram for intrusive rocks. Normalization values are from Le Maitre et al. (1989) and Rickwood (1989). (C)
A/CNK versus A/NK diagram for intrusive rocks, where A/CNK = molar ratio of Al,0;/(CaO + K,O + Na,0O) and A/NK = molar ratio of
ALO;/(K,0 + Na,0). (D-I) Harker diagrams of selected major elements showing content variation of major elements. (J-O) Geochemical
discrimination diagrams based on Pearce et al. (1984), Pearce (1996), and Whalen et al. (1987) for plutonic samples. syn-COLG—syncolli-
sional granite; WPG—within-plate granite; ORG—orogenic granite; VAG—volcanic-arc granite. Data sources: Li et al. (2022, 2023b); Gao
et al. (2018, 2021, 2022); Zhao et al. (2017); Wang et al. (2014, 2017, 2018); Zhu et al. (2014); Wu et al. (2001, 2004, 2006b, 2007, 2009b, 2014,
2019¢); Zha et al. (2016); Zhang et al. (2015, 2018); Yang et al. (2015); Yu et al. (2012, 2015, 2019a); Song et al. (2014b); Cao et al. (2017);
Zhou et al. (2014, 2015, 2021); Jiang et al. (2016); Shao et al. (2018); Meng et al. (2005); Meng and Zhang (2008); Chen et al. (2012a); Lu
et al. (2007); Kou et al. (2017); Qian et al. (2018a); Qiu et al. (2015); Gu et al. (2018); Dong et al. (2014, 2015); Peng et al. (2016); Wang and

Zhou (2016); Niu et al. (2018); this study.
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et al. (2015).

generated in a subduction environment (e.g.,
Gao et al., 2021). The geochemistry of the ca.
477 Ma gabbro sample from this study, includ-
ing its positive eHf ;) and negative eNd,, values
(Figs. 8C and 8D), metaluminous composition,
low SiO, and high MgO and Ni contents, and
REE patterns (Figs. 8A and 8B), suggest gen-
eration in a suprasubduction zone or mid-ocean-
ridge setting. This ca. 477 Ma gabbro shows
subduction-related characteristics, which are
consistent with the results of ca. 478 Ma plagio-
granites and ca. 480—465 Ma mafic rocks from
Gao et al. (2023). Zhang et al. (2008) argued
that ca. 450 Ma high-pressure, granulite-facies
metamorphism recorded in the western part
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of the northern Qaidam continent may have
occurred in thickened lower crust during early
Paleozoic continental collision. Records of ca.
446-428 Ma high-pressure granulite-facies
metamorphism are synchronous with ca. 446—
430 Ma metamorphism of eclogites, ca. 465—
450 Ma migmatization, and ca. 470 Ma adakitic
magmatism in the northern Qaidam continent.
This coeval activity suggests that adakitic melts
were derived from anatexis of thickened mafic
lower crust during collision (Yu et al., 2012,
2019b). In addition, the occurrences of ca. 458—
457 Ma ultrahigh-pressure eclogites related to
deep continental subduction and paragneiss
with ca. 460-455 Ma metamorphic ages sug-

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/137/3-4/1553/7123297/b37906.1.pdf
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gest that continental collision in the northern
Qaidam continent commenced by ca. 460 Ma
(e.g., Zhang et al., 2019b; Yu et al., 2021). In
general, we suggest that the age of ultrahigh-
pressure eclogites must be older than the timing
of the arc-continent collision, whereas continen-
tal ultrahigh-pressure eclogites must be younger
than initial collision. This study and previous
research show that the ca. 460—436 Ma, syncol-
lisional I- and S-type granitoids are widespread
in the northern Qaidam continent (Figs. 7M—
70). The ca. 426 Ma, A-type granites and ca.
424 Ma pegmatite dike from this study sug-
gest a postcollisional, extensional setting in
the northern Qaidam continent at that time

Geological Society of America Bulletin, v. 137, no. 3/4
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(Figs. 7J-7L; e.g., Whalen et al., 1987; Eby,
1990, 1992; Turner et al., 1992). Late Paleo-
zoic extension-related granitoids and volcanic
rocks (ca. 409-360 Ma) also occur in the north-
ern Qaidam continent (e.g., Li et al., 2023b). A
magmatic lull occurred in the northern Qaidam
continent from ca. 360 Ma to 270 Ma (Fig. 9).
Furthermore, Permian-Triassic, subduction-
related granitoids (ca. 271-230 Ma) and exten-
sion-related granitoids (ca. 215-214 Ma) occur
in the northern Qaidam continent.

Zircon U-Pb ages of igneous rocks in the
northern Qaidam continent fall into two age
groups at ca. 493-360 Ma, with an oldest age of
ca. 510 Ma, and ca. 271-214 Ma (Figs. 9 and 10).
In northern Tibet, zircon U-Pb ages of Paleozoic
intrusive rocks in the Qilian Shan have ages of
ca. 520402 Ma with ca. 445 Ma peaks (Fig. 9;
Liu et al., 2019; Wu et al., 2022a). Late Devo-
nian, postorogenic granitoids (ca. 392-372 Ma)
and Permian-Triassic arc granitoids (ca. 269—
235 Ma) occur in the South Qilian orogen and
northern Qaidam continent (Fig. 10; e.g., Xie
et al., 2014; Hu et al., 2016; Li et al., 2021; Jia
etal., 2017; Wu et al., 2004, 2007, 2009a; Cheng
etal., 2017; Zhou et al., 2021; this study). In addi-
tion, the youngest leucogranite in northern Tibet,
dated at ca. 341 Ma, occurs in the central Qilian
Shan (e.g., Wu et al., 2021). Circa 550-529 Ma

Geological Society of America Bulletin, v. 137, no. 3/4

gabbro interpreted to represent Qilian oceanic
crust and/or suprasubduction ophiolite occurs
in the northern Qilian continent (e.g., Shi et al.,
2004; Song et al., 2013). In contrast to the mag-
matic record of the Qilian Shan, zircon U-Pb ages
of Paleozoic—Mesozoic granitoids in the Eastern
Kunlun Range fall within two main age groups at
ca. 503-357 Ma and ca. 263-194 Ma (Fig. 9; e.g.,
Wu et al., 2016, 2019a, 2022a). Numerous early
Paleozoic (ca. 500405 Ma) granitoid plutons
are exposed throughout the northern Altyn Tagh
Range (e.g., Qi et al., 2005; Wu et al., 2006b,
2009b; Kang et al., 2011; Liu et al., 2024a; Hao
et al., 2006; Chen et al., 2003). Late Cambrian—
Silurian granitic plutons (ca. 491-414 Ma) spo-
radically occur in the southern Altyn-Tagh Range
(e.g., Sobel and Arnaud, 1999; Xinjiang BGMR,
2003; Dong et al., 2011b; Liu et al., 2024a). The
timing of Phanerozoic arc magmatism allows
us to reinterpret the tectonic evolution of the
Tethyan orogenic system.

6.2. Phanerozoic Tectonostratigraphic
Evolution of the Qaidam Continent

Cambrian—-Ordovician flysch strata in the
northern Qaidam continent are dominated by
massive carbonate successions interbedded
with sandstone (e.g., Sun et al., 2020; Chen
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et al., 2022). Cambrian strata overlie Neopro-
terozoic metasedimentary rocks along a paral-
lel unconformity. These Cambrian strata have
detrital zircon U-Pb ages of ca. 2688-517 Ma,
with two major age peaks at ca. 520 Ma and ca.
990 Ma and a minor age peak at ca. 2400 Ma
(Fig. 11; Sun et al., 2020; Chen et al., 2022).
Detrital zircon ages of Upper Ordovician strata
have two major age peaks of ca. 520 Ma and
ca. 940 Ma and yield a maximum depositional
age of ca. 480 Ma. Two minor age groups peak
at ca. 1640 Ma and ca. 2500 Ma (Fig. 11; Sun
et al., 2020). Fu et al. (2014) reported 69 detri-
tal zircon ages ranging from ca. 2636 Ma to
429 Ma for the late Silurian to earliest Devo-
nian molasse strata. These rocks have a major
ca. 430 Ma age peak and two minor age peaks
at ca. 900 Ma and ca. 1830 Ma (Fig. 11). The
age spectra of the early Paleozoic strata sug-
gest that their source was the adjacent Kun-
lun-Qaidam terrane and linked South Tarim
continent.

A regional angular unconformity occurs
between Devonian and older strata within the
combined Kunlun-Qaidam continent, which
suggests a phase of Silurian uplift and orogeny,
followed by Devonian postorogenic extension
and deposition of volcano-sedimentary rocks.
Detrital zircon U-Pb ages of the Devonian lower
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molasse are ca. 3300408 Ma, with three major
age peaks at ca. 420 Ma, ca. 920 Ma, and ca.
2480 Ma (Fig. 11; e.g., Qian et al., 2018b, 2021b;
Feng et al., 2015; Zhang et al., 2019a). These
strata were also likely sourced from the adjacent
Kunlun-Qaidam continent. Rhyolites within the
Devonian section yield crystallization ages of ca.
392-375 Ma (Fig. 11; Kou et al., 2017), and the
youngest detrital zircon U-Pb age is ca. 365 Ma
from the Upper Devonian section (Zhang et al.,
2019a). Upper Devonian strata in the northern
Qaidam continent have major zircon age peaks
at ca. 380 Ma, ca. 925 Ma, ca. 1000 Ma, and ca.
2350 Ma (Fig. 11; Zhang et al. 2019a), which
suggest that the central Qilian terrane was a sedi-
ment source in addition to the Kunlun-Qaidam
continent. Given that the deposition of the Devo-
nian strata was broadly coeval with the emplace-
ment of extension-related, A-type granites in the
region (e.g., Wu et al., 2016), we interpret that
the Devonian strata were deposited in an intra-
arc, extensional basin. We note that all of the
pre-Devonian metamorphic rocks in the northern
Qaidam continent are bounded by north-dipping
Cenozoic thrust faults, and that exposures of the
epidote-amphibolite—facies and ultrahigh-pres-
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sure metamorphic rocks are controlled by Ceno-
zoic deformation (Yin et al., 2007b; Menold
et al., 2009, 2016). Carboniferous strata above a
regional unconformity yield detrital zircon U-Pb
ages with five major age peaks at ca. 430 Ma,
ca. 820 Ma, ca. 935 Ma, ca. 1925 Ma, and ca.
2350 Ma and a maximum depositional age of ca.
335 Ma (Fig. 11; e.g., Sun et al., 2022). These
Carboniferous rocks may have been sourced
from the Qilian orogen in the north and adjacent
northern Qaidam continent. Permian strata are
dominated by ca. 300 Ma and ca. 440 Ma age
peaks and have a maximum depositional age
of ca. 275 Ma (Fig. 11; e.g., Sun et al., 2022),
which indicates that the Kunlun arc in the south
was an additional source area.

Triassic strata are thrust over the pre-Mesozoic
rocks, which yield an age distribution similar to
the Permian strata (Fig. 11; e.g., Pengetal., 2015).
Previous workers interpreted that the Permian—
Triassic strata were deposited in an intra-arc set-
ting (Sun et al., 2022). During the Jurassic, the
Qaidam continent experienced extension. The
stratigraphy, U-Pb ages, and Hf isotope results,
along with detrital provenance constraints, sug-
gest that the sediments of the Lower Jurassic sec-

tion (i.e., age peaks at ca. 266 Ma, ca. 420 Ma, ca.
850 Ma, and ca. 2430 Ma; Fig. 11) were mainly
derived from the adjacent northern Qaidam conti-
nent and Altyn Tagh, Qilian, and Eastern Kunlun
orogens (e.g., Yu et al., 2017, 2019b; Liu et al.,
2017; Wuetal., 2019a; Zhao et al., 2020a, 2020b;
Qian et al., 2018b, 2021b; Lu et al., 2019). Dur-
ing the Middle to Late Jurassic, the primary
source areas were the Qilian and Eastern Kun-
lun orogens (i.e., age peaks of ca. 240 Ma, ca.
450 Ma, ca. 930 Ma, ca. 2440 Ma; age peaks
of ca. 230 Ma, ca. 420 Ma, ca. 940 Ma, and ca.
2500 Ma; Fig. 11;e.g., Yuetal., 2017,2019b; Liu
etal., 2017; Wu et al., 2019b; Zhao et al., 2020a,
2020b; Qian et al., 2018b, 2021b; Lu et al.,
2019; Zhang et al., 2020). From this, we inter-
pret that the Jurassic depositional environment
evolved from a series of small-scale, scattered
rifts during the Early Jurassic to a larger, unified
rift basin during the Middle Jurassic (e.g., Qian
etal.,2021a). A disconformity or angular uncon-
formity exists between the Jurassic and overlying
Cretaceous strata, and Upper Cretaceous strata
are absent (Wu et al., 2011; Zhang et al., 2020).
The Lower Cretaceous strata in the Qaidam con-
tinent mainly consist of deltaic, fluvial, and allu-
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vial sandstone and conglomerate, representing
orogeny-related molasse deposits with possible
provenance in the nearby Qilian orogen to the
north, based on southward paleocurrent obser-
vations (i.e., age peaks at ca. 260 Ma and ca.
440 Ma, minor ca. 800 Ma, ca. 1780 Ma, and ca.
2500 Ma; Fig. 11; e.g., Lu et al., 2019; Yu et al.,
2019b; Zhang et al., 2020). However, the Lower
Cretaceous strata yield a large number of Perm-
ian—Triassic zircon grains (Fig. 11), which must
have been sourced from the nearby Kunlun mag-
matic arc and Permian-Triassic magmatic arc
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of the northern Qaidam continent. We also note
that Cretaceous strata contain ca. 800700 Ma
zircon grains (Fig. 11), which are similar to the
basement rock ages of the western South China
craton. Although the source areas for the Lower
Cretaceous strata are generally similar to those
of the Triassic strata in the Qaidam continent,
the Cretaceous landscape must have been much
more subdued compared to that in the Triassic
(e.g., Wuet al., 2016).

The Cenozoic Qaidam Basin is the largest
topographic depression inside Tibet (e.g., Yin
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etal., 2002; Rieser et al., 2005; Chen et al., 2011;
Wang et al., 2017; Wu et al., 2019b), formed as
a broad synclinorium bounded by active thrust
faults that initiated at ca. 50 Ma in the north and
ca. 30-20 Ma in the south (Yin et al., 2008b).
The south-directed North Qaidam thrust system
juxtaposes Jurassic and older rocks atop Ceno-
zoic strata in the northern Qaidam continent
(Yin et al., 2008a). The Cenozoic Qaidam Basin
experienced a continuous tectonic history dur-
ing which sedimentary rock types changed in
response to basin-margin deformation. Detrital
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zircon results clearly distinguish middle Eocene
sandstone of the lower and upper Xiaganchaigou
Formation from late Oligocene—Pliocene sand-
stone (e.g., Wu et al., 2019b; McRivette et al.,
2019). Age characteristics of the Songpan-Ganzi
terrane to the south are recognized in Paleogene
Qaidam strata but are absent in younger Qaidam
strata. This suggests the emergence of a topo-
graphic barrier in the Neogene (e.g., Wu et al.,
2019b; McRivette et al., 2019).

6.3. Paleozoic—Mesozoic Tectonic Evolution
of the Qaidam Continent

The Paleozoic—Mesozoic geologic history
of the Qaidam continent is closely associated
with the tectonic evolution of the early Paleo-
zoic Qilian and Altyn Tagh orogens and late
Paleozoic to early Mesozoic Eastern Kunlun
orogen. Wu et al. (2020, 2022a) reviewed the
magmatic records, paleocrustal thickness, tec-
tonostratigraphy, and detrital zircon age popu-
lations of these orogens and suggested that the
rocks northwest of the Altyn Tagh fault in the
northern Qaidam continent were located adja-
cent to the Qilian Shan prior to slip along the
Altyn Tagh fault. Based on new and previous
field observations and analytical results for
the northern Qaidam continent, we present a
revised, comprehensive model of the Paleozoic—
Mesozoic tectonic evolution of northern Tibet.
In many reconstructions of the northern Qaidam
continent, exposures of discontinuous ultrahigh-
pressure metamorphic rocks, rare and undefined
mélange complexes, and plutons have been used
as evidence for continental collision in the early
Paleozoic and/or early Mesozoic. However, any
viable model for the tectonic evolution of the
northern Qaidam continent must explain the
following key observations. First, the original
configuration of the northern Qaidam continent
was modified by Ordovician arc magmatism,
protracted Silurian—Devonian continental colli-
sion, Mesozoic extension, and Cenozoic intrac-
ontinental deformation. Second, early Paleozoic
arc magmatism overlaps spatially and tempo-
rally with ophiolite ultrahigh-pressure metamor-
phism. In addition, the eclogite-bearing rocks
experienced ultrahigh-pressure metamorphism
followed by amphibolite-facies overprinting,
but the ophiolite rocks do not show evidence of
higher metamorphic conditions than epidote-
amphibolite facies (Menold et al., 2009). These
dispersed ophiolites are observed throughout
the Qilian Shan and northern Qaidam continent.
Third, Paleozoic ultrahigh-pressure continental
and oceanic rocks in the Altyn-Tagh Range cor-
relate with those in the northern Qaidam conti-
nent and Qilian Shan. Specifically, metamorphic
rocks exposed at Jianggelesayi and Bashiwake
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in the Altyn-Tagh Range are correlative to (1)
ultrahigh-pressure rocks in the northern Qaidam
continent (Mattinson et al., 2007; Zhang et al.,
2001; Yang et al., 2001; Yin and Harrison,
2000); (2) early Paleozoic magmatic arc gran-
itoids throughout northern Tibet; (3) Cambrian
ophiolites, including suprasubduction zone
ophiolites (Song et al., 2013); (4) ophiolitic
mélange in the Qilian Shan; and (5) early Paleo-
zoic blueschist and eclogite in the northern Qil-
ian Shan and Altyn-Tagh Range (e.g., Wu et al.,
1993; Liu et al., 2006; Song et al., 2006, 2007;
Zhang et al., 2007; Xiao et al., 2009). Fourth, a
regional angular unconformity occurs between
Devonian and older strata in the combined
Kunlun-Qaidam continent. Fifth, a Carbonifer-
ous magmatic lull occurred in northern Tibet,
and a Carboniferous rift sequence was deposited
in the Kunlun-Qaidam continent. Sixth, Perm-
ian—Triassic (ca. 270-195 Ma) arc magma-
tism across the Kunlun-Qaidam terrane lasted
until at least ca. 195 Ma in the Eastern Kunlun
Range and ceased by ca. 214 Ma in the northern
Qaidam continent. Below, we summarize key
events of the Paleozoic—Mesozoic tectonic evo-
lution of northern Tibet that support our present
understanding of the Qaidam continent.

One or two potentially connected seaways,
referred to as the Qilian Ocean(s), existed from
ca. 550 Ma to 445 Ma, as evidenced by the dis-
tribution of suprasubduction zone ophiolites
(ca. 540-500 Ma) within the North China cra-
ton, central Qilian terrane, and Kunlun-Qaidam
continent (Fig. 12A; e.g., Shi et al., 2004; Smith,
2006; Xiang et al., 2007; Tseng et al., 2007,
2009b; Zhang et al., 2007; Xia and Song, 2010;
Song et al., 2013; Zuza et al., 2018; Fu et al.,
2018, 2019, 2020b, 2022a, 2022b, 2023). These
oceans were formed within and along the mar-
gin of the Laurasia supercontinent. The oceans
reached their maximum extent in the Cambrian,
prior to subduction initiation in the latest Cam-
brian (e.g., Zuza et al., 2018; Wu et al., 2022a).
The distribution of Cambrian ophiolites and
marine strata exposed throughout the Qilian
Shan and northern Qaidam continent may be
the result of early Paleozoic complex mélange/
ophiolite obduction, ophiolite underthrusting,
or strike-slip duplication, which was supported
by a trench-parallel, right-lateral shear zone
within the Qilian magmatic arc (e.g., Sengor
and Natal’in, 1996; Wu et al., 2017, 2024; Zuza
et al., 2018; Allen et al., 2023). Such distribu-
tions may have been further modified by later
Mesozoic and Cenozoic deformation (e.g., Zuza
et al., 2018).

The consumption and closure of the Qilian
Ocean basin(s) may have been accommodated
by either a single south-dipping subduction
zone or a bidirectional north- and south-dipping
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subduction system. The bidirectional north-
and south-dipping subduction model for the
closure of the Qilian Ocean is supported by evi-
dence from a magnetotelluric sounding profile
across northern Tibet and observations from the
Sunan-Laohushan and Yushigou-Yieniugou-
Qingshuigou ophiolitic mélange complexes
and Ordovician—Silurian arc belt in the Qilian
Shan and North China craton (Fig. 12A; e.g.,
Wu et al., 2022a; Li et al., 2021). The alter-
native model is that a single south-dipping
subduction zone was formed while the Qil-
ian oceanic lithosphere subducted southward
beneath the northern margin of the Qaidam
continent (Fig. 12B; e.g., Gehrels et al., 2003;
Wu et al., 2016, 2022a; Zuza et al., 2018). Arc
magmatism, subduction, and continental col-
lision occurred from ca. 500 Ma to 400 Ma,
as evidenced by the distribution of arc-related
and syncollisional plutons (Fig. 12A; Qian
etal., 1998; Cowgill et al., 2003; Gehrels et al.,
2003a; Su et al., 2004; Wu et al., 2004, 20064,
2016; Hu et al., 2005; Liu et al., 2006; Quan
etal., 2006; He et al., 2008; Tseng et al., 2009a;
Dang, 2011; Xia et al., 2012; Xiao et al., 2012;
Xiong et al., 2012; Song et al., 2013; Allen
et al., 2023). The closure of one or two Qilian
oceans followed counterclockwise rotation of a
peninsular Qaidam continent toward the North
China craton. This interpretation is supported
by the intra-arc, strike-slip fault and westward-
tapering, map-view geometry of Silurian flysch
basins in the Qilian Shan and northern Qaidam
continent (Figs. 12A and 12B; Zuza et al.,
2018; Wu et al., 2024). Continental collision
occurred at ca. 445-440 Ma (Wu et al., 2016;
Zuzaetal.,2018), and postcollisional extension
terminated by ca. 360 Ma. Silurian strata have
been classified as flysch deposits that transition
to Devonian molasse rocks. Based on similar
lithologic assemblages, the South Qilian suture
in the Qilian orogen probably connects with the
Erlangping Group in the Qinling orogen suture
in the southeast (e.g., Ratschbacher et al., 2003;
Xuetal., 2008; Tseng et al., 2009a; Dong et al.,
2011a; Wu et al., 2016) and Altyn Tagh suture
in the Altyn-Tagh Range in the southwest. This
connection forms a >1000-km-long, laterally
continuous, early Paleozoic orogenic belt. In
this context, the Paleozoic magmatic evolu-
tion of the northern Qaidam continent from
ca. 490 Ma to 360 Ma was associated with
southward subduction of South Qilian oceanic
lithosphere, collision between the Central Qil-
ian terrane and Qaidam continent, and postcol-
lisional extension (e.g., Wu et al., 2016; Zuza
etal., 2018).

The early Paleozoic magmatic arc sequence
and tectonic setting in the northern Qaidam con-
tinent support this interpreted tectonic history.
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We calculated paleocrustal thickness estimates
from exposed plutonic rocks using their trace-
element geochemistry. Specifically, the ratio
between light and heavy rare earth elements
(LREE/HREE) in these rocks can be used to
track changes in crustal thickness based on
varying stabilities of garnet and/or plagioclase
in the residual melts (e.g., Profeta et al., 2015).
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We determined paleocrustal thicknesses using
the calibration of Sundell et al. (2021) plotted
against granitoid crystallization ages for the
northern Qaidam continent and Qilian Shan.
These plots show substantial scatter, similar to
other applications of this method (e.g., Chap-
man et al., 2015; Sundell et al., 2021), but there
are clear trends of crustal thickening during the
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backarc diagrams showing the Cam-

brian-Devonian tectonomag-
matic evolution of the northern
Qaidam continent and Qil-
ian Shan, northern Tibet. (A)
Two oceanic basin subduction
model involving (a) Cambrian-
Ordovician oceanic subduc-
tion and (b) Silurian—Devonian
continental collision. (B) Slab
N rollback model involving (a)
Cambrian-Ordovician oceanic
slab subduction and rollback
and (b) Silurian—Devonian con-
tinental collision.
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Ordovician—Silurian (Fig. 13A). Crustal thicken-
ing during this time is consistent with observed
Phanerozoic unconformities that would have
resulted during uplift-related erosion. In addi-
tion, both regions display a subtle thinning trend
from the early Silurian to Devonian—early Car-
boniferous (Fig. 13A), which may reflect posto-
rogenic extension.
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Figure 13. Plots of age versus crustal thickness for the (A) the Paleozoic northern Qaidam continent and Qilian Shan and (B) Mesozoic
Eastern Kunlun orogen and northern Qaidam continent, based on the La/Yb(n) calibration of Sundell et al. (2021). Geochemical data are
listed in Table S5 (see text footnote 1). Data sources: Li et al. (2023b); Peng et al. (2016); Wu et al. (2004, 2009b, 2014, 2019¢); Gu et al.
(2018); Wang et al. (2014, 2017); Shao et al. (2018); Meng et al. (2005); Meng and Zhang (2008); Zhao et al. (2017); Gao et al. (2022); Zhu

et al. (2014).

The Carboniferous magmatic lull in the com-
bined Kunlun-Qaidam continent was accompa-
nied by passive-margin sedimentation follow-
ing continental rifting of the Songpan-Ganzi
terrane in the south (i.e., Wu et al., 2016; Tang
etal., 2023). This rifting opened the Neo-Kunlun

Permian-Triassic

Mid-Ocean
Neo-Kunlun Ocean Ridge

| _oceanic crust

<—Y\—~

Songpan-Ganzi

Oceanic lithosphere

Ocean, which has been assigned as part of the
Paleo-Tethys domain by Sengér (1984). The
development of the wide (>800 km) Permian—
Triassic magmatic arc (ca. 270-195 Ma) across
the Kunlun-Qaidam continent was induced by
flat northward subduction, followed by rapid slab

Uplifted

oceanic Accretionary
Sediments  wedge

Forearc basin

subduction erosion

Slab rollback

rollback and collision between the Qaidam con-
tinent and Songpan-Ganzi terrane (Fig. 14; e.g.,
Wau et al., 2016, 2019a, 2022a). We interpret that
the southward-younging trend of magmatic ces-
sation ages was the result of southward steepen-
ing of the subducting Neo-Kunlun oceanic slab

ca. 270-230 Ma
Kunlun-Qaidam
volcanic arc

ca. 225-200 Ma
extension-related
magmatism
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Continental crust
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Figure 14. Schematic cross section showing the Permian-Triassic tectonomagmatic setting of the northern Qaidam continent and Eastern
Kunlun Range, northern Tibet. UHP—ultrahigh pressure.
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(i.e., Wu et al., 2016). In this model, Permian—
Triassic subduction-related arc magmatism (ca.
270-230 Ma) and emplacement of extension-
related granitoids (ca. 215-214 Ma) occurred in
the northern Qaidam continent (Fig. 9) associated
with Neo-Kunlun subduction and slab rollback,
respectively (e.g., Wu et al., 2016, 2019a).

As discussed above, slab rollback probably
occurred from ca. 225 Ma in the South Qil-
ian Shan to ca. 195 Ma in the Eastern Kunlun
Range (Fig. 14), as indicated by the late Perm-
ian and Early Jurassic younging trend of mag-
matic arc rocks (Wu et al., 2016, 2019a). The ca.
262-240 Ma Dulan eclogite is located ~100 km
north of the Permian—Triassic Kunlun magmatic
arc and suture zone, which suggests that the mid-
crustal emplacement of ultrahigh-pressure rocks
far within the plate interior was controlled by
northward flat subduction and subsequent roll-
back of the Neo-Kunlun oceanic slab and upper-
plate extension (Wu et al., 2023). This inter-
preted tectonic history is supported by records of
subtle late Permian—Middle Triassic paleocrustal
thickening trends and Late Triassic rapid thin-
ning in the northern Qaidam continent and East-
ern Kunlun Range (Fig. 13B). Based on similar
lithologic assemblages and ultrahigh-pressure
metamorphic events (Fig. 14), the Neo-Kunlun
suture in the Eastern Kunlun orogen probably
connects with the Mianlue suture in the Qin-
ling orogen and Dabie orogen to the east (e.g.,
Ratschbacher et al., 2003; Lu et al., 2009; Dong
and Santosh, 2016; Wu et al., 2016, 2023), form-
ing an ~3000-km-long late Paleozoic to early
Mesozoic orogenic belt. To the south, the trian-
gular-shaped Songpan-Ganzi terrane exposes a
Triassic turbidite sequence. The stability of its
source areas throughout the Triassic suggests
the presence of a long-lived marine basin with
pre-Triassic oceanic/continental basement rocks
trapped between converging continental blocks
(e.g., Dingetal., 2013; Tang et al., 2023). North-
ern Tibet experienced postcollisional extension
and intracontinental deformation since the
Jurassic (e.g., Yin and Harrison, 2000; Wu et al.,
2019b). Jurassic extension resulted in the exhu-
mation of older strata, and regional extension
continued during the Cretaceous.

7. CONCLUSIONS

The Qaidam continent in northern Tibet expe-
rienced two major Phanerozoic magmatic and
collisional events in the early Paleozoic and late
Paleozoic—-Mesozoic. By integrating new and pre-
vious magmatic and tectonostratigraphic records
of the northern Qaidam continent together with
other records across northern Tibet, we devel-
oped a comprehensive model for the Paleozoic—
Mesozoic tectonic evolution of the Tarim—North
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China craton, including the role of the Qaidam
continent. Circa 490-360 Ma magmatism in the
northern Qaidam continent was associated with
southward subduction of South Qilian oceanic
lithosphere (ca. 490460 Ma), continental colli-
sion (ca. 460410 Ma), and postcollisional exten-
sion (ca. 410-360 Ma). The northern Qaidam
continent contains a regional angular unconfor-
mity between Devonian and older strata, and all
pre-Devonian metamorphic rocks are bounded
by a north-dipping Cenozoic thrust. Furthermore,
the present-day exposure of epidote-amphibolite—
facies and ultrahigh-pressure metamorphic rocks
in the northern Qaidam continent was controlled
by Cenozoic deformation. Early Paleozoic arc
magmatism overlaps spatially and temporally
with ultrahigh-pressure metamorphism and the
emplacement of an ophiolite complex in the
northern Qaidam continent. A Carboniferous
magmatic lull occurred coeval with the develop-
ment of a passive margin following extension.
Permian-Triassic subduction-related arc mag-
matism (ca. 270-230 Ma) and the emplacement
of granitoids during extension (ca. 215-214 Ma)
were associated with subduction and slab rollback
of Neo-Kunlun oceanic lithosphere, respectively.
In this tectonic evolution, the northern Qaidam
continent did not develop during a distinct oro-
genic cycle as previously interpreted.
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