2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) | 979-8-3503-6613-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/VL/HCC60511.2024.00029

2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

Co-Designing Web Interfaces for Code Comparison

Justin Middleton
North Carolina State University
Raleigh, North Carolina, USA
Email: jamiddl2@ncsu.edu

Abstract—Developers use the internet to find, learn about,
and reuse code. During these processes, developers explore
alternative programs whose syntactic differences may be subtle yet
behavioral differences significant, and vice versa. Unfortunately,
accurate comprehension is time-consuming and error-prone, to say
nothing of code comparison. Given these circumstances, we run
a collaborative design activity to explore how web interfaces can
support better code comparison for search and reuse. We recruited
11 developers from academia and industry to discuss potential
designs for three online contexts: searching, recommending, and
learning. For each context, we collaboratively sketched interfaces
that may support developers’ present goals without the technical
limitations of current approaches. We report the patterns of
features and arrangements that developers want from current
and future interfaces, distinguishing the statically discoverable
information from the dynamically produced.

1. INTRODUCTION

The Internet has transformed software development by
overwhelming the developer with opportunity. Software need
not be written from scratch with every new project; instead, a
developer can consult search engines, seek peer recommenda-
tions, and learn new techniques with only a few clicks from
their home page. As a result, developers become keen reusers
of code and opportunistic students of algorithms. Observational
and telemetric studies confirm that developers spend significant
time on a typical workday foraging in its reserves, seeking
fixes and reference templates over many iterations [1], [2], [3].

However, the search is not often for the answer as much
as it is an answer. Many problems have multiple solutions,
as anyone who has studied the efficiency trade-offs of sorting
algorithms can attest. To further that example, even if one were
to narrow the search to quicksorts, any two developers may
have different stylistic and formatting preferences informed by
their unique experiences. In other words, the search space for
code is rich with syntactic differences that disguise semantic
similarities, or vice versa. These patterns are apparent from
the richness of similar if not outright duplicated across the
internet [4], [S]. The landscape of potential code is nuanced
even more by the introduction of generative Al tools, capable of
remixing familiar solutions into seemingly plausible candidates
for new contexts without guarantees of correctness [6].

Reuse-driven development tests the developers’ ability in
these two ways. First, there are more options than a developer
could hope to apprehend. Second, developers must distinguish
meaningful differences from the superficial along a spectrum
of ambiguous similarities, which is cognitively difficult [7].

Neha Patil
North Carolina State University
Raleigh, North Carolina, USA
Email: np771999 @gmail.com

Kathryn T. Stolee
North Carolina State University
Raleigh, North Carolina, USA
Email: ktstolee@ncsu.edu

Thankfully, developers need not rely on their comprehension
ability alone, as the designs of development tools and web
interfaces facilitate (or frustrate) users’ goals. For example,
tools that analyze hyperlinks and user behavior may be able
to predict what link a user will click next and emphasize that
link accordingly [8]. The nature of the goals may change from
website to website, but investigating what the interfaces do
or do not yet do, we may discover interface designs that let
developers compare options more effectively for their goals—
and with better comparison, make better decisions in reuse.

To explore the design space of goal-directed interfaces
for code comparison, we performed a collaborative interface
design activity with 11 developers. We walked through their
thoughts and obstacles in two of three scenarios—Iearning,
recommending, and searching—to sketch potential designs
from a hypothetical ideal or technologically-unlimited interface.
This co-design methodology results in 22 sketches of interfaces
that embody what developers prefer when dealing with multiple
similar code alternatives. From our collaborative sketches,
we derive the themes of the features of the website and the
arrangements with which they contextualize each other. Patterns
emerge from these themes, such as their relative priorities in
determining quality code or limits on how many alternatives
developers prefer to have visible at any time. Specifically, we
make the following contributions:

« Categorization of website interface elements by what
code-relevant information they contain and how they help
developers compare code alternatives (Table III).

« Eleven barriers for participants when performing compar-
ative comprehension on the web (Table IV).

« Recommendations and illustrations for future comparison
tools to help developers’ search workflows (Section V-C).

To contextualize these results, we also provide background on
other efforts within the code comprehension and comparison
space. Lastly, we comment on the limitations of our approach,
as well as the future work, such as the continued iterative
prototyping of the ideas generated alongside developers.

II. ReLaTED WORK

Understanding the impact of the web interface on comparison
needs background in three areas: program comprehension, web-
powered software development, and code compararison tools.

979-8-3503-6613-6/24/$31.00 ©2024 IEEE 187

DOI 10.1109/VL/HCC60511.2024.00029

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2025 at 18:39:53 UTC from IEEE Xplore. Restrictions apply.

A. Program & Comparative Comprehension

Program comprehension is the cognitive process where
developers learn the structure and behavior of software. Storey
surveys the significant theories of program comprehension, such
as bottom-up comprehension, which begins with the bare text,
and top-down comprehension, which begins with developers’
prior knowledge [9]. As von Mayrhauser and Vans synthesize it,
the reality of comprehension lies between these two poles [10],
so developers use multiple behaviors to support cognition. Ko
and colleague’s model, for example, has a three-phase process
of searching for information, relating new information to old,
and collecting resources to maintain mental models [11].

When writing code, developers often reuse approaches they
encountered previously. Détienne explores reuse in terms of
the schema, or cognitive construct of an algorithm, and the
analog, or the existing program which ostensibly relates to
the same problem [12]. Likewise, Ragavan and colleagues
demonstrate that developers can use the similarity of code
variants to navigate codebases during reuse activities [13],
[8]. Middleton and colleagues formalize this cognition as
comparative comprehension [7]. Their work sheds light on
code comparison tasks and highlights the importance of
understanding the underlying factors that influence developers’
accuracy in comparing code alternatives. Our research here
applies comparative comprehension to specific web contexts.

B. Software Development Through the Internet

While the integrated development environment (IDE) is
often at the center of programming, the development process
altogether extends beyond it, as Xia and colleagues observe [3].
Sadowski and colleagues characterize developers’ use of
search engines for code retrieval [2]: on an average weekday,
developers performed 5.3 brief but iterative search sessions,
often for finding examples or sample code. These patterns were
later corroborated by Bai and colleagues [14]. Furthermore,
Kuttal and colleagues explore programmers’ navigation of
online repositories, tracing their use of information signals
via interface features for searching among alternatives [15].
Our focus resembles theirs, albeit with a method that replaces
observations of existing interfaces with co-design of speculative
ones, and a heightened focus on explicit comparison.

Developers also frequently turn to Q&A platforms like Stack
Overflow, where they can solicit recommendations and reuse
code snippets in the responses [16]. In Wu and colleagues’
study [17], a significant portion of the sourced code (78.2%)
requires modification to suit developers’ project requirements,
ranging from minor adjustments to complete rewrites. This
echoes Holmes and Walkers’ findings on pragmatic reuse
plans [18]. Nevertheless, in Wu’s study, barriers to code
reuse on Stack Overflow include the need for extensive
code modification, incomprehensible or low-quality code, and
challenges in integrating the sourced code into developers’
projects. While the aforementioned study explores developers’
experiences with the content of interfaces, our focus expands to
the layout of features that could enhance developers’ efficiency.

C. Interfaces for Code Comparison

Code comparison has explicit application in activities like
code review, so some tools exist to support it. At the base
level are text-diffing tools [19]; more sophisticated are tree-
differencing algorithms, such as in Falleri and colleagues’
work [20]. However, given that code review has many dif-
ficulties beyond finding changed code [21], [22], numerous
additional tools can clarify the relationships between similar ver-
sions of code. For example, Huang and colleagues’ CLDIFr tool
labels and links edited code segments between versions to assist
change comprehension [23], and Collector-Sahab augments the
code comparison interface with dynamic information from
runtime [24]. Other tools reduce the code to consider: Ge and
colleagues’ tool can detect and filter refactoring changes out of
the review interface [25], whereas Tao and Kim’s algorithm can
slice a change into smaller, semantically coherent parts [26].

Comparing programs can also serve a educational purpose.
Patitsas and colleagues’ demonstrate gains in procedural
knowledge when students view algorithms side-by-side rather
than separately [27], although Price and colleagues’ experiment
suggests it also takes more time investment [28]. Outside the
classroom, Glassman and colleagues’ template-based Exam-
PLORE, for example, finds uses of APIs and fits them into a
common template, allowing users to see multiple examples of
use in the same terms [29]. Other tools elucidate large samples
of similar examples as trees, such as Cottrell and colleagues’
Gumo [30] or Middleton and Murphy-Hill’s PErquimans [31].
Meanwhile, Martie and colleagues’ experiments with iterative,
similarity-aware code search allows developers to discover
reusable code through the gradual refinement of its features [32].
The effort of this research is to understand, refine, and motivate
comparison tools like these.

III. Stupy

We focus on comparative code interfaces: webpages on
which developers manage alternative programs. While the
objects that are rendered visibly on a webpage (we call features)
may be the most obvious content of a website, we are also
interested in how those features are placed in relation to each
other (arrangements), as in proximity or sequence. Content is
not presented in a vacuum but enriched by its embodiment [33].

Our guiding research questions are as follows:

RQ1 How can interface features help developers navigate
and compare similar snippets?

RQ2 How can interface arrangements help developers
navigate and compare similar snippets?

A. Selected Contexts

We use the word context as shorthand for the interface
and its corresponding expectations. Inspired by prior work on
code comparison [7], we identified three contexts for which
the existence of multiple similar code snippets is an essential
feature of that context’s purpose:

« Search engines, both code-centric like GitHub Search [34]

and general like Google [35], where developers can sift
through multiple webpages for a solution.

188

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2025 at 18:39:53 UTC from IEEE Xplore. Restrictions apply.

o Question & answer platforms, such as Stack Over-
flow [36], where developers can recommend code as an
answer to another developer’s problem.

« Programming practice websites, such as Leetcode [37]
or CodeWars [38], where developers can compare how
they solved a problem to other developers’ programs.

B. Method: Initiation of Participatory Design

To generate new designs, we adopt techniques from a
methodology called Participatory Design (PD). As Spinuzzi
explains [39], PD emphasizes the facit knowledge that practi-
tioners apply without explicit articulation. Rather than design
tools from theory and impose them upon its intended users,
researchers observe work processes to prototype and iteratively
refine tools with explicit collaboration from the users.

Therefore, PD is useful to software engineering and human-
computer interaction researchers, whether as an end-to-end
process or as a initial exploration [40], [41], [42]. For example,
Johnson and colleagues use elements of a PD approach to learn
how developers prefer static analysis tools [43], and Gorski
and colleagues apply it within focus groups to sketch better
warnings for cryptographic APIs [44]. These studies show how
user-generated designs can bear dense insight in not only what
something does but how it materially accomplishes it.

C. Recruitment

To recruit participants, we combined targeted recruitment—at
large companies like Meta, Alphabet, and Microsoft, along with
smaller firms too—and social media—professional associates
on LinkedIn. Our recruitment message promised $50 in com-
pensation for an hour of interaction. Potential participants filled
in a Google Form with consent information and privacy rights,
followed by three sections of information collection: years of
experience, demography, and frequency with which they use
our selected contexts. We used participants’ responses to the
last set to assign task contexts in our study that corresponds to
their actual experience; for example, if a participant responded
that they never use programming practice websites, we would
not design in that context. Through these methods, we recruited
the 11 developers in Table I.

D. Session Protocol

Our co-design activity for Zoom, teleconferencing software
which transcribes, and Miro [45], a tool for design collaboration,
consists of four phases distributed over an hour:

1) Introduce the activity and interface: We reiterate the
general intent and content of our research, and the participant
recreates a set of geometric shapes and textual notes using
only the tools on Miro. We set no time limit for this activity,
but in practice, no participant took longer than 10 minutes.

2-3) Discuss issues of current interfaces and design an
ideal interface (two times): Each design task centers around
a separate canvas ornamented with a textual description of
the context, a note with reminders for the design task, and
between six to ten moveable code snippets from a real but
arbitrary example of that context, as shown in Figure 1. Before

they designed anything, we asked participants about their
experiences using existing interfaces, focusing on their goals
and the barriers that get in the way. We captured themes of
our discussion on sticky notes in the interface. After at least
five minutes in discussion, we used the notes and code samples
to start sketching the speculative interfaces (in contrast to
recreating current interfaces). We encouraged them to think
aloud and we asked follow-up questions to elaborate their
statements. For moments when the design process slowed, we
prepared topical questions to encourage reflection: the priority
and orientation of alternatives, as well as supplements to or
transformation of alternatives. We assigned two contexts to
each participant (Table I) and spent about 30 minutes on the
first task to account for the time of task understanding, versus
20 minutes on the second.

4) Generalize: After the tasks, we asked the participants to
reflect on design principles common to their designs.

E. Analysis

Our raw data include 1) the interview transcripts, and 2) the
visual designs. The first author cleaned each Zoom-generated
transcript, divided it into each phase, separated long dialogues
into distinct statements, and used an open coding scheme to
create an initial set of codes [46] from explicit design choices—
if the participant designed a visible search bar on the page, we
considered “Search Bar”-related code. A statement could have
any number of codes, including none, and we adjusted the
coding approach by the context: asking about search interfaces
presumes some search functionality whereas programming
practice websites or Q&A platform contexts may not.

With transcripts and initial codes, the first two authors
independently iterated over the transcripts again to refine the
code-book and negotiate appropriate labels. After coding the
first three sessions and negotiating and resolving disagreements,
we transitioned to a randomized order of coding: all statements
from the other eight sessions were aggregated and randomly
collected into 15 sets, with small amounts of context on either
side of a participant statement. We coded eight of these 15
sets in the same way as before: independent assignment before
negotiated agreement and codebook refinement. For the final
seven, we froze the codebook and relegated unrepresented
concepts to a general “Other” category. Lastly, we organized
our first-order codes into categories of the users’ overall process.
Cohen’s Kappa throughout this process ranged between 0.38
and 0.63, averaging at moderate agreement [47]. We reflect on
why reaching consistent agreement was difficult in Section VII.

IV. FINDINGS

This section presents our emergent qualitative codes along-
side evidence drawn from participant quotes. The higher-level
categories that emerged, which we define more thoroughly
in the next section include Innate Code Traits, Contextual
Code Traits, Interactions, and Coordinations. We also had
Qualitative Modifiers, a meta-code which refers to how we
interpret the codes otherwise. Significant modifiers included
whether a description was merely a description of current

189

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2025 at 18:39:53 UTC from IEEE Xplore. Restrictions apply.

For this context, think about
the following:

Context: Question & answer (Q&A) forums to explain problems and see how other developers recommend code solutions.
Code snippets: Algorithms to check if a string consists of only unique characters.

- Goals

- Essential features you
expect for any interface in
antext.

- New features that you
don't have but think you
would help you.

Fig. 1. A cropped segment of the Miro interface in which the interfaces were sketched.

TABLE II
Top 15 CO-OCCURRING CODES. ‘#P’: # UNIQUE PARTICIPANTS, ‘#I’: # UNIQUE INTERFACES,
‘ALTS.”: ALTERNATIVES

TABLE 1
PARTICIPANTS IN THE DESIGN STUDY

. PR Code Pair #PH
P 6“‘\%‘0@%@@%‘%& PO\ : :
&Q\Q o o&.Q & © RO %‘6‘\ o Ranking of Alts. Active Crowd Eval. 10 14
hds T RS A Ranking of Alts. Program Efficiency 6 7
Position Years Exp. Languages Assignments Ranking of Alts. Readability 5 7
) - Ranking of Alts. Show Me Only #N Alts. 5 6
b2 Ot Sl & 11 myme |, Y RankingofAls. Filier/SeachforAls. 46
P03 Grad Student 6 2 Py.. Java VY Filter /'Search for Alts. Language 66
P04 Grad. Student 11 5 4 Py.’ Java v v F¥lter / Search for Alts. R.eleva}nt Motivating ConFext 6 6
P05 Grad. Student 9 2 Py.’]s. Y v F}lter / Search for Alts. Libraries and Dependencies 4 6
P06 Software Eng. 12 7 Py, Java oy Filter/Search for Alts. Tags & Keywords 4 5
P07 Software Eng. 5 1 Py.: Java Y v Program Efﬁciency Readabil.ity 5 7
P08 Data Eng. 25 23 15 IS, C# v v Program Eﬂiqency Automatic Comparator 4 5
P09 Software Eng. 11 7 Py., Java v v Program Efﬁqency Language . 4 4
P10 Data Scientist 10 S Py. AR, _ Program Efficiency Code Documentation 4 4
Pll Software Eng.) 1 s, Y V. Show Me Only #N Alts. Vertically-Oriented Alts. 5 6
Embedded IDE Libraries and Dependencies 5 6

processes, an identification of a barrier, or the negation of a
feature in that a participant does not want it. Table III lists all
codes that did not appear with modifiers, Table IV lists the
top 10 codes that co-occurred with our IDENTIFYING A BARRIER
code, and Table II lists top co-occurring codes otherwise.
We present each quote with a reference such as POl
indicating the participant who said it (PO1) and the type of
interface they were designing during the quote (S: Searching,
R: Recommending, L: Learning, and G: General Reflections).
In the text, qualitative codes will be in small caps and will be
accompanied in section headings by the number of participants
who discussed it in one of their contexts (e.g. LaANGuaGE (10r.)).

A. RQI: Features for Comparative Interfaces

Under “features,” we include information implied in a
single alternative (innate code features) and information that
emerges by virtue of its presence on a multimedia website
(contextual). For example, any given algorithm would have the
same computational complexity regardless of which website
hosts it, but the types of documentation provided for that
algorithm could change with each upload.

1) Innate Code Traits:

LaNcuaGe (10r.): Developers often want code only in
their language of active work or practice. PO4;, clarifies that
language is essential for comparing in common terms: “any
comparison between language does not make sense because
every language has a completely different system.” As such,
the codes LLaANGUAGE and FiLTER / SEARCH are one of those most
common code pairs in Table II However, when the goal is

learning a new language, PO8z permits for comparison across
languages: “I got to start learning Python serious for data
ingestion. I've done C# for a long time, and so I'm coming
from there, I would like to compare them and see.” In their
case, controlling for language allows them to position familiar
languages with the unfamiliar.

ReapaBILITY (10P.): Readability not only allows developers
to evaluate individual alternatives, but it also acts as a heuristic
for credibility among alternatives. P11y states, “I almost do
not trust their code as much because they’re not practicing
clean writing techniques.” As such, poor readability emerges
as the most common barrier in Table IV. Nevertheless, for
many, readability outweighs high-performing but obscure
coding tricks. In a recommendation context, P06z indicates
that “cleverness” might be performant but can “introduce
unnecessary complexity that makes it hard for the team to
intake.” As P03¢ reflects overall, “if I'm comparing two code
snippets, it’s how readable it is, so comments, indentation; and
how efficient it is is secondary.”

Procram ErriciENcy (9r.): Performance analyses, when
explicitly included as either static features or dynamic genera-
tion, help developers comprehend another dimension of code
both before and after they understand the syntax. POlz frames
this as a reaction to the readability barrier: “code is not always
very clear and concise to read, so if I can get these kinds of
statistics, that will also help tremendously.” If present, as often
is the case for learning contexts, these analyses could fit into
their workflow of evaluating each answer—"“You can do your
own internal evaluation of the logic, and then your eyes can

190

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2025 at 18:39:53 UTC from IEEE Xplore. Restrictions apply.

TABLE III
QUALITATIVE CODES. ‘#P’: NUMBER OF UNIQUE PARTICIPANTS (OUT OF 11), ‘#I’: THE NUMBER OF UNIQUE INTERFACES (OUT OF 22). ‘S|R|L’: NUMBER OF UNIQUE SEARCHING,
RECOMMENDING, AND LEARNING CONTEXTS IN WHICH THIS CODE WAS DISCUSSED RESPECTIVELY. CODES THAT OCCURRED < FOUR TIMES IN BOTH #P AND #I ARE OMITTED.

Code Definition #P # S R L
Language In what programming language the alternative is written. 10 14 5 4 5
o Readability How the code is structured for ease of human reading 10 13 3 6 4
‘é Program Efficiency An algorithm’s runtime or space complexity given the problem. 9 13 2 5 6
S Libraries and Dependencies How many imported libraries or features an alternative requires. § 12 5 5 2
Program Structure The syntactic components of an algorithm. 6 6 0 2 4
Code Length How long in lines or characters an alternative is. 5 5 1 0 4
Relevant Motivating Context The natural language question to which all alternatives relate. 1 19 6 7 6
Code Documentation Natural language explanations of design or behavior. 1 18 5 7 6
Active Crowd Evaluation Quantitative userbase feedback (e.g. voting) 11 16 4 7 5
S Crowd Discussion Natural language userbase conversations about an alternative § 11 2 6 3
% Tags & Keywords Short, explicitly visible labels that describe an element of the alternative. 7 8 2 5§ 1
g Signals of Source Credibility Indications of the author’s or platform’s expertise in the topic. 7 7 2 4 1
O Related Topics & Suggestions Links to other pages on the platform that are related to the current one. 6 8§ 4 3 1
Verified Solutions Indications that an alternative has been manually, credibly confirmed. 6 7 1 3 3
Views & Frequency Indications of other users passively interacting with an alternative. 5 5 3 0 2
Recency of Alternative When the alternative was written or valid. 3 4 2 1 1
Ranking of Alternatives Prioritization of alternatives based on selected traits. 1 20 6 7 17
Automatic Code Formatter Consistent, superficial modification of an alternative’s syntax. 10 13 3 7 3
§ Filter / Search for Alternatives Removal or inclusion of alternatives based on selected traits. 9 13 6 5 2
§ Embedded IDE In-place editability and executability of alternatives by the user. 9 12 2 6 4
8 Automatic Comparator In-place analysis of similarities and differences between alternatives. 9 9 1 4 4
= Error Detection Automatic detection of issues with syntax or tested behavior. 7 10 1 4 5
Easy Extraction of Alternatives Assistance in copying-and-pasting an alternative and dependencies. 7 8 3 4 1
Automatic Refactoring Altering the tokens of code according to predefined rules. 5 5 0 3 2
Vertically-Oriented Alternatives Alternatives are placed top to bottom (must be explicitly mentioned) 1 15 3|8 4
- Horizontally-Oriented Alternatives Alternatives are placed side to side (must be explicitly mentioned) 11 14 3 5 6
.£ Show Me Only #N Alternatives Limits on how many alternatives should be visible at once. 10 13 4 4 5
g Hyperlinks / Click to Alternatives Alternatives are located on separate pages linked to from this page. 10 13 4 3 6
g Consider Diversity of Alternatives ~ Consideration of the (dis)similarity of alternatives in positioning. 8 8 1 2 5
G Dynamic Refocusing Reconfigurability of which alternatives are visible on the page. 6 9 3 2 4
Information on Hover Features that are visible only when another feature is in focus. 6 7 3 2 2
Partially Revealed Alternatives Partial visibility of alternatives until specifically selected. 4 32 0 1
TABLE IV
Top 11 CODES CO-OCCURRING WITH THE BARRIER CODE. ‘#P’: # UNIQUE PARTICIPANTS, ‘#I’: # UNIQUE INTERFACES, ‘ALTS.”: ALTERNATIVES
Barrier #P #1 Example
Readability 7 8 PO2g: “The top solutions are sometimes too complex and they don’t have any comments within them.”
Filter / Search for Alts. 6 7 PO6g: “One of the big obstacles, being able to phrase my question in a way that makes or in a way that
actually surfaces useful answers.”
Libraries and Dependencies 4 5 Pllg: “They have the same issue, but it’s not going to solve my issue because they’re not using
[dependencies] X, Y, and Z, they’re only using X and Y.”
Program Efficiency 4 5 PO5.: “That histogram [of performance], which is in my experience horribly inaccurate.”

Relevant Motivating Context 4 P02g: “The biggest problem with those would be, this is taking input in a different way than I want and

disseminating output in a different way.”
Crowd Discussion 4 4
Embedded IDE 4 4

PO8g: “People who answer questions just to try to look smart...Sometimes just being pompous”

P7g: “If you implement something like this, it would be a really slow experience. Say you have hundreds
of people, you cannot essentially have an entire embedded editor for each and every answer.”

Show Me Only #N Alts.
Easy Extraction of Alts. 3 3
Code Documentation 3 3

P11.: “If you have too many winners, I feel like that would be somewhat overwhelming.”
PO7g: “Most of the times it is unable to pick up the code indentation, to preserve it.”

PO07g: “They should have some comments or description about that particular snippet just to make
understanding [easier].”

Hyperlinks / Click to Alts. 3 3 PO07g: “Anything that’s more than three clicks is a bad experience.”

191

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2025 at 18:39:53 UTC from IEEE Xplore. Restrictions apply.

My code

Autocompletion

eredDicti [{
(

for key, value in conversions. iteritems{):
while num == value:
out_+=

Analysis/
Identification of
bottlenecks

Find similar
code

num -= value
return out

Fig. 2. P04 designs a learning interface that can identify potential problem
areas and links to how other developers solved those same problems.

gradually move over into the grading of it” (PO9g).

In a speculative design mode, P04, takes the concept further;
rather than profiling the algorithm as one block, a tool that
breaks the program down and understands performance at a
smaller granularity could help them optimize. Figure 2 shows
their sketch of a learning interface that combines efficiency and
structural analyses to highlight the most problematic areas:

So I could click at this highlighted section, and it can
actually just scroll to a place where it would show
this [other algorithm] is doing it better, this is doing
the same thing I tried to do, because there could be a
completely different approach.

However, performance analyses are only practical in certain
circumstances. P05, raises concerns about fixating on small
optimizations—"“If I go about trying to get the top 10%
fastest solutions, that is going to take me, I don’t know,
three, four hours; I wonder if that effort is worth it’—to
say nothing of the analyses’ accuracy (“in my experience,
horribly inaccurate”) In search or recommendation contexts,
these features are not common because “the onus is too great”
for individual participants to provide themselves (P09%) and
developer’s different working environments pose challenges to
any centralized measure of efficiency on the web (P03y).

Other Innate Code Traits: PROGRAM STRUCTURE (6P.)
focuses on text of algorithms apart from their behavioral
efficiency, such as number of variables or data structures. P11,
discusses a speculative application of searching algorithms by
their use of code features—*“if you could search for things this
code was solved without; a for-loop [for example], how did they
do that?” Likewise, CODE LENGTH (5p.) is related to READABILITY
but refers only to textual size. Smaller algorithms are preferred
until they become inscrutable with unusual shortcuts.

2) Contextual Code Traits:

RELEVANT MoOTIVATING CONTEXT (117.) & RELATED ToPics &
SucGEsTIONS (6P.): CONTEXT is not just a program specification
but the greater story of why you care. On search engines,
the relevant context may be the query; on recommendation
websites, the instigating question; and on learning platforms,
the programmatic challenge. The barriers that emerge around

this code relate to whether your context matches the resource’s—
“sometimes the questions are too specific on these questions
platform to the stack overflow. and I'd like some curation
that generalizes problems” (PO5g). Furthermore, the interface
can expedite the search for the right context by linking to
similar contexts nearby: “maybe that particular question doesn’t
answer my query completely; possibly related questions or tags
to related questions [would help]” (PO3g). ReLateED Topics &
SucGaesTIONs, including links to similar pages and suggestions
within search engines, allows for agility between contexts.

DocumenTation (11r.) & Crowp Discussion (8r.): Unlike a
ContexT which applies to all alternatives on a page, DocUMENTA-
TION explains for one specific alternative. Having documentation
on appropriate use cases can filter out irrelevant code apart
than manual code investigation:

(P0O6g) A lot of those solutions may be more useful for
particular inputs or outputs...In that case, comparing
individual, like, one sort algorithm against another
may not be quite as useful as being able to find the
one that matches your use case the best.

In other words, comprehension through good documentation
can be a strategy to narrow the field of reasonable comparison.

A related code was Crowp Discussion, where other develop-
ers can leave comments for the author. These are valuable for
flagging possible issues with an algorithm and so are valuable
for refining alternatives indefinitely. However, four developers
raise issues they’ve encountered with those environments, such
as the unhelpful attitudes of participants.

Active Crowp EvaLuaTioN (11r.), ViEws & FREQUENCY
(5r.), & VERIFIED SOLUTIONS (6P.): Developers trust the crowd
on matters of usefulness, so feedback is a quality gate
before comprehension effort. Quality signals, however, are
not comprehension itself, as P09 says: “[comprehension] is
left up to, more or less, my experience as a developer and
how well the person explained the rationale.” Still, as POlg
says, voting lets them jump to reasonable conclusions: “if the
interface does not have any votes or nothing, then I don’t know
if this answer is actually right or wrong.”

These signals are often not available via search engines
directly—as Pl1g says, “not everyone is searching my exact
search”—although a metric of general popularity of the
resource may be considered in ranking. ViEws & FREQUENCY
represents interactions passively, putting the onus on the
platform over users to measure popularity.

While the crowd has its use, developers value authoritative
recognition in the form of VErIFiED SorLuTions. For example,
PO5g looks for the Stack Overflow’s green checkmark, indi-
cating the author’s preferred answer. When time is short, this
recognition precludes any comparison at all, as PO6g finds that
“a lot of times, I'm probably not comparing so much as just
choosing or spending most of my time focused on what someone
else has chosen as the correct answer to the question.”

Other Contextual Code Traits: Tags & KEyworps (7p.)
summarize themes into categories you can manipulate. SIGNALS

192

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2025 at 18:39:53 UTC from IEEE Xplore. Restrictions apply.

ofF Sourci CrebpiBiLITY (7p.) include individual authors or
websites that developers trust to give quality answers, compared
to unknown or disreputable sources. RECENCY OF ALTERNATIVE
(3r.) deals with when a program was valid. This code reflects
the propensity of languages and libraries to evolve over time.

B. RQ2: Arrangements for Comparative Interfaces

In this section, we focus on the dynamism and physical
space of an interface, focusing on code-centric features that
change the environment (interactions) or describe algorithms
using visible relationships (coordinations).

1) Interactions:

FILTER / SEARCH FOR (9P.) & RANK ALTERNATIVES (11r.): Full
comprehension takes time, too much so to evaluate each snippet
individually. The search bar and filter narrow the field from
global to specific, whereas the ranking algorithm prioritizes
among a given set. All three are among the core tools available
across interfaces that relocate the onus of manual iterations
from developer to platform, and many of the code traits in
the previous section are candidates for input. The barriers that
emerge are akin to those we discussed for MOTIVATING CONTEXT
but more in articulating needs instead of strictly matching
them (PO6g: “Being able to phrase my question in a way that
actually surfaces useful answers”).

EmBEDDED IDE (92.) & EASY EXTRACTION OF ALTERNATIVES
(7r.): Comprehension comes not only from reading code but
also experimentation and tinkering. For PO8g, the miniature
IDE is “the biggest leap forward” for working with code online
in the past few years, and adds that it would be useful to select
specific versions of languages and libraries. In the absence of
an in-place IDE, quick transitions from context to IDE can
also be accomplished through facilitated copying-and-pasting,
or what we call the Easy EXTRACTION OF ALTERNATIVES. P03z
describes “a button with the code snippets which you have
which allows you to copy the code directly” from its original
context into your IDE. Beyond ease in transplanting (proper
attributions notwithstanding), this code also includes making
snippets self-sufficient through the explicit inclusion of the
proper libraries, data structures, or formatting.

Avutomatic CopkE FORMATTER (10r.) & AutomATIC REFACTOR-
ING (5r.): Just as innate readability is an important code trait,
developers say they would benefit from automatic readability
improvements. This can be as simple as displaying code
uniquely on the page so that it stands out among other features—
“at least some styling which will differentiate the comments
the loops and the functions” (PO2g). On the other, it may be
transforming the spacing—‘“some sort of feature that would
automatically indent these, and line it up the right way with
the spacing” (P11g). For comparison, normalizing the format
of alternatives may eliminate non-functional differences and
clarify the differing structure— “It’d be useful to be able to
remove those dissimilarities [tabs versus spaces, quotes, double-
quotes] and focus on, specifically the the solution” (PO6g)

Beyond format, developers may benefit when formatting
separates discrete tasks within the algorithm. At this point, the
line between a ForRMATTER and a REFACTORING tool becomes

fuzzy, and participants describe more in-depth re-writing of
code. POl speculates on assistance to novices especially:

We can add a button which simplifies code and if you
click that button, the code is broken down into single
statements: one line, one statement. For example...in
Python, we have a list comprehension; sometimes, it’s
difficult to understand for beginners.

AutoMATIC COMPARATOR (9P.): A COMPARATOR is any tool
that supports the intentional juxtaposition of programs and its
traits. We find two ways that a comparative can operate: as
the analytical engine that ingests alternatives and produces
new information, or the scaffold which takes what is known
and expedites its discovery by perceptually emphasizing its
contrast. For example, ranking algorithms are an application of
comparison over indefinitely large sets by ordinally measuring
algorithms on some trait (the analysis) and arranging in order
(the scaffold). However, ranking is less clear for measurements
that are not straightforwardly orderable, or more complex
combinations of metrics (P02g: “number of variables, this code
runs in this time, this code takes this much space compared to
your code,...maybe number of lines in the code”).

Nevertheless, innate and contextual traits can be dimensions
for the comparATOR, and they could scaffold this information:

(PO9g) If there was some way to grade snippets you
know, using the same objective rubric or standard or
something, then that would be really interesting and
could provide meaningful ways to differentiate which
one of these may suit your needs better if they both
solve the problem.

However, P10g brings up a complex constraint: meaningful
differentiation “requires things to be structured or similar way.’
They leave it unresolved whether structural consistency should
be the user’s or context’s responsibility. This concept in partic-
ular spurred many statements about technological challenge:
“neat but would be challenging,” in P06g’s estimation.

2) Coordinations:

HorizoNTALLY- (11P.) and VERTICALLY-ORIENTED ALTERNA-
TIVES (117.): Verticality is assessed as the more comfortable
arrangement for rapidly scrolling through multiple alternatives.
With most screens extending up and down, it easy to embrace
“the infinite scroll, you can just scroll with your fingers” (P05¢).
PO1g says it reduces clicks when navigating large fields,
“because if we have something go right or go left, you click
on a button to move to the next code, that’s too many clicks.”
More simply, P10g says this is what most people are used to
(“Google’s probably just trained me very well”).

However, horizontality may be an acceptable alternative
when the goal is intentional comparison between smaller
selections. Participants use other metaphors to describe its value:
P09 says their interface could “condense it horizontally, like
a book would”, and P11, clarifies for theirs, “it reminds me of
a coding screen when I do my work: I have one screen looking

bl

193

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2025 at 18:39:53 UTC from IEEE Xplore. Restrictions apply.

Question |

Additional context or details

Runtime

Code-first
experience

Horizontal
listing

Fig. 3. P10’s recommendation interface explores horizontal orientations for
the top results and vertical for the rest.

at my code and then I have another screen looking at the
issue.” However, P04, says the value of horizontal alignment
is also a function of structural similarity: “When someone has
written something very similar and just the structure is a little
different then it’s just easier for me to compare side by side.”

Because of their different perceived benefits, there may be
value in supporting both vertical and horizontal capabilities.
In recommendation contexts, P10z mixes them, as shown in
Figure 3. On the other hand, some participants think that
focusing on specific orientation may be missing the point. As
P06y says, “I don’t think there’s much of a difference, side by
side versus up and down, and I think just having them close
together likely will make them easier to compare now.” Instead,
the emphasis may be on pure proximity (P02g: “it’s really
good to see both codes in the same screen.”)

Saow ME ONLY #N ALTERNATIVES (10p.), DyNamic REFo-
CUSING (6P.), & CONSIDER DIVERSITY OF ALTERNATIVES (8P.):
Participants want good curation, not infinite choices. A repeti-
tive theme is to prefer a few, often two or three of the highest
ranked (P11;: “shortest, the one with the most votes, the easiest
to read”). Search results can grow longer, but developers may
look at only “the first half dozen results, and then I'm probably
more likely to try and tune my search query” (P06g).

Especially within the learning context, there is the concern
for the variety of ways a problem can be solved. CONSIDER
DrversITY OF ALTERNATIVES refers to the benefits in conceptual
awareness that may come when alternatives take different
approaches rather minor variations of the same structural
approach (e.g. names and syntactic sugar). P09, explains:

You could have some kind of grading system and just
maybe keep the top three unique solutions, because
otherwise you know you could just look at the first
place solution, copy it and paste it and now you’re the
second place winner.

Furthermore, automatic ranking may not always match
developer preference. DyNamic RErocusING is the ability to
manually rearrange the alternatives so that the interface
emphasizes your choice instead of theirs. Some participants

Option B

Descriptions
from the authors

Encouraging
interactable
examples

Fig. 4. In P06’s recommendation interface, a number of hyperlinks with brief
descriptions provide quick access to a variety of solutions based on their query.

effectively accomplish this through tabbed web browsers or
IDEs, but PO4s speculates about integrated tools that allow
you to “drag and drop [two examples] to the side” as though
you’re “activating solutions.” PO6g uses shopping metaphors
and builds on the concept of AUTOMATIC COMPARATORS:

Maybe there’s a way also to have multiple snippets
here, for the user to hide one or bring two of them
closer together. A lot of sites allow you to like choose
two or three different products and then compare them
side by side and see a list of features.

HyPERLINKS / CLICK TO ALTERNATIVES (10P.), INFORMATION
oN Hover (6r.), & PARTIALLY REVEALED ALTERNATIVES (4P.):
Developers demonstrated a variety of options to reduce the
actual visible code while maintaining access to them. Descrip-
tive HYPERLINKS are a space-conscious way to indicate more
candidates elsewhere at the cost of context switching. PO6g’s
interface in Figure 4 organizes relevant content through buttons
that activate dynamic content, allowing them to reduce the
number of snippets on screen at once too.

However, there is a cost to hyperlinks if you need to back-
track through numerous webpages. As P07 says, “anything
that’s more than three clicks is a bad experience”. As such,
participants propose two implementations that compromise for
space and effort. The first is INFORMATION ON HOVERING, wWhere
a tooltip appears temporarily when the cursor is over specific
features, presenting relevant information only when requested.
For P09;, this preserves momentum while learning many new
concepts “because otherwise you're just going to have to go
Google stuff and that’ll take you away to a different web page
entirely.” The second approach is to provide truncated snippets
of a larger algorithm, or PARTIALLY REVEALED ALTERNATIVES. This
happens in some search engines, both code-specific (i.e. GitHub
code search) and general (i.e. DuckDuckGo). This design may

194

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2025 at 18:39:53 UTC from IEEE Xplore. Restrictions apply.

enable a quick end to the search process if the window contains
all the code features necessary for the developers’ goal. As
P06y describes it, “I don’t even navigate to the page, I can copy
it directly off of the search result view in the description.” P1lg
describes an approach that combines ranking with the size of
the revealed portion: “Usually my top ones are the best options,
so I'd rather have bigger code snippets underneath them then
smaller ones with more description then more options with
less description.”

V. Discussion

The findings describe features that developers believe will
help them with comprehension and comparison. In this section,
we relate their designs to the broader research field.

A. A Fourfold Model of Contextual Comparison

Whereas we organized our codes by how information is
embodied on the page, an alternative organization is by how a
feature or arrangement supports comparison. From this frame,
we envision four behaviors within web-powered comparison:

 Global Evaluation: The developer navigates between all
possible contexts with single or multiple alternatives via
SEARCH, LINKS, RELATED TOPICS, and similar features.

 Local Evaluation: The developer navigates among alter-
natives in a single context with the help of FILTERS and
skimmable assessments of individual alternatives.

o Individual Comprehension: The developer deepens their
understanding of a single alternative with the help of
DOCUMENTATION, DISCUSSION, and interactive tools.

o Comparative Comprehension: The developer assesses
multiple alternatives using the same terms or questions,
consulting the RANKING or any cOMPARATOR-like tools.

The variety of algorithmic signals resonates with Information
Foraging Theory (IFT), a framework proposed by Pirolli &
Card as an adaptation of behavioral ecology for information
workers [48]. In this theory, the worker is a predator whose
prey is some information feature. The predator traverses patches
of features via links, and each link may be designed with cues,
or features that suggest the linked content. This theory has been
applied to software development tasks by Fleming, Scaffidi,
Piorkowski and others [49], and expanded to include similarity
in Ragathan [13], [8] and Kuttal [15]. Our work resonates with
their efforts: if the context’s webpage is a patch, then innate
code traits characterize the prey, contextual code traits influence
the scent, interactions enrich the patch, and the arrangements
make traversal within a patch more effective.

B. To Complement or Complicate Comparative Comprehension

Previous work on code comparison in laboratory settings [7]
focuses on what we call “innate code traits”—the language, the
(un)readable text, the structural composition of algorithms—or
lightweight comparators in the case of review [22]. Both deal
with tool studies but in different contexts: there, within the
IDE and review interfaces; here, within the online sources
of algorithms that may later lead into the IDE. Nevertheless,
the barriers to comprehension and comparison in all of these

works have consonances across contexts as well as distinctions.
Although this research does not quantify the inaccuracy of
comparison as the other studies do, it does elaborate on the
barriers to efficient work as well. These barriers include inherent
difficulty of comprehending code as well as making connections
between the gulf of large syntactic differences, yet also touch
on issues “above” the code: abrasive social interactions, or
insufficient or excessive information on a single page. In other
words, these research efforts paint a picture of a stack of
barriers running through a holistic software process.

Nevertheless, code comparison is one behavioral option
in the economy of software comprehension. While choosing
to compare can lead the developer into much more nuanced
understandings of language and program behavior, it costs time
and effort [28]. The notion of developers being pragmatic about
the decisions of their software behavior as been explored in
research likes Holmes and Walker’s [18], as in Piorkowski’s
reuse of the concept of production bias, or “the tendency of
software developers to view learning as a costly task™ [50].

Therefore, the follow-up question is this: what behaviors
does explicit comparison extend or replace? Even if only
one alternative is considered, checking satisfaction is only
possible if compared to the abstract requirements of the
search in the first place. Granted, requirements-to-program
comparison may not engage exactly the same skills as the
program-to-program comparison discussed here [51]. Beyond
this, implicit comparison iterates one-by-one over alternatives
until a satisfactory alternative is found and choosing to look
no further, albeit the memory of prior alternatives considered
may influence choices from the background.

Lastly, automation can eliminate human element of memory
altogether; the computational tool can make recommendations
without revealing all of the considered options. This option,
which we can call delegated comparison, can be envisioned as
a trusted programming assistant. Still, a design choice remains:
how much of the recommendation reasoning process will be
made transparent and accountable? While tool automation
has clear application for assisting decision making, delegating
analysis up to replacing human involvement may obscure
information that developers value [52].

C. Implications For Tools

This research can generate principles and directions which
may prove productive for future tools, such as the following:
o Flexible Environments for Multiple Alternatives: Developers

in this study describe manipulating the browsers’ tools—tabs

and windows—to accomplish spatial proximity for lack of
specialized tooling to bring alternatives into the same view.

Additionally, the act of tracking down alternatives also has ac-

tions with different costs—opening a new window, revealing

hidden content, and so on. Therefore, tools for dynamically
bringing alternatives into view, moving between orientations,
and maintaining a history of alternatives considered may
streamline the ergonomics of the comparative process.

o Preserving Diversity in Multioptimization: Developers have
numerous priorities in “good” code—efficiency, maintainabil-

195

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2025 at 18:39:53 UTC from IEEE Xplore. Restrictions apply.

ity, and readability, for example—and any one taken too far
can be deleterious for others. Additionally, developers are
averse to being overwhelmed with alternatives. Therefore,
privileging a few results along significant facets and offering
iterative refinement [32] remains a promising path forward.

o Separating the Superficial From the Semantic: The style of
code may constitute a difference without making a difference
in the phenomena themselves. Aligning known features, both
visually and behaviorally, with unfamiliar features may allow
the transfer of conceptual knowledge. If navigating difference
is costly and syntactic difference contributes to the cost, then
tools to normalize structures and appearance can redirect
developer attention to more fruitful endeavors.

VI. Furure WoRK

Iterating Participation in the Design: Although the literature
of PD inspired our methodology, the research described here
fulfills only the first few steps of the full method. As Spinuzzi
clarifies, “participants’ cointerpretation of the research is not
just confirmatory but an essential part of the process” [39]. The
work performed here can serve as the first iteration in a larger
research process. First, confirm with our participants that the
themes we identified match their experience and complicate
findings with new preferences that participants can identify only
when face-to-face with the sum of their statements. Second,
prototype interfaces based on the sketches here and elicit
additional feedback to reveal incongruities in the designs. Third,
iterate and revisit these methods in longer durations. These
processes could occur with the same participants or new ones;
both have tradeoffs in the depth and breadth of perspectives.

Understanding the Bespoke Comparative Environment: This
study explores algorithms not just concepts but as physical
artifacts within a developers’ sensory perception. This concern
goes beyond readability, the premise of which assumes that
“same” algorithms can differ on the internal relationships of
their parts. Rather, codes like VERTICALLY- and HORIZONTALLY-
ORIENTED ALTERNATIVES deal with the external relationships
between physical algorithms. While we had participants reflect
from their concrete experiences and preferences, there remains
insights to glean from direct observations of how developers
currently shape their environments. Our results here suggest
many interfaces currently support comparison only implicitly,
not through tools, and developers reshape their environments
opportunistically through windows and tabs to rearrange
algorithms according to immediate needs. Codes like Dynamic
RerFocusing and SHow ME ONLY # ALTERNATIVES demonstrate
developer desire to shape the comparative environment accord-
ing to preference, so researchers who directly observe this
phenomenon could elaborate opportunities to facilitate it.

Generalizing to New Paradigms: It is worth noting that
this study was performed before generative Al tools, such
as ChatGPT, were in wide use among developers [6]. The
presence of such tools provides yet another interface for
developers to perform code comparison. Like search engines,
and the other contexts described in this work, comparison
is not a primary design consideration in the current generic

generative Al interfaces, so findings in this work may generalize
to those additional contexts while being transformed by the
conversational approach.

VII. THREATS

Internal to this study, participants may limit themselves based
on their confidence or the pressure of observation. Furthermore,
all participants spoke extemporaneously without time to reflect
on subtler implications of their ideas. As evidenced by Table I,
very few of our participants have professional design experience,
and it is possible they could reevaluate initial assessments
when seen implemented. To this, we reassured participants that,
first, we were not judging them on their design quality, and
second, we were not limiting their ideas to what was feasible
with current and familiar technology. Future iterations of a
participatory design approach would directly address this, if
not even opening up the design considerations in this study to
a wider audience with a survey.

Additionally, our qualitative coding of the interviews may
also be imprecise. For example, the separation of long partici-
pant statements into smaller statements was performed by the
first author’s intuition about separate ideas and manageable
statement lengths for the coders. These choices have direct
consequences for the frequency and co-occurrence of codes.
Therefore, we prefer to consider themes by how many partic-
ipants or sessions that arose in uniquely, rather than the raw
frequency of mentions.

Furthermore, the code-book came from the negotiation of
two coders but struggled to reach a high agreement for some
transcripts. Some of the biggest challenges to coding agreement
included first, being attuned to all ideas in a statement given
that we allowed multiple codes, and second, distinguishing
when statements referred to participants’ interface designs and
not merely to the current, less-than-ideal situation. The use
of multiple coders demonstrably improves the reliability of
the results but nevertheless indicates room for improving the
protocol in future iterations.

VIII. CoNCLUSION

In this study, we used a collaborative design activity to
probe for developers’ implicit preferences for contextual code
comparison. After eliciting their goals and barriers, we charged
the developers to reimagine familiar web interfaces to better
help the comparison of alternative reusable code snippets and
making decisions from their contrasts. This methodology gives
us insight into many of the qualities of code, both innate and
contextual, that developers consider important for their tasks, as
well as the opportunities for transforming or more productively
moving through similar programs. The framework of these
concepts can raise further inquiries into the mechanisms of
comparative comprehension and inspire future approaches to
code-centric designs.

ACKNOWLEDGEMENTS

This research is supported in part by NSF SHF #2006947
and NSF SHF #1749936.

196

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2025 at 18:39:53 UTC from IEEE Xplore. Restrictions apply.

[1]

[2

—

[3]

[4

=

[5]

[6

=

[7

—

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2025 at 18:39:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 2009, pp. 1589-1598.

C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search for
code: a case study,” in Proceedings of the 2015 10th joint meeting on
foundations of software engineering, 2015, pp. 191-201.

X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 951-976,
2017.

S. Baltes and C. Treude, “Code duplication on stack overflow,” in
Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: New Ideas and Emerging Results, 2020, pp. 13-16.

M. Gharehyazie, B. Ray, and V. Filkov, “Some from here, some from
there: Cross-project code reuse in github,” in 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). 1EEE,
2017, pp. 291-301.

Z. Liu, Y. Tang, X. Luo, Y. Zhou, and L. F. Zhang, “No need to lift
a finger anymore? assessing the quality of code generation by chatgpt,”
IEEE Transactions on Software Engineering, 2024.

J. Middleton and K. T. Stolee, “Understanding similar code through
comparative comprehension,” in 2022 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 1EEE, 2022, pp.
1-11.

S. S. Ragavan, B. Pandya, D. Piorkowski, C. Hill, S. K. Kuttal, A. Sarma,
and M. Burnett, “Pfis-v: modeling foraging behavior in the presence of
variants,” in Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, 2017, pp. 6232-6244.

M.-A. Storey, “Theories, methods and tools in program comprehension:
past, present and future,” in 13th International Workshop on Program
Comprehension (IWPC’05). 1EEE, 2005, pp. 181-191.

A. Von Mayrhauser and A. M. Vans, “Program comprehension during
software maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44-55,
1995.

A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on software
engineering, vol. 32, no. 12, pp. 971-987, 2006.

F. Détienne, “Reasoning from a schema and from an analog in software
code reuse,” arXiv preprint cs/0701200, 2007.

S. Srinivasa Ragavan, S. K. Kuttal, C. Hill, A. Sarma, D. Piorkowski,
and M. Burnett, “Foraging among an overabundance of similar variants,”
in Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, 2016, pp. 3509-3521.

G. R. Bai, J. Kayani, and K. T. Stolee, “How graduate computing students
search when using an unfamiliar programming language,” in Proceedings
of the 28th International Conference on Program Comprehension, 2020,
pp. 160-171.

S. K. Kauttal, S. Y. Kim, C. Martos, and A. Bejarano, “How end-user
programmers forage in online repositories? an information foraging
perspective,” Journal of Computer Languages, vol. 62, p. 101010, 2021.
C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and
answer questions on the web?(nier track),” in Proceedings of the 33rd
international conference on software engineering, 2011, pp. 804-807.
Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do developers utilize
source code from stack overflow?” Empirical Software Engineering,
vol. 24, pp. 637-673, 2019.

R. Holmes and R. J. Walker, “Systematizing pragmatic software reuse,
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 21, no. 4, pp. 1-44, 2013.

E. W. Myers, “An o (nd) difference algorithm and its variations,”
Algorithmica, vol. 1, no. 1, pp. 251-266, 1986.

J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 313-324.

F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in
code reviews: Reasons, impacts, and coping strategies,” in 2019 IEEE
26th international conference on software analysis, evolution and
reengineering (SANER). 1EEE, 2019, pp. 49-60.

>

197

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]
(34]
[35]
[36]
[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

J.-P. O. Middleton, Justin and K. T. Stolee, “Barriers for students
during code change comprehension,” in 2024 IEEE/ACM International
Conference on Software Engineering (ICSE). 1EEE, 2024.

K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu, and W. Zhao,
“Cldiff: generating concise linked code differences,” in Proceedings of
the 33rd ACMJIEEE international conference on automated software
engineering, 2018, pp. 679-690.

K. Etemadi, A. Sharma, F. Madeiral, and M. Monperrus, “Augment-
ing diffs with runtime information,” /IEEE Transactions on Software
Engineering, 2023.

X. Ge, S. Sarkar, J. Witschey, and E. Murphy-Hill, “Refactoring-aware
code review,” in 2017 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). 1EEE, 2017, pp. 71-79.

Y. Tao and S. Kim, “Partitioning composite code changes to facilitate
code review,” in 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. 1EEE, 2015, pp. 180-190.

E. Patitsas, M. Craig, and S. Easterbrook, “Comparing and contrasting
different algorithms leads to increased student learning,” in Proceedings
of the ninth annual international ACM conference on International
computing education research, 2013, pp. 145-152.

T. W. Price, J. J. Williams, J. Solyst, and S. Marwan, “Engaging
students with instructor solutions in online programming homework,” in
Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, 2020, pp. 1-7.

E. L. Glassman, T. Zhang, B. Hartmann, and M. Kim, “Visualizing api
usage examples at scale,” in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, 2018, pp. 1-12.

R. Cottrell, B. Goyette, R. Holmes, R. J. Walker, and J. Denzinger,
“Compare and contrast: Visual exploration of source code examples,”
in 2009 5th IEEE International Workshop on Visualizing Software for
Understanding and Analysis. 1EEE, 2009, pp. 29-32.

J. Middleton and E. Murphy-Hill, “Perquimans: a tool for visualizing
patterns of spreadsheet function combinations,” in 2016 IEEE Working
Conference on Software Visualization (VISSOFT). 1EEE, 2016, pp.
51-60.

L. Martie, A. v. d. Hoek, and T. Kwak, “Understanding the impact
of support for iteration on code search,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, 2017, pp.
774-785.

M. Matera, F. Rizzo, and G. T. Carughi, “Web usability: Principles and
evaluation methods,” Web engineering, pp. 143-180, 2006.

“Search - GitHub,” https://github.com/search, Last accessed 2024-07-07.
“Google,” https://www.google.com/, Last accessed 2024-07-07.

“Stack Overflow,” https://stackoverflow.com/, Last accessed 2024-07-07.
“LeetCode,” https://leetcode.com/, Last accessed 2024-07-07.
“Codewars,” https://www.codewars.com/, Last accessed 2024-07-07.

C. Spinuzzi, “The methodology of participatory design,” Technical
communication, vol. 52, no. 2, pp. 163-174, 2005.

K. Kautz, “Participatory design activities and agile software development,
in Human Benefit through the Diffusion of Information Systems Design
Science Research: IFIP WG 8.2/8.6 International Working Conference,
Perth, Australia, March 30-April 1, 2010. Proceedings. Springer, 2010,
pp- 303-316.

M. J. Muller, “Retrospective on a year of participatory design using the
pictive technique,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, 1992, pp. 455-462.

S. Davidoff, M. K. Lee, A. K. Dey, and J. Zimmerman, “Rapidly exploring
application design through speed dating,” in UbiComp 2007: Ubiquitous
Computing: 9th International Conference, UbiComp 2007, Innsbruck,
Austria, September 16-19, 2007. Proceedings 9. Springer, 2007, pp.
429-446.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in 2013 35th
International Conference on Software Engineering (ICSE). 1EEE, 2013,
pp.- 672-681.

P. L. Gorski, Y. Acar, L. Lo Iacono, and S. Fahl, “Listen to developers!
a participatory design study on security warnings for cryptographic
apis,” in Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, 2020, pp. 1-13.

“Miro,” https://miro.com/, Last accessed 2024-07-07.

T. Zimmermann, “Card-sorting: From text to themes,” in Perspectives
on data science for software engineering. Elsevier, 2016, pp. 137-141.
M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia
medica, vol. 22, no. 3, pp. 276-282, 2012.

>

(48]

[49]

[50]

P. Pirolli and S. Card, “Information foraging in information access
environments,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, 1995, pp. 51-58.

S. D. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett, R. Bellamy,
J. Lawrance, and I. Kwan, “An information foraging theory perspective
on tools for debugging, refactoring, and reuse tasks,” ACM Transactions

on Software Engineering and Methodology (TOSEM), vol. 22, no. 2, pp.

141, 2013.

D. Piorkowski, S. D. Fleming, C. Scaffidi, M. Burnett, I. Kwan,
A. Z. Henley, J. Macbeth, C. Hill, and A. Horvath, “To fix or to
learn? how production bias affects developers’ information foraging

198

[51]

[52]

during debugging,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 1EEE, 2015, pp. 11-20.

P. Kather and J. Vahrenhold, “Is algorithm comprehension different
from program comprehension?” in 2021 IEEE/ACM 29th International
Conference on Program Comprehension (ICPC). 1EEE, 2021, pp. 455—
466.

M. X. Liu, J. Hsieh, N. Hahn, A. Zhou, E. Deng, S. Burley, C. Taylor,
A. Kittur, and B. A. Myers, “Unakite: Scaffolding developers’ decision-
making using the web,” in Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology, 2019, pp. 67-80.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 11,2025 at 18:39:53 UTC from IEEE Xplore. Restrictions apply.

