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Abstract—Public electric vehicle (EV) charging stations pro-
vide accessible charging options and play a vital role in ad-
dressing range anxiety and facilitating long-distance travel.
However, the wide adoption of public charging stations poses
serious security risks. This paper demonstrates for the first
time an injection attack on the front-end vehicle-to-grid (V2G)
communication based on the ISO 15118 protocol. Specifically,
we developed a testbed that integrates V2Gdecoder, Parasite6,
Open vSwitch, and MiniV2G to emulate traffic injections between
the supply equipment communication controller (SECC) at a
charging station and the EV’s communication controller (EVCC).
We showed that a malicious EV owner or infected supply
equipment can inject harmful packets into the other side. This
injection attack can modify the V2G messages to include run-
time and denial-of-service instances, remote code executions, and
other malware. To design a defense mechanism, we study the
development of a machine learning-based system that can detect
such injection attacks. We created a dataset of three cyber
features that represent benign and malicious traffic between the
SECC and EVCC. Then, we developed shallow and deep-learning
supervised models that can detect injection attacks on front-end
V2G traffic with detection rates up to 95% and false alarm rates
down to 7%. Our experimental results highlight the potential of
machine learning-based intrusion detection systems to effectively
detect injection attacks on front-end V2G communications.

Index Terms—Electric vehicle, charging station, V2G commu-
nication, injection attacks, cyber-security, intrusion detection.

I. INTRODUCTION

The adoption of electric vehicles (EVs) and deployment of
EV charging stations are rapidly increasing. In 2021, more
than 1.4 million EVs were registered in the United States, an
increase of more than 70% over the previous year [1]. As a
result, charging stations are widely deployed in public places
to fulfill EV charging demands. In the United States, there
are currently more than 50 thousand public charging stations
equipped with more than 138 thousand EV supply equipment
(EVSE). Reports have demonstrated that roughly 65% of EVs
rely on public EVSE as home charging may not always be
feasible [2]. However, this wide adoption of public charging
poses serious security risks. Specifically, public charging can
lead to cyber-attacks on victim EVs and/or EVSE. One anal-
ogy is the juice jacking attack [3] that targets smartphone
users charging their phones through public outlets whose
USB ports have been compromised. Similar attacks can be
launched on EVs and EVSE to inject malware and malicious
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traffic, hence, threatening the charging infrastructure, power
grid, and transportation system. However, the feasibility of
injection attacks on V2G communications and relevant defense
mechanisms are not thoroughly studied in the literature.

A. Background and Related Work

To initiate and complete a charging transaction, the EVSE
at the charging station communicates with the EV to share
charging information and preferences. This vehicle-to-grid
(V2G) front-end communications follow the ISO 15118 com-
munication standard in several EV models that are adopted
in the United States and European Union [4]. The ISO 15118
standard allows for a bidirectional communication process that
involves discovery, identification, authorization, and charging
session configuration. Also, it includes features such as authen-
tication, charging parameter negotiation, and energy transfer
control. The messages exchanged between the EVSE and
EV follow the Efficient XML Interchange (EXI) format that
conforms to the ISO 15118 standard.

Recent studies show that the ISO 15118 standard could
expose users to the risk of power theft by spoofing EVs
[5]. Additionally, there are concerns about denial-of-service
(DoS), session hijacking, and masquerading attacks, along
with privacy risks [6]. Furthermore, the authentication and
authorization of payment as defined by the ISO 15118 were
argued to be inadequate for secure billing operations [7].
Moreover, other attacks that have been studied include data
sniffing [8], interruption of charging sessions [9], and shifting
the financial burden of EV charging onto the victim’s EV [10].

Although there are no instances of malware injection in
V2G communication that have been reported, recent studies
suggest that this may change in the future. The Idaho National
Laboratory (INL) warned about the potential risk of EVs
spreading malware to public charging stations [11]. Yet, the
existing works, e.g., [5]–[10], have not thoroughly studied
the feasibility of injecting malicious traffic over V2G front-
end communications. Also, the existing studies do not present
effective defense mechanisms against such injection attacks.

B. Objectives and Contributions

The objectives of this paper are twofold. First, to demon-
strate the feasibility of injecting malicious traffic in the V2G
front-end communications between the EVSE and EV. Second,
to develop an effective intrusion detection system that can



detect injection attacks over V2G front-end communications.
Toward these objectives, we have carried out the following:

• We developed a testbed based on MiniV2G [12] to
emulate benign and malicious front-end V2G commu-
nications between the EVSE and EV following the ISO
15118 protocol. In the malicious scenario, we designed
an attacker communication controller in the testbed based
on the Open vSwitch, Parasite6, and V2Gdecoder such
that the malicious actor (either at the EV or the EVSE)
can inject malicious traffic into the victim. We investi-
gate malicious injections that include run-time and DoS
instances, remote code executions, and other malware
instances. Our experimental results demonstrate that such
injections can be successfully accomplished.

• We developed machine learning-based intrusion detection
system that can efficiently detect injection attacks on
front-end V2G communications. Specifically, we created
a dataset of benign and malicious V2G traffic. The labeled
dataset consists of three cyber features. We trained and
tested a set of supervised machine learning models,
namely, support vector machine (SVM), deep feedfor-
ward, recurrent, and convolutional neural networks. Our
experimental results demonstrate that efficient detection
of injection attacks can be attained with up to 95%
detection rate and down to 7% false alarms.

The rest of the paper is organized as follows. Section II
presents the system and attack model, V2G testbed, injection
attack strategy, and experimental demonstration of injection
attacks. Section III discusses benign and malicious dataset
collection, training of machine learning-based intrusion de-
tection models, and performance evaluation results. Finally,
conclusions are given in Section IV.

II. INJECTION ATTACK STRATEGY

This section presents the system and attack model, V2G
testbed, and our proposed strategy for injection attacks.

A. System and Attack Model

The system under consideration consists of EVs and a public
electric vehicle charging station. The station consists of a set
of EVSE, each transferring energy to a single EV at a time.
The set of EVSE are connected through a local area network
(LAN) to the station’s charging management system, as shown
in Fig. 1. Each EVSE has a physical outlet to charge an
EV. To initiate and complete the charging transaction, the EV
communication controller (EVCC) of the charging EV and
the supply equipment communication controller (SECC) of
the EVSE communicate using EXI message format following
the ISO 151118 standard, as shown in Fig. 1. We consider
herein wired communications between the SECC and EVCC
over the charging outlet. This paper focuses on the front-end
V2G communications between the SECC and EVCC based on
the ISO 151118 standard and does not consider the back-end
communications (the LAN connection between the SECC and
the charging management system).

Fig. 1. System model showing the front-end V2G communication between
the SECC and EVCC.

During normal operation, the SECC and EVCC exchange
the sequence of request/response messages shown in Fig. 2
following the ISO 151118 standard [13]. At the beginning
of normal V2G communication, UDP is used to exchange IP
addresses and port numbers between the EVCC and the SECC
through the SECC Discovery Protocol (SDP). First, EVCC
sends the SDP Request message and receives a reply from the
SECC with its IP address. Then, SECC and EVCC agree on
either the Transport Control Protocol (TCP) or Transport Layer
Security (TLS) protocol for further communication. Then,
TCP/TLS sessions are established to send V2G messages
between the SECC and EVCC. The communication session
is divided into three phases, namely, setup, charging, and
stopping. The EV and EVSE negotiate a number of parameters
during the setup phase, including the protocol version, user
identity, service details, payment options, and charging param-
eters. Energy transfer from the EVSE to the EV takes place
during the charging phase. Energy transfer continues until a
termination condition is satisfied or a service interruption is
requested. Before disconnecting, the EV and EVSE run safety
checks, which are followed by the session stop phase.

In the considered attack model, the attacker establishes an
attacker communication controller (ACC) module in its EV,
converting it to EVa. This ACC intercepts the normal traffic
between the SECC and the EVCC inside EVa, modifies the
EXI messages to inject malicious traffic, and redirects the
injected traffic toward the victim EVSE. This way the attacker
does not need to modify the firmware of the EVCC or gain



Fig. 2. Illustration of the front-end V2G communication requests and
responses according to the ISO 15118 standard [13].

access to it. Instead, the attacker installs the ACC module
inside its EV and converts it into EVa. This is illustrated in
Fig. 1. While the attack described herein considers an attacker
that injects malicious traffic from EVa to a victim EVSE, a
similar strategy can be adopted by an attacker that owns an
EVSE, establishes an ACC to convert the EVSE into EVSEa
and injects malicious traffic to victim EVs. The next section
discusses how to establish the ACC to enable injection attacks.

B. V2G Testbed with ACC Setup and Injection Strategy

To emulate normal V2G communications, the MiniV2G
[12] emulator is used. It emulates EV charging based on
MiniNet [14] and RiseV2G [15]. Specifically, MiniNet is an
open-source communication network emulator and RiseV2G is

a reference implementation of the ISO 15118 standard, which
supports comprehensive AC and DC charging features with
security measures. MiniV2G has classes for the EVSE and
EV. The EVSE class provides the SECC functionalities, and
the EV class provides the EVCC functionalities.

To launch traffic injection attacks, we upgraded the
MiniV2G to introduce the ACC class, which includes the
functionalities of Open vSwitch [16], Parasite6 [17], and
V2Gdecoder [18], as shown in Fig. 1. In our implemen-
tation, the ACC wraps the EVCC functionalities to control
V2G communication and inject malicious traffic. Specifically,
Open vSwitch and Parasite6 enable traffic redirection, hence,
setting ACC in the middle between SECC and EVCC, and
V2Gdecoder facilitates the encoding and decoding of EXI
payloads exchanged between EVCC and SECC.

Algorithm 1 summarizes the steps to launch the traffic
injection attack and Fig. 3 illustrates the message timing
diagram. EVCC sends an SDP request and waits for a reply
from SECC. ACC sniffs the SECC reply to the SDP request
and uses Open vSwitch and Parasite6 to establish itself in the
middle between the SECC and EVCC by changing the MAC
addresses, IP addresses, and port numbers. From now on, any
message to be exchanged between the EVCC and the SESS
will be redirected first to the ACC. Then, the ACC can use
the V2Gdecoder to modify the contents of the exchanged EXI
messages and inject malicious traffic into the SECC.

Fig. 3. Illustration of the attack during the V2G request message.

Possible Injections: In this paper, ACC modified the V2G
messages to perform the following malicious injections:

• Run-time instances such as
${Runtime.getRuntime().exec("rm -rf
/")}.

• DoS instances like ${::-${::-${}}}.
• Remote code execution such as
${jndi:ldap://attacker.com/a}.

• Malware instances such as the Fork Bomb (rabbit virus,
60 bytes) and Tinba (Tiny Banker Trojan, 20 KB).

The aforementioned examples are meant to test the possibility
of injecting malicious traffic between EVCC and EVSE.



Algorithm 1: Injection Attack Strategy for Front-End
V2G Communications

1 EVCC: begin
2 Send the SDP message through UDP to SECC;
3 end
4 ACC: begin
5 Intercept the SDP request from EVCC;
6 Generate a fake SECC reply with the ACC port

number;
7 Send the fake SECC reply to EVCC;
8 Spoof the EVCC using Parasite6 and establish a

connection with SECC;
9 end

10 EVCC: begin
11 Receive the fake SECC reply from ACC;
12 All EVCC traffic will be redirected to ACC by

Open vSwitch;
13 end
14 ACC: begin
15 Receive redirected EVCC traffic;
16 Decode the EVCC message at ACC using

V2Gdecoder;
17 Modify the message to inject malware

instances/malicious traffic as needed;
18 Encode the modified message using the

V2Gencoder;
19 Forward the malicious message to SECC;
20 end
21 SECC: begin
22 Receive and decode the malicious message from

ACC;
23 end

Other malware instances can be injected if they maintain the
maximum EXI message size by the ISO 15118 protocol (e.g.,
64 KB for the ChargeParameterDiscoveryReq message).

C. Demonstration of Injection Attacks

Fig. 4 shows the normal V2G traffic between SECC and
EVCC, captured by Wireshark, with the first row being the
EXI of Supported Application Protocol Request and the sec-
ond row being the reply. To demonstrate a successful injection
attack, we first show the encoding of a malicious XML format
to an EXI code at the ACC in Fig. 5. As shown in Fig. 5, the
contents of the protocol namespace are modified to insert a
JNDI lookup. If the logger at the victim SECC is vulnerable,
then the JNDI lookup is called generating the canary token.
Fig. 6 shows the injected traffic as captured by Wireshark.
The first row in Fig. 6 shows the Supported Application
Protocol Request being intercepted and modified to include the
malicious EXI generated by ACC, which is sent to the SECC
as depicted in the second row. Similarly, the SECC reply in
the third row in Fig. 6 is intercepted and modified by ACC
to continue the session. The decoding of the EXI message

back to the XML format at the SECC is shown in Fig. 7. As
aforementioned, this example is intended to demonstrate the
possibility of injecting malicious traffic between the EVCC
and SECC and other malware instances that conform to the
EXI maximum allowed size in ISO 15118 can be injected.

Fig. 4. Example of normal V2G traffic.

Fig. 5. Encoding of V2G message at the ACC.

Fig. 6. Illustration of the attack during the V2G request message.

Fig. 7. Decoding of EXI to V2G message at the SECC.

III. MACHINE LEARNING-BASED DETECTION STRATEGY

Section II demonstrated the feasibility of injecting malicious
traffic into the V2G front-end communications. Adopting
security techniques such as authentication and encryption (e.g.,
in TLS) is not helpful as the injected malicious traffic still
is going to reach the victim. To deter such attacks, this
section investigates the development of an effective strategy
to detect malicious traffic injection attacks in V2G front-end
communications. First, we discuss the collection of benign
and malicious datasets. Then, we investigate four machine-
learning models to develop the intrusion detection system,
namely, SVM, deep feedforward neural network (FNN), recur-
rent neural network (RNN) based on long-short-term-memory
(LSTM) cells, and convolutional neural network (CNN).



A. Dataset Generation

We used the testbed described in Section II.B to generate the
required dataset. For normal traffic (benign data), MiniV2G
was used to establish several charging transactions between
EVs and the EVSE. For the malicious traffic, MiniV2G was
used with the ACC class so that EVa injects malicious traffic
into the EVSE as described in Algorithm 1. The possible
attacks described in Section II.B are considered while gen-
erating the malicious traffic. In each scenario, Wireshark was
used to capture the relevant traffic. The captured packets were
converted to comma-separated values (CSV) using pyshark
[19]. The captured features include source and destination
IP addresses, source and destination ports, round-trip time,
payload length, and packet rate. The source and destination
IP addresses were omitted as we are not considering any
blacklisting of IP addresses. In addition, the port numbers were
also omitted as they can be random, hence, adding no value to
the detection strategy. As a result, our dataset consists of three
cyber features, namely, round-trip time, payload length, and
packet rate. The dataset samples were labeled such that y = 0
denotes benign traffic samples and y = 1 denotes malicious
traffic samples (malicious traffic injections).

B. Machine Learning Models

We considered shallow (SVM) and deep (FNN, LSTM-
RNN, and CNN) supervised machine learning models. The
considered models cover both non-temporal (SVM and FNN)
and temporal (LSTM-RNN and CNN) models that exploit cor-
relation within the data to enhance the detection performance.
The considered models are summarized next.

1) SVM: This model aims to find the optimal hyperplane
that maximizes the margin between the two classes (benign
and malicious). The data points near the hyperplane are the
support vectors. This represents a shallow model.

2) FNN: This represents a deep model that consists of an
input layer, a set of hidden layers, and an output classification
layer, with interconnected artificial neurons. Forward propa-
gation is used to process data, in which data travels from the
input layer via the hidden layers to the output layer. Weights
associated with neurons are iteratively adjusted during training
to optimize the detection performance. FNNs are renowned for
their capacity to approximate complex non-linear processes.

3) LSTM-RNN: This model processes sequential data, such
as time series data, which is our case. This represents a deep
model with a set of hidden layers and it has memory cells that
can maintain information over extended sequences, making it
appropriate for tasks requiring temporal modeling and context
awareness. LSTM-RNNs are helpful in situations where the
sequence of events and their dependencies are important.

4) CNN: This deep model exploits correlation in data
by applying convolution layers. These layers apply filters
to the input data, discover local patterns, and extract perti-
nent characteristics. In addition, pooling layers are used to
minimize spatial dimensions and capture the most important
characteristics. Due to their hierarchical and localized learning
strategies, CNNs have excelled in classification tasks.

C. Hyper-parameter Optimization

We optimized the hyper-parameters of each model following
a random grid search. For the SVM model, the optimal
hyper-parameters were found to be the linear kernel, auto
gamma, and regularization of C = 1. For the deep models,
the optimal hyper-parameters Q were chosen from a search
space that includes a number of layers L = {2, 3, 4}, a
number of neurons/units U = {4, 8, 16, 32, 64}, a dropout
rate D = {0, 0.2, 0.4, 0.5}, an optimizer O = {SGD, Adam,
Rmsprop}, and an activation function A = {ReLu, Sigmoid,
Elu, Tanh}. Table I summarizes the grid search results of the
optimal hyper-parameters for the deep learning models.

TABLE I
SUMMARY OF OPTIMAL HYPER-PARAMETERS

Model Q Value

FNN

L 3
U 64
D 0.2
O Adam
A ReLu

RNN

L 3
U 32
D 0
O SGD
A ReLu

CNN

L 4
U 32
O Rmsprop
A ReLu

D. Performance Evaluation Metrics

Three metrics have been considered to evaluate the perfor-
mance of the intrusion detection models, namely, detection rate
(DR), false alarm (FA) rate, and Accuracy. These are given as

DR =
TP

TP + TN
, (1)

FA =
FP

TN + FP
, (2)

Accuracy =
TP + TN

TP + TN + FP + FN
, (3)

where true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN) represent the counts for
different outcomes based on the predicted and actual labels.
The positive label y = 1 denotes the malicious class and the
negative label y = 0 represents the benign class. The DR is the
ratio of correctly identified malicious samples. Furthermore,
FA is the ratio of the number of benign samples that the model
incorrectly identified as malicious. Finally, Accuracy denotes
the percentage of correct predictions on the given data with
respect to the actual label.

E. Results and Discussion

The dataset has 3, 000 samples, half of them represent
benign traffic and the other half represent malicious injection
traffic. The dataset was split into train, validation, and test
sets with ratios 70% : 10% : 20%. The train and validation



sets were used to determine the model parameters and tune the
hyper-parameters whose optimal values were found as in Table
I. The detection results are summarized in Table II. A DR of
91.6% was obtained using SVM with a FA of 13.7% and an
Accuracy of 92.3%. An improvement of 1.3% in DR, 3.6%
in FA, and 0.6% in Accuracy was observed in FNN compared
to SVM. The shallow SVM model and the deep supervised
FNN model demonstrate a good detection performance, with
the FNN model outperforming due to its deep architecture.
Furthermore, the LSTM-RNN model improved the detection
performance by more than 1% in DR and FA because it is
effective in capturing and leveraging temporal dependencies,
leading to better classification performance. Finally, CNN,
being able to better capture correlation within the data, attained
the highest DR of 95.1 %, lowest FA of 7.2%, and the highest
Accuracy of 95.2%. In addition, Fig. 8 shows the relationship
between FA and DR as described by the receiver operating
characteristics (ROC) curves of all the developed models.

TABLE II
SUMMARY OF DETECTION RESULTS

Model DR (%) FA (%) Accuracy (%)
SVM 91.6 13.7 92.3
FNN 93.3 10.1 93.7

LSTM 94.5 8.0 94.1
CNN 95.1 7.2 95.2

Fig. 8. ROC curve of the developed models.

IV. CONCLUSION

This paper investigated the potential risks associated with
using public stations to charge EVs. A testbed was set up
to emulate V2G front-end communications following the ISO
15118 standard. During the V2G communication, EVs at-
tempted to inject malicious traffic to compromise the charging
station. The same testbed can be used in reverse to attack
EVs with compromised charging stations. Then, we examined
a defense strategy that adopts machine learning models to
detect such malicious injection attacks. The testbed was used
to collect benign and malicious data, extract cyber features
(round-trip time, payload length, and packet rate), and train

the machine learning models. We compared the performance
of shallow and deep learning models. Our results demonstrated
that deep learning-based intrusion detection models can attain
a detection rate up to 95% and a false alarm rate down to 7%.
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